Introduction

1.1. A little bit of history

The first version of Tcl sprang to life at UC Berkeley way back in 1988. Professor John Qusterhout’s primary
motivation! was to create a standardised, extensible language that could be easily embedded into applications

to allow their functionality to be scripted. The accompanying graphical toolkit Tk, which used Tcl as its scripting
language, came into being a couple of years later. The combination grew in popularity and was influential enough
for Prof. Ousterhout to receive both the ACM Software System and USENIX STUG awards in 1998.

Since those early years, Tcl has grown from an “embeddable, scripting” language to a full fledged dynamic
programming language versatile enough for programs ranging from one-line throwaways to enterprise scale
distributed systems. Development of Tcl is now controlled through the Tcl Core Team % (TCT) which makes
decisions on future enhancements through a formalized voting process. These enhancements may be proposed by
any interested parties through a Tcl Improvement Proposala, or TIP.

1.2. What Tcl offers

Tcl’s benefits permeate all aspects of the software development process. Programmers will appreciate

+ a wide-ranging set of built-in commands as well as libraries and extensions for common tasks
+ programming conveniences like seamless Unicode support and infinite precision arithmetic

« the malleability which enables metaprogramming, custom control structures and embedded mini-languages
that are specialized for the target domain

+ flexible and extensible support for object-oriented programming that lets you write code in a variety of object-
oriented styles

» an advanced channel abstraction for I/O with support for defining new types of data streams and pluggable
transforms. For example, automatically compress data while writing to a file. Or encrypt. Or both.

+ avirtual file system facility that allows remote FTP sites, databases, in-memory structures etc. to be exposed
and accessed as if they were local files.

» the ability to call out to other languages, such as C for a performance boost or to Java or .Net classes for
integration

* an interactive mode which promotes rapid experimentation and iterative prototyping while facilitating test-
driven development
From a software architect’s perspective,

* non-blocking, asynchronous architectures are easily supported with Tcl’s integrated event loop

» Tcl’s coroutine and threading features allow a number of different concurrency models — traditional threads
with shared data, message-passing actors or CSP

1 http://www.tcl.tk/about/history.html
http://www.tcl.tk/cgi-bin/tct/tip/0.html
3 http://www.tcl.tk/cgi-bin/tct/tip/2.html

Reading this book

+ data driven and reactive programming models are simplified by the availability of the tracing facility, in
combination with the event loop

« applications can run multiple independent interpreters with sandboxing capabilities for executing untrusted
code

Managers are people too and Tcl addresses their needs as well.

+ Tcl's portability extends from Windows, Linux, OS X, Android and other mainstream operating systems to
embedded systems like Cisco routers. Development for multiple platforms is simplified.

« Tcl's versatility means you can use it across multiple components in your product: command line tools,
graphical interfaces, back end servers, and even test automation. Not only is code sharing facilitated,
programming skills are also more easily transferred. Managers can deploy their minions where they are
needed!

« Tcl's single file executable packaging makes distribution trivial in a corporate environment and facilities like
online tracing and remotability simplify field support.

« Tcl's stability and backward compatibility means legacy code from the last century will continue to run with
minimal or no changes.

+ Last but not least, the open source BSD license means minimal dealing with lawyers. Yay!

No doubt by now you are chomping at the bit to get started on Tcl. That will have to wait for the next chapter
though, as tradition demands we say a little bit about the book itself first.

1.3. Reading this book

I expect the book’s audience to include those who are new to Tcl as well as those who already have a more than
passing familiarity with the language.

For the newcomers...

The book requires no prior experience with Tcl but does assume some basic programming background on the
reader’s part. Knowledge of terms like function, variable, for loops etc. is about sufficient to start learning the basics
of Tcl. More advanced constructs like asynchronous programming, threads and coroutines require a little more
sophistication but you can get a lot of programming done without venturing into these areas. The book’s attempt

to be comprehensive does mean that it is easy to be distracted by the level of detail. My suggestion would be to not
get bogged down by the minutia of every command but to focus on the high level conspectus of language features
and idioms. You can then come back to refer to the details as and when needed. It may also be beneficial to go
through one of the short online Tcl tutorials. The official* one has not been updated to Tcl 8.6 as of this writing but
should suffice for introductory purposes.

The next chapter shows you how to install Tcl and run it in interactive mode. You are strongly encouraged to do so
and try the illustrative code snippets from the book by entering them in the Tcl shell.

For the old hands...

For readers who have worked with Tcl before, the book can serve as a reference with a detailed table of contents
and a comprehensive index. At the same time, browsing through the book may very well lead many to discover Tcl
features and capabilities they might not have been aware of, or to gain a deeper understanding of specific topics.
Advanced material, such as object-oriented programming, coroutines, reflected channels, virtual file systems etc.
are treated in detail.

1.3.1. Typographic conventions

We now come to the obligatory section on formatting and typographic conventions even though they should be
obvious to everyone but the publisher.

4 https://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.htmi

Typographic conventions

Text formatting

Within the text, we use italics to define terms and bold for emphasis. File paths and program elements like
commands and variables are shown in a monospace font. Additionally, we use capitalized italics in the same font
for PLACEHOLDERS that stand for some variable part in a code fragment.

Highlighting

Certain notes and points of emphasis are highlighted in one of the following ways:

Important You must carry your driver’s license and insurance papers at all times.
Stresses important points you must keep in mind.

| Caution Dangerous curves ahead. Reduce speed. Actions you need to be careful about.

| Warning Do not drink and drive. Stuff you would be foolish to do.

Note Turning right on red is not permitted in New York. Information that you might miss
or overlook.

| Tip Use the exact change lanes for quicker service. Tips for productivity.

Sidebars

Material that is related to the discussion but not directly relevant is placed in a sidebar. For example,

History of driving regulations

Licenses were not required for driving in the United States until 1903 when Massachusetts and Missouri
became the first states to make them mandatory.

Code samples
Code samples fall into three categories:

* syntax descriptions
» commands typed at the Tcl shell prompt
+ scripts as they might be stored in files
All use the same font employed for code within descriptive text.

The first of these are intended to show syntax of commands and not expected to be executed as-is. Optional parts
of the command are shown enclosed in ? characters.

set VAR

The above syntax indicates that varnvaAME and VALUE are only placeholders for the actual variable name and value
respectively. Moreover vALUE is optional and need not be specified.

Utility procedures used in the book

Commands that you might type at the Tcl shell prompt are shown as

% set x 1
5> 1

The % character is the Tcl shell prompt so the command itself is set x 1. Any output that the shell prints out
is prefixed with the — character. Depending on the example, lines may be truncated, indicated by ellipsis ..., or
wrapped, prefixed with a L, character.

Error messages printed by the shell are prefixed with @.

% set x $nosuchvariable
@ can't read "nosuchvariable": no such variable

In the interest of saving space, short commands and the result may be shown on the same line without the prompt,
particularly when the output from multiple commands is to be compared.

format %x 42 » 2a
format %b 42 » 101010

In this case, a result that is an empty string is shown as in the example below.
set x "" » (empty)

Finally scripts where the output of individual commands is not important or relevant are shown without the
command prompt. Only the output of the last command is shown.

proc add {a b} {
return [expr {$a+$b}] [1)

}
add 2 3
> 5

@ expr computes arithmetic expressions

The numbered callout shown in the above example is intended to either highlight or provide additional
information about a line in the script.

1.3.2. Utility procedures used in the book

Throughout the book we use various simple utility procedures for convenience, for example to print a list. These
procedures are shown in Appendix B.

1.4. Online resources

The primary website for Tcl is hosted at http://www.tcl.tk. Announcements of new releases, conferences etc.
happen here. It also hosts the reference pages for Tcl and core libraries as well as the rep051t0ry for Tcl
Improvement Proposals.

The Tcler’s Wiki® is where you should go for all kinds of tips, code samples, and wide ranging discussions on a
variety of Tcl-related topics.

The Usenet group comp. lang.tcl, also accessible through Google Groups7, is dedicated to a discussion of Tcl-
related topics and a good place to get any questions answered.

3 http:/ftip.tel.tk
http:/jwiki.tcltk

7 https://groups.google.com/forum/#!forum/comp.lang.tcl

Chapter summary

Alternatively, the Tclers' Chat is a chat room accessible either via XMPP clients or through IRC gateways. Many
knowledgeable Tcl programmers hang out here and you can learn a lot just by listening in. A specialized chat client
tkchat® is also available.

The source code for Tcl and core extensmns is hosted at http://core.tcl.tk in a Fossil® DVCS repository. This also
hosts Tcl’s bug reports ®anda catalog ! of Tcl libraries and extensions.

Tcl source distributions are available from the SourceForge download area '2. Note however that SourceForge
is no longer used for the source repository or for logging bug reports. Binary distributions are available from
multiple sources as we list in the next chapter.

1.5. Chapter summary

We are now ready to actually begin our journey into the Tcl world. In the next chapter, you will learn how to
install Tcl on your system, enter commands interactively and run Tcl programs.

8 http://tkehat.tcl.tk/

https://www.fossil-scm.org

10 http://core.tcl.tk/tcl/ticket
http://core.tcl.tk/jenglish/gutter/
https://sourceforge.net/projects/tcl/files/Tcl/

Getting Started

Running Tcl requires you to first install the Tcl runtime and tools. We will start off by describing the installation
procedure and then move on to the actual mechanics of running Tcl programs.

2.1. Installing Tcl

There are several options for installing Tcl on your system:

* Many operating systems provide bundled distributions of Tcl
+ Several third parties distribute precompiled binaries
* You can build your own distribution from the Tcl sources

We describe each of these in the next few sections.

2.1.1. Installing bundled packages on Linux

Some operating systems include Tcl in their distribution. Note however that these are not always up to date and
you may prefer to install the latest Tcl version separately as described later.

Bundled packages can be installed using the installation package manager for the system. For example, on a
Debian Linux system, use apt-get to install Tcl.

apt-get install tcl
On Fedora and other rpm-based distributions, use yum for the same purpose.

yum install tcl

These will install Tcl in system-specific directories. In most cases, extensions to Tcl are distributed as separate
packages and have to be individually installed.

2.1.2. Installing third party binary distributions

Alternatively, you may install one of the third party binary distributions of Tcl. Obviously this is necessary if your
OS does not bundle Tcl but there are other reasons to do this. For example, the operating system bundled version
of Tcl might not be the latest, or you may not have the system privileges required for its installation.

2.1.2.1. ActiveState multi-platform distributions

The company ActiveState maintains both free and commercial distributions of Tcl for multiple platforms including
Windows, Linux, OS X, Solaris, AIX and HP-UX. In addition to Tcl itself, the distribution includes a wide variety of
third party extensions and packages. There are however two caveats to keep in mind with respect to ActiveState
distributions at the time of this writing:

+ Some Tcl platforms and extensions are only available in the commercial edition.

+ The free community edition has licensing restrictions pertaining to use on production systems and
redistribution.

Installing third party binary distributions

Nevertheless, these restrictions do not matter for your personal use and these distributions are the most popular
Tcl binary distributions as of today.

To install ActiveTcl, download the distribution 1 for your platform and follow the detailed installation
instructions z

For Linux and Unix based platforms, this involves extracting the downloaded archive into a temporary directory
and running the install.sh shell script in the extracted directory. You may want to add the directory containing
the installed binaries to your PATH environment variable.

On Windows platforms, the distribution is a self-extracting executable. To install Tcl, run this executable and
follow the on-screen instructions. The installer will optionally modify the PATH environment variable and
associate the . tcl file extension with the wish GUI application.

after saving to disk, you may need to bring up the file properties dialog in Windows
Explorer by right clicking on the file, selecting the Properties menu item and then
clicking the Unblock button on the General tab in the properties dialog.

E Windows will sometimes prevent you from running downloaded executables. Therefore,

2.1.2.2. Installers for Windows

There are several Windows installers available for Tcl, two of which we detail here.

BAWT (Build Automation With Tcl) is a framework for building Tcl and extensions. Although its primary purpose
is building the software, it also makes available a BAWT Tcl installer® for Windows which includes a very broad
range of packages and extensions.

The Magicsplat distribution? for Windows is a Windows installer based MSI package. The distribution is
maintained by this author and targets Windows 7 and later. It includes the most commonly used Tcl packages and
extensions.

Unlike the ActiveTcl distribution, both the above are licensed under the same conditions as Tcl itself and do not
prohibit commercial use and redistribution.

To install either distribution, download the appropriate setup program for BAWT, or the MSI package for
Magicsplat, from their web sites. Then for BAWT, run the setup program from the command line or Windows
Explorer. For the Magicsplat MSI package, either double click the file in Windows Explorer, or type

start FILENAME.ms1

from the DOS prompt where FILENAME is the name of the downloaded package.

As described earlier for ActiveTcl, you may need to unblock the program before you can
a run it in Windows.

Both installers will guide you through the install process permitting installation to different directories, optionally
modifying the PATH environment variable and so on. For the Magicsplat package, you need to choose the Advanced
option on the initial installation screen to see these options. Like the ActiveTcl distribution, the Magicsplat installer
will also register file associations. However, instead of registering . tcl and . tk extensions, it registers . tclapp
and . tkapp instead on the basis that plain . tcl files are likely to be library scripts and packages and not runnable
applications.

1

2 http://www.activestate.com/activetcl

http://docs.activestate.com/activetcl/8.6/at.install.html
http://'www.bawt tcl3d.org/download.html
https://bintray.com/apnadkarni/tcl-binaries/tcl-binaries-windows

Installing from source

A third alternative for a Windows installer based Tcl distribution is the IronTcl® distribution. Its distinguishing
feature is that it uses signed binaries and is available with a commercial support contract. However, 64-bit binaries
are only available to commercial customers.

2.1.2.3. Perschak distributions for Linux and Windows

Thomas Perschak ® maintains binary distributions for Linux and Windows. These distributions do not have an
installer. You can just extract them to a directory and run them in place.

2.1.2.4. Tcl for Android

The AndroWish’ distribution targets the Android platform and is available for both ARM and x86 architectures.
While allowing many Tcl scripts to run unmodified on an Android device, it also includes a large number of
commonly used packages and supports interfaces to much of the native Android API.

2.1.2.5. Single file Tcl executables

One final, and possibly simplest, option for installing a Tcl binary executable is to use tclkits. Also known by
various other names such as starpacks, these are single file executables that contain Tcl and supporting core
libraries. Because these are all self-contained, you can copy the file anywhere and run it without any installation
step. Tclkits can greatly simplify deployment of Tcl applications and we will look at them in detail in Section 19.4.
This might be the easiest way to try out Tcl. The libraries bundled with these kits depends on the specific download
source although in Section 19.4.4 we will see how to add libraries that are missing.

There are several Web sites from where tclkits can be downloaded. One is Roy Keene’s Tclkit site 8 which contains
binaries for several platforms including Windows, OS X and Linux/Unix operating systems. The site allows you to
customize which libraries are included in the binaries.

Another alternative is the kbskit distributions, which vary in terms of included libraries and extensions. These
distributions can be downloaded from the kbskit download site .

The AndroWish ° project also provides single file Tcl executables for Windows and Linux in addition to Android.
This comes with a rather large number of extensions included in the executable.

2.1.3. Installing from source
You may at times want to build and install Tcl directly from sources. This may be because
+ you cannot find a suitable binary distribution for your platform
* you need to integrate Tcl into a larger application build environment
* you want the cutting edge development release hot off the repository
+ or whatever.

In this section we describe the simple steps to accomplish this.

2.1.3.1. Tcl source repository and releases

The official Tcl source repository resides at core.tcl.tk and uses the Fossil 11 distributed source code management
system. However, we are not going to describe how to work with Fossil and build directly from the repository
source. We will instead focus on the official Tcl source code releases. These are available from the SourceForge file
distribution *? site (8.6.6 is the latest Tcl version at the time of writing). The files of interest are:

5 https://www.irontcl.com

6 htips://bitbucket.org/tombert/tcltk/downloads

http://www.androwish.org

http:/tclkits.rkeene.org/fossil/wiki/Downloads

https://sourceforge.net/projects/kbskit/files/kbs
http://www.androwish.org/download/index.html
https://www.fossil-scm.org
https://sourceforge.net/projects/tcl/files/Tcl/8.6.6

Installing from source

+ tcl8.6.6-src.tar.gz and tcl866-src.zip which contain the source code for Tcl and some core packages. The two only
differ in the archive format.

+ tk8.6.6-src.tar.gz and tk866-src.zip which contain the source for the Tk extension. This is strictly not part of Tcl
itself but you will need it if you want to use the GUI version of the Tcl/Tk shell (wish).

2.1.3.2. Building on Unix-like platforms

Follow these steps to build and install Tcl and Tk on Unix-like systems.

« Extract tcl8.6.6-src.tar.gz into a directory, say tclsrc.
» Change to the tclsrc/unix directory.
« Run the commands in the shell

./configure --prefix=/usr/local/tcl --enable-threads
make
make install

The above builds the 32-hit version of Tcl and assumes you want to install Tcl in the /usr/local/tcl directory.

To build the 64-bit version, add the --enable-64bit option to the configure step.
./configure --prefix=/usr/local/tcl --enable-threads --enable-64bit

Next, build the Tk extension following similar steps.
« Extract tk8.6.6-src.tar.gz into a directory, say tksrc, residing at the same level as the tclsrc directory.
» Change to the tksrc/unix directory.
+ Run the commands in the shell

./configure --prefix=/usr/local/tcl --enable-threads --with-tcl=../../tclsrc
make
make install

Note the - -with-tcl option points to the location of the Tcl source directory. As before, if you are building the 64-
bit version, you need to add the - -enable-64bit switch to the configure step.

You will now have a Tcl installation along with the Tk extension in /usr/local/tcl.

2.1.3.3. Building on Windows

The following steps will build and install Tcl and Tk on Windows using Microsoft’s compiler tool chain.
« Start the Visual Studio or Microsoft SDK command prompt for 32- or 64-bit release builds as appropriate.
+ Extract tcl866-src.zip into a directory, say tclsrc.
» Change to the tclsrc\win directory.
* Run the commands

nmake /f makefile.vc INSTALLDIR=C:\Tcl
nmake /f makefile.vc INSTALLDIR=C:\Tcl install
This assumes you want Tcl installed under the C:\Tcl directory.
To build and install Tk,
« Extract tk866-src.zip into a directory, say tksrc, at the same level as the tclsrc directory.

« Change to the tksrc\win directory.
* Run the commands

10

Files and directory structure

nmake /f makefile.vc TCLDIR=../../tclsrc INSTALLDIR=C:\Tcl
nmake /f makefile.vc TCLDIR=../../tclsrc INSTALLDIR=C:\Tcl install

This will build and install Tk and the GUI shel wish.
2.1.3.4. Building on 0S X

The process of building Tcl on OS X is similar to that for Unix. Full instructions are provided in the README file in
the macosx directory in the Tcl source distribution.

2.1.3.5. Using BAWT for Tcl and extensions

Although Tcl itself is straightforward to build, it can be slightly more involved to huild third party extensions due
to additional dependencies, different build systems etc. The BAWT system we mentioned earlier specifically tackles
this problem. It includes everything needed to build Tcl and a wide variety of extensions. Currently supporting
Windows, Linux and OS X, BAWT requires the user to only run a single batch or shell script to build Tcl and the
extensions of interest. See the BAWT documentation ** for the procedure.

2.1.4. Files and directory structure

After installation, the target directory contains the three subdirectories shown in Table 2.1.

Table 2.1. Tcl directory structure

Directory Description

bin Contains main Tcl and Tk executables along with the core shared libraries. Most
installations will add this directory to the PATH environment variable or link to the
executables in this directory from a standard directory already included in PATH.

include Contains C header files required for building Tcl extensions.

lib Default location for all add-on packages and extensions. The C libraries required for Tcl
extensions are also located here as are runtime support scripts and other files used by Tcl
for locale and time zone information, character encodings etc.

The Tcl distributions bundled with the operating systems may differ from the above layout. Moreover, some
distributions may also create additional directories for documentation, sample programs and such. As a special
case, the single-file tclkit versions are all self contained and do not follow the above structure.

The main executables in the bin directory are tclsh and wish (tclsh.exe and wish.exe on Windows). These
are the command line and GUI versions of the Tcl shell and we will be taking a closer look at them shortly.

Depending on the specific distribution, your Tcl shell may be named slightly differently
a such as tc18.6, wish86t etc.

2.1.5. Reference documentation

The Tcl reference documentation is online at http://tcl.tk/man/tcl/contents.htm. This includes reference pages for
Tcl as well as the core packages like Tk, TDBC etc.

On Unix systems, the Tcl reference documentation is also available in the form of man pages accessible via the
standard Unix man program.

13 http://www.bawt.tcl3d.org/documentation.html

11

Running a Tcl program

On Windows systems, the ActiveTcl distribution comes with its own Windows Help file (. CHM format) for Tcl and
extensions. Another alternative in the same format is available from the author’s TWAPI * pr0]ect

2.2. Running a Tcl program

With all the preliminaries out of the way, let us now get around to actually running a Tcl program. Convention
dictates that we must begin by greeting the world. Use your favourite editor and create a file called hello. tcl
with the following line of text.

puts "Hello World!"
At your shell or DOS command prompt, run this program using tclsh as shown here.

C:\temp>tclsh hello.tcl
Hello World!

C:\temp>

You have now written your first Tcl program. Feel free to go add Tcl to your resumé.
2.2.1. The Tcl library and interpreter

We need to take a moment now to distinguish between Tcl, the Tcl interpreter, the Tcl library, Tcl programs or
scripts, and Tcl applications.

+ Tclis the programming language. A Tcl program or script is a sequence of commands or program statements
written in Tcl.

» The Tcl interpreter is kind of a virtual machine that provides the runtime environment for running Tcl
programs. As we lay out in great detail in Chapter 20, an application may contain multiple such interpreters.

+ The interpreter virtual machine is implemented as a library which may be statically linked or loaded as a
shared library into any application to allow it to execute Tcl scripts. An application makes calls into the library
to create Tcl interpreters and execute Tcl programs.

» A Tcl application is a program that is written in C, or some other language, that compiles to machine code and
links to the Tcl library. In some cases, the application may do very little other than provide a means to execute
Tel. In such cases, the Tcl program or script itself implements the entire functionality of the application. In other
cases, the application may natively implement much of the user visible functionality and the embedded Tcl
interpreter acts as a means to allow end user scripting of the application.

If you are new to programming, you do not need to really worry about all these terms. It is just a prelude to
introducing two applications that come as part of the Tcl distributions — the Tcl shells.

2.2.2. The Tcl shells

The Tcl shells are simple applications that provide a means of executing Tcl scripts, either interactively or stored in
files. They provide practically no other application level functionality themselves. The Tcl distribution comes with
two such shells — tc1sh and wish. The former is for general purpose use including command-line and daemon or
background applications while the latter is intended for applications having a graphical user interface. The shells
can be used for interactive experimentation with Tcl or for full blown applications that are entirely coded in Tcl.

2.2.2.1. The tclsh command-line shell

In its essence, the tclsh application reads from the terminal (console on Windows, we use the terms
interchangeably) or a file and executes the read input as Tcl code. We have already seen its use in our simple
Hello World! program earlier. We now describe its functionality in more detail.

14 https://sourceforge.net/projects/twapi/files/Combined%20Help%20Files

12

The Tcl shells

We remind you that tclsh may be named tclsh86 or tclsh86t or a similar form
depending on the specific Tcl distribution you have chosen to install.

2.2.2.1.1. Running tclsh interactively

When run with no arguments, tclsh runs in interactive mode. It displays a command prompt and any lines
entered are treated as a Tcl script and executed. The result is then printed out. This is commonly known as the
Read-Eval-Print-Loop (REPL). Typing the exit command will cause the program to terminate. A sample session is
shown below.

C:\temp>tclsh

% puts "Hello World!"
Hello World!

% exit

C:\temp>

In interactive mode, tclsh has a few changes in behaviour as compared to running a script stored in a file. These
differences are described here.

Startup scripts: . tclshrc, tclshrc.tcl

On starting up, tclsh checks for the existence of a file .tclshrc (tclshrc.tcl on Windows) in your home
directory. If found, the contents of the file are evaluated as a Tcl script before tc1sh displays its command prompt.
Note this file is only automatically read in interactive mode.

Execution of external programs

Another feature of interactive mode is that if the line entered by the user does not correspond to a Tcl command,
Tcl will execute a program of that name if one exists in a directory in the user’s PATH environment variable. Again,
we stress this action only happens in interactive mode. Morever, this behaviour can be disabled by setting the
variable auto_noexec to any value. Here is a demonstration.

% uname -a

Linux vm2-debian7 3.2.0-4-686-pae #1 SMP Debian 3.2.81-2 1686 GNU/Linux
% set auto_noexec "

% uname -a

invalid command name “uname"

The sample session above shows that as uname is not recognized as a command, Tcl runs an external program of
that name. However, once we set the variable auto_noexec, an error is reported.

Command abbreviations

In interactive mode, tc1sh will accept abbreviations for commands as long as there is no ambiguity. For example,
the Tcl command puts can be abbreviated as pu as shown here.

% pu "Hello!"

» Hello!

% proc print_hello {} {pu "Hello!"}

% print_hello

» invalid command name “pu"

% p

» ambiguous command name "p": package pid print_hello proc puts pwd

Notice how abbreviations are not accepted if used inside a procedure (print_hello in our example) or if the
abbreviation does not uniquely identify a command.

13

The Tcl shells

Command history

In interactive mode, tclsh also maintains a list of previously executed commands each tagged with a history event
number. These can be recalled at the interactive prompt using forms similar to those in the Unix C shell.

The !'! form prints the previous command and executes it again.

% puts foo

» foo

% !

> puts foo
foo

The AOLDANEW form replaces any occurences of OLD in the previous command with NEW and re-executes it.

% ~foo~bar
» puts bar
bar

The ! v form re-executes the command tagged with the history event number w.

% history
1t puts foo
2 puts foo
3 puts bar
4 history

% 13

puts bar

bar

%

Also notice from the sample that you can print the list of commands executed with the history command. We will
ook at this command in more detail in Section 10.9.

The command abbreviations, history and auto-execution of external programs are
actually implemented by a handler run by default when a command name is not
recognized. We will have more to say about this in Section 3.5.1.2.

Command-line editing
The tclsh shell does not itself include any facilities for command recall with cursor keys, line editing, tab
completion for command and file names etc..
In a Windows environment, the DOS console already provides most of these features other than tab completion.
On Unix platforms, you can avail of the same functionality through several alternatives:

« Use the rlwrap15 program to start tclsh

« Load the tclreadline® extension to Tcl

¢ Source the pure Tcl tclline 17 script which implements most of tclreadline functionality

+ Use etclsh® as your Tcl shell
The best option for interactive use may be to use one of the graphical shells, either the one built intowish or

tkcon. In addition to line editing and tab completion the latter includes many very useful facilities for interactive
use including hot errors, remote operation and ability to interact with multiple Tcl interpreters.

15 p1py/wikiteltk/21599
http://tclreadline.sourceforge.net/
http://wiki.tcl.tk/20215
http://homepages.laas.fr/mallet/solt/shell/eltclsh

14

The Tcl shells

Detecting interactive mode

Code that needs to behave differently depending on whether tclsh is running in interactive mode can check
the tcl_interactive global variable. This is set to 1 when running in interactive mode and 0 otherwise. See
Section 16.2.1 for how this variable affects tclsh behaviour.

2.2.2.1.2. Running scripts with tclsh

Running a Tcl application implemented as a Tcl script in a file simply involves passing the containing file path to
tclsh as a command-line argument (or to wish if it is a GUI application). The general form of tclsh for running
scripts in a file is

tclsh ?-encoding =wCOfNG? SORITIATEH
Here scrrIpPTPATH is the path to the file containing the Tcl script. The -encoding option allows you specify the
character encoding (see Section 4.14) for the file if it is different from the system encoding.

Every command in the script is executed in turn until the last at which point tclsh will exit. There are of course
facilities for terminating the script early or to keep running as a server application would. The script may also pull
in additional scripts stored in other files via the source command.

Any additional arguments to tclsh are treated as program arguments to the script. These are described in
Section 2.3.1 along with a small example that also illustrates the use of tclsh to run scripts.

2.2.2.2. The wish graphical shell

The wish application is a “windowing shell”. Like tc1sh, it provides a wrapper for executing Tcl scripts. The
difference is that wish is written as a GUI application and includes the Tk extension.

As our book is about Tcl the language, and not GUI programming with Tk, we will only briefly describe wish.
Our primary motivation is that wish provides an interactive environment for Tcl that has some benefits over
tclsh.

Like tclsh, wish may also be named slightly differently, for example wish86 or
wish86t, depending on the specific Tcl distribution you have chosen to install.

2.2.2.2.1. Running wish interactively

Like tclsh, wish can be invoked without any arguments.
wish

When run in this manner, the special behaviours listed for tclsh in interactive mode also apply to wish.
Startup scripts: .wishrc,wishrc.tcl

On starting up, wish checks for the existence of a file .wishrc (wishrc.tcl on Windows) in your home directory.
If found, the contents of the file are evaluated as a Tcl script when wish begins execution. Note this file is only
automatically read in interactive mode.

The wish program differs slightly in its behaviour between Windows and other operating systems.
Running wish on Windows

On a Windows system, this will bring up the two windows as shown in Figure 2.1.

15

The Tcl shells

§ wish — O >

Figure 2.1. The wish windowing shell

The window titled wish is a toplevel window where you can add graphical elements using the Tk extension. The
window titled Console is a Tcl command console where you can type in Tcl commands. For example, typing our
usual

puts "Hello World!"
will output that line to the console window. Or typing the commands

ttk::label .1 -text "It is easy to create interfaces in Tcl/Tk."
ttk::button .b -text Exit -command exit
grid .1 .b -padx 5

will create a label and button arranging them as shown in Figure 2.2.

7

s easy to creste interfaces in Tch/ Tk Exit

Figure 2.2. A sample Tk window

Clicking on the button will cause the program to exit. Tk makes it amazingly easy to create graphical user
interfaces.lgadly, we do not have space in this book to cover it and refer you to one of the many books that do, such
as TkDocs ™.

13 http://www.tkdocs.com

16

The Tcl shells

Running wish on Unix systems

Running the wish shell on Linux and Unix systems has different behaviour as unlike Windows they do not
distinguish between “console” mode and “GUI” mode. Invoking it will only create one new window, the wish
toplevel. The Tcl console will continue to be displayed in the terminal window just as for tclsh. You can type
commands in the terminal window in the same manner as you did above to display our sample Tk window.

2.2.2.2.2. Running scripts with wish

Like tclsh, wish can be passed the name of a file containing a Tcl script.

wish 20807

The contents of SCRTPTFILE are executed as a Tcl script with any additional arguments being passed to the script
in exactly the same manner as for tclsh. There are more options that may be specified for wish but we will not
cover them in this book.

There is however one important difference between tclsh and wish when it comes to execution of scripts. Unlike
tclsh, wish does not exit when the last command in the script is executed. It starts running the event loop,
discussed in Chapter 15, waiting for user interaction and other events.

2.2.2.3. The tkcon enhanced shell

Unless you are writing graphic-al user interfaces, there is only one reason to use wish for interactive development
instead of plain old tclsh and that is the Tk Enhanced Console tkcon. This is an add-on that comes as a

single file tkcon. tcl and is included in most Tcl binary distributions. It can also be downloaded from http://
tkcon.sourceforge.net.

The tkcon console sports a number of very useful features not natively available in either tclsh orwish:

» Enhanced command-line editing, with additional keys for cursor movement, line editing and matching of
parenthesis, brackets and braces.

» Tab completion for command, file names and object methods. For example, typing o p Tab will complete the
command as open while f o r Tab will display for, foreach and format as alternatives.

+ Additional command history features. In addition to the forms described for tclsh, the history can be searched
in incremental fashion. For example, if you have entered exe, typing Ctrl+r will recall the last command
containing those characters. Command history is also maintained across sessions.

+ Ability to attach to multiple interpreters, namespaces and remote instances. These capabilities prove to be very
convenient once you get into more advanced Tcl.

» Additional facilities to aid debugging and troubleshooting. These include new commands for interactive
debugging, monitoring of state changes and checkpointing. “Hot error” links provide easy access to call stacks
in case of errors.

» Package management options for loading libraries and extensions.

You can start a tkcon console by passing it as the argument to wish.

wish tkcon.tcl

This will bring up a command-line window where you can interactively execute Tcl. For details about usage, refer
to its documentation 2.

20 http://tkcon.sf.net

17

Exiting a Tcl application

2.2.3. Exiting a Tcl application
Any Tcl application may be exited by invoking the exit command.
exit ?c0nn?
The command causes the process to exit passing an integer exit code of copr back to the operating system. If

unspecified, cops defaults to 0.

Applications may of course also have other means of exiting. For example, when running a script passed on the
command-line, the tc1sh Tcl shell exits after the last command in the script has been processed. Similarly, the
wish graphical shell will exit when its main window is closed.

The exit code for a process has ramifications in terms of whether its termination is viewed from the outside as
a normal exit or some error condition. Generally an exit code of 0 signifies a normal exit and any other value
signifies an error. We will have more to say on exit codes in Chapter 16.

2.2.4. Error messages

Although we will delve into Tcl’s sophisticated error handling facilities in Chapter 11, here it is worth mentioning
that Tcl’s error messages are generally very informative and useful when working in interactive mode. For
example,

% open

@ wrong # args: should be "open fileName ?access? ?permissions?"

% string foo

@ unknown or ambiguous subcommand "foo": must be bytelength, cat, compare, equal, first,

This is convenient for reminding yourself of command arguments and their order.

2.2.5. Making Tcl scripts executable

As we have seen, any file may be executed as a Tcl script by passing it to a Tcl shell as an argument. However, it is
convenient to be able to just type the script file name and have it executed. Thus we would rather execute a script

by typing
myscript
as opposed to

tclsh myscript

The method for doing this differs between operating systems. We will describe Unix first as it is simpler.
2.2.5.1. Executable scripts on Unix

On Unix systems, any Tcl script that is intended to be an application or program (as opposed to a library) should be
marked as executable (via chmod +x) and begin with the following line.

#!/usr/bin/env tclsh
Then assuming the tclsh executable lies in a directory somewhere on the path, just typing the name of the script

file at the Unix shell prompt suffices to have it executed as a Tcl script.

Note that this line is treated as a comment by Tcl as it begins with a # character. Thus although this technique
will not work on Windows, nor does it cause any harm if the same script is passed as an argument to tclsh on
Windows.

18

The application runtime environment

2.2.5.2. Executable scripts on Windows

On Windows, making a script directly executable is more involved. Luckily, installers for binary distributions do
these steps for you so you don’t have to. If you do build and install from sources, follow the steps here.

The first difference from Unix is that on Windows file execution from the console is based on the file extension.
It is not possible to mark individual files as executable. So we need to pick a file extension to associate with Tcl.

Following the Magicsplat distribution, we will associate the extension . tclapp with Tcl applications that can be
executed directly leaving . tcl to be used with secondary support files.

Moreover, the extension cannot be directly associated with the application (tclsh.exe in our case). It has to be
first mapped to a file type. The file type can be any text that does not conflict with the file type set up by other
applications. We will be inventive and call the type TclApp.

Because they modify the Windows registry, the commands below have to be run with
E elevated administrative privileges.

We first associate the extension with the file type through the the Windows assoc command and then use the
Windows ftype command to register our tclsh.exe executable as the application to be invoked for that file type.

C:\temp>assoc .tclapp=TclApp
C:\temp>ftype TclApp=C:\Tcl\bin\tclsh.exe

(Assuming that is where our Tcl is installed.)

If you type "myscript.tclapp” at the DOS command-line, Windows will invoke tclsh to run your script. If you want
to avoid having to type the . tclapp extension, there is one additional step. The . tclapp extension needs to be
added to the list of extensions in the PATHEXT environment variable.

C:\temp>set PATHEXT=%PATHEXT%; .tclapp

Now just typing myscript is sufficient to invoke tclsh to execute the myscript.tclapp file.

As an alternative to the above, you can embed Tcl scripts into Windows . BAT batch files
- ‘ - using a trick similar to that for Unix. Various variations of this are described in http://

2l wiki.tcl.tk/2455. However, the author prefers the above method for a couple of reasons.

First, a batch file involves execution of an intermediate Windows command shell and is
therefore slower. Second, there are subtle scenarios where the suggested . BAT solutions
do not work.

2.3. The application runtime environment

Tcl provides several commands that deal with application’s runtime environment including
+ arguments passed on the command-line
+ the process environment such as working directory, environment variables etc.
« information about the Tcl interpreter itself such as version information
« platform information such as operating system, architecture and user context

2.3.1. Command-line arguments

Any additional arguments supplied on the command-line when invoking tclsh or wish are passed to the script in
the global variables shown in Table 2.2.

19

The working directory: pwd, cd

Table 2.2. Command-line argument globals

Name Description

argv0 Contains the path to the script file passed on the command line. If tclsh was invoked
without any arguments, this will contain the name by which it was invoked (which is not
necessarily tclsh in the presence of links etc.)

argv List containing the command-line argument values

argc Count of command-line arguments

Let us illustrate with a simple example. Create a file reverse. tcl with the following content which will simply
reverse and print its arguments.

reverse.tcl

if {$argc == 0} {
puts "Need to provide at least one argument”
puts "Usage: [info nameofexecutable] $argv0 arg ?arg ...?"
exit 1

}

proc print_reversed {str} {
puts [string reverse $str]

¥

foreach arg $argv {
print_reversed $arg
}
This example also introduces some very basic syntax:
« Variable values are referenced by prefixing the variable name with $.

+ Procedures are defined using proc and invoked like any built-in command.

The script is executed by passing it to tc1sh. In this initial run no arguments are passed and hence argcis 0
resulting in the script exiting with an error message.

C:\demo> tclsh reverse.tcl
Need to provide at least one argument
Usage: c:/tcl/866/x64/bin/tclsh.exe reverse.tcl arg ?arg ...?

When passed arguments, the script runs to completion and exits implicitly at the end of the file.

C:\demo> tclsh reverse.tcl abc def
cba
fed

2.3.2. The working directory: pwd, cd

The pwd command returns the current working directory for the process. The command below sets the variable
dir to the current directory.

% set dir [pwd]
» C:/temp/book

The cd command changes the current working directory to that specified.

20

Environment variables: env

cd ?DIR:

If the optional pIrRNAME argument is not present, the command changes the working directory to the home
directory of the current user.

% cd O

% pwd

» C:/Users/ashok/Documents
% cd sdir O

© Change to the home directory
© Change back to the directory we saved in dir

The application may have multiple threads and multiple Tcl interpreters in each thread.
The working directory is a process-wide setting and therefore the cd command affects all
interpreters and threads in the process, even native code.

2.3.3. Environment variables: env

The environment variables for the current process are accessible through the env global array and can be
accessed the same way as any other array variable. '

% puts $env(PATH)
s> c:/msys/bin;C:\Programbata\Oracle\Java\javapath;C:\Program Files (x86)\Intel\iCLS Clien...

% array names env
»> HOME COMSPEC LANG PROCESSOR_IDENTIFIER TERMCAP LOGONSERVER Programw6432 SHELL Programfi...

Arrays are fully described in Section 3.6.7.

There are however a few differences that distinguish env from normal Tcl arrays. First, any changes to the env
array are automatically reflected back in the process environment. Addition and deletion of elements in the
array is also reflected appropriately in the process environment. Any child processes will inherit the modified
environment.

The second is that on Windows platforms only env keys are not case-sensitive. So

% puts $env(hOmE)
» C:\Users\ashok\Documents
% puts $env(HOME)
» C:\Users\ashok\Documents

would work as well unlike for normal arrays. Note however, array commands that accept wild card patterns are
case-sensitive as illustrated by the following:

% array names env pat*
% array names env PAT*
+ PATHEXT PATH

Because of the need to keep the env array synchronized with the process environment,
- ‘ - access to elements of the array is almost two orders of magnitude slower than a normal
Pl array variable. Thus it is often beneficial to keep a “shadow” copy of the environment in
a normal variable wherever possible.

21

The process identifier: pid

2.3.4. The process identifier: pid

The process identifier, or PID, for the current process can be obtained with the pid command.
pid ?:HANNEL?
If no arguments are specified, the command returns the PID of the current process.

pid » 2572

If the cHaNNEL argument is specified, it must be the channel associated with a process pipeline. In this case, the
command returns the list of PID’s for the processes in the pipeline. We cover process pipelines in Chapter 16.

2.3.5. Executable file path: info nameofexecutable

The info nameofexecutable command returns the path to the executable image for the current process that is
hosting the Tcl interpreter.

info nameofexecutable » c¢:/tcl/866/x64/bin/tclsh.exe

Most commonly this is used to find other locations in the file system that are relative to the executable.

2.3.6. Tcl version information: info tclversion, info patchlevel

The tcl_version global variable contains the version of the Tcl library in use, and in effect the version of Tcl. The
same information is also available with the info tclversion command.

puts $tcl_version » 8.6
info tclversion > 8.6

More detailed version information that includes the patch level can be obtained from the tcl_patchlevel global
variable and info patchlevel command.

puts $tcl_patchlevel » 8.6.
info patchlevel > 8.6.

2.3.7. Platform information

The tcl_platformglobal array contains various bits of information about the hosting platform. The elements of
this array are shown in Table 2.3.

6
6

Version numbers in Tcl have a specific syntax and associated semantics. We discuss these
in detail in Section 13.3.2.

Table 2.3. Platform information

5 Element“ - Description

byteOrder Either littleEndian or bigEndian depending on whether the underlying
CPU architecture is little-endian or big-endian.

engine Identifies the interpreter implementation. This is normally Tcl but may hold
other values if you are using other Tcl implementations or dialects such as
jim, jtcl etc.

22

Tcl configuration: tcl: :pkgconfig

Element Description

machine The CPU architecture that this executable was built for. Note this is not
necessarily the native architecture of the system. For example, running 32-bit
binaries on a 64-bit Windows system will return intel and not amd64.

0s The operating system

osVersion The version of the operating system

pathSeparator The character used to separate directory entries in the PATH environment
variable

platform The operating system family

pointerSize Either 4 or 8 depending on whether you are running a 32- or 64-bit Tcl
interpreter

threaded 1 if threads are enabled in Tcl and 0 otherwise

user The user account under which the process is running

wordSize The number of bytes in the C type long for the current architecure

We can print the contents of the array with the parray command.

% parray tcl_platform
» tcl_platform(byteOrder) = littleEndian

tcl_platform(engine) = Tcl
tcl_platform(machine) = amd64
tcl_platform(os) = Windows NT
tcl_platform(osVersion) = 10.0
tcl_platform(pathSeparator) = ;
tcl_platform(platform) = windows
tcl_platform(pointerSize) =8
tcl_platform(threaded) =1
tcl_platform(user) = ashok
tcl_platform(wordSize) = 4

Although the tcl_platform array provides some information about the underlying operating system and
architecture, the information there is not complete and specific enough to distinguish hardware platforms and
operating systems. For example, it cannot be used to load shared libraries from the appropriate location when
multiple architectures are installed within the same directory hierarchy.

The platform package (see Section 13.7) addresses this requirement.

2.3.8. Tcl configuration: tcl: :pkgconfig

The tcl: :pkgconfig command returns additional information about the Tcl configuration and build
environment, some of which is also available in the tcl_platform array.

The command has two subcommands. The first, 1ist, returns the a list of keys each of which represents a piece of
configuration information.

% print_list [tcl::pkgconfig list]
+ debug

threaded

profiled

64bit

optimized
...Additional lines omitted...

The key names printed from the above command should be self explanatory.

23

Chapter summary

The second subcommand, get, is used to retrieve the value associated with a key. For example,

% tcl::pkgconfig get bindir,runtime
» €:\tcl\866\x64\bin

returns the directory where the Tcl binaries are installed.

2.4. Chapter summary

In this chapter we described
» how to install and build Tcl
» how to run Tcl scripts as well as interactive shells

+ the Tcl application runtime environment

We will now move on to the basics of the language. As we go along, you are encouraged to try out the described
commands in an interactive Tcl shell.

24

Tcl Basics

This chapter lays the foundation for the rest of the book. It describes Tcl syntax, how Tcl parses and executes
commands, and the use of variables and procedures that form the basis of all Tcl programming. Subsequent
chapters will then focus on the details of individual commands.

Conceptually1, execution of Tcl code occurs in two phases:

s The Tcl source code is parsed using some simple syntactic rules to break it up into a number of commands and
their arguments.

* The commands are then invoked with the associated arguments.

The two phases may be intermixed in the sense that parsing a command may involve parsing and substitution of
embedded commands and variables.

We will start off with the syntax of the language in the next section and then move on to the basic language
commands.

3.1. Basic syntax

The formal syntax rules for Tcl are defined in the Tcl manual?, often called the dodekalogue as it is made up of 12
rules. Here we informally describe the syntax.

A Tcl program or script is a sequence of commands separated by newline or semicolon characters that are
not escaped or quoted. In the special case of command substitution, the trailing] character also terminates
commands.

A command in turn is a sequence of words. Words are separated by space or tab characters. Spaces and tabs can he
included as part of a word by escaping them with a \ or placing them within a quoted string. The line

puts -nonewline Hello ; puts " World!"

contains two commmands separated by a semicolon. The first contains three words puts, -nonewline and Hello
while the second contains two words: puts and a second word consisting of a space followed by Wor1d. The space
preceding the W is not a word separator as it is within quotes. If you are coming from another language, note that
simple strings, like Hello, with no whitespace characters need not be placed in quotes.

A word may also be a bracketed command whose result forms the value of the word. The command below has
three words, set, time and the result of evaluating the command clock seconds.

set time [clock seconds]

The substitution of bracketed commands is described in Section 3.2.3.

A word may be spread over multiple lines when quoted with double quotes or braces, or when it comprises a
bracketed command.

1In practice, Tcl scripts are converted to byte code form before execution
http://tcl.tk/man/tcl/TclCmd/Tcl htm

25

Substitutions

puts {
Hello
World
¥
5
Hello
world

The above command consists of two words, puts which is the command name and its argument which is quoted,
with braces in this case. The quoting allows spaces and newlines to be considered part of a single word.

You can use info complete to check if a given string syntactically constitutes one or
- ‘ - more complete commands.

L 4 ¥ > .
info complete {foo bar "x y z}
info complete {foo bar "x y z"} > 1

Note the command does not check if the command names are valid, have the correct
number of arguments and so on. It only checks whether the given argument can be
parsed syntactically as a sequence of complete commands. Our first example above fails
because of unmatched quotes.

The info complete command is mostly used in applications imitating the interactive
command loop as in tclsh and wish. The user may enter commands crossing multiple
lines and info complete is used to check for unmatched braces, quotes, brackets etc.

3.2. Substitutions

Tcl performs a series of substitutions before a command is executed:
+ Backslash substitutions
+ Variable substitutions

* Command substitutions

3.2.1. Backslash substitutions

Backslash substitution is a mechanism wherein a character sequence starting with a \ character is used to
represent an arbitrary character. There are multiple uses for this such as:

These substitutions are not done for strings enclosed in braces {} where different rules
apply as we will describe later.

* Representing non-printable ASCII control characters.

+ Representing non-ASCII Unicode characters. Although Tcl itself will accept Unicode characters in various
encodings in file or keyboard input, many text editors and terminal devices do not allow easy insertion of non-
ASCII characters and this provides a way around those limitations.

Forcing the Tcl parser to treat characters such as spaces or $ as ordinary characters, where they would
otherwise be treated specially.

The full set of backslash substitutions, which we also sometimes refer to as backslash escape sequences is shown in
Table 3.1.

26

Backslash substitutions

Table 3.1. Backslash sequences

Sequence Description
\a Audible alert (ASCII 7)
\b Backspace (ASCII 8)
\f Form feed (ASCII 12)
\n Newline / linefeed (ASCII 10)
% puts a\nb
> a
b
\r Carriage return (ASCII 13)
\t Tab
\v Vertical tab
\ 000 One to three character octal sequence specifying an 8-bit Unicode code point

in the range U+000000 - U+0000FF. For example, é may be represented by the
sequence \351.

\XHH The character x followed by one or two hexadecimal digits specifying a 8-
bit Unicode code point in the range U+000000 - U+0000FF. Thus another
representation for é would be the sequence \xe9.

\UHHHH The character u followed by one to four hexadecimal digits specifying a 16-bit
Unicode code point in the range U+000000 - U+OOFFFF. In this form, ¢ would
be represented by either of the sequences \u0e9 and \u00e9.

\UHHHHHHHH The character U followed by one to eight hexadecimal digits specifying a 21-
bit Unicode code point in the range U+000000 - U+10FFFF. Thus é could be
represented as \U0O00000e9 or \U000e9 etc.

\NEWLINE WHITESPACE A\ followed by a newline character and any amount of whitespace is
replaced by a single space character.

% puts “abc\
def"
» abc def

This is often used to split a long command across multiple lines. Remember a
newline character would normally terminate a command unless it was within
quotes or braces.

% lsearch -nocase -inline -all \
{abc def HIJ} hIj
HIJ

If the character sequence following a \ does not fall into one of the above categories, it is substituted as itself.

puts a\\nb » a\nb @
puts \$foo » $foo @

© \\ treated as a single ordinary \, not a \n sequence
© ¢ treated as itself, not as a variable substitution

27

Variable substitutions

Morever, if it happens to be a character, such as $, that has special meaning to the Tcl parser, it will be treated as
an ordinary character instead.

puts \s >s @
puts \xz -+ xz @

@ No backslash sequence corresponding to s
® \x not followed by hexadecimal digits

3.2.2. Variable substitutions

The second form of substitution that takes place is replacement of variable references by their values. Although
variable references can take many shapes, here we only illustrate the simplest one of the form $ vArRvAME.

set greeting "Hello World!" » Hello World!
puts $greeting + Hello world!

Variable substitution takes place inside words as well.

set greeting Hello > Hello
set who World + World
puts "$greeting $who!" > Hello World!

Tcl will raise an error if the referenced variable does not exist.

% puts $nosuchvar
P can't read "nosuchvar": no such variable

You can prevent Tcl from treating $ as variable reference by prefixing it with a \ character.

puts $greeting - Hello
puts \$greeting -» $greeting

There are two important points to note about variable substitution. The first is that the value that is substituted is
taken verbatim and not reparsed by Tcl. In other words, Tcl will not subject the contents of the variable to further
backslash, variable or command substitution.

set avar "abc" » abc
set bvar "\$avar" -» $avar
puts $bvar > $avar ©

© Outputis $avar, not abc
The second point, related to the first, is that substitution of variables does not change the word boundaries in a
command. For example, in

set greeting "Hello World!" » Hello World!
puts $greeting + Hello World!

the space character in the substituted value Hello World! does not act as a word separator. The second command
still contains only two words, the entire contents of greeting including the space being the second word.

28

Command substitutions

The other forms of variable references that we describe later are also subject to substitution as above. Note
however, that a $ character by itself, or one that is followed by a character other than an alphanumeric,
underscore (), left parenthesis (() or left brace ({), is not a variable reference and will be treated as a literal $
character.

puts $$ » $%
puts $= » $=

3.2.3. Command substitutions

The final form of substitution is replacement of strings enclosed in [] pairs of brackets with the result of executing
them as commands.

set 1 0 > 0
puts [incr 1] » 1 (1)

© The incr command increments a variable.
In the above example, the puts command gets a single argument — the result of executing the incr i command.

As for variables, command substitution can take place inside words as well.

puts af[incr 1lb » azb
puts "Incrementing $i gives ([incr 1i]." » Incrementing 2 gives 3.

The string inside the [] pair is actually treated as a Tcl script and so may have multiple commands separated by
semicolons or newlines as usual. In this case the substituted value is the return value from the last command.

% puts [incr 1i; incr 1; incr 1}

> 6

% puts [
set j 10
incr 1 $j
]

+ 16

Moreover, because it is parsed as a fresh script, the bracketed string can itself contain quotes, substitutions etc. For
example,

puts “"The total is [expr "2+4"1" » The total is 6
The double quote following the expr starts a quoted string within the bracketed command, it does not terminate
the double quotes that follow the puts.

As for variable substitution, command substitution does not reparse the returned value from the command string
or change the word boundaries even when the substituted value contains whitespace or other special characters.

3.3. Quoting

Quoting is a means for telling the Tcl parser to treat a sequence of characters as a single word irrespective of
whether it contains whitespace or other characters that would terminate a word or a command. We have already
seen one mechanism to prevent special interpretation of characters —backslash sequences. Quoting provides an

29

Quoting using double quotes

alternative, and often more convenient, means for the same. Compare the following alternatives for assigning a
string containing spaces to the variable var:

% set var This\ is\ a\ single\ word
» This is a single word

% set var "This is a single word"

» This is a single word

Tcl has two forms of quoting:
* enclosing the string in double quotes

+ enclosing the string in braces

The two differ in how substitutions are handled.

3.3.1. Quoting using double quotes

When a string is enclosed in double quotes, word and command separators like spaces, tabs, newlines and
semicolons are treated as ordinary characters.

% puts "This is line one;
This is line two"
> This 1s line one;

This is line two

Notice that spaces within the quoted string were ignored as word separators and neither the semicolon, nor the
newline, terminated the command.

Some other points to note about quoting using double quotes:

« The double quote character only has effect if it appears at the beginning of a word. A double quote in the
middle of a word is treated as an ordinary character. Moreover, the closing double quote must be followed by a
word separator or command terminator. Thus the following result in errors.

% set var foo"b ar" @
@ wrong # args: should be "set varName ?newValue?"

% set var "foo"bar @
@ extra characters after close-quote

© foo"bandar” are treated as separate words since double quotes within a word carry no special meaning
® C(losing quote not followed by word separator

 Backslash, variable and command substitutions are all enabled within a double-quoted string.
% puts "$i\n[incr i]"

+ 16
17

+ To have a double quote appear as an ordinary character, use the standard escaping mechanism of preceding it
with a \ character.

% set var "foo\" bar"
+ foo" bar

30

Quoting using braces

3.3.2. Quoting using braces

The second form of quoting uses a pair of braces {} instead of double quotes to enclose the string. In this form,
with the single exception noted below, all special treatment for characters and all types of substitutions are
disabled within the enclosed string. Here is an example contrasting the two forms.

% puts "$i\n[incr i]" @
> 17
18

% puts {$i\n[incr 1]} (2}
+ $i\n[incr 1]

© Substitutions enabled inside double quotes
® Substitutions disabled inside braces

The one exception where substitution is still carried out is the backslash followed by newline sequence:
% puts {abc\
def}
s abc def
As always, the \, newline and any immediate whitespace is replaced by a single space character.
In other respects, quoting with braces follow similar rules to those for double quotes.

+ The leading brace must be the first character of a word.

+ The trailing brace must be followed immediately by a word separator or command terminator.
There is however an additional feature (or complication) with braces in that braced strings can nest so that the
quoted string is terminated only when the number of closing braces matches the number of opening braces.

set nested {Outer {Inner Words} Words} » Outer {Inner Words} Words

As we shall see this nesting property is useful for defining lists or dictionaries and for creating “code blocks” to be
executed by conditional or iterative commands like if orwhile.

There is one caveat with regarding to nesting and that has to with how you include a literal brace character within
the braced string. When a brace is preceded by a \ it does not count towards the nesting depth. However, because
backslash substitution rules are not in effect, the \ character is also included in the quoted string. For example,

puts {abc \}} » abc \}

So getting a literal brace character without a preceding \ character in a braced string is a little tricky. One
alternative is to switch to double quotes instead (taking care to properly escape unwanted substitutions).

puts "abc \}" -» abc }

The other option is to use an explicit string construction command such as format or subst or a backslash
substitution such as \x7d. Luckily this situation rarely arises.

3.3.3. Choosing the quoting mechanism

The question then arises as how to pick between the two forms of quoting. In most cases, the choice is fairly clear.
When interpolating strings with values in variable or computation results, the obvious choice is to use double
quotes as braces will not give the intended result.

% puts "The current time is [clock format [clock seconds] -format %H:%M]™

31

Argument expansion

> The current time is 11:45
% puts {The current time is [clock format [clock seconds] -format %H:%M]}
+ The current time is [clock format [clock seconds] -format %H:%M]

Conversely, there are situations where the choice of braces is obvious. The most common is when script blocks are
to be passed to Tcl commands such as while, proc etc. Other circumstances where braces are preferred include
representation of nested data structures and special situations like file paths in Windows systems where \ is also a
path separator. Using braces in this case is a lot more readable.

set path "C:\\Windows\\System32\\cmd.exe"
set path {C:\Windows\System32\cmd.exe}

Note that special treatment of braces as quoting characters is turned off when they occur within double-quoted
strings. The converse is also true in that double quotes are not special inside braces.

set var VALUE » VALUE
puts "{$var}" » {VALUE} @
puts {"$var"} » "$var" @

@ Braces inside double-quotes show up as literals and do not suppress variable substitution.
® Quotes inside braces show up as literal quotes.

Thus another basis for picking a quoting character is if the other one is present in the quoted string.

3.4. Argument expansion

The last action taken before a command is executed is argument expansion. Normally every word that is parsed
is passed to the command as a single argument. However, when a word is prefixed with the character sequence
{*}, the associated word is treated as a list of words and every element of the list is passed to the command as a
separate argument.

This is slightly tricky to explain so we will just illustrate with an example. Because it is tied in with list structures
which we will look at in detail in Chapter 5, we will first very briefly introduce the latter. A list is a ordered
sequence of values, referred to as elements of the list. The simplest method of creating a list is as a “string literal”
enclosed in braces. Thus the commands

set alist {one two three} » one two three
set blist {four five} » four five

create two lists containing three and two elements respectively. Now suppose we wanted to append the elements
of the second list to the first. We can use the lappend command for this. This command accepts any number of
arguments and appends them to the list contained in a variable.

lappend alist $blist six » one two three {four five} six

The command has added four five as a single element (as shown by their being enclosed in braces) whereas
we wanted four and five to be separate elements. This is where argument expansion using {*} comes in. It
treats the following word as a list and “explodes” its value into its elements which are then passed as separate
arguments.

set alist {one two three} > one two three
lappend alist {*}$blist six » one two three four five six

Note how four and five are now separate elements. In effect this is as if the command were written as

32

Commands

lappend alist four five six

Note that argument expansion applies no matter in what form the following word is supplied. It could be a
variable as in our example, or a quoted string or a bracketed command. For example,

% lappend alist {*}{7 8} @
» one two three four five six 7 8
% proc cmd_returning_a_list {} { return {9 10} }

% lappend alist {*}[cmd_returning_a_list] (2]
» one two three four five six 7 8 9 10

@ String quoted with braces
© Bracketed command

In all cases, the value that would be substituted is treated as a list and its elements are passed as separate
arguments to the command.

The above situation, where we need to pass the elements of a list to a command that expects them as separate
arguments, is not uncommon in Tcl programming.

3.5. Commands

He who wishes to be obeyed must know how to command.

-— Machiavelli

As described previously, the Tcl parser breaks up a Tcl program into a sequence of commands that are executed
in turn. We will now go into a little more, but still basic, depth regarding commands: how they are invoked, the
different types, their structure etc.

The first thing we will note is that the term command is used in the Tcl documentation (and in this book) in two
distinct, though related, ways. In our earlier example, we referred to the code fragment

puts "Hello World!"

as a command. This is the first usage for the term. The other usage refers to puts itself as a command. In most
cases, this distinction is clear from the context or immaterial. Where it matters, we will use the terms command
statement for the first usage.

3.5.1. Command invocation

Once a command statement is parsed into its final form, including any substitutions, argument expansion etc.,
the first word is looked up in the interpreter’s database of registered commands. If found, it is invoked with the
remaining words passed as arguments.

Note that the interpretation of arguments is completely up to the command. Tcl itself does not care. For example,
compare the following

puts "2 + 2" 2+ 2
expr "2 + 2" » 4
regexp "2 + 2" "2 + 2+ 3" 5 0

The puts command will treat its argument 2 + 2 as a string. The expr command on the other hand will treat it
as an arithmetic expression. The regexp command will treat it as a regular expression to be matched against the
second argument.

33

Command invocation

In other words, commands are completely free to treat their arguments as strings, nurnerics, even program code,
or whatever, in any manner they see fit.

Indirect invocation of commands

From our earlier discussion remember that substitutions are applied to the first word as well before it is
looked up as a command name. So we can write our ubiquitous example as

set str ts » ts
\x70\u0075%str "Hello world!™ » Hello world!

That is not particularly useful. What is useful though it being able to invoke a command indirectly
through a variable. This is commonly used in callbacks and such where a command name is passed as an

argument and invoked as a callback.

set cmd puts > puts
$cmd "Hello world!™ » Hello world!

3.5.1.1. Counting command invocations: info cmdcount
The info cmdcount command returns the total number of commands invoked in a Tcl interpreter since it was
started.

info cmdcount » 15261
info c¢mdcount » 15262

The count of command invocations is seen used in two scenarios. One involves the use of safe interpreters where
a limit is set for the number of commands an interpreter is allowed to execute before it is terminated. We will

examine this in Chapter 20.
The other use of info cmdcount is to generate identifiers at run time that are unique within that interpreter.
Examples include naming of objects, handles for resources, coroutines and so on.

proc make_id {{prefix id}} { return ${prefix}[info cmdcount] }
We can use this to generate new unique identifiers.

make_id » 1d15266
make_id coro » coro15269

The command invocation count is not incremented in certain cases due to optimizations

in the Tcl byte code compiler. However, it is safe to use for the above purpose as the info
cmdcount command itself will increment the count.

3.5.1.2. Unknown command handlers

If a command is not found, Tcl invokes a procedure called unknown passing it the name of the command and
associated arguments. The result of this procedure is then returned as the result of the original command.

The handling of unknown commands is a little different in the presence of namespaces

but since we have not discussed those yet, we will defer a full discussion to
Section 12.5.3.4.

34

Comments

Tcl provides a default implementation of unknown which can be overridden by redefining the procedure. The
default implementation takes the following steps to resolve an unknown command.

+ It will attempt to load the command by searching Tcl’s library paths via the auto_load command. This step is
skipped if the auto_noload global variable is defined.

« If Tcl is not running in interactive mode, an invalid command error exception is raised. If running in interactive
mode, the following additional steps are taken.

+ It will use auto_execok to try and locate an external program of that name. If found, it will run it with the exec
command returning the output of the program as the result of the original command.

+ If the above steps fail, it will check if the command matches one of the patterns for recalling commands from
the command history. If so, the corresponding entry from the command history is executed again and the result
returned to the caller.

* As alast resort, Tcl checks if the command name is an abbreviated form of exactly one existing command (so
there is no ambiguity) and if so, executes that command returning its result.

If all the above fail, Tcl raises an exception.

% put "Hello World!"
» Hello World!

The above command works because put is an unambigious prefix of a command — puts.

We can replace the unknown command to implement any behaviour that we choose.

rename unknown _old_unknown
proc unknown {args} {
if {$::tcl_interactive && [info level] == 1} {
if {I[catch {expr $args} result]} {
return $result
¥

}
error "Unknown command [lindex $args 0]"

Don’t worry about the details of how that works as we need to go into several Tcl features first. In a nutshell,
we treat any unknown command as an arithmetic expression but only if it was executed interactively from the
command line.

We can now use the Tcl shell as an interactive calculator.

% 2 + 4*10
» 42

Before we go on, let us restore the default implementation of unknown as we will need it later.

% rename unknown ""
% rename _old_unknown unknown

3.5.2. Comments

If the Tcl parser encounters a # character where it is expecting the first word of a command (the command name),
the # character and all characters till the end of that line are treated as a comment and ignored.

puts "This line will not print as it's commented out"

35

Comments

There are a number of subtleties involved in this seemingly simple description and we will go through them one at
a time.

The #is not treated as a comment if it appears anywhere other than where the first (non-whitespace) character of
a command is expected. So for example, you can print it, name a variable, or whatever.

puts #Hi > #Hi
set # "Hello world!" » Hello world!
puts ${#} 5 Hello world! @

© This uses the variable reference syntax described in Section 3.6.3

You can even define a command implemented as a procedure named #.

proc # {s} { puts $s }

However, the following invocation will not work because it will be treated as a comment.

"Hello world!" » (empty)
Instead we have to call it using one of the following syntaxes.

\# "Hello world!" > Hello world!
{#} "Hello world!" - Hello world!
set name # s> #

$name "Hello world" » Hello world

The above examples just illustrate the point that the check for the # character happens before any substitutions.
They are not something you will run into in real-world Tcl code. But we now bring to your attention two mistakes
that are commonly made at some point when you are learning Tcl.

Suppose we define a list of items as follows and add a comment to describe the list.

set fruit {
This is a list of fruilt
bananas
oranges

}

Then we print out list.

% print_list $fruit
> #
This
is
...Additional lines omitted...

What happened? Well, the # character was not in position where a command was expected and thus was not
treated as a comment. It became part of the list!
A second mistake is having an unmatched brace character in a comment.

proc demo {n} {

This 1s a comment with an unmatched { character
return $n

36

Command types

If you place this code in a file and try to source it, you will get the error

unmatched open brace in list

The check for comments happens after the parsing into words and before substitutions. When parsing the above
script into words, Tcl encounters the left brace character. At that point, it will look for the matching closing brace,
even across line boundaries. Not finding one will lead to the error.

The lesson in this? Match your braces even within comments! This is admittedly quirky coming from other
languages but a small price to pay for Tcl’s syntactic uniformity which is the root cause of this behaviour.

3.5.3. Command types
Commands may be implemented in Tcl by several means.
+ Native commands implemented in C
* Procedures defined through proc or apply.
+ Coroutines defined with the coroutine command
+ Aliases defined with the interp alias command
+ Namespace ensemble commands
+ Objects and classes defined through Tcl’s object-oriented facilities
Irrespective of how they are implemented, they are invoked the same way and can be manipulated in common

manner. We will discuss all these in the book with the exception of native implementation of commands in C.

3.5.4. Renaming a command

Tcl is a completely dynamic language where programming constructs can be added, removed or otherwise
manipulated at will. This applies to commands as well, even the ones built into Tcl. We can thus change the name
of any command with the rename command.

rename IITNAME NIWNAMNE
A common use for rename is to “wrap” a command to add some functionality or to modify its behaviour in some

way. We saw this in Section 3.5.1.2. As another example, let us say we wanted all output to be in upper case without
having to modify the application itself. We could then wrap the puts command as follows

% rename puts builtin_puts @
% puts "Hello world!" (2]
@ invalid command name "puts”

% builtin_puts "Hello world!" (3]
» Hello world!

© Save the built-in puts under another name
© TFails because there is no longer a command called puts...
© ..Dbut there is one called builtin_puts

Then we define a new puts command which makes use of the original command.

proc puts args {
set str [string toupper [lindex $args end]]
builtin_puts {*}[lreplace $args end end $str] (1)

+
puts "Hello world!"

37

Deleting a command

» HELLO WORLD!

© See Section 3.4 for explanation of the {*} sequence

We now get all output in upper case. The above code fragment uses commands and features we have not gotten to
as yet but the main idea behind wrapping commands in this fashion should be clear. We transformed the original
data and passed it on to the original command.

Although the above method of "wrapping” commands works with puts, it is incomplete
and will not work correctly with commands whose behaviour is dependent on the Tcl call
stack. We will revisit this later in Section 10.5.7.

3.5.5. Deleting a command

We can also use the rename command to delete a command. If the second argument to rename is an empty string,
the command is deleted instead. We can use this to put things back the way they were.

3

% rename puts "" @

% puts "Hello world:" @

@ invalid command name “puts”
% rename builtin_puts puts ©
% puts "Hello world!™

+ Hello world!

© Getrid of our version of puts
© Tails because the command has been deleted
© Restore the original built-in version of puts

3.5.6. Redefining commands

In our prior example, we renamed the command before creating our own version of it because we wanted to
preserve the functionality of the original command. If that is not needed, we can just overwrite a command
implementation simply by defining a command of the same name.

Suppose you had to write a procedure that needed some expensive one time initialization. You might write it as:

proc my_proc {} {
global initialized
if {![1info exists initialized]} {
set initialized 1
puts "Pretend this is some expensive initialization"
}
puts "Now doing the real work"

We could write it like this instead redefining the procedure within itself.

proc my_proc {} {
puts "Pretend this is some expensive initialization"
proc my_proc {} {
puts "Now doing the real work"
}
tailcall my_proc

The tailcall command is explained in Section 10.5.7.

38

Enumerating commands: info commands

Now let us call it twice and see it in action.

%

my_proc

» Pretend this is some expensive initialization

%

Now doing the real work
my_proc

» Now doing the real work

Our procedure has gotten rid of both the initialized variable as well as an unnecessary check on every
subsequent call. A generalized form of procedure self initialization is illustrated in Section 10.8.1.

Note that although we have used procedures in our examples above, the renaming, redefinition, deletion can be
used for all command types. For example, renaming an object (see Chapter 14) to the empty string will destroy
it. Also, the redefinition does not have to be of the same command type so you can define a procedure that will
overwrite a C-implemented command of the same name.

Although Tcl allows redefinition of even the core commands like set, proc etc. you are
strongly advised against doing so unless you really know what you are doing and can
duplicate their exact behaviour.

You will find the renaming and redefining of commands commonly used in the Tk graphical toolkit where each
GUI widget instance name is also a command. One technique for extending a widget is to rename its “owning”
command and then define a new command of the same name that calls the renamed command while adding
additional behaviours.

3.5.7. Enumerating commands: info commands

The info commands returns a list of names of commands visible in the current namespace context.

info commands ?:

If PATTERNIs not specified, the command returns the names of all visible commands. Otherwise, only those names
matching PATTERN using the rules of string match are returned.

voaR 4 a2 4+ R

o0

info commands (1

print_args tell socket subst write_file open eof ne pwd _SetupCawtPkgs print_file glob ...
info commands co* (2]

coroutine concat continue

info commands ::tcl::mathfunc::* ©

citel:imathfunc::round ::tcl::mathfunc::wide ::tcl::mathfunc::sqrt ::tcl::mathfunc::sin...

info commands ::tcl;:*::*

All commands visible in the current namespace

All commands visible in the current namespace that start with co

Commands in the namespace ::tcl::mathfunc

Note that the namespace components in the pattern are not treated as wildcards so this returns an empty list

You can also use info commands to check for the existence of a command. For example, older versions of Tcl did
not have an Imap command so you might see code of the form

if {[1llength [info commands lmap}] == 0} {

proc lmap {args} {
A fallback implementation of lmap

¥

39

Procedures

If the 1map command existed, info commands would return a list containing Imap. If it returns a list of zero length
instead, the command does not exist and the code defines a 1Imap command implemented in script.

3.5.8. Procedures

Procedures allow you to define new Tcl commands at the script level. We have already seen simple examples of
procedures and we now delve into them in more detail.

Procedures may be named or anonymous. We will describe the former first before differentiating the latter.
3.5.8.1. Defining procedures: proc

Named procedures are defined with the proc command.

proc NAME

The command creates a new command called n¥aME replacing any command of that name if one exists.

The BODY argument is the Tcl script that implements the command defined by the procedure. The result of the
command is the result of the last statement executed in Bopy. This is not necessarily the last physical statement in
BODY but may be a return or other control command.

nvAME may include namespace qualifiers in which case the procedure is defined within the
E corresponding namespace context. We postpone that discussion to Chapter 12.

Just another command

We will take a segue to reiterate that proc is itself just a command like any other, not a keyword or
specially treated by the Tcl parser. Although by convention, the parameter definitions and the body
arguments are braced, there is no such requirement imposed by Tcl. As far as it is concerned, the
arguments to proc are evaluated with the same quoting and substitution rules as for any other command.
For example, sometimes you may want define a procedure “on the fly” where you want TcPs quoting and
substitution rules to come into play. Let us define a procedure that will create another procedure that
adds some fixed amount to a number.

proc make_adder {increment} { proc add$increment n "expr \$n + $increment" }

Then we can use it as follows.

make_adder 2 > (empty)
add2 3 5
make_adder 10 » (empty)
add10 20 » 30

Pay attention to the quoting and substitutions in the above and make sure you understand how it works.
We will have much more to say about this type of code construction in Section 10.8 and Section 20.9.2.

3.5.8.2. Procedure parameters

PARAMS is a list of parameter definitions for the command, each element in the list corresponding to an argument
that must be passed to the command when it is called (modulo some special cases described below). When
invoked, each argument supplied by the caller is assigned to a variable named after the corresponding parameter.

A procedure definition may have any number of parameters, including zero.

40

Procedures

proc likes {paramA paramB} {
puts "I like $paramA and $paramB."

}
likes ham cheese
+ I like ham and cheese.

Passing a different number of arguments than the number of parameters in a procedure definition results in an
error.

% likes ham

@ wrong # args: should be "likes paramA paramB"
% likes ham cheese eggs

@ wrong # args: should be "likes paramA paramB"

Note the distinction we make between parameters and arguments. The former goes with

E the procedure definition. The latter refers to the values passed when the procedure is
called. Each argument value is assigned to the corresponding parameter at the time of
procedure invocation. Parameters are also referred to as formal arguments.

3.5.8.2.1. Default argument values

Each parameter definition in a parameter list is specified as a list of one or two elements. The first element in the
list is the name of the parameter. The second element, if present, is the default argument value to assign to the
parameter if the caller does not supply one. Thus we can rewrite our procedure as

proc likes {paramA {paramB jelly}} {
puts "I like $paramA and $paramB."

I3

Now if the command invocation does not supply a second argument, the default value of jelly is passed instead.

likes "peanut butter” » I like peanut butter and jelly.
likes ham cheese » I like ham and cheese.

3.5.8.2.2. Variable number of arguments

Some commands support an arbitrary number of operands, for example the 1ist command which constructs

a list whose elements are the arguments passed to it. In other cases, commands support various options that
modify the behaviour of the command. In both cases, the command implementation has to be able to deal with an
arbitrary number of arguments passed to it.

Parameters without defaults must come before parameters that have a default specified,;
otherwise an error exception will be raised when the procedure is called.

If the last parameter in a procedure definition is named args, any additional arguments in a call to the procedure
beyond the number of parameters in the procedure definition are collected into a list. This list is then passed as the
value of the args argument. Let us modify our example.

proc likes {paramA {paramB jelly} args} {
puts "I like $paramA and $paramB."
if {[llength $args] != 0} {
puts "I also like [join $args {, }]"
}

41

Procedures

% likes "peanut butter”
» I like peanut butter and jelly.
% likes ham cheese apples bananas broccoli
+ I like ham and cheese.
I also like apples, bananas, broccoli

In the second call, ham and cheese are assigned to paramA and paramB respectively. The additional arguments
apples, bananas and broccoli are collected into a list. If the list is not empty, we print out the second line.

3.5.8.2.3. Named parameters

For this variable argument list feature, the args parameter must be the last parameter.
Otherwise it has not special significance.

Sometimes a procedure has a large number of parameters, many of which are optional. In such cases, it can be
awkward to call the procedure, having to remember the position of the parameters and supplying values for any
preceding parameters even when their defaults are adequate. For example, consider the following procedure
definition:

proc fontify {text {family Arial} {style normal} {weight medium} {size 10}} {
return "<span font-family='$family' font-style='$style’ \
font-weight="'$weight' font-size=$size>$text"

¥

Calling this procedure for a non-default style and font size requires all arguments to be specified even though most
use the default.

% fontify "Some text" Arial italic medium 12
» Some t...

Some languages have named parameters to deal with this problem so the above procedure can be called as

fontify "Some text" size 12 style italic

Note that the order of optional arguments is immaterial as they are identified by parameter name.

Although Tcl does not have built-in named parameters, we can achieve similar results through the args facility as
below.

proc fontify {text args} {
lassign {Arial normal medium 10} family style weight size
1f {[llength $args] & 1} {
error "No value specified for parameter [lindex $args end]"
}
foreach {param val} $args {
set $param $val
}
return "<span font-family='$family' font-style='$style’ \
font-weight="$weight' font-size=$size>$text"
¥
fontify "Some text" size 12 style italic
» Some t...

42

Procedures

We initialize the local variables to defaults using 1assign and then loop through the variable arguments
overwriting the defaults. Other means of accomplishing the above include using arrays or dictionaries. For
example, using dictionaries,

proc fontify {text args} {

set opts [dict merge {

family Arial style normal weight medium size 10

} sargs] @

dict with opts {} (2}

return "<span font-family='$family' font-style='$style' \

font-weight="'$weight' font-size=$size>$text"

b
fontify "Some text" size 12 style italic
> Some t...

© Merge default option value dictionary with provided arguments
@ Copy dictionary elements into local variables

The above techniques have a couple of drawbacks. Errors like misspelt parameter names are not detected and
introspecting parameters provides limited information. Some of the techniques in the next section may provide
better solutions in this regard.

3.5.8.2.4. Option processing

In Tcl code, command options are far more prevalent than named parameters. They differ from named
parameters in the following respects. By convention, they always start with a specific character, -. More
importantly, options do not always have a value specified after them. The presence of the option itself acts as a
boolean switch.

You can of course code up your own solution similar to what we did for named parameters in the previous section
or use one of the scripted off-the-shelf implementations3 available for the purpose. We go in a different direction
for the following reason: though the scripted solutions are fine for parsing program options passed on the
command line, they can be much slower than standard procedure calls for parsing arguments to procedures that
are executed often. We will thus demonstrate options using the parse_args™ extension which is implemented in C
and much faster than Tcl-only solutions.

Let use redo our fontify procedure from the previous section except that we will change the style of the font
using a boolean -italic option instead of a -style option-value pair. We should he able to call it as

fontify "Some text" -italic -size 10

We will use the parse_args: :parse_args command from the parse_args package to reimplement our
procedure.

Tcl core language. It can be implemented in many forms as we will detail in Chapter 13.
We will make use of packages extensively throughout this book. For now it suffices to
know that before the commands in the package can be used, it must be loaded with the
package command as we do with the parse_args package in the code snippet below.

s A Tcl package is essentially a library of commands implementing functionality not in the

The command parse_args takes an option descriptor that describes the allowed options and their attributes. It
then parses the arguments based on this descriptor setting local variables corresponding to the option names.

3 hitp:/wiki.tcl.tk/1730
https://github.com/RubyLane/parse_args

43

Procedures

package require parse_args
proc fontify {text args} {
parse_args::parse_args $args {
-family {-default Arial}
-italic {-boolean}
-size {-default 10}
-weight {-default medium}
b
set style [expr {$italic ? "italic" : "normal"}]
return "<span font-family='$family' font-style='$style' \
font-weight="%weight' font-size=$size>$text"

b

We will not describe the full option syntax here, see the documentation® of the extension for details. In our simple
example, the -italic option is marked as boolean indicating it is boolean switch that takes the value 1 if specified
and 0 if absent. The other options have defaults specified. We can then call our rewritten procedure as below.

% fontify "Some text" -italic -size 10

s Some t...
% fontify "Some text" -slanted -size 10 @

@ bad option "-slanted": must be -family, -italic, -size, or -weight

© Error-invalid option -slanted

Notice the automatically generated error message for the invalid option -slanted. The extension is flexible and
has many other capabilities. See its documentation for details.

3.5.8.3. Returning from a procedure: return

other languages. However, here we only describe its simplest forms. More advanced
capabilities will be described in Section 11.3. Likewise, other mechanisms for terminating
the execution of a procedure will also be described there.

E The return command is more flexible and powerful than you might have seen in

The return command can be used within a procedure to stop its execution and return a result back to the caller.
If an argument is supplied, it is used as the value to be passed back to the caller. If no argument is supplied, the
return value defaults to an erapty string.

proc signum {n} {

if {$n < 0} {
return -1
} elseif {$n == 0} {
return 0
} else {
return 1
}
}
signum -5
> -1

If the procedure does not have a return command, its execution is terminated after the last command in its body.
The result of this command is returned as the result of the procedure. Thus the result returned by the double
procedure below is the result of the expr command.

5 https://www.tcl.tk/community/tcl2016/assets/talk33/parse_args-paper.pd{

44

Procedures

proc double {n} { expr {2*$n} }
double 4
5> 8

3.5.8.4. Anonymous procedures: apply

There are many situations in programming, particularly the event driven style that is common in Tcl applications,
where code is executed via a callback mechanism. Examples include callbacks when a timer goes off, the user
clicks a mouse, a connection request arrives over the network and so on. In these cases where a "one-off"
procedure is needed it is inconvenient to have to define a named procedure elsewhere to be used as a callback. In
these situations, anonymous procedures provide a convenient alternative.

Why procedures are preferable to scripts as callbacks
There are a couple of advantages to passing a procedure as a callback as opposed to a script.
+ The first is performance since procedures are compiled into a byte code form for faster execution.

* The second is that any non-trivial script will use variables whose names will “pollute” the callback
context. For example, in the case of user interface callbacks from Tk which execute in the global
context, they will result in extraneous global variables being created. This problem does not arise with
procedures where any variables will be created in the procedure’s own local context.

Since anonymous procedures have no name, there has to be some facility to actually invoke them. This facility is
the apply command.

apply

The apply command takes a mandatory argument — the anonymous procedure — and invokes it passing it any
additional arguments that are supplied. The anonymous procedure avonproc itself is a list containing two or three
arguments:

+ the parameter definitions in the same form as for a named procedure
* the body of the procedure, again as for a named procedure
+ optionally, an identifier for the namespace (see Chapter 12) in which the anonymous procedure is to be defined.

We will illustrate with a simple example using the 1sort command. This command is described in detail with its
myriad options in Chapter 5 but here it suffices to know that it sorts lists and has an option, ~-command, which can
be used to specify how elements in the list are to be compared. Let us assume we want to sort a list of integers
based on their absolute values. The option -command takes a script which is invoked by 1sort to compare pairs
of elements. When this script is invoked, two additional arguments are appended to it — the elements to be
compared. The script has to return -1, 0 or 1 depending on whether the first element is less than, equal or greater
than the second element. We first create our list.

set list_of_ints {-1 5 -5 10 -5 -1000 100} > -1 5 -5 10 -5 -1000 100

We can then sort this with a custom anonymous procedure that does comparisons based on absolute values. Note
the similarity of the argument to apply to the structure of a named procedure definition: a list containing the
parameter definitions {a b} followed by the procedure body.

% lsort -command {apply {
{a b}
{
if {[abs $a] < [abs $bl} { return -1}

45

Procedures

if {[abs $a] > [abs $b]} { return 1 }
if {$a < $b} { return -1 }
if {$a > $b} { return 1 }
return 0
¥
> $list_of_ints
+ -1 -5-55 10 100 -1000

Nevertheless, the above looks slightly clumsy so very often a helper procedure, lambda, is defined for constructing
anonymous procedures.

proc lambda {params body args} {
return [list ::apply [list $params $body] {*}$args]
}

Then the above sort can be written as

lsort -command [lambda {a b} {
if {{abs $a] < [abs $b]l} { return -1 }
if {[abs $a] > [abs $bl} { return 1 }
if {$a < $b} { return -1}
if {$a > $b} { return 1 }
return 0

}] $list_of_ints

> -1 -5-55 10 100 -1000

which looks cleaner. This construct is used so often that Tcllib® contains a package lambda that defines this
lambda command for you7.

Although not relevant to our discussion of anonymous procedures, in case you are
g wondering, the third and fourth lines

if {$a < $b} { return -1 }
if {$a > $b} { return 1 }

are not superfluous. We want the comparison function to be consistent given the
same pair of elements so 5 should always be deemed greater than -5 (not even equal)
irrespective of whether the arguments are passedas 5 -5or -5 5.

Could we have written the above as a named procedure? Of course. The choice is a personal preference. Defining a
named proc means one more suitable name to think of8, potentially less clarity compared with inline code and so
on.

3.5.8.5. Introspecting procedures: info procs|args|default|body

While info commands, which we saw earlier, returns the list of commands visible in the current context, the info
procs command only returns names of commands implemented as procedures.

info procs ?PATTERN?

If pATTERN s specified, it is matched using the rules of string match.

6 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html
The name lambda comes from Lambda Calculus and generically refers to anonymous functions in programming languages.
This is not a trivial problem when there are a lot of callbacks, often with similar functionality, in an application!

46

Procedures

info procs » print_args write_file _SetupCawtPkgs print_file auto_load_index likes unknown my_proc

info procs tcl* » tclPkgUnknown tclPkgSetup tcllog
A number of commands return detailed information about a specific procedure.

info args &
info default ¢
info body iROCN

The info args command returns a list containing the names of the parameters defined for a procedure. We will
use our previously defined 1ikes procedure as the procedure of interest.

info args likes - paramA paramB args

Note this only returns the name of each parameter, not the entire parameter definition. To get the defaults
associated with a parameter, we have to use the info default command. If the parameter has a default, the
command returns 1 and stores the default in the specified variable.

info default likes paramA paramA_default » 0
info default likes paramB paramB_default » 1
puts $paramB_default + jelly

Lastly, the info body command returns the entire body of the procedure.

% info body likes
5
puts "I like $paramA and $paramB."
if {[llength $args] != 0} {
puts "I also like [join $args {, }1"
+

We can use these commands to entirely reconstruct a procedure definition at run time without access to source.

proc reconstruct {proc_name} {
set proc_name [uplevel 1 [list namespace which -command $proc_name]]
set params [lmap param_name [info args $proc_name] {
1f {[info default $proc_name $param_name defvall} {
list $param_name $defval
} else {
list $param_name
+
]

return [list proc $proc_name $params [info body $proc_name}]

We can then call it to reconstruct any procedure from the runtime environment.

% reconstruct likes
+ proc ::likes {paramA {paramB jelly} args} {
puts "I like $paramA and $paramB."”
1f {[llength $args] !'= 0} {
puts "I also like [join $args {, }1"
b
...Additional lines omitted...

47

Variables

There are a couple of commands in the reconstruct procedure that we will not look at until later so a short
explanation is in order. The first line converts the supplied procedure name to a fully qualified nare in case the
procedure is defined in a namespace. The Imap command command, described in Chapter S, loops through a list
and constructs a new list containing the result from each iteration.

This kind of reconstruction is useful in Tcl tools like profilers and debuggers as well as in metaprogramming
constructs like macros. Some Tcl packages, like pipethread, even use similar methods to ship code to other
remote interpreters as part of an RPC-like mechanism.

3.6. Variables

We have already seen basic usage of variables. It is time to go into more details including name syntax, scopes,
visibility and commands related to variable management.

3.6.1. Variable assignment: set

The basic command for assigning a value to a variable is the set command that we have seen before.

set Vi

If the vaLuE argument is not supplied, the command returns the value of the variable named varnauE if it exists
and raises an error if it does not. Otherwise, if the variable exists, its value is replaced and if it does not, it is
created and initialized. In all cases, the command returns the value of the variable.

set avar "Some value"” » Some value
set avar » Some value

Strange though it may seem, there is no guarantee that the return value of the command
- ‘ - (which is also the new value of the variable) is the specified varug! This is true not only
o e for set but other commands that modify variables as well. This can happen when there
are traces on the variable that modify it. See Section 10.6.1.

3.6.2. Getting a variable’s value
We have already seen how the value stored in a variable is retrieved either by prefixing its name with the $

character or using the single argument form of the set command.

puts $avar s Some value
puts [set avar] » Some value

We now look at some variations of these.

For starters, suppose we wanted to write a (very simple minded) procedure to return a phrase that pluralized a
word by tacking an s on the end. Clearly the following does not work because the Tcl parser will treat $nouns as a
reference to the variable nouns as opposed to a reference to noun followed by a literal s.

proc pluralize {count noun} {return "$count $nouns"} » (empty)
pluralize 10 car @ can't read "nouns": no such variable

To fix this, we can delimit the variable name with a pair of braces.

proc pluralize {count noun} {return "$count ${noun}s"} » (empty)
pluralize 10 car + 10 cars

48

Variable name syntax

In addition to this use to delimit the name when it is not terminated by a word separator, this braced form of
variable reference is also useful in a couple of other situations. The first is when the variable name itself is of an
unusual form as we will illustrate in the next section. The second is in conjunction with namespace names stored
in variables which we will describe in Chapter 12.

Variable indirection
There is a situation that sometimes arises, that involves accessing the value of a variable indirectly through
another variable that holds the name of the first. Consider the following

set avar "Some value" » Some value
set bvar "avar"® » avar

Given bvar, how does one retrieve the value whose name is stored in bvar? The following attempts fail.

puts $$bvar + $avar
puts ${$bvar} @ can't read "$bvar": no such variable

The first failure illustrates an important characteristic of the Tcl parser. When a substitution is made, it will never
go back and reparse the string. Thus the parser never sees the substituted string $avar.
The second atternpt fails because variables are never substituted inside the {} in the first place.

This is where the single argument form of the set command can be put to good use.

puts [set $bvar] » Some value

An alternative is to use upvar to create an alias, which is more convenient if the variable is referenced multiple
times.

upvar 0 $bvar ref » (empty)
puts $ref » Some value

This is a special case of the more generally applicable upvar command (see Section 10.5.4).

3.6.3. Variable name syntax

We have been using variable names in our examples that are alphabetic. However, unlike most other languages,
there are practically no restrictions on the characters that can be used in a variable name. It is convenient for
many reasons to restrict names to the “standard” alphanumeric plus underscore (_) convention but this is not
mandated. You can include spaces, newlines, and practically any character you wish in a variable name as long as
you take care to appropriately quote or escape it as per the Tcl parser rules discussed previously.

The following are all valid variable names.

set a_traditional_variable "A variable name"
set {Funky + Var # Name} "can be anything"

set "" "you like." @
puts "$a_traditional_variable ${Funky + Var # Name} ${}"
+ A variable name can be anything you like.

© Even an empty string can be a variable name!

Notice in the above example, the ${} variable syntax used for accessing variable names that contain funky9
characters. However, there are cases where even this syntax cannot be used and you have to resort to using the
set command to retrieve the value:

9A technical term.

49

Unsetting variables

set "{namewithbraces}" avalue -» avalue (1)

puts ${namewithbraces} @ can't read "namewithbraces": no such variable @
puts ${{namewithbraces}} @ can't read "{namewithbraces": no such variable

puts [set "{namewithbraces}"] » avalue (3]

© The variable name is {namewithbraces}, i.e. the name itself contains braces
© Fails. Cannot use $ in either form
© Resort to the single argument form of the set command

Needless to say, there is no reason to use weird variable names in your programs. However, the ability to do so is
useful in dynamic languages like Tcl where the variable can be indirectly referenced as we saw in the previous
section. For example, a network server may choose to store information associated with a client in a variable of
the same name as the client’s DNS name '°.

However, there are two special cases to keep in mind regarding variable names. The first is with regard to use of
parenthesis in array syntax. The other is that although a colon (:) character can be used in a variable name,

set var:with:colon "A variable with single colons" » A variable with single colons
two or more consecutive colons in the name signify a variable in a namespace. Namespaces are described later in

the chapter Chapter 12.

3.6.4. Unsetting variables

The unset command deletes one or more variables.

unset ?-nocomplain? ?--? ?va;

The command destroys all specified variables. Unless the -nocomplain option is provided, the command will raise
an error if the variable does not exist.

set avar "Some value" - Some value

unset avar > (empty)

unset avar @ can't unset "“avar": no such variable
unset -nocomplain avar - (empty)

The -- character sequence is used to disambiguate the -nocomplain option from a variable of the same name.

% set -nocomplain “-nocomplain is a perfectly valid variable name"
» -nocomplain is a perfectly valid variable name

unset -nocomplain

% set -nocomplain (1

» -nocomplain is a perfectly valid variable name

% unset -- -nocomplain

% set -nocomplain @

@ can't read "-nocomplain”: no such variable

a2

© The variable still exists because the command treates -nocomplain as an option with no variables specified!
© Now it is gone because the - - marked the end of options, resolving the ambiguity.

10 Not to suggest that is necessarily a good idea. Using arrays or dictionaries would be better.

50

Variable scopes, lifetimes and visibility

3.6.5. Variable scopes, lifetimes and visibility

A variable’s scope is the region within which a variable is defined and can be referenced without special
qualification. Tcl defines three scopes:

+ local scope where a variable is defined within a procedure

*+ namespace scope where a variable is defined within a namespace. This is described in Chapter 12 and we will
not say more about it here.

+ global scope where the variable is defined outside any procedure or namespace.

3.6.5.1. Local variables

Local variables are defined within a procedure. There is no special declaration to declare them as local. They

are automatically created as local when the variable name is assigned to and there is no global or variable
command within the procedure that declares them to be global or within a namespace. The parameters defined
for a procedure are also local variables that are automatically assigned from the arguments when the procedure is
called.

Local variables can also be accessed from other procedures called by the procedure where they are defined. The
mechanisms for this are described in Section 10.5.4.

Local variables live until the procedure returns or they are explicitly destroyed with the unset command.

proc demo {} {
set localvar "I am local”

}

demo

puts $localvar @
@ can't read "localvar": no such variable

© Generates error because localvar is only defined within the demo procedure and destroyed when it returns.

3.6.5.2. Global variables: global

Global variables are defined outside any procedure. Any reference to an unqualified variable outside a procedure
refers to the global variable. (We are ignoring variables in namespaces which we discuss in Chapter 12). The
variables In our interactive examples in the Tcl shell were all created as global variables. Within a procedure or
namespace, global variables have to be either qualified or declared as global.

Qualifying a global variable is done by prefixing the variable name with the : : character sequence. This is a
special case of namespace qualification where the : : prefix indicates that the variable resides in the global
namespace.

set globalvar "I am global"
proc demo {} {

puts $::globalvar
}

demo
» I am global
Without the : : qualifier, an error would have been raised.

Alternatively, the variable can be declared to be global with the global command.
global ?varwame 2
The command declares its arguments to be names of global variables and creates local variables of the same name

linked to the corresponding global variables. The variable does not have to be explicitly qualified and access to it
result in the corresponding global variable being accessed. Thus the above procedure could also be written as

51

Variable scopes, lifetimes and visibility

proc demo {} {
global globalvar
puts $globalvar
¥

demo
+ I am global

Choosing qualification versus declaration with global is a personal preference. Use of explicit qualification
immediately makes it clear at the point of reference that a global variable is being used. On the other hand, if you
are into microoptimizations, using global is a tad more efficient if you reference the variable multiple times as in
a loop.

Global variables exist from the time of definition until they are explicitly destroyed with the unset command.

One more note regarding the global command. In common usage, the command links a local variable to a global
variable of the same name. However, if the argument to the command contains namespace qualifiers, the local
variable created is linked to that namespace variable, not a global one.

namespace eval ns {
variable avar "This is the namespace variable"

¥
set avar "This is the global variable"
proc demo {} {

global ns::avar

puts $avar

}
demo
» This is the namespace variable

3.6.5.3. Creation is not definition

We have so far used the words “creation” and “definition” somewhat interchangeably. However, these are not the
same so it is time to distinguish the two.

Following terminology from the Tcl reference pages, creation of a variable refers to creation of the variable name
and associating it with a scope (local, global, namespace etc.). Commands such as global, or variable that we
see in Chapter 12, perform this function. On the other hand, a variable is defined only when a value is assigned to
it. The difference is illustrated in following short example where we use the info exists command to check if a
variable has been defined.

proc demo {} {
global created_but_undefined
puts [info exists created_but_undefined]
set created_but_undefined "a value”
puts [info exists created_but_undefined]

The global command only creates a local variable of that name linked to a global variable. However, since it

has no value assigned to it, it is not defined as the output of info exists shows. Assigning a value results in the
variable being defined. In the rare case that you really care about the variable creation rather than definition, you
can use the namespace which command described in Section 12.5.4.

52

Variable introspection: info exists|vars|locals|globals

3.6.6. Variable introspection: info exists|vars|locals|globals

The info exists command can be used to check for existence of a variable within any scope.

info exists va

It returns 1 if a variable exists and 0 otherwise. Note exists means the variable is defined, i.e. has been created and
has an associated value as noted in the previous section.

set globalvar "I am global™
proc demo {} {
puts “"localvar: [info exists localvar]"
set localvar "I am local"
puts "localvar: [info exists localvar]"
puts "globalvar: [info exists globalvar]"
puts "globalvar: [info exists ::globalvar]”
global globalvar
puts “"globalvar: [info exists globalvarl"
I
demo
» localvar: 0
localvar: 1
globalvar: 0
globalvar: 1
globalvar: 1

Notice from the above output that info exists follows the same rules regarding qualification and global
declarations as any other variable reference.

The info locals, info globals and info vars commands can be used to enumerate local variables within a
procedure, global variables, and all variables that are visible in the current scope respectively.

info locals ?:
info globals ?
info vars 2.7

The script below illustrates their use.

proc demo {paramA} {

set localvar
puts "locals

"A local variable"
: [info locals]™

puts "globals: [info globals]"

puts "vars:

[info vars]"

global tcl _platform

puts "vars:

[info vars}”

+

demo "A parameter"

+ locals: paramA localvar
globals: tcl_version tcl_interactive var globalvar fruit created_but_undefined nested b...
vars: paramA localvar
vars: paramA localvar tcl_platform

Some of the variables we see in the output are predefined in Tcl. Others were created as a result of commands
executed in our earlier examples.

Notice that info locals includes the procedure parameters in its list. Also note the behaviour of info vars.
Unlike info globals, it will only include global variables if they have been brought into the local scope with a

53

Array variables

global declaration. Also, although not shown in our example, info vars will list namespace variables that have
been brought into the local scope.

In all cases, if PATTERN is specified, only variables matching the pattern using string match rules are returned.

% info globals tcl_*
» tcl_version tcl_interactive tcl_patchlLevel tcl_platform tcl_library

If the pattern includes namespaces, only the last component of the namespace variable is treated as wildcard
pattern. The namespace names are treated as literals. So for example,

info vars ns::* » ::ns::avar
info vars *::* 5 (empty) (1]

© Returns empty list because the namespace component * is not treated as a wildcard but a literal namespace

3.6.7. Array variables

Many languages provide array constructs where values are stored as elements in a collection and referenced using
a key. In languages like C, the elements have a specific sequence and the key must be an integer that specifies a
position in this sequence. In other languages, including Tcl, the key is not restricted to integers. These arrays are
also referred to as maps or associative arrays as they “map” or “associate” a value with a key.

In Tcl, arrays are actually not a collection of values but rather a collection of variables. They are denoted using the
special variable syntax

where both the array name and key may be arbitrary strings.

Tcl also has value based keyed collections called dictionaries. We describe dictionaries, as
well as contrast them with arrays, in Chapter 6.

3.6.7.1. Basic array operations

Because each element in an array is just a variable, they are used in the same fashion. We can access them with the
$ prefix and use any commands like set, append, incr etc. that operate on variables to modify an element.

% set populations(Mumbai) 12500000

+» 12500000

% puts "The population of Mumbai is now $populations(Mumbai).™”

» The population of Mumbai is now 12500000.

% puts "Next year it will be [incr populations(Mumbai) 1000000]"
» Next year it will be 13500000

The key (or index) need not be a literal string. We may use a variable or a bracketed command as well.

set city "New York"

New York

set populations($city) 8500000
8500000

parray populations
populations(Mumbai) = 13500000
populations(New York) = 8500000

L -SR-S

54

Array variables

3.6.7.2. Printing an array: parray

The parray command prints out the contents of an array.
parray ARRAYNAME ?FATTERN?

If PATTERNis not specified, the array prints on standard output all elements of 2ArRRAyNAME based on the sort order
of the keys. If PATTERN is specified, the commmand only outputs elements whose keys match PATTERN using the
pattern matching rules of string match. The command is primarily intended for interactive use.

% parray populations

+ populations(Mumbal) = 13500000
populations(New York) = 8500000

% parray populations N*

s populations(New York) = 8500000

3.6.7.3. Operating on multiple elements: array set, array get, array unset

Although individual array elements can be treated like any other variable, it is often convenient to operate on
multiple elements at a time. Several subcommands of array are provided for this purpose.

The array set command assigns to multiple elements.

ARRAYNAME is the name of the variable which either does not exist or must be an array if it does. An error will be
raised if ARRAYNANME is the name of an existing variable which is not an array.

L1sTis alist of alternating key value pairs. Each value is assigned to the array element identified by the key,
overwriting its value if it already exists and creating it otherwise.

array set populations {
Moscow 12200000
Lagos 17000000
Mumbai 12500000

}

parray populations

» populations(Lagos) = 17000000
populations(Moscow) = 12200000
populations(Mumbai) = 12500000

populations(New York) = 8500000

Correspondingly, the array get command returns multiple elements as a list of alternating keys and values.

array get aiia:

If PATTERN is not specified, the command returns all elements in the array. Otherwise, only those elements whose
keys match pATTERN using string match rules are returned.

% array get populations

» Moscow 12200000 Lagos 17000000 {New York} 8500000 Mumbai 12500000
% array get populations M*

> Moscow 12200000 Mumbai 12500000

There is no guarantee regarding the order in which elements are returned. The order may not even be maintained
across successive iterations. If a specific order is desired, you can use the 1sort command.

55

Array variables

% lsort -nocase -stride 2 [array get populations] (1)
Lagos 17000000 Moscow 12200000 Mumbai 12500000 {New York} 8500000
lsort -integer -index 1 -stride 2 [array get populations] (2]
{New York} 8500000 Moscow 12200000 Mumbai 12500000 Lagos 17000000

¥

S

v

© Sort by name
©® Sort by population

See Section 5.7 for an explanation of the options.

Finally, while unset can be used with array elements as with other variables, array unset provides a means to
unset multiple array elements.

array unset ARRAY!

If PATTERN is not specified, the entire array is unset. Otherwise, only those elements whose keys match PATTERN
using string match rules are unset. If ARRAYNAME does not exist or is not an array, the command does not raise
an error and has no effect.

array unset populations N*

parray populations

» populations(Lagos) = 17000000
populations(Moscow) = 12200000
populations(Mumbai) = 12500000

-&-
LA array unset my_array *
array unset my_array

Note the difference in the following commands

The first will remove all elements from the array but the array itself will continue to
exist. In the second case, the array variable itself will be unset.

3.6.7.4. Checking for arrays: array exists

We can use the array exists command to check if a variable is an array. It returns 1 if a variable exists and is an
array and 0 otherwise.

set scalar "some value" > some value
array exists populations -» 1
array exists scalar - 0
array exists nosuchvar -+ 0

3.6.7.5. Checking for element existence: info exists, array names

Since array elements are variables, the standard info exists command which can be used to check the existence
of a variable can be also used to check for array elements. The command returns 1 if the element exists and 0
otherwise.

info exists populations(Mumbai) - 1
info exists populations(London) » 0

The array names command returns a list of keys for the elements in an arrayn.

1l”l“he Tcl reference documents uses the nomenclature names for keys in an array and keys for a dictionary. We stick to using keys for both
cases.

56

Array variables

E? ?FATTERN?

array names ARRAYNAME ?M(

If PATTERN is not specified, the command returns the keys for all elements in the array. Otherwise, only keys that
match pATTERN are returned. The matching method depends on the MopE option. If it is unspecified or has the
value -glob the matching is done using string match rules. If MODE is -regexp, the matching is done as for
regular expressions. If MODE is -exact, only the key that exactly matches pATTERN is returned if it exists.

The command returns an empty list if no matching elements are found, or if the array variable does not exist or is
not an array.

array names populations > Moscow Lagos Mumbai
array names populations M* > Moscow Mumbai
array names populations -regexp o..0 » Moscow

3.6.7.6. Array statistics: array size,array statistics

The array size command returns the number of elements in an array. In case the specified variable does not
exist or is not an array, the command returns 0.

array size populations » 3
array size nosuchvar - 0

The array statistics command is rarely used in practice and we include it here only for completeness. It prints
detailed internal statistics about the hash tables used to implement arrays.

% array statistics populations

» 3 entries in table, 4 buckets
number of buckets with 0 entries: 1
number of buckets with 1 entries: 3

...Additional lines omitted...

Its primary use is development of the array implementation itself and possibly to diagnose pathological behaviour
with very large arrays.

3.6.7.7. Iterating over arrays: array startsearch|nextelement|anymore|
donesearch

Tcl has a very flexible iteration command for lists, foreach that can be used to iterate over arrays by retrieving
their content in list form using array names or array get.

foreach city [array names populations] {
puts "The population of $city is $populations($city)"

» The population of Moscow is 12200000
The population of Lagos is 17000000
The population of Mumbai is 12500000

Or in an alterative form,

foreach {city population} [array get population] {
puts “The population of $city is $population”
¥

These commands provide the most efficient and convenient means of iteration and are fully described in
Section 5.9. Here we describe an alternate means specific to iterating over arrays.

57

Array variables

The primary benefit of this alternative method is that there is no conversion into list format and thus memory
requirements are much smaller. This is only an issue when very large arrays are involved.

The first step is to retrieve a handle to an iterator with the array startsearch command.
set iter [array startsearch populations] » s-1-populations

The array anymore command is used in conjunction with array nextelement, which retrieves the next element
from the iterator, to loop over all the elements. It returns 1 if there are more elements left and 0 otherwise.

while {[array anymore populations $iter]} {
set city [array nextelement populations $iter]
puts “The population of $city is $populations($city)”
¥
» The population of Moscow is 12200000
The population of Lagos 1s 17000000
The population of Mumbai is 12500000

Finally, when the iteration has ended, the handle has to be released with array donesearch.
array donesearch populations $iter -» (empty)
There are a few special cases to be aware of, like multiple parallel searches and deletion of elements in the middle

of the iteration. See the Tcl reference manual for details.

It is worth reiterating that this method is slow, almost never required and should not be used unless you are
dealing with arrays that are so large as to cause memory allocation failures if converted to lists.

3.6.7.8. More on array keys
There are some additional points to be noted about keys.
Key equality

Keys are strings. Thus the keys 1 and 0x1 point to different array elements though in numeric calculations they
represent the same values. Additionally, keys are case sensitive. Thus keys abc and Abc point to different array
elements.

Multiple dimensions

There is no built-in notion of multidimensional arrays. They are sometimes simulated by concatenating the
multiple “indices” using some separator string and using the result as the array key. For example, the results of
tennis matches may be stored using keys like Federer ,Nadal. However, you need to be careful that the separator
string itself does not occur in the index values as it would lead to ambiguities. Also remember that Federer ,Nadal
and Federer, Nadal (with a space before the N) are different keys so even extraneous whitespace will lead to
erroneous results if not used consistently. For these reasons, dictionaries are preferable for such structures.

Empty strings as keys

As a piece of trivia, note that erpty strings are acceptable for both the array and the key. So for example,

set (key) value - value (1]
set arr() value » value (2}
set () value 5 value ©

© Array name is the empty string
© The key is an empty string
© Both the array name and key are empty strings

58

Predefined variables

Keys containing whitespace

Earlier we assigned an element for the key United States via a variable reference. What if we wanted to assign
to an element directly instead when the key included a space character? The following attempts lead to either
errors or unexpected results.

% set populations(Hong Kong) 7300000

@ wrong # args: should be “set varName ?newvalue?"
% set populations("Hong Kong") 7300000

@ wrong # args: should be “"set varName ?newValue?"

The correct way to set the variable is either of

set populations(Hong\ Kong) 7300000 - 7300000
set "populations(Hong Kong)" 7300000 » 7300000

On the other hand, when referencing the variable we can use the natural syntax or the braced form of variable
references.

puts $populations(Hong Kong) > 7300000
puts ${populations(Hong Kong)} » 7300000

Explaining treatment of keys with whitespace

To understand this seeming inconsistency in treatment of key literals containing white space, we have to
go back to the Tcl parser we discussed earlier.

When parsing the statement

set populations(Hong Kong) 7300000

the Tcl parser breaks it up into four words, set, then populations (Hong, followed by Kong) and finally
7300000. In essence, it does not treat the parenthesis as a special character. The set command raises an
error on receiving three arguments when it expects only one or two.

On the other hand, in the case of a statement like the one below, variable substitution comes into play.

puts $populations(Hong Kong)

When Tcl sees the $, the variable substitution rules are triggered. These do understand the variable
syntax used for array elements and treat all characters until the terminating parenthesis as a single word
doing backslash, command and variable substitution in the process.

In practice, most array accesses are through variables and rarely does this inconsistency matter.

3.6.8. Predefined variables

Tcl predefines a number of global variables such as tcl_platform, tcl_version etc. You can get a complete
list from the info globals command in the Tcl shell. We will describe these variables elsewhere in the sections
related to their use.

3.7. Getting error information

Tcl has powerful mechanisms for dealing with errors and exceptions that we describe in Chapter 11. Here we only
mention a couple of points that are useful to know when starting with Tcl in interactive mode.

59

Introspection

We have already seen that on invalid input most Tcl commands will print an informational message that identifies
the cause of the error. For example,

% binary decode hex

@ wrong # args: should be "binary decode hex ?options? data"

% string size "foo"

@ unknown or ambiguous subcommand “"size": must be bytelength, cat, compare, equal, first,
L index, is, last, length, map, match, range, repeat, replace, reverse, tolower, totitle,
L, toupper, trim, trimleft, trimright, wordend, or wordstart

In addition, if an error occurs in a nested procedure call, you can examine the global variable errorInfo for the
call stack at the point the error occured.

proc demo2 {x y} {}

proc demo args { demo2 {*}$args }

demo A B C

wrong # args: should be "demo2 x y"

puts $errorinfo @

wrong # args: should be "demo2 x y"
while executing

"demo2 {*}$args "
(procedure "demo" line 1)
invoked from within

"demo A B C"

YR R R R

@ Print the error stack

This can be very useful in diagnosing the root cause of an error.

0.0

If you are using an enhanced Tcl console like tkcon, error messages are highlighted and
clicking on them with the mouse will display the error stack in a popup window.

3.8. Introspection

There are three things extremely hard: steel, a diamond, and to know one’s self.

— Benjamin Franklin

Luckily for us, the last part does not hold for Tcl. Tcl offers deep and comprehensive introspection capabilities
into almost every aspect of its runtime. Introspection is useful in all kinds of situations ranging from
metaprogramming, runtime debugging and tracing, construction of dynamic object systems and more. It is even
useful in interactive development. For example, what arguments does our demo2 procedure take?

info args demo2 » x y
In most cases this information is available through the info command. We have already seen a few examples
such as info procs and info globals. You can see all the other categories of information available by passing a

bogus argument to info.

% info bogus
@ unknown or ambiguous subcommand "bogus”: must be args, body, class, cmdcount, commands,...

We will describe these introspection capabilities in detail in the sections pertaining to their subject.

60

The EIAS principle

3.9. The EIAS principle

The universe is a symphony of vibrating strings.
— Michio Kaku

Having looked at the basics of the language, we will now touch upon a core philosophy on which Tl is
based — EIAS (Everything Is A String). You will hear this referenced from time to time in various language
discussions and sometimes used to denigrate Tcl (the horrort).

Let us dispense with this last because it arises from a misunderstanding of what EIAS means:
+ EIAS does not mean Tcl only operates on strings with no facilities for numerics, structured data etc.

+ EIAS does not mean that all data is internally stored in string form.
* EIAS does not mean operations on numbers and structures entail conversion back and forth from string forms.

Having looked at what EIAS is not, let us look at what it is.

* Every value has a string representation. A “string” as we see in the next chapter, is a finite sequence of
characters supporting operations that return its length, indexing and so on. This also means that every value is
automatically serializable.

* Every value that produces the same string representation must be treated by every command in exactly the
same way no matter how those values were constructed. For example, a value with the string representation
100 may arise as the concatenation of the strings 10 and 0 or as the result of squaring the numeric value 10.
The result of both operations must be treated by all commands in the same manner. A command requiring
numeric operands cannot accept the second value and reject the first.

* Arguments to procedures, values stored in variables, etc. are conceptually passed as strings though the
implementation may not do so for reasons of efficiency.

* Because of the above, there is no need for mechanisms such as templates or generics because all values are
treated uniformly. Your hash table can contain any value without needing “type-specific” versions.

+ Although everything is a string to Tcl, commands are free to operate only on a subset of values in the string
universe. The arithmetic operations will only operate on the subset of values that represent numbers.

* A program element can also be a string. That includes, for example, procedure bodies. You can dynamically
construct procedure definitions as strings and invoke them. However, not all program elements are strings.
Namespaces, interpreters are not themselves strings though they have names that are. This does not violate
EIAS because they are not values. Thus EIAS is perhaps better named as EVIAS (Every Value Is A String).

Much of TcI’s malleability and ease of programming comes from this uniform treatment of values proscribed by
EIAS.

3.10. Chapter sumnmary

In this chapter we introduced the basic elements of Tcl — the syntax, command evaluation, procedures, and
variables. In the next few chapters, we will focus on the Tcl commands for manipulating data in various forms.

61

Strings

For the most part, you can think of strings in Tcl as a sequence of characters, or specifically, Unicode characters 1
However, they are actually a sequence of Unicode code points, not characters, in the range U+0000 to U+FFFF. The
difference arises because a character may map to more than one sequence of Unicode code points. For example,
the character é may be represented as either the single code point U+00E9 or the sequence U+0065 (letter e)
followed by U+0301 (combining acute accent). Tcl considers the two representations as distinct characters. Tcl
currently only supports Unicode code-points up to U+FFFF (the "Basic Multilingual Plane’, or BMP). Support for
Unicode characters beyond this range is a work-in-progress.

4.1. String indices

Commands that manipulate strings often take arguments that indicate the character positions, called indices, in
the string. These indices are 0-based so 0 references the first character in the string, 1 references the second and
S0 on. As a special case, end can be used to signify either the last character of a string or the position after the last
character depending on the specific command.

In addition, string indices may be specified in one of the special forms

INTEGER[+] -] N7
end(+]-1. x5

where INTEGER may be either an integer literal or a variable containing an integer. The resulting expression is
used as the index into the string.

We will see examples of these various forms throughout this chapter.

| There must be no whitespace between the operands and the operator in these forms.

4.2. Constructing strings

At some level, since all values in Tcl have a string representation, every command can be thought of as
constructing a string! In this section, we describe those commands whose main purpose is to construct a string, not
produce a string as a side effect of some other computation.

4.2.1. String literals

We have already seen the most basic forms of string construction using quotes and braces. To refresh your
memory,

% set interjection Hello @

1Ifthe term Unicode and code points are unfamiliar to you, please see one of the many tutorials on the Web, such as the one from joel on
Software [http:/www.joelonsoftware.com/articles/Unicode.html] or unicode.org [http:/junicode.org/standard/tutorial-info.html]

63

Concatenating strings: string cat

> Hello

% set greeting {$interjection World!} [2)
$interjection World!

% set greeting "$interjection World!" (3]
» Hello Wworld!

+

© No quotes needed if no whitespace or special characters
© No string interpolation inside braces
© String interpolation inside double quotes

To enter certain non-printable or control characters such as newline, backslash sequences can be used.

% set text "First line\nSecond line™
> First line
Second line

In the general case, any Unicode character can be entered using one of the Unicode escape syntaxes \x, \u or \U.

% set text "\x55\x6e\x69\u0063\u006f\u0064\U00000065"
» Unicode

The details regarding these various forms were discussed earlier in Section 3.2.1 and Section 3.3.

We now look at the additional commands provided in Tcl for conveniently and efficiently constructing strings
from other strings.

4.2.2. Concatenating strings: string cat

An alternative to string interpolation using literals is the string cat command.

string cat ?s5¢
It takes an arbitrary number of arguments and returns the string formed by their concatenation.

% proc demo {} {return bar}

% set var foo

» foo

% string cat $var {[this is a literal string, not a command]} [demo]
» foo[this is a literal string, not a command]bar

This is more convenient than string interpolation in some cases. In the above example for instance, literal
interpolation would be a littte awkward due to the need to protect the braced string from substitutions while
allowing it for $var and [demo].

The command is also useful when we need to return a result from a script that is the concatenation of one or more
strings. Here is an example using the Imap command to construct a list.

set la {abc def}

set 1lb {123 456}

lmap a $la b $1b {
string cat $a " " $b

+

> {abc 123} {def 456}

The 1map command (see Section 5.5.1) constructs a list whose elements are the result of successive evaluation of a
script. In this simple example, we want to construct a new list whose elements are formed from the corresponding

64

Constructing with substitutions: subst

elements of 1a and 1b separated by a space. Using string cat to construct the script result as above is more
convenient and lucid than the alternatives such as append.

4.2.3. Constructing with substitutions: subst

The subst command offers yet another flexible form of string interpolation.

subst ?-nobackslashes? ?-nocommands? ?-novariables? =s7rR7ue

The command performs backslash, variable and command substitution on the STR7NG argument in the same
manner as the Tcl command parser and returns the result. Variable references of the form $var, command

invocations enclosed in [] and backslash sequences are all replaced.

% set var 2

> 2
% subst {The sum $var+$var\t=\t[expr {$var+$var}]}
+ The sum 2+2 = 4

Make a note that when the subst command is invoked two rounds of substitution take
place, first by the Tcl parser, and then by the subst command.

subst "(\\t)" » () @
subst {(\\t)} » (\t) @
subst {(\T)} = () ©

O subst sees (\t) as Tcl parser does one round of substitution
© subst sees (\\t) as the braces prevent substitution by the Tcl parser

© substsees (\t)

The examples below use {} to prevent the Tcl command parser from making
substitutions so as to make the subst command behaviour clear.

The -nobackslashes, -nocommands and -novariables options provide additional control over what forms of
substitutions are carried out by subst. These options selectively prevent substitution of backslash sequences,

command invocations and variables respectively.

% subst {The sum $var+$var\t=\t[expr {2+2}]}

s The sum 2+2 = 4

% subst -nobackslashes {The sum $var+$var\t=\t[expr {2+2}]1}
» The sum 2+2\t=\t4

% subst -nocommands {The sum $var+$var\t=\t[expr {2+2}]}

» The sum 2+2 = [expr {2+2}]
% subst -novariables {The sum $var+$var\t=\t[expr {2+2}1}
> The sum $var+$var = 4

Of course, multiple options may be combined as desired.

There are some subtleties in the interaction among the various options to subst and in
n cases where commands return with a result code other than ok. For example, consider

% subst -novariables {The sum $var+$var\t=\t[expr {$var+$var}]}
> The sum $var+$var = 4

65

Formatting strings: format

and notice how the variables inside the expr expression have been substituted despite
the -novariables option. See the Tcl reference documentation for such special cases.

Many Tcl libraries for generating HTML via templates are based on the subst command. The HTML page is
constructed from one or more fragments containing a mixture of HTML and Tcl variables whose values (for
example) have been retrieved from a database. The page is generated by passing it through subst. See substifyz in
the Tcler’s Wiki® for one example implemented in just a few lines.

4.2.4. Formatting strings: format

The commands discussed so far construct strings in a somewhat “free-form” fashion using either their natural
representation or how they were initialized.

% set sixteen Ox10 ; puts "sixteen 1s $sixteen”
» sixteen is 0x10

% incr sixteen 0 ; puts "sixteen is $sixteen”

» sixteen is 16

Sometimes however, you need to construct strings where the values have precise representation and structure.
For example, you may need to write floating point values to a CSV file to be imported by another application which
requires exactly two decimal places. Or you may need to generate a report where values with different widths
have to be adjusted to a specific column width.

The format command lets you do precisely that by letting you specify details of how values are represented, their
location in the constructed string, maximum lengths, padding and so on.

format ORM

Here FORMATSTRING is a “template” for the string to be constructed and contains literal text as well as field
specifiers that are placeholders for the values supplied as arguments to the command. The command returns
FORMATSTRING with the field specifiers replaced by the argument values, appropriately formatted. For example,

% format "%d times %#x 1s %e" 10 10 100
> 10 times Oxa is 1.000000e+002

Here %d, %#x and %e are field specifiers that control how the numbers are formatted.

A field specifier controls the representation, widths etc. of the corresponding argument value and consists of the
parts or components listed below.

» Aliteral % character

+ An optional XPG3 specifier

» An optional sequence of flag characters
* An optional minimal width

+ An optional precision or bound

* An optional size modifier

* The conversion character

Note that all the parts above are optional except the starting % and conversion character. All parts that are present
must be in the order listed.

We illustrate each of the above in turn with some examples.

2 Jtp://wiki.tcltk/18455
3 hutpiwiki.teltk

66

Formatting strings: format

4.2.4.1. Conversion characters

The conversion character controls the type of conversion to be applied to the corresponding argument. In the
simplest case, the format string includes only the conversion characters and no optional parts.

The conversion specifiers may be classified as string, integer and floating point depending on the type of value to
be formatted. The string and character conversion characters are shown in Table 4.1.

Table 4.1. String specifiers for format

Character Description Example

s Format as string (so effectively as-is). Useful with

modifiers like width etc. format %s Oxffffffff » OxfFffffff

d Character corresponding to the Unicode code

point given by the integer argument value. format %c 42 >

format %c 0x662D » R

% Inserts the percent character itself. .
% format "Tcl! %d%% pure fun!" 100

» Tcl! 100% pure fun!

The format specifiers for integer values are shown in Table 4.2.

Table 4.2. Integer specifiers for format

Character Description Example
d Signed decimal integer
format %d Oxffffffff 5 -1
format %d 42 + 42
u Unsigned decimal integer
format %u OxFFFFFfff » 4294967295
X Lower case hexadecimal integer
format %x 42 » 2a
X Upper case hexadecimal integer
format %X 42 > 2A
0 Octal integer
format %o 42 > 52
b Binary integer

format %b 42 » 101010

Finally, the specifiers for formatting numbers in floating point representation are shown in Table 4.3.

Table 4.3. Floating point specifiers for format

Character Description Example
f Signed decimal

format %f 4.2e1 » 42.000000
e Scientific representation

format %e 42 » 4.200000e+001
E Scientific representation

format %E 42 » 4.200000E+001

67

Formatting strings: format

Character Description Wi&éfnple

g Behaves as f or e depending on argument value
except for trailing 0’s and decimal point. See Tcl
reference.

format %g 420e-1 » 42

G Behaves as f or E depending on argument value
except for trailing 0’s and decimal point. See Tcl
reference.

format %G 42e0 - 42

4.2.4.2. XPG3 format position specifiers

Normally, the format specifiers and supplied arguments are matched up in the order they occur. For example, in
the command below %d and %s get matched up in order with 31 and January respectively.

% format “There are %d days in %s." 31 January
» There are 31 days in January.

However, there are circumstances where you want to be able to change the order in which argument values are
inserted without changing the order in which they are passed. An example of this is formatting of strings localized
for different languages. The way localization is commonly done is by passing an identifier string into the message
catalog facility (see Section 4.15), msgcat, which returns the appropriate string for that language. The location of
the insertions then is dependent on the grammar for the language. When using the format command as above
however, we do not know the order of the specifiers and therefore could very well pass the arguments in the
wrong order. For example, assume this naive procedure to print a localized message for the days in a month.

set english "There are %d days in %s." (1]

set canadian "%s has %d days, eh!"

proc print_days {fmt month days} {puts [format $fmt $days $month]}
print_days $english January 31

» There are 31 days in January.

© Assume returned from localized message catalogs

This worked fine for English because the order of arguments matches the order in the message catalog string.
However, we have problems in Canada.

% print_days $canadian January 31
@ expected integer but got "January"
Clearly that is not workable because the argument order no longer matches the specifiers in the catalog string.

The XPG3 position specifiers address this issue. A position specifer immediately follows the leading % and consists
of a number followed by a $ character. This number indicates the position of the corresponding argument in the
list of arguments.

The message catalog strings in the above example then should have been written as follows using XPG3 specifiers.

set english {There are %1%$d days in %2%$s.}
set canadian {%2%$s has %1%$d days, eh!}

Now the order of arguments that is passed to format is fixed while still allowing for the insertions to take place in
a different order. The Canadians are now happy.

print_days $english January 31 » There are 31 days in January.
print_days $canadian January 31 » January has 31 days, eh!

68

Formatting strings: format

Note that an argument index may be repeated if desired. For example,

% format {%1%d == 0x%1$x == 00%1%0} 42
» 42 == 0x2a == 0052

repeats a single integer argument thrice with different formats.

If a format string uses XPG3 position specifiers, all specifiers in the format string must
e include XPG3 position specifiers. Breaking this rule will generate an error exception.

4.2.4.3. Specifying minimum field widths

Although the flags component comes before the minimum field width in a field specifier, we describe the latter
first as the flags act as modifiers for minimum widths.

The minimal width part of a specifier mandates a minimal number of characters in the inserted argument value
and is particularly useful when formatting data in tabular form where the representation width has to match the
desired width for a table column. The width can be specified as either a number or the * character which indicates
the width is indirectly supplied as an additional argument.

format "(%d)" 10 » (10)
format "(%8d)" 10 > (10)

format "(%*d)" 8 10 » (10) @

© Field width 8 supplied as an additional argument

In the above examples, we have enclosed the format string in parentheses to make it clear how fields are
formatted in the presence of whitespace padding.

4.2.4.4. Format flags
The flags component of the specifier controls a variety of attributes as illustrated in the following examples.
The first set of flags deal with justification and pad characters.

+ The - flag forces left justification when padding to meet minimum width requirements.

+ The 0 flag implies padding with 0’s instead of spaces.

format (%8d) 10 -~ (10)

format (%-8d) 10 » (10)

format (%08d) 10 » (00000010)

The next set of flags affects representation of positive numbers.

* The + flag causes positive numbers to be preceded with the + sign.

*+ Asingle space character for the flag specifies a single space before a number unless a sign is present.

format (%+d) 10 + (+10)
format "(% d)" 10 > (10)
format "(% d)" -10 » (-10) ©

© Note no space in output because a sign is present.

Finally, the flag # modifies the representation in various ways depending on the underlying conversion character.
For binary, octal and hexadecimal fields, the flag specifies an appropriate prefix is to be output, for example 0x

69

Formatting strings: format

for hexadecimal. For decimal and floating point fields, it specifies that a decimal point is output even for whole
integers.

format %#x 10
format %#X 10
format %#o 10
format %#b 10
format %#g 10

Oxa

OXA

012
0b1010
10.0000

D 2

4.2.4.5. Precision specifier

The fourth part, also optional, of a conversion specifier consists of a period (.) followed by a number or a *
character. In the latter case, the number is supplied through an additional argument to the command.

The semantics depend on the conversion being applied. For string and integer conversion, it specifies the
maximum and minimum number of characters to be printed respectively.

format %.2s abc » ab @
format %.5d 10 » 00010 @
format %.*d 4 10 » 0010 ©

© Atmost two characters
© Atleast five characters
© Atleast four characters as specified by additional argument

For the e, E and F conversions, it specifies the number of digits to output to the right of the decimal point.

format %f 1.12999 > 1.129990 @
format %.2f 1.12999 » 1.13

© Note by default 6 digits printed

For g and G conversions, it specifies the total number of digits output (with some caveats - see the Tcl reference
documentation).

format %g 1.12999 - 1.12999
format %.2g 1.12999 > 1.1

4.2.4.6. The size modifier

The last optional component is the size modifier which specifies the range that an integer argument is to be
truncated to. It consists of one of the character sequences h, 1 and 11 whose effect is shown below.

set val 777777777777777777777777777777777777777 » 777777777777777777777777777777777777777

format %d $val 5 1908874353 ©

format %hd $val 5 7281 O

format %ld $val 5 3296802724926397553 ©

format %lld $val > 777777777777777777777777777777777777777 (4]

Default: truncate to an int value, generally 32 bits
h: truncate to an 16-bit value

1: truncate to an wide value, generally 64 bits

11: no truncation is performed

00O

Joining strings with separators: join

4.2.5. Joining strings with separators: join

Done with the complexities of the format command, we move on to the simple join command which constructs
a string by concatenating the elements of a list with a specified separator string placed between every pair of
elements.

join 1157 ?SEiARATVOR?
We will look at lists in detail in the next chapter, but here is an example of using join.

% set quote [list "I came" "I saw" "I conquered"]
» {I came} {I saw} {I conquered}

% join $quote ", "

» I came, I saw, I conquered

The separator is optional, and if unspecified defaults to a single space character.

% join $quote
> I came I saw I conquered

You can also specify the empty string as the separator when concatenating strings with join.

% join $quote ""
» I camel sawl conquered

4.2.6. Repeating strings: string repeat

One final form of string construction is repetition via the string repeat command.

string repeat SURING

The command returns the result of concatenating counT repetitions of STRING.

% set title "Underlined title"

+ Underlined title

% puts "$title\n[string repeat - [string length $titlej]"
» Underlined title

Tcl commands often have subcommands. We’ve already seen an example in the info

- ‘ - command. The string command is another example, that contains subcommands
o for manipulating strings. A command with subcommands is known as an ensemble
command.

4.3. Modifying strings

A number of commands deal with modification of strings by adding or deleting characters. Some of these actually
modify the contents of a variable while others take a string value as argument and return a new modified string.

4.3.1. Appending in place: append

The first of these is the append command which appends zero or more arguments to a variable.

append V2R ?

71

Replacing substrings by position: string replace

Unlike most other string related commands, note that this command alters the variable varin place in addition to
returning the new string value. The command will create the variable if it does not already exist, effectively acting
like the set command for that case.

% append newvar "Hello" (1]
» Hello

% set who "World"

> World

% append newvar " " $who "!" (2]

» Hello World!

@ Creates the variable newvar if it does not exist
@ append can take multiple arguments

Note that we do not use a dollar-sign when passing the variable newvar to this command. This is because the
command expects the name of a variable, rather than the value contained in it.

LAl 4 set newvar "$newvar $who!"

The above could also have been written making use of string interpolation as

which might even be clearer to read. The benefit of the append though is that it is
significantly more efficient in both memory and CPU, particularly when long strings are
involved.

4.3.2. Replacing substrings by position: string replace

The command string replace replaces a range of characters in a string with another string.
string replace SWRING FIRST LAST PRESLACEMENT?

The command returns a new string constructed by replacing the substring of STRING at indices FIRSTt0 LAST with
the string REPLACEMENT.

% string replace "Hello, World!" 0 4 Goodbye
» Goodbye, World!

To replace substrings by content instead of by position, see the string map or regsub commands later.

4.3.3. Deleting substrings by position

There is no explicit command in Tcl to delete characters from a string. The string replace commmand can be
used to delete a range of characters by not specifying a replacement string.

% string replace "Hello, World!" 5 end-1
» Hello!

To delete occurrences of one or more substrings by content instead of by position, see the string map command
later.

4.3.4. Deleting repeated characters at end: string trim|trimleft|trimright

A specialized form of deletion is provided by the string trimleft, string trimright or string trim
commands.

string of SVRING 20HARS?

72

Comparing strings

Here orpmay be one of trimleft, trimright or trim. These trim any occurrences of a given set of characters
from the start, end or both sides of a string respectively and return the result. The most common use of these
commands is to trim leading and trailing whitespace from a string.

% set s "\t Hello, World \n"
> Hello, World

% string trimleft $s
> Hello, World

% string trimright $s

> Hello, World
% string trim $s

Hello, World

+

%
However, any set of characters can be trimmed by providing an additional optional argument.

% string trimleft "Hello, World!" "lHe!"
+» 0, World!

Note that the second argument is considered as a set of characters rather than a string.
The textutil package in Tellib* offers more flexible versions of these built-in

- ‘ - commands that permit specification of a regular expression that controls the trimmed

et characters.

4.4. Comparing strings
4.4.1. Comparing for equality: string equal

The string equal command compares two strings for equality.

string equal ?-nocase? ?-length . oUNT? STRINGD 51

The command returns 1 if the two strings are identical and 0 otherwise. The comparison is case-sensitive by
default. The -nocase option makes it case-insensitive instead.

set s Hello » Hello
string equal $s Hello s 1
string equal hello $s 2 0

string equal -nocase hello $s > 1

You can use the -length option to indicate that only counT number of initial characters of the strings are to be
compared.

string equal "Hello World!" "Hello Universe!"

> 0
string equal -length 5 "Hello World!" "Hello Universe!" - 1

4.4.2. Ordering strings: string compare

Instead of comparing for equality, you can also compare two strings for lexicographical ordering using the string

compare command.

4 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

73

Locating and extracting substrings

string compare ?-nocase? ?-length <

The command returns -1, 0 or 1 depending on whether the first argument is lexicographically less than, equal, or
greater than the second.

string compare abcd BCDE > 1
string compare -nocase abcd BCDE -» -1
string compare 2 10 > 1@

© Compared as strings, not numbers

The -nocase and -1ength options specify a case-insensitive comparison and a maximum character count just as
for the string equal command.

4.5. Locating and extracting substrings

4.5.1. Locating substrings: string first|last

The string firstandstring last return the location of a substring within a string.

string first
string last

The former returns the location of the first occurence of NEEDLE in the HAYSTACK argument while the latter
returns the last (effectively searching from the end). The commands return the string index of the first character of
occurence if found and -1 otherwise.

string first "da" "Madam, I'm Adam" > 2
string last "da" "Madam, I'm Adam"™ > 12

The commands accept an additional optional parameter sTaArT that controls where the search begins.

string first "da" “Madam, I'm Adam" 3 + 12
string last "da" "Madam, I'm Adam" end-5 » 2

Tel has additional facilities for searching and locating substrings based on regular expressions. These are
sufficiently powerful and flexible as to deserve their own sections and are described in Section 4.12.

can be used to locate characters and substrings. However, these are deprecated and we

The string command has two additional subcommands, wordstart and wordend, that
E do not describe them here.

4.5.2. Retrieving a character by position: string index

The command string index returns the character at a specified position in a string.

string index =

The InDEX argument specifies the position, starting with 0, in STRING. It can take any of the forms specified in
Section 4.1.

set pos 4 >
string index "Hello, World!™ $pos 30
string index "Hello, World!" end > !

74

Retrieving substring ranges: string range

string index "Hello, World!" $pos+3 » W
string index "Hello, World!" end-5 - W

4.5.3. Retrieving substring ranges: string range

The related command string range returns a range of characters between two indices in a string.
string range STRING FIRST

The returned string includes all characters between, and including, indices F7rs7Tand LASTin STRING. Like
string index, the command also accepts the special syntax for indexing from the end of the string.

string range "Hello, World!" 0 4 > Hello
string range “Hello, World!“ $pos+2 end » World!

The commands here extract substrings based on their position. For extracting substrings based on content, see
Section 4.12.1.

4.6. Transforming strings
Several string subcommands described here return a string by applying some transform on a given string.

4.6.1. Replacing substrings: string map

Previously we described the string replace command that replaces a range of characters in a string based on
position. Another form of replacement is provided by string map.

string map ?-nocase? xai

Rather than replacing by position, this command allows replacement of all occurences of one or more substrings
within a string. The STRING argument is the string in which the replacement is to be done. The ¥4 PPTNG argument
is a list of alternating elements, the first being the substring to be replaced and the second being the corresponding
replacement value. The command replaces all occurences of the former with the latter and returns the result.

% string map {ab Q cd XYZ} abacdabccd
» QaXYZQcXYzZ

Like the string replace command, string map can also be used for deleting characters. Setting the
replacement value to an empty string will result in deletion of all occurences of the substring.

% string map {bc ""} abcdabcbdabc

» adabda

% string map {rma {o} o {}} "Hello Norma!"
» Hell No!

This last example illustrates another point about string map semantics. The target string is iterated over exactly
once. At each position the mapping list is searched in sequence and the first match, if found, is replaced. This
replaced substring is not matched again against the mapping list. So after rma is replaced with o, the o itself does
not get replaced with an empty string.

A related point is that the order of strings in the mapping list is important since matches are checked in that order.
Thus if one match string is a prefix of another, the latter should appear first else it will never match.

string map {bc XY bcd XYZ} abcdabcbdabc » aXYdaXYbdaxy
string map {bcd XYZ bc XY} abcdabcbdabc » aXYzZaXYbdaXy

75

Changing character case: string tolower, toupper, totitle

The string comparisons are case-sensitive unless the the -nocase option is specified.

string map {bC XY} abcdabcbdabc » abcdabcbdabc
string map -nocase {bC XY} abcdabcbdabc -» aXYdaXYbdaXy

A more flexible but less efficient command, regsub, that has similar functionality based on regular expressions is
described in Section 4.12.2.

4.6.2. Changing character case: string tolower, toupper, totitle

A third set of string transform commands, string tolower, string toupper and string totitle pertain to
character case.

string tolower =
string toupper
string totitle :

The meaning of the first two should be obvious. The last capitalizes the first letter in the string and changes all
remaining letters to lower case.

string tolower "Hello, World!" -+ hello, world!
string toupper "Hello, World!"™ » HELLO, WORLD!
string totitle "hELLO, WORLD!™ » Hello, world!

The optional FTRST and 1AST arguments take the form of string indices and specify the indices of the substring to
be modified within STRING.

string tolower "Hello, World!" 0 4 s> hello, World!
string tolower "Hello, World!" 7 > Hello, world!
string toupper "Hello, World!" end-5 end » Hello, WORLD!
string totitle "Hello, World!" 1 end » HEllo, world!
4.6.3. Reversing a string: string reverse

The string reverse command transforms a string by reversing the order of characters.

string reverse SiRING
For example, Napolean’s lament

% string reverse “able was I ere I saw elba”
5> able was I ere I saw elba

Hmm... probably not a good example!

4.6.4. Wrapping text: textutil::adjust, textutil::indent

The Tcl core does not have any built-in commands for wrapping and indenting multiple lines of text. The adjust
and indent commands in the textutil::adjust module of Tcllib® may be used for this purpose instead.

package require textutil
set text [textutil::adjust {
The adjust command has number of options that let you control

5 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

76

Parsing strings: scan

justification, line length and hyphenation.
} -length 40]
» The adjust command has number of options
that let you control justification, line
length and hyphenation.

The indent command will indent each line in a string by prefixing it with the supplied argument.

% textutil::adjust::indent $text "...."

sThe adjust command has number of options
....that let you control justification, line
....length and hyphenation.

The undent command will undo the effect by removing the prefix that is common to all lines.

% textutil::adjust::undent $text

+ The adjust command has number of options
that let you control justification, line
length and hyphenation.

In combination, these three commands let you create wrapped text in various forms. See the Tcllib 8 reference
documentation for details of working and options for these commands.

4.7. Parsing strings: scan

There are two Tcl commands that are commonly used in parsing. One of them, regexp, is based on regular
expressions and we describe it in Section 4.12.1. The other one, scan, is similar to the sscanf library function in C
and described here.

The format command we saw earlier generates a string composed from input values formatted as per a
specification. Conversely, the scan command provides a means to parse strings that are known to be in a specific
format, converting its substrings to values of a specific type.

The command takes one of two forms, one where the parsed values are returned as the result of the command and
the other where they are stored in variables.

scan
scan

In both forms, INPUTSTRING is the string to be parsed while FORMATSTRING controls the parsing. The command
works by iterating over each character in FORMATSTRING and matching it against INPUTSTRING as follows:

« If the format character is a space or a tab, the command skips over zero or more consecutive whitespace
characters in the input string.

+ If the format character is %, it is the start of a conversion specifier. The input string is parsed based on the
specifier and the value extracted as per specifier type. This is detailed below.

* Any other format character must exactly match the character in the input string in which case the scan
continues with the next character. Otherwise the scan is ended and any remaining characters in INPUTSTRING
are ignored. Note that this is not treated as an error.

If the first form of the command is used where only two arguments are present, the extracted values are returned
as the result of the command. We will refer to this as the inline form. In the second form, the additional arguments
are treated as names of variables into which the extracted values are to be stored. In this case, the return value
from the command is the number of conversions performed. For example,

6 http://core.tcl.tk/tellib/doc/trunk/embedded/index.html

77

Scan termination

3.14159" "%s = %f"

% scan "pil

> pi 3.14159
% scan "pi = 3.14159" "%s = %f" name value
5> 2

% puts “The value of $name is $value."
> The value of pi is 3.14159.
The parsing in the above example proceeds as follows:
» the %s format string is matched with p1i in the input string
« the space character is matched against multiple spaces in the input string
« the = literal in the format string exactly matches the one in the input string
+ spaces are skipped again
+ finally the %f format results in the parsing of 3.14159 as a floating point value

The format string is composed of literal characters and conversion specifiers. A conversion specifier is a string of
characters composed of the following parts or components in order.

* The character %

» An optional XPG3 specifier

» An optional maximum substring width
+ An optional size modifier

* The conversion character

Note that only the starting % and the conversion character need be present.

4.7.1. Scan termination

There are several conditions under which the scan command will terminate further processing of the input string.
The command results are different in each case as we illustrate below. Our examples use the %d specifier which
attempts conversion of the input substring to an integer value.

In the first scenario, the end of the input string is reached before any conversions are attempted (although
the reference manual says performed). In this case, scan returns an empty string in the inline version of the
command. If variables are specified for storing the result, the command returns -1 and no variables are assigned.

scan abc abc%d + (empty)
scan abc abc%d val » -1
info exists val + 0

In the above example, the abc in the input string matches the abc in the format string. At that point, no further
processing is done because no input remains.

In the second scenario shown below, the processing stops before the end of the input string is reached because

a scan conversion fails. In this case, the inline version returns a list of the same length as the number of scan
specifiers in the format string. The elements in the returned list corresponding to conversions that failed, or were
not attempted due to scan termination, are set to the empty string.

scan abcX %d > {}
scan "abc10 def 20" "abc%d %d %d" > 10 {} {}

Compare the first result in this scenario with that in the first scenario above. There the command returned an
empty string. Here it returns a list containing one element which is the empty string7 corresponding to the single

7Tal represents empty elements within a list as empty braces.

78

Conversion characters

format specifier present. Similarly, in the second result, the last two elements in the returned list are empty as the
second conversion failed thereby terminating the parse.

If variables are specified in this scenario, the return value of the command is the number of conversions
performed. The variables corresponding to failed conversions will not be modified if they existed or created if they
did not.

scan abcX %d vara > 0
info exists vara > 0
scan "abc10 def 20" "abc%d %d %d" vara varb varc » 1
set vara > 10
info exists varb > 0

©@ Note the difference from the first scenario above where the return value was -1
© Only one conversion successful

Because the parsing was terminated by the failed match on the second %d specifier, variables varb and varc are
not assigned.

The final scenario is when all conversions succeed. The scan is then terminated irrespective of whether there are
any remaining characters in either the input or the format string. In the inline version, the returned value is a list
each element of which is the value resulting from a successful conversion for the corresponding field specifier.

In the non-inline version, the return value equals the number of field specifiers and each variable contains the
corresponding value.

scan "abc10 15 20xyz" "abc%kd %d %d" 5 10 15 20
scan "abc10 15 20" "abc%d %d %d" vara varb varc -» 3
set varc + 20
When variables are specified, their number must match the number of successful
E conversions else the command will raise an error exception.

4.7.2. Conversion characters

The conversion character part of the specifier controls the type of conversion to be performed on the input string.

The string and character conversion characters are shown in Table 4.4.

Table 4.4. String specifiers for scan

Character Description Example
S Parse as a string up to the next white space

character. scan "foo bar" %s » foo
C Convert a character to its Unicode code

point value scan A %c » 65

[CHARS] Matches any character in CHARS.
scan "A sentence. Or two." {%[~.?!] %[.?!1}
» {A sentence}
[NCHARS] Matches any character not in CHARS. See above.
% Matches the percent character itself.

scan "10% off!" "%d%% off" - 10

The scan specifiers for integer values are shown in Table 4.5.

79

XPG3 scan position specifier

Table 4.5. Integer specifiers for scan

Character Description Example

d Decimal integer.
scan 0100 %d » 100

scan -100 %d » -100

u Unsigned decimal integer

scan 0100 %u -» 100
X Hexadecimal integer

scan 0100 %x » 256
X Hexadecimal integer

scan 0100 %X » 256
o} Octal integer

scan 0100 %o » 64
b Binary integer

scan 0100 %b » 4

For floating point conversion, any of f, e, E, g and G can be used. Note these all have the same effect and are
interchangeable.

scan 100 %f > 100.0
scan 12.34e-56 %g » 1.234e-55

The final conversion specifier is n which is a special case in that it does not parse the input string at all. Instead it
returns the number of characters of the input string that have been parsed so far.

scan "100 200" "%d %n%d" » 100 8 200

The n conversion is useful when scanning incrementally through the input string. Its
value can be used to determine where the next scan invocation should begin.

A conversion specifier keeps matching each successive character in the input string as long as the character is
valid for the conversion For example, compare the following conversions:

scan 123abx %d%s » 123 abx
scan 123abx %x%s » 74667 X

The difference arises because a and b are valid hexadecimal characters but not valid decimal characters.

4.7.3. XPG3 scan position specifier

We now move on to the optional parts of a scan conversion specifier. By default, the extracted values are returned
from the command, or stored in the passed variables, in the same order that they are encountered in the input
string. The XPG3 position specifier allows this to be changed. This serves a purpose similar to that of the XPG3
position specifier described in Section 4.2.4.2 for the format command.

The position specifier, if present, must immediately follow the % at the start of a conversion specifier. It consists
of either a number followed by a $ character or a single * character. In the former case, the number indicates the
position that the extracted value should occupy in the returned values.

80

Specifying maximum widths

scan "first second” "%s %s"

first second

scan "first second" {%2%s %13$s} ©

second first

scan "first second" {%2%$s %1$s} varA varB
2

puts "varA=$varA, varB=$varB"
varA=second, varB=first

YRV RV R L

© Note use of {} to protect the $ from interpretation by the Tcl command parser
A * character in a XPG3 position specifier indicates that the input string should be parsed as per the conversion
specifier but the extracted value should not be returned or stored into the output variables.

% scan "100 200 300" {%d %*d %d}
» 100 300

o

Position specifiers can be used in scan to help with localization similar to their use with format we described for
format. However this is less common as parsing of localized strings is generally a much more complex process
than their generation.

4.7.4. Specifying maximum widths

This optional specifier part is a number that limits number of characters consumed by a conversion.

If a format string uses XPG3 position specifiers, all specifiers in the format string must
have XPG3 position specifiers.

% scan 12345 "%d%s"
> 12345 {3}

% scan 12345 "%2d%s" @
5 12 345

© Thed conversion can consume at most 2 input characters

Some file formats are bhased on fixed lengths for each field in a line representing a data record. This width modifer
is useful in such cases.

4.7.5. The size modifier

The last optional component is the size modifier which defines the permitted range of an integer argument. [t
consists of one of the character sequences h, 1, L and 11 whose effect is shown in Table 4.6 below. When overflow
occurs, the maximum value possible for that size is stored.

Table 4.6. Integer size modifiers for scan

- Character Description

h An int value, generally 32 bits on most platforms. Overflows storing Ox7fffffff,
Not present Defaults to h
1L A wide integer value, generally 64 bits. Overflows storing Ox7ffffffffffffte.

11 Arbitrary precision with no overflow.

The examples below illustrate the difference between the various size modifiers.

81

Counting characters: string length

% set val 777777777777777777777777777777777777777
5 777777777777777777777777777777777777777
% scan $val %d
> 2147483647

% scan $val %hd

> 2147483647

% scan $val %ld

> 9223372036854775807

% scan $val %Ld

» 9223372036854775807

% scan $val %1ld

5 777777777777777777777777777777777777777

We have described the main features of the scan command with some rudimentary examples. Some examples of
real-world use can be seen in the Tcl reference documentation.

4.8. Counting characters: string length
The command string length returns the length of a string.
string length siyrinG
Note that the length of the string is defined as the number of characters, Unicode code points to be precise, in

the string. It should not be interpreted as the number of bytes required to represent the string in memory orin a
transmitted message etc. unless STRING is a binary string produced by commands like encoding convertto.

string length “Hello, World!™ » 13

4.9. String validation: string is

The string is command performs validation on a string to determine if it can be interpreted as belonging to a
given class of values.

string is ¢rass ?-strict? ?-failindex VAR? 5T

The command returns 1 if STRING belongs to the class specified by czass and 0 otherwise.

The empty string " is treated as a valid value for any class unless the -strict option is specified in which case it
is treated as invalid.

Validation of empty strings

This default treatment of the empty string as a valid value is an artifact of the fact that historically the
command was meant primarily for validating user input, rather than for general type checking. In Tk
GUIs for example, integer fields are permitted to be empty. This is really a misfeature and in most cases
you will want to use the -strict option.

The -failindex option is used to retrieve the index in the string of the first character that does not belong to the
specified class. If the command returns 0, the variable var s set to this index. It is not modified if the command
returns 1.

The possible values of czAss are shown in Table 4.7.

82

String validation: string is

Table 4.7. String validation classes

Class

alnum
alpha
ascii

false
true

boolean

control
digit
double
entier

- graph, print

integer
list

lower

upper

punct

space
wideinteger

wordchar

xdigit

Lower or upper case hexadecimal characters

Description

Any alphanumeric Unicode characters
Any alphabetic Unicode characters
Ascii characters

Any string that is interpreted as a boolean false value. This includes 1,
false, no and of f or any upper case or abbreviated form of these.

Any string that is interpreted as a boolean true value. This includes 1, true,
yes and on or any upper case or abbreviated form of these.

The boolean class includes any string that can be interpreted as a boolean
value. Accepted values are the union of the ones listed above for false and
true. Note the command returns 0 for integers other than 0 and 1 even
though they are treated as valid booleans in numeric expressions.

Unicode control characters

Unicode digits

Any representation of doubles

Any representation of integers of arbitrary size

Unicode printing characters. The print class includes whitespace while
graph does not.

Any Tcl representation of 32-bit integer values
Any string that can be interpreted as a valid Tcl list
Lower case Unicode characters

Upper case Unicode characters

Unicode punctuation characters

Unicode whitespace characters

Any Tcl representation of 64-bit integer values

Alphanumeric characters and connector punctuation such as underscore

The following examples illustrate use of the command:

string 1is integer -10
string is wideinteger 0x777777777777
string is xdigit -failindex charpos abcqdef -

set charpos

string is double 2.1828
string is integer ""

string is integer -strict "

string is boolean 2

4
OO0 = =~ WO = —
e

000

@ charpos will contain failing character index

© Empty strings are accepted by default...

© ..unlessthe -strict option is specified

O Integers other than 0/1 are not treated as boolean though they are accepted as booleans in numeric

expressions.

83

String prefixes: : :tcl: :prefix

The varying numeric classes as well as the 1ist class accept surrounding whitespace in the string.

string is double " -5e+10 " >
string is list " a\ b ¢ {d e} "

The commands for numeric classes also check for overflow and underflow, returning 0 in these cases and setting
the -failindex variable, if specified, to -1.

% string is entier -failindex failpos 9999999999999999999999999999999999 (1]

> 1

% string is wideinteger -failindex failpos 9999999999999999999999999999999999
> 0

% puts $failpos

> -1

@ Entiers have infinite precision

The alphanumeric character classes such as alnum, digit etc. all deal in Unicode. So for example the Unicode
character U+096D (Devanagari 7) is a valid digit.

string is digit \u096d - 1
Note however that
string is integer \u096d » 0
because even though it is a Unicode digit, it is not a valid way to represent an integer in Tcl.

0.0

Tcl’s regular expression facilities provide an alternate means of validating strings using
character classes.

4.10. String prefixes: : :tcl: :prefix

The ::tcl: prefix command is used to check if a given string is a prefix of one or more strings. This
operation is most commonly used for implementing new commands that accept unique prefixes of options and
subcommands in similar fashion to Tcl itself. Note that the command lies in the tcl namespace, not at the global
level.

The tcl: :prefix command is actually an ensemble commmand with several subcommands. The first of these is
tcl::prefix all.

citcel:prefix all ¢y pRERTH

The command returns a list of all strings from 757 that begin with PrREFIX or an empty list if no such strings are
found. For example, if 7,757 is a subset of the string classes used for the string is command,

citcl::prefix all {alnum alpha digit integer} al -+ alnum alpha

One use case for this is to display valid choices for completion when the user types in the first few letters from a
list of allowed options.

The tcl: :prefix longest command returns the longest possible prefix common to all strings in a list that start
with a given prefix.

84

String prefixes: : :tcl: :prefix

citcl:iprefix longest 57 PREFTX

In scenarios like command completion, this provides an easy means to fill in as many characters as possible from
the valid choices in L1sTthat begin with PREFIX.

% ::tcl::prefix longest {radix range repeat replace} re
> rep

Here only repeat and replace are elements that begin with re and their longest common prefix is rep so that is
what the command returns.

The last, and probably the most useful, command is tcl: :prefix match.

7

citcliiprefix match ?-exact? ?-message MEz3asi? ?-error OPTIONS? TiST

s

If PREFIX is a prefix of exactly one string in L1757, that string is returned as the result of the command. If PREFTX
matches a string in its entirety, it is returned even if it also happens to be a prefix of another.

% ::tcl::prefix match {radix range repeat replace} rad

+ radix

% ::tcl::prefix match {-ignore -ignorewarnings -ignoreerrors} -ignore
+ -ignore

By default, an error is generated if the number of matches is not exactly one.

% ::tcl::prefix match {radix range repeat replace} ra @
@ ambiguous option "ra": must be radix, range, repeat, or replace

% ::tcl::prefix match {radix range repeat replace} rap @

@ bad option "rap": must be radix, range, repeat, or replace
% puts $errorCode

+ TCL LOOKUP INDEX option rap

@ Error because multiple matches
® Error because no matches

The -message option changes how the error message refers to the word being checked. For example,
% ::tcli:prefix match -message command {radix range repeat replace} ra
@ ambiguous command "ra": must be radix, range, repeat, or replace
Note how the error message now says command instead of option.
The behaviour with respect to failed matches can be changed with the -error option. If specified as an empty

string, the command will return an empty string on the above failures instead of raising an exception.

% ::tcliiprefix match -error "" {radix range repeat replace} ra
% ::tcl:iprefix match -error "" {radix range repeat replace} rap

If not an empty string, the value passed for the -error option must be in the form of a return options dictionary.
We will go into the details of the return options dictionary in Section 11.2.3. For now, here is an exarple that
changes the global error code set on an exception.

% ::tcl::prefix match {radix range repeat replace} rap
@ bad option “"rap": must be radix, range, repeat, or replace

% set errorCode @

85

Glob pattern matching

5> TCL LOOKUP INDEX option rap

% ::tcl::prefix match -error {-errorcode {BADOPT RTFM}} {radix range repeat replace} rap
@ bad option “"rap": must be radix, range, repeat, or replace

% set errorCode

> BADOPT RTFM

@ Default error code

One final option, -exact, specifies that the pREFIx must be an exact match, not just a prefix. Its effect can be seen
through the following commands.

% ::tcl::prefix match {radix range repeat replace} ran

> range

% ::tcl::prefix match -exact {radix range repeat replace} ran
@ bad option "ran": must be radix, range, repeat, or replace

Most commonly, tcl: :prefix is used for implementing subcommands and options in procedures. For example,

proc transform {s cmd} {
switch -exact -- [tcl::prefix match {lower upper reverse} $cmd] {
lower { string tolower $s }
upper { string toupper $s }
reverse { string reverse $s }

}

Then we can call the command using abbreviations.

% transform foo rev
> oof

% transform foo bogus @
@ bad option "bogus": must be lower, upper, or reverse

@ Error messages for free!

4.11. Glob pattern matching

Tcl provides a couple of ways of matching strings against patterns — the string match command based on
wildcard patterns, and regexp based on regular expressions. We describe the former in this section.

A glob pattern is a sequence of characters which must be the same as the corresponding character in the string
being matched except for the wildcard characters listed in Table 4.8 which are treated specially when present in
the pattern.

Table 4.8. Pattern matching characters

Character Description

* Matches any number (including zero) of arbitrary characters.

? Matches exactly one occurrence of an arbitrary character.

[..] Matches one occurrence of any of the characters included within the brackets. A range of
characters can also be specified. For example, [a-z] will match any lower-case letter.

\ The backslash escapes the following special character such as * or ? so that it is treated
as an ordinary character. This allows you to write glob patterns that match literal glob-
sensitive characters, which would otherwise be treated specially.

86

Regular expressions

In addition to string match, glob pattern matching is also used by the switch, 1search and glob commands.

The string match command takes a glob pattern and determines if a given string matches the pattern.

SO TRING

string match ?-nocase? »ar

The command returns 1 if the specified glob pattern pPaTTERN matches sTRING and 0 otherwise. Some exarnples
using * to match arbitrary number of characters.

string match f*r fun >0
string match f*r fur s 1
string match f*r* fury > 1
string match f*r* furious » 1

The ? character on the other hand matches exactly one character.

string match f?r? fur > 0
string match f?r? fury » 1
string match f?r? furious » 0

Character sets can be used to match exactly one character as long they belong to that set.

string match {[a-f1*} boo
string match {{a-f1*} zoo
string match {[a-zA-Z]*} Zoo
string match {[az]*} zoo

R 2
_ e O -

Backslash escaping is required to match literal characters that have special meaning in a glob pattern.

string match a*d abcd 21
string match {a*d} abcd » 0
string match {a*d} a*d - 1

Notice from the examples above that we use braces to protect the pattern in cases where it might contain
characters that are special to the Tcl parser.
Use of the -nocase option triggers case insensitive matching.

string match {{a-z]*} Boo > 0
string match -nocase {[a-z]*} Boo » 1

If you have more complex pattern matching requirements, or need to simultaneously extract information as well
as match it, then regular expressions provide a more powerful (but more complex) facility. We describe that next.

4.12. Regular expressions

Like the glob patterns we saw previously, a regular expression (RE) is a pattern used for matching against strings

where certain characters in the pattern, termed metacharacters, have a special meaning. Compared to glob
patterns though, regular expressions are both considerably more powerful and potentially more complex. For

those new to regular expressions, here we will only provide a basic introduction in terms of their use in Tcl. For a

full understanding of regular expressions, see the references cited at the end of this chapter.

For those who do understand regular expressions from other languages, such as the PCRE engine, note that their

Tcl implementation differs slightly in their syntax, particularly when it comes to more advanced features.

87

Matching regular expressions: regexp

In fact, Tcl itself supports three forms of regular expressions. Basic, Extended and
Advanced. Only the last of these is described here as it is almost completely a superset of
the others.

Table 4.9 gives the basic elements of RE syntax.

Table 4.9. Basic regular expression syntax

Character Diescripti'(')n

A Matches the beginning of the string

$ Matches the end of the string
Matches any single character

[..] Matches any character in the set between the brackets

\ Acts as an escape to assign special meaning to the next character or treat a metacharacter
as a literal

[a-2z] Matches any character in the range a..z

[~.] Matches any character not in the set given

() Groups a pattern into a sub-pattern

rla Matches pattern p or pattern ¢

* Matches 0 or more occurences of the previous pattern

+ Matches 1 or more occurrences of the previous pattern

? Matches 0 or 1 occurrences of the previous pattern

{n} Matches exactly n occurrences of the previous pattern

{n,m} Matches between n and m occurrences of the previous pattern

We will see examples of the above as well as more advanced constructs as we describe Tcl’'s RE support through
regexp, used for searching, and regsub, which does substitutions.

4.12.1. Matching regular expressions: regexp

The regexp command has the syntax

regexp Poptions? KEOSTPRING 2MATUHVAR MAY

In its simplest form, with no optional parts specified, the command returns 1 if STRING matches the regular
expression RE and 0 otherwise.

We will first describe regular expressions using this minimal form of the command.
4.12.1.1. Matching specific characters
A character that is not a metacharacter in RE will match that specific character in the STRING. Thus to look for the

sequence XY in a string,

regexp XY aaXYbb - 1
regexp XY aaYXbb » 0

Notice that all of STRING does not have to match the expression, any substring will do.

88

Matching regular expressions: regexp

Character escapes

Certain characters that do not have a printable representation or are otherwise difficult to include in text can be
included via an escape sequence prefixed with a backslash (\). For example, the newline character is represented
by the sequence \n and Unicode characters can be represented as \uhhhh or \Uhhhhhhhh sequences (where h is
a hexadecimal digit). See the documentation for re_syntax in the Tcl command reference for a list of character

escape sequences.

The processing of these backslash sequences is in addition to any backslash substitution that might be done
by the Tcl parser. Thus the following two commands are equivalent.

regexp "\\t" abc\tdef -» 1
regexp {\t} abc\tdef -1

In the first case, the Tcl parser converts the \\ sequence to a single \ so the regexp command sees the argument

as \t. In the second case, the enclosing braces prevent the Tcl parser from any backslash processing and again the
regexp command sees \t.

4.12.1.2. Matching any character

Backslashes are also used for purposes other than character escapes. We will see these as
we go along.

The metacharacter period (.) in an RE matches any character in the string. For example, X. Y will match substrings
containing an X and Y separated by exactly one character.

regexp X.Y aXcYb 1
regexp X.Y ax¥b - 0
regexp X.Y aXccYb » 0

4.12.1.3. Bracketed expressions and character classes

We have already seen that characters in RE that are not metacharacters are matched against themselves in the
string. If instead of matching any character, we wanted to match any of a set of characters, we can specify them as
a character class by enclosing them in brackets [].

regexp {ab[XYZlcd} abYcd - 1 (1)
regexp {ab[XYZ]cd} abQcd - 0 O
regexp {ab[{XYZ]cd} abXvcd » 0 (3]

@ Match since Y is in the bracketed expression
@& No match since Q is not in the bracketed expression
© No match since XY is not a single character

The RE in the above example is enclosed in braces because the characters [] have special

E meaning to both the Tcl parser as well as RE syntax. Enclosing them in braces ensures
they will not be treated as special characters by the Tcl parser. Because there are several
other characters such as $ and \ that are treated specially by both the parser and RE, it is
generally a good idea to enclose the RE in braces in all but the simplest cases.

A bracketed expression has its own set of special character sequences described below and most RE
metacharacters like ., * and ? are treated as normal characters within the brackets. Notice in the next example
how . loses its metacharacter status when placed within a bracketed character class.

89

Matching regular expressions: regexp

regexp {a.c} abc > 1
regexp {a[.]c} abc » 0
regexp {a[.]c} a.c » 1

When there are many characters to be included in the bracketed expression, several facilities are available for
common cases.

An expression of the form x- v includes all characters between x and v. For example a-z includes all lower case
English alphabetic characters, 0-9 includes all digits and so on.

regexp {[0-91} abc -
regexp {[0-9]} ab5c -

0
1
regexp {[-0-9]} a-c » 1

1]

@ Toinclude -, specify it as the first character

We reiterate again that as illustrated above, regular expressions do not need to match the entire string, unless
anchored (described later). In the above examples, we are matching a single character which may be present
anywhere in the string.

Another way to specify characters in bracketed expressions involves character classes of the form
[:crassnaMe:] where CLASSNAME is a name denoting a predefined set of characters. Tcl defines several
characters classes shown in Table 4.10.

Table 4.10. Regular expression character classes

Class Description

[:alnum:] Alphanumeric character

[:alpha:] A letter

[:blank:] Space or tab character

[:entrl:] Control characters (ASCII codes 0-31)
[:digit:] Decimal digit

[:graph:] A character with a graphical representation
[:lower:] Lower case letter

[:print:] A printable character (same as graph plus the space character)
[:punct:] Punctuation character

[:space:] White space character

[:upper:] Upper case letter

[:xdigit:] Hexadecimal digit

Our previous examples using character classes in bracketed expressions instead of character ranges would be

regexp {[[:digit:]}]1} abc » 0
regexp {[[:digit:]1} a5c » 1

Note the doubled [[]], the outermost set indicating a bracket expression and the inner set indicating character
classes.
There are two additional features of bracket expressions:

+ A bracketed expression can include multiple characters, character ranges and classes concatenated together to
indicate a “inclusive-or” combination.

90

Matching regular expressions: regexp

* If the bracketed expression starts with A, it matches characters not in the rest of the expression.

The first of these is demonstrated by the following RE which will match a string beginning with a, followed by any
of the characters x, y, any upper case letter or digit, and ending in a b.

regexp {alxy[:upper:][:digit:]1]b} axb
regexp {aixy[:upper:]{:digit:]11b} a5b
regexp {alxy[:upper:][:digit:]]b} aQb
regexp {alxy[:upper:J[:digit:]lb} agb

D A 2

[JENE SN

The second feature, the use of to complement a character set is illustrated by the example below.

regexp {alxy[:digit:]]b} as5b
regexp {a[~xy[:digit:]1b} ayb
regexp {a[~xy[:digit:]]lb} a5b
regexp {a[~xy[:digit:]1b} aQb

o Sl e S

Yooy

Tcl regular expressions also support an additional \ prefixed shorthands for some commonly used classes. These
are shown in Table 4.11.

Table 4.11. Character class shorthands

Shorthand Equivalent bracket expression Des.criptidn

\d [[:digit:]] Digit

\D [AM[:digit:]1] Non-digit

\s [[:space:]] White space

\S [~ :space:]] Non-white space

\w [[:alnum:]_] Alphanumeric or underscore ()

\W [Al:alnum:]_] Any character other than alphanumeric and
underscore ()

For example, using \d in lieu of [:digit:], expression.

regexp {a\db} a5b » 1
regexp {a\bb} aSb » 0

The \d, \'s and \w shorthands can be used inside of bracketed expressions as well but the inverse versions of these,
\D, \S and \W, cannot and you have to use the /A prefix instead.

regexp {a[\d\s]b} a5b > 1

regexp {af\d\slb} a\tb - 1

regexp {a[~\d\s]b} as5b » 0
4.12.1.4. Atoms and Quantifiers
An atom is a single character in any of the forms described earlier (literal character, character escape or character
class) or a group that we will describe later. Thus in the RE

a[f:digit:1]\n

the components a, [[:digit:]] and \n are all atoms.

Quantifiers are appended to an atom to specify how many consecutive occurences of that atoms are permitted in a
string. For example, the expression a+ would match one or more consecutive occurences of the character a.

91

Matching regular expressions: regexp

The various forms of quantifiers are shown in Table 4.12.

Table 4.12. Regular expression quantifiers

buantiﬁer Description Exé;ﬁplé

* Matches 0 or more occurences of the atom
regexp {aXx*b} ab -1

regexp {aXx*b} aXb - 1
regexp {aX*b} aXxb - 1

+ Matches 1 or more occurences of the atom
regexp {aXx+b} ab - 0O

regexp {aX+b} axb - 1
regexp {aX+b} aXxb - 1

? Matches 0 or 1 occurences of the atom
regexp {aX?b} ab - 1

regexp {ax?b} axb - 1
regexp {ax?b} axXb » 0

{m} Matches exactly M occurences
regexp aX{2}b axb -+ 0
regexp aX{2}b axXxb -1
regexp aX{2}b aXXxb » 0

{M,} Matches M or more occurences
regexp ax{2,}b axb > 0
regexp ax{2,}b aXxb > 1
regexp ax{2,}b axxxb » 1

{M, N} Matches M to N occurences (both inclusive)
regexp aX{2,4}b aXb

+ 0
regexp ax{2,4}b axxxb - 1
regexp ax{2,4}b axXXXXxb » 0

4.12.1.5. Groups

Subexpressions within a RE can be grouped with parenthesis. This treats the contents within the parenthesis as a
single atom to which quantifiers, alternation and such can be applied. In the first line in the example below, the +
quantifier only applies to Y while in the second it applies to XY.

regexp {aXY+b} aXYXyb > 0
regexp {a(XY)+b} aXYXYb » 1

Groups as used above use capturing parenthesis in that the string matching the subexpressions within parenthesis
can be used in back references (see Section 4.12.1.8) and substring extraction.

An alternate form of grouping uses non-capturing parenthesis specified as (?: r5) where the leading left
parenthesis is followed immediately by a ?. The equivalent non-capturing version of our example above would be

regexp {a(?:XY)+b} aXyXyb » 1

The difference from capturing parenthesis is that in this case the substring matching the RE expression is not
accessible via back references and cannot be extracted.

We will see examples and use of these forms in later sections.

92

Matching regular expressions: regexp

4.12.1.6. Alternation and branches

Regular expressions can be combined using the | metacharacter to form a RE that will match a string that matches

any of the expressions being combined. Each subexpression is termed an alternative or a branch of the combined
expression. For example, the expression apple|banana would match either apple or banana.

Any of the following would match day of the week.

The alternation metacharacter binds at a low precedence so apple |banana is equivalent
to (apple) | (banana) and not appl(e|b)anana.

% regexp {Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday} Monday
> 1

% regexp {(Sun{Mon]|Tues|Wednes|Thurs|Fri|Sat)day} Friday

> 1

% regexp {(Mon|Wednes|Fri|T(uesfhurs)|S(atjun))day} Tuesday

> 1

4.12.1.7. Constraints

A regular expression constraint matches the empty string (i.e. it does not “consume” any characters in the string
being matched) but only when certain conditions are met. An example of such a condition might be the
beginning or a line or word. This section describes the available constraints in Tcl regular expressions.

4.12.1.7.1. Anchoring with A and $

As we saw above, the regular expression RE will match if it matches any substring of STRING. If instead we want
to check that the RE matches all of STRING, we can “anchor” the RE with the metacharacters » and $. The former
constrains the match to start at the beginning of the string.

regexp {"XY} axy » 0
regexp {"XY} XYb » 1

Similarly, $ constrains the RE to match the end of the string.

regexp {XY$} axy -» 1
regexp {XY$} Xyb » 0

They may of course be used in combination to force the entire string to match.

regexp XY axYb > 1
regexp {AXY$} aX¥b » 0
regexp {"XY$} XY > 1

4.12.1.7.2. Constraint escapes

The options -1ine and -1lineanchor impose different semantics on the ~ and $ anchors
(see Section 4.12.1.14).

Tcl also defines a number of position based constraints via the escape sequences shown in Table 4.13.

93

Matching regular expressions: regexp

Table 4.13. Constraint escape sequences

Escape Description Example

\A Matches at the beginning of the string.
regexp {\AX} "aXb"

regexp {\AX} "Xab" > 1

+
o

\Z Matches at the end of the string.
regexp {X\Z} "axb" » 0
regexp {X\Z} "abX" - 1
\m Matches at the beginning of a word.
regexp {\mX} "axb" -» 0
regexp {\mX} "a Xb" -» 1
\M Matches at the end of a word.
regexp {X\M} "a Xb" » 0
regexp {X\M} "aX b" » 1
\y Matches at the beginning or the end of a word.
regexp {\yX} "axb" -» 0
regexp {\yX} "a Xb" -» 1
regexp {X\y} "aX b" -+ 1
\Y Matches when not at the beginning or the end of a
word. regexp {\YX} "aXb" -+ 1

regexp {\YX} "a Xb" -
regexp {X\Y} "aX b" » 0

o

The sequences \A and \Z behave similarly to the A and $ constraints but do not change behaviour when "newline
sensitive matching" (see Section 4.12.1.14) is in effect.

The word related constraints, \m, \M, \y and \Y treat alphanumeric characters and underscore (_) as word
characters just like the \w character escape.

4.12.1.7.3. Lookahead constraints

Another form of constraint is based on matching a subexpression without actually including the matched text
as part of the match. Lookahead comes in two forms:

 Positive lookaheads have the form (?=L00KaHEAD) where 1,00KAHEAD is the RE that should be matched at that
point.

 Negative lookaheads have the form (?! .0okaHEAD) and are similar except that the LookAHEAD must not be
matched for the matching of the rest of the RE to proceed.

For example, suppose you wanted to match against part numbers whose format specifies a string of one or more
uppercase alphabetic characters followed by one or more digits with the further constraint that the entire part
number be at most 10 characters. Here is a regular expression that serves the purpose.

% set re {"N(?=.{2,10}$)[[:upper:1]1+[[:digit:]1]+%$}
> AN(?7=.{2,10}$)[[:upper:3]+[[:digit:]1+$

We can break this up into two parts. The first part of the RE is the lookahead
(?=.{2,10}%)

This ensures the length conditions are met (between 2 and 10 characters in the string) but does not say anything
about the expected format. The second part

94

Matching regular expressions: regexp

[[:upper:]1]+[[:digit:]1]+

then requires the part number to be a sequence of upper case letters followed by a sequence of digits.

We can then do syntactic checks for valid part numbers as

regexp $re A0 > 1
regexp $re ABC2345678 - 1
regexp $re 1234567890 - 0 @
regexp $re ABC12345678 » 0 (2}

© Only digits

© More than 10 characters

The crucial effect of using lookaheads as illustrated here is that the lookahead expression does not “eat up”
characters in the target string; the following RE still matches from the same point as the lookahead expression. Try

writing the expression without the constraint keeping in mind that both the alphabetic and the numeric parts may
have more than one character.

4.12.1.8. Back references

There are times when it is useful to match a substring based on what was previously matched by the RE. The
standard example of this is finding if a word is mistakenly repeated in a document, for example the word has in
the sentence below. We can construct a RE to detect this.

% regexp {\mhas\s+has\M} "This sentence has has repeated words." (1]
> 1

© Note use of \m and \M word constraints.

However this is not a general solution given that we do not know a priori which word might be repeated. Instead
we have to match words using generic regular expressions. We then need a mechanism that lets us specify the next
part of the expression to be the word that was just matched. Back references provide exactly that capability.

A back reference in a RE is specified in the form \ v where ~is a number which references a group enclosed by
capturing parenthesis (see Section 4.12.1.5). When multiple groups are present, the corresponding “captures” are
numbered in the order of the position of their opening parenthesis.

To solve our problem then, the matching RE should

1. begin only at a position that is the beginning of a word indicated by the \m constraint

2. followed by any word matched as \w+

3. followed by any amount of whitespace matched as \s+

4. followed by the same string that was just matched by the above \w+

5. followed by the end of word constraint \M.
So we need to “transport” the word matched in step 2 to the match required by step 4. To do this we enclose the
word specifier in capturing parenthesis as (\w+) so that the result of its match can be referenced through a back

reference. Since this is the only, and therefore the first, capturing parenthesis in the expression, it is referenced as
\1 and we use that in step 4.

Thus the entire matching expression becomes that shown below:
% regexp {\m(\w+)\s+\1\M} "This sentence has has repeated words."

> 1
% regexp {\m(\w+)\s+\1\M} "This sentence has no repeated words."

95

Matching regular expressions: regexp

> 0
% regexp {\m(\w+)\s+\1\M} "To be or not to be." @
> 0

© Repeated but not consecutive

Back references are especially useful when substituting using regular expressions and we will see examples of
their use when we describe the regsub command.

4.12.1.9. Counting number of matches

A regular expression may match multiple times in a string. If the -all option is specified, the command will return
the number of matches found in the string.

regexp -all X+ aXXbXCXXX » 3

The -all option also has other uses as we will see in a bit.

4.12.1.10. Retrieving matches

Up to this point, we have only dealt with the simplest form of the regexp command — one that tells us whether a
given string matches a RE or not. We now look at the various means of having regexp actually tell us what was
matched.

4.12.1.10.1. Retrieving matched content

If additional arguments are specified for the regexp command, they are treated as names of variables in which
the match is to be stored. For example,

% regexp X+ axXXc xes
> 1

% set xes

> XXX

If the RE matches, the command returns 1 and stores the matched content in the passed variable (xes in this case).
If no match occurs, the command returns 0 and the variable is unchanged.

If there is a need to retrieve the content of subexpressions, additional variables can be specified. Matches for
subexpressions enclosed in capturing parenthesis are successively stored in any specified variables. Non-capturing
subexpression matches are ignored for the purpose of storing.

% regexp {(X+)(?:Y+)(Z+)} aXXYYZZZb match xes zes
> 1

% puts "$match, $xes, $zes"

5 XXYYZZZ, XX, 7222

4.12.1.10.2. Retrieving matched indices

In some parsing situations, it is more useful to retrieve the string indices of the matches than the actual content
itself. Specifying the - indices option stores in each specified variable a pair consisting of the start and end
indices of the corresponding match.

% regexp -indices {(X+)(?:Y+)(Z+)} aXXYYZZZb match xes zes
> 1

% puts "$match, $xes, $zes"

>17,12,57

96

Matching regular expressions: regexp

When parsing large amounts of text using regular expressions, storing indices is often
- ‘ - more efficient in time and space than the matched content. The original text being parsed

e is maintained as the “master” copy and the consumer of the parse can use the indices to
retrieve substrings as and when needed.

4.12.1.10.3. Retrieving matches with -inline

Instead of storing matches in variables, you can have regexp return the matches by specifying the -inline
option. Additional variable name arguments must not be specified with the option.

The return value from regexp is a list containing the same values as would have been stored in any variable name
arguments if -inline was not specified.

% regexp -inline {(X+)(?7:Y+)(Z+)} aXxXYYZZzb

+ XXYYZZZ XX ZZZ

% regexp -inline -indices {(X+)(?:Y+)(Z+)} aXXYYZZZb
+ {1 7y {2}y {57}

If the RE does not match, the command will return an empty list.
regexp -inline {(X+)(?:Y+)(Z+)} aYYZZZb » (empty)

4.12.1.10.4. Retrieving all matches

As we saw earlier, the -all option can be specified to count the number of matches found. If variables are
specified for the command, only the results corresponding to the last match found will be stored in them.

% regexp -all {(X+)(?:Y+)(Z+)} aXXYYZZZbXYZ match xes zes

> 2
% puts "$match, $xes, $zes"
+ XYZ, X, Z

If you want information for all matches, not just the last one, use the inline version.

% regexp -inline -all {(X+)(?:Y+)(Z+)} aXXYYZZZbXYZ

> XXYYZZZ XX ZZZ XYZ X Z

% regexp -inline -indices -all {(X+)(?:Y+)(Z+)} aXXYYZZZbXYZ
+ {1 7y {1 2}y {57} {9 11} {9 9} {11 11}

The return value, as shown above, is a flat list containing all matches and submatches.

4.12.1.11. Option metasyntax

Some regexp command options can instead be embedded into the RE by beginning the expression with the
metasyntax (?0pP7S) where 0PTS is a sequence of one or more characters, each corresponding to an option. Thus
for example, 1 corresponds to the use of -nocase and n to newline sensitive matching, so the two statements

regexp -nocase -line {r#} JURING
regexp {(?ic)ii} sening

are equivalent. Embedded options can only appear at the beginning of the regular expression.

We will discuss this embedded metasyntax alongside their option equivalents.

97

Matching regular expressions: regexp

4.12.1.12. Case-independent matching

By default, regexp implements case sensitive matching.

regexp xy axyb - 1
regexp xy axyb » 0

Specifying the -nocase option will result in case being ignored.

regexp -nocase xy aXYb » 1

Alternatively, the (?1) metasyntax can be used to specify case-insensitive matching. Conversely, (?c) specifies
case-sensitive matching.

regexp {(?1)xy} aX¥b - 1
regexp {(?c)xy} ax¥b » 0

4.12.1.13. Matching literal strings

Because of its many options, regexp can be useful even for exact matching of literal strings. For example supposed
we wanted to count the number of occurences of a literal string.

% set search_string "XY"

» XY

% regexp -all $search_string aXYbXcXvd
> 2

The above works fine when the search_string does not contain any literal characters that might be
misinterpreted as metacharacters. But if it does, then we get unexpected results.

% set search_string "X."

> X.

% regexp -all $search_string aX.bXcX.d
» 3

The problem is with regexp treating . as a metacharacter when we want to actually treat it as a literal character.
One solution is to preprocess the search string to escape any metacharacters with a \. An easier way is to prefix
the search expression with ***= which indicates to the regexp command that the rest of the expression is to be
treated as a literal string.

% regexp -all "**¥*=g§search_string" aX.bXcX.d

> 2
The above construct ***= is not useful when the literal is part of a larger regular
- ‘ - expression which is not a literal itself. In that case the metacharacters in the literal must
o e be escaped, for example with the regsub command we will see later.

regsub -all {[1[*+?{}()<>|.A$\\]} S$literal_string {\\&}

The string map command, probably more efficient, may also be used for this.

98

Matching regular expressions: regexp

4.12.1.14. Newline-sensitive matching

By default no special treatment is afforded to newline characters embedded in the string being matched. For some
use cases, such as matching lines read from a file in a manner similar to egrep, this requires reading in the file
line by line doing a regexp match on each line.

A more efficient option is to use newline-sensitive matching by specifying the -1ine option to regexp. When this
option is specified, certain matching behaviour changes:

* The metacharacters » and $ are treated as matching the beginning of a line and end of a line respectively. Note
that the \A and \Z constraints are unchanged and continue to match the beginning and end of the entire string.

*» The . metacharacter is now treated as matching all characters except newlines. Similarly, bracket expressions
of the form [A..] (ie. matching characters not in a set) never matches a newline.

Thus we can count the number of lines with extraneous trailing whitespace.

% set file_content "First line\nSecond line with trailing space A\nThird line with tab\t"
» First line

Second line with trailing space

Third line with tab

% regexp -all {\s+3$} $file_content 1)
E

% regexp -all -line {\s+$} $file_content @
+ 2

© Only sees trailing tab at end of content
© Sees all lines ending in whitespace

The two behavioural changes above can actually be controlled separately with the -1ineanchor and -1linestop
options to regexp. The option -1ine is equivalent to the combination of these. Specifying -1ineanchor changes
the behaviour of » and $ as described above while -1inestop controls the behaviour of . and {#..] matching.

Newline sensitive matching can also be enabled through embedded option metasyntax as an alternative to the
above options. The correspondences are shown in the table below

Table 4.14. Table

(?n) Equivalent to the -1ine option
(?w) Equivalent to the -1ineanchor option
(?p) Equivalent to the -1inestop option

So the following would be equivalent to the above example.

regexp -all {(?n)\s+$} $file_content » 2

4.12.1.15. Matching at an offset: -start

On occasion, for example incrementally parsing a grammar using regular expressions, you need to begin the
matching from somewhere other than the start of the string. You can use the -start option for this purpose.

% regexp -inline -all a+ "aaabacaa"

+ aaa a aa

% regexp -start 4 -inline -all a+ "aaabacaa"
+ 2 aa

99

Matching regular expressions: regexp

This feature is commonly useful in conjunction with the -indices option where the returned indices are used as
the argument to -start for the next match attempt.

4.12.1.16. Controlling greediness

There are times when a RE may match a string in multiple ways. Consider the following match

% regexp -inline {A(x+)(.*y)$} xxyy
2 XXYY XX VY

The RE matches with the first subexpression matching xx and the second matching yy. The RE could also have
matched with the first subexpression matching as x and the second as xyy.

The difference between the two matches is that by default a quantifier (like + above) will match as much as
possible in a “greedy” manner. Hence the first subexpression matches the whole sequence of x characters. In some
situations, examples of which we will see later, it is desirable to match the fewest number of characters possible.
The greedy quantifier can be converted into a non-greedy one by appending a ?. It will then match the least
number of characters required for the match to be successful.

% regexp -inline {A(x+?)(.*y)$} xxyy
> XXYY X Xyy

Make a note of the different subexpression matches with respect to the previous result.

The rules for greediness are detailed in the Tcl reference pages and we will not go into them here other than
provide an example where the distinction is useful. Consider we want to extract content enclosed in an XML tag
<Item>..</Item> .(Using regular expressions to parse XML is not recommended in general but is often adequate
for quick throwaway scripts.) We might write an expression as follows

% regexp {<Item>(.*)</Item>} "<Item>Item 1</Item>" -> content
> 1
% puts $content

» Item 1
You will often see -> used in Tcl regexp commands to indicate that the full match (which
- ‘ - lands up being stored in a variable of that name) is of no interest.
* -

That seems to work except it doesn’t. When you have multiple tags the result is not what is desired.

% regexp {<Item>(.*)</Item>} "<Item>Item 1</Item><Item>Item 2</Item>" -> content
> 1

% puts $content

> Item 1</Item><Item>Item 2

The problem is again one of greed where the (.*) expression matches as much as it can till the second </Item>
while we would have wanted it to stop at the first. Appending a ? to the * quantifier to force non-greedy matching
gives the desired behaviour.

% regexp {<Item>(.*?)</Item>} "<Item>Item 1</Item><Item>Item 2</Item>" -> content
> 1

% puts $content

> Item 1

100

Substituting regular expressions: regsub

4.12.1.17. Comments and expanded syntax

The power of regular expressions is accompanied by related complexity and it can be difficult to discern the
purpose of various parts of even a moderately complex RE. Regular expressions in Tcl offer a solution to this
problem in the form of an expanded syntax which is enabled by specifying the -expanded option to the regexp
command.

Expanded syntax differs from normal RE syntax in the following ways:

» Whitespace in the RE is no longer significant unlike in the normal RE syntax. You can therefore use spaces and
tabs to indent and spread a RE out over multiple lines.

» The # character starts a comment and all characters till the end of the line or the expression are ignored.
There are a some exceptions to the above.

* A whitespace or # character preceded by a \ is treated as a significant character and not ignored.
+ A whitespace or # character within a bracketed expression is significant.

* Whitespace and # are illegal within multicharacter symbols. We don’t discuss these at all here. See the Tcl
reference page for more information.

As an example, here is a previous example for detecting repeated words rewritten in expanded syntax.

regexp -inline -all -expanded {

\m # Beginning of a word

(\w+) # followed by one or more word characters

\s+ # then whitespace

\1 # then the word that was matched

\M # then end of the word (a non-word char, end of string etc.)

} "This sentence has has repeated words.™
» {has has} has

Expanded syntax can also be enabled with the (?x) metasyntax instead of with the -expanded option.

The embedded metasyntax has to be right at the beginning of the regular expression

ﬂ since the expanded syntax begins after the closing parenthesis. Thus there must not
be any character, including space or newline, preceding the (?x) at the start of the
expression.

4.12.2. Substituting regular expressions: regsub

The regsub command allows substitutions to be performed on a string based on the matching of a RE pattern,
either returning the modified string or saving it in a new variable. It has the syntax

regsub fopriops? REOSTRING

where RE is the regular expression, STRING is the string in which substitutions are to be made and suBspPrc is the
specification of the substitution. If VARNAME is not specified, the command returns the result of the substitution.
If varnvamg is specified, the result of the substitution is stored in the variable of that name and the number of
substitutions is returned.

The substitution string suBspeC can itself refer to elements of the matched rE pattern, by using one or more back
references of the form \N where N is a number between 0 and 9: \0 will be replaced with the string that matched
the entire RE, \ 1 with the string that matched the first sub-pattern, and so on. You can also use the character & in
place of \0.

% regsub {(\d+) (\d+)} "Example: 100 200" {\O reversed is \2 \1}
> Example: 100 200 reversed is 200 100

101

Designing regular expressions

% regsub {(\d+) (\d+)} "Example: 100 200" {& reversed is \2 \1} var
s 1

% puts $var

+ Example: 100 200 reversed is 200 100

Here \0 and & match 100 200 while the back references \ 1 and \2 refer to the capturing parenthesis content 100
and 200 respectively. The part of the string that does not match the regular expression is preserved. Thus the
string “Example: * is left untouched in the result.

By default, regsub only substitutes the first occurence of the RE. You can use the -all switch to substitute all
occurences instead.

Going back to an example we saw earlier, detection of repeated words in text, we can instead use regsub to fix the
errors instead of just detecting them.

% regsub -all {\m(\w+)(\s+)\1\M} {
Words are often repeated when
when a word appears at the end of a line
line and is repeated on the next.

P A}

5
Words are often repeated when a word appears at the end of a line and is repeated o...

Note again the parts of the text that do not match the regular expression are left as they are.

The regsub command accepts many, but not all, of the options of the regexp command, in particular -nocase, -
start, -line, -linestop, -lineanchor and -expanded.

% regsub -all {(c)olor} "Colors colors" {\l1olour}

» Colors colours

% regsub -nocase -all {(c)olor} "Colors colors” {\lolour}
» Colours colours

These options have the same effect as for the regexp command and we do not further describe them further here.

The following example from RosettaCode ® illustrates the combined use of string map, regsub and subst to
decode URLs. You will often find this combination of commands used in tasks involving decoding operations.

proc urlDecode {str} {
set specialMap {"[" "%5B" "]" "%5D"}
set segRE {%([0-9a-fA-F1{2})}
set replacement {[format “%c" [scan “\1" "%2x"]11}
set modStr [regsub -all $seqRE [string map $specialMap $str] $replacement]
return [encoding convertfrom utf-8 [subst -nobackslash -novariable $modStr]]
}
urlDecode "http%3A%2F%2Ffoo%20bar%2F"
> http://foo bar/

Since we have covered the relevant commands (well, except encoding), grokking the code is left as an exercise for
the reader.

4.12.3. Designing regular expressions

We have described the tools and features related to regular expressions that are available in Tcl. We have not
delved into how to go about designing regular expressions for specific tasks. Regular expressions are useful and

8 https://www.rosettacode.org/wiki/URL_decoding#Tcl

102

Binary strings

powerful but complex and often difficult to think about. You are encouraged to consult the references at the end of
this chapter that go into the theory and practice of regular expressions.

There are also a number of tools are available to help experimenting with regular expressions such as Visual
REGEXP?. These are very useful in both building and debugging regular expressions.

4.13. Binary strings

As we stated, strings in Tcl are sequences of Unicode code points or (roughly speaking) characters. Many
applications, such as those dealing with network packets or compressed data, need to work with binary data
where individual bytes, and even bits, are manipulated. Such data is handled in Tcl as binary strings, which are
nothing but ordinary strings with all characters with Unicode code points in the range U+0000-U+00FF (thus each
fitting in a byte). Most string commands such as string length, string index etc. work naturally with binary
strings. For constructing and parsing binary strings, and conversion to common human readable encodings such
as base64, Tcl provides the binary ensemble command.

For ease of displaying binary data, we will first define a simple (but not the most efficient) procedure, bin2hex,
using the binary encode command that we will see later.

proc bin2hex {args} {

regexp -inline -all .. [binary encode hex [join $args ""1]
I
This will dump each byte in a binary string in hexadecimal format.

* .

The above illustrates a quick and dirty method of using regexp for splitting strings into
equal size chunks.

4.13.1. Binary literals

The easiest way to create simple binary string constants with known content is to use the \x syntax.

set 1it "\x01\x80\xff"
binZhex $lit
+ 01 80 ff

This creates a binary string that is a sequence of three bytes. Creating a binary literal is even easier if it contains
only 7-bit values, i.e. a pure ASCII string. In that that case the ASCII value of a character is used as the value of the

byte.
bin2hex "XYZ" » 58 59 5a

4.13.2. Encoding binary strings as ASCII

There are many times when binary data has to be encoded into 7- or 8-bit ASCII form. This might be required for
transporting through binary data through email, for human readability, storage of binary data in files based on
ASCII encodings and so on.

There are three commonly used ASCII based formats used for encoding binary data— plain hexadecimal encoding,
base64 and uuencode. Tcl supports encoding and decoding from all three formats with the binary encode and
binary decode commands.

9 http://laurent.riesterer.free.fr/regexp/

103

Encoding binary strings as ASCII

4.13.2.1. Hexadecimal encoding of binaries: binary encode|decode hex

The binary encode hex and binary decode hex commands convert binary strings to and from hexadecimal
ASCII strings.

binary encode hex HinZATA
binary decode hex ?-strict? »noonnn

Each byte of the B7nDATA is encoded as a pair of hexadecimal digits, most significant nibble first.

binary encode hex XYZ + 58595a
binary encode hex "\xfe\xfO\x0f" » fef0Of
binary decode hex "58595a" + XYZ

The decoding will raise an error if the argument contains anything other than hexadecimal characters and
whitespace (which are ignored). If given the -strict option even whitespace is not allowed.

% binary decode hex "58 595a"

> XYZ
% binary decode hex -strict "58 595a"
@ invalid hexadecimal digit " " at position 2

4.13.2.2. Base64 format: binary encode|decode base64

The binary encode base64 and binary decode base64 commands convert binary strings to and from base64
encoded ASCII strings.

binary encode base64 ?-maxlen (1
binary decode base64 ?-strict? #r¢

T? ?-wrapchar CHAR? BINDATA

The binary encode base64 command can take two options. The -max1len option specifies the maximum line
length of the encoded string beyond which a line should be split into multiple lines. By default lines are not split.
The -wrapchar option, which is the newline character by default, specifies the character to use to separate the
split lines.

% binary encode base64 "\xfe\xfO\xOf"
> /vAP
% set enc [binary encode base64 -maxlen 30 [string repeat XYZ 20]]
> WFlawFlawFlaWFlawFlawFlawFlaWwF
laWFlaWFlawFlaWFlaWFlaWFlaWFla
WFlawFlawFlawFlawWFla
% binary decode base64 $enc
> XYZ

3

3

Like for hexadecimal decoding, the base64 decoding form takes a -strict option that will raise an error if any
whitespace is present. By default whitespace is ignored. Thus the following will raise an error since we wrapped
the encoded output with newlines above.

% binary decode base64 -strict $enc
@ invalid base64 character "
" at position 30

4.13.2.3. Uuencode format: binary encode|decode uuencode

The final form of binary to ASCII encoding, the uuencode format, is implemented by the binary encode
uuencode and binary decode uuencode commands.

104

Constructing binary strings: binary format

binary encode uuencode ?-maxlen
binary decode uuencode ?-strict?

i7? ?-wrapchar o

This supports the same -maxlen and -wrapchar options as the base64 encoding above.

% binary encode uuencode "\xfe\xfO\x0f"
+ #.0'/
% set enc [binary encode uuencode -maxlen 30 [string repeat XYZ 20]1]
3 S6%E : 6%E : 6%E : 6%E : 6%E : 6%E : 6%E :
S6%E : 6%E : 6%E : 6%E : 6%E : 6%E : 6%E :
26%E : 6%E : 6%E : 6%E : 6%E : 6%E :
% binary decode uuencode $enc
> XYZ

Note however, that the -strict option for the uuencode version only throws an error if whitespace appears in
unexpected places as the format itself allows for it in some locations.

4.13.3. Constructing binary strings: binary format

Thebinary format command is used to construct a binary string in a similar fashion to how the format
command is used for constructing character strings.

binary format #ORMATS

The FORMATSTRING argument specifies the structure or layout of the binary string as a sequence of fields of
various types and sizes. The command returns the binary string constructed by filling each field with the value of
the corresponding argument formatted appropriately.

As an example, consider the initial part of a TCP header for an HTTP connection, which consists of

* a 16-bit source port numbers, say 5000 or 0x1388 in hex

* a 16-bit destination port number 80, or 0x0050 hex

*+ a 32-bit sequence number, say 1000000, or 0x000F4240 hex

+ a 32-bit acknowledgement number, say 100 or 0x00000064 hex

All fields are sent in network byte order (big endian, most significant byte first) so the stream of bytes appear in
hexadecimal as

13 88 00 50 00 OF 42 40 00 00 00 64

Within a Tcl script the above header fields might be stored in variables and the binary format command used to
construct the packet header.

set srcport 5000

set dstport 80

set seqnum 1000000

set acknum 100

set header [binary format SSII $srcport $dstport $segnum $acknum]
bin2hex $header

» 13 88 00 50 00 Of 42 40 00 00 00 64

The format types S and I specify 16-bit big endian and 32-bit big endian fields as per the desired layout. Because
the constructed header contains non-printable data, we use our bin2hex wrapper around the binary encode
hex command to display it in hexadecimal form.

The format string may include spaces for readability purposes. In the above example the format string SSII may
have been specifiedasS S I TorSS I I etc. withno difference in the generated binary string.

105

Constructing binary strings: binary format

In general, FORMATSTRING should be a sequence of field specifiers each of which is
« asingle character that either specifies a type or a cursor movement
» optionally followed by an flag character
» optionally followed by a numeric count field

The type and cursor specifiers are detailed later.

The flag character, for which u is the only valid value, is ignored and not discussed here. It is accepted by the
binary format command only for compatibility with the binary scan command allowing the same format
string to be used for both.

The count field may be either a positive integer value or the character *. An integer value specifies the number of
fields of that type to be placed at that position. The values are picked up from the corresponding argument which
may be a string or a list depending on the type specifier. The * character works similarly except that it indicates
that all the values in the corresponding argument are to be used.

Thus our previous example could also have been written (among many other possibilities) as

set header [binary format "S2 I*" [list $srcport $dstport] [list $seqnum $acknum]]
bin2hex $header

> 13 88 00 50 00 Of 42 40 00 00 00 64

4.13.3.1. Type specifiers for binary format

The type character, such a S or I in our example, indicates both the type (integer, real etc.) of a field as well as its
layout (width, endianness). Table 4.15 summarizes the various type specifiers.

Table 4.15. Type specifiers for binary format

Specifiers ~ Description

a,A Byte string padded with null bytes or binary value 32/0x20 (ASCII space) respectively.

b, B Bit string. Arguments must be a string of binary digits 0 and 1. Packed within each output
byte in low to high or high to low order respectively.

h, H String of hexadecimal digits packed in each byte in low to high or high to low order
respectively.

d List of integers if a count is specified. Only the low order 8 bits are stored in the output
byte.

s,S,t List of integers. Only the low order 16 bits are stored in the output in little endian, big

endian and native order respectively.

i,I,n List of integers. Only the low order 32 bits are stored in the output in little endian, big
endian and native order respectively.

w, W, m List of integers. Only the low order 64 bits are stored in the output in little endian, big
endian and native order respectively.

r.R f List of single precision floating point numbers. Stored in little endian, big endian and
native order respectively.

q,Q,d List of double precision floating point numbers. Stored in little endian, big endian and
native order respectively.

X Stores zeroes in the output.

The details of each format with examples are given below.

106

Constructing binary strings: binary format

Binary formats: a, A

The character a specifies a single byte field. The argument is a character string and the value stored in the field is
taken from the low 8 bits of the Unicode code point for the corresponding character. Thus this command should
not be used to generate binary representations of general Unicode strings. Use the encoding command instead.

bin2hex [binary format a z] + 7a
bin2hex [binary format a \u0102] » 02 @

© Note truncation to low 8 bits

If a count specifier is present, the appropriate number of characters from the argument string are used. Any
extra characters in the argument are ignored. If the argument has fewer characters than the specified count, the
remaining bytes are filled with null bytes.

bin2hex [binary format a3 wxyz] - 77 78 79 @
bin2hex [binary format a3a yz x] » 79 7a 00 78 (2]

© Only 3 characters used
©® Note padding first argument with nulls

E If the string has only ASCII characters, calling binary format is essentially a no-op.

bin2hex [binary format a* wxyz] » 77 78 79 7a
bin2hex wxyz > 77 78 79 7a

The specifier A is similar except that if the string argument has fewer characters than the specified count, the
remaining bytes are filled with the binary value 32/0x20 (corresponding to an ASCII space) instead of null bytes.

bin2hex [binary format A*A3 wxyz yz] » 77 78 79 7a 79 7a 20 @

©@ Note padding with spaces

Binary format: b, B

Arguments must be a string of binary digits 0 and 1. For b, these are packed into output bytes in low to high order
within each byte. Zeroes are used if the argument string is shorter than the count for a field or if the number of
bits is not a multiple of 8. B is similar except that bits are stored in high to low order within a byte.

bin2hex [binary format b8 10101010] > 55
bin2hex [binary format B8 10101010] 5> aa ©
binzhex [binary format "b8 b5" 101 111111 » 05 1f @
bin2hex [binary format "B8 B5" 101 11111] 5> a0 f8 ©
bin2hex [binary format b* 1011001110001110] » cd 71 @

Note different output bit order from above
Zero fill high bits

Zero fill low bits

Output as many bytes as needed

o009

Binary format: h, H

The argument is a string of hexadecimal digits. Both lower and upper case characters are accepted. In the case of
h (almost never used), the hex digits are packed in the output bytes in low to high order whereas for H they are

107

Constructing binary strings: binary format

packed in the high to low order which is what is normally desired. Zeroes are used to fill if the argument string is
shorter than the count for a field or if the number of hexadecimal characters is not even.

bin2hex [binary format h* 0aB] » a0 Ob
bin2hex [binary format H* 0aB] » 0a b0
Binary format: ¢

If count is not specified, the argument must be an integer the low 8 bits of which are stored in the byte. If count
is specified, the argument must be a list of at least that many integers. The generated output is then a sequence of
bytes each containing the low 8 bits of the corresponding integer element. Extra elements in the list are ignored.

bin2hex [binary format cc2 10 {-1 1}] » 0a ff 01
bin2zhex [binary format c* {254 255 256 257}] » fe ff 00 01 1)

© Note truncation to low 8 hits
Binary format: s, S, t

If count is not specified, the argument must be an integer the low 16 hits of which are stored in two bytes in little
endian, big endian and native order for s, S and t respectively.

If count is specified, the argument must be a list of at least that many integers. The generated output is then a
sequence of bytes each containing the low 16 bits of the corresponding integer element. Extra elements in the list
are ignored.

binzhex [binary format ss* 33825 {-2 65537}] » 21 84 fe ff 01 00

bin2hex [binary format SS* 33825 {-2 65537}] » 84 21 ff fe 00 01

bin2hex [binary format tt* 33825 {-2 65537}] » 21 84 fe ff 01 00

Binary format: 1, I, n

Similar to s except that i, I and n store 32-bit integers in 4 byte output sequences in little endian, big endian and
native order respectively.

bin2hex [binary format ii* 2151678465 {-2 65537}] » 01 02 40 80 fe ff ff ff 01 00 01 00
bin2hex [binary format II* 2151678465 {-2 65537}] + 80 40 02 01 ff ff ff fe 00 01 00 01
Binary format: w, W, m
Similar to s except that w, W and m store 64-bit integers in 8 byte output sequences in little endian, big endian and

native order respectively.

bin2hex [binary format w 18049651735527937] » 01 02 04 08 10 20 40 00
bin2hex [binary format W 18049651735527937] » 00 40 20 10 08 04 02 01

Binary format: r, R, f
Stores single precision floating point number in little endian, big endian and native order respectively. The
number of bytes produced is dependent on the machine architecture.

bin2hex [binary format r 2.71828] -» 4d f8 2d 40
bin2hex [binary format R 2.71828] » 40 2d f8 4d

108

Parsing binary strings: binary scan

Binary format: q, Q, d

Stores double precision floating point number in little endian, big endian and native order respectively. The
number of bytes produced is dependent on the machine architecture.

bin2hex [binary format q 2.71828] » 90 f7 aa 95 09 bf 05 40
bin2hex [binary format Q 2.71828] » 40 05 bf 09 95 aa f7 90
Binary format: x

Stores zeroes in the output. This differs from the other types in that it does not consume an argument and does not
permit the count to be specified as *.

bin2hex [binary format cxcx2c 255 254 253] » ff 00 fe 00 00 fd

4.13.3.2. Cursor movement for formatting

In addition to the types, the format specification can include cursor movement characters. The binary format
command writes output bytes at a position in the string indicated by a cursor. Normally the cursor is positioned
right after the last position that was written in the output string. Cursor movement characters change the position
of this cursor and unlike type specifiers do not consume any arguments.

Table 4.16. Binary format cursor movement characters

‘ Specxfler Description
X Moves the cursor backward in the output string by the specified count or by one

character if not count is specified. If the count is is * or greater than the current position,
the cursor is placed at the first position.

bin2hex [binary format c3c2 {0 1 2} {3 4}] + 00 01 02 03 04
binZhex [binary format c3X2c2 {0 1 2} {3 4}] » 00 03 04

@ Moves the cursor to the absolute position given by count which must be specified. If
the count is greater than the current output string length, the output is padded with the
appropriate number of zeroes. If the count is *, the cursor is placed at the end of the
string.

bin2hex [binary format c5@2c2@*c {0 1 2 3 4} {5 6} 7] » 00 01 05 06 04 07

4.13.4. Parsing binary strings: binary scan

The binary scan command is used to parse a binary string in a similar fashion to how the scan command is used
for parsing character strings. It is conceptually the inverse of the binary format command.

binary scan z:ixge®

It parses the binary string BINSTRING driven by a format string SCANFORMAT that specifies the expected
structure or layout of BINSTRING as a sequence of fields of various types and sizes. The values are extracted and
stored in the variables passed as additional arguments. The command returns the number of variables that were
set.

As an example, the following code parses the binary TCP header we generated in the previous section.

109

Parsing binary strings: binary scan

% binzhex $header

> 13 88 00 50 00 Of 42 40 00 00 00 64

% binary scan $header SSII scan_srcport scan_dstport scan_seq scan_ack
> 4

% puts "$scan_srcport, $scan_dstport, $scan_seq, $scan_ack"

» 5000, 80, 1000000, 100

The syntax of the SCANFORMAT argument is the same as the format specifiers used for the binary format
command. It is a sequence of field specifiers each of which is

+ asingle character that either specifies a type or a cursor movement.
» optionally followed by an flag character
» optionally followed by a numeric count field.

The field specifiers may be optionally separated by spaces.

The scan begins at the start of the input binary string and maintains a cursor position within the string that is
updated after each field specifier. If the field specifier denotes a type, the bytes following the cursor position are
scanned as binary data of that type and the cursor is moved to point to the following byte. If the field specifier
denotes cursor movement, the cursor is moved without any bytes being scanned.

The flag character, for which u is the only valid value, may be specified with any type but only has effect for
certain integer types where it marks the field to be interpreted as an unsigned value. For example,

% bin2hex [set bin [binary format 1 Oxffffffff]]
> ff ff ff ff

% binary scan $bin i value; puts $value @

> -1

% binary scan $bin iu value; puts $value (2]

+ 4294967295

@ i specifies 32-bit little endian integer
© iuspecified unsigned 32-bit little endian integer

The count field may be

« a positive integer value in which case it specifies the number of fields of that type to be parsed and stored in the
corresponding variable

+ the character * which indicates that all the remaining bytes are to be parsed as that type

The binary string being parsed may not have sufficient bytes to satisfy the scan string specification. This is
not treated as an error. Instead as many field specifiers as can be fully satisfied are parsed and stored in the
corresponding variables. Remaining variables are not affected.

% binary scan $header SSIII scan_srcport scan_dstport scan_seq scan_ack extra_var
> 4

% puts "$scan_srcport, $scan_dstport, $scan_seq, $scan_ack"

» 5000, 80, 1000000, 100

% puts [info exists extra_var]

> 0

4.13.4.1. Type specifiers for binary scan

The type character, such a S or I in our example, indicates hoth the type (integer, real etc.) of a field as well as its
layout (width, endianness). Table 4.17 shows the various type specifiers available.

110

Parsing binary strings: binary scan

Table 4.17. Type specifiers for binary scan

Specifier Description

a, A Extract a single byte differing in their treatment of trailing spaces and zero bytes. The byte is
treated as a Unicode character in the range U+0000-U+0OFF.

' b,B Extract bits in a byte in low to high and high to low order respectively.

h,H Extract the nibbles of a byte as a pair of hexadecimal digits in low to high or high to low order
respectively.

C Extracts bytes as signed 8-bit integers or unsigned if the u flag is specified.

s,S, t Extract pairs of bytes as 16-bit signed, or unsigned if the u flag is specified, integers in little

endian, big endian and native order respectively.

1,I,n Extract pairs of bytes as 32-bit signed, or unsigned if the u flag is specified, integers in little
endian, big endian and native order respectively.

w, W, m Extract pairs of bytes as 64-bit signed, or unsigned if the u flag is specified, integers in little
endian, big endian and native order respectively.

r,R, Extract single precision floating point numbers stored in little endian, big endian and native
order respectively.

q,Qd Extract double precision floating point numbers stored in little endian, big endian and native
order respectively.

Details and examples of each format are helow.
Binary scan: a, A

The a specifier denotes a single byte field. The value is stored as a Unicode character in the range U+0000-U+00FF.
The A specifier is similar with the solitary difference that trailing spaces and zero bytes are stripped from each
value stored.

% set bin "abc def " @

> abc def

% binary scan $bin a5a* vall val2
> 2

% puts "<$vall>, <3$val2>"

+ <abc >, < def >

% binary scan $bin A5A* valtl val2
+ 2

% puts “"<$vall>, <$val2>"

> <abc>, < def>

©® Remember for pure ASCII this is the same as [binary format a* "abc def "]

Binary scan: b, B

The b specifier parses bits in a byte in low to high order storing them in the variable as a string of 0 and 1
characters. The B specifier is similar except that the bits are processed in high to low order within a byte.

% binary scan "\x00\x5f\xaa" b13b* vall val2
> 2

% puts "$vall, $val2"

» 0000000011111, 01010101

% binary scan "\x00\x5f\xaa" B13B* vall val2
> 2

% puts "$vall, $val2"

0000000001011, 10101010

+

111

Parsing binary strings: binary scan

Note how each field specifier always begins at a byte boundary. The first specifier maps 13 bits. The remaining
3 bits to the next byte are skipped since the next specifier will only start at the next byte boundary.

Binary scan: h,H

Parses the binary data into a string of hexadecimal digits. The digits are taken from low to high order for each byte
for h and the (natural) high to low order for H.

% binary scan "\xab\xcd\xef" H3H* val1l val2

> 2

% puts "$vall, $val2“

» abc, ef

% binary scan "\xab\xcd\xef" h3h* vall val2
> 2

% puts "$vall, $val2”

» bad, fe

Again, note how each field specifier always begins at a byte boundary.

Binary scan: c

The byte(s) in the binary string are converted to signed 8-bit integers and stored in the corresponding variable as a
list. Adding the u flag stores treates the bytes as unsigned 8-bit integers.

% binary scan \xff\x00\x01\xfe\x0f\x80 cc2c* var1l var2 var3

+ 3

% puts "$varl, $var2, $var3"

» -1, 01, -215 -128

% binary scan \xff\x00\x01\xfe\x0f\x80 cuc2cu* varl var2 var3
> 3

% puts "$varit, $var2, $var3"

» 255, 0 1, 254 15 128

Binary scan: s, S, t

The data is interpreted as 16-bit signed integers stored in little endian, big endian and native order respectively. As
for the c specifier, adding the u flag results in a field being treated as unsigned.

% binary scan \xff\x00\x00\xffAxff\x00\x00\xff s2su* valt val2
> 2

% puts "$val1l, $val2"

» 255 -256, 255 65280

% binary scan \xffAx00\x00\xff\xff\x00\x00\xff S2Su* vall val2
5 2

% puts "$vall, $val2"

» -256 255, 65280 255

Binary scan: i, I,n

The data is interpreted as 32-bit signed integers stored in little endian, big endian and native order respectively.
Adding the u flag results in a field being treated as unsigned.

% binary scan \x00\x00\x00\xff\x00\x00\x00\xff iiu vall val2
> 2

% puts "$valt, $val2"

+ -16777216, 4278190080

112

Parsing binary strings: binary scan

Binary scan: w, W, m

The data is interpreted as 64-bit signed integers stored in little endian, big endian and native order respectively.
Adding the u flag results in a field being treated as unsigned.

% binary scan \xff\Ax00\x00\x00\x00\x00\x00\x00 wu vali1
501

% puts "$val1"

+ 255

% binary scan \xff\x00\x00\x00\x00\x00\x00\x00 W val1l
> 1

% puts "$vall"

+ -72057594037927936

Binary scan: r, R, f

The data is interpreted as single precision floating point numbers stored in little endian, big endian and native
order respectively.

% bin2hex [set bin [binary format r 2.71828]]
s> 4d 8 2d 40

% binary scan $bin r e

> 1

% puts "$e"

» 2.718280076980591

The difference of course stems from floating point representation rounding errors.

Binary scan: g, Q, d

The data is interpreted as double precision floating point numbers stored in little endian, big endian and native
order respectively.

% bin2hex [set bin [binary format q 3.14159]]
> 6e 86 1b f0 f9 21 09 40
% binary scan $bin q pi

> 1
% puts "$pi"
> 3.14159

4.13.4.2. Cursor movement for scanning

In addition to the field types, the scan specification can include the cursor movement characters shown in
Table 4.18 that control the scan position for the next specifier.

Table 4.18. Binary scan cursor movement characters

ﬂS”pécifiérs o Desériptidn
X Moves the cursor forward.
X Moves the cursor backward.
@ Moves the cursor to an absolute position.

Binary scan: x

Moves the cursor forward by one byte or the specified count. If count is specified as * or is larger than the
remaining byte count, the cursor is placed at the end of the input binary string.

113

Character encoding

binary scan \x01\x02\x03\x04\x05\06 cxcx2c vall val2 val3 » 3
puts "$vall, $val2, $val3" > 1, 3, 6

Binary scan: X

| Moves the cursor backward by the specified count or by one if no count is specified. If the count is * or greater
than the current position, the cursor is placed at the start.

binary scan \x01\x02\x03\x04\x05\06 c2Xc3X2c vall val2 val3 » 3
puts "$vall, $val2, $val3™ > 12,234, 3

Binary scan: @

Moves the cursor to the absolute position given by count which must be specified. If the count is greater than the
current output string length, the cursor is placed at the end of the string.

binary scan \x01\x02\x03\x04\x05\06 c2@0c3@5c vall val2 val3 » 3
puts "$valt, $val2, $val3” >12,123,6

4.14. Character encoding

Although at the script level, Tcl strings are best thought of as an abstract sequence of Unicode characters, when it
comes to storing on disk or passing data to other programs, these strings need to be converted to a specific physical
format as a sequence of bytes.

The method by which a character sequence is transformed into a sequence of bytes is defined by an encoding
and naturally there are multiple ways this might be done. Standards for this purpose are defined by various
international standards bodies or by system vendors for their specific platforms. For example, consider the
encoding of Unicode code point sequence U+004f U+006c U+00e1 which is the Portuguese word Ola. As a
physical sequence of bytes in a file it may be stored as

+ 4f 6c el (ISO8859-9)
+ 4F 6¢ ¢c3 a1 (UTF-8)
+ 4f 00 6c 00 e1 00 (UCS-2)

amongst many other possible encodings.

of differing length. Moreover, not all characters can be represented in every encoding.
In modern times, the UTF-8 encoding which is capable of representing all Unicode
characters, is generally used for sharing data between applications.

E An encoding may be variable length with different characters encoded to byte sequences

Some commonly used encodings are UTF-8 which is almost universally the encoding of choice in modern
protocols, IS08859-1 intended for Western European languages, Shift]IS for Japanese and Big5 for Chinese.

Tel provides built-in facilities for conversion to and from a wide variety of encodings with the encoding
command.

4.14.1. Retrieving supported encodings with encoding names

The list of encodings supported by the Tcl application can be obtained with the encoding names command.

% encoding names
> Cp860 cp861 cp862 cp863 tis-620 cp864 cp865 cp866 gb12345 gh2312-raw cp949 cp950 cp869 ...

Note the encoding names are all lower case and can differ slightly from their common usage forms.

114

Encoding characters: encode convertto

The supported encodings can differ even within a single Tcl version as the list of included encodings can be
changed at compile time though some like ascii, utf-8, unicode and is08859-1 will always be present.

The encoding named unicode is really a misnomer. It is actually little endian UCS-2. In
- ‘ - any case, it is very rarely used in general data exchange though the Windows API uses it
o e for character strings.

4.14.2. Encoding characters: encode convertto

A string can be converted to a specific encoding with the encoding convertto command.

encoding convertto =

This returns a binary string containing the sequence of bytes in the specified encoding ENCODING. Thus assuming
the variable hello contained the word 013,

% bin2hex [encoding convertto i1s08859-9 $hello]
+ 4f 6¢ el

% bin2hex [encoding convertto utf-8 $hello]

> 4f 6c ¢3 a1l

% bin2hex [encoding convertto unicode $hello]
+» 4f 00 6¢c 00 et 00

4.14.3. Decoding characters: encode convertfrom

The encoding convertfrom command performs the inverse operation, converting encoded data to a string of
characters.

encoding convertfrom inconix: R

Here ENCODING is the name of the encoding that the binary string BINSTRING was encoded in. Thus the inverse of
our previous encoding would be of the form

% encoding convertfrom utf-8 "\x4f\x6c\xc3\xal"
» 013

4.14.4. Adding new encodings: encoding dirs

The encodings supported within a Tcl executable can be extended by adding new ones. The encoding dirs
command returns a list of directories containing files with extension . enc from which encoding definitions are

loaded.

% encoding dirs
5 C:/tcl/866/x64/1ib/tcl8.6/encoding

New encodings can be placed in one of the directories returned by the command.

You can also change the list of directories that are searched by supplying an additional argument to the command.
For example, to add a new directory to the search path for encodings,

% encoding dirs [linsert [encoding dirs] end C:/my/extra/encodings]
s €:/tcl/866/x64/1ib/tcl8.6/encoding C:/my/extra/encodings

The 1insert command that we will see in Section 5.4.3 inserts elements into a list.

115

The system encoding

4.14.5. The system encoding

The system encoding is the encoding used when Tcl makes system calls that take string arguments. The encoding
system command returns the encoding in use for this purpose.

% encoding system
» €pl1252

Because the ramification of doing so can be both unexpected and severe, we will not mention that the encoding
used for system interaction can be changed by supplying the name of another encoding as an argument to this
command. Do not do that unless you really know what you are doing.

4.14.6. Reading and writing encoded data

Tcl provides the ability to configure input and output streams to automatically convert from and to a specific
encoding without having to explicitly invoke the encode command. We will discuss this when we talk about I/0
and channel encodings in Section 9.3.8.

There are times though when you need to explicitly use the encoding command, for example when you need to
calculate a checksum over the encoded data. In this case, you need to remember that the channel must be placed
in binary mode so that it does not do any encoding itself. Otherwise conversions will effectively happen twice
which is probably not what you want.

4.15. Localization and message catalogs

To speak another language is to possess a second soul.

— Charlemagne

Tel’'s message catalog facility provides a means for applications that support multiple languages to easily display
text in the user’s preferred language. It separates the application code from the language specific text allowing for
easy addition of new languages, modification of existing text etc. without having to change the application.

As an introductory example, consider localizing our famous Hello world! greeting.

% puts "Hello world!"
+ Hello world!

The message catalog commands are implemented by the msgcat package so we need to load that first.

% package require msgcat
+ 1.6.0

The translation for the greeting has to be defined. Normally this is done in message catalog files that are loaded by
the application as we will see. But for our example we will just define it interactively.

% msgcat::mcset fr "Hello world!" "Bonjour le monde!"
+ Bonjour le monde!

The command to output our greeting now becomes

puts [msgcat::mc "Hello world!"]
» Hello world!

Now, to switch to French at the user’s request, we would simply change the locale to fr.

116

Locales

% msgcat::mclocale fr
s> fr

Our greeting would then show up in French.

% puts [msgcat::mc "Hello world!"]
» Bonjour le monde!

Notice that we only needed to add appropriate entries in the message catalog; the actual puts call itself did not
have to change after switching to French.

4.15.1. Locales

A locale is a container for a collection of settings such as time and date formats and string translations. Locales are
identified in Tcl by a locale string consisting of

+ alanguage code as defined in international standard ISO 639
+ optionally followed by an _ and a country code as defined in standard ISO 3166,
» optionally followed by an _ and a system specific code.

For example, en identifies the generic English locale while en_US and en_GB identify the variations for USA and
Great Britain respectively.

When an application starts, the initial locale is set based on the values of the LC_ALL, LC_MESSAGES and LANG
environment variables in that order. On Windows, if none of these are defined, the locale is retrieved from
registry settings. If none of these are available, the initial locale is set to C.

4.15.1.1. Retrieving and setting the locale: mclocale

Themsgcat::mclocale is used to set and retrieve the current locale for the application.
msgcat::mclocale ?;oari?

If no argument is specified, the command returns the current locale. If LoCALE is specified, the current locale is
changed to the one specified.

% msgcat::mclocale

s fr

% msgcat::mclocale en_gb
- en_gb

In the case of an application running multiple Tcl interpreters, the mclocale only
changes the locale for the interpreter in which the command is invoked. We will discuss
multiple interpreters in Chapter 20.

4.15.1.2. Locale inheritance: mcpreferences

Locales are structured in a hierarchy so for example en_gb inherits from en. If a setting is not found in en_gb, it
will be looked up in en. The "msgcat::mcpreferences’ returns this list of locales.

msgcat::mcpreferences » en_gb en {}

The top of this inheritance is always the ROOT locale identified by the empty string.

117

Creating message catalogs: mcset, mcmset, mcflset, mcflmset

4.15.2. Creating message catalogs: mcset, mcmset, mcflset, mcflmset

The translations for each locale are stored in separate files within a single directory. The files have the form
1.OCALE.msg where LOCALE is a lower case string identifying the locale. Thus the file es.msg will store the Spanish
translations. As a special case the translations for the ROOT locale are stored in a file called ROOT.msg (note the
upper case name).

Each application or package will normally store all its localization files within a single application or package
specific directory. The Tcl core localization files are stored in the TCLINSTALLDIR/11b/TclVERSION/mMSES
directory.

Within each file, the localization strings for that locale are defined using one of the four commands
msgcat::mcset, msgcat: :mcmset, msgcat: :mcflset and msgcat: :memflset.

mcset L0
mcmset i
mcflset xev
mcflmset

The commands are all similar and provide different syntactic conveniences.

We have already seen an example of mcset which defines mapping of a single key for a specific locale. If
LOCALIZEDSTRING is not specified, it defaults to xzv itself. Thus the following two are equivalent.

msgcat::mcset en_us "Hello world!™ "Hello world!"
msgcat::mcset en_us "Hello world!™

The msgcat: :mcmset is both more convenient and more efficient when multiple strings are being defined. It takes
an argument LOCALIZATIONLIST which is a list of alternating keys and localized strings. Thus the following

msgcat::mcset fr "Hello world!"™ "Bonjour le monde!"
msgcat::mcset fr "Goodbye cruel world!" "Adieu monde cruelt"

may be more conveniently written as

msgcat::mcmset fr {
"Hello world!" "Bonjour le monde!"
"Goodbye cruel world!"™ “Adieu monde cruel!"
}

when many strings are being defined.

The mcflset and mcflmset are analogous to mcset and mcmset respectively except they do not even require
specification of the locale. They can only be used inside of message catalog files loaded with the mcload command
and default to the locale based on the file name being loaded. For example, the following inside a message catalog
file de.msg will add the strings to the de locale.

msgcat::mcflmset {

"Hello world!™" "Hallo Welt!™

"Goodbye cruel world!"™ "auf Wiedersehen, grausame Welt!"
b

Both mcflset and mcflmset will raise exceptions unless called via a mcload cormmand.

118

Loading message catalogs: mcload

4.15.3. Loading message catalogs: mcload
Before the translations defined by an application can take effect, they must be loaded with the msgcat: :mcload
command.

msgcat::mcload MicoAvii

The message catalog files may be stored in any directory but it is common to store them in a subdirectory under
the package’s script directory. Thus a common method for loading message files is invoking

msgcat::mcload [file join [file dirname [info script]] msgs]

from the main package script at the time it is loaded.

4.15.4. Retrieving localized strings: mc

The msgcat: :mc command returns localized strings based on the current locale as returned by mclocale.
msgcat: mc ~iY PARS L7

We have already seen this command and examples of use at the beginning of this section. We now expand on some
of its other features.

The first argument xzy passed to the mc command is used as the key for looking up the localized strings. If no entry
is found, by default the key itself is returned from the command unless this behaviour is changed. In our earlier
example, we used the English localization itself as the key but this is not necessary. We could have used any token
as the translation lookup key, say greet001.

% puts [msgcat::mc greet001] (1]

5> greet001

% msgcat::mcset en greet001 "Hello world!"
» Hello world!

% puts [msgcat::mc greetQ01]

» Hello world!

© We have not assigned a value for greet001 for the current locale

Although it is convenient to use the English (or any language for that matter) localization

- ‘ - as the key so as to not have to explicitly define an entry in the message catalog for it, this
D relies on the default behaviour of the mcunknown cormmand. It is therefore sometimes
recommended to explicitly define localizations for every string and language pair as
above.

If any additional arguments are passed to the mc command, it passes them to the format command along with the
localized string and returns the result. For example, assume the fr and en message catalogs contain the following
lines respectively:

msgcat::mcset fr TIME "L'heure actuelle est %s"
msgcat::mcset en TIME "The current time is %s"

We can print the current time as

% set now [clock format [clock seconds] -format %T]
+ 11:45:41

% puts [msgcat::mc TIME $now]

s> The current time is 11:45:41

119

Partitioning catalogs with namespaces

The above is roughly equivalent to

% set fmt [msgcat::mc TIME]

> The current time is %S

% puts [format $fmt $now]

» The current time is 11:45:41

If we were to switch to the fr locale,

% msgcat::mclocale fr

> fr

% puts [msgcat::mc TIME $now]
> L'heure actuelle est 11:45:41

we get the French version of the message.

4.15.5. Partitioning catalogs with namespaces

One issue that can arise when multiple independent packages have their own message catalogs is the potential for
conflict between the key strings used by each package. The message catalog system solves this through the use of
namespaces, a topic we cover in Chapter 12.

Packages that make use of the message catalogs should invoke the mcset family of definition commands from
within the package’s namespace. For example, the de.msg file example in the previous section should contain the
following content instead.

namespace eval greetings {
msgcat::mcflmset {
"Hello world!" "Hallo Welt!"
"Goodbye cruel world!" "auf Wiedersehen, grausame Welt!"

}

The localized strings are then loaded within the greetings namespace and will not conflict with localizations
defined in the global or other namespaces.

Conversely, when localized strings are retrieved with the “mc’ command, it looks up the message catalog within
the context of the namespace from which it is called.

Here is an illustrative example. The English localization file for our anniversary package may contain

namespace eval anniversary {
msgcat::mcset en greeting "Happy anniversary!"

}
» Happy anniversary!

Similarly, the Christmas greetings package localization file contains

namespace eval xmas {
msgcat::mcset en greeting “"Merry Christmas!”

b
+ Merry Christmas!

These files define the greeting message hased on the occasion as reflected by the containing namespace. The
printed greeting as shown helow will then depend on the namespace context in which the message is retrieved
with the mc command.

120

Handling unknown message keys

% msgcat::mclocale en_us

s en_us

% puts [msgcat::mc greeting] (1]
+ greeting

% namespace eval anniversary {puts {[msgcat::mc greeting]}

» Happy anniversary!

% namespace eval xmas {puts [msgcat::mc greetingl}

» Merry Christmas!

© Will output greeting because no message catalog entry for greeting in global namespace

One final point to be related to the use of namespaces with msgcat is that if a namespace does not define
a message catalog entry that matches the locale, all ancestor namespaces are searched in order. So if the
anniversary namespace had a child namespace golden, the following would work.

namespace eval anniversary::golden {puts [msgcat::mc greeting]} - Happy anniversary!

On failing to find a greeting entry in any suitable English locale in the anniversary: : golden namespace, the mc
command would check anniversary and the global namespaces in turn.

4.15.6. Handling unknown message keys

When the mc command does not find a localization defined in the current locale, it invokes the

msgcat: :mcunknown procedure and returns its value. The default definition of mcunknown simply returns the
passed lookup key. An application can redefine this to take some other action it wishes, like logging or raising an
error, or using an online automatic translation API etc.

The redefined command is called using the following syntax and should be defined accordingly.
msgcat: mcunknown o047 R REY 2ERS LD

where rocark is the locale to be looked up. x£y and the remaining arguments are as passed to the mc command.

The return value from the command is passed back to the original caller. Therefore any redefinition should take
care to handle additional arguments in the same manner as mc.

4.16. Data compression

The z11b family of data compression algorithms and data formats are widely used in the computing world.
The most common applications include compression in the HTTP protocol used for Web access and the zip and
gzip file compression formats. Because of their ubiquity, Tcl provides built-in commands for compressing and
decompressing using these formats.

The zlib family really consists of three different specifications:
« The raw compression algorithm, DEFLATE, defined in RFC 1951 1%, We refer to data compressed using this
algorithm as deflated data.

+ A data format, the ZLIB compressed data format, defined in RFC 1950 that wraps the raw deflated data to
include additional metadata such as checksums. We refer to this as zlib compressed data.

* Another data format, the GZIP file format, defined in RFC 1952 '? that also wraps the raw compressed data to
include additional metadata. We refer to this as gzip compressed data.

Tcl provides commands related to all three of these. Moreover, these commands fall into four categories:

10 https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1952

121

Compressing strings

« Commands that operate on the entire data to be compressed or decompressed. These are discussed below in
Section 4.16.1.

+ Commands that operate in stream mode where the data is incrementally compressed or decompressed These
are described below in Section 4.16.2.

« Channel transforms where data is transparently compressed or decompressed during input-output operations.
We will postpone a discussion of these to Section 17.2.5 in the Chapter 17 where we introduce channel
transforms.

« Utility commands for calculating checksums. These are discussed in Section 4.16.3.
All commands related to zlib compression are subcommands of the z1ib command.
Since the compression algorithms all operate on binary data, they must be passed binary

strings, for example those directly constructed with the binary format command or by
encoding text strings with encoding convertto command.

4.16.1. Compressing strings

The commands discussed in this section expect the binary string that is to be operated on to be provided in a single
argument. Let us create such a string to use for our examples.

% set bin [encoding convertto utf-8 [string repeat abcd 200]]

4.16.1.1. Raw DEFLATE compression: z1ib deflate|inflate

The first pair, z1ib deflate and z1ib inflate, implement compression and expansion respectively using the
raw DEFLATE algorithm of RFC 1951. No headers or metadata are attached to the compressed data.

zlib deflate ziwzvn:
zlib inflate

The r£vEL argument should be a number between 0 and 9 with a level of 0 indicating no corpression and 9
indicating maximal compression, at the cost of performance. The default value is 1.

% bin2hex [set zbin [z1lib deflate $bin]]

+ 4b 4c 4a 4e 49 1c ¢5 a3 78 14 63 c5 00

(Our repeated input string results in excellent compression!)
The inverse command is z1ib inflate.

% encoding convertfrom utf-8 {zlib inflate $zbin]
5 abcdabcdabcdabedabedabcdabcdabedabedabedabedabedabedabcdabedabedabedabedabedabedabedabe. . .

When uncompressing, the inflate command will grow the buffer required for the uncompressed data as
required. As a performance optimization, you can specify BUFFERSTZE as the expected length of data so that
memory reallocations are avoided.

% encoding convertfrom utf-8 [zlib inflate $zbin 1000]
5 abcdabcdabcdabecdabedabedabedabedabedabecdabedabedabedabedabedabedabedabedabedabedabedabe. ..

122

Compressing strings

4.16.1.2. Zlib compression: z1ib compress|decompress

A second set of commands, z1ib compress and z1ib decompress, implement compression and expansion
respectively using the Zlib compressed data format defined in RFC 1950. This format uses the same DEFLATE
compression algorithm used by the z1ib deflate butincludes additional meta information, in particular an
Adler-32 checksum. The well known zip compressed files primarily use this format.

The syntax is similar to that of z1ib deflate and z1ib inflate.

zlib compress i
z)lib decompress opMPi

The optional LEVEL and BUFFERSIZE parameters have the same meaning as described above for the z1ib
deflate and z1ib inflate commands respectively.

% bin2hex [set zbin [zlib compress $bin]]

5 78 9c 4b 4c 4a 4e 49 1c c5 a3 78 14 63 c5 00 aa 4f 33 e0

% encoding convertfrom utf-8 [zlib decompress $zbin]

» abcdabcdabcdabcdabecdabcdabecdabecdabedabcdabedabecdabecdabedabecdabecdabedabedabecdabedabedabe. ..

Notice from the output of the bin2hex command that the Zlib compression format contains within it the output of
the raw DEFLATE data we printed in the previous section.

4.16.1.3. Gzip compression: z1ib gzip|gunzip

The last set of commands in this category z1ib gzip and z1ib gunzip are also based on the DEFLATE
compression algorithm but this time using the format defined in RFC 1952. The popular gzip and gunzip
command line utilities that produce . gz files use this format.

The syntax of these commands differs slightly from their brethren because the format supports more metadata
values.

z1lib gzip !
z1lib gunzip

: ?-level :vii? ?-header iiwiiou?
i ?-headerVar arnamME?

The -1evel option serves the same purpose as the LEvEL argument in z1ib deflate except it is supplied as an
option switch instead of a plain argument.

The -header option allows the caller to supply the associated metadata. #zprDICT should be a dictionary
containing any of the keys shown in Table 4.19.

Table 4.19. Gzip header keys

] Key Value
comment A comment to be included in the Gzip metadata
cre Aboolean value. If true, the GZIP header CRC is computed. This should be false if
! interoperability with the gzip program is desired.
filename The name of the file that was the source of the data.
0Ss The operating or file system type code as defined in RFC 1952. Common ones are 0 for
FAT, 3 for Unix, 11 for NTFS.
time The last modified time of the file as returned by clock seconds or file mtime. i
type One of the values binary or text indicating the type of data being compressed. Programs
handling Gzip format files may or may not pay heed to this flag.

All keys above are optional.

123

Compressing streams

Correspondingly, if the -headerVar option is used with the z1ib gunzip command, the metadata values
retrieved from the compressed data are stored in the variable varname in the caller’s context. The data is stored as
a dictionary which may contain the same keys shown in Table 4.19 and an additional key, size, that contains the
size of the compressed data.

% set hdr [list time [clock seconds] comment "A demo file™]

» time 1499148941 comment {A demo file}

% bin2hex [set zbin [zlib gzip $bin -header $hdr]]

> 1f 8b 08 10 8d 32 Sb 59 00 00 41 20 64 65 6d 6f 20 66 69 6¢C 65 00 4b 4cC 4a 4e 49 1c c5 ...
encoding convertfrom utf-8 [zlib gunzip $zbin -headerVar hdr2]

+ abcdabcdabcdabcdabcdabcdabcdabcdabecdabcdabcdabcdabcdabcdabecdabedabcdabedabedabedabedabe. ..
% print_dict $hdr2

32

> comment = A demo file
cre =0
0s =0
size = 800
time = 1499148941

...Additional lines omitted...

4.16.2. Compressing streams

The commands discussed in the previous section all work with in a “single-shot” manner where all the data that
is to be operated on is provided in one call. This is neither convenient nor performant in terms of memory usage
when the data becomes available in a discrete or piecemeal fashion. For such cases, Tcl provides the z1ib stream
command where data can be fed into the compression engine in incremental fashion.

Before going into the details, a short example that mirrors our previous ones:

set strm [zlib stream deflate]
for {set 1 0} {$i < 200} {incr i} {
$strm put [encoding convertto utf-8 "abcd"]
}
$strm finalize
set zbin [$strm get]
$strm close
bin2hex $zbin

The script creates a new zlib stream command that will compress any data passed to it via the put subcommand.
When we are done, finalize completes the compression process. The compressed data can then be retrieved
with get. Finally, we release resources associated with the stream by calling close.

The sequence of commands for decompression would be very similar except that we call z1ib stream inflate
to create the stream. Likewise, to compress using the Zlib or Gzip formats, we would call z1ib stream compress
and z1ib stream gzip respectively.

4.16.2.1. Creating a compression stream

A compression stream is created with a command of the form

zlib stream iNGINE ?0FTICNS

The ENGINE parameter is one of deflate, inflate, compress, decompress, gzip or gunzip and corresponds
to the various compression and decompression commands described in the preceding sections. The command
returns a new command representing a streaming compression instance to which data can be written and read.

The options that can be used with the various engines is shown in Table 4.20.

124

Compressing streams

Option

-dictionary BINDATA

-header HEADER

-level LEVEL

Table 4.20. Compression stream options

Description

Specifies a compression dictionary to be used for compressing or
decompressing. BINDATA IS a binary string and is not to be confused with a
Tcl dictionary. See the explanation of the preset dictionary in RFC 1950 13 This
option can be used with the deflate, inflate, compress and decompress
engines.

Specifies the Gzip format metadata header. This option can only be used with
the gzip engine.

Specifies the compression level. This option can be used with the deflate,

compress and gzip engines.

Let us open streams to do Gzip compression and decompression.

% set compressor [zlib stream gzip -header {comment "A zlib demo"}]
» 1:tcl::zlib::streamcmd_2

% set decompressor [zlib stream gunzip]

» ::tel::zlib::streamemd_3

The commands returned are then invoked for various read and write operations on the stream.

4.16.2.2. Writing to a compression stream

A stream is written to with the put command.

A OPUT POETIONS? HINDATA
Multiple put commands may be invoked to add data in incremental fashion. For example,

% $compressor put [encoding convertto utf-8 "abcd"]
% $compressor put [encoding convertto utf-8 "efgh"]

The command supports the options shown in Table 4.21.

Table 4.21. Compression stream put options

Option Description

-dictionary BINDICT Sets BInDICT as the compression dictionary as described in Table 4.20.
. -finalize The use of this option is described in Section 4.16.2.3.

-flush The use of this option is described in Section 4.16.2.9.

-fullflush The use of this option is described in Section 4.16.2.9.

Note that only one of -finalize, -flush or - fullflush may be specified.

4.16.2.3. Finalizing a compression stream

Once all data has been written to a stream, it needs to be told accordingly so that it can corplete the compression

process, write out meta data and so on. This can be done in one of two ways:

If you know the data you are writing is the last piece, you can specify the -finalize option to the put command.

13 https://tools.iet{.org/html/rfc1950

125

Compressing streams

% $compressor put -finalize [encoding convertto utf-8 "ijkl"]

Alternatively, in cases where you do not know a priori that the data being written is the final bit, you can call the
finalize command once you know that no more data will be forthcoming.

$compressor finalize

4.16.2.4. Getting the stream checksum

The compression stream keeps track of the checksum of the uncompressed data written to it. This checksum can be
retrieved at any point with the checksum command.

% $compressor checksum
> 4135066404

4.16.2.5. Reading from a compression stream

The compressed data is read back from a compression stream with the get command.

v oget 7o

If the counT argument is specified the command returns that many compressed bytes from the stream. If it is not
specified, all remaining data in the stream is returned.

set compressed_1 [$compressor get 2]

set compressed_remaining [$compressor get]

bin2hex $compressed_1 $compressed_remaining

> 1f 8b 08 10 00 00 00 00 00 00 41 20 7a 6¢c 69 62 20 64 65 6d 6f 00 4b 4c 4a 4e 49 4d 4b ...
4.16.2.6. Reusing a compression stream

To reuse an existing stream for new data, call the reset command. The stream can then be used to compress
exactly as if it were a new stream opened with z1ib stream. This command is a little more efficient than closing
the stream and opening a new one.

$compressor reset » (empty)

4.16.2.7. Closing a compression stream

Once a compression stream is no longer required, it must be released by calling the close command.
$compressor close » (empty)

4.16.2.8. Decompression streams

Decompression streams work exactly like compression streams except for the engine used. We can incrementally
decompress by writing the compressed data to the stream with put.

% set decompressor [zlib stream gunzip]

s t:tcl::zlib::streamcmd_4

% $decompressor put $compressed_1

% $decompressor put -finalize $compressed_remaining

In the case of Gzip format, we can retrieve the metadata header for the compressed data with header command.

126

Checksum computation

% print_dict [$decompressor header]

» comment =
cre =0
filename =
0s =0
type = binary

As before the decompressed data itself is obtained with get command.

set decompressed [$decompressor get 2]
append decompressed [$decompressor get]
encoding convertfrom utf-8 $decompressed
» abcdefghijkl

4.16.2.9. Flushing of compression streams

Because an explanation of flushing requires an understanding of how the DEFLATE algorithm works, we do not go
into details but refer you to the article by Thomas Pornin 1 Proma practical point of view, flushing a compression
stream allows the decompressing end to correctly decompress the data under certain conditions.

« In the case of a “sync flush”, a decompressor can decompress data up to the point at which the compressor
invoked the flush even in case of errors in writing subsequent data.

« In the case of a “full flush”, it additionally allows a decompressor to decompress data beyond the point of the
flush even in case of errors in transmission of earlier bytes.

For a Tcl Zlib compression stream, a sync flush or full flush is effected by calling the flush and fullflush
commands respectively.

: flush
¥ fullflush

Alternatively, you can use the -flush or - fullflush options when invoking the put command.

Flushing incurs a cost in compression efficiency. Generally, its use is dictated by the upper layer protocols that
make use of compression. For example, compression in HTTP entails no flushing as the content is sent as a single
blob. Packet oriented protocols on the other hand may mandate flushing at packet boundaries.

4.16.3. Checksum computation

The z1ib command has two subcommands for computing Adler-32 and CRC-32 checksums on a binary string.

zlib adler32 i: LAY
z1lib crc32 nryoaza 222

BINDATA is the binary string whose checksum is to be computed. I8¥77DATA is used to initialize the computation.

z1lib adler32 {encoding convertto utf-8 abcd] » 64487819
z1lib crc32 [encoding convertto utf-8 abcd] » 3984772369

14 http://www.bolet.org/~pornin/deflate-flush.html

127

Channel compression transforms

4.16.4. Channel compression transforms

In this chapter we have not discussed one additional mechanism for compressing data — through I/O channel
transforms. We will postpone that discussion to Section 17.2.5.

4.17. Chapter summary

In this chapter we covered Tcl’s facilities for dealing both text and binary data. Along the way we covered the more
advanced topics of pattern matching, compression and internationalization. In succeeding chapters, we will look
at more structured forms of data in Tcl such as lists and dictionaries.

4.18. References

WWWUNICODE
Unicode Tutorlals and Overviews 15, The Unicode Consortium. Unicode tutorials and resources from the
Unicode consortium.
FRIEDL
Mastering Regular Expressions, Friedl, O’Reilly, 2007. Describes regular expressions and their use across
multiple programming languages and applications including Tcl.
TUTREGEXP
Online Tcl tutorial ™, Provides examples and hints for how to go about designing a regular expression.
WWWREXEGG
Www.rexegg,com". A website dedicated to regular expressions in general (not Tcl specific). It offers tutorials
and detailed explanations along with examples of their use.

WWWREXINFO
www.regular-expressions.info 18 Another useful website dedicated to regular expressions similar to the above.

15 http://unicode.org/standard/tutorial-info.html

16 https://www.tcl.tk/man/tcl8.5/tutorial/Tcl20a.html
1 http://www.rexegg.com

18 http://www.regular-expressions.info

128

[.ists

The human animal differs from the lesser primates in his passion for lists.
— H. Allen Smith

A list in Tcl is an ordered collection, or sequence, of values and serves a purpose similar to that of integer indexed
arrays in other languages.

Because lists are pervasive in Tcl programming, there are a number of commands for their manipulation.
Further, lists can be nested, allowing their use for construction of more elaborate data structures like trees. Many
commands therefore also support operations that facilitate such use.

5.1. Constructing lists

We will begin our discussion of lists with the basic means by which they can be created.

5.1.1. List literals

As with all values, Tcl lists have a string representation and they can be constructed in literal form through that
string format. For example, the command

set mylist {One Two Three} » One Two Three

assigns the string One Two Three to the variable mylist. A command that operates on lists will interpret this
string as a list with three elements One, Two and Three.

llength $mylist 5 3
lindex $mylist end » Three

It is common practice to define literal lists using braces as opposed to quotes. However, the use of braces does
not in any way or form imply that the value is a list. Both values are simply strings. As described in Section 3.3,
both braces and quotes denote string literals with the only difference being the treatment of special characters.
Thus the following two assignments result in the same list as demonstrated below.

% set la {{Item One} Item_with_no_spaces "Item Three"}
> {Item One} Item_with_no_spaces "Item Three"
% set lb "\"Item One\" Item_with_no_spaces {Item Three}"
> "Item One" Item_with_no_spaces {Item Three}
foreach a $la b $1b { puts "$a == $b" }
» Item One == Item One
Item_with_no_spaces == Item_with_no_spaces
Item Three == Item Three

32

Multiple string representations

One point to be noted about lists is that they do not have a “standard” string representation. Just as Oxa and 10 are
different strings representing the same number in hexadecimal and decimal format, strings that do not compare

129

List literals

equal may represent the same list. For example, the two strings below are valid representations of the same 4-
element list though they do not compare equal as strings.

" this is a list "
"this 1s a list"

Although a list may have many string representations, Tcl always ensures that the individual elements of lists are
retrieved in exactly the format that they were created. In other words, adding an element to a list does not change
the element's string representation and the following invariant holds for all list operations:

[lindex [linsert 7 sT Ixoix =IEN] Qnnx] eq Zli

where eq is the string equality operator. Essentially what that means is that inserting and then retrieving an
element will not change its string representation.

Parsing string representations of lists

The manner in which the string is parsed into elements is the same as what was described in Section 3.1 for
parsing commands into words except that no variable and command substitution is performed. In particular, note
that the list commands will still perform backslash substitution when converting a string value to a list.

Because the parsing and interpretation of a string as a list is often a source of confusion, let us walk through
another example. Consider the following two commands to retrieve the first element of a list using lindex.

lindex "a\ b c" 0 » a
lindex {a\ b ¢} 0-»ab

Note that the characters within the quotes and braces are identical but the results are different. If you understand
why, skip to the next section. Else read on.

In the first case, following the rules described in Chapter 3, the Tcl parser treats backslashes inside the quoted
string as escapes for the character that follows. It replaces the backslash and following space with a single space
character. Consequently, the 1index command receives the string value

abec

as its first argument. As we said earlier, the list based commands apply the same rules as the Tcl parser for
breaking up a string into words. Thus when 1index parses the argument following those rules, the string gets
parsed into three words (list elements), a, b and c. These form the elements of the constructed list whose first
element is returned.

On the other hand, since backslash replacement is not done inside braces, in the second case 1index receives the
string value

a\ b c

Now when lindex parses the value, it uses the same backslash substitution rules whereby the backslash protects
the following space from being treated as a word separator. Consequently the string is parsed as just two
words—a b, and ¢ —which then make up the constructed list.

In essence, when enclosed in double quotes, the argument undergoes one round of backslash substitution by the
Tcl parser and then a second round when the 1index command interprets the contents of the variable as a list.
When the string is enclosed in braces on the other hand, it is protected from substitution by the Tcl parser and only
undergoes the backslash substitution by lindex.

130

Basic list construction: 1ist

For those concerned with the performance impact of the parsing and interpretation of

E the string: Tcl maintains an internal representation of the list just as it does for numeric
values. As long as the values are further manipulated using list commands, there is never
an impact due to conversions to and from string representations.

In most cases, the limited substitution inside braces makes their use more convenient that the use of quotes when
defining lists. In more complex cases, an even better option for list construction is the 1ist command described
next.

5.1.2. Basic list construction: 1ist
Lists can also be constructed explicitly with the 1ist command which takes an arbitrary number of arguments
and returns a list containing those elements.

list ?vaios waioe W2

Thus the example in the previous section could also have been written as

% set items [list "Item One" Item_with_no_spaces "Item Three"]
» {Item One} Item_with_no_spaces {Item Three}

The 11st command is most useful when the values used to construct the list reside in variables or are the result of
a command.

set 1 0 + 0
set numbers [list $i [incr i] [incr 1]] » 0 1 2

Do not use string interpolation in lieu of the 1ist command to construct lists whose
ﬂ elements come from variables and command evaluation. Although string interpolation
may seem to work in some cases, it will not give the desired result when the values
contain whitespace or other special characters as in the example below.

set a "First elem" + First elem
set b "Second elem" » Second elem
lindex [list $a $b] end > Second elem @
lindex "$a $b" end > elem O

@ Correctly retrieves last element
® Incorrect as a result of whitespace in elements

In general, you should always stick to commands that operate on lists to work with data
that is structured as lists. Do not use string interpolation or string targeted commands for
the purpose.

5.1.3. Splitting strings into lists: split

The split command constructs a list by breaking apart a string into a list of substrings based on a set of delimiter
or separator characters.

split sowine 20

The SEPARATORS argument to split is a string that is treated as a set of separator characters, not as a single
string to be treated as a separator. If unspecified, it defaults to the set of whitespace characters. Thus to break up a
paragraph (simplistically) into words based on whitespace,

131

Splitting strings into lists: split

% set paragraph "A sentence.\tAn exclamation! Any guestions?"
> A sentence. An exclamation! Any questions?
% print_list [split $paragraph]
» A
sentence.
An
exclamation!
...Additional lines omitted...

Or to break it up into sentences based on sentence terminators,

% print_list [split $paragraph ".!?"]
» A sentence
An exclamation
Any questions

Notice that the leading spaces and tabs are preserved in this last example as they are not treated as separators.

Leading and trailing as well as consecutive separators will result in empty elements in the resulting list. For
example,

% split " one two "
s> {} {} one {} two {} {}

The regexp command we saw in Chapter 4 provides an alternative to split for more generalized separator
patterns and flexibility. The textutil: :split package in Tellib ! offers splitx as a convenient wrapper based

on this.

% package require textutil::split
» 0.7
% print_list [textutil::split::splitx $paragraph {\s*[.!?]\s*}]
» A sentence
An exclamation
Any questions

Notice the leading tabs and spaces are removed from the elements.

A commonly seen idiom for processing file content line by line is to read the entire file and then use splitto
transform it into a list of lines using the newline character as the separator. The foreach command can then be
used to iterate over list. The pseudocode below outlines this method which is generally faster than reading the file
in a line at a time.

set fd [open datafile.txt]
foreach line [split [read $fd] \n] {
...Do something with $line...

¥
close $fd

Similarly, split is often used for processing a string a character at a time by passing an empty string as the
separator argument.

% foreach char [split "string" ""] { puts $char }
> S
t

1 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

132

Concatenating lists: concat

...Additional lines omitted...

The split command and the join command we saw in Section 4.2.5 can be roughly
ﬂ thought of as inverses of each other. However, they are not exact inverses. In particular,
it is not guaranteed that joining a list using a separator and then splitting that list on the
same separator will result in the original list.

set 1 [list a b/c d/e f) » a b/c d/e f
set s [join $1 /] > a/b/c/d/e/f
split $s / +abcdef

The presence of the separator character within the list elements will break the inversion.

5.1.4. Concatenating lists: concat

The concat command returns a new list formed by concatenating zero or more lists. It has the syntax
concat ?:.;3T LIET L7
For example,

% concat {a b c} {d {e f} g} {3 h
sabcdd{e f} gh

Note that concat preserves any nested list structure; only the outermost lists are merged.

Although concat is defined as operating on lists, it does not actually validate that the operands are well-formed
lists. In that case, the result may not be a well formed list either. For that reason, many people think of concat as
a command that operates on strings. However, the Tcl reference describes it as operating on lists so we will stick
with that description.

One caveat to be aware of with regard to the use of concat with strings is that it will trim

any leading or trailing whitespace from each operand. This does not affect list semantics
as leading spaces are anyway ignored in the interpretation of strings as lists.

5.1.5. Repeating elements: lrepeat

The lrepeat command returns a list constructed by repeating its arguments a specified number of times.
lrepeat CUNTREIEMINT EIEMENT L7

It is often useful in initialization, for example
set download_counters [lrepeat 12 0] >0 00000000000

More than one argument may be supplied for repetition.

lrepeat 3 a [lrepeat 2 b] » a {b b} a {b b} a {b b}

133

List indices

5.2. List indices

Elements within a list are referenced by their position in the list using list indices in the same manner as described
for strings in Section 4.1. These indices are 0-based so 0 references the first element in the list, 1 references the
second and so on. As a special case, end can be used as an index. Unless mentioned otherwise, it refers to the last
element in a list. We will explicitly note the commands where it refers to the position after the last element.

As for string indices, list indices may be specified in the special arithmetic form

R+ -

end[+|-] 1+

5.2.1. Nested list indices

Elements in a list may themselves be interpreted as lists. For instance, we might represent a person as a list of
three elements: a name, an address, and a date of birth where the address field is itself a list of strings.

set address [list "Buckingham Palace" Westminister England]
set her_majesty [list "Elizabeth Alexandra Mary" $address "21-Apr-1926"]

To facilitate operations on these kind of nested lists, many list commands accept a sequence of indices in place of
a single index. The indices act like a “path” through the nested list where the elements of the index list identify

an element at each nesting level. Thus the index 1 would refer to the second element of the outermost list, ie. the
entire address. The index sequence 1 0 would in turn reference the second element of the outer list as before and
then the first element of the inner (address) list, ie. Buckingham Palace. The lists and the indices may be nested
to any depth.

We will see examples of nested lists as we proceed through this chapter.

5.3. Retrieving elements

5.3.1. Retrieving elements by position: 1index

The lindex command returns the element at a specific position in the list.

lindex /57
In the simple case where only one index is specified, the command returns the element at that position in the list.

% puts "[lindex $her_majesty 0] was born on [lindex $her_majesty 21"
» Elizabeth Alexandra Mary was born on 21-Apr-1926

The number of indices determines the nesting depth of 7757. For each provided index, the command will burrow
an additional level into the element at that index effectively treating the indices as a path through the nested list.

% lindex $her_majesty @

» {Elizabeth Alexandra Mary} {{Buckingham Palace} Westminister England} 21-Apr-1926
% lindex $her_majesty 1

» {Buckingham Palace} Westminister England

% lindex $her_majesty 1 end

» England

@ Nesting depth of 0 (no indices specified), entire list argument is returned.

134

Retrieving a list subrange: lrange

The multiple indices may be provided as a single list or as independent arguments. Thus the following are
equivalent.

lindex $her_majesty 1 end -+ England
lindex $her_majesty {1 end} -» England

Note that 1index will return an empty string, not raise an error, if passed an index that is negative or greater than
the list size.

5.3.2. Retrieving a list subrange: 1lrange

While lindex returns a single element, the 1range command returns a list containing all elements between the
two specified indices.

lrange =7 ©insw 7AR0
The returned list contains all elements between indices FIRST and LAST (both inclusive) in LIST.

% set downloads_by_month {120 110 130 100 90 85 92 105 114 140 156 190}
+ 120 110 130 100 90 85 92 105 114 140 156 190

% lrange $downloads_by_month 0 2 (1)

+ 120 110 130

% + {*}[1lrange $downloads_by_month end-2 end] (2]
> 486

© Downloads by month in the first quarter
©® Total downloads in the last quarter

Note that 1range does not support nested lists.
5.3.3. Retrieving leading elements: lassign

The lassign command sequentially assigns the leading elements in a list to the specified variables and returns a
new list (possibly empty) containing the remaining elements.

lassign ;37 ?2VAR

If the number of elements in the list is less than the number of variables specified, the additional variables are set
to the empty list.

% set remaining [lassign {A B C D} x y]

> CD

% puts "x=%$x, y=%y, remaining=$remaining"
» x=A, y=B, remaining=C D

% unset -nocomplain x y z

% lassign {A B} xy z

% puts "x=<$x>, y=<$y>, z=<$z>" @

> X=<A>, y=, z=<>

© Notice z is assigned an empty string.

135

Modifying lists

5.4. Modifying lists
5.4.1. Appending elements: lappend

The lappend command is useful for incrementally constructing a list by adding trailing elements.
lappend vARNAME ?VALHE L7

This command takes the name of a variable as its first argument interpreting its content as a list. Any additional
arguments are treated as values to be added to the end of the list stored in the variable.

set greek [list alpha \u03b2] - alpha B (1]
lappend greek \u03b3 delta + alpha B y delta
set greek > alpha B y delta

© Beta is Unicode character U+03b2
Note that if the variable does not exist, lappend will create it as an empty list and then append the remaining

arguments. Thus the statements

set greek [list alpha \u03b2]
lappend greek alpha \u03b2

are equivalent if the variable greek did not already exist.

Because the lappend command modifies a variable “in-place” it is one of the more
- ‘ - efficient means of constructing or modifying a list as opposed to commands like 1insert
-, which operate on list values and hence have to make a second copy of the list. For
similar reasons, other list commands, such as 1set, which operate on variables are to be
preferred wherever possible to similar commands, such as 1replace, that operate on
values.

5.4.2. Setting element values: 1set

The 1set command replaces any element of a list stored in a variable with a new value.

lset va

Like lappend, 1set operates on variable VARNAME that is presumed to contain a list. However, unlike 1append,
which only adds new elements to the end of the list, Lset permits assignment to any element of the list at the
position specified by INDEX. The new list is stored in the variable and also returned as the result of the command.

set items {a {B C} d} » a {B C} d
lset items 2 e > a{B C} e

The command supports nested lists. The multiple indices comprising the path to the nested element may be
specified as a single argument or separately. Both variations are shown below.

lset items {1 0} X; » a {X C} e
lset items 1 end Y » a {X Y} e

Indices must lie between 0 and the length of the list. In the latter case, the value is appended to the list. Note that
end when used with 1set refers to the last element in the list and end+1 is used to extend the list.

lset items end f > a {Xyyf

136

Inserting elements: linsert

lset items end+1 g » a {X Y} f g

Because 1set works with nested lists, it can be used to append elements to inner lists,
something you cannot do with lappend.

5.4.3. Inserting elements: linsert

The linsert command inserts one or more elements into a list at a specified index and returns the resulting list.

linsert i:s7

The 7npEX argument must be a single index as the command does not support nested lists. Unlike lappend and
lset, linsert operates on a list value L1S7, not on a variable.

set items {a b c d}
linsert $items 1 X Y Z

Unlike most list commands such as 1index, 1set and lreplace, the linsert command treats the index value end
as beyond the last element, not the last element itself. To insert before the last element in the list, specify the index
asend-1.

lindex $items 1 > b

linsert $items 1 X >aXbcd®
lindex $items end +d

linsert $items end X -»abc d X @
linsert $items end-1 X > a b ¢ X d

© Item inserted before b
©® Item inserted after d

5.4.4. Replacing elements: 1replace

The 1replace command returns a new list formed by replacing one or more elements of a list with zero or more
new values.

lreplace :isv =iRST AN

Like linsert, it operates on list values, not variables, and does not support nested lists. All elements of LI1sTat
positions between F7rsT and A4St (inclusive) are removed and replaced with the new values.

lreplace {abcd}y12XY-»>axyd

The count of replacement values does not have to equal the count of replaced elements.

lreplace {abcdry 02XY + XYd
lreplace {abcdy 11 XY Z>aXyzZcd

Like most list commands, 1replace interprets the index end as the last element in the list.

lreplace {a b c d} end-1 end X Y » ab XY

137

Deleting elements

5.4.5. Deleting elements

Just as is the case with strings, there is no separate command for removing elements from a list. Instead, the
lreplace command with no replacement values specified is used for the purpose.

lreplace fabcder11>acde @
lreplace {abcder13>ae®

© Delete one element
©® Delete range of elements

5.5. Transforming lists
5.5.1. Mapping list elements: 1map

The 1map command provides a generalised way to create a new list by mapping elements of a list to new values. It
takes one of the following forms.

In the simpler form, the command executes SCRIPT once for each element in the list LIST. At the beginning of each
iteration of the script, the variable VARNAME is assigned the value of the element. The result of the iteration is
appended to a result list which is returned as the result of the command.

% lmap n {1 2 3 456 7 8 {expr {$n*2}}
> 246810 12 14 16

We can terminate the iterations early with the break command. In this case, the returned list will only include the
results of the iterations up to that point.

We can further control which elements are mapped in the returned list. If the continue command is invoked
within the script, the loop continues with the next element of the source list without adding the result of the
current iteration to the command result.

For example, to generate a new list only for all even numbers less than 7:

% Imap n {1 23456789} {
if {$n > 6} break
if {$n % 2 } continue
expr {$n*2}

+

>4 8 12

The more complex form of 1map accepts multiple variables and lists.

lmap vARL ST Li8T1 2VA

In this form, VARLIST1 etc. each is a list of variables. In each iteration of SCRIPT, consecutive elements of the
corresponding lists LIST1, LISTZ etc. are assigned to the variables. As before, the result of the commanad is the list of
values generated by evaluating SCRIPT.

% lmap {x y} {A B CD} {mn} {1234}y {
string cat "xm,$ysn"
¥

138

Reversing a list: 1reverse

» A1,B2 C3,D4

There need not be the same number of variables in each variable list or the same number of values in each value
list. If some value list has fewer values that required, the empty string is assigned to the corresponding variables.

% lmap {x y} {A B CD} {n} {1 2 3 4} {
list $n $x $y

}

> {1 AB} {2 CD} {3 {y {3} {4 {F {}}

5.5.2. Reversing a list: lreverse

The lreverse command returns the elements of the passed list in reverse order.
lreverse 31

Use of the command is straightforward.

lreverse {a bcde}y»>edcba

The command is often useful in some algorithms where it is more efficient to generate an intermediate result in an
order opposite to that desired, and then reverse it to get the final result.

5.6. Counting elements: 11ength

The 11ength command returns a count of the number of elements in a list.
llength fa b cde}»5

5.7. Sorting lists: 1sort

The 1sort command offers a number of ways to sort a list based on some ordering relation.
lsort sopmcions 7 1IST

The default ordering relation compares elements as string values as though string compare were used as the
comparison function.

lsort {bcEgfady»Eabcdfg

Notice the default sort is case-sensitive and sorts the elements in increasing order.
5.7.1. Comparing elements

The default ordering may not always be suitable for the desired sort. For example, you may wish to sort in a case-
insensitive manner. The command therefore allows you to control the ordering function used to compare elements
through the options shown in Table 5.1.

Table 5.1. Lsort comparison options

Option Description

-ascii Compares elements using Unicode code-point collation order. This is the default.

139

Comparing elements

Optidn

-dictionary

-integer

-real

-command COMMAND

- -nocase

Description

Compares elements using “dictionary” order. This is the same as -ascii, except
for two differences. First, embedded numbers within the strings are compared as
integers rather than as character strings. For example, a100b will sort after adb.
However, a - character preceding a number is not considered part of the number
so in effect all numbers are considered positive. Thus a-2b will be considered
greater than a-1b.

The other difference from -ascii is that case is ignored when comparing strings
except that if two strings compare as equal when ignoring case, they are then
compared in case-sensitive fashion. For example, abc compares as less than Bbc but
greater, not equal, to Abc.

The -nocase option is ignored for dictionary comparison.
Elements are treated as integers and sorted using integer comparisons.

Elements are treated as floating point numbers and sorted using floating point
comparisons.

This option allows the element ordering to be based on any arbitrary caller-defined
command. This command is passed two arguments and should return a negative
integer to indicate the first argument is less than the second, 0 if they are equal, and
a positive number if the first is greater than the second.

Specifies that comparisons should be done in a case-insensitive manner. The option
is ignored except if the -ascii sort mode is in effect.

The following examples illustrate the difference between the various options that affect comparisons. First,
numeric comparisons:

set integers {5 10 30}

lsort
lsort

$integers
-integer $integers

set reals {1.0 0.1e2 5e-2}

lsort
lsort

Similarly, string comparisons:

$reals
-real $reals

5 10 30
10 30 5
5 10 30
1.0 0.1e2 5e-2
0.1e2 1.0 Se-2
5e-2 1.0 0.1e2

L T 2 2

set part_numbers {p_100_b P_100_C P_20 B} » p_100_b P_100_C P_20_B

1sort
lsort
lsort
lsort

$part_numbers
-ascii $part_numbers
-nocase $part_number

5 P_100_C P_20_B p_100_b
> P_100_C P_20_B p_100_b @
s 5> p_100_b P_100_C P_20_B ©

-dictionary $part_numbers > P_20_B p_100_b P_100_C (3]

© Same as default
® Case-insensitive
© Case-insensitive and embedded numerics compared as numbers

If none of the built-in comparisons are suitable for your purpose, you can use the - command option to specify a
custom sort ordering. In the example below, we sort the part numbers based on the number of items in stock.

proc nstock {part} { return [string length $part] } (1]

proc compare_stock {s1 s2} { return [expr {[nstock $s1] - [nstock $s21}1 }
lsort -command compare_stock $part_numbers

5> P_20_B p_100_b P_100_C

140

Sort ordering

© Number in stock happens to match length of part number!

In many cases, instead of sorting using the - command option, it is faster to transform the
- ‘ - list to a format suitable for sorting using the built-in ordering functions. This is discussed

o in the Custom sorting2 page on the Tcler’s Wiki®.

5.7.2. Sort ordering

The order in which list elements are sorted can be controlled with the - increasing and -decreasing options.
The former, which is the default, sorts the elements from smallest to largest while the latter sorts from largest to
smallest.

set L [list John Paul Ringo George] > John Paul Ringo George

lsort $L » George John Paul Ringo
lsort -increasing $L » George John Paul Ringo
lsort -decreasing $L » Ringo Paul John George

The sort is stable, meaning that the ordering of elements that compare as equal will be preserved after the sort. For
example,

lsort -nocase {b a B} s abB
lsort -nocase {B ab} »>aBb
lsort -real {1 1.0 0} > 01 1.0
lsort -real {1.0 1 0} > 0 1.0 1

Notice that the order in which equal elements are returned is the same as their order in the original list. For
instance, b and B are equal when sorting in case-insensitive mode and their order in the sorted list is the same as
the order in the original list.

5.7.3. Sorting structured lists

Lists are often used in Tcl for storing structured data similar to records in a database. For example, suppose you
need to store records containing students’' name and test scores. There are multiple ways this might be done in Tcl,
the choice depending on the access patterns and relation with other data.

5.7.3.1. Sorting nested lists with -index

The most obvious way would be to use a nested list where each inner list contains the person’s name and score.
This format is often used for results returned from databases.

% set students {{Mike 90} {John 85} {Michelle 90} {Ann 92%}
» {Mike 90} {John 85} {Michelle 90} {Ann 92}

Sorting records stored in this manner requires comparisons based on the value of elements in the inner lists.
Lsort provides the - index option for this purpose. The value of the index option indicates which element of the
inner list is to be used in the sort comparisons. This allows sorting of our student database by either name or test
score.

% lmap record [lsort -index 0 $students] {lindex $record 0y O

» Ann John Michelle Mike

% lmap record [lsort -index 1 -integer $students] {lindex $record 0} (2]
» John Mike Michelle Ann

§ http://wiki.tcl.tk/4021
http://wiki.tcl.tk

141

Sorting structured lists

© Sortbyname
© Sortbyscore

If the list is nested more than one level deep, you can even pass multiple indices, in which case they will be treated
as a path through each nested sub-list, exactly as for 1index.

5.7.3.2. Sorting dictionaries with -stride

Another method of storing records uses a dictionary format which alternates the names and scores.

% set student dict {Mike 90 John 85 Michelle 90 Ann 92}
5> Mike 90 John 85 Michelle 90 Ann 92

When structured in this manner the -stride option of 1sort can be used to sort the records. The list is then
treated as implicitly consisting of groups of the size specified by the option.

% lsort -stride 2 $student_dict
5> Ann 92 John 85 Michelle 90 Mike 90

By default the sort comparison element is the first element of each group. So the above fragment will sort based on
names. The -index option can be used with -stride to change this.

% lsort -stride 2 -index 1 $student_dict
s John 85 Mike 90 Michelle 90 Ann 92

This now sorts based on the second field of the grouping, the score.

Note that -stride works equally well for flat lists containing records with more than two fields.

% set math_english_scores {Mike 90 85 John 85 90 Michelle 90 92 Ann 92 86}
5> Mike 90 85 John 85 90 Michelle 90 92 Ann 92 86
% lmap {name math english} [lsort -stride 3 -index 1 $math_english_scores] {

set name 0

s
> John Mike Michelle Ann
% lmap {name math english} [lsort -stride 3 -index 2 $math_english_scores] {

set name 9

> Mike Ann John Michelle

© Sort by Math scores
© Sort by English scores

5.7.3.3. Retrieving sorted indices with -indices

One common method of storing data is to maintain a single master list of records which is then sorted multiple
ways using different keys (e.g. for display purposes). The -indices option instructs the 1sort command to return
the indices of the sorted elements instead of the sorted values themselves. We can use this to display our sample
data sorted by name or test score without having to maintain multiple lists holding the same data.

% lmap recnum [lsort -indices -index 0 $students] {
lindex $students $recnum O

b
» Ann John Michelle Mike

142

Removing duplicate elements

% lmap recnum [lsort -indices -index 1 -integer $students] {
lindex $students $recnum O

}
+ John Mike Michelle Ann

Another use case for -indices arises when data is stored as parallel lists. For example

set scores(names) {Mike John Michelle Ann} > Mike John Michelle Ann
set scores(math) {90 85 90 92} > 90 85 90 92

Sorting in name order is straightforward but what if we wanted names in order of test scores as we did above? The

-indices option of 1sort is useful in this kind of situation where we want to retrieve elements in one list based
on a sort order on a different list.

lsort -indices -integer $scores(math) - 1 0 2 3
We can thus print names in order of test score as follows

% lmap recnum [lsort -indices -integer $scores(math)} {
lindex $scores(names) $recnum

¥
> John Mike Michelle Ann

5.7.4. Removing duplicate elements

One final option for 1sort is -unique which removes duplicate elements from the returned sorted list.
lsort -unique {babdac}y»abcd

A common use of the -unique option is in the implementation of sets to remove
duplicate elements in operations like union.

Note that duplicate elements are those which compare as equal as per the sort options, not just those that identical.
Moreover, in case of duplicates, it is the last duplicate element from the input list that is preserved. The following
example should clarify both these points.

lsort -unique {b a B d A ¢} cd

> Bab
lsort -nocase -unique {b a BdAc}>ABcCd

Note how the “last” duplicate is preserved and how the use of -nocase impacts the result.

In similar fashion, when the -indices option is specified alongside -unique, it is the index of the last duplicated
element is included in the returned list.

lsort -indices -unique {a c bedbd}» 05163

In the case of nested lists with the -unique option, when the inner elements used for comparison are deermed
equal, only the last of the outer elements whose inner elements are equal will be included in the result.

lsort -unique -index 0 {{1 a} {3 b} {1 c} {2 d}} » {1 c} {2 d} {3 b}

The element 1 a is not included in the result as the comparison key 1 recurs later in the list.

143

Searching lists: 1search

5.8. Searching lists: 1search
The 1search command searches a list for elements matching specified criteria.
Isearch ?cpcions W20 1080 BATTHRY
In its simplest form with no options specified, the command returns the index of the first element in z1s7

that matches pPATTERN. By default, this matching is done by treating PATTERN as a glob-pattern as described in
Section 4.11.

lsearch {foo bar jim} b* » 1

5.8.1. Search match operators

The type of matching used can be controlled by specifying the options shown in Table 5.2.

Table 5.2. Lsearch matching options

Option Description

-exact The pattern string is treated as a literal string with no special characters and compared
against list elements for equality. Note that equality does not mean the two strings are
identical as the meaning of equality depends on other options like -integer which
control the comparison.

-glob Use glob-style matching (the default) as described in Section 4.11.

-regexp Use regular-expression matching as described in Section 4.12.

-nocase Specifies that differences in character case are to be ignored when comparing the pattern .
with the list elements.

-not Negates the sense of the match, thereby including only those elements do not match the
pattern.

The options -exact, -glob and -regexp are mutually exclusive. If more than one is specified, the last one takes
effect. Somewhat counterintuitively, the default matching option for 1search is -glob, not -exact.

Here are a few examples to clarify the various matching types.

set 1 {a a..* a.* ab} >
lsearch $1 a.
lsearch -glob $1 a
lsearch -exact $1 a
lsearch -regexp $1 a.
lsearch -exact $1 b

* a.* ab

a..
1]

E o I .
N A 2

a
1
1
2
0
-1

©@ Defaultsto -glob

Notice the differing results with the same search pattern.

matches succeed even if just a substring of the element being compared matches the
expression. If you want to match the entire element, constraints like ~ and $ must be
specified.

E One thing to keep in mind when using the -regexp option is that regular expression

lsearch -regexp {abcde abcd bcd} b.d > 0

144

Search operand types

lsearch -regexp {abcde abcd bcd} {~b.d$} » 2

The -nocase and -not options can be used with any of the above to modify the matching mode.

lsearch {abc BCD bcd} b* > 2
lsearch -nocase {abc BCD bcd} b* > 1
lsearch -exact {abc BCD bcd} bed s 2
lsearch -nocase -exact {abc BCD bcd} bcd s 1
lsearch -regexp {100 abc a10 xyz} {M\d+} - 0
lsearch -not -regexp {100 abc a10 xyz} {M\d+} > 1

5.8.2. Search operand types

When exact matching is in effect, the options shown in Table 5.3 may be used for specifying the data type to be
assumed in the comparisons in a similar fashion to what we described earlier for 1sort.

Table 5.3. Lsearch data type options

Option Description
-ascii Use string comparison with Unicode code-point collation. This is the default.
-dictionary Use “dictionary” comparison. See the description of the option in Table 5.1. However, as

detailed in the Tcl 1search reference page, this only differs from the -ascii option if the 3
-sorted option is also present.

-integer Treats the elements of the list as integers, and compares the pattern using integer
comparisons. Ignored if -glob or -regexp are in effect.
-real Treats the elements of the list as floating-point numbers and compares the pattern

accordingly. Ignored if -glob or -regexp are in effect.

So, for example, to search for a value in a list of integers irrespective of the integer representation, the -integer
option is required.

lsearch -exact {0x10 10 16} 16 » 2
lsearch -exact -integer {0x10 10 16} 16 » 0

Without the -integer option, the first example treats the values 0x10 and 16 as different.

Always include the -exact option with the -integer or -real options. For example,

A lsearch -integer {0x10 10 16} 16 » 2

does not give the expected result because without the -exact option the command
defaults to -glob pattern matching wherein -integer has no effect.

5.8.3. Searching nested lists

To locate elements based on values in nested lists, use the -index option.

% set students {{Martin 90} {John 85} {Mike 90} {Ann 92}}
» {Martin 90} {John 85} {Mike 90} {Ann 92}

% lsearch -exact -index 0 $students Mike

> 2

145

Retrieving all matches

This returns the index in the outermost list that contains the matching element. You can add the -subindices
option to get the complete index based path to the matched element. For example, if Mike prefers to be called
Michael,

% set pos [lsearch -exact -index 0 -subindices $students Mike]
> 20

% lset students $pos Michael

> {Martin 90} {John 85} {Michael 90} {Ann 92}

Note the return value when -subindices is specified if no match is found as below.

% lsearch -exact -index 0 -subindices $students Albert
> -1 0

5.8.4. Retrieving all matches

In cases where you want to retrieve all matching elements and not just the first, you can specify the -all option,
either by itself or in combination with other options.

lsearch -all -index O $students M* » 0 2
lsearch -all -index 0 -not $students M* » 1 3

5.8.5. Retrieving element values

By default, the 1search command retrieves the indices of the matched elements. If the -inline" option is
specified, it will return the element values themselves.

lsearch -index 0 $students M* > 0
lsearch -inline -index 0 $students M* » Martin 90
lsearch -inline -index 0 -all $students M* > {Martin 90} {Michael 90}

When used with -subindices, -inline will only return the matching subelement values, not the whole outer
element. So we can get a list of matching names with

% lsearch -inline -all -index 0 -subindices $students M*
» Martin Michael

5.8.6. Searching sorted lists

When a list is sorted, 1search can use a more efficient algorithm to locate exact matches. You can indicate that
the list is sorted by passing the command the -sorted option. This option also implies -exact and cannot be used
with either the -regexp or -glob option. The options -increasing or -decreasing may be specified to indicate
the order in which list is sorted.

% lsearch -sorted {ab bc cd} bc

> 1

% lsearch -all -sorted -integer -decreasing {20 16 0x10 10} 16
> 12

Note that the -sorted option is primarily a performance feature and does not add any new capabilities to
lsearch.

146

Specifying a start offset

Using the -sorted option with a list that is not sorted in the expected manner will give
erroneous results without raising an error. An example is when the -nocase option is
used with 1search on a list that was sorted with 1sort without the -nocase option.

The 1search command also provides another very useful option, -bisect, when working in conjunction with
sorted lists. When specified, 1search returns the index at which the value is found if present (just as if -bisect is
not specified). If the value is not present, instead of returning -1, it will return the position after which the value
should be inserted into the list. In the case of lists in increasing order, the returned value is last index where the
element is less than or equal to the searched value. For lists in descending order, it is the last index for which the
element is greater than or equal to the search value. As a special case, if the search value would be placed before
the first element in the list or if the list is empty, the command returns -1.

% lsearch -sorted -integer -bisect -decreasing {20 0x10 16 10} 16
> 2

% lsearch -sorted -integer -bisect {10 0x10 16} 12

> 0

Note that -bisect implies -sorted and that it cannot be used in conjunction with the -all and -not options.

The option is useful in inserting values into a sorted list while maintaining the sort order and not having to resort
the list.

proc sorted_insert {1 val} {
set pos [lsearch -integer -bisect $1 $val]

if {$pos == -1 || [lindex $1 $pos] !'= $val} {
return [linsert $1 [incr pos] $val]

} else {
return $1

¥

¥

We try it with a value already present and one which is not.

% sorted_insert {10 20 30 40} 20
» 10 20 30 40

% sorted_insert {10 20 30 40} 25
» 10 20 25 30 40

5.8.7. Specifying a start offset

There is one final option to 1search that is useful when conducting multiple searches through a list, each starting
where the previous left off. The -start option takes a value that specifies that 1search should begin search at
that index position instead of at 0.

lsearch {abx aby def abz} ab* » 0
lsearch -start 2 {abx aby def abz} ab* - 3

5.9. Iterating over a list: foreach

The foreach command provides a general purpose means of iterating over a list.

foreach v !

147

List utilities

The varzIsTarguments are lists of one or more variable names and the 15T arguments are the lists to be
iterated over. In the simplest case, only a single pair VARL ST, L15Tis specified and VARLIST contains a single
variable name. For each value in 7757, the command assigns the value to the variable and executes SCRIPT.

% foreach element {a b c} { puts [string toupper $element] }
> A

B

C

When vARLIST contains more than one variable name, the variables in VARL IST are assigned consecutive
elements from the list at the beginning of each iteration. We can use this to iterate through the
math_english_scores list we saw earlier.

% set math_english_scores
+ Mike 90 85 John 85 90 Michelle 90 92 Ann 92 86
% foreach {name math english} $math_english scores {
puts "$name got a score of $math in Math and $english in English."”

b
+ Mike got a score of 90 in Math and 85 in English.

John got a score of 85 in Math and 90 in English.

Michelle got a score of 90 in Math and 92 in English.

Ann got a score of 92 in Math and 86 in English.

In the case that the number of elements in 757 is not a multiple of the number of variable names in VARLIST, the
extra variables are assigned the empty string on the last iteration.

In its full form, with multiple pairs of varzrsTand L1157 specified, foreach allows simultaneous iteration over
multiple lists. Again, revisiting an earlier example with names and scores stored in separate lists,

set scores(names)

Mike John Michelle Ann

set scores(math)

90 85 90 92

% foreach name $scores(names) math $scores(math) {
puts “"$name scored $math.*

voaR v s

Mike scored 90.
John scored 85.
Michelle scored 90.
Ann scored 92.

v

Note that any number of pairs may be specified and in each pair varr 157 may contain more than one variable
name. If any list is fewer elements that required, the corresponding variables are assigned the empty strings for
the remaining iterations.

As for any looping construct, the break and continue commands can be used within a foreach script to
terminate the loop or skip to the next iteration.

The foreach command always returns the empty string as its result.

5.10. List utilities

List algorithms often involve some common operations which are not provided as built-in commands in Tcl. Many
of these are available in the struct: : 1ist module of Tcllib*.

4 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

148

Comparing, differencing and merging

% package require struct::list
+ 1.8.3

Here we describe only a few of the commands provided by the package.

5.10.1. Comparing, differencing and merging

The struct::list equal command returns 1 if two lists are equal and 0 otherwise.

£

set lista {abcde f g} > ab e g
b y fghi

set listb { bcxy f gh i} B
struct::list equal $lista $listb » O

cd
[

More interesting are the commands for differencing and merging lists. The basic command for differencing is
struct::list longestCommonSubsequence. Given a pair of lists, the command returns a pair of lists containing
indices into the first and second arguments that were passed to the command. The returned lists are of equal
length and contain the indices of the elements in the two argument lists that are equal. An example will make this
clearer.

% set lcs [struct::list longestCommonSubsequence $lista $listb]
» {1256} {0145}

Element at index 1 in lista equals element at index 0 in 1istb and so on.

While the above command returns the elements of the two lists that are identical, it is often the case that the
differences between the lists are of more interest. The struct::1ist lcsInvert transforms the output of
longestCommonSubsequence into a form that details the differences and their type. The first argument to the
command is the result of the 1ongestCommonSubseguence command. The following two arguments are the
lengths of the two lists.

% print_list [struct::list lcsInvert $lcs [llength $lista] {llength $listb]]
» deleted {0 0} {-1 0O}

changed {3 4} {2 3}

added {6 7} {6 7}

The result of the command is a list of elements each of which is a triple describing a difference. The list can be
viewed as the sequence of operations required to transform the first list to the second.

» If the first element of the triple is of type deleted, the second element is the starting and ending indices of the
range of elements in the first list that are not in the second. The third element is the range in the second list
where those elements were expected to be present. In our example, elements in the range 0: 0 of the first list
are not present in the second. The index of -1 denotes that the index position in the second list would have been
before the first element.

» Conversely, if the first element of the triple is added, the third element is the range of elements from the second
list that would be added to the first list at the index range given by the second element.

+ If the first element is changed, the second element is the range of elements in the first list that have been
replaced and the third element is the range of elements in the second list that serve as their replacements.

Finally, the struct::list lcsInvertMerge returns a combination of the above with the result containing
elements that are unchanged as well as those that are changed.

% print_list [struct::list lcsInvertMerge $lcs [llength $lista] [llength $listb}]
s> deleted {0 0} {-1 O}

unchanged {1 2} {0 1}

changed {3 4} {2 3}

unchanged {5 6} {4 5}

149

Permutations and shuffling

added {6 7} {6 7}

The result format is the same as that of 1LcsInvert except the first element of a triple may also be the keyword
unchanged to indicate the corresponding ranges are identical.

It should be clear that the above set of commands suffices to implement a simple file differencing program by
splitting the files into lists of lines and appropriately formatting the output.

See the package reference for additional options and variations of the above commands.

5.10.2. Permutations and shuffling

An operation that is commonly encountered in games and simulations is generation of permutations of a list. An
example would be shuffling a deck of cards. The struct: :1ist module provides a command for this purpose.

The struct::list shuffle command returns the elements of the passed list in a new random order.

struct::list shuffle {abcde}»>bae
C

d
struct::list shuffle {a b cde} > b d a

C
e
Since the returned list is in a randomly generated order, it is possible for a return value to be repeated.

The struct::1list permutations command generates all possible permutations of a list without repetition. It
returns a list each element of which is a unique permutation of the passed list.

% struct::list permutations {a b c}
> {abcy {achb} {bac} {bca}y{cab} {cba}

Note the returned list will not have repeated permutations even in the case where the original list contains
duplicate elements.

% struct::list permutations {a b a}
»> {a a b}y {aba} {ba a}

Permutations can also be incrementally generated with the struct::1ist firstpermand struct::list
nextperm pair of commands. The first permutation is obtained by passing the list to firstperm. Subsequent
permutations are obtained by passing the previous permutation to nextperm. An empty list is returned when no
permutations remain.

set perm [struct::list firstperm {b a}] » a b
set perm [struct::list nextperm $perm] > b a
set perm [struct::list nextperm $perm] > (empty)

A final option is to use the struct: :1ist foreachpermcommand to iterate through all permutations.

struct::list foreachperm perm {b a} { puts $perm }
>ab
b a

The major advantage of these iterative modes for computing permutations compared to the permutations
command is reduced memory requirements when processing large lists.

150

Chapter summary

5.11. Chapter summary

In this chapter, we looked at the first construct for structuring data — lists — where values are accessed based on
an integer index. We looked at the many commands Tcl provides for accessing and manipulating lists in various
forms.

The next chapter describes another means of structuring data, dictionaries, where values are accessed through
keys which may be arbitrary strings.

151

Dictionaries

If anything is guaranteed to annoy a lexicographer, it is the habit of starting a story with a
dictionary definition.

— Eric McKean

We will start by defining dictionaries, just to annoy the many lexicographers who will buy this book. A dictionary
in Tcl is a data structure that maps each element of a set of strings, called keys, to a value. Other languages may
refer to similar structures as associative arrays, maps or hash tables.

The keys in a dictionary are always interpreted as strings so, for example, 1 and 0x1 are different keys. The
interpretation of values is up to the application which may treat them as strings, integers, lists or even nested
dictionaries.

Like lists, dictionaries play many roles in Tcl programming, for example
+ as lookup tables to map keys to values
+ as C-style records where the key is a field name
+ nested tree like structures, mirroring a file system for example

Correspondingly, Tcl provides commands for a wide variety of operations on dictionaries.

6.1. Constructing dictionaries
6.1.1. Dictionary literals

Dictionaries in string form are exactly like lists with an even number of elements that alternate between the key
and the associated value.

% set colors {red #ff0000 green #00ff00 blue #0000ff}
» red #ff0000 green #00ff00 blue #0000ff

% dict get $colors red

» #0000

Note again, that as explained for list literals, this assigns a string to the variable colors and it is only when acted
on by the dict command that it gets interpreted as a dictionary. Thus in

% set colors {red #ff0000 green #00ff0O blue}
s red #ff0000 green #00ff00 blue

% dict get $colors red

@ missing value to go with key

the first statement succeeds as a simple string assignment. The dict command fails because the assigned string
could not be interpreted as a dictionary as it has an odd number of elements.

153

The dict create constructor

As for lists, you do not have to worry about the performance impact as the conversion
happens only once as long as the value is operated on with dict commands.

6.1.2. The dict create constructor

Like the 1ist constructor for lists, more complex dictionaries are best constructed with the dict create
command.

dict create ?amv
It returns a dictionary containing each of the specified key/value mappings.

% set mydict [dict create Key[incr 1] Value$i \
Key[incr 1] Value$i \
Key[incr 1] Value$i]

> Keyt Valuel Key2 Value2 Key3 Value3

6.1.3. Creating dictionaries from lists
Any list with an even number of elements can be treated as a dictionary with alternating list elements being

treated as keys and values. Thus the following two statements are equivalent.

% set ldict [list a 1 b 2 ¢ 3]
salb2c¢c3

% set mydict [dict create a 1 b 2 c 3]
»>alb2c3

When ldict is accessed using dictionary commands, it will be transparently converted to an internal dictionary
form.

dict get $ldict b » 2

The converse is also true as dictionaries can be manipulated using list commands.

% set mydict [lsort -integer -index 1 -decreasing -stride 2 $mydict]
»c3b2an

This last example brings us to a useful property of dictionaries that often comes in handy.
- ‘ - Dictionaries are order preserving so that a sequence like the above can be treated both
o e as an ordered list as well as a dictionary. For example, you can use the list form to order
data for display while still being to look it up and modify it via indexed dictionary access
without disturbing the order of items.

6.1.4. Combining dictionaries: dict merge

The dict merge command creates a new dictionary by combining the content of multiple existing dictionaries.

dict merge ?:i7IONARY DI

The returned dictionary will include every key defined in any of the passed dictionary arguments. The
corresponding value in the dictionary will be the value associated with the key in the last dictionary argument that
contains that key.

154

Nested dictionaries

Consider for instance a word processor or Web browser where the appearance of text depends on settings
specified at the page, paragraph or individual text span levels. These options can be stored in dictionaries for each
level and combined for displaying text using dict merge.

set page_settings {font-family Helvetica background white foreground black}
set para_settings {font-family Arial}

set link_settings {foreground blue font-style underlined}

set settings [dict merge $page_settings $para_settings $link_settings]

» font-family Arial background white foreground blue font-style underlined

Note the order of merge so the more specific settings in 1ink_settings take precedence.

6.1.5. Nested dictionaries

A nested dictionary is nothing but a dictionary in which a value is another dictionary. For example, a dictionary
containing student data may look like

set students {
A001 {
Name Jean
Grades {Physics A Maths A Spanish B}
Clubs {Chess Photography}

Age 17

}

A002 {
Name Pedro
Grades {Maths A Spanish A History B}
Clubs {Music}
Age 16

}

A003 {
Name Laxmi
Age 17

+

At the top level, keys are student ids and the corresponding values are nested dictionaries containing student
data. The nested dictionary has keys like Name and Grades where Grades is further a nested dictionary with keys
corresponding to subjects. Many dict subcommands support key paths, such as A001 Grades Physics, that
navigate through dictionaries to access a nested element.

The structure and interpretation of dictionaries is entirely up to an application. Different keys within a dictionary
may have values with different structure, some scalars, some lists, some nested dictionaries. Nested dictionaries
within a parent dictionary need not all have the same structure either as in the example above where student
A003 has only two keys, not having taken any courses or joined any clubs as yet.

6.2. Reading values from a dictionary
6.2.1. Retrieving the value for a key: dict get

The dict get command returns the value corresponding to a key in the dictionary.

dict get LIUTIONARY PREY P

If no keys are specified, the command returns a list containing the key and value pairs.

% set colors {green #00ff00 red #ff0000 blue #0000ff magenta #ffOOff}

155

Enumerating dictionary keys: dict keys

> green #00ff00 red #ff0000 blue #0000ff magenta #ffOOff
% dict get $colors
s> green #00ff00 red #ff0000 blue #0000ff magenta #ffOOff

Specifying a key will return the corresponding value.

% dict get $colors red
» #ff0000

The command can also retrieve values from nested dictionaries by specifying multiple keys that define a path
through the dictionary.

% dict get $students A0O1 Grades Maths
> A

Note that an attempt to read a key that does not exist in the dictionary will raise a Tcl exception. You can check for
the existence of a key before attempting to read it by calling dict exists.

6.2.2. Enumerating dictionary keys: dict keys

The dict keys command returns the keys in a dictionary.

dict keys orc 4RY ?PATTERN?

If PATTERN is not specified, the command returns a list of all keys in the dictionary. If PATTERN is specified, it is
treated as a glob pattern (see Section 4.11) and the command returns only the keys matching that pattern.

dict keys $colors » green red blue magenta
dict keys $colors *r* 5 green red

6.2.3. Enumerating dictionary values: dict values

The dict values command returns the values in a dictionary.

dict values o7 ARY 2R

If PaTTERN is not specified, the command returns a list of all values in the dictionary. If PATTERN s specified, the
command returns only the values matching that glob pattern.

dict values $colors > {#00ff00} #ff0000 #000Off #ffOOff
dict values $colors #ff* > {#ff0000} #ffOOff (1]

© Reddish colors

The values are matched as strings no matter whether they are integers, nested strings etc.

You may be wondering why the first element in the returned list is enclosed in braces.
E This is because the string representation generated by Tcl for a list whose first element

begins with a # always encloses that element in braces. As to the reason why, the short
answer is that when a command (or command prefix) is constructed in list form,
enclosing the first word of the command in braces prevents it from being mistakenly
parsed as a comment. For a fuller explanation see TIP 407 ! Note this does not invalidate
the list contents. So for example retrieving the first element above

1 http://www.tcl.tk/cgi-bin/tct/tip/407

156

Modifying dictionaries

lindex [dict values $colors #ff*] 0 > #ff0000

correctly retrieves the value #ff0000.

6.3. Modifying dictionaries
6.3.1. Setting values with dict set

The dict set command operates on a variable presumed to contain a dictionary.
dict set ./IIUvVAR REY PREY LY

If the specified key exists in the dictionary stored in DICTVAR, its value is replaced with the new value. If the key

does not exist, it is added to the dictionary along with the associated value. The resulting dictionary is returned by

the command as well as stored back in the DICTVAR variable.

set mydict [dict createa 1 b2c3]-»>a1b2c3

dict set mydict a 10 >a1l0b2c3®

dict set mydict x 100 >al10b2c3x 100
set mydict »a10b2c¢c3x100©

© Modify an existing key
©® Create a new key
© The variable value is also changed

The command will operate on nested dictionaries as well. For example, we can add a key for a new student

dict set students A004 {
Name Mark
Grades {
Physics A
}
}

or update an existing student. We could do the update one leaf element at a time,

dict set students A003 Grades Physics B
dict set students A003 Grades English A

or with the entire nested dictionary

dict set students A003 Grades {Physics B English A}

The above two sequences are equivalent only because the key Grades did not previously

ﬂ exist for student id A003. If the key did in fact already exist, the first form that updated a
leaf at a time would add the new keys under the existing Grades key. The second form on
the other hand would replace the existing contents of Grades.

Note from the example how missing keys in the key path for the nested dictionaries are created as needed.

157

Removing dictionary elements: dict unset

6.3.2. Removing dictionary elements: dict unset

The dict unset command is the complement of dict set and used to remove individual elements from a
dictionary stored in a variable.

dict unset HiOTVAR ARY PREY L2
Thus if Laxmi leaves the school, we can forget about her existence.

% dict unset students A003

Asfor dict set, a key path can be specified to remove any nested element. If Jean has not actually taken Spanish
and her grade was erroneously given we can correct the error.

% dict unset students A0O1 Grades Spanish

A

6.3.3. Appending values in-place: dict append

The dict append command appends any specified strings to an element of a dictionary contained in a variable.

Itis not an error if the last key on the key path (Spanish in our example) is missing.
However keys other than the last must exist else the command will raise an exception.

dict append /¢

The command concatenates all the supplied sTRING arguments and appends the result to the value in the
dictionary corresponding to the specified key creating it if necessary. The resulting dictionary is returned by the
command and also stored back in DICTVAR.

% set mydict [dict create keyA A]
» keyA A

% dict append mydict keyA BC @

s keyA ABC

% dict append mydict keyW W XYZ @
> keyA ABC keyW WXYZ

% set mydict

+ keyA ABC keyW WXYZ

@ Append to an existing key
© Create a new key and append multiple strings

Note that this command does not directly support nested dictionaries as only a single level of keys can be specified.

O.Q

One way around this limitation is to structure the two-level dictionary as a one-level
dictionary stored in an array. We will see this later.

Like the next two dictionary commands we will see, dict lappend and dict incr,the primary benefit of dict
append is efficiency as the implementation will append the strings “in place” if possible.

158

Appending list elements to values: dict lappend

6.3.4. Appending list elements to values: dict lappend

The dict lappend command is similar to dict append except that instead of appending a string, it treats the
value in the dictionary as a list and adds additional elements to it.

dict lappend #:0WVAR RRY ?UVALUE LWL?

The command retrieves the value, which should be interpretable as a list, currently associated with the key kev in
the dictionary stored in pDICTVAR, appends the given elements to it in the same manner as 1append and assigns the
result back to the key and the resulting dictionary back to DICTVAR.

Like dict append,dict lappend does not support nested dictionaries. Thus to update our students dictionary
to reflect that Pedro has joined the Athletics club we have to extract the nested dictionary, modify it and write it
back.

set pedro [dict get $students A002]
dict lappend pedro Clubs Athletics
dict set students A002 $pedro

6.3.5. Incrementing dictionary values: dict incr

One other command that updates elements in place is dict incr. Whereas dict append and dict lappend
dealt with strings and lists respectively, dict incr works with dictionary elements that are integers. Like those
commands, dict incr operates on a variable and does not support nested dictionaries.

dict incr 220U AR REY ?UINORE

The value of the element in the dictionary contained in DICTVAR with key KEY is incremented by INCREMENT
(must be an integer) if specified and by 1 otherwise. The resulting dictionary is stored back in DICTVAR. If the key
did not exist in the dictionary, it is created with an initial value of 0 before being incremented by the specified
amount.

A simple example of maintaining word counts using a dictionary.
% foreach word {Do what you can, ignore what you can‘t.} {

dict incr word_counts $word

I3
% puts $word_counts
s> Do 1 what 2 you 2 can, 1 ignore 1 can't. 1

6.3.6. Removing multiple keys: dict remove

The dict remove command returns a new dictionary formed by removing the specified keys from the provided
dictionary value.

dict remove IDIITIONARY PRIV L

It differs from dict unset in two respects:

+ It operates on a dictionary value whereas dict unset operates on a variable.

Multiple key arguments refer to the top level keys to be removed, not a single key path to a nested element.

% set mydict {a 1 b 2 c 3 d 4}
atb2c3d4

dict remove $mydict a ¢
b2d4

v

B

<

159

Replacing multiple values: dict replace

Keys that do not exist in the dictionary are ignored and do not raise an error.

6.3.7. Replacing multiple values: dict replace

The dict replace command returns a new dictionary formed by replacing the values for specified keys in the
dictionary passed in.

dict replace "ioviUNARY PREY VAL L?
The command creates new entries for keys that do not exist.

% set mydict {a 1 b2 c 3 d 4}
+alb2c3d4

% dict replace $mydict a 10 ¢ 30 e 50
+al1l0b2c30d4es50

6.3.8. Shadowing dictionaries with local variables: dict update

Earlier we saw commands like dict lappend that directly update a dictionary entry. In the general case though,
updating an entry requires retrieving it with dict get, modifying it, and then storing it back which is what we
had to do when Pedro joined the Athletics club.

The dict update command encapsulates this sequence of retrieval, arbitrary modification via a script and
writing back into the dictionary.

dict update DHUTVAR O REY CUARNAME DREY VAR

The command looks up each specified key in the dictionary contained in prcTvar and assigns its value to
corresponding variable varnane. If a specified key is not present, the corresponding variable remains undefined
unless it was already defined in the scope. The command then executes the specified script on the completion of
which the values in each of varname are assigned back to the corresponding key in the dictionary. The modified
dictionary is stored back in p1c7vAR. The return value from the command is the return value of the last statement
executed in scrRIPT. The example below illustrates the various possibilities.

% set xvar X

s X

% set mydict {a 1 b 2 c 3}

»>alb2c3

% dict update mydict a avar c cvar d dvar x xvar {
incr avar 10 @
unset cvar @
set dvar [dict get $mydict a] ©

> 1

% puts $mydict @
+allb2di1

% info exists xvar @

+ 0
@ Will change value associated with key a
® Will result in key ¢ being removed
© Will add a new key d with old value of key a as mydict is still unchanged at this point
O Variable mydict is updated after completion of script
© Since key x did not exist in dictionary, previously existing variable xvar is unset

160

Shadowing nested dictionaries: dict with

The value of mydict is updated even when the script completes with a status other than
ok (for example, a return or an error exception).

The command can also be used with nested dictionaries. Consider an example similar to one mentioned
earlier — here we want to update the dictionary to reflect the fact that Jean joined the archery club on her
birthday. Either of the following would do the job, using dict update only at the first level as below:

set student_id AQ0O1

dict update students $student_id student {
dict lappend student Clubs Archery
dict incr student Age

b

Or using dict update at both levels in nested fashion:

set student_id AOO1
dict update students $student_id student {
dict update student Age age Clubs clubs {
lappend clubs Archery
incr age
H
}
puts [dict get $students A001]
> Name Jean Grades {Physics A Maths A} Clubs {Chess Photography Archery} Age 18

The dict update command is really most useful when the update is more complex than the simplistic examples
shown here, particularly when the update involves more than one key from the dictionary.

6.3.9. Shadowing nested dictionaries: dict with

The dict with command is similar to the dict update command in that it executes a script with variables that
shadow dictionary entries and then writes them back into the dictionary.

dict with D7oTvaR 2REY L2 SURI

If no xkEY arguments are specified, the command executes SCRIPT after assigning the values in the dictionary in
variable pICTVAR to variables of the same name as the corresponding dictionary keys. When the script completes,
whether normally or through a return or error condition, any changes made to those variable are written back to
the dictionary contained in DICTVAR. The result of the script execution is returned as the result of the command.

set mydict {a 1 b 2 ¢ 3}
dict with mydict {

incr a $a

incr b $b

¥
puts $mydict
»a2b44c3

Note that unlike dict update, dictionary keys are mapped to variables of the same name with no provision to
map to variables of a different name. This requires some care to prevent conflict between dictionary keys and
existing variables having the same name as we will see in a bit.

161

Iterating over dictionaries: dict for

Since retrieving key values from dictionaries with dict get can be tedious, a trick you
- ‘ - will often see employed is to use dict with with an empty script to bring the keys into
o e local scope and access them like any other variables. So for instance, instead of

% puts "RGB are [dict get $colors red], \
[dict get $colors blue], \
[dict get $colors green]*

+ RGB are #ff0000, #0000ff, #00ff00

we can do this

% dict with colors {}
% puts "RGB values are $red, $blue, $green”
> RGB values are #ff0000, #0000ff, #00ff00

which can be convenient in longer scripts.

Another difference between dict update and dict with is that the latter makes it easy to deal with nested
dictionaries. If one or more k£ arguments are specified, instead of shadowing the top level keys of the dictionary
with variables, the command shadows the nested dictionary identified by the specified key path ey

Here is an example for nested dictionaries that will updates Jean’s grades.

dict with students $student_id Grades {
set Physics A-
set Maths B

b
puts [dict get $students $student_id]
» Name Jean Grades {Physics A- Maths B} Clubs {Chess Photography Archery} Age 18

Note that unlike dict update, dict with can only update existing keys, not create new ones.

It is important to keep in mind that the variables affected by dict with are dependent
o on the contents of the dictionary. Unexpected behaviour can result if a dictionary key
happens to be the same as the name of an unrelated variable which will get overwritten.
One way of minimizing this possibility is to adopt a convention where dictionary keys are
syntactically different from variable names; for example, making them all upper case or
starting with an upper case letter.

Under some circumstances this overwriting of variables can even be a security risk.
For instance, some Tcl web servers will return received URL parameters as a dictionary
mapping the client supplied parameter to a value. Passing this dictionary to dict

with will allow the client to overwrite any variable, even global ones, with their own
chosen values. In general, avoid using dict withand dict update with dictionaries
constructed from arbitrary input values.

6.4. Iterating over dictionaries: dict for

The dict for command iterates over every entry in a dictionary.

dict for »7orIONARY {KEVVAR VA

The command executes SCRIPT for every entry in the dictionary in the order that the keys were inserted into it.
In each iteration, the variables named x£yvAr and VALUEVAR are assigned the key and the value of next entry in
the dictionary. Like other Tcl commands that loop, the iteration can be terminated by a break command before all

162

Transforming dictionaries

entries are processed. Likewise, a continue command will skip the rest of the script but continue on with the next
entry.

dict for {color rgb} $colors {
puts "The RGB value for $color is $rgb."

}

5> The RGB value for green is #00ff00.
The RGB value for red is #ff0000.

...Additional lines omitted...

6.5. Transforming dictionaries
A dictionary transform produces a new dictionary based on the contents of an existing one.

6.5.1. Filtering dictionaries: dict filter

The dict filter command returns a new dictionary containing entries from an existing dictionary that meet
specified matching criteria. It takes one of the following forms

dict filter /o key 774 w?
dict filter " value ?:
dict filter o T script {aF AR} SORINT

In the first form, the command will return a new dictionary that contains any entry whose key matches at least
one of the PATTERN arguments. Note that this means that if no patterns are specified an empty dictionary is
returned. The matching is done as described for the string match command in Section 4.11.

For example, we can filter our display settings from our earlier dict merge example to only get the settings
related to fonts.

% dict filter $settings key font*
s> font-family Arial font-style underlined

The second form of the command is similar except that instead of matching against the key for an entry, it matches
against the value.

For example, filter out all colors that have a green component.

% dict filter $colors value #?7007?
> red #ff0000 blue #0000ff magenta #ffOOff

The final form of dict filter is the most flexible. It executes scR1PT for every entry (aside from any break

or error conditions) in the dictionary. On each iteration, the key and value are assigned to the variables named
kEYVAR and VALUEVAR respectively. The entry is included in the dictionary only if the iteration returns a Boolean
true value. The iteration is terminated by a break while a continue is treated the same as a Boolean false return
from the script.

The following returns a dictionary containing any color that has either a green or a blue component (ie. at least
one of the corresponding bits are non-0).

dict filter $colors script {color rgb} {
expr {![string match #??0000 $rgb}}

}

> green #00ff00 blue #0000ff magenta #ffOOff

163

Mapping values: dict map

6.5.2. Mapping values: dict map

The dict map command returns a new dictionary formed by mapping each value in the dictionary to a new value
returned by a script.

dict map {REYVAR VALUEVAR} DICTIONARY SOR!PY

The command executes SCRIPT for each entry in the dictionary assigning the key and value to the variables
named x£YVAR and VALUEVAR respectively. On the normal completion of each iteration, a new entry is added to the
result dictionary with the key being the current value of keyvar. The iteration is terminated by a break while a
continue is continues with the next iteration without changing the result dictionary for the current iteration.

As an example, consider converting our colors to 8-bit grey scale using a simplistic algorithm that averages the
RGB values.

set grey_scale [dict map {color rgb} $colors {

regexp {M(..)(..)(..)$r $rgb ->r gb @

format "#%x" [expr {("Ox$r" + "Ox$g" + "Ox$b")/3}]
H

» green #55 red #55 blue #55 magenta #aa
@ Split into red, green, blue components
If the variable containing the key is modified, the new dictionary will contain a new key corresponding to the

modified content of the variable.

set grey_scale [dict map {color rgb} $colors {
regexp {"#(..)(..)(..)$} $rgb ->r g b
set color "greyscale_s$color”
format "#%x" [expr {("Ox$r" + "Ox$g" + "Ox$b")/3}]

]
> greyscale green #55 greyscale_red #55 greyscale_blue #55 greyscale_magenta #aa

6.6. Introspecting dictionaries
6.6.1. Checking for a key: dict exists

The dict exists command returns a Boolean true value if the specified key exists in the dictionary and a
Boolean false otherwise.

dict exists RTCTIONARY KEY ?XKEY .7

Commands like dict get will raise an error on an attempt to retrieve the value for a non-existent key. This
command should therefore be used to check for existence.

dict exists $colors red s 1
dict exists $colors yellow » 0

The command supports nested dictionaries.

dict exists $students A0O1 Grades Physics » 1
dict exists $students A0O1 Grades Biology » 0

6.6.2. Count of entries: dict size

The dict size command returns the number of entries in a dictionary.

164

Dictionary statistics: dict info

% dict size $colors
> 4

6.6.3. Dictionary statistics: dict info

The dict info command returns a human readable string that provides some information about the internal

structure of the dictionary.

% dict info $colors

» 4 entries in table, 4 buckets
number of buckets with 0 entries:
number of buckets with 1 entries:
number of buckets with 2 entries:
number of buckets with 3 entries:

...Additional lines omitted...

D =N

The command is primarily intended for debugging and performance related analysis.

6.7. Dictionaries and arrays

Because they both provide facilities for mapping keys to values, there is often confusion regarding the differences
between arrays and dictionaries and the circumstances in which each is to be preferred. The table below

highlights these differences.

Table 6.1. Differences between tables and arrays

Arrays

Arrays are collections of variables. For example,
myarray($key) is a variable and can be accessed as
$myarray($key).

Because they are variables, it is possible to set variable
traces on individual array elements.

Arrays are not values and cannot be directly passed to
procedures without using additional mechanisms such
asupvar.

" Arrays cannot be nested as they are not values.

Arrays are unordered collections and hence the order
in which elements are accessed in operations like
iteration is not guaranteed.

Dictionaries

Dictionaries are collections of values where individual
values cannot be accessed as variables. They must be
accessed asdict get $mydict $key.

Variable traces can only be set on the entire dictionary,
not individual entries in the dictionary.

Dictionaries are values and can be passed into
procedures like any other value.

Dictionaries can be nested because they can hold any
values including other dictionaries.

In iteration and similar operations, dictionary entries
are always processed in the order in which the keys for
the entries were created.

Dictionaries contain values and therefore cannot contain arrays. On the other hand, dictionaries are values
and therefore can be contained in arrays. This fact is often useful in cases where there are two levels of keys.
Structuring the data such that the first level of keys are stored in arrays and the second level in dictionaries can

make certain accesses more convenient.

For example consider our students dictionary data store and convert it to an array form where the array
elements indexed by student id will hold a dictionary containing the “record” for that student. This is easy enough

to do.

% array set student_array $students
% puts $student_array(A001)

165

Chapter suramary

> Name Jean Grades {Physics A- Maths B} Clubs {Chess Photography Archery} Age 18

Now to modify a student’s record, we can directly use dictionary in-place commands like dict lappend. In our
earlier examples, we could not use these directly because they do not support nested dictionaries causing us to
instead do a read/modify/write cycle instead.

% dict lappend student_array(A001) Clubs Gymnastics

> Name Jean Grades {Physics A- Maths B} Clubs {Chess Photography Archery Gymnastics} Age 18
% dict get $student_array(A001) Clubs

» Chess Photography Archery Gymnastics

6.8. Chapter summary

Along with lists, dictionaries form the primary means of structuring data in Tcl. In this chapter, we described the
various commands for their manipulation and some simple uses to which they can be applied. We will now move
on to the topic of numerical computation in Tcl.

166

Numerics

All which is beautiful and noble is the result of reason and calculation.

— Charles Baudelaire

Although Tcl, like most dynamic languages, is not intended for heavy numeric computation, it provides a full set
of operators and functions that should more than suffice for general purpose computing. Additionally, several
extension libraries are available which further enhance Tcl capabilities in both performance and functionality.

7.1. Types and representations

Tcl supports operations on boolean, integer and floating point values. In this section we go over these different
types in terms of their string representation, acceptable values and conversions.

Internal representation of numbers

At the scripting level, there is no reason to be concerned with the internal representations. However,
folks might wonder whether Tcl will convert numerics and strings back and forth on every arithmetic
operation and how that might affect performance. The answer is that internally Tcl will keep numbers in
the usual native form for the machine. It is only when they are used as strings, for example for printing,
are the string representations generated. See Section 10.10 for more on this topic.

7.1.1. The boolean type
Tcl accepts the following values as booleans:
+ aboolean false is a numeric value of 0 or the strings false, no, off
+ aboolean true is any non-0 numeric value and the strings true, yes, on

The string values are case-insensitive and unique abbreviations are also acceptable.

% 1f {1} {puts true!}

3

» true!

% if {tRue} {puts true!} @

+ true!

% if {fal} {puts true!} else {puts false!} (2]
» false!

© Case insensitive
@ Abbreviated from false.

In computed boolean expressions, Tcl returns boolean true as 1 and false as 0.

167

The integer types

7.1.2. The integer types

Tcl supports integers of arbitrary size so just in case you wanted to calculate the number of stars in the universe,
you could.

set ngalaxies 10000000000 + 10000000000
set stars_per 100000000000 + 100000000000
set nstars [expr {$ngalaxies * $stars_per}] -» 1000000000000000000000

The advantage over floating point representation is that you don’t lose precision and there is no theoretical limit to
number of digits (although memory limitations of course apply).

Tcl accepts several representations for integer values:

+ astring of decimal digits such as 100

+ astring beginning with Ox or 0X is interpreted as an integer in hexadecimal form, e.g. 0x64.

* astring beginning with Ob or 0B is interpreted as an integer in base-2 form 1 e.g. 0b1100100.

+ astring beginning with 0o or 00 is interpreted as an integer in octal form, e.g. 00144. For reasons of backward
compatibility, Tcl also treats any number beginning with a 0 character as an octal representation. For example,

0144 is treated as an octal representation of 100. You should not use this form in new code as it is very likely to
be done away with in the next major Tcl release.

All these forms may be preceded by a - character to represent negative integers.

The treatment of numeric strings beginning with a 0 character as octal numbers can lead
to unwanted results. For example, consider a procedure to calculate the minute of the
day given a string of the form HH: MM.

proc minute_of_day {time_of day} {
lassign [split $time_of_day :]1 hm
return [expr {$h * 60 + $m}]

}

minute_of_day 12:00

» 720

This seems fine until you try this:

% minute_of_day 09:00
@ can't use invalid octal number as operand of "*"
This fails because 09 is parsed as an octal representation where 9 is not a valid digit.

The best way to get around this pitfall is to use the %d format specifier of scan to parse a
string as a decimal integer.

scan 012 %d » 12 @
scan 09 %d > 9 O

@ Iftreated as octal, this would have been 10
© Iftreated as octal, this would have been an error

As an aside, note that parsing time in this manner was just an illustration and you should
prefer the clock scan command for this purpose.

Although Tcl supports arithmetic operations on integers of any size, it does allow for distinction between

1 We use the term base 2, and not binary. to avoid confusion with binary strings

168

The floating point type

+ integers which are values that fit in the native word size of the machine as given by the wordSize element of
the tcl_platform global array. On most systems these are values that fit in 32 bits.

« wide integers, or simply wides which are values that fit in 64 bits.
« bignums which are integers of unlimited size.

This can be important because although Tcl will itself support arithmetic operations on integers of any size, this
may not hold true for all functions, extensions and other programs that interoperate with the application. The
string is integer,string is wideandstring is entier commands described in Chapter 4 can be used
to distinguish between these integer types. We will also have more to say when we discuss numeric conversions in
Section 7.1.5.2.

7.1.3. The floating point type

Floating point, or real number, values are represented internally as the C language double type. The string
representation takes the form of

+ an optional - or + sign
+ followed by a string of decimal digits containing at most one decimal point

+ optionally followed by the exponent which consists of an e or E character followed by an optional sign, and
then a string of decimal digits.

The values 1, 1.0, -1.0e100, 10E-100 are all valid floating point values.

As a special case, the positive and negative infinities are represented by Inf and -Inf respectively.
expr 1.0 / 0.0 » Inf

Infinities behave as you would expect in most calculations.
expr Inf * 2 5 Inf

The other special case related to floating point representation is the "not a number" value represented by NaN.
tcl::mathfunc::sgrt -1 » -NaN

We can confirm that both these are treated as floating point values.

string is double Inf » 1
string is double NaN » 1

7.1.4. Validation of types

The string is command can be used to validate that a passed value is an acceptable string representation for a
type.

string is integer 123 > 1

string is integer abc + 0

string 1s integer "" >1 0
0

string is integer -strict ""

+

© Note an empty string is acceptable as any type unless -strict is specified.

Other numeric types such as booleans, doubles, etc. can be validated in similar fashion. See Section 4.9 for details.

169

Number conversions

7.1.5. Number conversions

7.1.5.1. Converting between strings and numbers

A number may have multiple string representations. For example, the integer 10 may be represented as 10, 0xa,
0x0A and so on. The same also applies to floating point numbers.

When a string value is interpreted as a number, Tcl will accept any of these representations as a valid value as
described earlier. If you want to validate that the string represents a number in a specific form, you can use the
scan command which is described in Section 4.7.

Conversely, when converting the numeric result of a computation into a string for display purposes or other
reasons, Tcl will generate its “natural” representation. For integers, this is in the form of a string of decimal
digits. For floating point numbers, Tcl generates a string that contains the minimal number of digits required to
distinguish the number from its nearest floating point neighbours z,

You can use the format command (see Section 4.2.4) to generate a specific string representation of a number.

the tcl_precision global variable. We do not describe it as it is intended only for use by
legacy applications and is full of potential pitfalls. See the Tcl reference documentation
for details if you are curious.

E The generation of string representations for floating point numbers can be controlled by

7.1.5.2. Converting between numeric types

As we stated in Section 7.1.2, Tcl distinguishes between integers of type integer, wide and bignums based on the
number of bits in the internal representation. In addition there is the floating point double type discussed in the
previous section. There are some situations where the number representations matter. For instance, the result of a
mathematical operation may depend on the type of the operand.

expr 3/2 51
expr 3/2.0 » 1.5

Other instances where the distinctions become important include algorithms that depend on truncation based on
integer widths and exchange of data to other programs.

Within integer expressions, Tcl will automatically use a type that is wide enough to hold all values. If an operation
has a floating point operand, any integer operands will be converted to floating point, possibly losing precision.

For situations where you want to explicitly control the numeric type, Tcl provides a set of commands to “cast” a
value to the desired numeric type. These commands lie within the : : tcl: :mathfunc namespace.

The int, wide, entier commands return the integer portion of their argument, truncated to the appropriate
width in the case of int and wide. Similarly, the bool and double commands convert their operand to a boolean
and floating point value respectively.

tcl::mathfunc::int 0x100000000 500
tcl::mathfunc::int 2.5 > 20
tcl::mathfunc: :wide 1.4e10 > 14000000000 ©

tcl::mathfunc: :double 140000000000000000000000 » 1.4e+23 @

©@ Truncates wides to native word size

© Truncates floating point to native word size
© Floating point to wide integers

O Wide integers to floating point

2 If you do not understand this statement, it arises from the fact that floating point representations in computer arithmetic are inexact
approximations. See http:/blog.reverberate.org/2014/09/what-every-computer-programmer-should.htmi for an explanation.

170

Mathematical operations

As we will see shortly, the commands in the tcl: :mathfunc namespace can be used as functions in Tcl
expressions evaluated by expr so the above could also be written as

expr { int(2.5) } » 2

7.2. Mathematical operations

Mathematical operations in Tcl can be executed in one of two ways:
« Each arithmetic operation is implemented as a command in the : :tcl: :mathop namespace
¢ The expr command implements in-fix expressions as found in other languages.
7.2.1. The tcl: :mathop commands
Commands corresponding to the common arithmetic operations are located in the : : tcl: :mathop namespace.
For example, you can add three numbers as

tcl::mathop::+ 1 2 3 » 6

We have not looked at namespaces yet and will do so in Chapter 12. For now you can either invoke the commands
as above or to reduce the typing involved run the following command

% namespace path ::tcl::mathop
You can then simply type
+ 12356

As reflected by the name, the tcl: :mathop namespace primarily contains commands related to mathematical
operations. However, it also includes some operators that work with non-numeric operands, returning boolean
values that can then be used in expressions. The discussion below groups the commands into the following
categories:

« Arithmetic operators like addition, subtraction etc. that work with any numeric values
+ Bitwise operators limited to integer values

+ Comparison operators

» String operators

+ List operators

7.2.1.1. Arithmetic operator commands

Table 7.1 lists all the commands dealing with arithmetic operations and the operand types to which they apply.

Table 7.1. Arithmetic operators

Operator Description
! BOOL Negates a boolean value.
12 + 0
! false » 1
+?NUM ..? Returns the sum of the operands.
*INUM ..? Returns the product of the operands.

171

The tcl: :mathop commands

Oﬁérator
- NUM?NUM...?

/ NUM?NUM ...?

% INT INT

** INUM .7

Description

If a single operand is specified, returns its negative. Otherwise, returns the
result of subtracting all subsequent operands from the first.

- 10 > -10
-10321-54

If a single operand is specified, returns its reciprocal. The reciprocal operation
is always done as a floating point operation even if the operand is an integer.

N~
o N
v
— O
=
~h

If more than one operand is provided, the command returns the result of
successively dividing the first operand by subsequent ones. In this case the
operation is done as integer division until the first floating point operand is
encountered. All further operations are executed as floating point division.
Hence the following results:

/' 92.02-2.25

/92205 2.0

Returns the integral remainder when dividing the first operand by the second.
The sign of the result will be the same as the sign of the second operand.

tcl::mathop::% 13 -3 » -2
This ensures that the following two computations return the same result.

* [/ 13 -3] -3 » 15
- 13 [% 13 -3] » 15

Raises the first operand to the power specified by the second operand. The
result is then further raised to the power specified by the third operand
and so on. If any of NuMis not an integer, the result will be a floating point
number.

2417851639229258349412352
2.0

7.2.1.2. Comparison operator commands

The second set of operators compares one or more numbers. In all cases, the operands are compared
numerically if possible. If an operand is not a valid numeric representation, the operands are compared as
strings. These operators are shown in Table 7.2.

Table 7.2. Comparison operators

Operator
==?ARG ...?

Description

Returns 1 if every argument equals its neighbours and 0 otherwise.

set ten 10.0 + 10.0
== Oxa $ten 0012 ~» 1

172

The tcl: :mathop commands

Operator Description
!= ARG ARG Returns 1 if the two arguments are not equal and 0 otherwise.
. <?ARG ..? Returns 1 if every argument is strictly less than the next and 0 otherwise. The

following checks if a list is in strictly increasing order.

% set fruits [list apple banana orangel
» apple banana orange
% < {*}$fruits

> 1

<=?ARG ..? Returns 1 if every argument is less than or equal to the next and 0 otherwise.

<= 10 20 30 40 » 1
<= 10 20 40 30 > 0
set val 10 > 10
<=0 $val 20 -1 O

©@ Checkif a value is within a range

>?ARG ...? Returns 1 if every argument is strictly greater than the next and 0 otherwise.

>=?ARG ...? Returns 1 if every argument is greater than or equal to the next and 0 otherwise.

We reiterate that numeric comparisons are used if both operands can be interpreted as numbers. If not, they are
compared as strings. This means you have to be careful where you really want string comparisons and there is a
chance operands might appear to be numbers (e.g. ZIP codes). In this case use the eq and ne commands described
later or the string compare command instead.

Moreover, when more than two operands are specified, each comparison is done in isolation so that one
comparison may be numeric and another string. For example, in

tcl::mathop::< ™ a”" 12 2> 0

the first comparison is done as a string and evaluates to true. The second comparison would also evaluate to true
were if done as a string comparison. But because both 12 and 2 can be interpreted as numbers, it is treated as a
numeric comparison and thus returns false. Again, this illustrates the need to be careful about the operand types
in such cases.

7.2.1.3. Bit-wise operator commands

The next set of operators deal with bit-wise operations and are shown in Table 7.3. The operands to these must be
integers (of any width).

Table 7.3. Bit operators

Operator Description

~INT Returns the bit-wise negation of InT.

% format 0x%x [~ OxOfOfOfOf]
» 0xfOfOfofo

&?INT ...? Returns the result of a bit-wise AND operation between the specified operands.

format Ox%1x [& OxfOf0 Oxaaaa Oxcccc] » 0x8080

| ?2INT ...? Returns the result of a bit-wise OR operation between the specified operands.

173

Infix expressions: expr

Oberator . Déscriptiox{ o

A?INT ..? Returns the result of a bit-wise XOR operation between the specified operands.
<< INT SHIFT Returns the result of shifting the rn7 operand left by surF7 number of bits.

>> INT SHIFT Returns the result of shifting the 7vT operand right by s#177 number of bits.

7.2.1.4. String operator commands

The eq and ne commands test values for equality as strings. These are equivalent to the string equal command.

eq 74k L7
ne ?an: L2

They behave just like the == and != commands described in the previous section with eq returning 1 if all
operands are equal and 0 otherwise and ne doing the opposite. The difference relative to == and != is that they
always compare the operands as strings even if they can be interpreted as numbers. This is illustrated by the
following.

== 0xa 10 - 1
eq Oxa 10 - 0
!= NaN NaN -» 1
ne NaN NaN -» 0

The NaN example may surprise you. The NaN value is a valid floating point value and thus the ! = operator treats
it as such. The “specialness” of this not a number value is that it will compare as being unequal to all values, even
itself! Of course, as a string it compares equal to itself.

7.2.1.5. List operator commands

The last set of commands in the tcl: :mathop namespace pertain to lists —the in and ni commands.

The in command returns 1 if the argument £L£x is an element of the list passed in argument ZzsTand 0
otherwise. The ni (not in) command does the reverse.

in apple {apple banana orange} - 1
ni apple {apple banana orange} » 0

The elements are compared purely as strings. These are more concise but less flexible forms of the 1search
command.

7.2.2. Infix expressions: expr

The commands discussed in the previous section provide one means for numeric computation in Tcl. However,
unless you are from the Lisp world, you might find it awkard to compute 2+3*4 as

% set val [+ 2 [* 3 4]]
> 14

The Tcl expression syntax allows the more common infix syntax

2+3%4

174

Infix expressions: expr

as an alternative. However, because of Tcl's uniform syntax where interpretation of arguments is entirely up
to the command itself, in-fix notation can only be used with commands that interpret arguments in that form
as expresssions. This can be a point of confusion so at the risk of belaboring the point, let us take a couple of
examples.

% set val 2+3*4

5 2+3%4

% list $val == 14
5> 2+3%4 == 14

The first statement above assigns the string 2+3*4 to the variable val, not the result of that expression. Similarly,
the 1ist command in the second statement creates a list from its arguments 2+3*4, == and 14.
In contrast, commands like expr will treat the arguments as in-fix expressions to be calculated.

% expr 2+3*4
+ 14

Here the expr command interprets its argument as an expression and returns the result. Other commands that
treat an argument as an expression include conditional and looping commands like if and while.

Thus unlike most other languages, Tcl will not necessarily treat a string of characters that looks like a numeric
expression as being one. The interpretation is dependent on the command to which it is passed as an argument.

We will describe expressions within the context of expr since it is the most fundamental of these commands.

The general form of the expr command is
expr ARG ?ARNG WP

The command concatenates the supplied arguments separating them by space characters. The result is then
treated as a Tcl expression and evaluated. The syntax of a Tcl expression differs from the normal Tcl syntax and is
described next.

Expressions consists of

+ operands which are the values to be used in the operations
+ operators which define the operations to be executed

+ parenthesis for grouping operands

We describe each of these in turn.

7.2.2.1. Operands in expressions

An operand in an expression may be one of
« anumber in any of the representations described earlier
» aboolean literal in any form such as true, false etc.
+ a Tcl variable, dereferenced as usual with a $ prefix

+ a double quoted string. The expression evaluator will do the same backslash, variable, and command
substitutions on the string as Tcl.

+ abrace quoted string which is again parsed as in Tcl.
+ a Tcl command enclosed in brackets. The result of the command is used as the operand value.

+ a mathematical function that uses the form func(arg,..) where the arguments have the same syntax as other
operands but are separated by commas.

Some examples:

175

Infix expressions: expr

expr {[clock seconds] + 86400} » 1499235342 @

set exponent 3 + 3

expr {pow(2,3$exponent)} >8.00
set s "bar" + bar
expr {"foobar" eq "foo$s"} > 1O

expr {"foobar" eq {foo$s}} >0 0@

Bracketed command

Call to the math function pow with numeric literal and variable arguments
Double quoted literal string operand

Brace quoted literal string operand

COo0Q

One point to make a special note of is that unlike in Tc], string literals must be quoted within expressions. For
example,

% expr {bar eq $s} @
@ invalid bareword "bar"

in expression "bar eq $s";

should be “$bar” or "{bar}" or "bar(...)" or ...
% expr {"bar" eq $s} @

> 1

© Error - string literals must be enclosed in quotes or braces
@ Ok-bar is placed in quotes

7.2.2.2. Operators in expressions

The operators supported in expressions include those we described previously in Section 7.2.1 and a few more. The
table Table 7.4 shows them in order of descending precedence. Operators with higher precedence are evaluated
before those with lower precedence. For example, in the expression 2+3*4, the 3*4 is evaluated first as * has a
higher precedence than + as shown in the table. Operators at the same precedence level are evaluated left to right
excepting the exponentiation operator as noted in the table.

Table 7.4. Expression operators in precedence order

Operators Description

-+~ Unary operators. The - and + indicate the sign of a numeric operand. The ~ is a hit-wise
complement and may only be applied to integer operands of any size. The ! operator is a
logical complement and may be applied to both boolean and numeric operands.

** Exponentiation. Multiple exponentiation operators are evaluated from right to left so in
the example below the 3**2 (9) is evaluated first and then 4**9. This is an exception to
the rule that operators at the same level of precedence are evaluated left to right.

expr {4**3**2} 5 262144

* /% Multiplication, division and remainder operators. See Table 7.1 for details on the sign of
the remainder when negative numbers are involved.

+, - Addition and subtraction.

<<, >> Left and right shifts. Only valid for integer operands. Right shifts propagate the sign bhit.

<, <=, >, >= Comparison operators return 1 if the comparison holds and 0 otherwise. See

Section 7.2.1.2 about how these work with numbers and strings.

176

Infix expressions: expr

Operators Description :
==, 1= Comparison operators return 1 if the condition is true and 0 otherwise. See Section 7.2.1.2
about how these work with numbers and strings.

in, ni Test for list containment or non-containment. The left side operand is an element value
and the right side a list value. See Section 7.2.1.5.

& Bit-wise AND operation. Operands must be integers.

A Bit-wise XOR operation. Operands must be integers.

[Bit-wise OR operation. Operands must be integers.

&& Logical AND operation on booleans or numbers (interpreted as booleans). The evaluation
is “short-circuited” (see below).

| Logical OR operation on booleans or numbers (interpreted as booleans). The evaluation is |
“short-circuited”.

7. This is the conditional operator that takes the form

If the CONDITION operand evaluates to true, the result of the expression is TRUEVAL;
otherwise, it is FALSEVAL.

proc min {a b} { expr {$a <= $b ? $a : $b} }
min 2 -2
> -2

The operators &, | | and ?: undergo “short-circuited” evaluation in that some arguments may not be evaluated if
the value of the expression is already determined. For example, in the case of the && operator, if the first operand
evaluates to false, the second operand is never evaluated.

expr {2 > 3 && [nosuchcommand]} » 0
The > has a higher precedence than && is therefore executed first. Since it evaluates to a boolean false, the second
operand of the && is never evaluated and consequently no error is raised about the command not existing.

Similarly, in the case of the | | operator, if the first argument evaluates to true, the second argument is not
evaluated. In the case of the ?: conditional operator, if conprTroN evaluates to false, then the TRUEVAL operand
is never evaluated; likewise for FALSEVAL if CONDITIONIS true.

7.2.2.3. Grouping operands with parenthesis

If an expression has multiple operators, it is evaluated in order of the operator precedence. If you want to change
the order of evaluation you can use parenthesis to force a different order.

expr 2+3*4 5 14
expr (2+3)*4 » 20

Needless to say, parenthesis may be nested to any desired level.
7.2.2.4. Braces and double substitution

It is important to note that the arguments passed to expr are parsed twice, once by the Tcl parser and once by the
command itself. This may lead to double substitution.

177

Infix expressions: expr

Consider the following code.

set elem a

set lst {a b c d}
expr {$elem in $1lst}
B

Here because the braces protect against substitutions by Tcl, the expr command sees a single argument $elem in
$1ist. It parses this argument as per its rules, doing variable substitution etc. and returns the result.

On the other hand, what happens with the following form.

expr $elem in $1st
@ invalid bareword "a"
in expression "a in a b ¢ d";
should be "$a” or "{a}" or "a(...)" or ...

Now because there are no braces to protect substitutions, the Tcl parser will substitute the variables. The expr
command sees three arguments, a, inand a b ¢ d and as per its defined behaviour concatenates them to form

the expression

ainabcd

This is not a valid expression and hence the generated error.

This example is illustrative of the fact that you have to be aware of the potential for double substitution. In rare
cases this may be desirable, but in most instances you are strongly advised to use the braced argument form of
the expr invocation for reasons of performance and safety:

+ Braced expressions can be compiled and cached internally for significantly better performance. So for example,
using the time command for measuring execution time, we can see

% set x 1 ; sety 2, set z3

» 3

% puts [time {expr $x+$y*$z} 10000]

> 5.3816 microseconds per iteration
% puts [time {expr {$x+$y*$z}} 10000]
» 0.8748 microseconds per iteration

+ Double substitution opens your code to unexpected surprises and even security risks if the expression being
evaluated comes from some untrusted source similar to SQL injection attacks. Consider writing a program that
will print the double of a number input by the user which is stored in the variable input. Either forms of the

expr command helow returns the right result.

set input 3 > 3
expr $input*2 > 6
expr {$input*2} -» 6

Now however imagine the user inputs the following string instead.

% set input {[puts Hacked!; string cat 31}
5> [puts Hacked!; string cat 3]
% expr $input*2
» Hacked!
6
% expr {$input*2}
@ can't use non-numeric string as operand of "*"

178

The incr command

Now you can see the problem with the unbraced version which lands up executing the puts command. Imagine
if that command was something more nefarious that formatted your disk via exec. The braced form of the
command does not suffer from this vulnerability, generating an error instead.

Generally speaking, you should limit yourself to using the unbraced argument form only in interactive mode
where it is a little more convenient.

0.0

The safest way to evaluate expressions from untrusted sources is through safe
interpreters which we will study in Section 20.6.

7.2.2.5. Expressions in other commands

The expr command is not the only command that uses expression syntax. Several other commands such as if,
while and for also use expression syntax for their condition argument and follow the same rules as expr for
evaluating it. For example,

if {$n > 0} {..some code..}
is equivalent to writing
if {[expr {$n > 0}]} {..some code..}

As described in Section 10.4.1, enclosing the condition in braces has added importance there.

7.2.3. The incr command

For the very common case of incrementing variables holding integers, Tcl offers the incr command.
incr VAR 2 NI D

Here var is the name of a variable that, if already existing, must hold an integer value. If it does not exist, it is
created with an initial value of 0. The value is then incremented by I1nvCREMENT which must also be an integer and
defaults to 1. The command returns the new value of vaAr.

incr newvar -2 » -2 ©
incr newvar s -1 0O

@ newvar created with value of 0 and then decremented
® Default increment of 1

The command is roughly equivalent to
set VAR [expr {$vAx + INURIMENIY]

except that it only works with integers and not floating point numbers.

More than just conciseness, the advantages of incr compared to expr is efficiency as incr modifies the variable
“in place” as opposed to generating a new value that is assigned back to the variable.

Ll g incr ival 0

You will sometimes find the following apparent no-op in Tcl code:.

179

Mathematical functions

The purpose of this statement is to verify that ival holds an integer value. If not, an
error will be raised. This is both faster and less verbose than

1f {[string is entier -strict $ivall} {
error "Expected integer, got \"$ival\""
b

7.3. Mathematical functions

Tcl provides some commonly used mathematical functions shown in Table 7.5 as commands in the
::tcl: imathfunc namespace.

Table 7.5. Mathematical functions

Functions Description
bool, int,wide, entier, double Number conversion. See Section 7.1.5.2.
abs, ceil, floor, round, max, min Number functions for returning absolute value, ceiling,

floor, integer with rounding and the maximum or
minimum values in a list.

: exp, pow, log, 1og10, isqrt, sqrt Functions related to exponents and logarithms.

sin, cos, tan, sinh, cosh, tanh, asin, acos, atan, Trigonometric and geometric functions. :
atan2, hypot

rand, srand Functions for random number generation.

You can also enumerate the available functions with the info functions command.

% info functions

+ round wide sqgrt sin log10 double hypot atan bool rand abs acos atan2 entier srand sinh ...
% info functions log*

> log10 log

We will not detail these commands here as their functionality should be obvious. See the Tcl reference
documentation of mathfunc for details.
These commands can be called like any other command by qualifying with the tcl: :mathfunc namespace

tcl::mathfunc: :rand > 0.2698534490865904
tcl::mathfunc::round 3.5 » 4

Alternatively you can import (see Section 12.5.3.1) the commands or add the : :tcl: :mathfunc namespace to the
namspace path (see Section 12.5.3.2) to call the commands without qualification.

namespace path ::tcl::mathfunc > (empty)
set lIst {1.0 -1.1 1.1} > 1.0 -1.1 1.1
max {*}%$lst > 1.1

7.3.1. Using functions in expressions

Commands in the : :tcl: :mathfunc namespace can be called from expressions using the special function call
expression syntax described in Section 7.2.2.1. Note that when called in this manner, the function name does not
need to be qualified even if it is not imported or placed on the namespace path.

180

Defining custom functions

set pi 3.14159 » 3.14159
expr {sin($pi/2)} + 0.9999999999991198

7.3.2. Defining custom functions

You can add your own commands to the : :tcl: :mathfunc namespace. Doing so allows you to use the command
as a function in an expression.

proc ::tcl::mathfunc::signum {n} {
expr {$n <0 ? -1 : $n>07?1: 0}
}

expr {signum(-5)}

> -1

Naturally, you have to take care that the functions you add do not clash with those that might be added by other
libraries in the application or even by Tcl itself in the future. It is best to prefix the name appropriately to reduce
the chance of a collision.

7.4. Chapter summary

In this chapter we covered numerical computation in Tcl. Although pure number crunching is not in Tcl’s sweet
spot, it nevertheless supports a wide variety of mathematical needs in terms of functionality if not performance.
In addition, several packages and extensions are available that extend Tcl’s numerical computation capabilities in
features and performance. See Section A.4.

We have now covered Tcl commands for manipulating data in the form of strings, lists, dictionaries and numbers.
One last type of data for which Tcl provides built-in support is time values and we cover that next.

181

Dates and Time

Until we can manage time, we can manage nothing else.
— Peter F. Drucker

Tcl can do many things, but sadly cannot manage time, only time values. It can however do a fair number of things
with those values:

+ Tell you what time it is, even in different timezones and calendars

+ Convert to multiple display formats in different locales

» Parse date time strings in various formats

» Perform date and time arithmetic

All functions related to these time manipulation features are implernented by the clock ensemble command.
8.1. Unix time and the epoch

Most Tcl commands dealing with time work with time values expressed as the number of seconds since the
epoch — January 1, 1970, 00:00 UTC. These values may be negative as well, representing a time before the epoch.
This representation originally comes from the Unix operating system and is now commonly used in other
computing environments. We will thus refer to these values as Unix time.

8.2. The Julian, Gregorian and alternate calendars

The clock command and documentation make reference to three different calendars. Some background
information will be helpful in understanding the terminology.

Tcl time computations do not take into account leap seconds. Time since the epoch is
always calculated assuming every minute has 60 seconds.

The Julian calendar

Historically, the julian calendar came on the scene first, introduced in 46 BC. It defined a calendar made up of
the 12 months that are in common use today with 365 days in a year with a leap year containing an extra day
every four years. The consequent average year length of 365.25 days however did not exactly equal the solar year
leading to a three day discrepancy over four centuries.

The Gregorian calendar

The Gregorian calendar is the calendar in accepted international use today. It was introduced in 1582 to resolve
the above discrepancy by changing the rules for leap years to be every four years except those divisible by 100 and
not by 400. This reduced the average year length to 365.2425 days bringing it closer in duration to the solar year.

In addition, the Gregorian calendar compensated for the accumulated difference by removing 10 days from the
calendar. The first day of the Gregorian calendar, 15 October 1582, followed the last day of the Julian calendar, 4
October 1582.

183

Time zones

The official Gregorian calendar introduction occured on 15 October 1582. The proleptic Gregorian calendar
extends the calendar definition backward over time.

An additional complication when comparing dates across the two calendars, or converting Unix time to

a time string, is that countries adopted the Gregorian calendar at different times. Converting Unix time
representations to dates therefore can also entail specification of a locale in which the conversion is to be done.
The GREGORIAN_CHANGE_DATE entry in the localization database contains the date on which the locale changed
calendars. The clock command uses this when doing the conversion of Unix time to the Gregorian calendar.

Alternative calendars

Some locales, like the Japanese, have other calendars that are still in common use. The Japanese civil calendar is
divided into named eras based on the reigning Emperor. Years are then numbered within the era and divided into
months and days in month in similar fashion to the Gregorian calendar. The clock command includes formatting
codes that specify the use of these alternative calendars when formatting dates and times.

8.3. Time zones
When dealing with time zones, the clock command retrieves the time zone to be used from one of the following
sources in order of preference:
+ A time zone specified inside the string being parsed
+ A time zone specified by command options -timezone or -gmt
» The TCL_TZ and TZ environment variables (in that order)
» The local time zone from system settings (Windows only)
» The C runtime library
The time zone strings may take one of several formats:

+ Standardized location names begin with a :, like : America/Argentina/Buenos_Aires. A full list of location
names can be found either under 1ib/tclveErsIon/tzdata or under a system specific directory like /usr/
share/zoneinfo on Unix systems. The string : localtime is a special case that refers to the local time zone as
defined by the C runtime library.

*+ Asecond form is a string starting with a + or -, denoting a time zone east or west of Greenwich respectively,
followed by a two digit hour offset, a two digit minute offset, and optionally a two digit seconds offset. For
example, +0530 is five and a half hours east of Greenwich and -080030 is eight hours and thirty seconds west.

» A string conforming to the Posix definition of the TZ environment variable, for example EST+5 for Eastern
Standard Time. Note that the semantics of + and - are opposite from the second form above with + indicating
a time zone west of the Greenwich and - denoting east. See the POSIX specification for the full syntax which
allows for daylight savings start, end and offsets.

* Strings that do not match any of the above are prefixed with a : and attempted to be handled as location names
described in the first item above.

We will see examples of time zone use as we discuss each command.

8.4. Retrieving the current time: clock seconds | milliseconds |
microseconds

The clock seconds, clock milliseconds and clock microseconds return the current time as the number of
seconds, milliseconds and microseconds since the epoch respectively.

clock seconds > 1499148942
clock milliseconds » 1499148942884
clock microseconds » 1499148942885092

184

Interval measurement

8.5. Interval measurement

While the above commands return time as the number of elapsed time units since the epoch, the clock clicks
command returns a high-resolution system-dependent value that is not tied to any epoch.

clock clicks » 3493118613

The return value from the command cannot be converted to a date and time in any calendar. Rather the difference
between two return values can be used for measuring intervals with the highest resolution offered by the
platform.

8.6. Formatting time for display: clock format

The clock format command formats a time value, given as number of seconds since the epoch, into a string of a
specified format that is suitable for display or for passing to other programs.

clock format SzZCSZROMEDOCH ?0FTIONS?
Without any options, the command will return a string using a default format and locale with the local time zone.

% set now [clock seconds]

» 1499148942

% clock format $now

» Tue Jul 04 11:45:42 IST 2017

8.6.1. Formatting for a different time zone: -timezone, -gmt

By default, the command will format the time using the default time zone. To display the time in the local time
zone at the epoch:

% clock format 0O
> Thu Jan 01 05:30:00 IST 1970

A different time zone can be specified with the -timezone option.

% clock format 0 -timezone :America/New_York
+ Wed Dec 31 19:00:00 EST 1969

The -gmt option is an alias for the UTC time zone.

% clock format O -timezone :UTC
> Thu Jan 01 00:00:00 UTC 1970
% clock format 0 -gmt 1

» Thu Jan 01 00:00:00 GMT 1970

8.6.2. Formatting for a locale: -1locale

The clock format command accepts the -locale option to display the time in a format suitable for a specific
locale. The permissible values for the option are any locale identifiers accepted by the msgcat (see Section 4.15)
command and the values current and system. The value current refers to the locale returned by the mclocale
command while system refers to user preferences if available (such as the registry on Windows), and is
synonymous with current otherwise.

Note that if - 1ocale is not specified, it defaults to the ROOT locale, not to the current or systenm locale.

185

Controlling display format: -format

% set now [clock seconds]
+ 1499148942

% msgcat::mclocale es @

> es

% clock format $now

5> Tue Jul 04 11:45:42 IST 2017

@ Setslocale to Spanish

Notice that though the locale has been set to Spanish, the time is not formatted as per that locale. This is because if
the -locale option is not specified, it defaults to the ROOT locale, not to the current or systemlocale. To format
as per the current locale, we have to explicitly specify that with the -1ocale option.

% clock format $now -locale current
» mar jul 04 11:45:42 IST 2017

The above will format as per the locale returned by mclocale (es in our example).
Alternatively you can specify an explicit locale.

% clock format $now -locale fr
» mar. juil. 04 11:45:42 IST 2017

8.6.3. Controlling display format: -format

For exact control over the display format for time, clock format accepts the -format option whose value, the
format specification, controls the generated display string. The format specification consists of format groups,
which are two-character sequences beginning with the % character. Each format group is replaced with a specific
time component like day or hour as shown in Table 8.1 and other characters present between the format groups
are passed through unchanged.

% clock format [clock seconds] -format "The current time is %r."
» The current time is 11:45:42 am.

The format groups supported by clock format, as well as by the clock scan command we will describe later,
are shown in Table 8.1.

Table 8.1. Format groups for clock

Format group Description

%a, %A Locale dependent day of the week in short and full form respectively.
clock format [clock seconds] -format %a > Tue
clock format [clock seconds] -format %A > Tuesday

clock format [clock seconds] -format %A -locale de » Dienstag

%b, %B Locale dependent month short and full form respectively.
p P Y
clock format [clock seconds} -format %b > Jul
clock format [clock seconds] -format %B s> July

clock format [clock seconds] -format %B -locale de » Juli

%C Localized representation of date and time of day.

% clock format [clock seconds] -format %c

186

Controlling display format: -format

%C

%d
%D

%e

%EC, %EX, BEX, %EY,
%EY

%EC

%EE

%g, %G
%h
%H, %I

%]

%J

» Tue Jul 4 11:45:42 2017
% clock format [clock seconds] -format %c -locale de
> 04.07.2017 11:45:42 +0530

Number of the century

clock format [clock seconds] -format %C » 20

Two digit number of the month.

Synonym for %m/%d/%Y

clock format [clock seconds] -format %D » 07/04/2017

Day of the month as two digits or a single digit with a leading space.

Corresponds to the %c (localized date and time), %x (localized date), %X (localized time

of day), %y (two digit year) and %Y (full year) format groups except that the locale’s
alternative calendar is used. For example, in the Japanese locale, the alternative calendar
is the Japanese civil calendar.

% clock format 0 -locale ja -format %Y -gmt 1
» 1970
% clock format 0 -locale ja -format %EY -gmt 1

> PBF145

% clock format 0 -locale ja -format %c -gmt 1
» 1970/01/01 0:00:00 +0000

% clock format 0 -locale ja -format %Ec -gmt 1

> BBF4SE018018 (K) 0085004300 +0000
Note for example that the epoch year 1970 is shown as year 45 in the f&%[], or Showa, era.

The locale-dependent era in the locale’s alternative calendar

clock format 0 -locale ja -format %EC -gmt 1 - BEH]

Either string B.C.E. or C.E., or their localized versions, depending on whether %Y refers :
to dates before or after Year 1 of the Common Era.

clock format O -format %EE + C.E..

clock format O -format %EE -locale de » n. Chr.
A 2-digit and 4-digit year suitable for use with the week-based calendar.
Same as %b.
Two digit hour of the day on a 24 and 12 hour clock respectively.

% clock format [clock seconds] -format %H
> 19
% clock format [clock seconds] -format %I
> 07

A 3-digit day of the year.
clock format 0 -format %j » 001

The Julian day number. This is often useful in calendar calculations.

187

Controlling display format: -format

%k, %1

%m, %N

%M

%0d, %0e, %0H, %01,
%0k, %01, %0m, %OM,
%0S, %0u, %0w, %0y

%P, %P

%r

%R
%S

%S
%t
%T

%L, Yow

proc julian {secs} {
return [clock format $secs -format %J]
b
proc days_since {mmddyy} {
set then [clock scan $mmddyy -format "%Y/%m/%d"]
return [expr {[julian [clock seconds]] - [julian $then]}]
¥
puts "World War II ended [days_since 1945/09/02] days ago."
» World War II ended 26238 days ago.

The one or two digit hour of the day using a 24- and 12-hour clock respectively. Note the
single digit hours are left padded with a space.

clock format [clock seconds] -format "(%L)" » (11)

Number of the month where %m always produces a 2-digit value while %N left pads single
digit months with a space.

clock format O -format (%m) » (01)
clock format O -format (%N) » (1)
A 2-digit minute of the hour (00-59).

These are the same as the corresponding specifiers without the 0 except that they use
locale-dependent alternative numerals

Outputs a locale-specific AM/PM (%p) or am/pm (%P) indicator. If the locale supports both
lower and upper case variations, %p and %P select the upper and lower case forms
respectively.

clock format [clock seconds] -format "%H:%M %p" » 11:45 AM
clock format [clock seconds] -format "%H:%M %P" > 11:45 am

Locale-dependent time of day using a 12-hour clock.

clock format [clock seconds] -format %r -» 11:45:42 am

Hours and minutes as 24-hour clock. Same as %H : %M.

Outputs the SECSFROMEPOCH argument as a decimal string.
% clock format [clock seconds] -format "It is %S seconds since the epoch.”
> It is 1499148942 seconds since the epoch.

The 2-digit second of the minute.

Outputs a tab character

Time of day. Alias for %H : %M : %S.

The number for the day of the week. %u conforms with ISO8601 with days Monday-
Sunday numbered 1-7 while %w numbers Sunday-Saturday as 0-6.

% clock format [clock seconds] -format "Today, %A, is day %u of the week.”
> Today, Tuesday, is day 2 of the week.

188

Parsing dates and times: clock scan

%U, %V, %W The ordinal number of the week in the year. %U returns a number in range 00-53 with the
first Sunday of the year being the first day of week 01. %W is similar except for week 01
beginning on the first Monday of the year. The prefered grouping %V, which conforms to
"1S08601 week numbering" (see Section 8.9.1.2), returns in the range 01-53.

- %X, %X Locale-dependent date and time representation respectively.

clock format $now -format "%x %X" > 07/04/2017 11:45:42
clock format $now -format "%x %X" -locale be » 4.07.2017 11.45.42

%y, %Y The 2-digit year of the century and 4-digit calendar year respectively. Note that neither
yields the correct value for use with ISO8601 week numbers for which %g and %G should
be used instead.

%z, %Z Returns the current time zone in +/-hhmm and name format respectively.

clock format 0 -format %z -timezone :America/New_York » -0500
clock format 0 -format %Z -timezone :America/New_York » EST

%% Outputs a single % character
%+ Same as%a %b %e %H:%M:%S %Z %Y.

clock format 0 -format %+ » Thu Jan 1 05:30:00 IST 1970

8.7. Parsing dates and times: clock scan

The inverse of the clock format command is clock scan which parses a time string and returns the
corresponding count of seconds since the epoch.

clock scan TIMESTRING PIETIONS?

The expected format of TIMESTRING is specified by the - format option. It is strongly recommended that this
option always be specified. If this option is not present, the command uses heuristics to guess the format of the
string. These may lead to unexpected results due to ambiguities in interpretation of the provided fields. This is
described later in Section 8.7.5.

Even with the -format option specified, the parsing algorithm used by clock scan is necessarily complex for
several reasons and we will not detail it here. See the Tcl reference documentation for a full exposition.

8.7.1. Specifying the parse format: -format

The -format option controls the parsing process by specifying the expected format of the input string. The value
for this option takes exactly the same form as described earlier for the clock format cornmand except that here
the format groups define what time components are expected in the input TIMESTRING argument and not how
they are to be displayed. The format groups shown in Table 8.1 also apply to clock scan so we will not repeat
them here but just show some examples.

Parse a full date and time specification:
% set t [clock scan "19900613 003000" -format "%Y%m%d %HBM%S"]
> 645217200

% clock format $t
+» Wed Jun 13 00:30:00 IST 1990

If the time is not specified, clock scan assumes 00:00:00.

189

Specifying the time zone for parsing: -timezone and -gmt

% set t [clock scan "1990-06-13" -format "%Y-%m-%d"]
» 645215400

% clock format $t

» Wed Jun 13 00:00:00 IST 1990

If the date is not specified, the current date is assumed unless the -base option is specified. Note the use of the AM/
PM designator in the example.

% set t [clock scan "12:30am" -format "%I:%M%p"]
+ 1499108400

% clock format $t

» Tue Jul 04 00:30:00 IST 2017

A feature of clock scanis that it parses embedded fields in strings.

% set t [clock scan "October 27, 2004 - a memorable day in history!™ \
-format "%B %d, %Y - a memorable day in history!"]

+ 1098815400

% clock format $t

» Wed Oct 27 00:00:00 IST 2004

However, the fact that the non-time related characters must exactly match the format string limits its usefulness in
parsing log files and such.

If the format specification does not contain components that specify the full date (year,
month and day), then even the components included in the specification may be ignored
and default to the base date. For instance,

% clock format [clock scan 2014-01-02 -format %Y-%m-%d] (1]
+ Thu Jan 02 00:00:00 IST 2014

% clock format [clock scan 2014-01 -format %Y-%m] @

> Tue Jul 04 00:00:00 IST 2017

© Full date specified
@ Full date not specified so defaults to the base date (current date)

Thus it strongly advised to require all date components to be included either directly or
indirectly (for example, numerical day in year instead of month and day in month).

8.7.2. Specifying the time zone for parsing: -timezone and -gmt

Just like for clock format, the -timezone option can be specified to indicate which time zone should be assumed
for the string being parsed.

clock scan "19900613 003000" -format "%Y%m%d %H%M%S" » 645217200
clock scan "19900613 003000" -format “"%Y%m%d %H%M%S" -timezone :UTC » 645237000
clock scan "19900613 003000" -format "%Y%m¥%kd %H%M®%S" -gmt 1 > 645237000
clock scan "19900613 003000" -format "%Y%m%d %H%M%S” -timezone EST -+ 645255000

8.7.3. Parsing localized time strings: -locale

The clock scancommand also accepts the -1ocale option for parsing localized date and time strings. By default,
this is the root locale {} and not the current locale as returned by msgcat: :mclocale. The latter can be specified

190

Changing the defaults for parsing: -base

using -locale current. On some systems, the -1ocale option also accepts the value system. On Windows this
refers to the user’s locale settings in the Control Panel.

% set tstring_fr [clock format O -format "%A, %B %d %Y" -locale fr -gmt 1]
» jeudi, janvier 01 1970

% clock scan $tstring_fr -format "%A, %B %d %Y" -locale fr -gmt 1

+ 0

% clock scan $tstring_fr -format "%A, %B %d %Y" @

@ input string does not match supplied format

© Error because default locale is not fr

8.7.4. Changing the defaults for parsing: -base

When a date is not fully specified, the clock scan command uses the base date as the default for unspecified
components. By default the base date is the current date. In the example below, since the year is not specified, it
will default to the current year.

% puts "The current year is [clock format [clock seconds] -format %Y]"
» The current year is 2017

% clock format [clock scan "01/31" -format "%m/%d"]

+ Tue Jan 31 00:00:00 IST 2017

This base date can be changed to use a different date by specifying the -base option. The value of the option must
be specified as the number of seconds since the epoch. So to use the epoch year as the base date,

% clock format [clock scan "01/31" -format "%m/%d" -base 0]
+ Sat Jan 31 00:00:00 IST 1970

Or to use year 2000 as the base date,

% set secs2000 [clock scan 2000/01/01 -format %Y/%m/%d]

+ 946665000

% clock format [clock scan "01/31" -format "%m/%d" -base $secs2000]
» Mon Jan 31 00:00:00 IST 2000

Note that there is no “base time”; if the time is not specified, it defaults to midnight 00:00: 00 in the current locale.

8.7.5. Free form parsing of time strings

When the -format option is not specified to the clock scan command, it attempts to guess the format of the
passed argument. This form is now deprecated because of the ambiguity in interpreting strings and we therefore
do not discuss it further.

There is however, one useful form of the free form scan that allows specifying relative time using keywords now,
today, tomorrow, yesterday, next, last and ago. Some examples:

clock format [clock scan now] > Tue Jul 04 11:45:42 IST 2017
clock format [clock scan tomorrow] > Wed Jul 05 00:00:00 IST 2017
clock format [clock scan "next week"] » Tue Jul 11 00:00:00 IST 2017
clock format [clock scan "last month"] 5 Sun Jun 04 00:00:00 IST 2017
clock format [clock scan "2 years ago"] » Sat Jul 04 00:00:00 IST 2015

191

Time arithmetic: clock add

Even here, you have to be careful in use of the words. For example,

% clock format [clock seconds]
> Tue Jul 04 11:45:42 IST 2017
% clock format [clock scan "last 2 months"]
» Sun Sep 03 23:59:59 IST 2017

which is likely not what you expected. The string last 2 months is parsed as 2 months after the “last day”. The

author’s recommendation is to avoid surprises by restricting free form scanning to unambiguous simple keywords
like yesterday.

8.8. Time arithmetic: clock add

Tcl provides for basic time arithmetic operations with the clock add command.

clock add TIMZVAT

In the basic form, it takes TIMEVAL, in the form of Unix time, and one or more pairs of arguments that specify the
number and unit by which the TIMEVAL is to be changed. For example,

set now [clock seconds] > 1499148943

clock format $now > Tue Jul 04 11:45:43 IST 2017
clock format {clock add $now 1 week] > Tue Jul 11 11:45:43 IST 2017
clock format [clock add $now -2 hours] » Tue Jul 04 09:45:43 IST 2017

The unit of time may be one of years, months, weeks, days, hours, minutes or seconds and the singular forms of
these are accepted as well. The command will accept any number of change specifications.

clock format [clock add $now 2 years 1 month 1 day] » Mon Aug 05 11:45:43 IST 2019
clock format [clock add $now 1 day 1 day 1 day] 5 Fri Jul 07 11:45:43 1ST 2017 @

© Sameasclock add $now 3 days

The clock add command implements the -timezone and -locale options which take on the same values as
described for the clock format and clock scan options.

The -timezone option is pertinent because it affects arithmetic across daylight savings boundaries as we will see
below.

The -locale option controls the date used as the transition from the Julian to the Gregorian calendars which
differs in different parts of the world. As a consequence it affects time arithmetic that crosses the transition date as
we described in [id_clock_gregorian_change_date].

8.8.1. Clock computations

Because of the various lengths of a time unit (for example, a month might 28, 29, 30 or 31 days), some discussion
is warranted in terms of how the arithmetic is done. Here we only provide a summary and refer you to the Tcl
command reference for full details and some of the finer points.

Adding seconds, minutes and hours

Hours and minutes are converted to seconds by multiplying with 3600 and 60 respectively and the result added to
the TIMEVAL argument. Leap seconds are ignored.

192

Time representation standards

Adding days and weeks

Adding days and weeks is done by first converting TIMEVAL into a calendar day (not date). The days, or weeks
multiplied by 7, are then added to the calendar day and then converted back into seconds.

Note that the above means that adding 24 hours and adding 1 day do not always have the same effect. Here is
an example from the Tcl command reference that illustrates the difference when the change crosses a Daylight
Savings Time boundary.

% set t [clock scan {2004-10-30 05:00:00} \

-format {%Y-%m-%d %H:%M:%S} \

-timezone :America/New_York]
» 1099126800
% set tplusiday [clock add $t 1 day -timezone :America/New_York]
1099216800
clock format $tplusiday -format %T -timezone :America/New_York
05:00:00
set tplus24hrs [clock add $t 24 hours -timezone :America/New_York]
1099213200
% clock format $tplus24hrs -format %T -timezone :America/New_York
04:00:00

Vo v AR v

v

There are some additional special cases for daylight savings changes, such as a local time appearing twice, or the
resulting time being “impossible” when the clock jumps forward. See the command reference as to how these are

handled.
Adding months and years

Adding months and years works similar to adding of days and weeks except that TIMEVAL is first converted to the
calendar date, not day. The months or years are then added to the calendar date as appropriate. If the resulting
date is invalid because the month has fewer days, it is set to the last day of the month.

% set t [clock scan {2016-05-31} -format %Y-%m-%d]
1464633000

% set tplusimonth [clock add $t 1 month] @
1467225000

% clock format $tplusimonth

» Thu Jun 30 00:00:00 IST 2016

v

v

© June 31 would be invalid

Like for arithmetic involving days and weeks, several special cases arise related to daylight savings and calendar
changes. We again refer you to the command reference for details.

8.9. Time representation standards

There are several standards that define how dates and times are to be represented to facilitate sharing across
applications. We describe two of these here with regards to their handling in Tcl.

8.9.1. The ISO 8601 standard

The ISO 8601 international standard defines standard formats for representing date and time related values.

» The components of dates and times are ordered from the largest to the smallest unit: year, month or week, day
of month or day of week, hour, minute, second, and fractions of seconds.

+ Components may be left out provided all smaller units are also omitted. For example, if the minutes
components is omitted, the seconds and fraction of seconds components must also be omitted.

» Each component has a fixed width and is padded with leading zeroes if necessary.

193

The ISO 8601 standard

» The character - is used as the separator between the date components and : between time components.
These separators are optional and may be omitted. Thus the strings 1969-07-21 and 19690721 are both valid
representations for the date a giant step was taken for mankind.

Tcl itself provides the underlying mechanism for parsing ISO 8601 format dates with the clock scan command
as we have seen but that requires knowledge of which specific ISO 8601 format is in use. The clock::1s08601
package in the Tcl standard library Tcllib 1 provides a higher level interface that we will demonstrate below.

% package require clock::1s508601
» 01

Dates in ISO 8601 can be calendar dates, week dates, or ordinal dates.
8.9.1.1. ISO 8601 calendar dates

Calendar dates are the commonly used form consisting of a 4-digit year, 2-digit month and 2-digit day of month.
Valid syntax is one of

Note vyyymMis not valid ISO 8601 syntax.
Constructing dates in this representation is straightforward.

clock format [clock seconds] -format "%Y-%m-%d" > 2017-07-04
clock format [clock seconds] -format "%Y%m%d" » 20170704

For parsing, we can use the 1508601 parse_date command from the 1508601 package to parse these formats
without having to know the format being used up front as would be required for clock scan.

clock: 1508601 parse_date 1990-06-13 » 645215400
clock::1s08601 parse_date 19900613 > 645215400
clock::1s08601 parse_date 1990-06 > 644178600

8.9.1.2. ISO 8601 week dates

A second format for dates uses a week number, 01-53, in the year and a day in the week instead of the month
and day in month. Because weeks can cross year boundaries, the numbering of weeks is not cormpletely
straightforward. ISO 8601 treats weeks as belonging to the year in which the majority of days in that week lie.
Formally, the standard defines week 01 of a year as the week containing the year’s first Thursday.

The ISO 8601 syntax for week dates takes one of the forms

i OF YYYYWww
vy YWwwis

where ww is the 2-digit week number and » is the day number in the week.

The definition of week date means that the value of the year component in an ISO 8601 date may differ based
on whether calendar dates are being used or week dates. For example, January 1 2005 would be represented as
2005-01-01 as a calendar date but 2004-W53 as a ISO 8601 week date.

1 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

194

The ISO 8601 standard

When formatting time for ISO 8601 weeks, it is important to keep this difference in mind
and use %g/%G to format the year component and not %y/%Y. For similar reasons, use %V
and %u for the week number and day in week components.

set t [clock scan "2005-01-01" -format "%Y-%m-%d"] » 1104517800
clock format $t -format "%G-W%V-%u" > 2004-W53-6 @
clock format $t -format "%Y-WiW-%w" > 2005-W00-6 O

© Correct ISO 8601 week date
@ Wrong

For parsing ISO 8601 week dates, we can just use the 1508601 parse_date command as before.

% set t [clock::1508601 parse_date 2004-W53-6]
» 1104517800

% clock format $t -gmt 1

» Fri Dec 31 18:30:00 GMT 2004

8.9.1.3. ISO 8601 ordinal dates
Ordinal dates specify the 4-digit year and the 3-digit day number within the year. It takes one of the forms

Ordinal dates are formatted using the %j format group which gives the day of the year.

clock format [clock seconds] -format "%Y-%j" » 2017-185
clock format [clock seconds] -format "%Y%j" -» 2017185

As always, for parsing 1508601 parse_date does the job for us.

set t [clock::1508601 parse_date 1985-036] » 476389800
clock format $t -gmt 1 + Mon Feb 04 18:30:00 GMT 1985

8.9.1.4. ISO 8601 time

Time in ISO 8061 is represented in any of the following formats.

When combined with a date to denote a single instant, the time and date strings are separated by a single T
character.

The time may optionally be followed by a time zone designator. The time zone is specified as Z indicating UTC or as
an offset from UTC in one of the forms +hh: mm, thamm or +hh where time zones east of Greenwich have a + prefix

and those west have a - prefix. If absent, the time is assumed to be in local time.

Formats that do not include fractional seconds can be easily constructed with the clock format command using

the %H, %M and %S format groups.

% clock format {clock seconds] -format "%H:%M:%SZ" -timezone :UTC
» 06:15:43Z

195

RFC 2822 format

However, the clock format command does not have support for fractional seconds and any such value needs to
be manually formatted.

% set t [clock milliseconds]

5> 1499148943025

% format “%s.%sZ" [clock format [/ $t 1000] -format %H:%M:%S -timezone :UTC] [% $t 1000] @
> 06:15:43.25Z

@ Assumes / and % are imported from : :tcl: :mathop

The 1508601 parse_time command parses a time or a full date and time representation.

2

set t [clock::1s08601 parse_time 2000-01-01T700:00:00Z]
+ 946684800

% clock format $t -timezone :UTC

» Sat Jan 01 00:00:00 UTC 2000

% set t [clock::1s08601 parse_time 12:15-05:00] (1)

> 1499188500

% clock format $t -timezone EST

> Tue Jul 04 12:15:00 EST 2017

@ Assumes today’s date with Eastern Standard Time

Nevertheless there are limitations here as well in that the command does not parse fractional seconds as its output
format is always an integral number of seconds.

8.9.2. RFC 2822 format

The IETF standard RFC 2822 defines a syntax for electronic mail and includes a specification for representing
time.

As for ISO 8601, Tcllib? provides a package, clock: : rfc2822, for directly parsing time in this format.

% package require clock::rfc2822
> 0.1

The rfc2822 parse_date command can then be used to parse this representation into Unix time.

% set t [::clock::rfc2822 parse_date "Fri, 1 April 2000 04:20:00 -0600"]
> 954584400

% clock format $t -timezone -0600

» Sat Apr 01 04:20:00 -0600 2000

8.10. Localization

We have seen use of the -1ocale option with various commands to format and parse time values using localized
names of months and weeks, different formats and representations and so on. This makes use of TcP's msgcat
facility and supports many locales out of the box. Additional locales may be added defining a set of localized
strings as described in the TIP 173 3 specification.

Here we present a small example of extending an existing locale, say fr, to display dates using a different
separator, |, when the format group %x is specified. From TIP 173, we find that the relevant entry is DATE_FORMAT
and we can set it with the following snippet.

2 http://core.tcl.tk/tellib/doc/trunk/embedded/index.html
http://www.tcl.tk/cgi-bin/tct/tip/173

196

Chapter summary

namespace eval ::tcl::clock {
pimsgcat::imcset fr_xx DATE_FORMAT "%e|%B|%Y"

}
> %e | %B %Y

And voila!

% clock format O -format %x -locale fr

s 1 janvier 1970

% clock format 0 -format %x -locale fr_xx
s> 1|janvier|1970

The above snippet would normally be placed in the fr_xx.msg file in a directory that is loaded by the msgcat
package but could also be executed independently.

See Section 4.15 for more information.

8.11. Chapter summary

Almost any non-trivial software program has to deal with date and time values at some level. In this chapter,

we described the comprehensive facilities Tcl provides for this purpose, including retrieving the current time,
formatting and parsing time values, localization and time arithmetic. Another function related to time is the
scheduling of events. We will defer that topic to Chapter 15. The vast majority of applications will find these built-
in commands suffice without the need for any external tools and libraries.

Having covered commands for manipulation of data in various forms ranging from strings to dates and times, we
will now move on to another basic operation related to data — input and output.

197

Files and Basic I/O

There are very few programming tasks that do not involve access in some fashion to data stored in files.
Correspondingly, Tcl provides a wide variety of commands that deal with related aspects. Some of these are the
standard features found in most programming languages including commands for

* Parsing and construction of file paths in a platform-independent manner.

+ File system operations for managing volumes and directories, accessing file metadata etc.

* Reading and writing data to files. Both synchronous and asynchronous operations are supported.
In addition, Tcl’s channel abstraction provides some unique capabilities not commonly found in other languages:
* Transparent handling of character encodings

+ Data transforms, such as compression, during I/O

* Ability to define new channel types, for example to write to in-memory buffers using I/O commands

* Avirtual file system API with plug-ins, for example to access Web pages or remote files over HTTP or FTP with
the standard file commands.

In this chapter, we discuss only the basics, delegating advanced topics like asynchronous 1/0, reflected channels,
transforms, and virtual file systems to later chapters.

9.1. File paths

The majority of functions related to file paths and file systems are implemented by the file ensemble command.
file simooMan rzte

As with most ensemble commands, suBCoMMAND may be specified as a unique prefix. For example, both the
following are equivalent since isd is a unique subcommand prefix.

file isdirectory C:/Windows s 1
file isd C:/Windows + 1

9.1.1. Path syntax

Platforms differ in the syntax used for specifying file paths. For example, Unix uses / as the path separator while
Windows accepts either / or \ and also has an optional drive or volume component.

On Unix and MacOS X, file paths may contain any character other than a / which is used as the file path
component separator. Path components . and . . are special cases that are interpreted as the current directory
and its parent respectively. Multiple adjacent / characters are treated as a single / character and trailing ones are
ignored.

Windows file paths may start with an optional drive letter or a UNC path of the form \\COMPUTERNAME
\SHARENAME. They permit both / and \ as separators and interpret . and . . just like Unix and MacQS X.

199

Path syntax

Tcl also treats it as a special character and needs to be escaped by doubling or protected

When using the \ character as a file path separator in a literal path string, remember that
E inside braces.

Tcl hides platform differences to the extent possible by two means:

« On all platforms, Tcl supports a generic Unix-like syntax that uses / as the file path separator. The native
separator used by a file system can be obtained with the f1le separator command (see Section 9.2.1).

« Tcl provides commands for parsing and constructing file paths from individual path components so
applications do not need to be concerned about the exact syntax required.

Nevertheless, applications should be aware that the set of characters supported in paths, path length limits etc.
vary between file systems.

9.1.1.1. Absolute and relative paths: file pathtype

Tcl supports both absolute and relative paths. The type of a path may be ascertained with the file pathtype
command.

file pathtype =ars

The command works purely on a syntactic basis so the specified path does not have to actually refer to an existing
file. It returns absolute if the path refers to a specific file on a specific volume.

file pathtype c:/foo/bar > absolute
file pathtype {\\RemoteSystem\C_Drive\foo} » absolute

If the path is relative to the current working directory, the command returns relative.

file pathtype foo/bar » relative
file pathtype ../foo/bar » relative

Finally, on Windows system where file paths can have a drive component, the command returns
volumerelative if the path is either relative to the current working directory on a specifed volume or a specific
file on the current working volume.

file pathtype {c:foo\\bar} » volumerelative
file pathtype {/foo/bar} - volumerelative @

© Note that on Unix, this would return the value absolute

9.1.1.2. Path normalization: file normalize, fileutil::lexnormalize,
fileutil::fullnormalize

A path that is relative can be converted to an absolute path with the file normalize command.
file normalize #ATH

The argument PATH may be relative, volume relative or absolute. In the first two cases, itis converted to an
absolute path. In addition, for all three cases the command takes the following actions to generate a unique string
to identify the file.

« Removesall . and . . occurences, adjusting other path components as appropriate.

» Does leading tilde substitution (see Section 9.1.1.3).

200

Path syntax

* Replaces all links in the path by their targets with the exception that the last component is not replaced even
if a link. This exception is by design in case the application wants to manipulate the link itself and not the link
target.

+ (Windows only) Replaces any path components that use the 8.3 short name format by the long form name.
Moreover, if the path component actually exists, the exact case-sensitive version of the name is used.

The following examples illustrate the behaviour on Windows systems.

% file normalize a/b @

» C:/temp/a/b

% file normalize c:/temp/foo/.././bar @
» C:/temp/bar

% file normalize c:/WINDOWS/system32 (3]
» C:/Windows/System32

% file normalize c:/WINDOWSX/system32 @
> C:/WINDOWSX/system32

% file normalize AVERYL~1 ©

» C:/temp/A very long file name

Convert relative to absolute

Removal of . and ..

Fix character case for path components that exist

Path components that do not exist keep existing character case
Convert file short name to long name

0000

The way file normalize handles links may not be suitable for some purposes. First, it replaces any links in the
path with the target. Second it does not replace a link if it is the last component in the path.

If you do want the last component in the file path to also be replaced if it is a link, you
- ‘ - can use the following trick. Append a dummy non-existent file name, such as ... , and
o e normalize the resulting path. Then use file dirname to retrieve the original path in
normalized form. For example, if $path is the path to be normalized,

file dirname [file normalize [file join $path ...1]

The fileutil module of Tcllib ! provides two alternatives to the file normalize functionality:
» The fullnormalize command implements the above trick, normalizing all links in the path.

* The lexnormalize command performs normalization purely based on the syntactic structure of its argument
with no special consideration for links and without converting 8.3 names to their long form.

9.1.1.3. Tilde substitution and the home directory

The Tcl file commands treat file names starting with a tilde, ~, in special fashion. If the tilde is immediately
followed by a path separator, it is replaced by the value of the HOME environment variable. Otherwise, all
characters between the tilde and the next path separator are treated as the name of a user on the system and the
path component is replaced with that user’s home directory.

file normalize ~/foo » C:/Users/ashok/Documents/foo
file normalize ~ashok/foo » C:/Users/ashok/foo

1 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.htm]

201

Parsing paths: file splitjextension|rootname|dirname|tail

The ~USER form does not look at the specified user’s HOME environment variable. Thus
the two forms ~ and ~USER may not give the same results even when USER is the same as
the one owning the current process

Tilde substitution can be a problem, particularly on Windows where, unlike Unix shells, tilde substitution is not
common practice. Thus a file name beginning with a tilde is perfectly legitimate but using it directly will lead to Tcl
interpreting it as a user name. To work around this, the following fragment is useful.

if {[file pathtype $path] eq "relative"} {
set path "./$path”
¥

Since tilde substitution is only done on the first component in the path, it will not be effected here.

9.1.2. Parsing paths: file split|extension|rootname|dirname|tail

To allow programming without being bothered by platform-specific details of path syntax, Tcl provides a number
of commands for parsing and extracting components from a path.

The first of these, file split breaks a path into separate components.

file split »ati

The return value from the command is a list of path components. Note that pATH may be relative or absolute.

% file split c:/dir/file

+ c:/ dir file

% file split {\\RemoteSystem\ShareName\dir\file}
» //RemoteSystem/ShareName dir file

% file split dir/file

+ dir file

In addition, several subcommands return parts of a file path. The specified path passed to the commands may be
either absolute or relative.

The file extension command returns the extension of a path or an empty string if the path does not have an
extension. Conversely, file rootname returns the entire path except the extension.

file extension /dir/subdir/file.ext » .ext
file extension /dir/subdir/file > (empty)
file rootname /dir/subdir/file.ext - /dir/subdir/file

Similarly, the complementary commands file dirname and file tail return the directory component of the
path and the name of the file respectively.

file dirname /dir/subdir/file.ext » /dir/subdir
file tail /dir/subdir/file.ext > file.ext

file dirname foo > .
file tail foo » foo
file tail foo/ > foo @

@ Note trailing separators are completely ignored.

202

Constructing paths: file join

9.1.3. Constructing paths: file join
Just as for parsing paths, Tcl provides a command, file join, for path constructionina platform-independent
manner.

file join ravr 2737 .2

If a PATH argument is a relative path, it is joined to the path being constructed using a path separator. If the
argument is itself an absolute path, the path constructed so far is discarded and the argument becomes the initial
value of the constructed path when processing the remaining arguments.

file join dir subdir file.ext s> dir/subdir/file.ext
file join dir/subl sub2\\sub3 file.ext » dir/subi/sub2/sub3/file.ext (1]
file join dir /subdir file.ext > /subdir/file.ext @

@ Note \ replaced with the Tcl canonical separator /.
© Absolute path arguments result in previous arguments being ignored.

9.1.4. Converting paths to native form: file nativename

When passing a file path to an external program, for example the command shell on Windows, the path must be
converted to the native form for that platform. The file nativename command can be used for the purpose.

file nativename P2TH

The command takes whatever actions are necessary to convert the specified path to platform-specific syntax, for
example replacing tilde, converting canonical path separator / to platform specific ones and so on. For example,
on Windows,

file nativename /dir/subdir/file.ext » \dir\subdir\file.ext
file nativename ~/file.ext s C:\Users\ashok\Documents\file.ext

The file join command can be used as a complementary command to convert in the

- ‘ - other direction.

0.0

% set native_path [file nativename c:/dir/file.ext]
» c:\dirfile.ext

% file join $native_path

> c:/dir/file.ext

9.2. File system operations

A number of file subcommands are related to operations related to the file system, such as retrieving
metainformation ahout a file, directory creation, manipulation of file attributes etc. We describe these facilities
here.

9.2.1. File system information: file volumes|system|separator

Discussion of Tcl support for Virtual File Systerns (VFS) is postponed to Chapter 19 and
not included here.

Tel allows access to some rudimentary information about the file systems and volumes present.

203

File accessibility: file exists|readable|writable]executable|owned

The file volumes command returns the list of volumes mounted on the system.

file volumes

On Windows, the command returns the list of drives, remote shares and mounted VFS volumes. On Unix, the
returned list consists of the single entry / and VFS volumes.

file volumes » C:/ D:/
The type of a file system can be ascertained with the file system command.
file system =i

The argument pATH can be any path on the filesystem of interest. The command returns a list containing one or
two elements, the first element indicating the file system and the second element, if present, being the specific
type. For example,

file system c:/ » native NTFS
shows that file system for C: is native, meaning the file system of the underlying platform, and of type NTFS. For

a virtual file system, the return value would be tclvfs if it was implemented with the tclvfs package.

One final piece of information provided is the path separator used by the file system. This is returned by the file
separator command.

file separator ?#a7i7?

Without any arguments, the command returns the separator used by the native file system for the platform. If an
argument is supplied, the command returns the separator used by the file system containing the specified path.

file separator >\
file separator C:/Windows - \

9.2.2. File accessibility: file exists|readable|writable|executable|owned

Another set of file subcommands pertain to determining whether a file can be accessed in a specific mode like
reading or writing. All these commands take a file path and return 1 if the file exists and is accessible for the
specified mode and 0 otherwise.

The simplest check is for the existence of a file using file exists.
file exists c:/windows -» 1

The file readable, file writable and file executable commands indicate whether the file can be read,
written to or executed by the current real (not effective) user id.

file readable c:/windows/system32/cmd.exe
file writable c:/windows/system32/cmd.exe
file executable c:/windows/system32/cmd.exe
file writable nosuchfile

R
S = O =

The commands also apply to directories where they indicate whether the directory contents can be listed, whether
files can be created in the directory and whether it can be traversed.

file readable c¢:/windows » 1

204

File types: file isdirectory|isfile|type

file writable c:/windows >0
file executable c:/windows » 1

Finally, the file owned command indicates if the specified file is owned by the current user id.
file owned [info nameofexecutable] » 1

There are several caveats that apply to the use of all these access check commands. A
return value of 1 from file readable does not always allow the file to be actually read
for several reasons. For example,

+ The file may be opened for exclusive access by some other process

+ Local permissions permit reading but the file resides on a remote system which does
not

« File system permissions allow access but the Windows integrity levels do not.

Thus, in the author’s opinion it is better to just atternpt the desired operation, like
opening the file for read access, instead of using these commands.

9.2.3. File types: file isdirectory|isfile|type

The file type command returns the type of a file. The command returns one of file, directory,
characterSpecial, blockSpecial, fifo, link, or socket.

file type c:/windows/system32/cmd.exe » file
file type c:/windows/system32 » directory
file type CON > characterSpecial @

© The special Windows built-in console interface

For the common cases where we need to know if a file is a regular file or a directory, the file isfile and file
isdirectory commands offer a convenient alternative. These commands return 1 if the path exists and is of the
corresponding type and O otherwise.

(1]

file isfile nosuchfile

file isfile c:/windows/system32/cmd.exe
file isfile $env(WINDIR)

file isdirectory $env(WINDIR)

R T 2

0
1
0
1

© Note the commands return 0 for non-existent files as opposed to raising an error.

9.2.3.1. File content type: fileutil::fileType

The file type command returns the type of a file based on the file system or operating system perspective. It is
often useful to know the type of the content stored in a file. Though Tcl itself does not provide a commanad for this
in the core, the fileutil module of Tcllib 2 includes the fileType command that provides this functionality. The
command is a variation of the Unix file program and guesses the type of content in a file, such as text, GIF image
etc.

% package require fileutil

> 1.15

% fileutil::fileType c:/windows/system32/cmd.exe
»> binary executable pe

2 http://core.tcl.tk/tellib/doc/trunk/embedded/index.htmi

205

File properties

% fileutil::fileType images/icons/tip.png
» binary graphic png

9.2.4. File properties

The file system stores several properties and attributes of files and several file subcommands return, and in
some cases set, the values of these properties.

9.2.4.1. File size: file size

The file size command returns the size of the specified file in bytes.

file size [info nameofexecutable] » 65536

In case of links, the command returns the size of the link target, not the link itself.

9.2.4.2. File timestamps: file atime|mtime

For files on file systems that keep track of access and modification times for a file, this information can be
retrieved and set with the file atime and file mtime commands respectively.

file atime

If the TrMESTAMP argument is not specified, the commmands return the access or modification time, respectively, as
the number of seconds since the epoch January 1, 1970 (see Section 8.1).

clock format [file atime [info nameofexecutable]] » Tue Jul 04 11:23:42 IST 2017
clock format [file mtime [info nameofexecutable]] » Thu Jul 28 21:22:28 IST 2016

If T1MESTAMP is specified, the corresponding timestamp is set to this value which must be specified as seconds
since the epoch. This value is also returned from the command.

clock format [file atime [info nameofexecutable] [clock seconds]] » Tue Jul 04 11:45:43 IST 2017 ©

@ Similar to the Unix touch utility

If the specified paTH is a link, the commands operate on the link target, not the link itself.

A

9.2.4.3. File information: file stat]|lstat

The commands file statand file lstat are a direct interface to the stat and 1stat system calls.

Not all file systems maintain access and/or modification times or permit them to be set. In
such cases the commands will raise an error.

file stat
file lstat -

The two calls only differ when pa7r refers to a symbolic link. In that case, file stat returns information about
the file that is the target of the link whereas file lstat returns information about the link itself.

206

File properties

Both commands store the result of the system call in an array of name vAR in the caller’s context. The elements of
the array are shown in Table 9.1.

Table 9.1. File stat array elements

Element Descrip"tion
atime The last access time of the file in seconds since January 1, 1970.
ctime The creation time of the file in seconds since January 1, 1970.
dev The device id of the device on which the file resides.
gid Group id of the file owner.
1ino The inode number of the file.
mode The mode bits from the directory entry for the file.
mtime The last modification time of the file in seconds since the epoch.
nlink The number of hard links to the file.
size The number of bytes stored in the file.
type The type of the file.

cuid User id of the file owner.

% file stat [info nameofexecutable] stat
% parray stat
» stat(atime) = 1499148943

stat(ctime) = 1470287503

stat(dev) =2
stat(gid) =0
stat(ino) = 16605

stat(mode) = 33279
stat(mtime) = 1469721148
stat(nlink) = 1
stat(size) = 65536
stat(type) = file
stat(uid) =0

9.2.4.4. File attributes: file attributes

File systems may store attributes associated with a file. For example, Windows stores a short 8.3 version of a file
name along with its real name. The file attributes command provides a means of retrieving, and in some
cases storing, these file system specific attributes.

These commands are very much reflective of Unix file systems and many elerents do not
make sense for all platforms. Their use should therefore be avoided in portable code.

file attributes s~avx
file attributes
file attributes :a7x 221

The paTH argument specifies the file whose attributes are to be accessed. If it refers to a link, the attributes are
those of the link’s target, not the link itself.

207

File properties

The first form returns all attributes for the specified file. The second form returns the value of the specified
attribute. The third form sets the values of one or more attributes. The permitted values of ATTRIBUTE are
platform-dependent and we discuss them for the common platforms below.

Windows file attributes

The possible values of file attributes for Windows systems are shown in Table 9.2.

Table 9.2. Windows file attributes

Attribute o k ‘Descript'irdhw :

-archive Retrieves or sets the value of the archive file attribute.

-hidden Retrieves or sets the value of the hidden file attribute.

-longname Returns the long name for the file path. Each component of the path is
converted to its long name. This attribute cannot be set.

-readonly Retrieves or sets the value of the readonly file attribute.

-shortname Returns the 8.3 format short name for the file path. Each component of the

path is converted to its short name. This attribute cannot be set.

-system Retrieves or sets the value of the system file attribute.

Some sample output from the command:

% array set attrs [file attributes c:/windows/system32/cmd.exe]

% parray attrs

» attrs(-archive) =
attrs(-hidden)
attrs(-longname) =
attrs(-readonly) =
attrs(-shortname) =
attrs(-system) =

OMNonNno—

. /Windows/System32/cmd. exe

1 /Windows/System32/cmd. exe

The following shows the equivalence between the short name and the long name for a file.

set long_path "c:/temp/A long name.long extension” » c:/temp/A long name.long extension
close [open $long_path w] > (empty)

file exists $long_path + 1

set short_path [file attributes $long_path -shortname] » C:/temp/ALONGN~1.LON

file attributes $short_path -longname » C:/temp/A long name.long extension

file normalize $short_path
file exists $short_path
file delete $short_path
file exists $long_path

C
C
C:/temp/A long name.long extension @
1
(empty)

0

R 2R S

© Remember that in addition to converting paths to absolute paths, file normalize also maps paths to their
long name format.

Retrieving the short name of a file is often useful when executing external programs with
- ‘ - exec. Since short names never contain spaces, it obviates the need for escaping space

=l characters in any file name passed to the external program.

Unix file attributes

On Unix and Linux systems, file attributes supports the attributes shown in Table 9.3.

208

Creating directories: file mkdir

Table 9.3. Unix file attributes

Attribute Description
-group The group name for the file. When being set, either the group name or id can be passed.
The return value is always the group name.
-owner Narme of the user owning the file. When being set, either the name or id can be passed.
The return value is always the name.
-permissions The octal code as accepted by the chmode system call. When being set, the command
will accept a symbolic form as well. For example, u+rw, go-rwx or rwxr—r-- . See the

reference documentation for details.

-readonly The readonly attribute for a file on Unix systems that support the uchg flag for the
chflags system call.

0S X file attributes
On Mac 0S X systems, file attributes supports the attributes shown in Table 9.4.

Table 9.4. Mac OS X file attributes

Attribute Description

-creator The Finder creator type of the file.

-hidden Retrieves or sets the value of the hidden file attribute.

-readonly Retrieves or sets the value of the readonly file attribute.

-rsrclength Length of the resource fork of the file. If setting this value, only 0 is accepted and results
in the resource fork being stripped from the file.

9.2.5. Creating directories: file mkdir

The file mkdir command creates one or more directories.
file mkdir ?.::x .7

For each argument specified, the command will create a directory with that path including any intermediate
directories if required. If a path already exists, no action is taken if it is a directory and an error raised otherwise.
Note that the arguments are processed in order and in case of errors, processing of further arguments is aborted
while any previous directories that have already been created are not removed.

% file exists /tmp/dirA

> 0

% file mkdir /tmp/dirA/dirB ©
% file exists /tmp/dirA/dirB

> 1

@ Intermediate directory will also be created.

9.2.6. Removing files and directories: file delete

The file delete command deletes files and directories.

file delete ?-force? ?--2 2087 L2

209

Copying and renaming: file copy|rename

Each paTH argument may refer to a file or a directory. For arguments that are symbolic links, the link itself is
removed and not its target. If the argument specifies a file or directory that does not exist, it is ignored without the
command raising an error.

The -force option affects two failure modes. Normally if the path corresponds to a non-empty directory or is the
working directory of the current process, the command will raise an error. If - force is specified, the command
will delete non-empty directories along with their content and also change the working directory, if required, so as
to allow the directory deletion to proceed.

cd /tmp/dirA » (empty)
file delete /tmp/dirA @ error deleting "/tmp/dirA”: permission denied @
pwd 5> Ci/tmp/dirA

file exists /tmp/dirA/dirB - 1
file delete -force /tmp/dirA » (empty)

pwd > C:/tmp B
file exists /tmp/dirA/dirB -+ 0

© Will fail for two reasons - current directory and not empty
@ Notice current directory changed

The optional - - argument indicates the end of options causing all remaining arguments to be treated as paths. In
particular, if -force follows the --, it will be treated as a path argument and not as an option.

9.2.7. Copying and renaming: file copy|rename

The file copy and file rename commands are similar to each other in their behaviour so we describe them
together. Both commands conceptually (not necessarily how they are implemented) make a copy of existing files or
directories but file rename also deletes the original source after making the copy.

file copy ?-force? ?--?
file rename ?-force? ?7--7

The optional - - sequence indicates the end of options in cases where the first FrroMpaTH argument might begin
with a - causing it to be misinterpreted as an option.

The behaviour of these commands is slightly involved due to different variations depending on whether files
or directories are being copied, whether the destination path ToraTw already exists, the number of arguments
supplied and so on.

In this description, “copying” a directory also involves recursively copying all files and
E subdirectories contained within it.

If exactly one FROMPATH argument is specified, it may be either a file or a directory. The file copy command
behaves as follows:

« If ToPATH does not exist, a copy of FrRoMPATH, whether a file or a directory, is stored as TOPATH.

+ If ropaTH exists and is a directory, a copy of FrROMPATH, again irrespective of whether it is a file or directory, is
made and placed under 7OPATH.

+ If ToPATH exists and is not a directory, it is overwritten with a copy of FrRompaTH if the latter is also not a
directory and the - force option is specified. Otherwise (if #FrRomMpPATH is a directory or - force is not specified)
an error is raised.

When the source file is a symbolic link within the same file system as the destination, the link itself is copied and
not the link target.

The following examples illustrate the above scenarios. We use the glob command to list the contents of directories.

210

Enumerating files: glob

% file copy /temp/fromDir /temp/newDir o
% glob /temp/newDir/*
» C:/temp/newDir/fileA.txt C:/temp/newDir/subDir

% file copy /temp/fromDir /temp/toDir @
% glob /temp/toDir/*
s C:/temp/toDir/fromDir

file copy /temp/fromDir/fileA.txt /temp/newDir (3}
error copying "/temp/fromDir/fileA.txt" to "/temp/newDir/fileA.txt": file already exists

%
@
% file copy -force -- /temp/fromDir/fileA.txt /temp/newDir (4
%
7}

file copy -force -- /temp/fromDir/subDir /temp/newDir (5]
error copying "/temp/fromDir/subDir" to "/temp/newDir/subDir": file already exists

Creates a recursive copy of fromDir as newDir.

Creates a recursive copy of fromDir under toDir as toDir already exists.
Fails because file exists.

Option -force forces overwrite of existing file.

Option -force will not overwrite an existing directory if it is not empty.

0000

overwrite a directory that is not empty (as illustrated above), or overwrite a file with a

Irrespective of whether the - force option is specified or not, the command will never
E directory or vice versa.

The above description applies when there is exactly one FrROMPATH argument. If more than one FROMPATH
argument is specified, ToPATH must be an existing directory and file copy behaves as the second case above,
placing a copy of each FrRoMPATH argument, whether a file or a directory, under the rorarH directory.

% file copy /temp/fromDir/subDir/fileB.txt /temp/toDir /temp/newDir

% glob /temp/newDir/*

+ C:/temp/newDir/fileA.txt C:/temp/newDir/fileB.txt C:/temp/newDir/subDir
L, C:/temp/newDir/toDir

% file copy /temp/fromDir/subDir/fileB.txt /temp/toDir /temp/newDir2 1]
@ error copying: target "/temp/newDir2" 1is not a directory

© Fails because /temp/newDir2 is not an existing directory.

The file rename command behaves similarly except that for all successful copies, file rename will delete the
original file. As an implementation detail, when both the source and destination are on the same file system, this
“copy and delete” operation may in fact be a single “move” or “rename” operation.

9.2.8. Enumerating files: glob

The glob command returns a list of all files matching any of one or more patterns.
glob 2027 0n3? ?--7 20I0BEAT LY
The returned list contains matching files in an unspecified order. Applications should not assume file names are

sorted or that names matching an earlier pattern will appear in the list before names matching later patterns.

The optional special sequence - - is used to indicate the end of options with remaining arguments being treated as
patterns. This is useful when there may be confusion that a pattern is interpreted as an option, for example when
it is passed in a variable and potentially begins with a -.

211

Enumerating files: glob

Each GLoBpPAT is a pattern as described for the string match command with two additional features. A pair of
braces containing strings separated by commas can be used to enclose alternatives in a pattern. Secondly, a pattern
ending in a / will only match directories, not ordinary files. The list of special characters is shown in Table 9.5.

Table 9.5. Glob patterns

Character . mﬁéscription

* Matches any number (including zero) of characters except directory
separators.

? Matches one occurrence of any character except a directory separator.

[..] Matches one occurrence of any character between the brackets except

directory separators. A range of characters can also be specified. For example,
[a-z] will match any lower-case letter. :

{STRING?,.?} Matches any of the sTRING character sequences separated by commas within
the braces except directory separators.

\ The backslash escapes the following character such as * or ? so that it is
treated as an ordinary character. This allows you to write patterns that match
literal glob-sensitive characters, which would otherwise be treated specially.

To illustrate the use of glob and its various options, let us first create a simple directory and file structure.

file mkdir /tmp/tcl-book

close [open /tmp/tcl-book/foo.txt w] @
close [open /tmp/tcl-book/fubar.doc w]

close [open /tmp/tcl-book/foohidden w] @

file attributes /tmp/tcl-book/foohidden -hidden 1
file mkdir /tmp/tcl-book/foodir

close [open /tmp/tcl-book/foodir/foo.txt w]

file mkdir /tmp/tcl-book/f{}dir ©
close [open /tmp/tcl-book/f{}dir/bar.txt w]

@ This creates an empty file using open and close we look at later.
® Ahidden file
© Directory name with special characters

The following examples illustrate basic glob usage.

% glob /t*/*book/f* @
» C:/temp/book/files.adocgen C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir C:/tmp/tcl-bo. ..

% glob /tmp/tcl-book/*.txt /tmp/tcl-book/foodir/* @
» C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir/foo. txt

% glob /tmp/tcl-book/f*/ ©
» C:/tmp/tcl-book/foodir/ C:/tmp/tcl-book/f{}dir/

% glob /tmp/tcl-book/f{oodi,uba}r @
» C:/tmp/tcl-book/foodir

Wild cards can appear in any path component

Multiple patterns

Trailing / will only match directories and returned values will also have / appended
Example of alternation

Co00

If the list of matching files is empty, glob will raise an error by default. You can pass the -nocomplain option to
have it return an empty list instead.

212

Enumerating files: glob

% glob nosuchfil*
@ no files matched glob pattern "nosuchfil*"
% glob -nocomplain nosuchfil*

9.2.8.1. Matching based on type: - type option

In addition to matching files based on file name patterns, glob can also further qualify matches based on the
type of the file and access attributes through the - type option. The option value is a list of type and permissions
specifiers. These fall into two categories where glob will return a file name if it matching any specifier from the
first category and all specifiers from the second category.

The specifiers in the first category are shown in Table 9.6. Returned files will match one of these specifiers that are
included in the value for -type.

Table 9.6. Glob category 1 type specifiers

Specifier Description

b Must be a block-special file.
Must be a character-special file.
Must be a directory.

Must be an ordinary file.

Must be a symbolic link.

Must be a named pipe.

Must be a socket.

w T +H —Hh Q N

The specifiers in the second category are shown in Table 9.7. Returned files will match all these specifiers that are
included in the value for -type.

Table 9.7. Glob category 2 type specifiers

v Specifier Description
r File has read permission.
w File has write permission.
X File has execute permission.
‘rea donly File has the read-only attribute.
hidden File has the hidden attribute. By default, glob will not include hidden files. With this
specifier, glob will include only hidden files.
XXXX (Mac OS only) File has the 4-character type, e.g. TEXT
{macintosh type (Mac OS only) File has the 4-character type, e.g. TEXT
XXXX}
{macintosh (Mac OS only) File has the creator xxxx.

creator Xxxx}

Some examples of filtering based on the types:

% glob -type {f d} /tmp/tcl-book/fo* o

» C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir
% glob -type d /tmp/tcl-book/fo* @

s> C:/tmp/tcl-book/foodir

% glob -type {f hidden} /tmp/tcl-book/fo* ©

213

Enumerating files: glob

» C:/tmp/tcl-book/foohidden

© Lists both files (f) and directories (" d).
® Lists only directories.
© Lists only ordinary files that are hidden.

9.2.8.2. Changing glob locations: -directory, -path

By default, the glob command uses the current directory as the starting point for file matching. For example glob
* will return the files in the current directory.

The -directory and -path options allow this “starting location” from where the command looks for files to be
changed without changing the current working directory.

% pwd

C:/temp/book

% glob /tmp/tcl-book/*

» C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir C:/tmp/tcl-book/fubar.doc C:/tmp/tcl-boo...
% glob -directory /tmp/tcl-book -- *

» /tmp/tcl-book/foo.txt /tmp/tcl-book/foodir /tmp/tcl-book/fubar.doc /tmp/tcl-book/f{}dir

L

These options are useful when the directory component of the path contains characters that treated as special
characters by glob. This is illustrated by the following example.

% glob /tmp/tcl-book/f{}dir/*

@ no files matched glob pattern "/tmp/tcl-book/f{}dir/*"
% glob -dir /tmp/tcl-book/f{}dir *

» /tmp/tcl-book/f{}dir/bar.txt

glob -dir /tmp/tcl-book *.txt *.doc @
/tmp/tcl-book/foo.txt /tmp/tcl-book/fubar.doc

v oa?

© If multiple patterns are specified, the directory applies to all.

Our funnily named directory f{}dir will get interpreted as fdir when passed as the glob pattern as there are no
elements listed between the braces (see Table 9.5). When passed via the -directory option (shortened to -dir in
the example), the braces are no longer interpreted as glob patterns.

The -path option has a similar effect except that whereas -directory specifies a directory, -path specifies any
prefix. The difference is illustrated by the following:

% glob -directory /tmp/tcl-book/f{}dir/b *
? no files matched glob pattern "*"

% glob -path /tmp/tcl-book/f{}dir/b *

s /tmp/tcl-book/f{}dir/bar.txt

In the first case, glob looks for a directory called /tmp/tcl-book/f{}dir/b which is not found. In the second
case, glob uses the passed option value as a prefix.

9.2.8.3. Stripping path names: -tails

The above examples returned full paths of the listed commands. In many cases, only the name of the file is desired
and not the full path. The -tails option provides an easier alternative to iterating over the returned list invoking
the file tail command for each file. Note that the -tails option requires either -directory or -path to also
be specified. Here is an example showing the effect of the option.

% glob -dir C:/tmp/tcl-book *
» C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir C:/tmp/tcl-book/fubar.doc C:/tmp/tcl-boo...
% glob -dir C:/tmp/tcl-book -tails *

214

Enumerating files: glob

5> foo.txt foodir fubar.doc f{}dir
% glob -path C:/tmp/tcl-book -tails *
» tcl-book

9.2.8.4. Combining path component patterns: - join

Sometimes the various path components to be used in the pattern match are supplied as separate arguments. We
can use the file join command to combine these before passing to glob. Alternatively, we can use the ~join
option to glob which indicates that all patterns are to be combined as path components.

% glob -join /tmp tcl* f*
> C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir C:/tmp/tcl-book/fubar.doc C:/tmp/tcl-boo...

9.2.8.5. Recursive listing of files

The glob command does not recurse into directories. A command such as
glob /*/*/*

will return file names exactly three levels deep from the root.

Writing a recursive version using glob is trickier than you might think at first glance having to take into account
links, circular references and so on. Fortunately, Tcllib® provides two commands, find and findByPattern in its
fileutil package which do the needful.

% package require fileutil
5> 1.15
% join [fileutil::findByPattern c:/tmp/tcl-book *.txt] \n
s c:/tmp/tcl-book/foo. txt
c:/tmp/tcl-book/foodir/foo. txt
c:/tmp/tcl-book/f{}dir/bar.txt

The commands have several options, including matching based on regular expression instead of glob patterns, that
make them sufficient for most purposes.

9.2.8.6. Special considerations for glob

When using glob there are a few considerations to be taken into account because of platform differences and
some debatable quirks in the command behaviour. These are listed in this section. It is important to be aware of
these to avoid unexpected results.

9.2.8.6.1. Case sensitivity

The case-sensitivity of glob matching depends on the underlying file system. On Windows for example, the
pattern foo* will match file FOOBAR as well whereas on Unix it will not.

9.2.8.6.2. Short names on Windows

For file names that do not fit the 8.3 filename format, Windows creates a corresponding 8.3 format short name.
The glob command does not pay any heed to these short names when matching special characters. It will however
match if the exact file name is specified. For example,

% set long_path "/tmp/tcl-book/a long directory name"”
s /tmp/tcl-book/a long directory name
% file mkdir $long_path

3 http://core.tcltk/tcllib/doc/trunk/embedded/index.html

215

Enumerating files: glob

% set short_name [file attributes $long_path -shortname]
> /tmp/tcl-book/ALONGD~1

% glob /tmp/tcl-book/ALONG* €@
@ no files matched glob pattern "“/tmp/tcl-book/ALONG*"

% glob $short_name O
» C:/tmp/tcl-book/ALONGD~1

@ Pattern * will not be matched against the short name version of file name.
©® However, an exact match against the short name with no wildcard patterns will succeed.

One might consider this a quirk of the implementation.
9.2.8.6.3. Enumerating hidden files

You might expect the command glob * to return all files in the current directory. It does not. In particular, by
default the glob return value does not include any “hidden” files where the term has a platform-dependent
meaning.

On Windows platforms, hidden files are those that have the hidden file attribute set. On Unix, hidden files are
those whose names begin with a period (.). On either platform, the -types hidden option must be specified.
Furthermore, when this option is used, enly hidden files will be included in the returned list.

Thus (for example) to get a list of all files in a directory, one must concat both the lists.

% concat [glob C:/tmp/tcl-book/*] [glob -types hidden C:/tmp/tcl-book/*]
» {C:/tmp/tcl-book/a long directory name} C:/tmp/tcl-book/foo.txt C:/tmp/tcl-book/foodir ...

On Unix platforms, you can also use the . * pattern to return hidden files in which case you may also retrieve all
files with the following single command.

glob * _*
There is one additional complication with hidden files on Unix. Use of the - types
hidden option or . * pattern also returns the special directory entries . and . ..In most
cases, you will want to filter these out.

9.2.8.6.4. Interaction with tilde expansion

The use of the glob command also has some tricky interaction with the tilde expansion done by other file
commands. To illustrate, let use create a file called ~someuser in our test directory.

close [open /tmp/tcl-book/~someuser w] » (empty)

Now we loop through and print access times for all files in the directory. We find that when we encounter the file
named ~someuser, an error is generated.

% cd /tmp/tcl-book
% foreach fn [glob *] {
puts $fn:[file atime $fn]

}

@ a long directory name:1499148943
foo.txt:1499148943
foodir:1499148943
fubar.doc:1499148943
f{}dir:1499148943
user "someuser" doesn't exist

216

Links: file link, file readlink

What happened? The issue is that glob, quite naturally, returns ~someuser as one of the elements in the file list.
When passed to file atime, the file name gets interpreted as the home directory of user ~someuser which does
not exist, and hence the error.

Our example is relatively innocuous. But consider if instead we wanted to clean up files in /tmp and coded it as
follows:

cd /tmp

foreach fn [glob *] {
file delete $fn

}

A malicious user placing a file called ~, or any other valid user name, would lead to disaster.

This example is simplistic but the issue is real. Of course, the issue is not really with the glob command itself but
with Tcl’s treatment of ~. See Section 9.1.1.3 for a workaround.

9.2.9. Links: file link, file readlink

Some file systems support hard links where a new directory entry is created for a file, in effect giving the file
another alternative name by which it can be accessed. Modification through one name will also be reflected when
the file is accessed through another name. However, deletion of a hard link only removes the corresponding
directory entry. The file can still be accessed via its other directory entries (file names). Hard links are not
distinguishable from the “original” name of the file and Tcl commands do not (and cannot) distinguish between
the two either.

File systems may also support the concept of soft links, {also called symbolic links) where the directory entry does
not point to the target file content. Rather the link content is actually a reference to another file, the link target.
When passed an argument that is a symbolic link, some commands like file delete, operate on the link itself.
Other commands, like file size and open, operate on the link target. Still others, like file copy, may work
either way depending on the context. These specifics are discussed in the description of each command. Here we
only discuss commands that operate specifically on links.

Unix and Unix-like platforms support both hard and soft links to files and directories and correspondingly Tcl
supports both. Although newer Windows versions support both types of links, older versions only supported soft
links to directories and hard links to files and Tcl on Windows support for links is likewise limited to the same.

The file link command has two forms.

file link > .>x
file link ?-symbolic|-hard? :_ x& TAXCEIT

The first form returns the target path referenced by the argument LINk. If LINKis not a path to a symbolic link, an
error is generated.
The second form allows creation of a link with path 7 vk to the file or directory specified by TARGET.

If either -symbolic or -hard is specified, the created link is of soft (symbolic) or hard type respectively.
Otherwise, the command chooses a link type that is appropriate for the platform and file systems.

When TARGETIs a relative path, the behaviour of the command is platform-dependent. On Unix-like platforms,
the relative path is referenced as-is and will be interpreted by the system as relative to L 1Nk and not relative to
the current working directory. On other platforms, TARGET is normalized to an absolute form and 7 1nvk is set up to
point to this absolute path. TARGET is also subject to tilde expansion (see Section 9.1.1.3).

The file readlink command is identical to the first form of the file link command returning the same data.

file readlink . Inw

217

Temporary files: file tempfile, fileutil::tempfile, fileutil: :tempdir

Some simple examples illustrating difference between links to directories and files on Windows:

% file link /tmp/tcl-book/dirlink /tmp/tcl-book/foodir

» /tmp/tcl-book/foodir

% file readlink /tmp/tcl-book/dirlink @

+ C:\tmp\tcl-book\foodir

% file link /tmp/tcl-book/dirlink @

» C:\tmp\tcl-book\foodir

% file link /tmp/tcl-book/filelink /tmp/tcl-book/foo.txt
+ /tmp/tcl-book/foo. txt

% file readlink /tmp/tcl-book/filelink ©
@ could not read link "/tmp/tcl-book/filelink": not a directory

© Succeeds because on Windows directory links are soft links
© Same as above
© Fails because on Windows file links are hard links

The last command fails because because hard links cannot be read. Nevertheless we can still verify it is indeed a
link by writing to it and reading back from the target path.

set fd [open /tmp/tcl-book/filelink w] » file3fb0430

puts $fd "Hee haw" > (empty)
close $fd » (empty)
set fd [open /tmp/tcl-book/foo.txt] » file3762b80
read $fd + Hee haw
close $fd »> (empty)

9.2.10. Temporary files: file tempfile, fileutil::tempfile,
fileutil::tempdir

For programs needing temporary files, Tcl provides the file tempfile command.

/ARK? 2VEMPLATI?

file tempfile ?x

The command creates a temporary file in a system-specific directory, and returns a read-write channel to it. If
NAMEVAR is provided, the command will set the variable of that name to the full path to the temporary file. If
NAMEVAR is not provided, Tcl will attempt to delete the file on channel closure. 7EMPLATE is an optional path
template from which the temporary file path is generated. This is system specific and not discussed here.

set fd [file tempfile temppath] » f1le38887a0

puts $temppath » C:/Users/ashok/AppData/Local/Temp/TCL45924 . TMP
puts $fd "This is a temporary file" > (empty)

close $fd > (empty)

set fd [open $temppath] > file3f7b990

read $fd > This 1s a temporary file

close $fd » (empty)

file delete $temppath » (empty)

An alternate set of commands for temporary files is provided by the fileutil package of the Tcllib 4 library. The
tempdir command from the package returns the directory to be used for temporary files and also allows it to be

set for this process. The tempfile command is similar to file tempfile but only returns the name of a unique
temporary file without also opening a channel to it.

4 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

218

Channels and File I/O

package require fileutil 5 1.15
set tempfile [fileutil::tempfile] » C:/Users/ashok/AppData/Local/Temp/EXjmfb9sGv
file exists $tempfile s 1

9.3. Channels and File I/O

Tcl’s input and output facilities revolve around the channel abstraction. Channels provide a uniform interface to
all forms of 1/0, so that reading and writing data to files, network connections, pipes and even serial ports, can
all be treated uniformly. In addition, the channels provide additional functionality related to automatic character
encoding and end of line translation.

Tcl even provides the ability for applications and extensions to define their own channel types, and to “stack” data
transforms, a capability we will discuss in detail in Section 17.3.

The general sequence for doing I/O from Tcl is

+ Open a channel for reading and/or writing, with a command such as open or socket.
« Optionally configure the channel parameters such encoding, buffer sizes and so on.

+ Read and/or write to the channel using commands such as gets, read, or puts.

+ Close the channel when done with the close command.

With the exception of commands that open channels, all commands related to channels are implemented by the
chan ensemble command with subcommands for the various operations. Many of these are also available as
independent commands for historical reasons. For example, the chan read and read are equivalent commands.

In this chapter, we introduce the use of channels and describe only the basic forms of input and output to files
using synchronous calls. More advanced capabilities including asynchronous /O, network communication, pipes
are described in later chapters.

9.3.1. Standard channels: stdin, stdout, stderr

When a process starts up, most operating systems create streams for reading and writing data. These are
commonly known as standard input, from which data is read, standard output where data is written, and standard
error, where error messages are written. Generally, these are connected to the terminal or console if the process is
attached to one, or to a pipe to another process.

Correspondingly, Tcl creates three standard channels by default, named stdin, stdout and stderr respectively.
Commands that read and write data operate on stdin and stdout respectively if a channel is not explicitly
specified. Thus

puts foo
puts stdout foo

are equivalent, both writing to the standard output.

With the exception noted below for Windows, these channels can be used in the same exact fashion as channels
that are explicitly opened by the application. If a standard channel is closed, the very next channel that is opened
is assigned to the standard channel as illustrated below.

% chan names @

» stdout stdin stderr

% close stderr

% chan names

» stdout stdin

% set ch [open error.log w]
» stderr

% chan names

219

Creating file channels: open

» stderr stdout stdin

© Returns the list of currently open channels.

Closing and reopening stdout in a similar fashion is one way you can change where
- ‘ - commands like puts write by default. Note you need to make sure the new channel is

-t opened for writing.

Standard channels on Windows

On Windows systems, applications may be console-mode programs that run in a command shell or have a
graphical user interface (GUI). For console-mode programs, Windows creates standard channels in a manner
similar to Unix systems. For GUI programs however, Windows itself does not create standard channels as all
interaction is expected to be graphical. Thus in GUI programs like wish, Tcl creates “pseudo” channels via the
console command in Tk that emulate the standard channels. However this emulation is only partial since more
advanced features like asynchronous I/O will not work with these emulated channels.

9.3.2. Creating file channels: open

The open command returns a channel for doing I/O to a file, a process pipeline or a serial port. We only describe
the first of these in this chapter.

open 2

The paTH argument specifies the path to the file whose content is to be read or written. If the ACCESS argument is
not specified, or if it indicates the file is to be opened only for reading, PA7# must reference an existing file.

The optional Access argument specifies the desired access to the file and takes one of two forms. The first form is
one of the string values shown in Table 9.8.

Table 9.8. Access mode for open - string form

Mode Description
r,rb The file is to be opened only for reading in text and binary modes respectively.
r+ rb+, r+b The file must exist and is to be opened for both reading and writing with r+ indicating

text mode with the other two being equivalent and indicating binary mode.

w, wb The file is to be opened only for writing in text and binary mode respectively. The file will
be created if it does not exist and truncated if it does. i

w+, wb+, w+b The file is to be opened for both reading and writing. The file will be created if it does not
exist and truncated if it does. The value w+ specifies text mode and the others binary.

a, ab Similar to w, wb except that all writes to the file are appended to the content irrespective
of the current file pointer.

a+, ab+, atb Similar to w+, wb+, w+b except that all writes to the file are appended to the content
irrespective of the current file pointer.

The following examples illustrate the use of this string form of access mode specification. Note all channels are
closed after use with the close or chan close commands.

Create a new file and write a line to it:

% set chan [open /tmp/tcl-book/newfile.txt w] @
+» file322def0

220

Creating file channels: open

% puts $chan "Line one" (2]

% gets $chan (3]
@ channel "file322def0" wasn't opened for reading

% close $chan @

Open for write

Write to the returned channel

Fails because not open for read
Channels must be closed when done.

o009

Note the above will truncate the file if it already existed.

Open an existing file for reading and writing:

% set chan [open /tmp/tcl-book/newfile.txt r+] (1]
» file3784e70

% read $chan

+ Line one

% close $chan

% set chan [open /tmp/tcl-book/newfile.txt w+] (2}
» file3140530

% read $chan (3]
% puts $chan "Line one again” (4
% close $chan

Open for read and write without truncating
Open for read and write. Will truncate file.
Notice empty string returned as file truncated.
Write to the file

[~ R

Append to a file:

% set chan [open /tmp/tcl-book/newfile.txt a} 1]
file382dd80
puts $chan "Line two" (2}

close $chan

set chan [open /tmp/tcl-book/newfile.txt] (3]
f1le385de10

read $chan

Line one again

Line two

% close $chan

o v o R RV

© Open for append. Will not truncate file.
® Line will be written at the end of the file
© Open for read only

On Windows systems, an attempt to open a file with the w or w+ modes will fail if the file

E has the hidden or system attributes set. To get around this, you can either reset those
attributes with the file attributes command before opening the file, or open the file
using the r+ mode and then use chan truncate to truncate the file content.

The second form that the AcCess argument can take is that of a list whose elements are flag values from Table 9.9
with at least one among RDONLY, WRONLY or RDWR being present.

221

Creating file channels: open

Table 9.9. Access mode for open - list form

Mode
RDONLY
WRONLY
RDWR
APPEND

BINARY
CREAT

NOCTTY

NONBLOCK

TRUNC

Description

Open the file only for reading.

Open the file only for writing.

Open the file for reading and writing.

All writes are appended to the end of the file. Note this must be specified in addition to
WRONLY or RDWR.

AllT/O is to be done in hinary mode. Text mode is used if this flag is not specified.

The file is to be created if it does not exist. Without this flag an error is raised on attempts
to open non-existent files. :

The opened file is not to be made the controlling terminal for the process. Only relevant if :
the pATH corresponds to a terminal device.

Prevents the process from blocking while opening the file. The exact semantics are
system dependent. See the reference documentation for details.

Specifies that if the file exists, it is to be truncated.

The following examples illustrate the use of this second form for the AcCEss argument that correspond to the
examples for the first form above.

Create a new file and write a line to it

% set chan [open /tmp/tcl-book/newfile.txt {WRONLY CREAT}] (1)

+ f11e3753580

% puts $chan "Line one"

% gets $chan

(2]

@ channel "file3753580" wasn't opened for reading

% close $chan

© Open for write, creating the file if necessary.
© Fails because not open for read

Open an existing file for reading and writing:

% set chan [open /tmp/tcl-book/newfile.txt RDWR] @

file39ed950
read $chan
Line one

set chan [open /tmp/tcl-book/newfile.txt {RDWR TRUNC}] ©

5
%
>
% close $chan
%
>

file3784e70
% read $chan

% puts $chan "Line one again"

% close $chan

© Open for read and write without truncating
© Open for read and write. Will truncate file.

Append to a file:

% set chan [open /tmp/tcl-book/newfile.txt {WRONLY APPEND}] @

» file384e150

222

Closing a channel: chan close, close

% puts $chan "Line two"
% close $chan

% set chan [open /tmp/tcl-book/newfile.txt RDONLY] (2]
+» file37afa20
% read $chan
5> Line one again
Line two
% close $chan

© Open for append. Will not truncate file.
@ Open for read only

The PERMISSIONS parameter to the open command is only used if the file did not previously exist and has to be
created. It specifies the access permissions for the newly created file together with the process' file mode creation
mask. By default, PErRMTSSIONS has the value (octal) 0666 permitting both read and write access for all users
unless limited by the process’ file mode creation mask.

9.3.3. Closing a channel: chan close, close

All channels should be closed with chan close, or the equivalent close, once no longer required.

chan close
close &

If only a single argument is given to the command, the channel is closed for both input and output. Otherwise,
pIRECTION MUst be read or write and the channel (presumed to be bidirectional) is only “half-closed” with
no further operations permitted of the specified type (read or write). In the case of files, DTRECTTON may not be
specified but we will see examples of its use when we discuss process pipelines (see Section 16.4).

When a channel is closed for input, any input data not read by the application is discarded. When closed for
output, all output data buffered internally by Tcl is written out to the file (or pipe, socket etc. as the case may be). If
the channel is a blocking channel, the command only returns once the data has been written out and the operating
system file descriptor or handle has been closed. For non-blocking channels, the command returns immediately
and flushing of data and closing of handles happens in the background.

Tcl 8.6 will not automatically flush any non-blocking channels that are open when
the process exits without explicitly closing the channels. See the close reference
documentation for methods to achieve this.

9.3.4. Channel configuration: chan configure, fconfigure

There are several configuration properties associated with a channel. All these properties can be retrieved or set
with the chan configure, or equivalent fconfigure, commands.

chan configure
chan configure
chan configure
fconfigure
fconfigure
fconfigure

When called with only one argument, the commands return a dictionary containing the current values for the
configuration options for the channel.

% chan configure stdout

223

Writing to channels: chan puts, puts

+ -blocking 1 -buffering line -buffersize 4096 -encoding c¢p1252 -eofchar {} -translation ...

If two arguments are supplied, the second argument must be one for the configuration option names. The
commands then return just the value of that configuration option.

chan configure stdout -buffersize -» 4096
fconfigure stdin -encoding + Ccpl1252

In the final form, one or more option and value pairs may be specified. The corresponding configuration options
for the channel are then set to the new values.

Note that in addition to configuration options that are common to all, channels may have additional configuration
options that are specific to that channel type. For example, network sockets will have a -peername configuration
option corresponding to remote endpoint of a connection.

We will describe the various common configuration options over the next few sections. Options specific to channel
types will be discussed when we discuss those types.

9.3.5. Writing to channels: chan puts, puts

The commands chan puts, and the equivalent puts, write data to a channel.

chan puts ?-nonewline? ?
puts ?-nonewline? ?

The commands write DA7A to the specified channel. If cHaNNEL is not specified, the data is written to the standard

output channel stdout. The commands will append an additional newline character to the output data unless the
-nonewline option is specified.

% puts "This will go to the standard output"
+ This will go to the standard output

% set chan [open /tmp/tcl-book/myfile.txt w]
» file384e150

% puts $chan "Line one"

% puts -nonewline $chan "This is " @

% puts $chan "the second line”

% close $chan

% fileutil::cat /tmp/tcl-book/myfile.txt

» Line one
This 1s the second line

© Note the -nonewline option

If the -nonewline option is specified when writing to channels that are line buffered,
- ‘ - such as standard output or standard error, you may need to do a flush on the channel
] for the output to show up on the device. See Section 9.3.5.1.

The data passed to puts or chan puts is not necessarily the exact data written to the file or output device for a
number of reasons:

* The channel is configured to do "end of line translation” (see Section 9.3.9).
* The channel is not in binary mode (see Section 9.3.10).
* The channel has transforms applied (see Section 17.2).

We will explore all these possibilities as we go along.

224

Writing to channels: chan puts, puts

9.3.5.1. Output buffering

Data written to a channel is not necessarily written out to the underlying file or device right away. By default,
Tcl maintains an output buffer for each channel and the size of this buffer and flushing of data stored in it is
controllable through various channel options.

9.3.5.1.1. Buffering mode: chan configure, fconfigure -buffering

The -buffering option to chan configure/fconfigure controls when data is written out from the channel to
the file or other device. The various values of this option and their effect is shown in Table 9.10.

Table 9.10. Buffering policy option values

Value Description

none Buffering is disabled. Any puts invocation results in the data being “immediately”
written out to the system.

line Data is flushed from the buffer whenever a newline character is written to the channel.

full Data is fully buffered and flushed when the buffer is full.

By default, all channels are configured for full buffering except for terminal-like devices which are configured to
be line buffered. The stdout and stderr standard channels are initially set to 1ine and none respectively.

chan configure stdout -buffering » line
chan configure stdout -buffering none » (empty) (1]

© Reset standard output to flush on every write.

9.3.5.1.2. Buffer flushing: chan flush, flush
In addition to the automatic flushing of data from output buffers as described above, an application can also
explicitly force a channel’s buffer to be flushed with the chan flush or flush commands. These take the form

chan flush oizizs
flush o=ZannED

9.3.5.1.3. Controlling the buffer size: chan configure, fconfigure -buffersize

The size of the buffer maintained for a channel can be retrieved or set with the -buffersize option to the chan
configure or fconfigure commands.

chan configure stdout -buffersize - 4096 (1]
fconfigure stdout -buffersize 10000 » (empty) (2}

© Retrieves the current buffer size
® Set the buffer size to 10,000 bytes

This configuration setting applies to both the input and the output sides of the channel.
9.3.5.2. A wrapper for writing files: fileutil: :writeFile

A common sequence of operations is to create a file, write its content in one shot and close it. Instead of doing
explicit open, puts, close and possibly even fconfigure og)erations, you may find it more convenient to use the
writeFile command from the fileutil package in Tcllib™.

5 http://core.tcl.tk/tellib/doc/trunk/embedded/index.html

225

Reading from channels

:fileutil::writeFile 200w

The command accepts the -encoding, -translation and -eofchar fconfigure options and configures the
channel accordingly before writing the file.

% fileutil::writeFile /tmp/tcl-book/myfile.txt "Line one\nLine two"

The command will create the file or overwrite its contents if it already exists.

9.3.6. Reading from channels
Tcl provides two ways to read data from a channel, one line at a time, or a specified number of characters.
9.3.6.1. Reading lines from a file: chan gets, gets

The chan gets and the equivalent gets commands retrieve a line at a time from a channel. Here we describe
only the blocking mode operation postponing discussion of non-blocking mode to Section 17.1.

chan gets
gets CiiAN,

In the single argument form, the commands return a complete line from the specified channel not including the
end-of-line character sequence.

set chan [open /tmp/tcl-book/myfile.txt] » file306a620
gets $chan » Line one

If a second argument is specified, it is the name of a variable in the caller’s context. The commands store the line in
this variable and return the number of characters in the line.

gets $chan line » 8
puts $line > Line two

If the end of the file is reached before finding a end of line sequence, the remaining characters are returned as

a complete line. If no end of line is found without reaching the end of the file, for example when reading from a
network socket, the command will block (assuming a blocking mode channel) until additional data containing an
end of line arrives on the channel or the channel is closed from the remote end. Note this situation does not arise
when reading from files.

After the last line is read from the channel, subsequent calls will return an empty string if the vARNAME argument
is not specified. Note this cannot be distinguished from an empty line and the eof command must be used to
distinguish between the two cases. On the other hand, if varnane is specified, the two cases are immediately
distinguished as the end of file condition will result in the command returning -1 versus 0 for an empty line.

gets $chan line » -1

The foreachline utility described in Section 9.3.6.5 provides a convenient means of
executing a script for every line in a file.

226

Reading from channels

9.3.6.2. Reading characters from a file: chan read, read

Unlike chan gets, the chan read and read commands return a specified number of characters from a channel
without any regard for line endings. Again, the command behaviour differs between blocking and non-blocking
mode and here we only describe the former.

In the first form of the command,

chan read ?-nonewline? JEL
read ?-nonewline? -

the commands return all data from the channel until the end of file is reached. If the -nonewline option is
specified, the last character read is discarded if it is a newline character.

The second form only reads the specified number of characters.

chan read :
read .

In this case the command returns the specified number of characters from the channel unless the end of file is
reached first in which all remaining characters are returned. If the specified number of characters is not available
in the channel and end of file is not reached, the command will block (again assuming blocking mode is in effect).
This situation cannot happen with file based channels.

Some simple examples of reading characters:

Because of various data transforms that can happen as part of I/0, the character count is
not necessarily the same as the number of raw bytes read from the file or device.

set chan [open /tmp/tcl-book/myfile.txt]
file381c2c0

read $chan 1 @

L

read $chan @

ine one

Line two

% read $chan ©

% eof $chan

> 1

4o v R

N

+

3

© Read a single character
® Read all remainining data
© End of file reached (empty string returned)

9.3.6.3. Input buffering

Like the output side, the input side is also buffered. However, since there is no meaningful flush operation on
input, only the -buffersize option affects input buffering.

9.3.6.4. A wrapper for reading files: fileutil: :cat

Just as wr iteFile simplifies writing of data to a file in a single command, the cat command from the Tcllib 6
fileutil module does the same for the input side.

6 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

227

Detecting end of file: chan eof, eof

pifileutil::cat 7000 rong? FAT

The command takes one or more paths, each preceded by options, and returns a string formed from the
concatenation of the contents of all specified files. Valid options include -encoding, -translation and -eofchar
and have the same effect as when passed to chan configure. Note that options are cumulative and when
specified only affect files listed later in the arguments.

% fileutil::writeFile /tmp/tcl-book/myfile2.txt “"Line A\ntine B"
% fileutil::cat /tmp/tcl-book/myfile.txt /tmp/tcl-book/myfile2.txt
+ Line one

Line twoline A

Line B

9.3.6.5. Iterating over file contents: fileutil::foreachLine

Another convenience command provided by the fileutil package is foreachLine which iterates over all lines in
a file executing a script for each.

fileutil::foreachLine line /tmp/tcl-book/myfile.txt {
puts [string toupper $line]

¥
> LINE ONE
LINE TWO

The command takes care of all I/O operations and error handling such as closing the file in case of errors during
execution of the script.

9.3.7. Detecting end of file: chan eof, eof

There are several situations where an application needs to explicitly check if a channel is at end of file. We
mentioned one such earlier where there is ambiguity in one form of the chan gets command between an empty
line and end of file. Other situations arise when working with non-blocking channels where there is need to
distinguish between end of file and data not being available yet.

The chan eof and eof commands check for the end of file condition on a channel.

chan eof
eof Crial

We saw an example in the previous section and we will see less trivial examples when we discuss non-blocking I/O
in later chapters.

attempt has been made to read beyond the last character. Thus it should be checked only

The chan eof and eof command will return 1 on an end of file condition only after an
E when gets or read indicate a potential end of file condition.

9.3.7.1. The end of file character: chan configure, fconfigure -eofchar

Some systems use a special end-of-file (EOF) character, generally Ctrl-Z, to mark the end of data in a file. Channels
can be configured to recognize this through the -eofchar option to chan configure or fconfigure. The value
of this option is a list containing up to two elements, the first element being the EOF character for the input side
of the channel and the second being the EOF character for the output side. If the list contains a single element, it is
used for both the input and output side. If an element is an empty string, EOF character recognition is disabled.

228

Channel encoding: chan configure, fconfigure -encoding

If an EOF character is configured for input, the appearance of of that character in the input stream is treated as
end of file. If configured for output, Tcl will output the character when the channel is closed.

The EOF character defaults to the empty string (and thus disabled) except for Windows files (not other channel
types) where it defaults to Ctrl-Z on input and the empty string on output.

The following example illustrates the behaviour on input when E is specified as the EOF character.

fileutil::writeFile /tmp/tcl-book/eofchar.txt "abcdEfghi” » (empty)

set chan [open /tmp/tcl-book/eofchar.txt} + file31d8a80
chan configure $chan -eofchar E s> (empty)
read $chan > abcd @
read $chan » (empty)

eof $chan 5 1

© Reading all data from channel only returns characters before E

9.3.8. Channel encoding: chan configure, fconfigure -encoding

We saw in Section 4.14 that Tcl strings are conceptually sequences of Unicode characters which need to be
converted to a sequence of physical bytes using a well defined encoding when storing to files or communicating
with other programs.

To revisit the example there, consider the Portugese word Ola. If we wanted to write this to a file that was to
be read by another program that expected UTF-8 encoding, we would have to first convert the string to UTF-8
encoding before writing to the file.

Remembering to do the encoding for every write to the file is inconvenient (for example, consider when the writes
happen from different procedures) and error prone. Instead we can use the -encoding option to automatically do
the conversion to UTF-8. As always, the current value of the configuration setting can be obtained by not specifying
a value for the option.

chan configure stdout -encoding » cp1252

Specifying a value will set the encoding for the channel. The above example could be written as

set greeting "\u004f\u006c\ul0el”

set chan [open /tmp/tcl-book/portugese.txt wl
chan configure $chan -encoding utf-8

puts $chan $greeting

close $chan

Note we no longer have to explicitly code the encoding command every time we write to the channel.

Although the above example shows output to a channel, the encoding applies to input as well. Data read from
the channel will be expected to be in UTF-8 encoding and will be converted to a Unicode sequence automatically
without necessitating a encoding convertfrom call.

The value supplied for the -encoding option may be any of the encoding names returned by the encoding names
command. In addition, the special value binary is also accepted to write out raw binary data. This is discussed in
Section 9.3.10.

9.3.9. End of line translation: chan configure, fconfigure -translation

Internally, Tcl uses the linefeed (LF) character ASCII 10, \n as the newline character. This is also the convention
followed on Unix platforms. On Windows however, newlines are indicated by the character sequence carriage

229

Binary I/O

return (CR) ASCII 13, \r followed by LF. Tcl’s channel implementation provides for the various conventions
through the -translation option to the chan configure and fconfigure commands.

chan configure stdout -translation » crlf
chan configure stdin -translation -+ auto

The option value must be a one or two element list consisting of values shown in Table 9.11. The first element of
the list applies to the input side of a channel. If a second element is present, it applies to the output side. If the list
has only one element, it applies to the output side as well.

Table 9.11. Option -translation values

Value Description

auto On the input side, a setting of auto causes any occurence of the LF by itself, CR by itself,
or a CRLF pair to be converted to the LF character. On the output side, the translation
depends on the platform and channel type. On all channel types on Windows platforms,
and sockets on all platforms, newlines are output as CRLF pairs. In all other cases, a
single LF is output.

cr On input CR characters are treated as new lines and converted to Tcl’s internal LF based
newlines. On output, the reverse conversion is done.

1f The external representation matches Tcl’s representation and thus no conversions are
performed for new lines.

“binary This sets the translation mode to 1 and in addition modifies other channel options to
support binary data I/O. This is described in the next section.

The following will set the output translation to the Windows CRLF format even on Unix systerns. This will allow
programs like Notepad to interpret line endings correctly if the file is moved to a Windows system.

set chan [open /tmp/tcl-book/1f.txt w}
fconfigure $chan -translation 1f

puts $chan “Line one\nLine two"

close $chan

9.3.10. Binary I/O

Much of the Tcl's channel system assumes files contain text content and the automatic translation of line endings,
encodings etc. are directed towards convenient and portable text I/O.

When reading or writing binary strings (see Section 4.13) however, we need to turn off these features discussed
earlier so that the data is written out as-is without any modifications:

» Character encoding
* End of line translation
* End of file character interpretation

In the case of files, specifying either the b qualifier for the access mode or BINARY for the list form access mode
will do the needful.

% set chan [open /tmp/tcl-book/myfile.txt r] (1)

» file385e590

% chan configure $chan

> -blocking 1 -buffering full -buffersize 4096 -encoding cp1252 -eofchar ~Z -translation
5 auto

% close $chan

% set chan [open /tmp/tcl-book/myfile.txt rb] @

230

The file access pointer

» file3762100

% chan configure $chan

> -blocking 1 -buffering full -buffersize 4096 -encoding binary -eofchar {} -translation 1f
% close $chan

© Text mode
©® Binary mode

Notice the difference in the value for the -eofchar, -translation and -encoding options.

Another alternative to setting up a channel for binary /O is to user chan configure to set the -translation
option to binary. This is useful when the channel creation command, for example socket, does not have a means
to specify binary mode or on channels where applications may need to switch between text and binary modes, for
example on an HTTP connection that embeds binary data.

Thus the above example may also be written as

% set chan [open /tmp/tcl-book/myfile.txt r]

» file31409f0

% chan configure $chan -translation binary

% chan configure $chan

» -blocking 1 -buffering full -buffersize 4096 -encoding binary -eofchar {} -translation 1f
% close $chan

Note how setting the -translation option to binary actually sets its value to 1f and also causes the -eofchar
and -encoding options to change.

9.3.11. The file access pointer

Every channel has an associated file access pointer that tracks the current position in the file. Any subsequent
reads and writes occur starting at this position. The pointer is then updated to the offset just after the read or
write. This pointer can be read and set with the chan tell and chan seek commands.

9.3.11.1. Retrieving the current file position: chan tell, tell

The chan tell and tell commands return the value of this pointer.

chan tell
tell i

For channels that do not support this operation, the command returns - 1.

The following example shows how the file pointer is moved with each 1/O operation.

set chan [open /tmp/tcl-book/myfile.txt] » file3872660
chan tell $chan > 0

gets $chan » Line one
chan tell $chan » 10

gets $chan s> Line two
chan tell $chan + 18

It is important to note that the return value from these commands is an offset in bytes, not in characters, from
the beginning of the file. The difference arises from multi-byte encoding and end of line translations. To illustrate,

file size /tmp/tcl-book/portugese.txt > 6

set chan [open /tmp/tcl-book/portugese.txt] » file379d950
fconfigure $chan -encoding utf-8 » (empty)
string length [read $chan] > 4

231

The file access pointer

chan tell $chan > 6
close $chan > (empty)

Note the difference between the number of characters read and the position of the file pointer (which equals the
size of the file).

9.3.11.2. Setting the file access position: chan seek, seek

The chan seek and seek commands change the file pointer so that the next I/O operation begins at a different

position from where the last one ended.

chan seek
seek AN

The orrseTargument must be an integer, positive or negative. The file pointer will be moved by these many bytes
from the position specified by 0rRZGIN. ORIGIN may be one of the values shown in Table 9.12.

Table 9.12. Origin values for seek

Origin Description
| start OFFSET is with respect to the start of the file and so effectively an absolute offset into the
file. This is the default if the orR7G7N argument is not specified.
. current OFFSET is with respect to the current file pointer position. ‘
end OFFSET is with respect to the end of the file and is usually a negative number in this case.

For channels that do not support the seek operation, an error is raised.

The following example illustrates the use of seek and tell.

set chan [open /tmp/tcl-book/myfile.txt] » file385e590

gets $chan » Line one
set pos [chan tell $chan] 510 @

gets 3$chan » Line two
chan seek $chan $pos > (empty) ©
gets $chan + Line two
close $chan > (empty)

© Note position of second line
@ Return to beginning of second line

The next example overwrites the last few characters from a file.

% set path /tmp/tcl-book/seek.txt
» /tmp/tcl-book/seek.txt

% fileutil::writeFile $path “1234567890"
% set chan [open $path r+b]

» file385e4d0

% chan seek $chan -5 end @

% puts -nonewline $chan abc

% chan seek $chan 0 end

% puts -nonewline $chan def

% close $chan

% fileutil::cat $path

> 12345abc90def

@ Note the negative offset

232

Truncating files: chan truncate

When a channel is configured for binary I/O, you can use any integer values for the
oFFSET argument since there is a one-to-one correspondence between the file position
pointer and read/write counts. In text mode however, this correspondence does not hold
and the offsets specified should be either a value returned by tell or 0. Otherwise, the
results may not be what you expect.

9.3.12. Truncating files: chan truncate

The chan truncate command truncates the file or other data stream open in a channel to a specific number of
bytes (not characters).

chan truncate ::

If the ZENGTH argument is specified, the file or data stream length is set to that value. If LENGTH is not specified, it
defaults to the current file pointer value for the channel.

9.3.13. Copying data between channels: chan copy, fcopy

Data may be copied between channels simply by doing read on the source channel and puts on the destination
channel. A more efficient method is to use the chan copy or fcopy commands.

SoHAN ?-Size RIfE? ?-command CATLIBACK?

chan copy b
N ?-size s7zp? 7-command CAIIRATAY

fcopy FAc

The advantage of chan copy over the read and puts method is primarily efficiency. It minimizes both CPU and
memory usage by avoiding buffer copies.

If the -size option is not present, all data from the input channel FromcraN until end of file is copied to TOCEAN.
Otherwise, only the number of bytes specified by the option are copied.

If the -command option is not specified, the commands will block until the copy is complete. If the option is
specified, the commands will return immediately and the data copying will continue in the background via the
event loop. On completion of the copy, the callback command is invoked. Note that the event loop (see Chapter 15)
must be running for this to work.

The command respects the encoding and translation settings of each channel. The following will convert the UTF-8
encoded file to one using UCS-2.

set from [open /tmp/tcl-book/portugese.txt]
chan configure $from -encoding utf-8

set to [open /tmp/tcl-book/portugese.ucs w]
chan configure $to -encoding unicode

chan copy $from $to

close $from

close 3$to

9.3.14. Enumerating open channels: chan names

The list of channels that are currently open can be obtained with the chan names command.
chan names ?=a7TTERN?

The command returns the list of channels with names matching pa7TERyin the form accepted by the string
match command. PATTERN defaults to * resulting in all channel names being returned.

% chan names

233

Tcllib fileutil module

» stdin rc9 stdout stderr
% chan names stdo*
» stdout

9.3.15. Tcllib fileutil module

The Tcllib” library has a package fileutil that includes a number of utilities dealing with files. We have already
seen some of the commands which provide additional flexibility or variations on the built-in commands. Other
commands in this module provide higher level commands often modeled on Unix programs.

For example, here is a poor man’s grep text search utility.

% join [fileutil::grep e.*t [glob -dir /tmp/tcl-book *.txt]] \n

» /tmp/tcl-book/1f.txt:2:Line two
/tmp/tcl-book/myfile.txt:2:Line two
/tmp/tcl-book/newfile.txt:2:Line two

The module contains many other file related commands for in-place editing of files, additional path manipulation,
etc. but here we only mention two generally useful facilities.

The first, the traverse command returns an object that can be used for traversing a directory hierarchy in a very
flexible fashion. The application provides a script to be matched against each file and only files for which the script
returns a boolean true value are included in the traversal. Additionally, the returned object provides multiple
ways to iterate through the results. Here is a simple example, where we want to find files less than 10 bytes in size.

package require fileutil::traverse
proc filematch {path} {
i1f {[file isfile $path] && [file size $path] < 10} {
return 1
} else {
return 0
}

}
set walker [fileutil::traverse %AUTO% c:/tmp -filter filematch]
> l.traversel

This creates an object that we can then invoke methods on to retrieve the list of files.

% $walker files @
> c:/tmp/tcl-book/portugese.txt c:/tmp/tcl-book/eofchar.txt ¢:/tmp/backup/portugese.txt c...

% $walker foreach path { puts [file nativename $path] } @
» c:\tmp\tcl-book\portugese.txt

c:\tmp\tcl-book\eofchar.txt

c:\tmp\backup\portugese. txt

c:\tmp\backup\eofchar.txt

% $walker destroy ©

@ Returns the whole list
@ lterates one at a time
© Traverse object must be destroyed when done

The other general purpose facility in fileutil is the multi command which implements a domain specific
language for specification of file operations. Since the language is large, we only provide a small example of its
flavor.

7 http://core.tcltk/tcllib/doc/trunk/embedded/index.htmt

234

Chapter summary

package require fileutil::multi
fileutil::multi copy \

the *.txt \

from /tmp/tcl-book \

into /tmp/backup \

but not 1f.txt \

the 1f.txt \

as linefeed.txt

The example should be self explanatory. The multi and underlying multi: :op DSL is very powerful and versatile.
Again, see the Tellib® reference documentation for full details.

9.4. Chapter summary

In this chapter, we looked at the Tcl commands for working with the file system and basic facilities for reading and
writing files. We introduced the channel abstraction and various modes of operation including binary /O, end of
line translation and character encodings.

In later chapters, we will look at more advanced features including non-blocking and asynchronous /0, network
communications, implementing reflected channels and virtual file systems.

8 http://core.tcl.tk/tcllib/doc/trunk/embedded/index. html

235

Code Execution

Tcl is distinguished by the flexibility and versatility of its execution model that makes it amenable to be used in a
wide variety of software architectures and patterns.

We will study the basics of code execution in this chapter including evaluation of scripts, loops, conditional
statements, run-time code construction, the structure of the call stack and more. This will provide the background
for the more sophisticated material in later chapters dealing with events, coroutines and threads.

10.1. Evaluating strings: eval
One of the major features of dynamic languages is the ability to execute scripts constructed “on-the-fly” in the
course of a program’s execution. This capability is useful in diverse situations, for example

+ Applications where users can write macros to automate tasks.

« Parsers for data and text where the input is transformed into a script that produces the desired output

« Implementation of domain specific languages for which Tcl code is generated at runtime.

We start off by looking at the most basic of these commands, eval.

argument expansion. See http://wiki.tcl.tk/1017 for a discussion. Here we start with eval
because it is the basic mechanism for executing dynamically generated code and serves
as an introduction to issues related to quoting and double substitutions.

E In modern Tcl, use of eval is generally deprecated in favor of other facilities like

The command accepts one or more arguments, concatenates these in the same manner as the concat command
and then executes the result as a standard Tcl script.

eval aR¢ ?aR0 L7

The result of the command is the result of the script execution. In its simplest form
eval {puts foo} » foo

the command executes the script puts foo and is effectively no different than had we just said
puts foo » foo

Let us look at an example that illustrates the difference. We will define a variable bar with a value hello and a
second variable foo which references it.

set bar "hello" » hello
set foo {$bar} - $bar @

© Note the braces cause $bar to be treated as a literal string.

237

Double substitutions in eval

Now compare the following commands.

puts $foo > $bar
eval puts $foo » hello

By now you should have understood why the puts $foo command on the first line prints $bar — Tcl does not
reparse the words comprising a command after any substitutions are made (see Section 3.2). The eval on the other
hand prints hello. Let us look at this eval statement step by step:

* When it is parsed by Tcl, the $foo variable reference is replaced by its value $bar.
* The eval command receives two arguments, the strings puts and $bar.
* As per its defined behaviour, it first concatenates its arguments to form the string puts $bar.

* This string is then executed as a Tcl script. The Tcl parser now sees the command puts $bar and as usual
breaks it up into words using the usual rules of substitution replacing $bar with hello.

¢ The command puts is then invoked with the argument hello and does its thing.

10.1.1. Double substitutions in eval

We see in the above example that it appears that the variable reference $foo undergoes double substitution in the
command eval puts $foo, first to $bar and then to hello. Note this does not go against what we stated earlier
about the Tcl parser not reparsing substituted values. Here it is the eval command that is invoking the Tcl parser
a second time. Remember we said Tcl commands can do whatever they want with their arguments? Here eval
chooses to treat its (concatenated) arguments as a Tcl program to be parsed and executed.

Consider if we had braced the arguments to eval in either of the following forms instead:

eval {puts $foo} » $bar
eval puts {$foo} » $bar

In both these cases, the braces prevent the initial round of substitutions. The eval command still does its
concatenation and substitution, but because it is now passed $foo as its argument, and not the value of foo, a
single round of substitution resuits.

It needs to be emphasized that eval executes a script and not a command. Thus both the following

% eval {puts foo ; puts bar}
> foo
bar
% eval "puts foo" ";" puts bar
» foo
bar

are parsed as a script with two commands and not as a single command puts with four arguments foo, ;, puts
and bar.

Issues around double substitutions and quoting come up with several other commands and can be confusing so we
will take up a couple of additional examples. We first define some variables used in the examples.

% set cmdA llength

+ llength

% set cmdB "string length®
» string length

% set arg "foo bar"

» foo bar

238

Evaluating file content: source

Now compare the results of the various commands below.

$cmdA $arg 5 2

eval {$cmdA $arg} » 20

$cmdB $arg @ invalid command name “string length" (2}

eval {$cmdB $arg} @ invalid command name "string length" (3]

eval $cmdA S$arg @ wrong # args: should be "llength list” (4]

eval $cmdB $arg @ wrong # args: should be “string length string” (5]

eval $cmdA {$arg} > 2
eval $cmdB {$arg} > 7
eval $cmdA [list $arg] » 2
eval $cmdB [list $arg] » 7

Effectively same as above because enclosed in braces

Fails because string length is parsed as a single word and there is no command of that name.
Fails for the same reason as above.

Fails because double substitution causes foo bar to be treated as two arguments foo and bar.
Fails for the same reason

00C00Q

Make a note of the last two forms. The braces around the argument prevent the first round of variable
substitution. The second round of substitution via the eval is still effected. The 1ist command form on the other
hand allows the first round of substitution but wrapping the argument in list form protects against substitution in
the second round. In our example, the two are effectively the same because the eval command does not change
the variable context and none of the arguments have side effects. However, as we will see in later sections, the
difference is important for commands like uplevel that can execute in different variable contexts.

Prefer argument expansion to eval where possible

In earlier versions of Tcl, a common use for eval was to expand a list value into its constituent elements.
We saw one example above:

eval $cmdB {$arg} » 7

In modern versions of Tcl (8.5 and later) the recommended method is to use the argument expansion
syntax instead.

{*}$cmdB $arg » 7

See http://wiki.tcl.tk/1017 for the rationale.

10.2. Evaluating file content: source

We have already seen in Section 2.2.2.1.2 how a Tcl program stored in a file can be executed hy passing the file
name as a command line argument to the tclsh or wish applications. The sour ce command is another means of
evaluating the contents of a file as a Tcl script.

source ?-encoding FHoCING? AT

239

Evaluating file content: source

The command reads the file identified by pATz and evaluates its content as a Tcl script is a manner similar to eval.
If pATH is a relative path, it is treated as relative to the current working directory of the process, not relative to the
file containing the source command.

The file content is expected to be in the encoding specified by the -encoding option. If the option is not specified,
the content is assumed to be in the system encoding.

The presence of a Ctrl-Z character in the file content is treated as the end of the file by the source command. Any
data beyond the Ctrl-Z character is ignored. This feature is sometimes used to store binary data beyond the end
of the Tcl script. The script can use the info script command to identify its containing file, read it in and then
locate the binary data by searching for the first Ctrl-Z character. This is often more convenient than having to
distribute a separate file containing the data. We will see an example of this use in Section 13.5.5.

The result of the source command is the result of the last command executed in the read script. A return
command within the script will cause the rest of the commands in the script to be skipped with the argument to
return being returned as the result.

It is perfectly legal to source a file multiple times. This is particularly useful during
- ‘ - interactive development where you might edit the source code to fix bugs or add features

o and then re-source the file into the interpreter.

Most large applications and packages are structured as a single “main” script with supporting data and procedure
definitions stored in other files. Running the application or loading a package involves executing this script which
in turn uses source to pull in the other files.

It is often useful in these cases (among others) for a script to know its own path so that it can locate the other
scripts it needs to source. The info script command provides this information.

info script ?8CRIPTEATI?

In the usual case, where the sSCrRIpTPATH argument is not specified, the command returns the full path of the
innermost file being sourced. For example, if file a. tcl is being sourced and it in turn sources b. tcl which in
turn sources c. tcl, the result of the command while c. tcl is being sourced will be the full path to c. tcl.

The command can be used in the main script in a fashion similar to the code fragment below.

namespace eval myapp {
Remember the directory we are located in.
variable script_dir [file dirname [info script]]

}
Using apply only to not pollute global namespace with temporary variables
apply {paths {
foreach path $paths {
source [file join $::myapp::script_dir $path]

}
¥} {a.tcl b.tcl}

If no file is being sourced when info script is called, the command returns an empty string.

The following procedure to return the directory where the file containing the procedure
Q is located will not work as you might expect.

proc get_my dir {} { return [file dirname [info script]] }

If the procedure is called after the file has been sourced, info script returns the
empty string which is not what you would want. You must make sure info scriptis
actually executed at the time the file is being sourced and the result saved somewhere as
shown in the earlier example.

240

Conditional execution

When the command is supplied the scrR7PTPATH argument, further calls to the info script command will return
SCRIPTPATH instead of the real file name for the duration of the current sourcing.

Dual mode scripts

In many instances, a Tcl script may run as a main application or be loaded as a library module. For
example, a script may run as a command line Web client when invoked from the command line or simply
provide a library for retrieving Web pages when loaded as a package into an application. The info
script command can be used to distinguish the two cases as shown in the following snippet.

if {[info exists ::argv0] &&
[file dirname [file normalize [info script]/..]]1 eq [file dirname [file normalize $argv0/..
11y {

.. Script file was passed as an argument on the command line ..
.. Parse command line options and retrieve web pages ..

} else {
.. Script was sourced as a library

b

The only points to be noted are the need to normalize before comparing the command line argument
argv0 which contains the path of the script invoked from the command line. This normalization takes
care of relative and absolute path differences as well links. See Section 9.1.1.2 regarding the above
normalization pattern.

10.3. Conditional execution

Tcl supports two commands that provide for execution of code only when certain conditions are met. The if
command executes scripts based on arbitrary expressions, whereas switch is limited to pattern matching
comparisons.

10.3.1. Evaluating scripts based on an expression: if

The if command has the form
if crwxex then zopy ?elseif zia: #ixrx then noly L2 ?else nony?

The expression 1FExPR is evaluated in the same manner as the expr command. It is expected to yield a boolean
otherwise an error exception will be raised. If the boolean has a true value, the associated script oDy is evaluated
in the context of the caller. Otherwise, each ELSEIFEXPR expression is evaluated in turn in the same manner and
the corresponding Bopy evaluated if true. If none of the expressions evaluate to a boolean true value, the 50Dy
script associated with the else clause is evaluated if present.

if {$i > 0} then {

puts "$i is positive"
} elseif {$i < 0} {

puts "$i is negative”
} else {

puts "$i 1s zero"

}

The elseif and else clauses are optional and there may be multiple elseif clauses.

241

Evaluating scripts based on patterns: switch

Moreover, the keywords then and else are also optional so the above could also have been written as

if {$1 > 0} {
puts "$i is positive”
} elseif {$i < 0} {
puts "$i is negative”
P A
puts "$i is zero"
}

In most Tcl scripts the then keyword is left out while else is explicitly specified.

The result of the 1f command is the result of the evaluated script or an empty string if no expressions yielded true
and no else clause was present.

set x 2 ; set y 1 + 1
set x [1f {$x > $y} {set x} else {set y}] » 2

Coming from other languages, you may try to write your if statement as follows:
E if {$x > $y}
{
..do something..
b
else
{
..do something else..
}

This will not work. Remember if is a command like any other; it is not a special keyword
with special syntax. Its expressions and script bodies are just arguments as for any

other command and have to be quoted appropriately. The syntactic rules for separating
commands also apply. So in the above example, Tcl will see the first line as a complete
command with two words and invoke if with a single argument, the braced expression.
Itis the 1f command that will then raise an error as it expects at least two arguments.

Of course, this syntactic requirement also applies to commands like while, for etc.

10.3.2. Evaluating scripts based on patterns: switch

The switch command offers a more convenient and readable alternative to the if command when the condition
for executing a script is based on matching a value. It has two syntactic forms

2227 s
NS? ?--7 WA

switch 20
switch 2?0

In the first form r1sTis a list of PATTERN and BoDY elements specified as a single argument. In the second form,
each pair is separately specified.

The command compares the vALUE argument against each PATTERNIn turn and evaluates the BoDy argument
corresponding to the first pattern that matches. If the last pattern is the string default, it matches all values
and the corresponding BopY is executed if no previous pattern matched. If Bopy is the - character, the Bopy
corresponding to the next argument is executed.

As always, the optional - - character sequence is used to separate options from the vALuE argument in case of any
ambiguity arising from the latter beginning with a - character.

242

Evaluating scripts based on patterns: switch

An example using the first form of the command:

switch $image format {
png { save_as_png $image }
jrg -
jpeg { save_as_jpeg $image }
gif { save_as_gif $image }
default {
error "Unsupported image type $image_format"
}
}

The same example using the second form of the command would read as

switch $image_format png {
save_as_png $image

} jpg - Jjpeg {
save_as_jpeg $image

> ogif
save_as_gif $image
} default {

error "Unsupported image type $image_format™

}

This second form is more convenient when the patterns being compared are not literals but rather passed through
variables. For example, if the patterns being matched were stored in variables x, y and z, the first form would
have to be written as

switch $val [list $x { ..take x action.. } $y {.. take y action ..} ...]

since use of braces would result in the switch command seeing the literal string $x instead of the contents of the
variable of that name. On the other hand, the second form can be simply written as

switch $val $x { .. take x action .. } $y {.. take y action ..} ...

The return value from the switch command is the result of the executed script or the empty string if no pattern
matched and no default handler was specified. Thus the command can be used in assignments and such.

proc print_weekday {when} {
set day [switch $when {
today { clock seconds }
tomorrow { clock add [clock secondsl 1 day }
yesterday { clock add [clock seconds] -1 day }
default {
error "Don't understand \"$when\"."
+
¥
puts [clock format $day -format %A]
}
print_weekday tomorrow
» Wednesday

Yes, we could have done that as a one-liner using the clock command

clock format [clock scan tomorrow] -format %A
» Wednesday

243

Evaluating scripts based on patterns: switch

The switch command takes several options that control the type of matching performed. These are shown in
Table 10.1.

Table 10.1. Matching options for switch

I Optlon . Description
-exact Exact string matching. This is the default.
-glob Treats PATTERN arguments as glob patterns.
-nocase Modifies the matching to be case-insensitive. By default matching is case-sensitive.
-regexp Treats PATTERN arguments as regular expressions.

Here is an example of using switch with glob patterns.

set url "https://www.example.com”
set port [switch -glob -nocase -- $url {
http://* { string cat 80 }
https://* { string cat 443 }
ftp://* { string cat 21 }
default { error "Unknown URL type" }
]
> 443

Here we are using string cat as an identity function.

0.0

Note that the order of patterns is important when multiple patterns match the value
since the script associated with the first match is evaluated.

In the case of regular expression matching, there are two additional options that may be specified:

* The -matchvar option takes an additional argument that is the name of the variable in which to store the
matched substrings. The content of this variable will be a list whose first element is the entire substring of
varLUE that matched the regular expression pattern. The remaining elements of the list contain the substrings
matched by the capturing parenthesis (see Section 4.12.1.10.1) in the expression, if any.

* The -indexvar option is similar except that instead of a list of matched substrings, the variable will contain a
list of sublist pairs containing the starting and ending indices of the substrings.

The example below illustrates the -matchvar option.

proc connect_url {url} {
switch -regexp -nocase -matchvar connection -- $url {
"http://([-_%:.[:alnum:1]1*)" {
puts "Connecting to [lindex $connection 1] on port 80"
¥
"https://([-_%:.[:alnum:]]*)" {
puts "Connecting to [lindex $connection 1] on port 443"
}
default { error "Unknown protocol™ }
H
}
connect_url http://www.example.com
» Connecting to www.example.com on port 80

244

Looping

Remember that just as in the regexp command, the match succeeds if the pattern
- ‘ - matches any substring, not necessarily the entire string.

% connect_url "Please connect to http://www.example.com"
» Connecting to www.example.com on port 80

If the desired behaviour is to match the entire string, use the ~ and $ anchors.

10.4. Looping

Tcl has several commands for executing code in a loop. Two of these, foreach and 1map are specific to lists.
Similarly, the dict for command is specific to dictionaries. They are discussed in the related chapters. Here we
describe the general purpose looping commands while and for.

If you are unhappy with the variety of looping and control statements in Tcl, it is almost
trivial to write your own constructs. See Section 11.7.

10.4.1. Looping: while

The while command executes a script as long as a given expression is true.

while :

The argument £xPR is evaluated as an expression. If the result is a boolean true value, the script argument BoDY
is executed. This process is repeated until £xPr evaluates to a false value. The command always return the empty
string as its result.

An example of some sophisticated computation using while:

proc sum {n} {
if {$n < 0} { error "$n is negative" }
set sum O
while {$n > 0} {
incr sum $n

incr n -1
¥
return $sum
}
sum 3
+ 6

The £xpPr argument should almost always be enclosed in braces as above to protect it
ﬂ from the Tcl parser. Otherwise, the parser will substitute the variable values before
passing them to the while command. The result may be an error or worse. For example,
if the above loop loop were written in either of the following forms

while "$n > 0" {

}
while $n {

b

245

Looping: for

the first argument seen by the while command (when called as sum 3) wouldbe 3 > 0
or just 3 respectively. Since these expressions always evaluate to boolean true values, the
loop would run forever. Or at least until the system runs out of electrons.

The break (see Section 10.4.3.1) and continue (see Section 10.4.3.2) loop control commands may be used within
BODY to terminate the loop or to skip iterations.

10.4.2. Looping: for

The other generic looping command is the for command.
for INIT EXPR MNEXDT BUDY

The command starts off by executing the script vz T. It then evaluates £xPr as an expression. If the result is
a boolean true value, the command executes the script 50Dy, followed by the script ¥ExT. It then repeats this
sequence as long as the £xPr expression evaluates to true. The result of the command is always the empty string.

The while loop from the previous section could also be written with for:

proc sum n {
for {set sum 0} {$n > 0} {incr n -1} {
incr sum $n
}
¥

Note that 1v77 and nExT are also scripts like BoDy, not necessarily single commands, and can be script blocks
spread over multiple lines.

As always, the break and continue commands can be used to control the loop execution. In the case of continue,
the commands in Bopy after the continue will be skipped but the nNEx T script is still executed.

10.4.3. Loop control

The commands break and continue can be used to prematurely terminate or skip iterations when looping. They
can be used within the script bodies of any Tcl looping or iteration commands like while, for, foreach, Imap and
dict for.

Both break and continue are a special case of a more general Tcl exception mechanism that we will discuss in
Section 11.2.1 and may even be used outside looping constructs in some specific situations.

10.4.3.1. Terminating loops: break

The break command is used for prematurely terminating a loop.
break

Here we copy files to a floppy drive until there is insufficient space. Yes, I'm dating myself and no, not the smartest
algorithm, does not consider disk allocation quanta and so on.

foreach file [glob -nocomplain *] {
set size [file size $file)
if {$size > $floppy_size} {
break
}
file copy $file $floppy_drive
set floppy_size [expr {$floppy_size - 3%size}]

246

Frames and the call stack

The break command is sometimes used in contexts outside of loops as well. Examples of this use are given in
Section 11.2.1.

10.4.3.2. Skipping loops: continue

The continue command is used for skipping an iteration, or a part, of a loop.

continue
Let us rewrite our previous example to be slightly smarter.

foreach file [glob -nocomplain *] {

set size [file size $file]

if {$size > $floppy_size} {

continue

+

file copy $file $floppy_drive

set floppy_size [expr {$floppy_size - $size}]
¥

Instead of breaking out of the loop, we now skip the file and move on to trying the next one.

10.5. Frames and the call stack

As is true for practically all programming languages, at each stage of a computation, Tcl has to keep track of the
execution context to be used for resolving names of commands and variables, both local and non-local. Where
Tcl differs from most languages is that it allows programmatic control of the different contexts in which code is
executed, the utility of which will hecome apparent later. Going over the management of these contexts will help
in understanding some of the related commands.

10.5.1. The call stack

Consider the following program

namespace eval areas {
variable pi 3.142
proc circle {radius} {
variable pi
set area [expr {$pi*$radius*$radius}]
return $area

b
}
areas::circle 2
> 12.568

When Tcl begin execution, it does so in the global context where all variables and commands resolve to the global
namespace (see Chapter 12) unless they are explicitly qualified with a namespace. Being outside a procedure
context, there are no local variables. This execution context is stored in a call frame as shown in Figure 10.1.

Level: 0
Namespace: global - Current frame
Locals:

Figure 10.1. Initial call frame

247

Inspecting the call stack: info level

When the areas: :circle command in invoked, the areas relative namespace name is resolved in the current
(global) context resulting in the : :areas: :circle procedure being called. A procedure call has (potentially) local
variables as well as (again, potentially) a different namespace context. Thus a new call frame reflecting these is
added on every procedure call. This collection of frames is known as the call stack and each frame is at a level
based on its position in the stack.

While areas: :circle is executing, the call stack then looks as shown in Figure 10.2.

Level: 0
Namespace: global
Locals:

Level: 1 (areas::circle)
Namespace: areas e Current frame
Locals:radius, area, pi

Figure 10.2. Level 1 call frame

The local variables include radius, passed in as an argument, and a procedure-local variable area. Any references
to these variable names will be resolved from this list of locals. Similarly, the namespace context is now areas and
correspondingly the variable command results in a local variable called p1i that is linked to the variable of the
same name in the areas namespace.

The invocation of the expr command on the other hand does not result in a new call frame. New call frames are
only created by commands that may change the namespace context or have local variables, such as procedures
and namespace eval. Since expr does neither, like most commands, it executes in the context of its caller and
does not necessitate a new call frame.

When a procedure completes execution, its call frame is popped off the call stack. The call stack then again looks
like the initial frame.

E | The above is a simplified, not quite accurate depiction, but sufficient for our purposes.

10.5.2. Inspecting the call stack: info level

We can examine the stack at any point of time with the info level command.
info level ?imvir?
Without the optional £veL argument, the commands return the current depth of the current call stack.

proc cmdA {} {
puts "cmdA info level: [info level]l"
cmdB
¥
proc cmdB {} {
puts "cmdB info level: [info level]l"
b4
puts "Global info level: [info level]"
cmdA
+ Global info level: 0O
cmdA info level: 1
cmdB info level: 2

248

Commands that create call frames

If the optional Z£vVEL argument is specified, the command returns a list containing the command name and
arguments that were specified for the command executing at that level in the call stack. If LEVEL is a positive
number, it specifies an absolute call stack level. Otherwise, it specifies a stack level relative to the calling
procedure where 0 is the level of the procedure itself, -1 is the procedure one level above (i.e. the one that invoked
the current one) and so on.

proc cmdA {a {b 0}} {
puts "cmdA: I was called as '[info level 0]'"

cmdB $a
¥
proc cmdB {a} {
puts "cmdB: I was called as '[info level 0]1'" (1]
puts "cmdB: My caller was called as '[info level -1]1'" (2]
puts "cmdB: The command invoked at the global level was '[info level 1]'" (3]
¥
cmdA 1 2

» cmdA: I was called as 'cmdA 1 2°
cmdB: I was called as '‘cmdB 1'
cmdB: My caller was called as 'cmdA 1 2'
cmdB: The command invoked at the global level was 'cmdA 1 2°

© Relative level 0
® Relative level -1 (the caller)
© Absolute level 1

that is executed. What is the difference? If the procedure has optional default arguments

that are not specified by the caller they will not be shown in the result from the info
level command.

E Note the information returned is the command that the caller invoked, not the command

cmdA 1
cmdA 1 2
> cmdA: I was called as 'cmdA 1’
cmdB: I was called as 'c¢cmdB 1°
cmdB: My caller was called as 'cmdA 1'
cmdB: The command invoked at the global level was ‘cmdA 1'
cmdA: I was called as 'cmdA 1 2°'
...Additional lines omitted...

The information returned by info level makes it easy to print out the entire call stack for any procedure

invocation for debugging or troubleshooting purposes. In a later section we will see how we can do this at runtime
without modifying any application code.

10.5.3. Commands that create call frames

So which Tcl commands create call frames? As stated earlier, essentially any command that executes a script and
supports local variables or (potentially) changes namespace contexts need new call frames. We have already seen
that procedure calls fall in this category. Other such commands include namespace eval and object method calls
(see Chapter 14). On the other hand, the commands eval, try, source and control statements execute scripts but
do not need new call frames.

It is easy enough to check whether a command adds a call frame.

249

Referencing variables in call frames: upvar

info level >0 @
eval {info level} » 00
namespace eval ns {info level} » 1 ©
apply {{} {info level}} 519
© Current frame level
® eval runs in the namespace of the caller and has no local variables.
© namespace eval has nolocal variables but changes the namespace context.
O Anonymous procedure calls are just procedure calls.

10.5.4. Referencing variables in call frames: upvar

The upvar command offers the ability for a procedure to reference a variable defined anywhere in its call stack,
even local variables in other procedures.

upvar ?iEvin? 2w

The rEvEL argument specifies the level in the call stack. If a non-negative integer, L.EVEL specifies the number of
levels up the call stack that the variable to be referenced resides. A level of 0 references the current frame itself. If
LEVEL begins with # immediately followed by an non-negative integer, it gives the absolute level in the call stack
with #0 referring to the global context. If unspecified, LEVEL defaults to 1. However, it is strongly recommended
that it be specified in case the first varvame matches one of the forms used to specify a level.

A

For each VARNAME LOCAL pair, the command will create a local variable Locar and link it to a variable VARNAME in
the referenced call frame. All accesses to the local variable will then be passed on to the linked variable.

I Note that the syntax used for the zveL argument differs from that for the info level
command.

Time for a few examples to clarify the variations. In the script below, we define a variable named myvar in
multiple contexts and then examine the call stack to see how each is referenced.

set myvar "Global"
proc gproc {} {
set myvar "gproc"
upvar #0 myvar var#0
upvar #1 myvar var#1
upvar t myvar varl nsvar nsvar
upvar 0 myvar varQ
puts "var#0 = ${var#0}, var#1 = ${var#1}, varl = $var1l, var0 = $varQ"
set nsvar "Created via linked variable"
unset var#0
¥
namespace eval ns {
variable myvar "ns"
proc nproc {} {
variable nsvar
set myvar "nproc"
gproc

250

Referencing variables in call frames: upvar

Now if we were to run the command

namespace eval ns nproc

the call stack when the puts command in gproc is invoked will look as shown in Figure 10.3.

Level: 0
Namespace: global
Globals: myvar +———

Level: 1 {(namespace eval)
Namespace: ns
Locals: myvar ¢

Level: 2 {nproc)
Namespace: ns
Locals: myvar ¢

Level: 3 {gproc)
Namespace: global

Locals: myvar
varQ 2
varl ——
var#fl —

nsvar
var#Q ————

Figure 10.3. Call stack and upvar

A few points to be noted from the figure:
« Call levels can be referenced using absolute levels (#0, #1) or relative levels (0, 1).

+ The referenced variables are all named myvar (of course, this need not be the case) but are distinguished by the
fact that they all appear in different call frames or namespace contexts.

« The referenced name may be that of a global variable, a namespace variable, a local variable in a procedure on
the stack or itself be a linked variable (e.g. nsvar)

+ The referenced variable need not actually exist (e.g. nsvar). [t will be created if written to. Conversely,
unsetting a linked variable (var#0) unsets the variable to which it is linked (global myvar).

For confirmation, we will run the command to verify the output.

% namespace eval ns nproc
» var#0 = Global, var#1 = ns, vart = nproc, varQ0 = gproc

% info exists ::myvar @
>0

% puts $::ns::nsvar (2]
» Created via linked variable

© Was unset via the linked variable
® Was created via the linked variable

251

Referencing variables in call frames: upvar

Using upvar
Now that we know how upvar works, where is it actually of use?

As a first example, consider implementing a command 1prepend, which works like the lappend command except
that it adds an element to the front of a list contained in a variable instead of the end. The command has the
signature

lprepend van 2000 .2

where VAR is the name of a variable, which may be a local, global or a namespace variable. Such a command could
be implemented using upvar:

proc lprepend {varname args} {
upvar 1 $varname var
set var [linsert $var 0 {*}$args]
}
set lvar {1 2}
lprepend lvar 3 4
puts $lvar
> 3412

Notice here that unlike our earlier examples, the referenced variable name is not hardcoded into the upvar
invocation but rather is itself passed through a variable.

Use of upvar in this fashion allows a “call by name” facility similar to that found in other languages. Another
example where this is useful is when a procedure has to modify the contents of an array. Remember that arrays
are themselves variables, not values. To modify an array then, we can just pass its name to the procedure.

Here is a procedure to change values of all array elements to uppercase.

proc upcase_array {arrayvar} {
upvar 1 $arrayvar arr
foreach {key val} [array get arr] {

set arr($key) [string toupper $val]

}

)

array set myarr {1 one 2 two}

upcase_array myarr

parray myarr

> myarr(1) = ONE

myarr(2) = TWO

Another situation where upvar is useful is to create an alias purely as a convenience to reduce typing effort or
increase readability. For example,

proc myproc {} {
upvar 0 ::ns::nsvar nsvar
upvar 1 ::myarr(0) elem
puts $nsvar
set elem zero

Notice that by using a LzveL argument of 0, we are not really changing the call frame or the variable context. We
are simply creating a new name and linking it to a variable that was already available in the current context (using
fully qualified names).

252

Executing scripts in a call frame: uplevel

Variable aliases created with upvar cannot be used with commands like trace or vwait
and with the -textvariable option associated with Tk widgets. You need to provide
these commands with the name of the original variable instead.

10.5.5. Executing scripts in a call frame: uplevel

Having looked at upvar which allows access to variables in any frame on the call stack, we now turn our attention
to the more general purpose and powerful uplevel command which allows execution of code within the context

of any frame on the stack. It is this command that underlies some of TcI’s most dynamic features such as the ability
to define of new control constructs that are on par with the built-in ones like while or switch.

uplevel ?-zvEl? ARG 7ARS L7

The command is very similar to eval in its behaviour in that it concatenates its ARG arguments and executes the
result as a Tcl script. It differs from eval in that it accepts the LEvEL argument which specifies the frame on the
stack within whose context the constructed script is to be executed.

The format of the zEVEL argument is the same as that for upvar with non-negative integers specifying the number
of levels above the current call frame in which the code is to be executed. Thus a LevEL of 0 will execute the script
in the current context and would be equivalent to the eval command. Absolute frame numbers are specified
starting with a # character followed by the level number of the frame.

If unspecified, LevzL defaults to 1. However, as for upvar it is strongly recommended that it be specified in case
the first ARG matches one of the forms used to specify a level. Unlikely, but remember command names in Tcl can
pretty much take on any form.

This similarity to eval also implies that care needs to be taken to properly protect against
double substitution when and where appropriate. See that discussion for details.

Time for some examples again. This time instead of showing the context using boring old variables within each
procedure as we did for upvar, we will print out the command being executed at each level (refer back to info
level if you don’t understand this code).

proc cmdA {} { cmdB }
proc cmdB {} { cmdC }
proc cmdC {} {

uplevel 0 {puts [info level]:[info level [info level}]} (1]
uplevel 1 {puts [info level]l:[info level [info level}l} (2]
uplevel 2 {puts [info level]:[info level [info level]ll} (3]

uplevel #1 {puts [info level]:[info level [info levell]} (4)
}
cmdA
» 3:cmdC
2:cmdB
1:cmdA
1:cmdA

Execute in the current frame (cmdC itself)
Execute in caller’s context

Execute in frame 2 levels above

Execute in context of Level 1

Co0Q

253

Executing scripts in a call frame: uplevel

The call stacks when ¢mdC is running look as shown in Figure 10.4.

Level: O Level: 0

Level: 1 {cmdA) Level: 1 (cmdA)

Current frame —»

Level: 2 (cmdB) Level: 2 {cmdB)

Level: 3 (cmdC) Level: 3 (cmdC)

< Current frame

Calt frame when cmdC begins Call frame when cmdCis
execution or is evaluating the evaluating the uplevel 2 or
uplevel @ command. uplevel #1 commands.

Figure 10.4. Call stack and uplevel

For the duration that cmdC is running, there are four frames on the call stack as shown. The current frame though,
which holds the context to resolve unqualified variable and command names, changes through the execution of
the procedure. On entry to the procedure, as well as during execution of uplevel 0, the current frame is the level
3 frame as we have seen before. All variables and commands will be resolved in the context of cmdC. On the other
hand, when the uplevel commands with a level other than 0 are executed, this current frame pointer moves that
many levels up the stack. Thus as shown, with uplevel 2 the current frame will be that for cmdA and all names
will be resolved in that context.

The most common values for LEVEL passed to uplevel are #0 to execute in the global context and 1 to execute in
the caller’s context. Let us see a “real world” examples of each.

Use of uplevel to implement an interactive shell

In the first case, consider an application that allows the user to type in commands in Tel to (for example) query
a database, fetch files over the network and so on. If tc1sh is passed such a script, it will run the script and exit
when done. So what we need is a means to set up a “read, eval, print, loop” and call it from the script. The repl
procedure below implements such a loop.

proc repl {} {
set command ""
set prompt "% "
puts -nonewline stdout $prompt
flush stdout
while {[gets stdin line] >= 0} {
append command "\n$line"
if {[info complete $command]} {
catch {uplevel #0 %$command} result
puts stdout $result
set command ""
set prompt "% "
} else {
set prompt "(cont)% "
}
puts -nonewline stdout $prompt
flush stdout

254

Executing scripts in a call frame: uplevel

Ignoring the bulk of the code which primarily concerns 1/0, the key thing to note is that users expect commands
to execute in the global context. This is what the uplevel #0 command does. Had we used eval instead, the
command would have been executed in the context of the repl procedure which is not what the user would

expect.

We have not seen the catch command as yet. For now, it suffices to know that it is used here to handle any
exceptions that may be raised during the execution of the entered command.

0.0

We saw earlier the means for checking if a file is being sourced as the main application.
We can use that in conjunction with our repl procedure as follows.

if {[info exists ::argv0] &&

[file dirname [file normalize [info script}/..]] eq [file dirname [file
normalize $argv0/..11} {

repl
+

You will often find similar code at the bottom of the library scripts. If the script is
being sourced as an embedded module from a main application, the code is effectively
disabled. On the other hand, if the file is being sourced directly from the command
line as the main application, it enters the prompt loop. This is an easy means to

try out commands in the library script interactively for purposes of debugging or
experimentation.

Using uplevel to implement new control structures

Another common use of uplevel is to implement new control statements that exhibit all the characteristics of the
ones like while and switch that Tcl provides out of the box. For instance, let us define a command repeat that
will execute a script a given number of times. A sample use might look like

set sum O
repeat 1 10 {
incr sum $1

b

The repeat command might be implemented as below

proc repeat {loopvar count body} {
upvar 1 $loopvar iter
for {set iter 0} {$iter < $count} {incr iter} {
uplevel 1 $body

}

return

b

The loop variable passed has to be updated in the caller’s context so we use upvar to link to it. In addition, the
loop body also has to execute in the caller’s context so that both variable names and commands will resolve as
expected. This is accomplished by the uplevel command as shown. We can try out out our new control structure.

% set sum O
> 0

% repeat 1 5 { incr sum $i }
% puts "The sum of the first $1 natural numbers is $sum”
» The sum of the first 5 natural numbers 1is 10

255

Executing scripts in a call frame: uplevel

However, this implementation is not complete. It will not behave in the same manner as the built-in control
statements in the presence of errors, break or return statements and the like within the loop body. A complete
implementation will have to wait until after we discuss return codes and exception handling in Tcl.

Finding the caller’s namespace

There is one other common use of uplevel that you will see in commands that themselves create new commands,
for example in object frameworks. When these new commands are created, care has to be taken that their names
are placed within the proper namespace context.

Let us assume we want to implement such a framework where the command newob j will construct a new
command of a given name (we don’t really care what it does) that can be used as follows.

newobj cmd1 1]
newobj ns::cmd2 €
namespace eval ns {newobj cmd3} ©
namespace eval ns {newobj ::cmd4} @

Should create ::cmd1
Should create ::ns::cmd2
Should create ::ns::cmd3
Should create ::cmmd4

Co00Q

We can write this procedure as follows.

proc newobj {name} {
if {[string match ::* $namel} {
set cmdname $name

} else {
set ns [uplevel 1 {namespace current}]
if {$ns eq "::"} {
set cmdname ::$name
} else {

set cmdname ${ns}::$name
¥
}
if {[namespace which -command $cmdnamel ne ""} {
error "command $name already exists"
}
proc $cmdname {} "puts {I am $cmdname}"
return

b

In our simplistic example where the created commands simply print their name, all our newobj procedure really
has to do is to ensure the command name is created in the correct namespace context:

+ If the name is already fully qualified, it can be used as is.

» Otherwise, the name is relative to the caller’s namespace so we use uplevel to retrieve that and qualify the
constructed command with the namespace name.

+ Finally, as a matter of policy we check that the name does not already exist. (It is really a matter of choice
whether to allow commands to be overwritten.)

To verify our command name generation,

% newobj cmdil

% cmd1

» I am ::cmdl

% namespace eval ns {newobj cmd3}

256

The internal C stack

% cmd3 @

@ invalid command name "cmd3"

% ns::cmd3

» I am ::ns::cmd3

% newobj ns::cmd3 @

@ command ns::cmd3 already exists

© Error. cmd3 was not created in the global namespace
©® Error. Command by that name already exists!

10.5.6. The internal C stack

We have talked about the call stack that keeps track of the execution contexts through a chain of procedure calls.
These contexts control how variables, commands and namespaces are resolved. Tcl also maintains another stack,
maintained internally and not directly visible at the scripting level, that keeps track of (among other things) the
currently executing command and the location to continue from when it completes. For the lack of a better term,
we will call this the internal C stack®.

This internal C stack will become relevant when we discuss more sophisticated programming models in Tcl
including recursion, the event loop and coroutines.

To illustrate the relationship between the call stack and the internal C stack, consider execution of the following
script which prints the call stack level at which each procedure is executing.

proc demol {} {
puts "[info level [info level]}: Level [info levell"”
demo2

}

proc demo2 {} {
puts "[info level [info level]]l: Level {info level]"

uplevel 1 {
puts "uplevel: Level [info level]l"
demo3

}

¥
proc demo3 {} {
puts "[info level [info level]]l: Level [info level]"

¥
demo1
» demol: tevel 1

demo2: Level 2

uplevel: Level 1

demo3: Level 2

The states of the call stack and the C stack at two stages of evaluation are shown in Figure 10.5. The left side shows
the state during execution of puts in the demo2 procedure while the right side shows the state during execution of
puts in the demo3 procedure.

Note the following points illustrated by the figure:

+ The puts command does not create a new call frame in the call stack as it resolves names within the context of
its caller. Nevertheless it adds a slot to the C stack where Tcl stores its caller and return information.

+ Likewise, the uplevel 1 command adds a slot to the C stack as well. On the other hand, its associated context
level is actually less than that of its caller.

1 In reality, Tcl maintains multiple internal stacks but we will not concern ourselves with that as it is an implementation detail.

257

Recursing in place: tailcall

* When demo3 is called via uplevel, the context for demo2 does not even appear on the call stack. (This does not
mean it has disappeared. It simply is not accessible through the call stack until control returns to evaluation of
demo2.)

* Notice how the depth of the C stack has grown even while the call stack depth stays the same.

This last point is the most important one to note because it impacts the maximum depth of recursive algorithms
and serves as the motivation for the tailcall command we discuss next.

Call stack C stack Call stack C stack
Level: O {global} | (global) Level: O {global) < | {plobal}
Level: 1 {demol) | +—— | demol Level: 1 {demo1l) demol
Level: 2 {(demo?2) demo2 Level: 2 (demo3) | <+ demo?2

T puts uplevel
~—— | demo3
L— | puts
During execution of puts in demo2 During execution of puts in demo3

Figure 10.5. C stack and call frames

10.5.7. Recursing in place: tailcall

The growth of the internal C stack that we described in the previous section is generally not an issue because
procedure calls rarely nest deep enough for it to be a problem. The one common situation where it can be a factor
is in the implementation of recursive algorithms. Let us illustrate with a simple command that calculates the sum
of the first N natural numbers. We will use a recursive command instead of a simple iterative loop because the
latter would not impress anyone.

proc sum {n {total 0}} {
if {$n == 0} { return $total }
sum f[expr {$n-1}] [incr total $n]
¥

This works well enough for small numbers.

sum 4 > 10
However, see what happens when we try to sum the first 1000 integers.
sum 1000 @ too many nested evaluations (infinite loop?)

The error you see comes from Tcl aborting the evaluation to guard against an overflow of the C stack which would
lead to the process crashing. Although the interp limit command can be used to change the limit of recursion,

258

Recursing in place: tailcall

this merely postpones the problem. Morever, changing the recursion limit with interp limit is dangerous
without recompiling or relinking Tcl to increase the process stack size.

The problem of stack growth can be solved for certain kinds of recursive algorithms where the recursion is the

last operation in the execution of the function or procedure. Under these circumstances, the context of the calling
procedure need not be maintained because there is nothing to be done after the called procedure returns. Thus the
stack space occupied by the calling procedure can be reused for the called procedure.

This is what the tailcall command effects.

tailcall oo

The tailcall command invokes cOMMAND, passing it any supplied arguments, overwriting the context of its caller
with that of coMmanD.

Before we go into a detailed explanation, let us rewrite our example using the tailcall command.

proc sum {n {total O0}} {
if {$n == 0} { return $total }
tailcall sum [expr {$n-1}1 [incr total $n]

You can now sum without running into recursion limits.
sum 100000 » 5000050000
A look at the internal C stacks, shown in Figure 10.6, in the computation of sum 2 in the two cases will tell us why.

C stack without tailcall

{global) " | (global) T | (global) ™ | (giobal)
sum 2 © sum 2 © sum 2 @

sum 1 2 sum 1 2

sum @ 3

C stack with tailcall

{global) T | (global) > | (global} > | (global)

sum 2 © sum 1 2 sum @ 3

Figure 10.6. Call stack with tailcall

As sum recurses, the tailcall version reuses the caller’s stack slot keeping the stack space constant.

There are a few instances where tailcall is useful even without any recursion being involved. For instance we
saw in a previous chapter a simple method for wrapping a procedure by renaming it and then calling it from the
redefined procedure. That method had the drawback that it increased the call stack depth and would not work
with commands like foreach that use uplevel or the equivalent to execute in their caller’s context. The failure
mode is demonstrated by the following exarple.

259

Recursing in place: tailcall

rename while _builtin_while

proc while args {
puts "while called"
_builtin_while {*}$args

}

set n 2

while {$n > 0} {puts $n ; incr n -1}

@ can't read "n": no such variable

while called

The command failed because our while wrapper executed the built-in command within its own context where
there was no variable n. Although that could be fixed via an explicit uplevel, an easier and faster solution is to
use tailcall to delegate the invocation. This way the stack depth remains the same when the original command
is called and the body of the while is evaluated in the context of the original caller.

proc while args {
puts "while called"
tailcall _builtin_while {*}$args
}
set n 2
while {$n > 0} {puts $n ; incr n -1}
+ while called
2
1

This then works as expected. The commmand is similarly useful in scenarios like delegation of object methods.

Be aware that tailcall executes a command, not a script, so there are no issues around double substitution
as there are with eval or uplevel. If you do need to call a script in tail-recursive fashion, you can use try in
combination with tailcall.

tailcall try { Your script }

The try command is preferable here to eval because it is faster to execute being byte-compiled in Tcl 8.6 whereas
eval is not.

With that introduction under our belt, we can move on to detailing exactly what tailcall does.

The details behind the operation of tailcall are only important when you are using it

E in conjunction with other commands like uplevel that affect call stacks or with control
structures like try. For its primary use for simple recursion as in the above example,
these details are not important and may be skipped.

The tailcall command works by

» first arranging for its command argument to be invoked after the completion of the call frame within which the
tailcall was invoked,

+ and then forcing its caller to complete immediately with a return code value of 2 / return. Note the return
code from a command invocation is not the same as the command result. Return codes are discussed in
Section 11.2.1.

As we will see, this two step process can be a bit tricky when the call frame is not directly that of the caller but let
us start with a simple example.

260

Hidden frames: info frame

proc demol {} {
puts "demol enter"
tailcall puts "tailcalled puts”
puts "demol exit"
}
proc demo {} {
puts "demo enter”
demo1
puts "demo exit"

}

Here is the output when we invoke demo.

% demo

» demo enter
demo1 enter
tailcalled puts
demo exit

The tailcall arranges for the puts command to be invoked after the completion of the current call frame, which
is that of demo1. Then it forces the caller, again demo1, to immediately complete at which point the puts command
set up by the tailcall is invoked. The puts "demol exit" line never gets executed.

This is all fairly straightforward. Now for the trickier example we mentioned. Let us rewrite demo1 as follows.

proc demol {} {
puts "demol enter"
uplevel 1 {
tailcall puts “"tailcalled puts”

}
puts "demol exit"

b

Now the output below is somewhat puzzling (maybe) for a couple of reasons. First, you might expect that the demo
exit line would not be printed as the tailcall is executed in the context of demo. Even stranger is that, unlike the
previous example, the tailcalled puts is printed after demo exit.

% demo

» demo enter
demo1 enter
demo exit
tailcalled puts

Here is the explanation. Because it is run via uplevel, the tailcall runsin the call frame for demo, not that of
demo1. Thus it schedules its argument to run after completion of demo and not demot. Then it forces its caller to
complete immediately with the return return code. The caller here is uplevel which propagates the return code
causing demo1 to immediately return. Evaluation of demo then continues as normal resulting in the demo exiting
line being printed and finally when demo completes, the command set up by the tailcall gets to run.

Rarely will you need this level of minutiae but there you have it.

10.5.8. Hidden frames: info frame

We learnt about call frames in Section 10.5.2 and how the info level command provides access to the different
call frames in the call stack. There are in fact a few hidden frames that are not visible via info level. These are
hidden because they do not introduce new local variable scopes and as such do not have much programming

261

Hidden frames: info frame

significance. They contain metainformation about the script being executed, such as the method by which it is
being executed (through eval, procedure calls, etc.), the source file it was defined in and so on. The info frame
command provides access to this information.

info frame ?;

If FRAMENUMBER is not provided, the command returns the frame level for the command. Otherwise, it returns a
dictionary containing the metainformation for the frame at that level. If FrRaMENUMBER is positive, it specifies the
absolute frame level; if negative, it is relative to the current frame.

First, let us contrast info level and info frame.

proc demo {} {
puts "demo level: [info level], frame: [info frame]"
eval {
puts “eval level: [info level], frame: [info frame}"

¥
uplevel 1 {
puts "uplevel level: [info level], frame: [info frame]"
}
}
puts "global level: [info level], frame: [info frame]"
demo

» global level: 0, frame: 1
demo level: 1, frame: 2
eval level: 1, frame: 3
uplevel level: 0, frame: 3

If we look at the output, notice that
* Inthe global context, info level returns 0, info frame returns 1.

* The procedure call to demo increments both.

* The eval command increments only the info frame value as it does not add a call frame with a new variable
scope.

* The uplevel command increments the info frame value but decrements the info level as we described in
Section 10.5.5.

Other commands that evaluate scripts but do not introduce a new local variable scope, such as source, try, if,
while etc. also behave in a manner similar to eval.

Let us now look at the information returned by the command. Write the following script to a file and then use
source to evaluate it.

proc demo {} {
demo2 “argument"

b

proc demo2 {arg} {
puts “"Frame: [info frame]"
print_dict [info frame 2]

Then running demo will show the following output.

% demo

> Frame: 3
cmd = demo2 “argument”
file = C:/Users/ashok/AppData/Local/Temp/TCL57053. TMP
level =1

262

Traces

line =2
proc = ::demo
type = source

The cmd element of the returned dictionary is the command being executed in that frame. Note we have
introspected the frame one level up from where the info frame call is made. Thus the cmd entry shows the call to
the demo2 procedure.

The type element of the returned dictionary is sour ce indicating that the command was defined inside a sourced
file. It may also be proc for dynamically created procedure bodies, eval if located within a script being evaluated
by eval, uplevel, try etc., or precompiled indicating it is a pre-compiled script loaded by tbcload.

The other entries of the dictionary are dependent on the value of the type element. In our example, these entries
are

+ file, containing the path to the file containing the command definition

+ line, the line number within the file

+ proc, the name of the procedure within whose body the command was invoked
+ level, corresponding to the info level command.

See the reference pages for information about the dictionary elements for other values of type. We do not go
into further detail because of the limited utility of the info frame command. Its primary purpose is for building
debuggers and similar tools. Unlike info level, you will rarely find it present in Tcl code.

10.6. Traces

One of the features in Tcl not commonly found in other languages is the ability to have program actions like
variable access or command invocation trigger the execution of code (in addition to the command being invoked
of course!). This capability, which we call tracing, can be used with great effect in a wide variety of scenarios:

+ Implementation of custom language features like read-only variables or value validators, or modifying the
behaviour of commands without making internal code changes.

+ A data flow style of programming where data modifications are propagated to other parts of the application.
Spreadsheets are an example of this. So also user interfaces where programmatic updates and updates from the
user are propagated in both directions.

+ Development tools like profiles and debuggers that by their very nature need to be able "hook" into program
and data flow to track and display changes.

+ Resource cleanup in situations that cannot be handled with the normal Tcl exception handling capabilities.
We will see rudimentary illustrative examples of these throughout this section.
10.6.1. Tracing variables

The trace command implements this tracing facility for both variables and commands. We will start with
exploring traces for variables.

10.6.1.1. Creating a variable trace: trace add variable
Tracing of a variable is enabled with the trace add variable command.

trace add variable varna

The varRNAME argument specifies the name of the variable to be traced. ops specifies the operations of interest.
COMMANDPREFTX is a command prefix to be invoked when the variable undergoes one of these operations.

263

Tracing variables

There is no restriction on the number of traces you may add to a variable. If multiple traces are created, they will
all be invoked unless one of them raises an exception. The order of invocation is the reverse order of their creation
with the last added trace being invoked first.

The ops argument must be a list whose elements are amongst the operations shown in Table 10.2. The operations
control the types of variable access that will trigger the trace.

Table 10.2. Trace operations on variables

Operation Description

array Triggered when the variable is accessed or modified via the array command.

read Triggered just before the variable is read. This means the variable need not exist and can
in fact be set by the trace callback.

unset Triggered when the variable is unset, either explicitly or implicitly when its containing
scope is exited.

write Triggered just after the variable is written to. The trace callback can change the variable

afterwards.

When a trace is triggered, COMMANDPREFIX is invoked with three additional arguments. The first is the name of the
variable on which the trace triggered, the second is the key of the element being accessed if the variable is an array
or an empty string otherwise, and the third is an operation value from the above table.

Let us start with a basic example to illustrate some finer points of traces. First some set up. We need a procedure
that we will use as the callback for the traces.

proc tracer {varname elemname op} {
puts "Trace: $op operation on variable $varname"

}

Now for the actual trace itself. Note that we are setting up a trace on a variable that does not even exist yet.

% unset -nocomplain myvar
% trace add variable myvar {read write unset} tracer
% namespace which -variable myvar
5 rimyvar
% info exists myvar
» Trace: read operation on variable myvar
0

Notice the differing output between namespace which and info exists. The former verifies that the name is
created while the latter confirms that the variable itself does not exist. Also note that info exists also triggered
our trace causing the message to be printed.

We can now try the various operations on the variable.

% set myvar "foo"
» Trace: write operation on variable myvar

foo

% set myvar

+ Trace: read operation on variable myvar
foo

% unset myvar

Trace: unset operation on variable myvar
% set myvar "bar"

+ bar

+

264

Tracing variables

We can see our tracer procedure is triggered as expected in each case. Notice however that once the variable is
unset, the trace is also deleted so when we write to a variable of that name again, there is no trace in place.

A cautionary note is in order. The variable name that is passed to the trace callback is not
necessarily that on which the trace was applied. It is the name used to access the variable
in the caller’s context. For example,

% trace add variable myvar {read write unset} tracer
% upvar 0 myvar linked_var
% set linked_var foo
s> Trace: write operation on variable linked_var
foo

Notice that the callback sees the variable name linked_var, and not myvar. In most
cases, where the callback uses upvar to access the variable if needed (see examples
later), this does not matter. But if you are for example logging variable access to a file for
debugging purposes this might cause some confusion. In such instancs, pass the “real”
name to the callback as an additional argument at the time the trace command is called.

Let us make our trace callback a little more sophisticated. This time instead of merely printing the operation, we
will actually affect it.

proc tracer {varname elemname op} {
upvar 1 $varname var
switch $op {
read {
puts "Trace: op=$op, $varname=$var"
set var [string reverse $var]

}
write {
puts "Trace: op=$op, $varname=$var"
set var [string toupper $var]
¥
unset {
puts "Trace: \[info exists $varname\]=[info exists var]"
}

}
return "This result of the callback is ignored”

b

The following points about trace callbacks should be noted in our example:

+ Trace callbacks are invoked within the same context as the command that operates on the variable. Since our
trace prefix is itself a procedure, it adds a call frame and thus we have to use upvar to access the variable name
in the context of the caller.

» Both read and write traces can modify the variable. The new value of the variable is what will be returned by
the traced operation.

Let us try this new version.

% trace add variable myvar {read write unset} tracer
% set myvar "foo"
» Trace: op=write, myvar=foo

FOO

Notice writing the variable stores the upper case form of the original value being assigned. Now we can try
reading it back.

265

Tracing variables

% set myvar
+» Trace: op=read, myvar=F00

O0F

% set myvar

» Trace: op=read, myvar=00F
FOO

32

unset myvar
+ Trace: [info exists myvar]=0

Every read on the variable reverses the stored value! A bit of imagination is sufficient to see how you drive a hated
colleague bananas without even touching their code.

The output leads to some additional points of note:

* The write trace is called after the operation sets the new value of the variable. Our callback then updates it with
the upper case version.

» The unset trace is also called after the variable is unset.

* The result of the original command reflects the new value of the variable after it is updated by the trace
handler.

+ The result of the trace callback tracer does not show up anywhere. It is ignored. Note however raised errors
are treated differently as described below.

Given that we have traces set on the variable, a legitimate question to ask is won’t those
E traces recursively fire when we modify the variable within our callback? The answer

is that Tcl is smart enough to disable read and write traces on a variable while a read

or write callback is in progress. However, note that this is not so (by design) if the

callback an unset operation. Any unset traces will be triggered as usual. Moreover,

traces are not disabled if the callback itself is in response to an unset operation.

If a read or write callback raises an exception, the original command also completes with the same exception.
However, exceptions raised during an unset callback are ignored.

One non-obvious point with variable unset traces is that the command creates the specified variable if it is not
already created. This means you can create traces on non-existent variables and have them fire as a means to
detect when a variable scope is deleted. For example,

% proc demo {} {
trace add variable NOSUCHVAR unset print_args

b

% demo

» Args: NOSUCHVAR, , unset
Notice our trace fired when the demo procedure returned. Section 21.4.1 describes an application of this feature.

We now show some examples of the different ways variable traces might be put to use.

Lazy initialization

The fact that variables need not exist when traces are registered as well as the fact that they can be modified by the
traces allows us to do lazy initialization.

Consider our simple sum procedure that returns the sum of the first N natural numbers. We can use traces to allow
the application to access these values as array elements. For example, we should be able to say

puts "Sum of 1:5 is $sums(5)."

266

Tracing variables

Now clearly we cannot predict which numbers might be of interest and even if we did, it might computationally
expensive to pre-fill the array with values that might only be potentially used. Both these issues are easily solved
with lazy initialization using traces.

First we create the empty array and attach a variable trace to it.

array set sums {}

trace add variable sums read calculate_sum

We will discuss array traces in the next section but for now it suffices to know that our trace procedure, which we
define next, is called every time an array element is read.

proc calculate_sum {varname elem op} {

Now we can go ahead with our calculations.

v v R

1]

As you can imagine, this technique can be put to use in other scenarios, caching of URLs for instance.

upvar 1 $varname var

if {! [info exists var($elem)]} {
puts "Calculating sum of $elem
set var($elem) {sum $elem]

puts "Sum of 1:5 is $sums(5)."
Calculating sum of 5

Sum of 1:5 is 15.

puts "Sum of 1:3 is $sums(3)."
Calculating sum of 3

Sum of 1:3 1s 6.

puts "Sum of 1:5 is $sums(5)." @
Sum of 1:5 is 15.

parray sums

sums(3) = 6

sums(5) = 15

Note no computation message

Constant variables

Here is an example of defining a variable as “read-only” or a constant. We will define a const command for the

purpose.

const VA

Any attempt to modify the variable will raise an error while keeping the variable unchanged.

proc const {varname value} {

© Restore original value since it would have already been modified.

upvar $varname var
trace add variable var write \

[lambda {constval name element op} {

upvar 1 $name var
set var $constval @

throw {CONST MODIFY} “"Attempt to modify a constant.”

} $value)

267

Tracing variables

The above code implements the trace callback as an anonymous procedure (see Section 3.5.8.4). When the callback
is invoked, the value of the variable would have already changed so we have to pass the original constant to the
callback separately as its first parameter.

Now any attempt to modify a const variable is rejected.

% const e 2.71828

% set e O

@ can't set "e": Attempt to modify a constant.
% set e

» 2.71828

Data flow programming

Our last example is an outline of how a data flow program structure might be implemented. We will have a 2x2
spreadsheet with cells numbered A1-A2. .B1-B2 and store cell values in global variables of the same name.
Spreadsheet formulas are then almost trivial to implement in declarative style. Suppose the user has defined cell
contents of B1 and B2 to be

B1 At + A2
B2 = B1**2

This would translate to the following code

proc getval cell {
upvar #0 $cell var
return [expr {[info exists var] ? $var : 0}]
¥
proc updateB1 {args} {
set ::B1 [expr {[getval ::A1] + [getval ::A2]}]
}
proc updateB2 {args} {
set ::B2 [expr {[getval ::B1]1**2}]
¥

trace add variable A1 {write unset} updateBt

trace add variable A2 {write unset} updateB1
trace add variable B1 {write unset} updateB2

Now we can see how updates are automatically propagated between cells.

set A1 3 » 3
set A2 4 » 4
set B2 > 49
set A2 2 » 2
set B2 » 25

This example is beyond simplistic but should give you a flavor for how you might put variable traces as the basis
for such a system There are several examples of such use in the Tcler’s Wiki z,

The above example demonstrates “push” traces where changes to a variable are
- ‘ - propagated to its dependents when it is written to. In some cases, a “pull” model can be
rg] more convenient. Instead of adding write traces to A1, A2 we could add a read trace to

B1 and B2 instead. When this trace fired, the current values of A1, A2 would be used to
compute a new value for B1/B2.

2 hiep:ffwikitcltk

268

Tracing variables

10.6.1.2. Tracing array variables

There are some special cases to be considered for tracing of array variables. Let us modify our tracing callback to

just print its arguments.

proc tracer {varname elem op} {

puts "Trace: varname=\"$varname\", elem=\"$elem\", op=\"s$op\""

}

Tracing a specific element of an array is just like tracing a variable except that the name of the element is supplied
as the second argument to the callback.

% trace add variable arr(x) {read write unset} tracer

% set arr(x) 100

3

» Trace: varname="arr", elem="x",

100
set arr(x)

32

> Trace: varname="arr", elem="x",

100
array set arr {x 0y 1}

array get arr

voae v a®

x 0y1
unset arr

32

Trace: varname="arr", elem="x"

Trace: varname="arr", elem="x",

op="write

op="read"

op="write

op="read"

» Trace: varname="arr", elem="x", op="unset"

Notice that our trace fires irrespective of whether the element is individually operated on or is part of an operation

on the entire array.

If you want to track changes to the entire array, and not just specific elements, in addition to providing the name of
the array as the variable name, you have to specify array as the operation of interest (along with other operations

if desired). Operations on the array with commands such a array set and array get will trigger the callback.

% array set arr {x 0y 1}

% trace add variable arr {read write unset array} tracer

% array set arr {al 2 a2 3}

»> Trace: varname="arr", elem="",
Trace: varname="arr", elem="al",

op="array"

op="write"

Trace: varname="arr", elem="a2", op="write"

% array unset arr a*

» Trace: varname="arr", elem="",
Trace: varname="arr", elem="al",

op="array"

op="unset”

Trace: varname="arr", elem="a2", op="unset”

% set arr(x) 10

> Trace: varname="arr", elem="x",

10
% array get arr

> Trace: varname="arr", elem="",
Trace: varname="arr", elem="x",

op="write
op="array"
op="read"

Trace: varname="arr", elem="y",6 op="read"

x 10y 1
% unset arr

» Trace: varname="arr", elem="",

Points to be noted from the above:

op="unset"

269

Tracing commands

* When the array callback is made, it applies to the whole array and hence the second argument of the callback,
the element, is set to the empty string.

* The array callback does not indicate the type of operation, get, set etc. This is unfortunate.

» Operations using the array command will also trigger read, write and unset traces on individual elements if
these were included in the operations list for the trace command. Moreover, setting individual elements will
also trigger the trace. Note the individual element traces are invoked after the array trace.

Unsetting the entire array with unset does not trigger traces for individual elements unlike array unset.

10.6.1.3. Resource management using variable traces

We saw earlier the use of the try..finally command to ensure resources are released even in case of errors.
There are however circumstances where that technique is not viable because the finally clause never gets to
run. Two such cases are

+ Deletion of an entire namespace.

* Deletion of a coroutine with the rename command.

In such cases, variable traces can be put to good use to release resources at an appropriate time. This is described
in detail with respect to coroutines in Section 21.4.1. The technique described there may be used to deal with
namespace deletion as well.

10.6.2. Tracing commands
Tracing facilities for commands fall into two categories:

+ tracing the lifetime of a command definition
*+ tracing command execution
We describe these in turn.
10.6.2.1. Tracing command lifetimes: trace add command
The trace add command command registers a callback to be invoked when the specified command is renamed or

deleted.

trace add command .

The argument ~vAME is the name of the command to be traced. Unlike for variable traces, this command must
already exist. The argument coMMANDPREFIX is @ command prefix to be invoked when the command is renamed
or deleted. The ops argument must be a list whose elements are shown in Table 10.3.

Table 10.3. Trace operations on commands

- Operation Description

rename Triggered when a command is renamed. Note that renaming a command to an empty
string is treated as a deletion and does not trigger this trace.

- delete Triggered when the command is deleted. This may happen if it is explicitly deleted by
renaming it to the empty string or if the containing namespace is deleted.

When a trace is triggered, coMMANDPREFIx is invoked with three additional arguments. The first is the fully
qualified name of the command, the second is either the empty string if the operation is delete or the new name
of the command, again fully qualified, if the operation is rename. The third argument is either rename or delete
and indicates the operation.

As for variable read and write traces, command traces for a command are also disabled when a command trace
callback for that command is in progress.

270

Tracing commands

Here is a simple example illustrating command traces.

% namespace eval ns { proc demo {} {} }
% trace add command ns::demo {rename delete} tracer
% rename ns::demo demo2

» Trace: varname="::ns::demo", elem="::demo2", op="rename"
% rename demo2 ""
5> Trace: varname="::demo2", elem="", op="delete"

The above example also demonstrates that traces stay attached to a command even when it is renamed.

Command traces tend to be less common than variable traces but there are still situations where they are put

to good use. One example is in packages where a command is a "proxy” for an external object, such COM on
Windows or CORBA. The package can ensure the external object is released appropriately by placing a trace on the
command deletion.

Redefinition of a procedure is treated as a deletion and the trace fires accordingly. The
new definition will however not have the trace attached.

10.6.2.2. Tracing command execution: trace add execution

The trace add execution command is a very powerful tool that can provide insight into the exact sequence of
commands executed in a program.

Powerful as they are, execution traces also extract a large performance penalty because
they prevent inlining of byte coded commands (see Section 10.10.2.5). Their use should

A therefore be limited to debugging and troubleshooting purposes and is not recommended
as part of program flow in normal operation.

The execution trace can track both invocation of a specified command or all command execution for the duration
of that command.

"
o

trace add execution :

The argument NAME is the name of an existing command whose execution is to be traced and COMMANDPREFTX is
a command prefix (see Section 10.7.1) to be invoked when the trace is triggered. The ors argument must be a list
whose elements are shown in Table 10.4.

Table 10.4. Trace operations on command execution

Operation Description

enter Triggered just before the specified command begins execution.

leave Triggered just after the specified command completes. The callback will be invoked even
if the command completed with an exception.

enterstep Triggered just before any command is invoked during the execution of the specified
command. This include any nested calls to any depth.

leavestep Like enterstep but triggered just after the completion of every command for the
duration of execution of the specified command. This include any nested calls to any
depth.

When a trace is invoked for enter and enterstep triggers, COMMANDPREFIX is invoked with two additional
arguments. The first is the full command string and the second is enter or enterstep indicating the trigger.

271

Tracing commands

When invoked for leave and leavestep triggers, four arguments are added. The first is the command string, the
second is the return code (see Section 11.2.1) from the command invocation, the third is its result and the fourth is
the trigger operation, leave or leavestep.

proc tracer args {
puts "Trace: [join $args {, }1"

+
proc demo {args} { demo2 X Y }
proc demo2 {args} { demo3 }
proc demo3 {} {return "“result" }
trace add execution demo {enter leave} tracer
demo
+ result

Trace: demo, enter

Trace: demo, 0, result, leave

Notice our tracer logs the invocation and completion of the demo command. On the other hand, adding traces for
enterstep and leavestep would log all commands while demo was executing.

trace add execution demo {enterstep leavestep} tracer
demo
» result
Trace: demo, enter
Trace: demo2 X Y, enterstep
Trace: demo3, enterstep
Trace: return result, enterstep
Trace: return result, 2, result, leavestep
Trace: demo3, 0, result, leavestep
Trace: demo2 X Y, 0, result, leavestep
Trace: demo, 0, result, leave

Let us redefine demo3 to raise an error instead.

proc demo3 {} {error "Something horrible happened."}

demo

@ Something horrible happened.
Trace: demo, enter
Trace: demo2 X Y, enterstep
Trace: demo3, enterstep
Trace: error {Something horrible happened.}, enterstep
Trace: error {Something horrible happened.}, 1, Something horrible happened., leavestep
Trace: demo3, 1, Something horrible happened., leavestep
Trace: demo2 X Y, 1, Something horrible happened., leavestep
Trace: demo, 1, Something horrible happened., leave

Again, note the trace triggers on completion of each procedure even on exceptions where the return code is shown
as 1 as opposed to 0 for a normal return.

Execution traces are not normally used because of their performance impact. Nevertheless, they can be
indispensible for fault diagnosis, particularly in the field since they can be configured with no changes to the
application source.

10.6.2.3. Deleting a trace: trace remove

All three forms of traces can be deleted with the trace remove command.

trace remove variable

272

Tracing commands

trace remove command NAM
trace remove execution

The naMe and ops arguments have the same semantics as for the trace add command — they identify the

variable or command and the operations for which the trace is to be deleted. Since there may be multiple traces on
a variable or command, ors and CoMMANDPREFIX identify the specific trace to be removed. They must match the

corresponding arguments that were used to initiate the trace.

trace remove execution demo {enterstep leavestep} tracer
demo
@ Something horrible happened.

Trace: demo, enter

Trace: demo, 1, Something horrible happened., leave

Notice that only the specified triggers were removed. The enter and leave remained active.

To reiterate the point about hoth the ors and coMMANDPREFIX arguments having to be
the same as in the initiating trace command, suppose we only wanted to remove the
enterstep trigger. The following would not work.

trace remove execution demo enterstep tracer
The ops argument would not match the initiating trace so the trace removal would be

silently ignored. For the desired effect you have to remove the complete trace as in the
prior example and add a new one with just the leavestep trigger specified.

An attempt to remove a trace on a non-existent variable is silently ignored but not so for commands. If the
command naME is not defined, the trace remove will raise an error exception.

10.6.2.4. Inspecting traces: trace info
The trace info command can be used to retrieve all traces active on a variable or command.
trace info variable 2

trace info command @
trace info execution :

The result of the command is a list of pairs each of which contains the ops and coMMANDPREFIX arguments that

were supplied to the trace add command.

Let us check the execution traces on our demo procedure after adding back the trace that we previously removed

for demonstration purposes.

trace add execution demo {enterstep leavestep} tracer
puts [trace info execution demo}
» {{enterstep leavestep} tracer} {{enter leave} tracer}

We can use this information to remove all traces from a variable or command.

foreach trace [trace info execution demo] {
trace remove execution demo {*}$trace

}

puts [trace info execution demo]

N

273

Code construction

10.7. Code construction

In dynamic languages like Tcl, it is common for code fragments to be passed around, evaluated and even
constructed on the fly. Examples include

* Operation of commands like 1sort and dict filter can be customized through callbacks.
+ Event handlers and traces use callbacks for notification purposes.

* Although it may not be obvious if you are coming from other languages, even the “body” of commands like
eval, try, if, and while are just arguments and not any special syntactic constructs. You can thus pass
dynamically constructed code as their bodies.

* Metaprogramming, which we discuss in Section 10.8, is based on the ability to construct and execute code at
runtime.

In this section, we provide some hints and tips related to these aspects of Tcl programming.

10.7.1. Scripts versus command prefixes

For starters, we need to distinguish between arguments that are scripts versus arguments that are command
prefixes. Commands that take script arguments evaluate them as Tcl scripts with (potentially) multiple commands
and following the usual Tcl syntax and substitution rules. On the other hand, commands that take a command
prefix argument treat the argument as a single command which is in a list form containing the command name
and possibly some arguments to be passed to it. In both cases, when the callback is invoked additional arguments
may be appended containing specific information about why it is being invoked.

The following mock procedures illustrate the difference. The script_cb procedure is written to accept a script
callback as an argument while cmd_cb takes a command prefix. We will pass the same callback argument to
both.

set callback {print_args A ; print_args B C}
proc script_cb {script} {
uplevel 1 $script "(script)”
¥
proc cmd_cb {cmdprefix} {
tailcall {*}$cmdprefix "(command)"
¥

Notice the difference in the output below in the two cases.

% script_cb $callback
> Args: A
Args: B, C, (script)
% cmd_cb $callback
> Args: A, ., print_args, B, C, (command)

This difference arises because the script_cb command executes the callback as a script where the ; character is
treated as a command separator. In the case of cmd_cb it is treated simply as an argument.

Both forms of callback arguments are commonly seen and you have to just be aware of what type of callback is
expected by a command.

10.7.1.1. Constructing command prefixes

In the example above, we passed a (brace enclosed) string as an argument for the purposes of contrasting
command prefixes with scripts. However, the recommended way to pass a command prefix as a callback is by
constructing it as a list. For example,

% set some_value "First arg"
+ First arg

274

Capturing namespace contexts in callbacks

% cmd_cb [list print_args $some_value ";" “Third arg"]
5 Args: First arg, ;, Third arg, (command)

Providing the callback as an interpolated string would require more care, such as escaping whitespace and special
characters, to ensure it is parsed correctly as a list of arguments.

It is also common to use an anonymous procedure as a command prefix instead of defining a named procedure for
a one time use. For example, the custom sorting example from Section 5.7 can be written as

set part_numbers {part_100_b PART_100_C PART_20_B}
lsort -command [lambda {s1 s2} {
return [expr {[string length $s1] - [string length $s2]}]
}1 $part_numbers
» PART_20_B part_100_b PART_100_C

where we have used the 1ambda utility procedure from Section 3.5.8.4 to define an anonymous procedure for
comparing strings in order of their length.

10.7.1.2. Constructing scripts

Constructing scripts is more involved than command prefixes because while the latter have a limited structured
form, scripts can be full blown Tcl programs. Scripts are not only used for callbacks but also in metaprogramming
as discussed in the next section.

In their simplest form, scripts are enclosed in braces as a literal string. We have seen this frequently as in

the definition of a procedure body, if statement and so on. This is not particularly useful in dynamic script
construction though, because in most cases the script is at least partly built from runtime information and not
completely known at the time it is written. Enclosing the script in braces precludes use of variable and command
substitutions in the generation of the script.

There are several alternatives for building scripts by combining “static” fragments with dynamic ones at runtime:

« The script can be composed from a series of commands that append static literals and variable fragments. This
is the most flexible alternative but suffers from a lack of readability where the structure and purpose of the
script is not readily apparent.

« Alternatively, the script can be constructed as a literal string in double quotes instead of braces. The variable
parts of the scripts can then simply be variable references or bracketed commands that are replaced through
the normal string interpolation rules. This is a reasonable approach when the constructed script is simple. For
even moderately complex scripts however, several issues arise. Variable references and bracketed commands
that are part of the generated script need to be escaped so they are not substituted at script generation time.
This escaping of special characters and newlines can become tricky. There is also a loss of readability as in the
previous alternative.

+ For more complex scripts, it is often easiest to write the script as a template with “place holders” for the
dynamic parts. These are then replaced at runtime through commands such as subst, format and string
map.

This last method is illustrated in Section 10.8.1.
10.7.2. Capturing namespace contexts in callbacks

One consideration that arises when constructing scripts that will be passed as callbacks is definition of the
namespace in which the callback should execute. Most commands such as af ter execute scripts in the global
context. To execute the callback in another context, some additional steps are needed. Since we have not discussed
namespaces yet, we will postpone a discussion of this topic to Section 12.2.1.

10.8. Metaprogramming

What is metaprogramming? Roughly speaking, metaprogramming involves writing a program that in turn writes
a program to do the desired task. In some cases metaprogramming makes for simpler code while in others

275

Procedures with initializers

it optimizes performance by generating specialized code at runtime. Tcl lends itself naturally to this style of
programming as we already seen with some simple examples involving procedure redefinitions and such. We will
now present some additional illustrations of metaprogramming. We will see another example in Section 20.9.2.

10.8.1. Procedures with initializers

In Section 3.5.6 we saw how a procedure could redefine itself to do one-time initialization. That required some
boilerplate code to be written for every procedure that wanted to do this. This boilerplate followed the pattern

proc NAME {ARGLIST} {
INITCODE
proc NAME {ARGLIST} {
BODY

h
tailcall {*}[info level 0]

We can generalize this by introducing an enhanced form of the proc command, which we will imaginatively call
proc_ex, that will generate this boilerplate for us. Our new command takes an additional argument which is the
initialization script and has the form

proc_ex i

The command will create a new procedure called PROCNAME just as the proc command does except that the first
time it is called the created procedure will run the 7v17 script before running Bopy.

We can implement proc_ex by just using the above pattern as a template for defining the target procedure and
substituting for the variable parts in the template. For example, the following implementation uses string map to
do the needful.

proc proc_ex {name arglist initcode body} {
1f {![string match ::* $namel} {
set ns [uplevel 1 {namespace current}]
set name ${ns}::%$name
¥

set template {
proc NAME {ARGS} {
INIT
proc NAME { ARGS } { BODY }
tailcall {*}[info level 0]
}
}
set replacements [list NAME $name ARGS $arglist INIT $initcode BODY $body]
eval [string map $replacements $template]

The first part of the procedure merely ensures the name of the procedure to be defined is appropriately qualified
irrespective of the namespace context of the caller. In the second part, we take the generalized procedure template
we laid out above, replace the variable parts of the template with the actual values using string map, and then
execute the generated procedure definition.

To understand how it works, let us use it in an example and introspect the generated code.

proc_ex say_hello {message} {
puts “Loading package msgcat”
package require msgcat

P A
puts [msgcat::mc $message]

276

Procedures with initializers

b

The above defines a say_hello procedures whose implementation we can examine with info body.

% info body say_hello

Y

puts "Loading package msgcat”
package require msgcat

proc ::::say_hello { message } {
puts [msgcat::mc $message]

tailcall {*}[info level 0}

The formatting of the generated code is a bit of a mess as we have not bothered to prettify it. However, we can still
follow what's going on. The implementation of say_hello (generated by proc_ex) runs the initialization code and
then redefines itself with the main procedure body. It finishes by calling this redefined version of itself.

Let us call our procedure for the first time.

% say_hello "Hello World!"
» Loading package msgcat
Hello World!

As you can see the initialization code is executed before the main body. Moreover, if we examine the body of the
procedure, we find it has changed.

% info body say_hello
N
puts [msgcat::mc $message]

And naturally, when we invoke it a second time, there is no attempt to load the msgcat package.

% say_hello "Hello again!"
» Hello again!

To recap the benefits of our proc_ex command,

« We can postpone any expensive initialization (loading msgcat in our example) until the time it is actually
needed.

+ Subsequent calls after the first are streamlined as they neither attempt to load the package nor even have to
check for the same.

« Because we have wrapped this one-time initialization within our proc_ex procedure, it is simple to use. A
procedure that requires one-time initialization does not need to reinvent the wheel.

The string map command is only one way of generating a script from a template. You could also use commands
like subst or format. An implementation of proc_ex that uses format is shown below.

277

Parsing data by transmutation to code

proc proc_ex {name arglist initcode body} {
if {![string match ::* $namel} {
set ns [uplevel 1 {namespace current}]
set name ${ns}::$name
+
eval [format {
proc %1%$s { %2%s ¥ {
%3%s
proc %1%s { %2%s } { %4%$s }
tailcall {*}[info level 0]
+
} $name s$arglist $initcode $body]

10.8.2. Parsing data by transmutation to code

A common task in programming is parsing of structured data or text. One technique used for this purpose that you
will see in the Tcl world is to transform the data into a Tcl script that embeds Tcl commands within the data and
then execute the generated script.

This is easiest explained through an example. We will use the following Tcler’s Wiki* code derived from Stephen
Uhler’s famous 4-line HTML parser.

proc html_parse {html callback} {
set re {<(/?2)([* \tA\r\n>]1+)[\t\r\n]*([A>]*)>}
set sub "\}\n[list $callback] {\\2} {\\1} {\\3} \{"
regsub -all $re [string map {\{ \&ob; \} \&cb;} $html] $sub script
eval "$callback PARSE {} {} \{ $script \}; $callback PARSE / {} {}"
¥

The intent is to transform the HTML text to a Tcl script where each HTML tag results in the invocation of a
command which is passed the tag as a parameter. To understand what html_parse is doing, let us interactively
execute a slightly simplified version of the above implementation line by line.

We start off by defining variables corresponding to the arguments passed to html_parse. These will serve as the
“arguments” to our interactive execution of the procedure.

% set html {
<p class="important'>Something really important.</p>
<p>A second paragraph</p>

<p class='important'>Something really important.</p>
<p>A second paragraph</p>

% set callback html_cb @

> html_cb

© We will define the html_cb callback procedure later

The html_parse procedure first defines a regular expression that matches both opening and closing HTML tags.

% set re {<(/?)([M \EA\r\n>]+)[\tAr\n]*([*>]*)>}
> <(/2)YCIN NEARAN>T+) [NEAr\NI*([A>]%)>

Next, html_parse defines the substitution that will convert each tag to a call to the callback command.

3 httpiwiki.teltk

278

Parsing data by transmutation to code

% set sub "\}\n[list $callback] {\\2} {\\1} {M\3} W{"
>}
html_cb {\2} {\1} {\3} {

Our intent is that a tag of the form <body> will result in a call to html_cb (the callback procedure passed in) with
the <body> passed as an argument along with the succeeding text. We will see this in a minute.

Now we use the regsub command to transform the HTML text into an equivalent Tcl script fragment.

% regsub -all $re $html $sub script
> 6
% puts $script

>

}
html_cb {p} {} {class=‘'important'} {Something }
html_cb {b} {} {} {really}
html_cb {b} {/} {} { important.}
...Additional lines omitted...

This is actually a script fragment, not an entire script (hence the leading and trailing brace characters). It calls
the specified command passing four parameters. The complete script that is passed to eval (the last command in
html_parse) would then look like this:

% puts "$callback PARSE {} {} \{ $script \}; $callback PARSE / {} {}"
s html_cb PARSE {} {} {

}
html_cb {p} {} {class='important'} {Something }
html_cb {b} {} {} {really}
html_cb {b} {/} {} { important.}
...Additional lines omitted...

Thus invoking our 4-line HTML parser as follows

html_parse $html html_cb

will result in the script printed above being generated and evaluated. We can now gain a better understanding of
how the script works. It transforms the passed HTML text such that each HTML begin and end tag is converted to a
call to the passed callback command, html_cb in our example, with four arguments:

» the name of the tag, suchasporb,

« an argument that is empty if it is the beginning of the tag and / if it corresponds to the tag termination
+ any attributes for the tag

» The text content until the start of the next tag.

The script uses a special tag name PARSE that allows the callback command to recognize the start and end of
parsing for any required state initialization or finalization. All we need to do now is define our callback command
to do the desired parsing action. Let us define a trivial callback to simply convert all tags to upper case.

proc html_cb {tag place attrs content} {
if {$tag ne "PARSE"} {
if {$attrs ne ""} {
set attrs " $attrs”
}

puts -nonewline "<$place[string toupper $tag]$attrs>$content”

279

Parsing data by transmutation to code

Now examine the output when our sample HTML fragment is processed as below.

% html_parse $html html_cb
» <P class='important'>Something really important.</P>
<P>A second paragraph</pP>

As another example, here is a HTML to Latex markup converter (that only understands two tags and ignores
the rest). Again, this is only illustrative of the technique and does not consider even basic requirements such as
escaping of special characters.

proc html_latex {tag place attrs content} {
switch -exact -nocase -- $tag {
B {
if {$place eq ""} {
append_paragraph "\{\\em $content”
} else {
append_paragraph "\}$content”

}
}
P <
flush_paragraph
append_paragraph $content
}
PARSE {
if {$place eq ""} {
append_paragraph $content
} else {
flush_paragraph
}
b

}

proc append_paragraph {content} {
1f {[string length $content]} {
append ::paragraph $content
}
¥

proc flush_paragraph {} {
if {[info exists ::paragraphl} {
set para [string trim $::paragraph]
if {[string length $paral} {
puts "$para\n"
}
unset ::paragraph

We can then convert HTML to Latex input like this

% html_parse $html html_latex
» Something {\em really} important.

A second paragraph

280

Metaprogramming for specialization

Our HTML parser is simplistic and does not take into account all of HTML syntax details and idiosyncracies. It is
meant to illustrate the “data to script” transform technique. The htmlparse module in Tcllib 4 provides a more
robust HTML parsing solution based on the same technique. An even faster, standards compliant solution for
parsing HTML is the tdom package described in Section A.6. This is however a binary extension.

This technique of transforming data to a script has potential security issues when the

n data comes from an unknown (and potentially malicious) source. Although this can be
guarded against with proper escaping and quoting of the input data, it is advisable to
execute the generated script in a safe interpreter as discussed in Chapter 20.

10.8.3. Metaprogramming for specialization

Another use of metaprogramming that you will find in advanced Tcl scripts is for specializing code for specific
situations. Again, this is best illustrated with an example, in this case from the implementation of Tcl itself.

One of the functions of the clock command in Tcl is to generate a string representation of time using a caller-
specified formatting string. For example,

% clock format [clock seconds] -format "The time is %H:%M" -locale en -gmt 1
s The time is 06:15

Formatting the time as above requires parsing of the passed format string based on appropriate time zone, locale
and calendar information. The requested values such as month, hour of the day, etc. are then filled in based on
the time value passed in to the command. Since this can be an expensive operation relatively speaking, the clock
implementation includes an optimization where it generates separate procedures on demand that are customized
for a specific combination of format string, time zone and localization. The next time the command is called with
the same combination of formatting and locale arguments, this constructed procedure is directly called without
the need for the first parsing step. In practice, an application generally uses only a few different cornbinations of
formatting and therefore this optimization is fairly effective.

Here is the pseudocode for the clock format procedure that leaves out the details that are not directly relevant.
The explanations follow below.

proc ::tcl::clock::format {args} {
variable FormatProc

lassign [ParseFormatArgs {*}$args] format locale timezone
set clockval [lindex $args 0]

. Initialize / configure time zone settings ..
set procName formatproc'$format'$locale

if {[info exists FormatProc($procName)]l} {
set procName $FormatProc($procName)
} else {
set FormatProc($procName) \
[ParseClockFormatFormat $procName $format $locale]

)2

return [$procName $clockval $timezone}
b

The command parses its arguments to extract the format string, locale, time zone and time value to be formatted.
It then constructs a procedure name based on the format string and locale and checks to see if such a procedure

4 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

281

Metaprogramming for generalization

has already been constructed. If not, it calls ParseClockFormatFormat to construct the procedure and caches it in
the FormatProc array. Finally, the cached procedure is invoked to do the real work.

We can durmp the FormatProc array to see the names of the constructed procedures.

% print_list [array names ::tcl::clock::FormatProc]
» titcli:iclock: :formatproc'The time is %H\:%M'en

Invoking the format command with another format will add to this array.

% clock format [clock seconds] -format "Today is %D"

» Today is 07/04/2017

% print_list farray names ::tcl::clock::FormatProc]

+ r:tcli:clock: :formatproc’The time is %H\:%M'en
citcl::clock: :formatproc'Today is %D'c

Finally, we can use the reconstruct procedure that we defined in Chapter 3 to dump the procedure definitions.

% foreach proc_name [array names ::tcl::clock::FormatProc] {
puts [reconstruct $proc_name]

}
» proc {::tcl::clock::formatproc'The time is %H\:%M'en} {clockval timezone} {

variable TZData
set date [GetDateFields $clockval $TZData($timezone) 2361222]

return [::format {The time is %02d:%02d} ([expr { [dict get $date localSeconds]...
/ 60
% 60 }11
+
proc {::tcl::clock::formatproc'Today is %D'c} {clockval timezone} {

variable TZData
set date [GetDateFields $clockval $TZData($timezone) 2299161]

return [::format {Today is %02d/%02d/%04d} [dict get $date month] [dict get $d...
b

The key point to note is that these constructed procedures contain no code for parsing at all making them
very efficient for subsequent calls using the same format string and locale.

The hard work of constructing these specialized procedures is done by the ParseClockFormatFormat procedure.
It uses the techniques we described in Section 10.7.1.2. We will not describe it here but you would do well to study
its implementation in the clock. tcl file in the Tcl installation.

10.8.4. Metaprogramming for generalization

Consider writing a procedure that given a pair of lists, returns a list of all possible pairs containing an element
from each list.

proc pairs {la 1lb} {
set res {}
foreach a $la {
foreach b $1b {
lappend res [list $a $b)
¥
}

return $res

282

Metaprogramming for generalization

An example invocation would be

% pairs {a b} {1 2 3}
> {a 1} {a 2} {a 3} {b 1} {b 2} {b 3}

What if we wanted to generate triples from three lists instead? That would be easy — we just add another nested
loop. But what if we wanted to generalize the procedure to be able to take an arbitary number of list arguments?
And not limit the generalization to just generating list pairs? This metaprogramming example 5 shown below,
from Tcler’s Wiki® is one such generalization.

The syntax of the forall command that we will write is very similar to that of the built-in foreach command.
The difference is that forall processes the lists in nested fashion while the latter processes them in parallel in the
same iteration.

forall viam o107 PVAR LIST LD B0

The implementation of the command basically constructs a script containing foreach loops nested to the required
depth with the innermost loop containing the BoDY script to be executed. The constructed script is then evaluated
in the caller’s scope.

proc forall args {
if {[llength $args] < 3 {| [llength $args] % 2 == 0} {
return -code error "wrong \# args: should be \"forall varlList list ?varlList list \
..? body\""
¥
set body [lindex $args end]
set args [lrange $args 0 end-1]
while {[llength $argsl} {
set varName [lindex $args end-11
set list [lindex $args end}
set args [lrange $args 0 end-2]
set body [list foreach $varName $list $body]
¥
uplevel 1 $body
¥

We can emulate out pairs command as below.

% forall x {a b} y {1 2 3} { lappend res [list $x $yl)
% set res
> {a 1} {a 2} {a 3} {b 1} {b 2} {b 3}

But now, with this generalized procedure, we are not limited to producing pairs. We can do something more
creative, like producing strings instead! And this time with a different number of lists.

% set res ""

% forall x {a b} y {1 2 3} z {M N} { append res xy$z 3
% set res

5> alMa1Na2Ma2Na3Ma3Nb1Mb1Nb2Mb2Nb3Mb3N

Finally, here is the generalization of our pairs procedure. Instead of producing pairs, it will produce tuples
composed of elements from an arbitrary number of lists. It uses forall under the covers to generate the
combinations.

3 http:/wiki.tcl.tk/2546
http://wiki.tcl.tk

283

Command history: history

proc tuples args {

set res {}

set listargs {}

set body "lappend res \[list"

foreach arg $args {
set loopvar v[incr 1]
append body " \$$loopvar"
lappend listargs $loopvar $arg

¥

append body "\]"

forall {*}$listargs $body

return $res

And to prove it works as desired,

% tuples {1 2} {a b c}

» {1 ay {1t b} {1 c} {2 a} {2 b} {2 ¢}

% tuples {1 2} {a b ¢} {X Y}

>{Taxy {Tavyr{tbXr{1byr{1cX} {1cVY}{2a Xy {2 aVY}y{2b X}y {2byV¥} {2cX}...

Now, for this specific problem, there are easier ways to code directly without metaprogramming but what
the forall procedure has done for us is to make it easy to iterate over lists in nested fashion in a very
generalized way without having to write custom code every time.

10.9. Command history: history

When running in interactive mode, Tcl keeps a history of all commands entered interactively. These commands
can then be recalled or otherwise manipulated with the history command. This is an ensemble command with
subcommands for various operations.

applications. Really the only time they are used is in writing a custom shell, similar to
tclsh, wishor tkcon, that accepts input commands from the user and wants to provide
command history and recall similar to those shells. You can therefore comfortable skip
this section.

E The history commands described in this section are almost never directly used by

When invoked without any arguments, the command returns a human-readable representation of the history.

% puts "This is the first command"
+ This is the first command
% set 11
> 1
% incr 1
2
history
1 puts "This is the first command"
2 set i
3 incr i
4 history

-

The above history command is just a short form of the history info command which allows you to optionally
specify the number of entries to be returned (the latest entries are returned).

% history info 2
> 4 history
5 history info 33

284

Command history: history

Note each command has a sequence number associated with it. We can check the sequence number of the next
entry that will be added with the history next id command.

% history nextid
> 7

The command returned 7 because the history nextid command was itself the sixth command.

Entries in the command history are referred to as command history events (not to be confused with events as
described in Chapter 15). They can be referenced in multiple ways:

« A positive integer is interpreted as the sequence number of an entry in the command history
+ A negative integer is interpreted relative to the current sequence number

« Any other string is first searched for backward as an exact prefix of an entry in the history and if not found, is
searched as a glob pattern.

We can use these forms with any of the history subcommands that operate on individual entries. For example,
the history event command returns the corresponding entry from the history.

% history event (1]
> history nextid
% history event 2
> set 11

© By default the previous entry in the history is returned

Any entry in the command history can be re-executed with the history redocommand. Again, you can use any
of the forms above for referencing the target entry.

% history redo -8 (1]

This is the first command
history redo 2 (2]

s> 1

% history redo incr (3]

> 2

% history redo ©

> 3

+

S

Execute command 8 entries back

Execute command with sequence number 2
Execute command matching incr

Repeat previous command

COo0®e

It is also possible to modify the command history in various ways. The history add command adds a command
to the history and optionally executes it if the exec argument is specified.

% history add [list puts "This will not print"] (1]
% history add [list puts "This will print"] exec (2]
s This will print

© Command is not evaluated
® Command is evaluated

285

Tcl internals

The command history change on the other hand modifies an existing command.

% history event 15

» history add [list puts "This will not print"]

% history change [list puts "This will now also print"] 15
» puts {This will now also print}

% history event 15

» puts {This will now also print}

The entire command history can be erased by calling history clear. Further commands added to the history
will begin with sequence number 1.

% history clear
% puts "History never repeats itself!"
» History never repeats itself!

% history
B 1 puts "History never repeats itself!™
2 history

The limit on the size of the command history can be retrieved with history keep. An optional argument can be
supplied to change this limit.

% history keep

> 20

% history keep 100
> 100

10.10. Tcl internals

Before ending this chapter, let us take a brief look at some of Tcl's internals; or to be more precise, internals of the
“official” Tcl implementation. This material is mostly for the benefit of those like to peek under the hood, although
some of it serves as background for our discussion of Tcl performance in Chapter 24.

We will interactively explore Tcl internals with the help of two coramands,

tcl::unsupported: :representationand tcl: :unsupported: :disassemble. Notice both lie within the

tcl: tunsupported namespace which implies their functionality, or even presence, in future releases should not

be counted on. However, they are perfectly fine for our purposes. We will alias (see Section 20.3) them into the

global namespace to save some typing.

interp alias {} representation {} tcl::unsupported: :representation » representation
interp alias {} disassemble {} tcl:iunsupported: :disassemble » disassemble

If you are following along and typing commands in an interactive shell, you should disable Tcl’s command
history feature as it will interfere with our exploration below. The easiest way to do this is by redefining the

history command to do nothing.

% rename history ::tcl::history
% proc history args {}
10.10.1. How values are stored

The representation command dumps the internal representation of a Tcl value in human readable form. We
will use it to examine, as a simple case, how a constructed string might be stored internally and contrast that with

286

How values are stored

a constructed list value. (We say might because as we shall see, this can change depending on how the value is
used.)

Compare the output of the following two commands:

% representation [string repeat abc 2]

> value is a pure string with a refcount of 2, object pointer at 0000000004298AA0, string
L representation “"abcabc"

% representation [lrepeat 2 abc]

5 value is a list with a refcount of 2, object pointer at 000000000349EEEQ, internal
, representation 00000000041EB450:0000000000000000, no string representation

The object pointer in the output is the memory address where the internal structure for the constructed value is
stored. This structure has the type Tc1_0bj in the Tcl source code and has the following primary fields:

» An internal type, shown above as a pure string and list respectively.
- An optional string representation as seen in the output of the first command above.
+ An optional type-specific internal representation as seen in the output of the second command above.

« A refcount field that holds the reference count for that Tc 1_0bj. Tcl uses reference counting internally for
memory management.

We expand on these fields below.

10.10.1.1. Understanding internal representations

Although Tcl semantics are defined in terms of everything is a string, for performance reasons Tcl maintains an
internal representation more suitable for computation when necessary. Tcl stores values internally ina Tcl_0bj C
structure. The internal representation is stored as two fields within this Tc1_0bj structure and may change based
on the operations invoked on the value.

We illustrate this for integer values.

% set ival 99

> 99

% representation $ival

5 value is a pure string with a refcount of 4, object pointer at 0000000004298A40, string

4 representation "99"

Because we simply assigned a literal to ival, and have not invoked any operations on it, its type is shown as a
pure string, the pure indicating that there is no other representation associated with it. Also note that there is no
mention of an internal representation in the command’s output.

Now we look at how that changes once we invoke an integer operation like incr on it. Type both commands on
the same line, separated by a semi-colon, for reasons we detail below.

% incr ival ; representation $ival
5 value is a int with a refcount of 3, object pointer at 0000000004298A40, internal
L representation 0000000000000064:0000000004299010, no string representation

The invocation of an integer operation creates an internal representation of type int held within the Tcl_0bj
structure. Thus the next time an integer operation is to performed on the value, there is no cost incurred
converting a string to an integer.

Note the presence of an internal representation field where the first value 0x64 directly stores the integer value.
The second field is not used for integers and contains a random value.

Furthermore, there is no string representation for the incremented value. Tcl will only generate one when
required. A string or /O operation will force the string representation to be created. This is also why we placed the

287

How values are stored

representation command on the same line as the incr. Otherwise, when the shell printed the result of incr, the
string representation would have been generated and we would not have been able to show the intermediate step.

If we were to now print the value of ival, a string representation of its value would be created.

% puts $ival ; representation $ival

> 100
value is a int with a refcount of 3, object pointer at 0000000004298A40, internal
L representation 0000000000000064:0000000004299010, string representation "100"

Note there is now a string representation in addition to the internal integer representation.

Invoking a list operation, like 11ength will transform the internal representation yet again.

% llength $ival ; representation $ival
» value is a list with a refcount of 3, object pointer at 0000000004298A40, internal
b representation 0000000003186F30:0000000000000000, string representation "100"

Again the internal representation field is present but has changed. It now holds a pointer to a list structure in
IMemory.

Throughout the above sequence of operations, the object pointer has stayed the same, as has the reference count.
Only the type of the internal representation has changed. This is commonly referred to as shimmering.

Here is a short example of how shimmering to an appropriate type on the fly leads to more efficient operation.

% proc rgb {color} {
set colors {
red 0xff0000
green 0x00ff00
blue 0x0000ff
}
puts [representation $colors]
return [dict get $colors $color]
}
% rgb red
> value is a pure string with a refcount of 5, object pointer at 000000000349E6DO, string
L representation "
red ..."
0xff0000

When the procedure is compiled, the value assigned to colors is stored as a string as we see in the output from
representation on the call to rgb. However, a second call reveals that the internal representation is now a
dictionary.

% rgb red
» value is a dict with a refcount of 5, object pointer at 000000000349E6DO, internal
5 representation 00000000037ABD50:0000000000000000, string representation "
red ..."
0xff0000

The dict get operation on the first call shimmered the internal representation to a dictionary. Thus on
subsequent calls, the command is spared the expense of converting the string to a dictionary before looking it up.

In the above example, the shimmering of the colors value happens just once — on
- ‘ - the first call to rgb. Thereafter it is accessed as and remains internally stored as a
2t dictionary. On the other hand repeated shimmering of values between different types not
only entails a performance hit, it is often indicative of a design or conceptual flaw, for

example using a string operation like append in place of the list operation lappend.

288

How values are stored

Tcl uses internal representations for many types of objects. There is no means to enumerate them all since this is
supposed to be an implementation detail and not intended to be visible to scripts at all. A small subset of these is
shown below.

% representation [dict create key val) (1]

» value is a dict with a refcount of 4, object pointer at 00000000034A51EQ, internal repr...
%

% representation [pwd] (2]

5 value is a path with a refcount of 3, object pointer at 00000000032A8370, internal repr...
%

% set pos end-1 ; lindex {1 2} $pos

> 1

% representation $pos ©

5> value is a end-offset with a refcount of 3, object pointer at 00000000034A51EQ, interna...
%

% set code "set x 1" ; eval $code

> 1

% representation $code 4]

s value is a bytecode with a refcount of 3, object pointer at 00000000032A90F0, internal ...

% set re ".*" ; regexp $re "a string"

> 1

% representation $re (5]

s value is a regexp with a refcount of 3, object pointer at 0000000003497AF0, internal re...

© Dictionary

@ File paths

© List indices

O Compiled byte code

© Compiled regular expression state machine

Before leaving our discussion of internal representations, we note once again that these multiple internal
representations are primarily for execution efficiency. At the script level, you generally do not need to be aware of
them except in performance-sensitive areas where shimmering between multiple internal representation can be
detrimental. This is never a problem if type-appropriate commands are used (for example, using list commands to
operate on list values).

10.10.1.2. Data storage and reference counting

Having looked at using representation for the purpose of exploring the different internal types, we now use
it to delve into Tcl’s memory management. Tcl uses reference counting to manage its values. When a variable is
assigned to another, rather than making a copy of the value contained in it, the reference count for the Tcl_0bj
holding the value is incremented and the same Tc1_Obj value is assigned to the target variable.

% set avar "some value"
» some value

% set bvar $avar

» some value

Now when we look at the representations for avar and bvar, we will see that both point to the same Tcl_0bj
structure in memory.

289

How code is executed

% representation $bvar
» value 1s a pure string with a refcount of 4, object pointer at 000000000348D550, string

L representation "some value”

% representation $avar
> value is a pure string with a refcount of 4, object pointer at 000000000348D550, string

L representation "some value"

The reference count for the Tcl_0bj value includes references from each of the two variables. In addition,
any time a value is passed as an argument to a command (including to representation), its reference count
is incremented to reflect its presence on the call stack. Correspondingly, it is decremented when the command
returns. This “hidden” reference can have performance implications as we discuss in Section 24.2.3.

If we were to assign a different value to one of the variables, the reference count for the current assignment would
be decremented.

% set bvar “"some other value"
» some other value

% representation $avar
> value is a pure string with a refcount of 3, object pointer at 000000000348D550, string

L representation "some value"

% representation $bvar
> value is a pure string with a refcount of 3, object pointer at 000000000349EA60, string

L representation "some other value"

Notice that the two variables now point to different Tc1_0bj locations in memory and reference counts have been
adjusted accordingly.

10.10.1.3. The literal table

The representation command can also be used to look at another aspect of the current Tcl
implementation — the literal table.
Tcl internally maintains a table of all literal values encountered. In an effort to save memory, when compiling a

procedure Tcl checks if any literals it encounters are already in this table and if so simply references them instead
of creating a new Tcl_0bj with the same literal value. The following snippet demonstrates this.

% proc pt {} {representation "just a literal"}

% pl
> value is a pure string with a refcount of 4, object pointer at 000000000349E1F0, string

L representation "just a literal"
% proc p2 {} {representation “just a literal"}

% p2
» value is a pure string with a refcount of 5, object pointer at 000000000349E1F0, string

L representation "just a literal”

Notice that even though the two literals are used in different procedures, they both point to the same Tc1_0bj in
memory.

10.10.2. How code is executed

Having looked at data, let us turn to code execution and look at the sequence of steps required to execute a
procedure. In simplifed terms,
1. At the time of procedure definition, Tcl does very little work per se. The body of the procedure is simply stored
in a location associated with the procedure name. It is a plain string at this point; there is no check any kind for
syntax errors etc.

290

How code is executed

2. When a procedure is invoked, a check if made to see if it has a valid compiled form. If not, the procedure body
is corpiled into byte code. You can think of byte codes as being an instruction set for a virtual machine — the
Tel byte code interpreter. Compiling into byte code saves on the parsing step the next time the procedure is
invoked resulting in faster execution.

3. Any supplied arguments are pushed onto the call stack and the procedure is invoked.
Of these steps the second one is the one of most interest and we can use the disassemble command to examine

what the compiled body of a procedure looks like. We will look at the byte code generated for a simple procedure
that returns the first word in a string.

proc demo {line} {
set words [split $line $::splitter]
return [lindex $words 0]

}

We can then look at the compiled form of this procedure with the disassemble command.

0.0

There is also a getbytecode command that is similar but returns the disassembled code
as a dictionary instead of in human readable form.

After defining the above procedure, type the following command at the Tcl shell prompt and examine the resulting
output.

% tcl::unsupported: :disassemble proc demo
> ByteCode 0x000000000403D300, refCt 1, epoch 16, interp 0x0000000003B661A0 (epoch 16)
Source “\n set words [split $line $::splitterj\n return [..."
Cmds 4, src 70, inst 30, litObjs 2, aux 0, stkDepth 3, code/src 0.00
Proc OxO000000003F89A10, refCt 1, args 1, compiled locals 2
slot 0, scalar, arg, "line"
slot 1, scalar, “words"

Commands 4:
1. pc 0-11, src 5-39 2: pc 0-8, src 16-38
3: pc 12-28, src 45-68 4: pc 21-27, src 53-67

Command 1: "set words [split $line $::splitter]..."
Command 2: "split $line $::splitter...”

(0) pusht 0 # "split"

(2) loadScalar1 %v0 # var "line"

(4) pusht 1 # “::splitter”

(6) loadStk

(7) invokeStk1 3

(9) storeScalari1 %v1 # var "words"

(11) pop
Command 3: "return [lindex $words 0]..."

(12) startCommand +17 2 # next cmd at pc 29, 2 cmds start here
Command 4: "lindex $words 0..."

(21) loadScalar1 %v1 # var "words"

(23) listIndexImm O

(28) done

(29) done

Going through the disassembled listing line by line will provide us with a basic understanding of the byte code
interpreter.

The first part of the disassembly provides summary information about the cormpiled procedure. The fields are
shown in Table 10.5.

291

How code is executed

Table 10.5. Disassembly header

Field Description
ByteCode Memory address where the compiled byte code is stored.
Cinterp Memory address of the Tcl interpreter structure owning the byte code
refCt The nurber of references to the byte code structure which is reference counted.
epoch The compiler epoch. See Section 10.10.2.1.
Source The Tcl source code from which the byte code was compiled.
Cmds The number of script level commands in the compiled source
src The number of characters in the script
inst The number of bytes in the generated byte code
1litObjs The size of the local literals table. See Section 10.10.2.2
stkDepth The maximum stack depth utilized by this byte code fragment. This is used at run time to
preallocate the required stack space before the byte code is executed.
Proc The address of the procedure descriptor associated with the byte code
args The number of parameters defined by the procedure.
compiled locals Size of the local variable table. See Section 10.10.2.3.

i slot Entries in the local variable table. See Section 10.10.2.3.

The remaining lines in the disassembly are discussed in the sections below.
10.10.2.1. Compiler epochs

The epoch field denotes a compiler epoch. Earlier we mentioned in passing that a procedure may have associated
byte code which is invalid and needs to be recompiled. This can happen because of Tcl’s dynamic nature. For
instance, consider what happens when a built-in command like 1index is redefined. Calls to many built-in
commands are compiled to a sequence of inline byte code instructions like 1istIndexImm above. If this command
is redefined, the compiled byte code for our procedure would not longer be correct as 1istIndexImm would
(likely) not be the correct implementation of the redefined 1index. Tcl detects this situation by maintaining a
compiler epoch. This epoch is incremented on any action, such as command definition, that would invalidate any
compiled byte code. The epoch at the time a procedure is compiled is also stored with the compiled byte code as
shown above. When the procedure is called, the procedure is recompiled if its compilation epoch is not the same
as the current compiler epoch.

10.10.2.2. The local literals table

As we saw in Section 10.10.1.3, the compiler maintains a table of literals so that they can be shared across the
interpreter. Correspondingly, the compiled byte code unit maintains a table that points to locations in this globhal
literal table. The purpose of this indirection is that the corresponding byte code instructions can use a single byte
to index into the local literal table which is not possible for the global table which tends to be quite large. For
example, the byte code instruction

push1 0

pushes the first (i.e. index 0) from the literal table on to the evaluation stack.

Note that the literal table is not just used for literal operands that appear in the script but also for things like names
of commands and variables. In our example, there are two literals in the table as indicated by the value of the
1itObjs field. The disassembler-generated comments for the push1 instructions at locations 0 and 4 indicate these
correspond to the command name split and global variable : : splitter respectively. Notice though that there is
no literal object corresponding to the 1index command. We shall shortly see why that is so.

292

How code is executed

10.10.2.3. The local variable table

Local variables and arguments are stored in slots allocated in the call frame when a procedure is invoked. Our
disassembly shows two slots defined for our procedure, one for the line argument and the other for the words
local variable.

slot 0, scalar, arg, "line"
slot 1, scalar, "words"

The key thing to note about local variables is that access to slots is much faster than access to global and
namespace variables. We will see why in the next section.

10.10.2.4. The stack machine

The Tcl byte code interpreter is stack-based (as opposed to register-based) where byte code instructions operate
on operands placed on an evaluation stack. This evaluation stack is internal to the byte code interpreter and not
to be confused with the C-stack or procedure call stack discussed earlier. Moreover, each Tcl interpreter (not to be
confused with the byte code interpreter!) has its own evaluation stack.

The call to split in our example is compiled to the byte code

Command 2: "split $line $::splitter..."
(0) pusht 0 # "split"
(2) loadScalar1 %vO0 # var "line"
(4) pusht 1 # "::splitter”
(6) loadStk
(7) invokeStk1 3
(9) storeScalart %v1 # var "words"
(11) pop

Here the actual call to split takes place via the invokeStk1 instruction. The corresponding three arguments to
be pushed on the stack are the name of the command to be invoked, the value of the 1ine local variable, and the
value of the : :splitter global variable.

+ The command name, split, is stored in the local literals table at index 0. The push1 0 instruction pushes it
onto the evaluation stack.

« The local variable 1ine is stored at in the local variable slot 0. The loadScalar1 instruction pushes the value of
the variable at this slot onto the stack.

« The global variable : : splitter needs to be handled differently. The variable name is stored at index 1 in the
local literal table. However, we need to pass the value of this variable and not the name. This is done in two
steps. First, the push1 1 instruction places the literal table entry at index 1, L.e. the literal : :splitter,onto the
top of the stack. The loadStk instruction then looks up the variable by name and replaces the top of the stack
with the value of the variable.

This now explains why access to local variables is much faster than to globals. The former is a direct indexed
look-up into the local slots whereas the latter involves locating the global via a hash table (as part of execution of
loadStk) and then retrieving its value.

The invokeStk1 instruction looks up the supplied command name and executes it, passing the arguments on the
stack. The result of the command replaces all arguments passed in. The storeScalar instruction then stores the
value on the top of the stack into the local variable slot at index 1. Finally, the stack is cleaned up by popping the
topmost entry with pop.

10.10.2.5. Inlined byte code

The byte code instruction invokeStk1 used to invoke commands needs to resolve the command name in the
current narmespace context to locate the appropriate C function to call, wrap arguments into a form accessible
to the C function, arrange for exception handling and so on. These operations make invocation of commands

293

Precompiled byte code: tbcload package

relatively expensive. As an optimization therefore, Tcl will directly inline byte code for many built-in commands
at the call site itself. In our example, contrast the call to split with the call to 1index. The latter does not involve
a call to invokeStk at all. Instead the hyte code sequence implementing the command, a single instruction
listIndexImmin this case, is directly inserted in the procedure body.

(21) loadScalar1 %v1 # var "words"
(23) listIndexImm 0

At the time of compilation, before inlining the command, the compiler ensures that the name resolves to the
built-in command and not some procedure of the same name. Moreover as discussed before, redefinition of the
command invalidates the generated byte code by bumping the compiler epoch. This ensures the inlined code is
valid whenever in use.

You might have noticed the inlined command is prefixed with a startCommand instruction. This is present to take
care of some special checks that are not needed with non-inlined invocation because the invokeStk1 command
internally takes care of them. These checks include verifying that the inlined byte code is still valid by checking the
compiler epoch and that any set interpreter limits are not crossed.

Note that at some point in the future, it is possible that the split command may have an inline implementation
as well. This would depend on the complexity of the implementation and how commonly the command is used in
programs.

10.10.3. Precompiled byte code: tbcload package

ActiveState’s commercial Tcl Development Kit has the ability to save compiled byte code in files. These files can
then be loaded with the tbcload package similar to how the sour ce command evaluates Tcl scripts.

It should be noted that this functionality is primarily for the purposes of hiding the source code in commercial Tcl
applications. It does not improve performance of Tcl applications in any way.

Because this facility is not available in any open source distributions of Tcl, we do not discuss it further.

10.11. Chapter summary

We have come to the end of a necessarily long chapter, its length arising from the breadth of facilities Tcl offers for
code execution. We covered basic control structures, dynamic evaluation of scripts, the call stack, command and
variable tracing, metaprogramming and more.

We are still not done with Tcl's execution model though. In the next chapter we explore Tcl’s powerful exception
handling features and further in the book we will examine the more advanced facilities like the event loop,
coroutines and threads.

10.12. References

TIP327
TIP #327: Proper Tailcalls, Miguel Sofer, David S. Cargo, Tcl Improvement Proposal #327, http://www.tcl.tk/cgi-
bin/tct/tip/327

294

Errors and Exceptions

An error does not become truth by reason of multiplied propagation, nor does truth become
error because nobody sees it.

— Mahatma Gandhi

Dealing with unexpected failures is an important part of any non-trivial program. Failures may result from
programming errors such as attempting to access an undefined variable, user actions such as attempts to open a
protected file, hardware conditions etc. In this chapter we examine Tcl's facilities for handling errors and special
conditions.

11.1. Dealing with failures

When such a failure or error occurs, software may deal with it in any of the following ways:

1. Ignore the issue. Stout denial, as Wodehouse would say, that a problem could possibly exist. This is not
uncommon, for example failing to check for integer overflow even when the possibility exists. We will pretend
we never want to do this.

2. Terminate the program. This is a fair strategy in some circurastances. If a file copy program does not have
access to the target directory, it is perfectly reasonable for it to simply exit.

3. Report the error through a special result value, for example an empty string. This requires that there is some
value that could not possibly be a valid result. The caller can then check for this value to determine if the
command completed successfully. Alternatively, if no such “impossible” value exists, a global is checked or an
additional call is made to check for an error.

4. The command may explicitly pass back a status code in addition to the command result. This may be through
an additional named parameter into which the status is stored or by returning the status and result as a pair.

5. One last alternative is the subject of this chapter — exceptions. When an error or failure is detected, the code
detecting the error throws or raises an exception. This causes the normal flow of execution to be aborted and
control is passed back up the call stack until an exception handler is found that is defined for that exception.
This exception handler is expected to take the appropriate actions to deal with the error condition.

Exceptions are the preferred mechanism for error reporting for several reasons:
» We really should not be considering the first alternative.
« Alternative 2 is a viable alternative only at the top application level.

» Pairing an explicit status code with every result, as in Alternative 4 makes for awkard programming. So also if
all possible values are valid results in Alternative 3.

« Alternatives 3 and 4 both require an explicit check for errors. Unfortunately, it is all too common for the caller
to forget to do this. Exceptions on the other hand cannot be ignored “by default”.

« Exceptions do not clutter up the main logic with explicit error checks, making it easier to read and reason about
the program.

« Exceptions make it easy to handle errors at an appropriate point in the call hierarchy, which is not necessarily
at the point the error is discovered.

295

Return codes and the option dictionary

In addition to error handling, the exception mechanism has other uses in Tcl as well, such as for implermentation
of custom control structures that are on par with the built-in ones like for or while.

We will start our discussion of error handling and exceptions by describing the underlying return code mechanism
on which they are based.

11.2. Return codes and the option dictionary

So far we have been happily working under the assumption that Tcl commands return a single result value
(though the value itself may be a collection of multiple values). In reality, every command completion actually
yields three values, the command result, an integer return code, and a return options dictionary.

The command result is the result value from invocation of a command that we have been making use of all along.
For instance, the command

string toupper abc » ABC

completes with a result of ABC. Additionally, the above command completion also returns a return code of 0 and
an associated return options dictionary. The return code can be roughly thought of as a status, with 0 indicating
normal completion of the command. The return options dictionary contains additional information that is usually
relevant only in the case of errors.

The command result is directly available to a script as we have seen. We will now look at how the return code and
return options dictionary are retrieved, assigned and the associated semantics.

11.2.1. Return codes

Tcl executes a script, including procedures, eval arguments, if and while statements etc., as a sequence of
commands. Each command completes with a result, a return code and the return options dictionary. A return code
of 0 signifies normal completion of a command and Tcl continues execution with the next command in the script.
For any other value of the return code, execution of the script stops and the result and return code from the last
executed command becomes the result and return code of the script.

What happens next depends on the caller of the script. The caller may be the Tcl procedure evaluation code, a
built-in command, looping or conditional commands like while and if, or even a user defined one. This caller
may choose to take a specific action for certain return codes. Other codes that it chooses not to handle are then
passed further up the call stack where they are handled in the same manner.

Let us illustrate the use of return codes and associated semantics through an example — the break command
used for early termination of loops. Like all other commands in Tcl, break is not a special keyword as in other
languages. It is simply a command like any other and returns a result and a return code. The result value for the
break command is always an empty string and the return code is always 3 (we will show this in a bit). In the
case of the break command, both values are implicit though that is not the case for all commands. Now, how this
return code is dealt with by the calling command is entirely up to it. Tcl itself does not mandate any semantics
on a return code value of 3. Any of the following actions might be taken in response:

* When invoked within a looping construct like while or foreach, the implementation of those commands treat
the return code of 3 from the invocation of any command, not just break, as a signal to terminate the loop.

* In the Tk GUI extension, bindings for events such as mouse clicks allow multiple scripts to be registered. These
are run sequentially on the occurence of the event. If any script returns a code of 3, Tk treats this as a directive
to skip the remaining registered scripts.

* Within a catch command, a return code of 3 will result in the catch command returning 3 as its result (not its
return code).

+ Within the outermost level of a procedure body evaluation, any command returning a code of 3 will result
in the procedure returning immediately with a return code of 1 / error (we will see what this means
momentarily).

296

Return code propagation

Thus each invoking command will treat a break command within its scope in a slightly different manner.

The semantics are completely up to the command. Now naturally, the behaviour has to be documented by the
command and similar commands should treat the same return code value in consistent fashion. It would be no
good if the foreach command treated the return code 3 from break as a loop termination command while the
Imap command treated it as a signal to repeat the last iteration!

The return code returned by a command may be any integer value but Tcl defines five specific values, and
associated mnemonics, shown in Table 11.1. All other return codes have no defined semantics and are treated as
custom return codes (see Section 11.3.2).

Table 11.1. Tcl-defined return codes

Code Mnemonic Description
0 ok The command completed normaily.
1 error Indicates an error condition. We go into errors and error

handling in great detail later in this chapter.

2 return This return code signals the caller that it should stop its own
execution and return control back to its own caller.

3 break This return code expects callers to be looping constructs and
signifies termination of the loop. As we saw in our introductory
example, it may also be used in other situations where a
sequence of commands is being executed to skip the remaining
commands in the sequence. We stress again that this behaviour
is not built into Tcl. It is dependent on how the command
receiving the return code chooses to handle it.

4 continue Like the break return code, this is used with looping constructs
which are then expected to skip the remaining part of the
current iteration and move on to the next one.

We will use the term normal return whenever a command completes with a return code of 0 / ok. Any other return
code value will be termed as an exceptional return or just exception. Note that an exception is not necessarily an
error (e.g break).

11.2.2. Return code propagation

Let us now take a closer look at how these return codes are propagated and how they control the flow of execution
in a Tcl program.

The break and continue return codes

We will use the following simple while loop to demonstrate.

set 1 0
while {1} {
incr 1
if {$1 == 1} {
incr 1
continue
}
puts "i = $1"
if {$i >= 4} break

Vo
Nt

=3
=4

297

Return code propagation

We will focus on the execution of the while body. In the first iteration of the loop,

* The command incr 1i isinvoked. This command completes normally with a result of 1 (the value of i) and a
return code of 0/ ok that signals the normal completion.

* Because the command completed normally, the evaluation of the while body continues with the next
command, the if {$i == 2} .. statement.

As its condition evaluates to true, the if statement begins executing its body. (Here we are actually glossing
over the fact that the condition evaluation itself involves return codes.)

» The first statement in the i f body is an incr which as before completes successfully. Its return code is therefore
0 /ok and evaluation moves on to next command in its body.

+ This is now where things get more interesting. The continue command’s sole purpose in life is to complete
with a return code of 4 / continue. When a script evaluation is handed a exceptional return code (i.e. any other
value than 0/ ok), instead of continuing with the next command in the script, it returns the same return code to
its caller which in our example is the 1f command.

* The if command also does not know how to deal with a return code of 4 / continue, and it is therefore
propagated up the call stack to the evaluation of the while body and then to the while command itself.

* The while command does incorporate special handling for the break and continue return codes. When it gets
back a continue here, it proceeds with the next iteration of its body. Note once again that this is the choice of
the while command implementation, not Tcl.

The second iteration behaves in similar fashion:

* As before the incr command return code is ok.

¢ The condition for the if command is false so its body is not executed. The condition boolean has nothing to do
with its return code however which remains ok.

* The puts command also completes normally with a return code of ok.

* The second if statement condition is true. Its body is simply the break command which as we said completes
with a return code of break. As we described for the continue command above, this is propagated up through
the evaluation of the 1f body, the if command itself, the evaluation of the while body until it is passed to the
while. At that point, the while command on receiving the break return code, reacts by terminating the loop
iterations.

To summarize the above then, every command evaluation returns a return code independent of the command
result. If the return code is ok the caller proceeds as normal. It may also have specific handling for one or more
specific exception codes (like break and continue above). All codes that it does not handle are propagated up the
call stack.

The return return code

Let us move on to a discussion of the return code value 1/ return which has its own subtleties. This code is
returned either explicitly via the return statement or by the implicit return command at the end of every
procedure body. It is the fundamental basis for the underlying mechanism by which procedures return to their
caller.

Practically all commands, except those specifically dealing with manipulation of return codes, such as catch, t ry
and the like, propagate the return code up the call stack like any other exceptional code. The special handling for
the return return code occurs in two instances:

* Inthe evaluation of a procedure body, a return code value of return will terminate execution of the procedure.
*However, rather than propagating this return code value, the procedure evaluation will complete with a
return code 0/ok so its caller sees a normal completion.

+ Similarly, when the source command is used to execute the contents of a script, a return code of return from
any command will terminate execution of any further commands from the sourced file. The source command
itself will return the ok return code to the caller.

Let us go through a concrete example of nested procedure calls to see how a return code of 2 / return is handled.

298

Return code propagation

proc cmdB {} {
return "a value"
puts “cmdB returning"

¥
proc cmdA {} {
cmdB
puts "cmdA returning"
b
cmdA

s> cmdA returning

In procedure cmdB, the return command itself completes with the result a value and a return code of 2/
return. Since this return code is something other than ok, execution does not continue with the subsequent puts
statement. Rather the Tcl procedure evaluation implementation sees the return code 2 and treats it specially. The
corresponding result a value is returned as the result of cmdB and instead of propagating the code 2/ return, a
return code of 0 / ok is returned to the cmdA invocation. The ok return value allows the cmdA procedure to invoke
its puts command before returning.

Note how the 2 / return return code is transformed to 0 / ok when the procedure completes. If the invocation of
cmdB had propagated 2 / return, the procedure evaluation of cmdA would itself have returned immediately after
cmdB returned without executing its puts command. As we will see later, it is also possible to accomplish the latter,
effectively returning to the caller several levels up the stack.

Regarding the aforementioned subtleties with respect to the return return code, consider the following script.

proc cmdB {} {
set x "cmdB"

uplevel 1 {
puts "x = $x"
return

}

puts "cmdB returning”
}

proc cmdA {} {
set x "cmdA"
cmdB

puts "cmdA returning" (1]

© s thisline printed?

What output would you expect when procedure cmdA is called? One might think that since the uplevel command
called from cmdB executes in the context of cmdA, the return command within the uplevel would cause cmdA to
return without printing the cmdA returning line. What actually happens is

% cmdA
> x = cmdA
cmdA returning

Based on our prior discussion, this behaviour should be, umm, obvious. If not, remember that all that the return
statement does is to return the code 2 / return. Since uplevel itself does not treat this return code specially, it
propagates to the caller of the uplevel command which is cmdB, not cmdA. On receiving this return code, the
procedure invocation of cmdB terminates with a return code of ok as described above. The cmdA procedure thus
only sees a cmdB return code of ok and continues on to invoke its puts command.

299

The return options dictionary

The error return code

The one standard exception code we have not discussed is 2 or error. This is because we have an separate section
coming up soon devoted to error generation and handling in Tcl.

11.2.3. The return options dictionary
Along with the command result and return code, every command completion also includes a return options
dictionary. This is a dictionary with keys

¢ -code and -1evel which together determine the return codes at each level of the call stack. These keys are not
just informational but control the unwinding of the call stack and we describe how they are set and used in
Section 11.3.

+ -errorinfo, -errorline, -errorcode and -errorstack, which provide additional information when an
error exception is raised. We detail these in Section 11.4.2.

* Any other application defined keys whose use and interpretation is entirely up to the application.
Note that only the keys -code and -1evel are guaranteed to exist on every completion.

We will be revisiting the return options dictionary as we proceed through the chapter. For now, we move on to a
discussion of how they are generated alongside return codes.

11.3. The return command

We have seen the use of the return command to return a result from a procedure. This is the most common use by
far but the return command in Tcl is far more flexible and powerful than demonstrated by this typical use. It can
be used to generate a return code, a custom return options dictionary and even skip levels in the call stack when
returning from a procedure. We explore these capabilities in this section.

So far we have seen several commands that generate a specific return code:
* The break, continue commands generate their respective return codes.
* The error and throw commands that we describe later generate the error return code.
* Procedure invocations that complete normally do so with a return code of ok.

There is no way for these to generate other return codes and nor do they have any means of manipulating the
return options dictionary.

The return command on the other hand provides a general-purpose mechanism to set all three values — the
result, the return code and the return options dictionary — associated with a command completion. Additionally,
the command has the ability to control the return codes generated at any level of the call stack, a facility that is
important in construction of new control statements.

The return command has the syntax

return 2

The return command is just a command like any other and as such it completes with the same three
values —result, return code and return options dictionary — as any other command. Unlike other commands
though, it allows the caller to specify the values to be returned for all three of these:

* The result of the return command is the REsvUz T argument which defaults to the empty string if unspecified.

* The return code from the return command itself is usually the code 2 / return but as we see in a bit, this is
dependent on the -1level and -code options.

* The return options dictionary resulting from an call to return is composed from the specified opTION VALUE
pairs. As we stated in Section 11.2.3, this dictionary may have any number of keys. Tcl defines the names and
semantics of certain keys but applications can add their own as well to pass along additional information. We
will see examples later. In addition, the key -code with a value of 2 / return, and the key -level with a value

300

The return command

of 1, are added to the dictionary if they are not already specified by the option value list. Finally, the option
name -options is treated specially. Its value is treated as a dictionary whose content is merged with the other
options to form the return options dictionary. We will see examples of this below and a real world use case in
Section 11.6.1.

Let us now take a closer look at the -level and -code options to the return command. We will start with a
somewhat simplified explanation. The basic form of the return commanad

return "foo"
is equivalent to
return -code ok -level 1 "foo"

corresponding to the default values for the -code and -level options. With one important exception that we
note below, the return command always completes with a return code of 2 / return. Note this is true irrespective
of the value of the -code option. Since this return code is not a normal ok return code, when called within

a procedure the procedure evaluation code will stop processing further commands in the procedure body.
Moreover, since the procedure evaluation code affords special treatment to the code return, it will not be
propagated as is. Rather the procedure evaluator treats the return code as a special case and completes the
procedure itself with the return code value specified by the -code option, which is ok in our default case.

The sole exception we mentioned above with regards to the return code from the return command is when the
-level option is specified with a value of 0. In that case, the return command will itself complete with the code
specified by the -code option and not with the 2/ return code.

To help clarify the difference in behaviour when -level 0 option is specified versus the default -1level 1 value,
let us contrast the following two procedures.

proc demol {} {
puts "demol enter™
return -code ok -level 1 @
puts "demol exit"

¥
proc demoO {} {
puts "demoO enter”

return -code ok -level 0 &
puts "demo0 exit"

© Equivalent to a plain return
® Notice -level specifies 0

Now if we invoke the two procedures, you see the difference in the output.

% demo1

> demol1 enter

% demoQ

» demo0 enter
demo0 exit

The behaviour of the demo1 procedure is what you might expect. The second line is equivalent to the default
return command and therefore the demo1 exit line is not printed.

The demo0 procedure behaviour is different. Despite the return command appearing before it, the second puts
is still invoked and the demo0 exit line printed. This is explained by the fact that the -level 0 optionto return
causes that command to complete with the return code specified by the -code option, which is ok in our example,

301

The return command

instead of the return return code. The procedure evaluation sees this as a normal command completion, not an
exception, and therefore continues with the next statement in the procedure, the puts command.

Under what circumstances might one use a value of 0 for the -1evel option? There are a couple that are
commonly seen. One is when the return command is used, in lieu of the error or throw commands, to raise an
error exception. This is discussed in Section 11.5.2.

The other common use of -1evel 0 in Tclis as an identity function whose result is simply the value passed in 1

set n 0
set reciprocal [if {$n == 0} {return -level 0 Inf} else {expr {1/$n}}]
> Inf

The -level option has more utility than just this though. It can be actually used to control the unwinding of the
procedure call stack. This requires us to detail exactly how a return code of 2 / return from a command is handled
during evaluation of a procedure body. When a command returns this return code during a procedure evaluation,

* First, the -1level element of the return options dictionary is decremented.

+ If the post-decrement value of -1evel is 0, the procedure completes and returns to its caller with completion
return code being set to the value of the -code element in the return options dictionary. The caller of the
procedure will handle this return code as appropriate. For example, if set to ok, it will continue with the next
command.

If the post-decrement value is greater than 0, the procedure is completed but with a return code of 2 / return,
and not the code specified by the -code element of the return options dictionary. The caller of the procedure
will see this return code and thus repeat this sequence of steps to handle it (assuming it is also a procedure).
Note the value of the -level element will have been decremented in the passed return options dictionary.

The point in all this is that the -level command can be used to force a return from any point in the call stack
with any desired return code as illustrated in the following example.

proc demol {levels} {

puts "demol enter™"

demo2 $levels

puts "demol exiting™

return "demol return value”
H
proc demo2 {levels} {

puts "demo2 enter™

demo3 $levels

puts "demo2 exiting"

return "demo2 return value”
}
proc demo3 {levels} {

return -level $levels "demo3 return value"
¥

If we call demo1 with an argument of 1, the return command executed in demo3 is essentiaily the default form of
the command. As expected, all puts statements are executed and we can see the corresponding outputs as the call
stack unwinds. The result of our demo1 call is demo1 return value.

% demo1 1

» demol enter
demo2 enter
demo2 exiting
demo1 exiting
demo1 return value

1 In the latest version of Tcl, the string cat command can also be used as an identity function

302

The return command

Now if we call demo1 with an argument of 2, the situation is different and we can see the output has changed.

% demol 2

» demol enter
demo2 enter
demo1 exiting
demol return value

Notice that the demo2 exiting statement is no longer printed. This is a consequence of the command executed in
demo3 being

return -level 2 "demo3 return value"

Let us follow the description earlier of how the -1evel element is processed to see how this works:

+ The return command in demo3 completes with a -level of 2. This is decremented and since it is not 0, the
demo3 procedure itself completes with a return code of 2 / return and not 0/ ok as in the normal case.

+ The evaluation of demo2 sees this 2 / return code and instead of executing the next command in the procedure
as it would if the code were ok, it also completes as per the usual handling of the return return code. However,
now the result of decrementing of the -level element is 0 and as per our -level processing rules, the
procedure completes with a return code as specified by the -code element of the return options dictionary,
which in this case is 0 / ok. The exiting puts statement as well as the final return command in demo2 are never
reached.

« The caller demo1 sees this ok and moves on to processing the next command in its body. (Note that the result of
demo?2 is not used and discarded.)

To go one step further, see what happens with the command

% demol 3
> demo1 enter
demo2 enter
demo3 return value

Now notice that neither the demo1 nor the demo2 exiting statements are printed. In addition, the result of the
demo1 command is the value originally returned from demo3 and not the return value from demo1 itself. You can
extend the steps above to understand why that is.

Thus we see that the return command can be used to not only unwind the call stack but to also set the return
value at that level. In case you were wondering, this also took place in our previous demo1 2 exaraple. The result
of demo3 was also the result of demo2. However, there the demo1 procedure discarded the result of demo2.

In our illustration, we used the default -code value of 0/ ok. This is not mandated as shown in our next example
where we write a utility command that checks if an argument is an integer and raises an error exception
otherwise. We may write the procedure as follows:

proc check_integer {arg} {
if {![string is integer -strict $argl} {
error “"$arg is not an integer."
¥
¥

proc tohex {arg} {
check_integer $arg
return [format %x $arg]

¥

Passing it a non-integer raises an error exception.

303

Emulating other commands with return

% tohex abc
@ abc is not an integer.

This works but the error stack (see Section 11.4.2.1) is a bit messy.

% puts $::errorlnfo
» abc is not an integer.
while executing
"error "$arg is not an integer.""
(procedure "check_integer" line 3)
invoked from within
"check_integer $arg"
(procedure "tohex" line 2)
invoked from within
"tohex abc"

It is difficult to spot the line where the mistake was made as opposed to where it was detected. We can instead
write the check_integer procedure as follows.

proc check_integer {arg} {
if {![string is integer -strict $argl} {
return -level 2 -code error "$arg is not an integer."
}

The error stack now looks much cleaner. We immediately know the call that needs to be fixed.

% tohex abc
@ abc is not an integer.
% puts $::errorlnfo
» abc 1s not an integer.
while executing
"tohex abc"

The use of -1evel does not change the fact that all return codes can be caught as we

E will discuss in Section 11.4. A -1level simply propagates a return code up the stack
a specified number of steps. This return code can be trapped at any of those levels
through a catch or trap command.

11.3.1. Emulating other commands with return

Given our discussion of the -code option for the return command and an example of using it with the error
return code, you might guess that the return command can be used to emulate other commands, like break or
continue, that generate return codes. Here is a stop procedure that emulates the break command.

proc stop {} {return -code break}
And to show it works,

% foreach char {a b c} {
puts $char
stop

304

Custom return codes

The stop procedure effectively completes with a return code of break. The fo reach command has special
handling for this return code and duly terminates the loop iterations.

In a sense, commands like break and continue are really just syntactic sugar for specific common uses of the
return commmand.

11.3.2. Custom return codes

Table 11.1 showed the return codes defined by Tcl which range from 0-4. You are free to use any integer outside
this range as a custom return code. This can be caught with catch or try just as any other return code.

proc ret5 {result} {return -code 5 $result} > (empty)
catch {ret5 "Code 5!"} result > 5
set result + Code 5!

The interpretation of custom codes is of course entirely up to the application or package and different ones might
interpret the same code differently. Of course, this can be a problem when multiple libraries are in use and thus
such extensions must be used in very controlled fashion. See Section 11.7 for one possible use.

11.3.3. Custom return options dictionary

The other way return handling can be customized is through additional custom entries in the return options
dictionary. This is done simply by specifying the custom options as options to the return command. For example,
suppose your code catches an error from an invoked command and before passing it on, wants to add some
additional information, such as the timestamp. You can do this by passing it as an additional element in the return
options dictionary as below.

proc badcode {} { error "Did something bad!" }
proc demo {} {
if {[catch {badcode} result ropts]} {
return -options $ropts -timestamp [clock seconds] $result (1
} else {
return $result
¥

@ See Section 11.6.1 for an explanation of this idiom

The code passes on the error after adding a new element -timestamp to the return options dictionary.

% catch demo result ropts

> 1

% set result

Did something bad!

% dict get $ropts -timestamp
» 1499148945

+

The above works because the return command will treat any option not known to it as a custom entry to be
added to the return options dictionary.

11.4. Trapping exceptions

We saw in Section 11.2.2, how return codes are propagated up the call stack and how commands like for and
while trap and handle special return codes like break and continue. We now describe the general purpose
commands which can trap exceptions arising from any return code. Error exceptions are just a special case where
the return code is 1 or error.

305

Trapping exceptions: catch

Let us start by looking at what happens when a command raises an error exception, i.e. it completes with a return
code of error. As detailed in Section 11.2.2, all exception return codes are propagated up the call stack until
handled by a command and the error return code is no exception (pardon the pun). If no such command appears
in the call stack, the exception return code is propagated all the way up to the outermost level where the default
error handler will terminate the program or if it is a background error (see Section 15.4.1) in code run from the
event loop, an action like displaying an error message is invoked.

We saw how the looping constructs handle return codes of break and continue preventing the propagation of
these codes up the call stack. Similarly, the catch and try commands allow the trapping of any return code from
the execution of a command or script enabling further appropriate action to be taken.

11.4.1. Trapping exceptions: catch

We will start off by looking at the catch command.

catch SCRIPT PRESULIVAR? 20018

The catch command executes the specified script returning as its result the return code from the script, not the
script result.

We can use catch in its simplest form to show the return codes of various commands.

catch {set x "Normal completion"} + 0
catch {error "This is an error message"} - 1
catch {return "A result"} » 2
catch {break} + 3
catch {continue} > 4
catch {return -code 5 -level 0} + 5

If the RESULTVAR argument is specified, the variable of that name will hold the result of the script. The return
code as before will be the result of the catch command itself. Note that the result may be from a normal
completion or an exceptional one.

% catch {set x 100} result @

+ 0

% puts $result

» 100

% catch {set x $nosuchvar} result
> 1

% puts "Error: $result" 2]

> Error: can't read "nosuchvar": no such variable

© Here result is the result of the script on normal completion
® Here result is the error message on an error exception

11.4.2. The error stack and return options dictionary

The optional orPTsVAR argument to the catch command is the name of a variable to hold the return options
dictionary we discussed in Section 11.2.3. As we stated there, this dictionary always contains at least the two keys
-level and -code that we have already elaborated on in previous sections. In the case of an error exception, the
dictionary also contains the additional keys -errorinfo, -errorcode, -errorstack and -errorline.

Let us define a simple procedure that raises an error exception as a sample and print what we get back from the
catch.

proc badproc {r {

306

The error stack and return options dictionary

set y $nosuchvar

¥
catch {badproc} result ropts
> 1

As we saw earlier, the result variable will hold the error message.
puts "result: $result” -» result: can't read "nosuchvar”: no such variable

The ropts variable holds additional information described in the following sections.
11.4.2.1. Error stack trace: -errorinfo element, errorInfo

The -errorinfo element contains a complete call stack dump that shows the sequence of calls up to the point
the error exception was raised. The content is meant for human consumption and is primarily a debugging and
troubleshooting aid.

% dict get $ropts -errorinfo
5 can't read “"nosuchvar™: no such variable
while executing
"set y $nosuchvar”
(procedure “"badproc" line 2)
invoked from within
"badproc”

This information is also stored in the errorInfo global variable.

% puts $::errorinfo
5> can't read “nosuchvar”: no such variable
while executing
"set y $nosuchvar"”
(procedure "badproc" line 2)
invoked from within
...Additional lines omitted...

11.4.2.2. Error line number: -errorline element

The -errorline element gives the line number where the error was raised.
dict get $ropts -errorline » 1

Again, this is primarily for debugging purposes.
11.4.2.3. Error codes: -errorcode element, errorCode

The -errorcode element in the dictionary on the other hand contains additional information about the error that
is in a form convenient for programmatic consumption. It is by convention structured as a list of elements, the first
of which is the module generating the error followed by module specific information. In our example, it indicates
the error was generated by Tcl itself, on a failed read operation on a variable. This information is also available via
the errorCode global variable.

dict get $ropts -errorcode » TCL READ VARNAME
puts $::errorCode » TCL READ VARNAME

The error code can often be parsed during execution to programmatically ascertain the specific cause and whether
corrective action can be taken.

307

Trapping exceptions: try

if {[catch {open options.ini} result roptsl}} {
if {[lindex $::errorCode 0] eq “POSIX" 8&&
[lindex $::errorCode 1] eq "ENOENT"} {
File does not exist
. use default options ..
} else {
return -code error -options $ropts $result; # Explicitly propagate the error
}
} else {
$result holds opened channel
. read options from $result ..
close $chan

11.4.2.4. Error stack: -errorstack element, info errorstack

The final error related element in the return dictionary is -errorstack.

dict get $ropts -errorstack » INNER loadScalar1 CALL badproc

This is similar to the -errorinfo element except it is in a form more suitable for programmatic consumption. It
consists of alternating token and parameter pairs where the token may be one of INNER, CALL or UP indicating an
internal command or byte code instruction, a procedure call, or a call frame change via uplevel and the like. The
associated parameter gives the specifics. For example, in the above output, the CALL parameter indicates badproc
as the name of the procedure that was called. It will also show the actual argument values in the invocation unlike
-errorinfo which shows invocations before variable substitutions.

The information in the -errorstack element is also available with the info errorstack command.
info errorstack » INNER loadScalarl CALL badproc

This returns the stack corresponding to the last error encountered.

11.4.3. Trapping exceptions: try

The try command offers a functionally equivalent alternative to the catch command for handling exceptions
and errors. The latter is convenient when a single set of actions is to be taken on any non-normal return. The try
command on the other hand makes it easier to break out handlers for different return codes or failure modes
and when common set of actions, such as releasing resources, need to be taken for both normal and exceptional
conditions. The choice is usually a matter of personal preference.

try LODY ?HAN < .7 ?finally rFra
Each HANDLER specifies a completion status and/or an error code pattern along with a Tcl script. The command
evaluates Bopy and matches its completion status against the specification of each #ANDLER. On finding a match,
the corresponding handler script is evaluated. Remaining handlers are ignored.

If the finally clause is specified, the FTNALSCRIPT argument is evaluated before the t ry command completes
irrespective of the completion status or whether any handlers were invoked.

The completion status and result of evaluation of BoDY is propagated as that of the t ry command unless a handler
is executed in which case the completion status and result of the handler is propagated instead. If FTNALSCRIPT
completes normally, its result is thrown away. If it completes with an exception, that exception is propagated.

In the cases where a handler or FINALSCRIPT generate an exception, the return options dictionary from the
evaluation of BODY is added to the new return options dictionary under the -during key.

308

Trapping exceptions: try

S
The HANDLER clauses themselves may take one of the following forms:

on <
trap

For the on clause, coDE must be an integer or one of the mnemonic return code values shown in Table 11.1. The
clause will match if the try command’s BODY script completes with that return code.

A trap clause will match if BoDY completes with a return code of error and ERRORPATTERN matches the return
options dictionary’s -er rorcode element. The match is done by interpreting ERRORPATTERN as a list of words each
of which must match the corresponding element of the -errorcode value. Additional elements in -er rorcode are
ignored so an empty ERRORPATTERN will match any value of -errorcode.

In both cases, VARLISTis a list of up to two variable names. On a match
« the result of the evaluation of BoDY, is assigned to the first name in VARLIST if not the empty string.
« the return options dictionary is assigned to the second name in varrzsTif not the empty string.

« the HANDLERBODY script is then executed. If HANDLERBODY is -, the HANDLERBODY of the next clause is used
instead.

The handlers are matched in sequence and only the first matched one is evaluated. If no match is found, the
completion return code and result are propagated to the caller.

As always, some examples will make all this clearer.

A simple try without any additional clauses acts similar to eval. If the BODY script completes normally, the
result for the evaluation is the result of the try command. On any exceptional completions, the return code is
propagated up since the try command does not have any handlers specified.

try {set x 1} »> 1
try {set x $nosuchvar} @ can't read "nosuchvar®: no such variable @

© Error return code is propagated up to the command shell

If you need to evaluate a single script in the current context with eval, consider using
- ‘ - try without any clauses instead. It is faster due to its being byte compiled which eval is

L not.

The on handlers can be used to trap completions with specific return codes. Any return codes that are trapped in
this manner are not automatically propagated. We can use catch to see the propagation of return codes when
handler clauses are present.

% catch {
try { error "Error!" } on error result {puts Trapped!} 1]
¥
s> Trapped!
0
% catch {

try { break } on error result {puts Trapped!} (2]

b
> 3

© Completes normally as error return code trapped.
© Propagates break asno handler defined for it.

Note that as for catch, any return code can handled, even ok, return or non-standard numeric values.

309

Trapping exceptions: try

Let us now look at the varr7sT argument in a bit more detail. This lets us retrieve the result of evaluation of ropy
and the return options dictionary in a similar manner to the two optional arguments to the catch command.

try {
set x $nosuchvar
} on error {result ropts} {
puts "result = $result"
puts "Return options dictionary:"
print_dict $ropts

» result = can't read "nosuchvar": no such variable
Return options dictionary:

~code =1
-errorcode = TCL LOOKUP VARNAME nosuchvar
-errorinfo = can't read "nosuchvar™: no such variable

...Additional lines omitted...

The other form that a try handler specification can take is specifically for trapping completions with an error
return code. The utility of the trap handler over the on error handler is that it directly allows distinction
between different error codes without having to separately check for them within an on error handler.

Consider the following commands.

/40 @ divide by zero @
/4 0.0 s Inf

@ Assumes tcl::mathop: :/ is on the namespace path

If we wanted the two to behave the same, we could define a div procedure as follows.

% proc div {a b} {
try {
return [/ %$a $b]
} trap {ARITH DIVZERO} result {
return [/ $a 0.0]
¥

Our handler is invoked only when
* thereturn code is error, and
* the error code in the return options dictionary is a list starting with ARITH DIVZERQ.

All other cases work as before including normal operation and other types of errors.

div 4 2 > 2
div 4 0 5 Inf
div 4 xyz @ can't use non-numeric string as operand of "/~

with a return code of error. Therefore any trap clauses should appear before an on

Note that an on error handler is equivalent to trap {} and handles all completions
A error clause. Trap clauses placed after it will not have effect.

We are left with the finally clause to discuss. The most common use of this clause is to ensure that resources are

freed irrespective of whether a script completes normally or not. Thus the clause is used in the fashion similar to
the following.

310

Raising exceptions

set fd [open data.xml}
try {
return [parse_data [read $fd]]
} finally {
close $fd
¥

The code ensures that the opened file channel is closed irrespective of any errors in reading or parsing the data.

11.5. Raising exceptions

In Section 11.3 we saw how we can specify any arbitrary value as the return code on completion of a script or
procedure. Raising an exception is nothing other than specifying a value other than 0/ok for the return code. Thus,
we do not need to say anything more about this general case.

However, the er ror return code differs from from other return codes in that Tcl takes some additional implicit
actions such as generating the stack trace back we saw earlier. The following sections describe this special case.

11.5.1. Raising errors: throw, error

Tcl has two dedicated commands, throw and error, in addition to the general purpose return command which
can generate any desired return code.

error M. INFO? ?HRRORCODE?

Both commands complete with a return code of 1/error anda result of MESSAGE. As is true for all command
completions, this result is captured by the first variable name argument to the catch command. The ERRORCODE
element supplies the error code that will be stored in the -errorcode element of the return options dictionary and
the errorCode global variable.

When an error exception is thrown, Tcl accumulates a stack trace of the calling sequence in the -errorinfo
element of the return dictionary and the errorInfo global. By default, this stack trace starts at the point of the call
t0 error or throw. However, the error command allows specification of the ERRORINFO argument to “seed” the
stack trace. We will see an example of its use for propagating a caught exception in a later section.

Raising an error exception is staightforward using either throworerror.

proc change_password {name pass} {
set len [string length $pass]
if {$len < 8} {
throw [list OAUTH PASSLEN $len] "password length must be at least 8."
b
db_update $name $pass
b

A couple of points to note about the above example. The general convention for the format of the error code is
a word that identifies the module or package (OAUTH), then one or more failure “reason” codes (PASSLEN) and
possibly some detail about the error, in our case the length of the supplied password.

% change_password user abc

@ Password length must be at least 8.
% puts $::errorCode

> OAUTH PASSLEN 3

We could have replaced the throw command in the procedure with the equivalent error command.

311

Raising errors: return -code

error "Password length must be at least 8." """ [list OAUTH PASSLEN $len]
The last two arguments to error are optional so we could have also raised an error as
error "Password length must be at least 8.

In this case the error code is set to an empty string.

Because throw is a relatively new addition to Tcl, you will find error used more often.

- ‘ - Moreover, it is tempting to be lazy and use the one argument form of er ror. However,

oL it is now considered good practice to always specify an error code which makes throw
syntactically a little more convenient and preferable for the common case where a initial

value for the errorInfo stack trace is not required to be passed.

11.5.2. Raising errors: return -code

We described the return command in detail in Section 11.3. Here we detail additional considerations when using
the command to raise an error by returning the error return code value.

K? MESSAGE

return -code error ?-errorcode ERRORCODH? ?-errorinfo ERKORINFO? -errorstack ERRORST.

The ERRORCODE, ERRORINFO and MESSAGE have the same semantics as for the throw or error commands. The -
errorstack option sets the -errorstack element in the return option dictionary.

Here is a short example demonstrating the equivalent use of throw versus return.

proc check_boolean_1 {arg} {
if {![string is boolean -strict $argl} {
throw {TYPECHECK BOOLEAN} "$arg is not a boolean"
}
b
proc check_boolean_2 {arg} {
if {![string is boolean -strict sargl} {
return -code error -errorcode {TYPECHECK BOOLEAN} \
"$arg 1s not a boolean"

If you run both procedures however, you will notice a small difference in the error stack.

% check_boolean_1 abc
@ abc is not a boolean
% puts $errorinfo
+ abc is not a boolean
while executing
"throw {TYPECHECK BOOLEAN} “$arg is not a boolean""
(procedure "check_boolean_1" line 3)
invoked from within
..Additional lines omitted...
check_boolean_2 abc
abc is not a boolean
puts $errorInfo
» abc is not a boolean
while executing
"check_boolean_2 abc"

® QR

312

Forwarding exceptions

11.6. Forwarding exceptions

There are circumstances where we need to trap an exception, handle it if we can, and if not, forward or re-throw
the exception with the same error code and error stack as in the original. We can use the returnorerror

command for this purpose.

11.6.1. Forwarding exceptions: return

The complete control you have over the result, return code, level and return options dictionary makes the return
command ideal for forwarding any kind of exception. Here is an example of its use for this purpose.

proc recover args {return 0}
proc do_something {} {

set x $nosuchvar
b
proc demo {} {

if {[catch {do_something} result ropts]} {

if {!{recover]} {
return -options $ropts $result (1]

}

© Note there is no -code option specified because it is already contained in the ropts return dictionary

Let us confirm that the caught exception information is preserved when we raise the exception again.

demo

can't read "nosuchvar": no such variable

puts $::errorCode

TCL READ VARNAME

puts $::errorinfo

can't read "nosuchvar": no such variable
while executing

"set x $nosuchvar”
(procedure "do_something" line 2)
invoked from within

...Additional lines omitted...

LoV R R

Notice that all information in the original exception is preserved. This includes cases where the returned option
dictionary may contain additional elements as we described in Section 11.3.3.

11.6.2. Forwarding exceptions: error

Alternatively, we can use the error command in the special case where we want to forward error exceptions by
specifying the original errorCode and errorInfo values as arguments to the error command.

proc demo {} {
if {[catch {do_something} resultl}y {
if {![recover]} {
error $result $::errorInfo $::errorCode

3
}

If we invoke demo, notice again that the original error code and stack trace were preserved.

313

Custom control statements

demo

can't read "nosuchvar": no such variable

puts $::errorCode

TCL READ VARNAME

puts $::errorinfo

can't read "nosuchvar": no such variable
while executing

"set x $nosuchvar"
(procedure "do_something" line 2)
invoked from within

...Additional lines omitted...

vV R W R

This use of error to forward an error exception is seen in legacy code as use of the return command for this
purpose is preferred for the following reasons:

* The error command cannot forward exceptions other than errors

* There is no means to preserve the full contents of the return options dictionary

11.7. Custom control statements

We saw in Section 10.5.5 an attempt at implementing a new control statement repeat. That implementation
was incomplete because it did not handle exceptional conditions like break and errors. Having described return
code and error handling, we are now in a position to present a full implementation. As a reminder, we want to
implement a repeat command that can be used as follows

set sum 0
repeat i 10 {
incr sum $i

b

This command can be implemented as

proc repeat {loopvar count body} {
upvar 1 $loopvar iter
for {set iter 0} {$iter < $count} {incr iter} {
set ret_code [catch {uplevel 1 $body} result ropts]
switch $ret_code {
0 {
3 { return }
4 {3
default {
dict incr ropts -level
return -options $ropts $result

¥
b

return

Exceptions like break, continue, return and errors are now handled appropriately.

Having implemented a custom loop command let us extend its functionality further with another control
command, skip that behaves like continue but lets you specify how many iterations of the loop are to be skipped.

proc skip {skip_count} { return -code 5 $skip_count }

314

Chapter summary

We have now introduced a new return code 5 and have to account for it in our repeat procedure.

proc repeat {loopvar count body} {
upvar 1 $loopvar iter
for {set iter 0} {$iter < $count} {incr iter} {
set ret _code [catch {uplevel 1 $body} result ropts]
switch $ret_code {
0 {r
3 { return }
4 {}
5 { incr iter $result }
default {
dict incr ropts -level
return -options $ropts $result

3
¥

return
}

We can now use it to skip a given number of iterations.

repeat n 5 {
puts “Iteration $n"
if {$n == 1} {skip 2}
}
+ Iteration O
Iteration 1
Iteration 4

Of course, only our repeat custom iteration command understands this new skip construct.

11.8. Chapter summary

In this chapter, we explored the mechanisms Tcl provides for special conditions, including errors, through the
exception handling facilities. These in turn are based on Tcl’s generalized framework for returning computational
state from script execution, a feature which lends itself not only to error handling but to creation of new first-class
custom control structures as well.

We will now move on to some practical aspects of programming in Tcl such as modularization and packaging
libraries.

11.9. References

TIP90
TIP #90: Enable [return -code] in Control Structure Procs, Don Porter, Donal K. Fellows, Tcl Improvement

Proposal #90, http://www.tcl.tk/cgi-bin/tct/tip/90

315

Namespaces

1, sir, am Dromio; command him away.
I, sir, am Dromio; pray, let me stay.
— William Shakespeare Comedy of Errors

If Shakespeare understood namespaces, there would have been no confusion between Syracuse::Dromio and
Ephesus::Dromio. Much havoc could have heen avoided!

Most modern languages support the concept of namespaces as a means to resolve conflicts between multiple
libraries or components defining the same name, for a variable, function or any programming construct. This is
even more of an issue for dynamic and scripting languages where there is no separate compile/link step that can
be used to limit name visibility to file scope. A common convention before the advent of namespaces was to prefix
names with the name of the module or library so 1ibA_state and 1ibB_state could be distinguished. Given that
most references to names are to those within the same module, this is not just unnecessary typing but a hindrance
to readability as well.

Namespaces are a solution to this issue. They provide a means to partition names and define a scope within which
they are visible so there is no confusion as to which construct is being referenced.

Tcl’s support for namespaces is dynamic and scriptable. It goes further than most languages in its capabilities and
flexibility. We explore these features in this chapter.

12.1. Namespace basics

A namespace is a mechanism for grouping together variables and commands under an identifier, the name of
the namespace. It also creates a scope for execution of code wherein names within the same namespace can be
referenced without further qualification while requiring names outside the namespace to be qualified with the
name of their containing namespace.

12.1.1. A simple namespace example

A simple script will clarify the concepts.

namespace eval nsA {
variable my_var "variable in nsA"
¥

The above command creates a namespace nsA and evaluates the passed script within the context of the
namespace. Thus the script

variable my_var "variable in nsA"

is executed in the context of namespace nsA.

The command variable is used to declare and optionally initialize (as here) a variable inside the namespace
context within which it is executed, in this case namespace nsA.

317

A simple namespace example

Next we will create another namespace, nsB, in the same fashion.

namespace eval nsB {
variable my_var "variable in nsB"

bs

And finally we will call variable outside of any namespace.

variable my_var "global variable"

This variable command is executed outside of any namespace and hence defaults to the global namespace
context. The variable is a global variable similar to that created by the global command.

We are now ready to give some examples of scope and context.

% puts $my_var
+ global variable

Because the puts is executing outside any namespace, or to be precise in the global namespace, the reference
my_var is to the global variable of that name.

On the other hand, if the same command were to be executed within the context of namespace nsB

% namespace eval nsB { puts $my_var }
» variable in nsB

the name my_var would refer to the variable defined in the nsB context.

In both cases, the variable references were unqualified and hence referred to the namespace context in which the
code was executing. To refer to variables outside the context in which the code is executing, the name must be
qualified with the name of the containing namespace. For example, to access the variables in the global and nsA
namespace contexts from code running under the nsB context,

% namespace eval nsB {
puts $::my_var
puts $::nsA::my_var
)
» global variable
variable in nsA

Although the above example used variables to demonstrate context, the same also applies to command definitions
and invocations as we will see as we proceed.

It is completely legal and often very useful to store a namespace name itself in a variable and use the variable to
refer to the contents of the namespace. However, you have to be careful in the syntax used.

% set my_namespace nsA

> NSA

% puts $my_namespace::my_var

@ can't read "my_namespace::my_var": no such variable

The above generates an error because the parser treats my_namespace: :my_var as the name of the variable and
tries to resolve. You need to therefore use one of several alternative syntaxes instead.

You can use the ${} syntax to constrain the parsing of the variable name and then use set to retrieve the value.

puts [set ${my_namespace}::my_var] » variable in nsA

318

Namespace names and hierarchy

Alternatively, you can use nested set commands.
puts [set [set my_namespace]::my_var] » variable in nsA

Finally, you can link a local variable to the namespace variable using the namespace upvar command described
in Section 12.5.1.3.

namespace upvar $my _namespace my_var linked_var » (empty)
puts $linked_var > variable in nsA

12.1.2. Namespace names and hierarchy

Namespaces may nest in a hierarchical fashion similar to the paths in a file system except for the use of : : as the
separator instead of / or \. So for example the identifier a: :b: : ¢ consists of the namespace a, the narespace

b contained within a, and an identifier ¢ which may be a variable, command name or even another namespace
inside a: :b. The root of the hierarchy is the global namespace whose name is the empty string so : : a refers to an
identifier a in the global namespace.

Just like file paths, names may be absolute or relative. An absolute name always starts with a : : and defines a path
through the namespace hierarchy starting with the global namespace. An example is : :a::b::c. Arelative name
does not start with a : : and defines a path through the namespace hierarchy relative to the namespace in which it
is referenced. The name a: :b: : ¢ is a relative name and is not the same as : :a: :b: :c unless the reference occurs
in the global namespace.

Let us rework our earlier example to include nested namespaces. The namespace current command, which we
will see later, returns the name of the current namespace context.

namespace eval nsA {
variable my_var "[namespace current] variable"
namespace eval nsB {
variable my_var “[namespace current] variable"
¥
}
namespace eval nsB {
variable my_var “[namespace current] variable”

¥

variable my_var "[namespace current] variable”

With these definitions in place, we can see how the different variables might be referenced from within the nsA
namespace.

namespace eval nsA {puts $my_var} > 1:nsA variable @
namespace eval nsA {puts $::my_var} 5> @@ variable ©
namespace eval nsA {puts $nsB::my_var} 5> ::nsA::nsB variable ©

namespace eval nsA {puts $::nsB::my_var} > ::nsB variable (4]

@ Current namespace

©® ::isasynonym for the global namespace
© Relative namespace

O Absolute namespace

We will have more to say about name resolution in Section 12.5.

There are a couple of points to be noted about nested namespaces.

319

Namespace names and hierarchy

First, a nested namespace can be directly defined with a single namespace eval so that instead of

namespace eval nsA {
namespace eval nsB {
. Some code ..

b

we could have said

namespace eval nsA::nsB {
. Some code ..
}
which would have resulted in the whole hierarchy being created if necessary.

The other point to be noted is that each namespace eval for a namespace does not overwrite any existing
namespace of that name; it modifies or adds to it as we saw in the above examples.

12.1.2.1. Inspecting namespace hierarchies: namespace current, namespace parent,
namespace children

The namespace hierarchy can be traversed with the namespace current, namespace parent and namespace
children commands.

The namespace current command returns the current namespace context.

namespace eval nsA {
proc whereami {} {return [namespace current]}

}
puts [nsA::whereami]
+ 1 InsA

In the above fragment, the proc definition is inside the nsA namespace and consequently, the whereami procedure
is also created within that namespace.

The namespace parent command returns the name of the namespace containing the specified namespace.

namespace parent ?:4

The command returns the fully qualified name of the parent. If NAMESPACE is not specified, it returns the parent of
the current namespace from which the command is invoked.

namespace eval nsA { namespace parent } > @
namespace eval nsA { namespace parent nsB } » ::nsA @
namespace parent nsB > ©
namespace parent :: » (empty)

© Parent of current namespace context
O nsBchild of nsA
© nsBchild of global namespace

Conversely, the namespace children command returns a list of namespaces that are the children of a specified
namespace.

namespace syntax ?wAl

320

Deleting a namespace: namespace delete

Again, vamEs PAcE defaults to the current namespace if unspecified.

namespace eval nsA {namespace children} » ::nsA::nsB
namespace children nsA 5> :insA::nsB
namespace children :: 5 ::cmdline ::zlib ::nsA ::fileutil ::pkg ::00 ::nsB ::tcl

12.1.2.2. Manipulating names: namespace qualifiers,namespace tail

Unlike static languages, programs in dynarnic languages like Tcl often construct namespaces on the fly at runtime.
Tcl therefore provides some commands to make manipulation of namespace names easier.

The namespace qualifiers command returns the leading namespace qualifiers from an identifier.
namespace qualifiers IozxvisIzs
Correspondingly, namespace tail returns the last component of an identifier.

namespace tail [LENTIFIZR
Both commands work purely on a syntactic basis. There is no requirement for the namespaces in IDENTIFIER to
actually exist.

set nshead [namespace qualifiers ::no::such: :namesp] » ::no::such
set nstail [namespace tail ::no::such::namesp] > namesp

The above commands deconstruct an identifier into namespace components. There are no complementary
commands to construct namespace paths because use of normal string interpolation or commands like joinis
sufficient.

set my_ns "::${nshead}::$nstail” » ::::no::such::namesp
set my_ns [join [list $nshead $nstail} ::1 - ::no::such::namesp (1)

© Useful when the namespace components are already in list form

When constructing namespace identifiers, it is useful to know that Tcl will treat more
- ‘ - than two : characters as namespace separators as well.

L4 1 L
puts $::nsA::::::iiimy_var » ::nsA variable

Thus when interpolating or joining you do not need to worry about trailing namespace
separators in the identifier.

12.1.3. Deleting a namespace: namespace delete

As is always the case with Tcl, program elements can be created and destroyed at will and namespaces are no
exception. We have seen how narespaces are created with namespace eval. The complementary command to
destroy namespaces is namespace delete.

namespace delete ?x#

The command takes zero or more namespace names and deletes each namespace along with all its contained
program elements, including variables, commands and even nested namespaces.

321

Checking namespace existence: namespace exists

12.1.4. Checking namespace existence: namespace exists

Given that they can appear and disappear on the fly, there needs to be a means of checking whether a namespace
exists. The namespace exists command provides this functionality.

namespace exists NAMEISPACH

The command returns 1 if the specified namespace exists and 0 otherwise.

For both commands, each nAMES PACE argument is resolved as per the rules stated in Section 12.5.2.

namespace delete nsA » (empty)
namespace exists nsA » 0
namespace exists nsB » 1

12.2. Executing code in a namespace: namespace eval|inscope

We have already seen how code is executed in the context of a namespace with the namespace eval command.

namespace eval :
The command will create the namespace of the specified name if it does not already exist. It then concatenates the
remaining arguments, separating them with spaces, and evaluates the result in that namespace.

NAMESPACE is resolved as we detail later in Section 12.5.2. If NAMESPACE is a hierarchical namespace, any
intermediate namespaces are also created if necessary. So for example,

namespace eval ns1 {
namespace eval ns2::ns3 {}
namespace eval ::ns4 {}

evaluated in the global scope will create namespaces : :ns1, : :ns1::ns2, ::ns1::ns2::ns3 and : :ns4.

What does execution in the context of a namespace mean? It has primarily to do with how names (variables,
commands, namespace names) are resolved as we summarized earlier and will go into detail in Section 12.5.

The namespace inscope command is very similar to namespace eval.

namespace inscope ¥

Like namespace eval, namespace inscope will execute SCRIPT in the context of the specified namespace but
with two important differences:

¢ The first is that namespace inscope will not create the namespace if it does not already exist.

* The other difference is that the arguments are not all concatenated before execution as is done by the
namespace eval. Rather, SCR7PT is executed after appending the remaining arguments as proper list
elements. In effect, the additional arguments do not undergo a second round of substitution as is the case with
namespace eval.

The following code snippet illustrates the difference. First, a small procedure to print arguments defined inside a
namespace:

namespace eval ns1 { proc print_args {args} {puts [join $args ,1} }

322

Namespace contexts in callbacks

Now we evaluate a call to the procedure via both namespace eval and namespace inscope.

% set argl "First argument”

» First argument

% set arg2 {$argl}

> $argl

% namespace eval ns1 { print_args } $argl $arg2

» First,argument,First argument

% namespace inscope ns1 { print_args } $argl $arg2
» First argument,$argl

As seen from the output, with namespace eval the arguments undergo two rounds of substitution whereas with
namespace inscope they only undergo a single round.

The namespace inscope command is rarely used directly in Tcl programming. Rather its primary purpose is to
form the basis of the namespace code command which serves a specific purpose that we now describe.

12.2.1. Namespace contexts in callbacks

Tcl programming often involves callbacks — scripts and commands that are invoked from the event loop or other
contexts. Examples include scripts scheduled via the after command and invoked by keyboard handlers in Tk,
both of which are evaluated in the global context. For such cases, callback scripts that expect to be run in the
context of a specific namespace will fail, for example the following snippet:

namespace eval ns1 {
variable avar "Some value"
after 100 {puts $avar}

¥

This will fail because the callback script puts $avar will execute in the global context where there is no variable
avar defined. We really want to execute the script in the context of ns1. The namespace code provides a
convenient mechanism to accomplish this.

namespace code SOk
The command result is a script that can be evaluated in any scope, global or any other namespace, and will still
result in SCRIPT being invoked in the same namespace context in which the namespace code was invoked.
So the above fragment would work correctly if written as
namespace eval ns1 {
variable avar "Some value"

after 100 [namespace code {puts $avar}]

¥

You can examine the result of the command to see how it works.

% namespace eval nst1 { namespace code {puts $avar} }
» ::namespace inscope ::nsl1 {puts $avar}

As you can see the passed script is wrapped in a namespace inscope to achieve the desired result.

The following utility procedure is useful as syntactic sugar for capturing the namespace scope when the callback
script consists of a single command.

proc callback {args} {tailcall namespace code $args}

323

Defining variables in a namespace: variable

Then the above call can be written as

after 100 {callback puts $avar]

12.3. Defining variables in a namespace: variable

There are two ways a variable can be defined within a namespace. The first, and recommended, way is through
the explicit use of the variable command.

variable 7?4

The command takes a list of alternating variable name and value arguments with the value for the last variable
name being optional.

The command may be invoked directly from a namespace eval script or from within a procedure. In the former
case,

« if a variable of a specified name does not exist, it is created. If a corresponding initializing value is specified, it is
assigned to the variable. Otherwise, the variable is created but left undefined (see Section 3.6.5.3).

+ if the variable of that name already existed within the namespace, it is assigned the initializing value if
specified and left unaltered otherwise.

When the command is invoked from a procedure, the behaviour is similar except that the command creates
variables local to the procedure but linked to namespace variables of the same name. This is detailed in
Section 12.5.1.2 when we discuss name resolution in procedures.

An example of variable use.

namespace eval nsA {
variable var_a "abc"
variable var_b [clock seconds] var c¢
variable var_d

Here the variable var_a and var_b are created (assuming they did not already exist) and initialized while var_c
and var_d are created but remain undefined.

set nsA::var_a » abc
info exists nsA::var_c¢ » 0

The other way to create namespace variables is to directly assign to them from within the namespace context
without explicitly declaring them with the variable command.

namespace eval nsA {
set var_e 42

}
puts $::nsA::var_e
> 42

However, there is a historical quirk that you have to be aware of and guard against. Suppose you have set the
value of a global variable somewhere to hold the application version.

set version 1.0

324

Defining commands in a namespace

Then within some independently written package, the following code sets the package version and description for
that package.

namespace eval mypackage {
set description "My Package"
set version 2.0

b

Now having loaded the package let us print out the package description.
puts $::mypackage::description » My Package
So far, so good. Let us then print out the application and package versions.

% puts $::version

» 2.0
% puts $::mypackage::version
@ can't read "::mypackage::.version": no such variable

Huh? The application version has mysteriously changed and what’s more the package version is not even defined!
The problem arises because the statements

set description "My Package"
set version 2.0

look alike but have very different results. In the first case, the variable description is not found in either the
mypackage namespace or in the global one. The command therefore creates a new variable of that name in the
current namespace mypackage. On the other hand, the name resolution sequence finds a variable version in the
global context and modifies that instead of creating a variable of the same name in the mypackage context.

This is an acknowledged misfeature which is currently preserved for backward compatibility and will probably be
fixed in the next major Tcl release. To protect against this, always explicitly declare namespace variables with the
variable command even if there is no need to immediately initialize them.

12.4. Defining commands in a namespace

So far our examples have dealt with defining variables in namespaces. We now look at the same for defining
procedures.

If the name passed to the command is fully qualified, it defines the containing namespace no matter where the
procedure definition is placed.

namespace eval nsA::nsB {} 1]
proc ::nsA::nsB::demo_a {} {return [namespace current]}
namespace eval nsC {

proc ::nsA::nsB::demo_b {} {return [namespace current]}

}
puts "[::nsA::nsB::demo_al, [::nsA::nsB::demo_bl"
» ::nsA;:nsB, ::nsA::nsB

@ Make sure the namespaces exist

If the name does not have any namespace qualifiers or is not fully qualified, it is treated as relative to the current
namespace.

325

Namespace contexts in procedures

namespace eval ::nsA {
proc demo_c {} {return [namespace current]} (1)
proc nsB::demo_d {} {return [namespace current]} 2]
puts [demo_c]
puts [nsB::demo_d]

> :insA
::nsA::nsB

@ Defined in namespace : :nsA
© Defined in namespace : :nsA: :nsB

Other Tcl commands, such as TclOO object constructors, which create new commands also behave as above.
The notable exception is the interp alias which always resolves relative names in the context of the global
namespace even when invoked from within another namespace.

12.4.1. Namespace contexts in procedures

When a procedure is executed, its code runs in the context of the namespace in which the procedure is defined.
Use of variable inside the procedure ties the specified name to the variable of the same name in the procedure’s
namespace. Calls to other procedures that are not fully qualified first look up procedures defined in the same
namespace context.

proc demo {} {return "Proc in [namespace current]"}
namespace eval nsA {
variable my_var "Variable in [namespace current]"
proc demo {} {return "Proc in [namespace current]"}
proc test_proc {} {
variable my_var
puts "Calling namespace proc: [demo]"
puts "Calling global proc: [::demo}"
puts "Value of my_var=$my_var"
+
b
nsA::test_proc
» Calling namespace proc: Proc in ::nsA
Calling global proc: Proc in ::
Value of my_var=Variable in ::nsA

12.5. Name resolution

When a name being referenced in a script begins with a : : sequence, it is a fully qualified, or absolute name

that uniquely identifies its target by specifying a path through the namespace hierarchy starting at the root
(global) namespace. These names obviously do not need to be resolved. Further discussion in this section thus only
pertains to names that are not fully qualified.

For relative names, both simple names that have no : : separators as well as those that do but do not begin
with : :, the manner of resolution depends on whether the name corresponds to a variable, a namespace or a
command.

12.5.1. Resolving variable names

We will first look at how names of variables are resolved in various types of contexts.

326

Resolving variable names

12.5.1.1. Variable resolution outside a procedure

Both simple name references and names that are not fully qualified are first resolved in the current namespace
and if not found, in the global namespace. The example below illustrates this process.

namespace eval nsA { variable my_var "nsA variable" }
namespace eval nsB {
namespace eval nsC {
variable my_var "nsB::nsC variable"
}
puts $nsC::my_var (1]
puts $nsA::my_var ©

¥
> nsB::nsC variable
nsA variable

© Resolved within current namespace
© Not resolvable in current namespace so resolved in global namespace

12.5.1.2. Variable resolution in a procedure

Variable name resolution within a procedure is slightly different because there are procedure-local and argument
names to deal with. Moreover, there are differences between resolution of simple names, i.e. names without any
. : separators, and names which have at least one namespace component (but are not fully qualified).

A simple name is local to the procedure, or an argument, unless previously linked via a variable or upvar
command. If linked via variable, it is linked to the variable of the same name defined in the context of the
namespace in which the procedure is defined. In the case of upvar it is linked to a variable defined further up the
call stack as described in Section 10.5.4.

A variable that is a relative name with namespace components is first resolved within the namespace in which the
procedure resides and then if not found there, it is resolved in the context of the global namespace.

The following example illustrates the different cases. Assume we have the following namespace structure.

set my_var "global variable"
namespace eval nsC {
variable my_var "nsC variable”
}
namespace eval nsA {
variable my_var "nsA variable"
namespace eval nsB {
variable my_var "::nsA::nsB variable"
¥
}

The various ways names are resolved is illustrated in the following procedure.

proc nsA::demo {} {
varlable my_var 1)
set local_var "local"

puts "local_var = $local_var" 2]
puts "my_var = $my_var" (3]
puts "nsB::my_var = $nsB::my_var" (4]
puts "nsC::my_var = $nsC::my_var" (5]

¥

nsA: :demo

s> local_var = local

327

Resolving namespace names

my_var = nsA variable
nsB::my_var = ::nsA::nsB variable
nsC::my_var = nsC variable

Creates a local my_var linked to : :nsA: :my_var

Variable local to procedure

Variable linked to : :nsA: :my_var

Relative name successfully resolved from current namespace
Relative name successfully resolved from global namespace

000 OQ

12.5.1.3. Linking to variables in another namespace: namespace upvar

The namespace upvar command allows linking of local variables or variables in one namespace to variables in
any namespace.

namespace upvar NAMHSPACE ?NSVAR LCCALVAR L2

The naMES PACE argument specifies the name of the namespace whose variables are to be linked. It is resolved as
described in Section 12.5.2.

Each NSVAR LOCALVAR pair specifies a variable name in the naMESPACE namespace and the corresponding
variable to which it is to be linked. When the command is invoked outside a procedure, LOCALVAR names a
namespace variable in the namespace in which the command is invoked.

namespace eval nsC {
namespace upvar ::nsA::nsB my_var linked_var
+
puts $::nsC::linked_var
5> :nsA::nsB variable

Within a procedure, LoCALVAR is a procedure-local variable.

proc demo {} {
namespace upvar ::nsA my_var linked_var
puts $linked_var

}

demo
» nsA variable

In all cases, the Locarvar variable must not already exist.

12.5.2. Resolving namespace names

Resolution of namespace names that are not absolute is very simple. They are always resolved with respect to the
current namespace.

namespace eval nsA {
namespace eval childNS {}
¥

The unqualified name childNS results in creation of a namespace of that name in the current namespace context,
ie.nsA: :childNS.

328

Resolving command names

12.5.3. Resolving command names

Resolution of command names differs from that of variable and namespace names in that additional mechanisms,
name imports and namespace paths, are available to control the ways names are resolved.

Resolution proceeds in the following manner:

1. The current namespace is checked first.

2. If not found there, all namespaces on the namespace path, which is a list of namespaces, are checked in the
order of their appearance.

3. If the command is still not found, the global namespace is looked up.

4. As a final resort, the namespace unknown handler is called.

In steps 1-3 above, a command may exist in a namespace either because it is defined there or because it has been
imported into the namespace.

12.5.3.1. Importing names: namespace export|import|forget

Namespace export and import is a convenience feature that allows a namespace to mark selected commands as
exported and callable without requiring any namespace qualifiers from any other namespace that imports them.

The namespace from where commands are being exported uses one or more namespace export commands to
designate which commands are to be exported.

namespace export ?-clear? ?FaTTERN .7

If no arguments are specified, the command returns the list of names that are currently exported from the
namespace. Otherwise the list of PATTERN arguments are appended to the current list of patterns exported from
the namespace. Any command in the namespace whose name matches any pattern in this export list using glob
pattern (see Section 4.11) matching can be imported into other namespaces. If the -clear option is specified, the
export list is reset to empty before the patterns are added to it.

The complementary command to namespace export is namespace import which is invoked from the
namespace into which commands are to be imported.

namespace import ?-force? ?:a

If no arguments are supplied, the command returns a list of the commands that have been imported into the
current namespace. Otherwise, for every command that matches any of the PATTERN arguments a new command
is created in the current namespace that points to the original command. PATTERN may be fully or partially
qualified but only the last component is treated as a glob pattern.

By default, if there is an existing command of the same name as the command being imported, an error is
generated. If the -force option is specified, then instead of generating an error, the imported command
overwrites the existing one.

Here is a simple example to illustrate the basic working of export and import of names.

namespace eval nsA {
proc aproc {} {puts “aproc called"}
proc bproc {} {puts "bproc called"}
proc cproc {} {puts "cproc called"}
namespace export a* b*

}

namespace eval nsB {
namespace import {::nsA::[acl*}

}

Let us check what commands actually land up being exported and imported.

329

Resolving command names

namespace eval nsA { namespace export } - a* b*
namespace eval nsB { namespace import } » aproc

And when we try to invoke commands in the nsA from nsB without using any namespace qualifiers:

namespace eval nsB { aproc } » aproc called
namespace eval nsB { cproc } @ invalid command name "cproc" @
namespace eval nsB { bproc } @ invalid command name "bproc" @

@ Fails because cproc is not exported from nsA
@ Fails because bproc is not imported into nsB

The namespace export command is “sticky” in that even a new command defined after it has been executed will
also be exported if its name matches a pattern in the list of exported command patterns. On the other hand, the
namespace import command only imports those commands that already existed at the time it was invoked. For
example, let us define a new command that matches a pattern we previously exported.

namespace eval nsA {
proc acommand {} { puts "acommand called" }

b

Now let us invoke it from nsB.

% namespace eval nsB { acommand } (1]
@ invalid command name "acommand"
% namespace eval nsB { namespace import {::nsA::[ac]*} }

% namespace eval nsB { acommand } @
» acommand called

© Fails because namespace import takes a snapshot
© Succeeds after we invoke namespace import again

Notice that we did not have to re-export the command but we did have to do a re-import.

Another point to note is that imported commands can be re-exported from the importing namespace.

namespace eval nsB { namespace export aproc }
namespace eval nsC {
namespace import ::nsB::aproc
aproc
}
» aproc called

Finally, you can undo the effect of a namespace import with the namespace forget command.
namespace forget ? ArTiEAN L7

The paTTERN arguments are of the same form as accepted by namespace import except that they can also be
simple names not be qualified by namespaces. If namespace qualifiers are present, the argument is matched
against exported commands from all matching namespaces and the commands imported into the current
namespace, if any, are removed. If no namespace qualifiers are present, any command matching the pattern in the
current namespace are removed if they were imported.

330

Resolving command names

Thus either of the following would undo the effect of the namespace import into the nsB namespace.

namespace eval nsB { namespace forget :.nsA::aproc }
namespace eval nsB { namespace forget acommand }

As we can see both commands are removed from nsB.

namespace eval nsB { aproc } @ invalid command name "aproc"
namespace eval nsB { acommand } @ invalid command name "acommand"

12.5.3.2. Namespace paths: namespace path

The other way to set up access to another namespace’s commands without requiring qualification for every

call is through namespace paths. A namespace path is a list of namespaces that should be searched to locate a
command if it is not found in the current namespace. This list is specific to a namespace and can be set up with the
namespace path command.

namespace path ?xa

If the NAMESPACELIST argument is specified, it should be a list of namespace names and the namespace path
for the context in which the command is called is set to this value. If no argument is specified, the command just
returns the current namespace path.

The example below illustrates several points about namespace paths.

proc global proc {} {puts "global_proc called"}
namespace eval nsA {

proc nsA_proc {} { puts "nsA_proc called" }

namespace eval nsB { proc nsB_proc {} { puts "nsB_proc called" } }
}

namespace eval nsC {
namespace path [list ::nsA ::]
puts "The namespace path is now [namespace path]."
proc nsC_proc {} { nsB::nsB_proc }
global proc
nsA_proc
nsC_proc
¥
» The namespace path is now ::nsA ::.
global_proc called
nsA_proc called
nsB_proc called

Note from this example that

+ The global namespace is like any other namespace and can be explicitly placed at any position on the
namespace path for a namespace if so desired. Keep in mind though that commands in the global namespace
will autormatically be resolved in any context even if they do not appear on the namespace path. Adding it to the
path only makes sense if you want it to be searched hefore some of the namespaces in the path.

+ The namespace path is searched not only for simple names but for relative names with namespace components.

» The namespace path is effective not only within a namespace eval but also within procedures defined in that
namespace.

331

Resolving command names

12.5.3.3. Comparing namespace imports and paths

Though similar in their ability to reference program elements in one namespace from another without explicit
qualification, the namespace import/export and path features work differently.

Importing a name into a namespace with namespace import actually creates a command in that namespace
which points to the command in the exporting namespace. On the other hand, namespace path does not create a
new command. The following example will clarify the differences.

namespace eval nsA {
proc aproc {} { puts "aproc called" }
namespace export aproc

b
namespace eval importer { namespace import ::nsA::.aproc }
namespace eval pathfinder { namespace path ::nsA }

The command nsA: :aproc can be accessed from both namespace without qualification.

namespace eval importer { aproc } - aproc called
namespace eval pathfinder { aproc } » aproc called

However, the two are not equivalent as the following fragments illustrate.

importer::aproc -» aproc called
pathfinder::aproc @ invalid command name "pathfinder: :aproc"

In the first case, importer: :aproc can be directly called because importing actually creates a command of that
name in importer. The second call raises an error because there is no aproc in pathfinder and the namespace
path only applies to commands invoked from within pathfinder. To confirm,

info commands importer::* s ::importer::aproc
info commands pathfinder::* 5 (empty)

Here is a slightly different effect of the same.

namespace eval nsB { namespace path ::importer }
namespace eval nsC { namespace path ::pathfinder }

If we try to invoke aproc from the nsB and nsC, the first works and the second does not.

namespace eval nsB { aproc } » aproc called
namespace eval nsC { aproc } @ invalid command name "aproc"

Another way of viewing the difference is that imports link to the original command whereas the path mechanism
searches for the command by name along the search path. Thus if we were to rename the original command or the
one in the importing namespace, imports would continue to work.

rename ::nsA::aproc ::nsA::.aproc2 > (empty) @
namespace eval importer {aproc} + aproc called
rename ::importer::aproc ::importer::a_better_name > (empty) @
importer::a_better_name » aproc called

@ Rename the original procedure
@ Rename the procedure in the importing namespace

332

Resolving command names

On the other hand, the path mechanism would no longer locate a command of that name in the defining
namespace.

% namespace eval pathfinder {aproc}
@ invalid command name "aproc™

12.5.3.4. Handling unknown commands: namespace unknown

If all the mechanisms discussed above to resolve a command fail, Tcl will call the unknown command handler
for the namespace. This handler is set independently for each namespace by calling the namespace unknown
command from the context of the namespace to which it is to be applied.

namespace unknown ? ¢

If specified, commanpPrEFIx should be a list consisting of the name of a command and optionally zero or more
arguments. When a command cannot be resolved within the namespace, the entire command including arguments
is appended to coMmanpPREFIX and invoked. The result is then returned as the result of the original command.

In our example, if a command is not located when called from the nsA namespace, we will try invoking it as an
external program instead.

A

namespace eval nsA { ls *.adocgen }

invalid command name "1s"

namespace eval nsA { namespace unknown [list exec -keepnewline --1}
exec -keepnewline --

namespace eval nsA { ls *.adocgen}

basics.adocgen

code.adocgen

...Additional lines omitted...

| This example is for pedagogic purposes only. It is not safe programming practice!

voR v R W™ R

If coMMANDPREFTH is not specified, the command returns the current handler for the namespace.

% namespace eval nsA {namespace unknown}
s> exec -keepnewline --

Note that the handler for the namespace is only executed when a command lookup fails within the specified
namespace context. It will not be invoked either when lookups fail in some other context or even when an attempt
is made to call a non-existent command within the handler’s context from outside the context. Thus neither of the
following will invoke our handler.

namespace eval nsB { 1ls *.ad} @ invalid command name "ls" (1]
nsA::ls @ invalid command name "nsA::ls" (2]

© Fails because nsB does not have an unknown handler.
© Tails because call is made from outside the nsA namespace context.

333

Introspecting name resolution: namespace which, namespace origin

If no unknown command handler is set for a namespace, the global handler : : unknown
will be called instead (see Section 3.5.1.2).

12.5.4. Introspecting name resolution: namespace which, namespace origin

Tcl provides two commands namespace which and namespace origin which map names to their fully qualified
versions. We will use a slightly modified version of the example in our previous section. We add an additional
namespace middleman which imports and re-exports from nsA.

namespace eval nsA {
proc aproc {} { puts "aproc called" }
namespace export aproc
¥
namespace eval middleman {
namespace import ::nsA::aproc
namespace export aproc
+
namespace eval importer { namespace import ::middleman::aproc }
namespace eval pathfinder { namespace path ::nsA }

We will start with namespace which.

namespace which ?-command? ?-variable? na

The command returns the fully qualified version of NaME as per the name resolution rules discussed earlier. The
switches -command and -variable indicate whether yamE refers to a command or a variable respectively. If
neither switch is specified, -command is assumed.

Let us see how the command works with imported names and namespace paths.

namespace eval importer { namespace which -command aproc} » ::importer::aproc
namespace eval pathfinder { namespace which -command aproc} » LinsA::aproc

Notice that in the first instance, the returned fully qualified name is within the current namespace. This makes
sense since the import of a name actually creates a command of that name in the importing namespace as we saw
in the previous section.

In the second instance, there was no command of that name created in the pathfinder namespace. Hence the
namespace path of pathfinder is searched and the fully qualifed name of aproc is returned corresponding to the
namespace in which it was found.

The -variable switch works similarly except that instead of following the name resolution rules for commands,
it follows the name resolution rules for variables. It returns the fully qualified name of the variable if it has been
created and an empty string otherwise.

namespace eval nsA {
variable avar
proc demo {} {
variable avar
namespace which -variable avar
}
}
nsA::demo
> insA::avar

334

Namespace ensembles

Note that it suffices for the variable to have been created, it need not be defined (see Section 3.6.5.3 for the
distinction).

We leave it to the reader to experiment further with it and move on to the namespace or igin command.

namespace origin Nars

While namespace which locates a command and returns the fully qualified path, namespace origin servesa
different purpose. The fully qualified name it returns is that of original command even if there are “intermediate”
namespaces importing and re-exporting the name. Contrast the two in our example:

namespace eval importer { namespace which -command aproc} -» ::importer::aproc
namespace eval importer { namespace origin aproc} 2 linsA:i:iaproc

We see that namespace which returns the current namespace importer since the import of aproc resulted in the
creation of a command of that name in the impor ter namespace itself. On the other hand, namespace origin
traverses back through all intermediate links (middleman in our case) to the original command nsA: :aproc.

The command will work with namespace paths as well.

% namespace eval pathfinder { namespace origin aproc}
5 :insA:iaproc

The namespace which command can be used in lieu of info commands to check for the
- ‘ - existence of a command. It is often preferred because unlike info commands, it does not
o treat its argument as a pattern. This makes its use safer when checking for existence of

n . .
commands whose names may contain wildcard characters 1

12.6. Namespace ensembles

In most languages, namespaces are limited to a single (albeit important) purpose — that of preventing conflicts
between identifiers defined by indepedent modules. In Tcl, namespaces also provide the basis of another piece of
useful functionality, ensemble commands.

12.6.1. Ensemble commands

An ensemble command is a command that has subcommands that collectively perform a set of related functions.
Tcl itself has several built-in commands that are ensembles, such as string that operates on strings, and clock
that implements date and time related functions.

Namespaces offer a means for you to construct your own ensemble commands.
12.6.2. Creating a simple ensemble: namespace ensemble create
Assume we want to encapsulate various operations related to Fibonacci sequences under the command fib. We

will support three simple commands,

fibonacci sequence
fibonacci nth X
fibonacci sum

that return a sequence of length », the §'th number in the sequence and the sum of a sequence of length N
respectively.

1 Use of non-alphabetic characters in procedure names is not uncormmon. For example, you will find ? suffixes used for procedure names that
return booleans, or * for extended forms of standard coramands.

335

Creating a simple ensemble: namespace ensemble create

package require math
namespace eval fib {
proc nth {n} { return [math::fibonacci $n] }
proc sequence {n} {
set seq {}
for {set i 1} {$i <= $n} {incr i} {
lappend seq [nth $i]
}
return $seq

}
proc sum {n} {return [::tcl::mathop::+ {*}(sequence $n]l}

We can now call it using the standard namespace syntax

fib::sequence 3 5 1 1 2
fib::sum 3 + 4

To convert this to an ensemble command we need to make use of the namespace ensemble create command.

namespace ensemble create ?20pPTiON VALIE?

For our example, this is very simple. By default, when no options are specified, namespace ensemble create will
create an ensemble command of the same name as the namespace from which it is called. The subcommands will
be the exported commands from the namespace. So in our case, all we need to do is

namespace eval fib {
namespace export *
namespace ensemble create

¥
+ ::fib

This creates an ensemble command of the same name as the namespace, fib in our example, which we can then
invoke in any of the following forms.

fib nth 4 > 3
fib sequence 3 5 1 1 2
fib sum 5 > 12

12.6.2.1. Naming an ensemble command

Readers who are at least half-awake will object that the name of the command is wrong; we wanted it to be
fibonacci, not fib. The obvious way to fix this would be to change the name of the containing namespace itself
to fibonacci. We will instead follow a different path of configuring the ensemble as that provides more flexibility
in cases where the ensemble construction is not based on a single namespace. The - command option allows us to
define the name to be used for the ensemble command.

% namespace eval fib {namespace ensemble create -command ::fibonacci}
» ::fibonacci

% fibonacci nth 6

> 8

Note the value we passed to the -command option was fully qualified. Otherwise we
E would have created the command fibonacci inside the fib namespace instead of at the
global level as we wanted.

336

Configuring ensembles

The -command option is also useful when defining an ensemble command without creating a new namespace as
we will see in a later example. :

The namespace ensemble create command also takes additional options. These are the same as described
below for the namespace ensemble configure command.

12.6.3. Configuring ensembles

Having looked at the simplest method for creating ensembles, we will now look at configuration options that
allow for more flexible construction of ensembles. Ensembles are configured using the namespace ensemble
configure command.

namespace ensemble configure

The comvanD argument is the name of the ensemble command being configured. If no options are specified, the
command returns the current values of the options.

% namespace ensemble configure ::fibonacci
+» -map {} -namespace . :fib -parameters {} -prefixes 1 -subcommands {} -unknown {}

If a single option is specified, with no associated value argument, the command returns the value of the option.
namespace ensemble configure ::fibonacci -namespace - 1o fib

If more than one argument is specified after the ensemble name COMMAND, they are interpreted as option and value
pairs and the ensemble command is configured as per the specified values. An exception is -namespace whichis a
read-only option and cannot be modified.

12.6.3.1. Subcommand configuration: - subcommands, -map

In our example above, all exported commands from the fib namespace became subcommands of the command
ensemble. There are times when this is not the desired behaviour. The -subcommands option allows specification
of exactly which subcommands are available through the ensemble.

% namespace ensemble configure ::fibonacci -subcommands {nth sum}
Now only the two listed commands are callable through the ensemble.

fibonacci nth 4

3

fibonacci sum 5

12

fibonacci sequence 3 1]

unknown or ambiguous subcommand "sequence”: must be nth, or sum

SIS -

© Error because sequence was not included in the -subcommands value

E | The commands in subcommand list need not be exported commands.

By default, the value of the - subcommands option is the empty list in which case, as we saw earlier, all exported
commands from the namespace become ensemble subcommands. We can reset to that default behaviour so
sequence becomes a subcommand again.

337

Configuring ensembles

namespace ensemble configure ::fibonacci -subcommands {} » (empty)
fibonacci sequence 3 > 112

While the -subcommands option lets us control which commands in the namespace are exposed as subcommands
in the ensemble, what if we want a subcommand that is not implemented within the namespace at all? This is
where the -map option comes in. It lets an ensemble subcommand be mapped to any command prefix.

For example, consider the procedure fib: :nth which does nothing other than call the math: : fibonacci
command from the math library. Instead of defining that procedure, we could have used the -map option to
directly invoke math: : fibonacci. Let us use this method to define a new subcommand term that does the same
thing as nth. Additionally, making note that the mapping target is a command prefix and not just a command, we
will define another subcommand term4 which always returns the fourth number in the sequence.

namespace ensemble configure ::fibonacci -map {
term ::math::fibonacci
term4 {::math::fibonacci 4}

} -subcommands {term termd sequence sum}

And of course, it all works as advertised.

fibonacci term 4 » 3
fibonacci term4 - 3

The -map and -subcommands options options together control the subcommands available in an ensemble and the
implementations to which they are mapped.

* If neither -subcommands nor -map is configured (or are empty) the ensemble subcommands are exactly those
exported by the namespace.

+ If the -map option is specified but - subcommands was an empty list (or unspecified), the ensemble commands
are exactly the keys of the dictionary passed as the -map option value.

* If -subcommands is specified (and not empty) the ensemble subcommands are exactly those listed in the option
value. The corresponding implementation is that supplied in the -map dictionary argument if the subcommand
is found there, or a procedure of the same name in the namespace linked to the ensemble.

12.6.3.2. Subcommand prefixes: option -prefixes

A feature of ensemble commands is that by default they accept unique prefixes for subhcommands. For example,

% fibonacci su 4 @
> 7

% fibonacci s 4 @
@ unknown or ambiguous subcommand "s": must be sequence, sum, term, or term4

© Uniquely identifies subcommand sum.
@ Error because ambiguous prefix.

This feature can be controlled with the -prefixes option which is enabled by default. If you want exact matching
of subcommands, you can disable the feature by setting the option to false.

% namespace ensemble configure ::fibonacci -prefixes false
% fibonacci su 4 @
@ unknown subcommand "su": must be sequence, sum, term, or term4

© Unique prefixes no longer work

338

Handling unknown subcommands: option -unknown

12.6.3.3. Subcommand positioning: option -parameters

For additional flexibility, the position in which the subcommand appears in the ensemble command can be
controlled with the -parameters option. For example, suppose we wanted to implement an ensemble command
arith for simple arithmetic using infix notation. So instead of commands like

arith + 3 4
arith - 5 2

we would be able to write

arith 3 + 4
arith 5 - 2

Thus in effect we want the subcommands +, - to be positioned after the first argument to the command.
The first step is to define a simple namespace implementing the commands.
namespace eval arith {
proc + {operand increment} {expr {$operand + $increment}}

proc - {operand decrement} {expr {$operand - $decrement}}
¥

Then we use the -parameters option to specify the number of parameters that appear before the subcommand
in the ensemble. The option value is a list of elements corresponding to the number of arguments that should
appear before the subcommand. The actual values of the list elements are only used to generate meaningful error
messages and do not have any relevance otherwise.

For our example, we want a single argument before the subcommand.
namespace eval arith {

namespace export + -
namespace ensemble create -parameters {operand}

5> i:arith
We can now use infix notation for the ensemble.

arith 3 + 4 » 7
arith 5 - 2 - 3
arith @ wrong # args: should be "arith operand subcommand ?arg ...?7" (1]

© Note use of operand in error message

For more substantive examples of how -parameters might be used, see Tcl Improvement Proposal #3 14% which
in addition to specifying the behaviour, also provides motivation for the feature and examples.

12.6.4. Handling unknown subcommands: option -unknown

Just as for global commands and commands within a namespace, Tcl provides a means for an application to
handle errors when an ensemble command is not defined. This is done with the -unknown ensemble configuration
option.

2 heepr/iwww.tcl.tkicgi-bin/tet/tip/314.htral

339

Handling unknown subcommands: option -unknown

If the ensemble’s -unknown option has the default value of the empty string, any attempt to invoke a subcommand
that is not defined will result in an error.

arith 2 * 3 @ unknown or ambiguous subcommand "*": must be +, or -

If the -unknown option is configured for the ensemble and is not the empty string, it is registered as the unknown
handler for subcommands for that ensemble and is called when a subcommand cannot be resolved as described in
the previous sections. The entire attempted command is appended to the unknown handler before its invocation.

The return value from the unknown handler must be a valid (possibly empty) list. If the returned list is not
empty, Tcl replaces the original ensemble command as well as the original subcommand with the words from the
returned list and re-executes the replacement with the additional arguments from the original invocation.

An example will clarify how this works. Let us assume that for our arith ensemble command, if the subcommand
has not been defined we will attempt to treat it as a standard operator defined in the tcl: : mathop namespace. So
we define the following unknown handler delegator for the ensemble.

namespace eval arith {
proc delegator {args} {
if {[llength $args] != 4} {
error "Wrong number of arguments: should be \"[lindex $args 0] operand \
operator operand\""

¥
return ::tcl::mathop::{lindex $args 2]
}
b

namespace ensemble configure ::arith -unknown ::arith::delegator

Now, if we try to execute a subcommand that has not been defined for arith, say *, delegator will be invoked
with the name of the ensemble and all additional arguments. So when we execute

arith 2 * 3 > 6

delegator is invoke with arguments : :arith, 2, * and 3. After some error checking, the command returns
:itclimathop: :*. Tcl then executes this command passing it the additional arguments 2 and 3 and returning
the result.

If the unknown handler returns a list that is empty, Tcl will then attempt to run the original command again. What
this does is to allow the unknown handler to add appropriate commands “on the fly”.

Continuing with our example, considering going through the unknown handler for every invocation of * would be
inefficient, we can instead add each subcommand the first time it is referenced.

Let us see how this might be implemented by redoing our example from scratch. This also illustrates that we can
create an ensemble without an explicit namespace by using the global one in conjunction with the -command
option.

namespace delete ::arith @
proc delegator {args} {
if {[llength $args] != 4} {
error "Wrong number of arguments: should be \"[lindex $args 0] operand operator \
operand\"*"
}
lassign $args cmd - op
set escaped_op [string map {* * 2 \\? [\\[] \\] \\ \\\\} sop] ©
if {[llength [info commands citcl::mathop: :$escaped_opl] == 0} {
error "Invalid operator \"$op\""
}
set map [namespace ensemble configure $cmd -map]

340

Checking for ensembles: namespace ensemble exists

dict set map $op ::tcl::mathop::$op
namespace ensemble configure $cmd -map $map
return ""

¥
namespace ensemble create -command arith -map {} -parameters {operand} -unknown [namespace \

current]: .delegator -prefixes false (3]
5 :iarith

© Getrid of our prior example

@® The string map is used to escape operators that might also be interpreted as special characters by info
commands

© Drefixes disabled so (for example) = will not be treated as a valid prefix of ==.

We have created the ensemble command as before but with no subcommands defined. Now everytime we invoke
a new (valid) operator, it will be added as a subcommand. We can see this in the following sequence.

namespace ensemble configure arith -namespace - (1]

namespace ensemble configure arith -map > (empty) (2]

arith 2 == - 0

arith 2 * 3 5> 6

arith 2 = 3 @ Invalid operator "=" (3]

namespace ensemble configure arith -map » == ::tcl::mathop::== * ::tcl::mathop::* (4]
© Notice linked namespace is the global namespace

© Initial subcommand map is empty

© = isnotavalid operator

O The subcommand map is dynamically filled so delegator is called only once per operator

This method of updating subcommands on the fly is often seen in code that implements object systems based on
namespaces where object method names are discovered dynamically3.

12.6.5. Checking for ensembles: namespace ensemble exists

The command namespace ensemble exists returns 1 if its argument is a ensemble command and 0 otherwise.

namespace ensemble exists string s 1
namespace ensemble exists puts > 0
namespace ensemble exists nosuchcommand » O

12.6.6. Nested ensembles

Ensembles can be nested so that the command takes multiple subcommand arguments that form a hierarchy.

Suppose there is a image manipulation package which implements a image command that handles PNG and JPEG
image formats and some set of operations like resizing or rotating. A possible interface it presents might look like

image png resize :» Lo
image jpeg rotate FnilATS TELE

This interface is easy to create with nested namespaces as shown below.

3The Windows COM IDispatchEx interface being one example.

341

Examples of ensembles

namespace eval image::png {
proc rotate {imagedata degrees} {
puts "Rotating PNG image"
b
proc resize {imagedata height width} {
puts "Resizing PNG image"
¥
namespace export *
namespace ensemble create
}

namespace eval image::jpeg {

proc rotate {imagedata degrees} {
puts "Rotating JPEG image"

¥

proc resize {imagedata height width} {
puts "Resizing JPEG image"

¥

namespace export *

namespace ensemble create

}

namespace eval image {
namespace export *
namespace ensemble create

b2

+ ::image
We can then call the commands in straightforward fashion.

% image png rotate "Some binary PNG" 90

» Rotating PNG image

% image jpeg resize "Some binary JPEG" 640 480
+ Resizing JPEG image

12.6.7. Examples of ensembles

Namespace ensembles are commonly used for a variety of purposes so we present some small examples
illustrating their use.

12.6.7.1. Enhancing existing commands

There are times when there is some commonly used functionality you wish was provided by a built-in command.
For example, a common pattern seen when using dictionaries is to use a default value if a key is not present in a
dictionary. Because the dict get command raises an error on an attempt to access to a key that is not present, a
check for existence is needed. This is such a commonly used idiom that most programmers have some version of
the following code.

proc dict_get_with_default {dictval key {defval ""}} {
if {[dict exists $dictval $keyl} {
return [dict get $dictval $key]
} else {
return $defval
h

Now if you wanted to add this functionality into the dict command itself for a more “integrated” feel, you could
add it to the dict ensemble.

342

Examples of ensembles

set map [namespace ensemble configure ::dict -map]
dict set map lookup dict_get_with_default
namespace ensemble configure ::dict -map $map

This now allows a more natural access to the functionality.

set adict [dict create a 1t b 2] »>a 1b2
dict lookup $adict a O 5> 1
dict lookup $adict ¢ O > 0

There is one caveat though. Someone may have the same bright idea and define a new subcommand of the same
name which has a different function. It is probably wise to use a prefix or some other means to prevent name
clashes.

12.6.7.2. Indexing lists by name

Data records in Tcl are often stored as lists with individual fields accessed or set using lindex or lset. For
example, a student record might be stored as a list containing the student name, age and college.

set rec {Manute 18 {College of Engineering}}
puts “[lindex $rec 0] is [lindex $rec 1]."
> Manute is 18.

Accessing fields using list indices can be tedious, particularly when the nurmber of fields is large. One can use
dictionaries or write accessor functions to access the list. The former is not always under your control depending
on the interface returning the data. The latter is tedious to do for every record “type” in the application.

A more convenient way might be if we could define a student record as a list of fields,
record student {Name Age College}

and then be able to access fields using names instead of indices making it more readable.
puts "[student $rec name] is [student $rec agel."

Let us see how to provide such a facility through a generic command, record, that will create an ensemble to
retrieve fields by name.

The record command first ensures that there are no conflicts with existing commands of the same name as the
record being created. It then creates an ensemble command of the given record name whose subcommands are
field names and map to an anonymous procedure (defined in the variable accessor) that returns or updates the
appropriate field.

proc record {recname fields} {
if {[uplevel 1 [list namespace which $recname]] ne ""} {
error "can't create command ‘'$recname': A command of that name already exists.”

¥

set index -1
set accessor [list ::apply {
{index rec args}

if {[llength $args] == 0} {
return [lindex $rec $index]
b

343

Examples of ensembles

if {[llength $args] == 1} {
return [lreplace $rec $index $index [lindex $args 0]]

}
error "Invalid number of arguments."
}
Ha|
set map {}

foreach field $fields {
dict set map $field [linsert $accessor end [incr index]]

h

uplevel 1 [list namespace ensemble create -command $recname -map $map -parameters rec]

As an aside, note that the namespace ensemble is created in the context of the caller via uplevel.

We can now access fields more conveniently.

% record student {name age college}
» ::istudent

% student $rec age (1]
> 18

% set rec [student $rec age 19] @

» Manute 19 {College of Engineering}

@ Retrieve a field
© Update a record

Since the code is generic, we could of course define other record types as well.

% record automobile {manufacturer model color}
» ::automobile

% automobile {Ferrari CaliforniaT red} color

> red

12.6.7.3. Command objects using ensembles

Our final example uses namespace ensembles to illustrate implementation of a “command as ar object” idiom. We
will implement an ordered set that can be used as follows

set oset [ordered_set::new] (1]
$oset add foo @

$oset contents ©

$oset remove foo @

$oset destroy ©

rename $oset "" @

Creates a new empty ordered set

Adds an element to the set if it does not exist
Returns the contents of the set

Removes element foo from the set if it exists
Destroy the ordered set

Alternate means of destroying the set

Qo0

Examples of ensembles

An ordered set is ordered in that elements are preserved in the order that they are added. It so happens that Tcl
dictionaries are order preserving so our implementation is very simple. We keep a nested dictionary, the first level
being indexed by an object identifier with the corresponding value being the content of the corresponding set, also
stored as a dictionary thanks to the order preserving properties.

namespace eval ordered_set {
variable nextid 0
variable sets {}

proc add {id elem} {
variable sets
dict set sets $id $elem $elem
return

¥

proc remove {id elem} {
variable sets
if {[dict exists $sets $id $elem]} {
dict unset sets $id $elem
¥

return

b

proc contents {id} {
variable sets
return [dict keys [dict get $sets $id]]

b

Now we just have to arrange for creating ordered sets and cleaning up when they are destroyed. The latter is
easy, we just have to get rid of the data, so we show that first. The only non-obvious part is the additional args
argument, the reason for which will soon be clear.

proc ordered_set::cleanup {id args} {
variable sets
dict unset sets $id

}

We are left with needing a means to create an ordered set command object which was more or less the whole
point of this whole exercise.

We first generate a unique name for the command object using the namespace variable nextid as a identifier
counter and initialize the corresponding content of the sets dictionary to empty.

We then create a map of ensemble subcommands that are mapped to a command prefix consisting of the
corresponding procedure name with the identifier of the object being passed as the first argument. This map is
then used to create an ensemble command whose name is the name of the object.

The last thing we have to deal with is object destruction. Any command can be deleted by using rename to rename
it to the empty string. The same will also hold for our object command so we need to arrange for the related data
to be cleaned up from the sets dictionary when the command is deleted. We do this by setting a trace on the
command object to invoke our cleanup procedure when it is deleted. The trace callback appends additional
arguments (that we do not use) which is why cleanup definition had an unused args parameter. Note that we had
also added a destroy subcommand to our map that does the same thing as syntactic sugar.

345

Chapter summary

Here is the command object creation procedure.

proc ordered_set::new {} {

variable nextid

variable sets

set objname “::oset#[incr nextid]"

dict set sets $nextid [dict create]

set map [dict create \
add [list add $nextid] \
contents [list contents $nextid] \
remove [list remove $nextid] \

destroy [list ::rename $objname ""]] (1)

namespace ensemble create -command $objname -map $map
trace add command $objname delete {list [namespace current]::cleanup $nextid]
return $objname

@ Note rename is fully qualified else it will default to the current namespace.

We can try out our ordered sets.

set oset [ordered_set::new] » ::oset#1
$oset add fee + (empty)
$oset add fie + (empty)
$oset add fo +» (empty)

$oset contents » fee fie fo

$oset add fie
$oset contents fee fie fo
$oset remove fee (empty)

> (empty) @
5
N
$oset contents » fie fo
$oset destroy > (empty)
7]

$oset contents invalid command name "::oset#1" @

© Duplicate element, preserves existing order
© Object has been destroyed

Of course, our toy implementation only illustrates some basic techniques. A real implementation would be
generalized, support inheritance and other features. The Tcl Wiki has several examples of object-oriented
programming systems built on top of namespaces. With the advent of TclOO there are few reasons to roll your
own.

12.7. Chapter summary

In this chapter we examined namespaces and their use in the modularization of large code bases. The dynamic
nature of Tcl widens their role beyond that in other languages to form the basis of simple object based systems,
nested command structures and such. In Chapter 14 we will study Tcl’s native object-oriented features which build
on some of these facilities to offer sore of the most flexible object-oriented designs found in languages.

While namespaces are targeted towards one aspect of modularization, there is another aspect — packaging
common functionality into libraries — that we will look at next.

346

Libraries and Packages

One of the basic principles of software development is to collect implementations of commonly useful and widely
applicable functionality into libraries that can be shared amongst multiple applications. The simplest mechanism
for implementing such a library is as a set of procedures in a file that is then sourced by any application that
makes use of its functionality. In the case of a large library, this file could be a “main” file that optionally sources
other files that implement parts of the library. This simple approach needs to be enhanced to provide a means of
locating the library on the file system, loading on demand, versioning etc.

For historical reasons, Tcl includes multiple mechanisms for working with libraries:

+ An index based system where procedure names are stored in an index file that is looked up and loaded on
procedure invocation

Tcl packages which define a structure for versioning, locating and loading libraries implemented through
multiple scripts and extensions

« Tcl modules that implement a simpler and more performant way to locate and load libraries implemented in a
single file
We will describe the particulars pertaining to all three in this chapter. Yet another alternative, tclkits, is dealt with
in Section 19.4.

13.1. The Tcl system library

Some of the Tcl core commands, for example clock, are themselves implemented as a library of Tcl scripts. The
name of the directory where this system library resides is stored in the tcl_library global variable.

set tcl_library » c:/tcl/866/x64/1ib/tcl8.6

The same information is also available via the info library command which simply returns the value of the
tcl_library global variable.

info library s c:/tcl/866/x64/1ib/tcl8.6

When Tcl starts up, it sets the value of the tc1_library variable by checking the following locations in order for
library scripts:

« The directory specified by the TCL_LIBRARY environment variable if it exists and references an appropriate
directory

« Directories relative to a default location that is defined when the Tcl executable was compiled
« Directories relative to the location of the Tcl executable
+ Directories relative to the current working directory

The above locations are checked in order and the first one that contains the expected library scripts is used to
initialize tcl_library.

347

Loading libraries on demand: auto_load

13.2. Loading libraries on demand: auto_load

In Section 3.5.1.2 we described Tcl’s default handling of unknown commands. One of the steps described there was
how the unknown command handler uses the auto_load command to locate definitions of commands that are
not currently known to the Tcl interpreter. We now look at auto_load in more detail.

When the default handler for unknown commands is called, it uses the auto_load command to try and locate the
definition of the command that was invoked.

auto_load comMMaNiNAME

The command returns 1 if the command could be located and defined and 0 otherwise. It works by searching the

list of directories stored in the global variable auto_path for files named tclIndex. Each tclIndex file contains
an index that maps command names to the associated script for creating that command. Generally, this command
creation script is simply a source command that executes a file in the directory containing the tclIndex file.

13.2.1. The tclIndex files

The tclIndex file is actually just a Tcl script that adds entries to an array auto_index that maps command names
to the script to be executed to define that command. For example, here is a line from the tc1Index file for the Tcl
system library.

set auto_index(history) [list source [file join $dir history.tcl]]
The very first time the history command is referenced, Tcl’s unknown command handler will invoke auto_load

which will

* First check the auto_index global array for an entry for the history command. If found, it executes the
corresponding script which presumably will define the required command.

* Ifno entry is found in the auto_index array, auto_load will evaluate all tc1Index files found in the
directories listed in the auto_path global variable.

The first step is then repeated except that if there is still no matching entry in the auto_index array,
auto_load returns 0 indicating the command was not found.

A tclIndex file may be written and maintained manually by hand but is usually generated using the
auto_mkindex command.

m
1
i
]
~J

auto_mkindex -Ix ?EopRaT 7
The command processes all files in the directory b1z that match any of the file name patterns GLosrAT. These
patterns are in the syntax used by the glob command.

If no GLosrpaT arguments are specified, the command defaults to *. tcl. A tc1Index file containing auto_index
entries of the form we saw above is then written to the same directory.

A

13.3. Packages

Tcl packages are one way of bundling a library of commands and procedures identified by a name and version.
An application desiring to use the functionality provided can request the package to be loaded and even demand a
specific version of the package.

If you have procedure names that contain special glob pattern characters such as *, the
auto_mkindex command can get confused.

348

Naming packages

13.3.1. Naming packages

Packages are identified by their name, for example http. Package names may contain arbitrary characters
although it is advisable to avoid special characters. Packages may contain the : : namespace separator character
sequence as well. Note however that these are not treated as namespace characters as packages have no direct
correlation with namespaces.

13.3.2. Package versioning

Over time, new releases of a library contain feature enhancements, bug fixes and so on. Version numbers are used
to distinguish these releases. A Tcl installation may contain multiple versions of a single package and applications
can choose which version they wish to use.

Packages implemented as Tcl modules impose some additional restrictions on package
names which we discuss in Section 13.5.

13.3.2.1. Package version syntax

Version identifiers take the form of a sequence of decimal numbers generally separated by a . character.
For example, 8, 8.6 and 8.6.1000 are all valid version numbers. Version numbers in this form, using only .
separators, are assigned to stable releases, i.e. releases that have been deemed ready for production use.

As a special case, a version number may contain the letters a or b in place of exactly one . separator; for example,
8.6a5, 8.6b7. These versions indicate unstable releases where functionality might change and which might

not have undergone sufficient testing to be considered production ready. The a and b signify “alpha” and “beta”
quality releases.

The leftmost number in a version identifier is the major version and the following number, if present, is the
minor version. By convention, package releases are expected to follow certain norms with respect to changes in
major and minor versions:

» Packages are expected to maintain backward compatibility within a major version. Thus the 1.2 release of a
package is expected to maintain compatibility with applications that make use of versions 1.0 or 1.1 of the
package. There is no expectation of forward compatibility. Applications that work with version 1.3 may not
work with 1. 2.

« Conversely, a change in major versions implies potentially incompatible changes in functionality. This is true in
both the forward and backward directions. For example, applications that work with version 2.0 of a package
will not necessarily work with either 1.0 or 3.0.

13.3.2.2. Comparing package versions: package vcompare|vsatisfies

Version numbers follow a sequence where higher version numbers indicate a later release of a package. When
comparing version numbers, the leftmost version numbers have higher significance and any missing version fields
are treated as 0. For example, 8.6 .1 is a later version than 8.5.100 while 8.6 and 8.6.0 are equal.

If a version number includes a and b as separators, they are treated as an additional version component with
values -2 and -1 respectively. For example, 8.6b22 is treated as version 8.6.-1.22 and therefore less than
8.6.0. Consequently, versions marked alpha or beta are naturally deemed earlier than stable versions having the
same major and minor levels.

The package vcompare command can be used to compare two version numbers.

package vcompare viRA V

349

Discovering packages

The command returns -1, 0 or 1 depending on whether VERA4 is less than, equal, or greater than vVERB.

package vcompare 8.6 8.6b22 » 1

The package vsatisfies command offers a more flexible method to check if a package satisfies certain version
requirements.

package vsatisfies VER REQ ?RED .2

The command returns 1 if vEr meets at least one of the requirements stipulated by the REQ arguments. These
arguments must be in one of the forms shown in Table 13.1.

Table 13.1. Package version requirements syntax

Requirement Description

MIN-MAX This requirement specifies a range within which the version must reside.
If m7vand MAX are equal, the version must also be the same. Otherwise, the
version must be at least ¥1nv and strictly less than mMax.

package vsatisfies 8.6.6 8. 21

package vsatisfies 8.5 8.7 - 0

package vsatisfies 8.7 8.7 s 1

MIN- The version must be at least #1n. There is no limit for the upper bound for the
version. '

package vsatisfies 8.6 8- » 1
package vsatisfies 9 8- 5 1

MIN The version must be at least #1n. The upper bound of the permissible range is
the next higher major version relative to Mrn.

package vsatisfies 8.6 8 » 1
package vsatisfies 98 5 0

For example, Tcl version 8.6.1 had some bugs in its I/O implementation so to avoid this version while allowing any
other Tcl with major version 8, you could write

if {![package vsatisfies [info patchlevel] 8-8.6.1 8.6.2]} {
error "Unsupported version"

b

The above will error if the Tcl major version is not exactly 8 or if the version is 8.6. 1 (remember the upper bound
is not included in the permitted range).

13.3.3. Discovering packages

The package names command can be used to enumerate all the packages that are known (not necessarily loaded)
to the Tcl interpreter. However, getting the complete list requires Tcl to have already searched all its library
directories at least once. This can be done by attempting to load a non-existent package.

catch {package require nosuchpackage} - 1

350

Installing packages

This forces a search of all library directories. We can then enumerate the available packages.

% package names
> rcs logger counter math::rationalfunctions fileutil::magic::mimetype Tcl00 Plotchart zi...

When a package has multiple versions installed, the package versions command will list the available versions
for that package.

package versions http » 2.8.9 1.0

The command returns an empty list if no packages of that name are available.

13.3.4. Installing packages
Tcl does not have one single standardized method of installing packages.

If you are using a OS-provided distribution, other 0S-supported Tcl packages can be installed in the same manner
as Tcl, for example from within the Bash shell

sudo apt-get install FPACKACE

If you are using the ActiveState Tcl distribution, you can use the teacup program to both install and update
packages from their remote distribution site. From within a Bash shell or Windows command prompt,

teacup install FACKAGE

The Windows installer based distributions do not have a remote update capability at the time of writing. However,
they bundle many commonly used packages within the distributions. These can be individually installed or
uninstalled through the standard Windows Control Panel Programs and Features dialog’s Change menu option.

In cases where the distribution does not include the package or has a different version of the package than that
desired, follow the package’s installation instructions. In many cases, installation consists of simply extracting
the contents of a compressed archive into a directory that is included in the package search path stored in the
auto_path global variable. We describe the use of this variable in Section 13.3.5.

13.3.5. Searching for libraries

The auto_load and the package require commands search a list of directories, the search path, to locate
tclIndex and pkgIndex.tcl files respectively. This directory list is given by the auto_path global variable.

When a Tcl interpreter is created, auto_path is initialized by concatenating the following in order:

+ The value given by the TCLLIBPATH environment variable. This value is treated as the string representation
of a Tcl list each element of which specifies a directory. Note that this implies that if the \ character is used as
directory separator, it must be doubled as \\ to avoid Tcl interpreting as a backslash escape sequence.

+ The directory given by the tcl_library global variable.
+ The parent directory of the directory in tcl_library
« The directories listed in the tcl_pkgPath global variable if it exists.

Applications are free to add directories (or even remove them though this is generally not recommended) to the
search path by modifying auto_path appropriately.

Tel examines all directories listed in auto_path for pkgIndex.tcl files and evaluates them. These files register
package names and versions into a package index database as described in Section 13.3.8. This package database is
then checked at the time of loading as we describe next.

351

Loading packages: package require

This package search description does not apply to module-based packages. The procedure
for those is described in Section 13.5.2.

13.3.6. Loading packages: package require

To use the commands implemented by a package, the package must first be loaded into the Tcl interpreter. This is
accomplished by the package require command.

PRI

package require mamH
package require -exact

o LON

In the first form of the command, the optional rEQ arguments indicate version requirements using the syntax
described in Section 13.3.2.2. The second form requires the package to be the exact version specified and is
equivalent to the first form written as

ON=VERSION

package require NAME VRS

The command then loads the package as follows:

* Itchecks if the package named nvamMg is already loaded into the interpreter and whether it meets the specified
version requirements, if any. If so, it returns the actual version number of the loaded package. If the loaded
package version does not meet version specifications, the command will raise an error as multiple versions of a
package cannot be loaded into a single interpreter.

+ If the package is not already loaded, the command checks the internal package index database. If a suitable
version is found in there, it loads the package by evaluating the associated script.

* If not found in the package index, Tcl further searches for it as described in Section 13.3.5. If no matches are
found, the command raises an error. If one or more matches are found, the command selects the latest version
present (modulo the stable/unstable attribute described below), loads it into the interpreter and returns its
version number.

Some examples:

package require http
package require http 2-
package require -exact 2.8

In a previous section, we illustrated use of the package vsatisfies command to check we are running Tcl with
major version 8 except for 8.6.1. We could also do the check with the following command

package require Tcl 8-8.6.1 8.6.2 > 8.6.6
This is because the Tcl implementation itself presents a package interface as well.

The package require command loads the package only into the interpreter invoking
- ‘ - the command. This means you can actually load multiple versions of a package as long
o as they are loaded into different interpreters. For example, suppose the bulk of your
application uses a newer version of the http package but one particular piece needs
the functionality of V1 of the package for whatever reason. You can accomplish that as

follows:

package require http > 2.8.9
set ip [interp create] » interp0
$ip eval {package require http 1} >1.00Q

352

Checking if a package is loaded: package present

interp alias {} geturlvl $ip http::geturl » geturlvi

© Load V1 of the package

You can now call geturlv1 to use the V1 version of the http: :geturl command.
Note this may not always be possible with packages that include binary shared library
extensions.

Use of multiple interpreters is described in Chapter 20.

13.3.6.1. Choosing stable versus unstable packages

There is one other consideration when Tcl selects a package to load when multiple versions of the package are
present. As discussed in Section 13.3.2.1, package versions are distinguished between stable and latest, possibly
unstable, versions. The latter embed the a or b characters to mark them as alpha or beta versions.

When Tcl selects a package to load in response to a package require command, treatment of unstable packages
is affected by the selection mode. This mode may have the values stable and latest. In latest mode, the highest
version available of the package is chosen irrespective of whether it is stable or not. In stable mode, the highest
stable version of the package is chosen unless no stable versions are available in which case it falls back to the
highest unstable version.

The package prefer command allows setting and retrieval of this package selection mode.
package prefer ?stable|latest?
If no arguments are specified, the command returns the current mode.

package prefer » stable

If latest is specified as an argument, the mode is set accordingly. Passing stable as an argument is a no-op — the
current mode is not changed irrespective of its value. In both cases, the command returns the mode.

package prefer stable » stable
package prefer latest » latest

package prefer stable -» latest (1]

© Note that mode is not changed

At startup, the mode is set to stable unless the TCL_PKG_PREFER_LATEST environment variable is set in which
case the mode is initialized to latest. The value of of TCL_PKG_PREFER_LATEST is immaterial.

13.3.7. Checking if a package is loaded: package present
We saw earlier that we can list all packages available to a Tcl interpreter using package names. This does not tell
us if a package is already loaded. To do that we need to use the package present command.

package present ?-exact? NaMw REQ ?RE(.Y

The command works exactly like package require except that it will not load the package if it was not already
present. If the package NAME is loaded, the command returns its version. Otherwise, an error is raised.

package present math @ package math is not present
package require math » 1.2.5
package present math » 1.2.5

353

Creating packages

13.3.8. Creating packages

Up to this point, we have discussed what packages are and how they are used. We will now go into how to
construct them.

A package consists of
* zero or more Tcl script files
* zero or more binary executables in the form of shared libraries
* zero or more data files such as images

*+ apkglndex.tcl file contains, amongst other things, commands that tell Tcl the package name and version and
the script to be evaluate to load the package into the interpreter.

Commonly, the package contains a “main” script which is sourced into the interpreter and in turn reads any
additional script files and loads the shared libraries if present.

We will illustrate the process of package creation through an example. Our package, named sequences, will
provide procedures, arith_term and geom_term, for calculating the n'™ term of arithmetic and geometric
sequences respectively. We will modularize this large package by breaking up the implementation into two files
seg_geom.tcl

seq_geom. tcl
namespace eval seq {
proc geom_term {a r n} {
return [expr {$a * $r**($n-1)}]
}
T

and seq_arith.tcl respectively.

seq_arith.tcl
namespace eval seq {
proc arith_term {a i n} {
return [expr {$a + ($n-1)*$i}]
}
}

source [file join [file dirname [info script]] seq_geom.tcl]

package provide sequences 1.0
We will create these files in their own directory, also called sequences (though the directory name need not match
the package name).

We also treat seq_arith.tcl as the “main” script for the package so we have added the package provide
command at the end which informs Tcl when the file is sourced that the sequences package version 1.0 is now
loaded into the interpreter.

The package provide command takes the form

package provide

where nAME is the name of the package. When used to define or create a package, the VERSTON argument must
be supplied and is taken as the version of the package being provided. If vErS 70N is not specified, the command
returns the version number of the package if it has already been previously provided, and an empty string
otherwise.

354

Creating packages

We saw earlier the use of the package present commmand to check if a package has
- ‘ - already been loaded into the interpreter. The package provide command without the
D3 VERSION argument is an alternate means of doing this.

if {[package provide Tk] eq ""} {
puts "Package Tk is not loaded.™
}

What remains to be done is to create the pkgIndex. tcl file for the package. For our sample package, the contents
of this file are shown helow

package ifneeded sequences 1.0 [list source [file join $dir seq_arith.tcll]

When Tcl searches for a package, it (among other actions) evaluates all pkgIndex.tcl files found in the package
search path as described in Section 13.3.5. A pkgIndex. tcl file is just a normal Tcl script and may contain any Tcl
commands but it’s primary purpose is to inform Tcl about the packages it makes available and how they are to be
loaded. It does this through the package ifneeded command.

package ifneeded rams v PECRIFT?

When this command is evaluated, Tcl makes a note that version vzr of package name may be loaded by evaluating
scrrpr. This information is used when an application requests a package to be loaded as we described in

Section 13.3.6. If the SCRIPT argument is not provided, the command returns the script that was previously
registered for loading the package.

To find the location a package was loaded from, you can often use the package
- ‘ - ifneeded command without the SCRIPT argument. For example,
* 1 >
% package ifneeded fileutil [package require fileutil]
s source c:/tcl/lib/tcllib1.18/fileutil/fileutil.tcl

Before evaluating a pkgIndex. tcl file, Tcl sets the global variable dir to the path of the directory containing the
pkgIndex.tcl file being evaluated. In our example we use this to load the main script for our package.

A slightly more capable example demonstrates the use of packages in conjunction with auto loading. Our
pkgIndex.tcl file for our sequences package could have been written as follows:

namespace eval seq {
proc setup_autoload dir {
global auto_index
foreach cmd {arith_term geom_term_geom} {
set auto_index([namespace current]::$cmd) [list source [file join $dir \
seq_arith.tcl]]

I
}

package ifneeded sequences 1.0 [list seq::setup_autoload $dir]

Now when an application does a package require sequences, the package scripts are not immediately read in.
Instead they will be evaluated the first time either seq_arith or seq_geom is called in a similar manner as for the
tclIndex based auto loading facility described in Section 13.2.

In a nutshell, the pkgIndex.tcl can be as sophisticated as you need it to be. It is advisable to keep it relatively
short however, as it is read and evaluated during TcP's package search even when it is not the package being
requested.

355

Shared library extensions: 1oad

Tclincludes a command, pkg_mkIndex, that creates pkgIndex. tcl files and a related

E command, pkg: :create, that you can use instead of manually creating the file.
However, manual creation is simple (as we saw above) for simple packages and for more
complex cases these commands are sufficiently lacking that their use is discouraged. We
therefore do not describe them further.

One final note about pkgIndex. tcl files. A single pkgIndex. tcl file may contain multiple package ifneeded
commands each registering a different package or even a different version of each package. You will find this or
similar methods used in “package bundles” like Tcllib ! which are composed of multiple packages.

13.4. Shared library extensions: load

Tcl commands can be implemented natively in shared libraries referred to as Tcl extensions. These commands are
made available in a Tcl interpreter by loading the extension. Usually the package author will load the extension by
providing a suitable pkgIndex.tcl file so that the application loads it with the package require command.

When no pkgIndex.tcl file is provided or when you are authoring the package and have to create the
pkgIndex.tcl file, the load command can be used to load the extension.

load ?-global? ?-lazy? ?--? paTh ?iN[TNAME? 27

Here paTH specifies the file path of the shared library. The optional 757 7naME and is used to construct the name
of the function in the extension that is to be called to initialize it. The optional INTERP specifies the name of

the interpreter into which the extension is to be loaded. By default, the extension is loaded in the interpreter
that executes the load command. This is only relevant in applications using multiple Tcl interpreters. Multiple
interpreters are discussed in Chapter 20.

After loading it, Tcl calls a specific function in the shared library to initialize it. In a normal interpreter, the name
of this function is constructed by changing the first letter of 7n7TNAME to upper case and the remaining to lower
case, and appending _Init to the result. For example, if 7v17NAME was myext, the name of the initialization
function would be Myext_1Init.

In a safe interpreter, discussed in Section 20.6, the name of the initialization function is similar except that
_Safelnit is appended instead of _Init as above.

If the shared library does not export a function of the constructed name, the load command will fail with an error.

If most cases, the initialization name need not be specified as it is by convention the same as the shared library
extension base name. Thus an extension myext . so can be loaded simply as

load /path/to/myext.so

The -global and -lazy options are very rarely used and not discussed here. Refer to the Tcl documentation of
load for details.

Another command useful in conjunction with load is info sharedlibextension which returns the file
extension used for shared libraries on that platform.

info sharedlibextension » .dl1
That allows us to write our above example as

load myext[info sharedlibextension]

1 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

356

Including shared libraries in packages

Note however that in most cases the file extension need not be specified as it will be automatically added.
Moreover, the full path need not be specified if the shared library is present on the search path for shared libraries
for that system. Nevertheless, it is good practice to specify the full path so as to prevent errors from muitiple files
of that name present on the search path.

13.4.1. Including shared libraries in packages

A shared library may be wrapped as a package either for the user’s convenience or because it is only part of a
package that includes other files, scripts or even other shared libaries.

In the simplest case, where the shared library is self-contained, the pkgIndex.tcl file could look as follows:
package ifneeded binpkg 1.0 [list load [file join $dir binpkg[info sharedlibextension]]]

In our example, the name of the package and the shared library are both binext. We make some allowance for
platform differences in the file name extension used for shared libraries by calling info sharedlibextension.

13.5. Modules

Although the Tcl package mechanism is flexible, that flexibility has a cost associated with it. When locating
packages, Tcl has to go through the package directory search path looking for pkgIndex.tcl files. These have to
then be read and evaluated as Tcl scripts. In a large Tcl application that loads many packages, this can result in

a noticeable delay at startup time, particularly when the application resides on a remote network location. Tcl
modules provide an alternate scheme for libraries that mitigates these startup costs at the price of some flexibility.

Tcl modules incorporate two changes that reduces the time required for locating them:

« The module name and version are encoded into the file name itself and Tcl does not need to evaluate a file to
retrieve this information as it does with pkgIndex.tcl files in the package case.

+ The directory search path for modules is more limited.

Although implemented differently than the package form we discussed earlier, Tcl modules are used with many of
the same commands. In particular,

» The package names command used for discovering available packages includes modules as well.

+ Modules are loaded with package require. When searching for a module, Tcl will give preference for a
module based implementation of a package before a traditional one (assuming both have the same version).

« The versioning syntax for modules is the same as discussed in Section 13.3.2.

For this reason, when we will any reference to “packages” henceforth will include what we will term as
«traditional” packages as well as modules. The rest of this section only describes the areas where modules differ
from traditional packages.

13.5.1. Module file names

A Tcl module is stored as a single file containing a Tcl script. The name of the file must be the package name,
followed by a - character, followed by the package version and an extension of . tm. Specifically, it must match the
regular expression

([_[:alpha:]][:ﬁ[:alnum:]]*)—([[:digit:]].*)\.tm
For example, the http package that ships with Tcl is implemented as a module in the file http-2.8.9.tm.
It is strongly suggested that module based packages not use upper case characters in the

- ‘ - package name. Since the package names are mapped to file names, there is potential for

oL confusion between file systems that distinguish character case and those that do not.

357

Searching for modules

If the package name contains any : : character sequences, they are treated specially during the module search
process. This is explained in the next section.

13.5.2. Searching for modules

One important respect in which module based packages differ from the traditional packages is in how they are
located. Module searches do not follow the process described for auto-loading and traditional packages described
in Section 13.3.5.

When searching for a module hased package, Tcl first constructs a partial file path for the module. This is the same
as the package name with one change — any : : character sequences in the package name are replaced by the
directory separator character. So for example

package require math::calculus

would translate to a file base name of math/calculus-*. The * allows for different versions of the package. This
partial path is appended to each directory present in the module search path (described below). If one or more
files matching the constructed path exists, the equivalent of the following command is executed for each such file:

package ifneeded r/iikAc vERSION [1ist source AT

Here vERSTON s extracted from the module file name and MOpULEPATH is the path to the matching file.

As described in Section 13.3.8 for traditional packages, this effectively registers the module in the package
database. Requiring the package will result in evaluation of the corresponding source command.

The module search path

The module search path is completely independent of the auto_path global variable used for traditional packages.
It is given by evaluating the command tcl: :tm: :path list.

% tcl::tm::path list

> C:/Tcl/866/x64/1ib/tcl8/site-tcl C:/Tcl/866/x64/1ib/tcl8/8.0 C:/Tcl/866/x64/1ib/tc18/8.1
b C:/Tcl/866/x64/1ib/tc18/8.2 C:/Tcl/866/x64/1ib/tcl8/8.3 C:/Tcl/866/x64/1ib/tcl8/8.4
b C:/Tcl/866/x64/1ib/tcl8/8.5 C:/Tcl/866/x64/1ib/tc18/8.6

This is the list of directories that Tcl will examine when looking for a module.
Adding directories to the module search path

You can add individual directories to this search path with the tcl: :tm: path add command.
tcl::tm::path add ?:o:n .2

Each argument to the command is added in turn to the front of the search path in order. If an argument already
exists in the search path, it is ignored.

There is an important restriction enforced in the directories included in the search path. No directory in the search
path may be an ancestor of another. For example, the following will raise an error:

% tcl::tm::path add /temp/foo

% tcl::tm::path list

> /temp/foo C:/Tcl/866/x64/1ib/tcl8/site-tcl C:/Tcl/866/x64/1ib/tcl8/8.0
b C:/Tcl/866/x64/1ib/tcl8/8.1 C:/Tcl/866/x64/1ib/tcl8/8.2 C:/Tcl/866/x64/11ib/tcl8/8.3
b C:/Tcl/866/x64/1ib/tcl8/8.4 C:/Tcl/866/x64/1ib/tcl8/8.5 C:/Tcl/866/x64/1ib/tcl8/8.6

% tcl::tm::path add /temp

@ /temp is ancestor of existing module path /temp/foo.

% tcl::tm::path add /temp/foo/bar

@ /temp/foo/bar is subdirectory of existing module path /temp/foo.

358

Installing modules

An alternative means of adding directories to the module search path is the tcl::tm::roots command which
adds zero or more “roots” to the module search path. This differs from tcl: :tm: :add in that the passed
arguments are not directly added. Rather, for each argument rooT passed to it, the command adds directories of
the form:
« ROOT/tclMAJOR/Site-tcl where MAJOR is the major version of this Tcl interpreter
« One or more directories RoOT/ tclMAJOR/ MAJOR. MINOR for every value of MTNOR that is less than or equal to
the minor version of this Tcl interpreter.

For example, after evaluating the command
% tcl::tm::roots ~/lib
in Tcl 8.6 interpreter, the module search path will look as follows:

% print_list [tcl::tm::path list]

5> C:/Users/ashok/Documents/lib/tcl8/site-tcl
C:/Users/ashok/Documents/1ib/tcl18/8.0

...Additional lines omitted...

Removing directories from the module search path

You can remove directories from the module search path with the tcl: :tm: :path remove command.
tcl::tm::path remove ?0IR .72

Arguments that do not exist in the search path are ignored.

Module search path initialization
The module search path is initialized adding directories in the following order:
« Subdirectories of the form tclMaJor/MAJOR. MINOR under the parent directory of the path returned by the
info library command.
« Subdirectories of the form tclMaJor/MAJOR. MINOR under the parent directory of the current process
executable path as returned by the info nameofexecutable command.
+ The contents of the TCLMAJOR_MINOR_TM_PATH environment variables. These values are interpreted as
directories separated by the ; character on Windows and : on other platforms.
« The contents of the TCLMAJOR. MINOR_TM_PATH environment variables. These are interpreted as above but their
use is discouraged as use of the . character in environment variables is not portable.

In all the above paths, MaJoR is the major Tcl version of the current interpreter and MINOR takes on the values less
than equal to the minor version of the current interpreter. So for example, for Tcl 8.6, MaJOrR would be 8 and MINOR
would take on all values between 0 and 6.

13.5.3. Installing modules

Installation of packages implemented as modules is done in the same distribution-specific manner described for
traditional packages in Section 13.3.4.

If the module is not included with the specific Tcl distribution, installation by hand is very simple as modules must
by definition be implemented as a single file. This file simply needs to be copied to an appropriate directory on the
module search path. Place the module in the site-specific directory or directory named after the lowest supported
Tcl minor version.

359

Creating modules

For example, if the module requires a minimal Tcl version of 8.5, place it in the directory given by one of the
following locations:

% file join [info library] .. tcl8 site-tcl
5 C:/tcl/866/x64/1ib/tc18.6/../tcl8/site-tcl
% file join [info library] .. tcl8 8.5
% C:/tcl/866/x64/1ib/tcl8.6/../tc18/8.5

The latter will make it available to all versions of Tcl 8 later than 8.5 but not to earlier versions.

13.5.4. Creating modules

In the simplest case, where the package is implemented as a single Tcl script, creating a module just involves
naming the file appropriately. When multiple scripts are involved, the files can be simply concatenated together.
For example, to create a module for our example package we can execute the following at the Unix shell prompt:

cat seq_geom.tcl seq_arith.tcl > sequences-1.0.tm
The equivalent on Windows would be
copy seq_geom.tcl+seq_arith.tcl > sequences-1.0.tm

Note the module file name reflects the package name and version and has the . tm extension. Also note that the
script must have an package provide command, as for traditional packages, that specifies the package name and
version. This is contained in the seq_arith.tcl file in our example.

When multiple files are coaelsced into a module file, make sure to concatenate them in the correct order in cases
where the scripts evaluate code at run time. In such cases, files defining the procedures or data must appear
hefore scripts that invoke them during the loading itself.

13.5.5. Including binaries in modules

When a module-based package is requested by an application, Tcl loads the file implementing the module with the
standard source command. This means the same technique described in Section 10.2 for including binary data at
the end of Tcl script files can be used with modules. In particular, a shared library Tcl extension can be distributed
as a Tcl module by appending it to the module script separated by a Ctrl-Z character as described there. This can
then be copied to the file system and loaded from there as a shared library. The Tcler’s Wiki % has several examples
of this technique, one of which is http://wiki.tcl.tk/19801.

For a discussion of various means of including binary data in modules see TIP #190: Implementation Choices for
Tcl Modules.

13.6. Packages versus modules

How does one make a choice between distributing script libraries as a traditional package versus a module? There
are several considerations:

* Modules are easier to distribute as they are a single file. Packages need to be archived into zip, tar.gz or
similar format and unarchived on the target.
* Modules are faster to load unless they embed shared libraries.

* Library scripts that have significant platform or version-specific components are easier shipped as packages as
the pkgIndex. tcl file can load the appropriate pieces based on runtime information.

* Packages that include shared libraries are better implemented as packages. Although modules can support
shared libraries as described in the previous section, there are several drawbacks to this. Copying the shared

2 http/jwiki.tel.tk

360

Multiplatform packaging: platform package

library out to disk and reading it back incurs a load time performance hit. Some heuristic based virus scanners
also flag this behaviour of writing code to disk and executing it as reflective of malware.

13.7. Multiplatform packaging: platform package

It is useful and convenient for the end user if the package can be installed in single directory, perhaps on the

network, from where it can be loaded into Tcl interpreters running on differing architectures. For packages that

are purely script-based, this is obviously not an issue. However, if your package includes shared libraries, support
for multiple platforms from a single installation directory is a little trickier because the pkgIndex.tcl file for the
package must load the appropriate shared library from the installation directory. The platform package addresses
this requirement of a well-defined means of identifying the operating system and architecture of the host system.
The package is part of the Tcl core distribution but must be explicitly loaded before its commands can be invoked.

package require platform » 1.0.14

The package implements three commands, identify, generic and patterns, all of which are placed under the
platform namespace.

The platform::identify command returns an identifier for the platform that encodes the operating system, C
runtime version and CPU architecture. For example, on an Linux Ubuntu system,

% platform::identify
> linux-glibc2.19-x86_64

while on a Windows 32-bit system,

% platform::identify
» win32-1x86

The platform: :generic command is similar except it returns a less exact identifier that encodes the “family” of
platforms. For example, on the same Ubuntu system,

% platform::generic
s> linux-x86_64

The third command in the package is platform: :patterns. This command takes an argument that is a platform
identifier as returned by platform: : identify. It then returns a list of all platform identifiers that are compatible
with the one passed.

Again, on our Ubuntu system,

% platform::patterns [platform::identify]
5 linux-glibc2.19-x86_64 linux-glibc2.18-x86_64 linux-glibc2.17-x86_64

b

ly
b
b
N

linux-glibc2.
linux-glibc2.
linux-glibc2.
linux-glibc2.
linux-glibc2.

16-x86_64 linux-glibc2.15-x86_64 linux-glibc2.14-x86_64

13-x86_64 linux-glibc2.12-x86_64 linux-glibc2.11-x86_64

10-x86_64 linux-glibc2.9-x86_64 linux-glibc2.8-x86_64 linux-glibc2.7-x86_64
6-x86_64 linux-glibc2.5-x86_64 linux-glibc2.4-x86_64 linux-glibc2.3-x86_64
2-x86_64 linux-glibc2.1-x86_64 linux-glibc2.0-x86_64 tcl

Let us see an example of how these commands might be used to load the correct shared library image from a
package that is installed for multiple architectures. Here is the pkgIndex. tcl file for our imaginary binpkg
package that supports multiple platforms within a single installation.

361

The platform: :shell package

apply {
{package_name dir} {
set filename $package_name[info sharedlibextension]
set ident [platform::identity]
set subdirs [list $ident \
[platform::generic] \
{*}[platform: :patterns $ident]]
foreach subdir $subdirs {
set path [file join $dir $subdir $filename]
if {[file exists $path]} {
package ifneeded binpkg 1.0 [list load $path]
return

}
}
} binpkg $dir

We have placed our code inside an anonymous procedure so as to not clutter the global namespace with our
temporary variables. We pass the name of the package, binpkg, and the directory path where the package is
installed as arguments to this function. (As discussed earlier, this last is set by Tclin the dir variable before the
pkgIndex.tcl is sourced.)

The code checks for the existence of a shared library in the following subdirectories in order:
* The subdirectory named after the platform identifier as returned by platform: : identify
* The subdirectory corresponding to the generic platform identifier for the current platform

+ Finally, the list of subdirectories corresponding to platforms that are compatible to the current platform. This
list is returned by the platform: :patterns command

The first suitable shared library found is used. Note that if the search fails, no package ifneeded is invoked.
Consequently, on such platforms even though the pkgIndex. tcl file may be evaluated, it will not register any
packages with the interpreter and any attempt to load the package will fail.

13.7.1. The platform: :shell package

The platform: :shell package is similar to the platform package except that while the latter returns platform
information for the currently executing Tcl shell, the former returns information about a different Tcl shell
residing on the same machine. The shell of interest is identified by its path and must be executable on the same
machine as the current shell.

The package provides platform::shell::identify and platform: :shell: :generic commands that are
functionally similar to the platform: :identify and platform: :generic commands except that they return the
corresponding information for the targeted shell.

As an example, both 32-bit and 64-bit shells may be installed on the same 64-bit Windows machine. Assuming we
are currently running the 64-bit shell, we can retrieve

% package require platform

+ 1.0.14

% package require platform::shell

» 1.1.4

% platform::identify

+ win32-x86_64

% platform::shell::identify c:/tcl/866/x86/bin/tclsh.exe
» win32-ix86

The package also has an additional command platform: :shell: :platform which returns the contents of
platformelement of the target shell’s tc1_platform array we described in Chapter 2.

362

Introspecting package configuration

% platform::shell::platform c:/tcl/866/x86/bin/tclsh.exe
+ windows

Where might one make use of the package: :shell commands? The primary reason for the existence of

these commands is for code repositories and installers where the Tcl shell running the installer script is not
necessarily the same as the target shell for which a package is being installed. They allow the installer to detect the
architecture of the target shell and copy the appropriate files there.

13.8. Introspecting package configuration

Packages (using the term generically to include modules and shared libraries) may wish to expose certain
configuration information to applications such as implemented features, build information etc. They should do so
by implementing a pkgconfig command within the package’s namespace. This command should support at least
the subcommands 1ist and get. The pkgconfig list command should take no arguments and return a list of
configuration keys. The pkgconfig get command should take a single argument which is a configuration key
and return the corresponding value. Applications can then invoke this command to retrieve information about the
package. Note that the key names and contents are entirely up to the package.

As an example, Tcl itself exposes its configuration through the pkgconfig command in tcl namespace.

% tcl::pkgconfig list @

> debug threaded profiled 64bit optimized mem_debug compile_debug compile_stats
,, libdir,runtime bindir,runtime scriptdir,runtime includedir,runtime docdir,runtime
,, libdir,install bindir,install scriptdir,install includedir,install docdir,install

% tcl::pkgconfig get optimized (2]

s 1

© Lists all available keys provided by the Tcl package
© Tells us whether compiled with optimization enabled

13.9. Chapter summary

A means for packaging and distribution of libraries is a requirement of any programming language environment.
In this chapter we examined the core facilities Tcl provides for this purpose. Later in Chapter 19, we will see
another means of packaging libraries and entire applications for distribution based on Tcl’s virtual file system
technology.

13.10. References

TIP189
TIP #189: Tcl Modules, Kupries, Porter et al, Tcl Improvement Proposal #189, http://www.tcl.tk/cgi-bin/tct/
tip/189

TIP190
TIP #190: Implementation Choices for Tcl Modules, Kupries, wippler, Hobbs, Tcl Improvement Proposal #190,
http://www.tcl.tk/cgi-bin/tct/tip/190

363

Appendix B. Utility scripts

We use some simple utility scripts in this book for purposes of pretty-printing etc. These are listed here. Some of
these require the fileutil package from Tcllib? to be loaded.

package require fileutil

The print_args utility simply prints the arguments passed to it, separated by commas.

proc print_args {args} {
puts "Args: [join $args {, }1"
}

The print_list utility prints each element of a list on a new line. The print_sorted utility is similar but prints
them in sorted order.

proc print_list {1} {
puts [join $1 \n]
}

proc print_sorted {1} {
print_list [lsort -dictionary $1]
b

The print_dict utility, transcribed from the Tcllib® debug module prints a formatted dictionary.

proc print_dict {dict args} {
if {[llength $args] == 0} {
set names [lsort -dict [dict keys $dict]]
} else {
set names {}
foreach pattern $args {

lappend names {*}[lsort -dict [dict keys $dict $pattern]]
¥
b
set maxl O
foreach name $names {
if {[string length $name] > $maxl} {
set maxl [string length $name]
¥
}
set maxl [expr {$maxl + 2}]
set lines {}
foreach name $names {
set nameString [format %s $name]
lappend lines [format "%-*s = %s" $maxl $nameString ([dict get $dict $name]]
}
puts [join $lines \n]
}

The print_array prints the contents of an array or a subset thereof.

; http://core.tcl.tk/tcllib/doc/trunk/embedded/indexhtml
http://core.tclAtk/tcllib/doc/trunk/embedded/index.html

625

proc print_array {args} {
uplevel 1 parray $args
}

The print_file utility dumps the contents of a file while write_file writes specified contents to a file.

proc print_file {path} {
fileutil::cat $path
}

proc write_file {path content} {
fileutil::writeFile $path $content
}

The wait utility enters the event loop for the specified amount of time.

proc wait {ms} {
after $ms [list set ci_wait_flag 1]
vwait ::_wait flag

The lambda command is syntactic sugar for defining an anonymous procedure.

proc lambda {params body args} {

return [list ::apply [list $params $body] {*}$args]
}

The bin2hex command pretty prints binary data in hex.

proc binZhex {args} {
regexp -inline -all .. [binary encode hex [join $args ""]]

}

626

