Introduction

1.1. A little bit of history

The first version of Tcl sprang to life at UC Berkeley way back in 1988. Professor John Qusterhout’s primary
motivation! was to create a standardised, extensible language that could be easily embedded into applications

to allow their functionality to be scripted. The accompanying graphical toolkit Tk, which used Tcl as its scripting
language, came into being a couple of years later. The combination grew in popularity and was influential enough
for Prof. Ousterhout to receive both the ACM Software System and USENIX STUG awards in 1998.

Since those early years, Tcl has grown from an “embeddable, scripting” language to a full fledged dynamic
programming language versatile enough for programs ranging from one-line throwaways to enterprise scale
distributed systems. Development of Tcl is now controlled through the Tcl Core Team % (TCT) which makes
decisions on future enhancements through a formalized voting process. These enhancements may be proposed by
any interested parties through a Tcl Improvement Proposala, or TIP.

1.2. What Tcl offers

Tcl’s benefits permeate all aspects of the software development process. Programmers will appreciate

+ a wide-ranging set of built-in commands as well as libraries and extensions for common tasks
+ programming conveniences like seamless Unicode support and infinite precision arithmetic

« the malleability which enables metaprogramming, custom control structures and embedded mini-languages
that are specialized for the target domain

+ flexible and extensible support for object-oriented programming that lets you write code in a variety of object-
oriented styles

» an advanced channel abstraction for I/O with support for defining new types of data streams and pluggable
transforms. For example, automatically compress data while writing to a file. Or encrypt. Or both.

+ avirtual file system facility that allows remote FTP sites, databases, in-memory structures etc. to be exposed
and accessed as if they were local files.

» the ability to call out to other languages, such as C for a performance boost or to Java or .Net classes for
integration

* an interactive mode which promotes rapid experimentation and iterative prototyping while facilitating test-
driven development
From a software architect’s perspective,

* non-blocking, asynchronous architectures are easily supported with Tcl’s integrated event loop

» Tcl’s coroutine and threading features allow a number of different concurrency models — traditional threads
with shared data, message-passing actors or CSP

1 http://www.tcl.tk/about/history.html
http://www.tcl.tk/cgi-bin/tct/tip/0.html
3 http://www.tcl.tk/cgi-bin/tct/tip/2.html

Reading this book

+ data driven and reactive programming models are simplified by the availability of the tracing facility, in
combination with the event loop

« applications can run multiple independent interpreters with sandboxing capabilities for executing untrusted
code

Managers are people too and Tcl addresses their needs as well.

+ Tcl's portability extends from Windows, Linux, OS X, Android and other mainstream operating systems to
embedded systems like Cisco routers. Development for multiple platforms is simplified.

« Tcl's versatility means you can use it across multiple components in your product: command line tools,
graphical interfaces, back end servers, and even test automation. Not only is code sharing facilitated,
programming skills are also more easily transferred. Managers can deploy their minions where they are
needed!

« Tcl's single file executable packaging makes distribution trivial in a corporate environment and facilities like
online tracing and remotability simplify field support.

« Tcl's stability and backward compatibility means legacy code from the last century will continue to run with
minimal or no changes.

+ Last but not least, the open source BSD license means minimal dealing with lawyers. Yay!

No doubt by now you are chomping at the bit to get started on Tcl. That will have to wait for the next chapter
though, as tradition demands we say a little bit about the book itself first.

1.3. Reading this book

I expect the book’s audience to include those who are new to Tcl as well as those who already have a more than
passing familiarity with the language.

For the newcomers...

The book requires no prior experience with Tcl but does assume some basic programming background on the
reader’s part. Knowledge of terms like function, variable, for loops etc. is about sufficient to start learning the basics
of Tcl. More advanced constructs like asynchronous programming, threads and coroutines require a little more
sophistication but you can get a lot of programming done without venturing into these areas. The book’s attempt

to be comprehensive does mean that it is easy to be distracted by the level of detail. My suggestion would be to not
get bogged down by the minutia of every command but to focus on the high level conspectus of language features
and idioms. You can then come back to refer to the details as and when needed. It may also be beneficial to go
through one of the short online Tcl tutorials. The official* one has not been updated to Tcl 8.6 as of this writing but
should suffice for introductory purposes.

The next chapter shows you how to install Tcl and run it in interactive mode. You are strongly encouraged to do so
and try the illustrative code snippets from the book by entering them in the Tcl shell.

For the old hands...

For readers who have worked with Tcl before, the book can serve as a reference with a detailed table of contents
and a comprehensive index. At the same time, browsing through the book may very well lead many to discover Tcl
features and capabilities they might not have been aware of, or to gain a deeper understanding of specific topics.
Advanced material, such as object-oriented programming, coroutines, reflected channels, virtual file systems etc.
are treated in detail.

1.3.1. Typographic conventions

We now come to the obligatory section on formatting and typographic conventions even though they should be
obvious to everyone but the publisher.

4 https://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.htmi

Typographic conventions

Text formatting

Within the text, we use italics to define terms and bold for emphasis. File paths and program elements like
commands and variables are shown in a monospace font. Additionally, we use capitalized italics in the same font
for PLACEHOLDERS that stand for some variable part in a code fragment.

Highlighting

Certain notes and points of emphasis are highlighted in one of the following ways:

Important You must carry your driver’s license and insurance papers at all times.
Stresses important points you must keep in mind.

| Caution Dangerous curves ahead. Reduce speed. Actions you need to be careful about.

| Warning Do not drink and drive. Stuff you would be foolish to do.

Note Turning right on red is not permitted in New York. Information that you might miss
or overlook.

| Tip Use the exact change lanes for quicker service. Tips for productivity.

Sidebars

Material that is related to the discussion but not directly relevant is placed in a sidebar. For example,

History of driving regulations

Licenses were not required for driving in the United States until 1903 when Massachusetts and Missouri
became the first states to make them mandatory.

Code samples
Code samples fall into three categories:

* syntax descriptions
» commands typed at the Tcl shell prompt
+ scripts as they might be stored in files
All use the same font employed for code within descriptive text.

The first of these are intended to show syntax of commands and not expected to be executed as-is. Optional parts
of the command are shown enclosed in ? characters.

set VAR

The above syntax indicates that varnvaAME and VALUE are only placeholders for the actual variable name and value
respectively. Moreover vALUE is optional and need not be specified.

Utility procedures used in the book

Commands that you might type at the Tcl shell prompt are shown as

% set x 1
5> 1

The % character is the Tcl shell prompt so the command itself is set x 1. Any output that the shell prints out
is prefixed with the — character. Depending on the example, lines may be truncated, indicated by ellipsis ..., or
wrapped, prefixed with a L, character.

Error messages printed by the shell are prefixed with @.

% set x $nosuchvariable
@ can't read "nosuchvariable": no such variable

In the interest of saving space, short commands and the result may be shown on the same line without the prompt,
particularly when the output from multiple commands is to be compared.

format %x 42 » 2a
format %b 42 » 101010

In this case, a result that is an empty string is shown as in the example below.
set x "" » (empty)

Finally scripts where the output of individual commands is not important or relevant are shown without the
command prompt. Only the output of the last command is shown.

proc add {a b} {
return [expr {$a+$b}] [1)

}
add 2 3
> 5

@ expr computes arithmetic expressions

The numbered callout shown in the above example is intended to either highlight or provide additional
information about a line in the script.

1.3.2. Utility procedures used in the book

Throughout the book we use various simple utility procedures for convenience, for example to print a list. These
procedures are shown in Appendix B.

1.4. Online resources

The primary website for Tcl is hosted at http://www.tcl.tk. Announcements of new releases, conferences etc.
happen here. It also hosts the reference pages for Tcl and core libraries as well as the rep051t0ry for Tcl
Improvement Proposals.

The Tcler’s Wiki® is where you should go for all kinds of tips, code samples, and wide ranging discussions on a
variety of Tcl-related topics.

The Usenet group comp. lang.tcl, also accessible through Google Groups7, is dedicated to a discussion of Tcl-
related topics and a good place to get any questions answered.

3 http:/ftip.tel.tk
http:/jwiki.tcltk

7 https://groups.google.com/forum/#!forum/comp.lang.tcl

Chapter summary

Alternatively, the Tclers' Chat is a chat room accessible either via XMPP clients or through IRC gateways. Many
knowledgeable Tcl programmers hang out here and you can learn a lot just by listening in. A specialized chat client
tkchat® is also available.

The source code for Tcl and core extensmns is hosted at http://core.tcl.tk in a Fossil® DVCS repository. This also
hosts Tcl’s bug reports %anda catalog ! of Tcl libraries and extensions.

Tcl source distributions are available from the SourceForge download area '2. Note however that SourceForge
is no longer used for the source repository or for logging bug reports. Binary distributions are available from
multiple sources as we list in the next chapter.

1.5. Chapter summary

We are now ready to actually begin our journey into the Tcl world. In the next chapter, you will learn how to
install Tcl on your system, enter commands interactively and run Tcl programs.

8 http://tkehat.tcl.tk/

https://www.fossil-scm.org

10 http://core.tcl.tk/tcl/ticket
http://core.tcl.tk/jenglish/gutter/
https://sourceforge.net/projects/tcl/files/Tcl/

Getting Started

Running Tcl requires you to first install the Tcl runtime and tools. We will start off by describing the installation
procedure and then move on to the actual mechanics of running Tcl programs.

2.1. Installing Tcl

There are several options for installing Tcl on your system:

* Many operating systems provide bundled distributions of Tcl
+ Several third parties distribute precompiled binaries
* You can build your own distribution from the Tcl sources

We describe each of these in the next few sections.

2.1.1. Installing bundled packages on Linux

Some operating systems include Tcl in their distribution. Note however that these are not always up to date and
you may prefer to install the latest Tcl version separately as described later.

Bundled packages can be installed using the installation package manager for the system. For example, on a
Debian Linux system, use apt-get to install Tcl.

apt-get install tcl
On Fedora and other rpm-based distributions, use yum for the same purpose.

yum install tcl

These will install Tcl in system-specific directories. In most cases, extensions to Tcl are distributed as separate
packages and have to be individually installed.

2.1.2. Installing third party binary distributions

Alternatively, you may install one of the third party binary distributions of Tcl. Obviously this is necessary if your
OS does not bundle Tcl but there are other reasons to do this. For example, the operating system bundled version
of Tcl might not be the latest, or you may not have the system privileges required for its installation.

2.1.2.1. ActiveState multi-platform distributions

The company ActiveState maintains both free and commercial distributions of Tcl for multiple platforms including
Windows, Linux, OS X, Solaris, AIX and HP-UX. In addition to Tcl itself, the distribution includes a wide variety of
third party extensions and packages. There are however two caveats to keep in mind with respect to ActiveState
distributions at the time of this writing:

+ Some Tcl platforms and extensions are only available in the commercial edition.

+ The free community edition has licensing restrictions pertaining to use on production systems and
redistribution.

Installing third party binary distributions

Nevertheless, these restrictions do not matter for your personal use and these distributions are the most popular
Tcl binary distributions as of today.

To install ActiveTcl, download the distribution 1 for your platform and follow the detailed installation
instructions z

For Linux and Unix based platforms, this involves extracting the downloaded archive into a temporary directory
and running the install.sh shell script in the extracted directory. You may want to add the directory containing
the installed binaries to your PATH environment variable.

On Windows platforms, the distribution is a self-extracting executable. To install Tcl, run this executable and
follow the on-screen instructions. The installer will optionally modify the PATH environment variable and
associate the . tcl file extension with the wish GUI application.

after saving to disk, you may need to bring up the file properties dialog in Windows
Explorer by right clicking on the file, selecting the Properties menu item and then
clicking the Unblock button on the General tab in the properties dialog.

E Windows will sometimes prevent you from running downloaded executables. Therefore,

2.1.2.2. Installers for Windows

There are several Windows installers available for Tcl, two of which we detail here.

BAWT (Build Automation With Tcl) is a framework for building Tcl and extensions. Although its primary purpose
is building the software, it also makes available a BAWT Tcl installer® for Windows which includes a very broad
range of packages and extensions.

The Magicsplat distribution? for Windows is a Windows installer based MSI package. The distribution is
maintained by this author and targets Windows 7 and later. It includes the most commonly used Tcl packages and
extensions.

Unlike the ActiveTcl distribution, both the above are licensed under the same conditions as Tcl itself and do not
prohibit commercial use and redistribution.

To install either distribution, download the appropriate setup program for BAWT, or the MSI package for
Magicsplat, from their web sites. Then for BAWT, run the setup program from the command line or Windows
Explorer. For the Magicsplat MSI package, either double click the file in Windows Explorer, or type

start FILENAME.ms1

from the DOS prompt where FILENAME is the name of the downloaded package.

As described earlier for ActiveTcl, you may need to unblock the program before you can
a run it in Windows.

Both installers will guide you through the install process permitting installation to different directories, optionally
modifying the PATH environment variable and so on. For the Magicsplat package, you need to choose the Advanced
option on the initial installation screen to see these options. Like the ActiveTcl distribution, the Magicsplat installer
will also register file associations. However, instead of registering . tcl and . tk extensions, it registers . tclapp
and . tkapp instead on the basis that plain . tcl files are likely to be library scripts and packages and not runnable
applications.

1

2 http://www.activestate.com/activetcl

http://docs.activestate.com/activetcl/8.6/at.install.html
http://'www.bawt tcl3d.org/download.html
https://bintray.com/apnadkarni/tcl-binaries/tcl-binaries-windows

Installing from source

A third alternative for a Windows installer based Tcl distribution is the IronTcl® distribution. Its distinguishing
feature is that it uses signed binaries and is available with a commercial support contract. However, 64-bit binaries
are only available to commercial customers.

2.1.2.3. Perschak distributions for Linux and Windows

Thomas Perschak ® maintains binary distributions for Linux and Windows. These distributions do not have an
installer. You can just extract them to a directory and run them in place.

2.1.2.4. Tcl for Android

The AndroWish’ distribution targets the Android platform and is available for both ARM and x86 architectures.
While allowing many Tcl scripts to run unmodified on an Android device, it also includes a large number of
commonly used packages and supports interfaces to much of the native Android API.

2.1.2.5. Single file Tcl executables

One final, and possibly simplest, option for installing a Tcl binary executable is to use tclkits. Also known by
various other names such as starpacks, these are single file executables that contain Tcl and supporting core
libraries. Because these are all self-contained, you can copy the file anywhere and run it without any installation
step. Tclkits can greatly simplify deployment of Tcl applications and we will look at them in detail in Section 19.4.
This might be the easiest way to try out Tcl. The libraries bundled with these kits depends on the specific download
source although in Section 19.4.4 we will see how to add libraries that are missing.

There are several Web sites from where tclkits can be downloaded. One is Roy Keene’s Tclkit site 8 which contains
binaries for several platforms including Windows, OS X and Linux/Unix operating systems. The site allows you to
customize which libraries are included in the binaries.

Another alternative is the kbskit distributions, which vary in terms of included libraries and extensions. These
distributions can be downloaded from the kbskit download site .

The AndroWish ° project also provides single file Tcl executables for Windows and Linux in addition to Android.
This comes with a rather large number of extensions included in the executable.

2.1.3. Installing from source
You may at times want to build and install Tcl directly from sources. This may be because
+ you cannot find a suitable binary distribution for your platform
* you need to integrate Tcl into a larger application build environment
* you want the cutting edge development release hot off the repository
+ or whatever.

In this section we describe the simple steps to accomplish this.

2.1.3.1. Tcl source repository and releases

The official Tcl source repository resides at core.tcl.tk and uses the Fossil 11 distributed source code management
system. However, we are not going to describe how to work with Fossil and build directly from the repository
source. We will instead focus on the official Tcl source code releases. These are available from the SourceForge file
distribution *? site (8.6.6 is the latest Tcl version at the time of writing). The files of interest are:

5 https://www.irontcl.com

6 htips://bitbucket.org/tombert/tcltk/downloads

http://www.androwish.org

http:/tclkits.rkeene.org/fossil/wiki/Downloads

https://sourceforge.net/projects/kbskit/files/kbs
http://www.androwish.org/download/index.html
https://www.fossil-scm.org
https://sourceforge.net/projects/tcl/files/Tcl/8.6.6

Installing from source

+ tcl8.6.6-src.tar.gz and tcl866-src.zip which contain the source code for Tcl and some core packages. The two only
differ in the archive format.

+ tk8.6.6-src.tar.gz and tk866-src.zip which contain the source for the Tk extension. This is strictly not part of Tcl
itself but you will need it if you want to use the GUI version of the Tcl/Tk shell (wish).

2.1.3.2. Building on Unix-like platforms

Follow these steps to build and install Tcl and Tk on Unix-like systems.

« Extract tcl8.6.6-src.tar.gz into a directory, say tclsrc.
» Change to the tclsrc/unix directory.
« Run the commands in the shell

./configure --prefix=/usr/local/tcl --enable-threads
make
make install

The above builds the 32-hit version of Tcl and assumes you want to install Tcl in the /usr/local/tcl directory.

To build the 64-bit version, add the --enable-64bit option to the configure step.
./configure --prefix=/usr/local/tcl --enable-threads --enable-64bit

Next, build the Tk extension following similar steps.
« Extract tk8.6.6-src.tar.gz into a directory, say tksrc, residing at the same level as the tclsrc directory.
» Change to the tksrc/unix directory.
+ Run the commands in the shell

./configure --prefix=/usr/local/tcl --enable-threads --with-tcl=../../tclsrc
make
make install

Note the - -with-tcl option points to the location of the Tcl source directory. As before, if you are building the 64-
bit version, you need to add the - -enable-64bit switch to the configure step.

You will now have a Tcl installation along with the Tk extension in /usr/local/tcl.

2.1.3.3. Building on Windows

The following steps will build and install Tcl and Tk on Windows using Microsoft’s compiler tool chain.
« Start the Visual Studio or Microsoft SDK command prompt for 32- or 64-bit release builds as appropriate.
+ Extract tcl866-src.zip into a directory, say tclsrc.
» Change to the tclsrc\win directory.
* Run the commands

nmake /f makefile.vc INSTALLDIR=C:\Tcl
nmake /f makefile.vc INSTALLDIR=C:\Tcl install
This assumes you want Tcl installed under the C:\Tcl directory.
To build and install Tk,
« Extract tk866-src.zip into a directory, say tksrc, at the same level as the tclsrc directory.

« Change to the tksrc\win directory.
* Run the commands

10

Files and directory structure

nmake /f makefile.vc TCLDIR=../../tclsrc INSTALLDIR=C:\Tcl
nmake /f makefile.vc TCLDIR=../../tclsrc INSTALLDIR=C:\Tcl install

This will build and install Tk and the GUI shel wish.
2.1.3.4. Building on 0S X

The process of building Tcl on OS X is similar to that for Unix. Full instructions are provided in the README file in
the macosx directory in the Tcl source distribution.

2.1.3.5. Using BAWT for Tcl and extensions

Although Tcl itself is straightforward to build, it can be slightly more involved to huild third party extensions due
to additional dependencies, different build systems etc. The BAWT system we mentioned earlier specifically tackles
this problem. It includes everything needed to build Tcl and a wide variety of extensions. Currently supporting
Windows, Linux and OS X, BAWT requires the user to only run a single batch or shell script to build Tcl and the
extensions of interest. See the BAWT documentation ** for the procedure.

2.1.4. Files and directory structure

After installation, the target directory contains the three subdirectories shown in Table 2.1.

Table 2.1. Tcl directory structure

Directory Description

bin Contains main Tcl and Tk executables along with the core shared libraries. Most
installations will add this directory to the PATH environment variable or link to the
executables in this directory from a standard directory already included in PATH.

include Contains C header files required for building Tcl extensions.

lib Default location for all add-on packages and extensions. The C libraries required for Tcl
extensions are also located here as are runtime support scripts and other files used by Tcl
for locale and time zone information, character encodings etc.

The Tcl distributions bundled with the operating systems may differ from the above layout. Moreover, some
distributions may also create additional directories for documentation, sample programs and such. As a special
case, the single-file tclkit versions are all self contained and do not follow the above structure.

The main executables in the bin directory are tclsh and wish (tclsh.exe and wish.exe on Windows). These
are the command line and GUI versions of the Tcl shell and we will be taking a closer look at them shortly.

Depending on the specific distribution, your Tcl shell may be named slightly differently
a such as tc18.6, wish86t etc.

2.1.5. Reference documentation

The Tcl reference documentation is online at http://tcl.tk/man/tcl/contents.htm. This includes reference pages for
Tcl as well as the core packages like Tk, TDBC etc.

On Unix systems, the Tcl reference documentation is also available in the form of man pages accessible via the
standard Unix man program.

13 http://www.bawt.tcl3d.org/documentation.html

11

Running a Tcl program

On Windows systems, the ActiveTcl distribution comes with its own Windows Help file (. CHM format) for Tcl and
extensions. Another alternative in the same format is available from the author’s TWAPI * pr0]ect

2.2. Running a Tcl program

With all the preliminaries out of the way, let us now get around to actually running a Tcl program. Convention
dictates that we must begin by greeting the world. Use your favourite editor and create a file called hello. tcl
with the following line of text.

puts "Hello World!"
At your shell or DOS command prompt, run this program using tclsh as shown here.

C:\temp>tclsh hello.tcl
Hello World!

C:\temp>

You have now written your first Tcl program. Feel free to go add Tcl to your resumé.
2.2.1. The Tcl library and interpreter

We need to take a moment now to distinguish between Tcl, the Tcl interpreter, the Tcl library, Tcl programs or
scripts, and Tcl applications.

+ Tclis the programming language. A Tcl program or script is a sequence of commands or program statements
written in Tcl.

» The Tcl interpreter is kind of a virtual machine that provides the runtime environment for running Tcl
programs. As we lay out in great detail in Chapter 20, an application may contain multiple such interpreters.

+ The interpreter virtual machine is implemented as a library which may be statically linked or loaded as a
shared library into any application to allow it to execute Tcl scripts. An application makes calls into the library
to create Tcl interpreters and execute Tcl programs.

» A Tcl application is a program that is written in C, or some other language, that compiles to machine code and
links to the Tcl library. In some cases, the application may do very little other than provide a means to execute
Tel. In such cases, the Tcl program or script itself implements the entire functionality of the application. In other
cases, the application may natively implement much of the user visible functionality and the embedded Tcl
interpreter acts as a means to allow end user scripting of the application.

If you are new to programming, you do not need to really worry about all these terms. It is just a prelude to
introducing two applications that come as part of the Tcl distributions — the Tcl shells.

2.2.2. The Tcl shells

The Tcl shells are simple applications that provide a means of executing Tcl scripts, either interactively or stored in
files. They provide practically no other application level functionality themselves. The Tcl distribution comes with
two such shells — tc1sh and wish. The former is for general purpose use including command-line and daemon or
background applications while the latter is intended for applications having a graphical user interface. The shells
can be used for interactive experimentation with Tcl or for full blown applications that are entirely coded in Tcl.

2.2.2.1. The tclsh command-line shell

In its essence, the tclsh application reads from the terminal (console on Windows, we use the terms
interchangeably) or a file and executes the read input as Tcl code. We have already seen its use in our simple
Hello World! program earlier. We now describe its functionality in more detail.

14 https://sourceforge.net/projects/twapi/files/Combined%20Help%20Files

12

The Tcl shells

We remind you that tclsh may be named tclsh86 or tclsh86t or a similar form
depending on the specific Tcl distribution you have chosen to install.

2.2.2.1.1. Running tclsh interactively

When run with no arguments, tclsh runs in interactive mode. It displays a command prompt and any lines
entered are treated as a Tcl script and executed. The result is then printed out. This is commonly known as the
Read-Eval-Print-Loop (REPL). Typing the exit command will cause the program to terminate. A sample session is
shown below.

C:\temp>tclsh

% puts "Hello World!"
Hello World!

% exit

C:\temp>

In interactive mode, tclsh has a few changes in behaviour as compared to running a script stored in a file. These
differences are described here.

Startup scripts: . tclshrc, tclshrc.tcl

On starting up, tclsh checks for the existence of a file .tclshrc (tclshrc.tcl on Windows) in your home
directory. If found, the contents of the file are evaluated as a Tcl script before tc1sh displays its command prompt.
Note this file is only automatically read in interactive mode.

Execution of external programs

Another feature of interactive mode is that if the line entered by the user does not correspond to a Tcl command,
Tcl will execute a program of that name if one exists in a directory in the user’s PATH environment variable. Again,
we stress this action only happens in interactive mode. Morever, this behaviour can be disabled by setting the
variable auto_noexec to any value. Here is a demonstration.

% uname -a

Linux vm2-debian7 3.2.0-4-686-pae #1 SMP Debian 3.2.81-2 1686 GNU/Linux
% set auto_noexec "

% uname -a

invalid command name “uname"

The sample session above shows that as uname is not recognized as a command, Tcl runs an external program of
that name. However, once we set the variable auto_noexec, an error is reported.

Command abbreviations

In interactive mode, tc1sh will accept abbreviations for commands as long as there is no ambiguity. For example,
the Tcl command puts can be abbreviated as pu as shown here.

% pu "Hello!"

» Hello!

% proc print_hello {} {pu "Hello!"}

% print_hello

» invalid command name “pu"

% p

» ambiguous command name "p": package pid print_hello proc puts pwd

Notice how abbreviations are not accepted if used inside a procedure (print_hello in our example) or if the
abbreviation does not uniquely identify a command.

13

The Tcl shells

Command history

In interactive mode, tclsh also maintains a list of previously executed commands each tagged with a history event
number. These can be recalled at the interactive prompt using forms similar to those in the Unix C shell.

The !'! form prints the previous command and executes it again.

% puts foo

» foo

% !

> puts foo
foo

The AOLDANEW form replaces any occurences of OLD in the previous command with NEW and re-executes it.

% ~foo~bar
» puts bar
bar

The ! v form re-executes the command tagged with the history event number w.

% history
1 puts foo
2 puts foo
3 puts bar
4 history

% 13

puts bar

bar

%

Also notice from the sample that you can print the list of commands executed with the history command. We will
ook at this command in more detail in Section 10.9.

The command abbreviations, history and auto-execution of external programs are
actually implemented by a handler run by default when a command name is not
recognized. We will have more to say about this in Section 3.5.1.2.

Command-line editing
The tclsh shell does not itself include any facilities for command recall with cursor keys, line editing, tab
completion for command and file names etc..
In a Windows environment, the DOS console already provides most of these features other than tab completion.
On Unix platforms, you can avail of the same functionality through several alternatives:

« Use the rlwrap15 program to start tclsh

« Load the tclreadline® extension to Tcl

¢ Source the pure Tcl tclline 17 script which implements most of tclreadline functionality

. Use etclsh® as your Tcl shell
The best option for interactive use may be to use one of the graphical shells, either the one built intowish or

tkcon. In addition to line editing and tab completion the latter includes many very useful facilities for interactive
use including hot errors, remote operation and ability to interact with multiple Tcl interpreters.

15 p1py/wikiteltk/21599
http://tclreadline.sourceforge.net/
http://wiki.tcl.tk/20215
http://homepages.laas.fr/mallet/solt/shell/eltclsh

14

The Tcl shells

Detecting interactive mode

Code that needs to behave differently depending on whether tclsh is running in interactive mode can check
the tcl_interactive global variable. This is set to 1 when running in interactive mode and 0 otherwise. See
Section 16.2.1 for how this variable affects tclsh behaviour.

2.2.2.1.2. Running scripts with tclsh

Running a Tcl application implemented as a Tcl script in a file simply involves passing the containing file path to
tclsh as a command-line argument (or to wish if it is a GUI application). The general form of tclsh for running
scripts in a file is

tclsh ?-encoding =wCOfNG? SORITIATEH
Here scrrIpPTPATH is the path to the file containing the Tcl script. The -encoding option allows you specify the
character encoding (see Section 4.14) for the file if it is different from the system encoding.

Every command in the script is executed in turn until the last at which point tclsh will exit. There are of course
facilities for terminating the script early or to keep running as a server application would. The script may also pull
in additional scripts stored in other files via the source command.

Any additional arguments to tclsh are treated as program arguments to the script. These are described in
Section 2.3.1 along with a small example that also illustrates the use of tclsh to run scripts.

2.2.2.2. The wish graphical shell

The wish application is a “windowing shell”. Like tc1sh, it provides a wrapper for executing Tcl scripts. The
difference is that wish is written as a GUI application and includes the Tk extension.

As our book is about Tcl the language, and not GUI programming with Tk, we will only briefly describe wish.
Our primary motivation is that wish provides an interactive environment for Tcl that has some benefits over
tclsh.

Like tclsh, wish may also be named slightly differently, for example wish86 or
wish86t, depending on the specific Tcl distribution you have chosen to install.

2.2.2.2.1. Running wish interactively

Like tclsh, wish can be invoked without any arguments.
wish

When run in this manner, the special behaviours listed for tclsh in interactive mode also apply to wish.
Startup scripts: .wishrc,wishrc.tcl

On starting up, wish checks for the existence of a file .wishrc (wishrc.tcl on Windows) in your home directory.
If found, the contents of the file are evaluated as a Tcl script when wish begins execution. Note this file is only
automatically read in interactive mode.

The wish program differs slightly in its behaviour between Windows and other operating systems.
Running wish on Windows

On a Windows system, this will bring up the two windows as shown in Figure 2.1.

15

The Tcl shells

§ wish — O >

Figure 2.1. The wish windowing shell

The window titled wish is a toplevel window where you can add graphical elements using the Tk extension. The
window titled Console is a Tcl command console where you can type in Tcl commands. For example, typing our
usual

puts "Hello World!"
will output that line to the console window. Or typing the commands

ttk::label .1 -text "It is easy to create interfaces in Tcl/Tk."
ttk::button .b -text Exit -command exit
grid .1 .b -padx 5

will create a label and button arranging them as shown in Figure 2.2.

7

his easy to creste interfaces in Tch/ Tk Exit

Figure 2.2. A sample Tk window

Clicking on the button will cause the program to exit. Tk makes it amazingly easy to create graphical user
interfaces.lgadly, we do not have space in this book to cover it and refer you to one of the many books that do, such
as TkDocs ™.

13 http://www.tkdocs.com

16

The Tcl shells

Running wish on Unix systems

Running the wish shell on Linux and Unix systems has different behaviour as unlike Windows they do not
distinguish between “console” mode and “GUI” mode. Invoking it will only create one new window, the wish
toplevel. The Tcl console will continue to be displayed in the terminal window just as for tclsh. You can type
commands in the terminal window in the same manner as you did above to display our sample Tk window.

2.2.2.2.2. Running scripts with wish

Like tclsh, wish can be passed the name of a file containing a Tcl script.

wish 20807

The contents of SCRTPTFILE are executed as a Tcl script with any additional arguments being passed to the script
in exactly the same manner as for tclsh. There are more options that may be specified for wish but we will not
cover them in this book.

There is however one important difference between tclsh and wish when it comes to execution of scripts. Unlike
tclsh, wish does not exit when the last command in the script is executed. It starts running the event loop,
discussed in Chapter 15, waiting for user interaction and other events.

2.2.2.3. The tkcon enhanced shell

Unless you are writing graphic-al user interfaces, there is only one reason to use wish for interactive development
instead of plain old tclsh and that is the Tk Enhanced Console tkcon. This is an add-on that comes as a

single file tkcon. tcl and is included in most Tcl binary distributions. It can also be downloaded from http://
tkcon.sourceforge.net.

The tkcon console sports a number of very useful features not natively available in either tclsh orwish:

» Enhanced command-line editing, with additional keys for cursor movement, line editing and matching of
parenthesis, brackets and braces.

» Tab completion for command, file names and object methods. For example, typing o p Tab will complete the
command as open while f o r Tab will display for, foreach and format as alternatives.

+ Additional command history features. In addition to the forms described for tclsh, the history can be searched
in incremental fashion. For example, if you have entered exe, typing Ctrl+r will recall the last command
containing those characters. Command history is also maintained across sessions.

+ Ability to attach to multiple interpreters, namespaces and remote instances. These capabilities prove to be very
convenient once you get into more advanced Tcl.

» Additional facilities to aid debugging and troubleshooting. These include new commands for interactive
debugging, monitoring of state changes and checkpointing. “Hot error” links provide easy access to call stacks
in case of errors.

» Package management options for loading libraries and extensions.

You can start a tkcon console by passing it as the argument to wish.

wish tkcon.tcl

This will bring up a command-line window where you can interactively execute Tcl. For details about usage, refer
to its documentation 2.

20 http://tkcon.sf.net

17

Exiting a Tcl application

2.2.3. Exiting a Tcl application
Any Tcl application may be exited by invoking the exit command.
exit ?c0nn?
The command causes the process to exit passing an integer exit code of copr back to the operating system. If

unspecified, cops defaults to 0.

Applications may of course also have other means of exiting. For example, when running a script passed on the
command-line, the tc1sh Tcl shell exits after the last command in the script has been processed. Similarly, the
wish graphical shell will exit when its main window is closed.

The exit code for a process has ramifications in terms of whether its termination is viewed from the outside as
a normal exit or some error condition. Generally an exit code of 0 signifies a normal exit and any other value
signifies an error. We will have more to say on exit codes in Chapter 16.

2.2.4. Error messages

Although we will delve into Tcl’s sophisticated error handling facilities in Chapter 11, here it is worth mentioning
that Tcl’s error messages are generally very informative and useful when working in interactive mode. For
example,

% open

@ wrong # args: should be "open fileName ?access? ?permissions?"

% string foo

@ unknown or ambiguous subcommand "foo": must be bytelength, cat, compare, equal, first,

This is convenient for reminding yourself of command arguments and their order.

2.2.5. Making Tcl scripts executable

As we have seen, any file may be executed as a Tcl script by passing it to a Tcl shell as an argument. However, it is
convenient to be able to just type the script file name and have it executed. Thus we would rather execute a script

by typing
myscript
as opposed to

tclsh myscript

The method for doing this differs between operating systems. We will describe Unix first as it is simpler.
2.2.5.1. Executable scripts on Unix

On Unix systems, any Tcl script that is intended to be an application or program (as opposed to a library) should be
marked as executable (via chmod +x) and begin with the following line.

#!/usr/bin/env tclsh
Then assuming the tclsh executable lies in a directory somewhere on the path, just typing the name of the script

file at the Unix shell prompt suffices to have it executed as a Tcl script.

Note that this line is treated as a comment by Tcl as it begins with a # character. Thus although this technique
will not work on Windows, nor does it cause any harm if the same script is passed as an argument to tclsh on
Windows.

18

The application runtime environment

2.2.5.2. Executable scripts on Windows

On Windows, making a script directly executable is more involved. Luckily, installers for binary distributions do
these steps for you so you don’t have to. If you do build and install from sources, follow the steps here.

The first difference from Unix is that on Windows file execution from the console is based on the file extension.
It is not possible to mark individual files as executable. So we need to pick a file extension to associate with Tcl.

Following the Magicsplat distribution, we will associate the extension . tclapp with Tcl applications that can be
executed directly leaving . tcl to be used with secondary support files.

Moreover, the extension cannot be directly associated with the application (tclsh.exe in our case). It has to be
first mapped to a file type. The file type can be any text that does not conflict with the file type set up by other
applications. We will be inventive and call the type TclApp.

Because they modify the Windows registry, the commands below have to be run with
E elevated administrative privileges.

We first associate the extension with the file type through the the Windows assoc command and then use the
Windows ftype command to register our tclsh.exe executable as the application to be invoked for that file type.

C:\temp>assoc .tclapp=TclApp
C:\temp>ftype TclApp=C:\Tcl\bin\tclsh.exe

(Assuming that is where our Tcl is installed.)

If you type "myscript.tclapp” at the DOS command-line, Windows will invoke tclsh to run your script. If you want
to avoid having to type the . tclapp extension, there is one additional step. The . tclapp extension needs to be
added to the list of extensions in the PATHEXT environment variable.

C:\temp>set PATHEXT=%PATHEXT%; .tclapp

Now just typing myscript is sufficient to invoke tclsh to execute the myscript.tclapp file.

As an alternative to the above, you can embed Tcl scripts into Windows . BAT batch files
- ‘ - using a trick similar to that for Unix. Various variations of this are described in http://

2l wiki.tcl.tk/2455. However, the author prefers the above method for a couple of reasons.

First, a batch file involves execution of an intermediate Windows command shell and is
therefore slower. Second, there are subtle scenarios where the suggested . BAT solutions
do not work.

2.3. The application runtime environment

Tcl provides several commands that deal with application’s runtime environment including
+ arguments passed on the command-line
+ the process environment such as working directory, environment variables etc.
« information about the Tcl interpreter itself such as version information
« platform information such as operating system, architecture and user context

2.3.1. Command-line arguments

Any additional arguments supplied on the command-line when invoking tclsh or wish are passed to the script in
the global variables shown in Table 2.2.

19

The working directory: pwd, cd

Table 2.2. Command-line argument globals

Name Description

argv0 Contains the path to the script file passed on the command line. If tclsh was invoked
without any arguments, this will contain the name by which it was invoked (which is not
necessarily tclsh in the presence of links etc.)

argv List containing the command-line argument values

argc Count of command-line arguments

Let us illustrate with a simple example. Create a file reverse. tcl with the following content which will simply
reverse and print its arguments.

reverse.tcl

if {$argc == 0} {
puts "Need to provide at least one argument”
puts "Usage: [info nameofexecutable] $argv0 arg ?arg ...?"
exit 1

}

proc print_reversed {str} {
puts [string reverse $str]

¥

foreach arg $argv {
print_reversed $arg
}
This example also introduces some very basic syntax:
« Variable values are referenced by prefixing the variable name with $.

+ Procedures are defined using proc and invoked like any built-in command.

The script is executed by passing it to tc1sh. In this initial run no arguments are passed and hence argcis 0
resulting in the script exiting with an error message.

C:\demo> tclsh reverse.tcl
Need to provide at least one argument
Usage: c:/tcl/866/x64/bin/tclsh.exe reverse.tcl arg ?arg ...?

When passed arguments, the script runs to completion and exits implicitly at the end of the file.

C:\demo> tclsh reverse.tcl abc def
cba
fed

2.3.2. The working directory: pwd, cd

The pwd command returns the current working directory for the process. The command below sets the variable
dir to the current directory.

% set dir [pwd]
» C:/temp/book

The cd command changes the current working directory to that specified.

20

Environment variables: env

cd ?DIR:

If the optional pIrRNAME argument is not present, the command changes the working directory to the home
directory of the current user.

% cd O

% pwd

» C:/Users/ashok/Documents
% cd sdir O

©® Change to the home directory
© Change back to the directory we saved in dir

The application may have multiple threads and multiple Tcl interpreters in each thread.
The working directory is a process-wide setting and therefore the cd command affects all
interpreters and threads in the process, even native code.

2.3.3. Environment variables: env

The environment variables for the current process are accessible through the env global array and can be
accessed the same way as any other array variable. '

% puts $env(PATH)
s> c:/msys/bin;C:\Programbata\Oracle\Java\javapath;C:\Program Files (x86)\Intel\iCLS Clien...

% array names env
»> HOME COMSPEC LANG PROCESSOR_IDENTIFIER TERMCAP LOGONSERVER Programw6432 SHELL Programfi...

Arrays are fully described in Section 3.6.7.

There are however a few differences that distinguish env from normal Tcl arrays. First, any changes to the env
array are automatically reflected back in the process environment. Addition and deletion of elements in the
array is also reflected appropriately in the process environment. Any child processes will inherit the modified
environment.

The second is that on Windows platforms only env keys are not case-sensitive. So

% puts $env(hOmE)
» C:\Users\ashok\Documents
% puts $env(HOME)
» C:\Users\ashok\Documents

would work as well unlike for normal arrays. Note however, array commands that accept wild card patterns are
case-sensitive as illustrated by the following:

% array names env pat*
% array names env PAT*
+ PATHEXT PATH

Because of the need to keep the env array synchronized with the process environment,
- ‘ - access to elements of the array is almost two orders of magnitude slower than a normal
Pl array variable. Thus it is often beneficial to keep a “shadow” copy of the environment in
a normal variable wherever possible.

21

The process identifier: pid

2.3.4. The process identifier: pid

The process identifier, or PID, for the current process can be obtained with the pid command.
pid ?:HANNEL?
If no arguments are specified, the command returns the PID of the current process.

pid » 2572

If the cHaNNEL argument is specified, it must be the channel associated with a process pipeline. In this case, the
command returns the list of PID’s for the processes in the pipeline. We cover process pipelines in Chapter 16.

2.3.5. Executable file path: info nameofexecutable

The info nameofexecutable command returns the path to the executable image for the current process that is
hosting the Tcl interpreter.

info nameofexecutable » c¢:/tcl/866/x64/bin/tclsh.exe

Most commonly this is used to find other locations in the file system that are relative to the executable.

2.3.6. Tcl version information: info tclversion, info patchlevel

The tcl_version global variable contains the version of the Tcl library in use, and in effect the version of Tcl. The
same information is also available with the info tclversion command.

puts $tcl_version » 8.6
info tclversion > 8.6

More detailed version information that includes the patch level can be obtained from the tcl_patchlevel global
variable and info patchlevel command.

puts $tcl_patchlevel » 8.6.
info patchlevel > 8.6.

2.3.7. Platform information

The tcl_platformglobal array contains various bits of information about the hosting platform. The elements of
this array are shown in Table 2.3.

6
6

Version numbers in Tcl have a specific syntax and associated semantics. We discuss these
in detail in Section 13.3.2.

Table 2.3. Platform information

5 Element“ - Description

byteOrder Either littleEndian or bigEndian depending on whether the underlying
CPU architecture is little-endian or big-endian.

engine Identifies the interpreter implementation. This is normally Tcl but may hold
other values if you are using other Tcl implementations or dialects such as
jim, jtcl etc.

22

Tcl configuration: tcl: :pkgconfig

Element Description

machine The CPU architecture that this executable was built for. Note this is not
necessarily the native architecture of the system. For example, running 32-bit
binaries on a 64-bit Windows system will return intel and not amd64.

0s The operating system

osVersion The version of the operating system

pathSeparator The character used to separate directory entries in the PATH environment
variable

platform The operating system family

pointerSize Either 4 or 8 depending on whether you are running a 32- or 64-bit Tcl
interpreter

threaded 1 if threads are enabled in Tcl and 0 otherwise

user The user account under which the process is running

wordSize The number of bytes in the C type long for the current architecure

We can print the contents of the array with the parray command.

% parray tcl_platform
» tcl_platform(byteOrder) = littleEndian

tcl_platform(engine) = Tcl
tcl_platform(machine) = amd64
tcl_platform(os) = Windows NT
tcl_platform(osVersion) = 10.0
tcl_platform(pathSeparator) = ;
tcl_platform(platform) = windows
tcl_platform(pointerSize) =8
tcl_platform(threaded) =1
tcl_platform(user) = ashok
tcl_platform(wordSize) = 4

Although the tcl_platform array provides some information about the underlying operating system and
architecture, the information there is not complete and specific enough to distinguish hardware platforms and
operating systems. For example, it cannot be used to load shared libraries from the appropriate location when
multiple architectures are installed within the same directory hierarchy.

The platform package (see Section 13.7) addresses this requirement.

2.3.8. Tcl configuration: tcl: :pkgconfig

The tcl: :pkgconfig command returns additional information about the Tcl configuration and build
environment, some of which is also available in the tcl_platform array.

The command has two subcommands. The first, 1ist, returns the a list of keys each of which represents a piece of
configuration information.

% print_list [tcl::pkgconfig list]
+ debug

threaded

profiled

64bit

optimized
...Additional lines omitted...

The key names printed from the above command should be self explanatory.

23

Chapter summary

The second subcommand, get, is used to retrieve the value associated with a key. For example,

% tcl::pkgconfig get bindir,runtime
» €:\tcl\866\x64\bin

returns the directory where the Tcl binaries are installed.

2.4. Chapter summary

In this chapter we described
» how to install and build Tcl
» how to run Tcl scripts as well as interactive shells

+ the Tcl application runtime environment

We will now move on to the basics of the language. As we go along, you are encouraged to try out the described
commands in an interactive Tcl shell.

24

Tcl Basics

This chapter lays the foundation for the rest of the book. It describes Tcl syntax, how Tcl parses and executes
commands, and the use of variables and procedures that form the basis of all Tcl programming. Subsequent
chapters will then focus on the details of individual commands.

Conceptually1, execution of Tcl code occurs in two phases:

s The Tcl source code is parsed using some simple syntactic rules to break it up into a number of commands and
their arguments.

* The commands are then invoked with the associated arguments.

The two phases may be intermixed in the sense that parsing a command may involve parsing and substitution of
embedded commands and variables.

We will start off with the syntax of the language in the next section and then move on to the basic language
commands.

3.1. Basic syntax

The formal syntax rules for Tcl are defined in the Tcl manual?, often called the dodekalogue as it is made up of 12
rules. Here we informally describe the syntax.

A Tcl program or script is a sequence of commands separated by newline or semicolon characters that are
not escaped or quoted. In the special case of command substitution, the trailing] character also terminates
commands.

A command in turn is a sequence of words. Words are separated by space or tab characters. Spaces and tabs can he
included as part of a word by escaping them with a \ or placing them within a quoted string. The line

puts -nonewline Hello ; puts " World!"

contains two commmands separated by a semicolon. The first contains three words puts, -nonewline and Hello
while the second contains two words: puts and a second word consisting of a space followed by Wor1d. The space
preceding the W is not a word separator as it is within quotes. If you are coming from another language, note that
simple strings, like Hello, with no whitespace characters need not be placed in quotes.

A word may also be a bracketed command whose result forms the value of the word. The command below has
three words, set, time and the result of evaluating the command clock seconds.

set time [clock seconds]

The substitution of bracketed commands is described in Section 3.2.3.

A word may be spread over multiple lines when quoted with double quotes or braces, or when it comprises a
bracketed command.

1In practice, Tcl scripts are converted to byte code form before execution
http://tcl.tk/man/tcl/TclCmd/Tcl htm

25

Substitutions

puts {
Hello
World
¥
5
Hello
world

The above command consists of two words, puts which is the command name and its argument which is quoted,
with braces in this case. The quoting allows spaces and newlines to be considered part of a single word.

You can use info complete to check if a given string syntactically constitutes one or
- ‘ - more complete commands.

L 4 ¥ > .
info complete {foo bar "x y z}
info complete {foo bar "x y z"} > 1

Note the command does not check if the command names are valid, have the correct
number of arguments and so on. It only checks whether the given argument can be
parsed syntactically as a sequence of complete commands. Our first example above fails
because of unmatched quotes.

The info complete command is mostly used in applications imitating the interactive
command loop as in tclsh and wish. The user may enter commands crossing multiple
lines and info complete is used to check for unmatched braces, quotes, brackets etc.

3.2. Substitutions

Tcl performs a series of substitutions before a command is executed:
+ Backslash substitutions
+ Variable substitutions

* Command substitutions

3.2.1. Backslash substitutions

Backslash substitution is a mechanism wherein a character sequence starting with a \ character is used to
represent an arbitrary character. There are multiple uses for this such as:

These substitutions are not done for strings enclosed in braces {} where different rules
apply as we will describe later.

* Representing non-printable ASCII control characters.

+ Representing non-ASCII Unicode characters. Although Tcl itself will accept Unicode characters in various
encodings in file or keyboard input, many text editors and terminal devices do not allow easy insertion of non-
ASCII characters and this provides a way around those limitations.

Forcing the Tcl parser to treat characters such as spaces or $ as ordinary characters, where they would
otherwise be treated specially.

The full set of backslash substitutions, which we also sometimes refer to as backslash escape sequences is shown in
Table 3.1.

26

Backslash substitutions

Table 3.1. Backslash sequences

Sequence Description
\a Audible alert (ASCII 7)
\b Backspace (ASCII 8)
\f Form feed (ASCII 12)
\n Newline / linefeed (ASCII 10)
% puts a\nb
> a
b
\r Carriage return (ASCII 13)
\t Tab
\v Vertical tab
\ 000 One to three character octal sequence specifying an 8-bit Unicode code point

in the range U+000000 - U+0000FF. For example, é may be represented by the
sequence \351.

\XHH The character x followed by one or two hexadecimal digits specifying a 8-
bit Unicode code point in the range U+000000 - U+0000FF. Thus another
representation for é would be the sequence \xe9.

\UHHHH The character u followed by one to four hexadecimal digits specifying a 16-bit
Unicode code point in the range U+000000 - U+OOFFFF. In this form, ¢ would
be represented by either of the sequences \u0e9 and \u00e9.

\UHHHHHHHH The character U followed by one to eight hexadecimal digits specifying a 21-
bit Unicode code point in the range U+000000 - U+10FFFF. Thus é could be
represented as \U0O00000e9 or \U000e9 etc.

\NEWLINE WHITESPACE A\ followed by a newline character and any amount of whitespace is
replaced by a single space character.

% puts “abc\
def"
» abc def

This is often used to split a long command across multiple lines. Remember a
newline character would normally terminate a command unless it was within
quotes or braces.

% lsearch -nocase -inline -all \
{abc def HIJ} hIj
HIJ

If the character sequence following a \ does not fall into one of the above categories, it is substituted as itself.

puts a\\nb » a\nb @
puts \$foo » $foo @

© \\ treated as a single ordinary \, not a \n sequence
© ¢ treated as itself, not as a variable substitution

27

Variable substitutions

Morever, if it happens to be a character, such as $, that has special meaning to the Tcl parser, it will be treated as
an ordinary character instead.

puts \s >s @
puts \xz -+ xz @

@ No backslash sequence corresponding to s
® \x not followed by hexadecimal digits

3.2.2. Variable substitutions

The second form of substitution that takes place is replacement of variable references by their values. Although
variable references can take many shapes, here we only illustrate the simplest one of the form $ vArRvAME.

set greeting "Hello World!" » Hello World!
puts $greeting + Hello world!

Variable substitution takes place inside words as well.

set greeting Hello > Hello
set who World + World
puts "$greeting $who!" > Hello World!

Tcl will raise an error if the referenced variable does not exist.

% puts $nosuchvar
P can't read "nosuchvar": no such variable

You can prevent Tcl from treating $ as variable reference by prefixing it with a \ character.

puts $greeting - Hello
puts \$greeting -» $greeting

There are two important points to note about variable substitution. The first is that the value that is substituted is
taken verbatim and not reparsed by Tcl. In other words, Tcl will not subject the contents of the variable to further
backslash, variable or command substitution.

set avar "abc" » abc
set bvar "\$avar" -» $avar
puts $bvar > $avar ©

© Outputis $avar, not abc
The second point, related to the first, is that substitution of variables does not change the word boundaries in a
command. For example, in

set greeting "Hello World!" » Hello World!
puts $greeting + Hello World!

the space character in the substituted value Hello World! does not act as a word separator. The second command
still contains only two words, the entire contents of greeting including the space being the second word.

28

Command substitutions

The other forms of variable references that we describe later are also subject to substitution as above. Note
however, that a $ character by itself, or one that is followed by a character other than an alphanumeric,
underscore (), left parenthesis (() or left brace ({), is not a variable reference and will be treated as a literal $
character.

puts $$ » $%
puts $= » $=

3.2.3. Command substitutions

The final form of substitution is replacement of strings enclosed in [] pairs of brackets with the result of executing
them as commands.

set 1 0 > 0
puts [incr 1] » 1 (1)

© The incr command increments a variable.
In the above example, the puts command gets a single argument — the result of executing the incr i command.

As for variables, command substitution can take place inside words as well.

puts af[incr 1lb » azb
puts "Incrementing $i gives ([incr 1i]." » Incrementing 2 gives 3.

The string inside the [] pair is actually treated as a Tcl script and so may have multiple commands separated by
semicolons or newlines as usual. In this case the substituted value is the return value from the last command.

% puts [incr 1i; incr 1; incr 1}

> 6

% puts [
set j 10
incr 1 $j
]

+ 16

Moreover, because it is parsed as a fresh script, the bracketed string can itself contain quotes, substitutions etc. For
example,

puts “"The total 1s [expr "2+4"1" » The total is 6
The double quote following the expr starts a quoted string within the bracketed command, it does not terminate
the double quotes that follow the puts.

As for variable substitution, command substitution does not reparse the returned value from the command string
or change the word boundaries even when the substituted value contains whitespace or other special characters.

3.3. Quoting

Quoting is a means for telling the Tcl parser to treat a sequence of characters as a single word irrespective of
whether it contains whitespace or other characters that would terminate a word or a command. We have already
seen one mechanism to prevent special interpretation of characters —backslash sequences. Quoting provides an

29

Quoting using double quotes

alternative, and often more convenient, means for the same. Compare the following alternatives for assigning a
string containing spaces to the variable var:

% set var This\ is\ a\ single\ word
» This is a single word

% set var "This is a single word"

» This is a single word

Tcl has two forms of quoting:
* enclosing the string in double quotes

+ enclosing the string in braces

The two differ in how substitutions are handled.

3.3.1. Quoting using double quotes

When a string is enclosed in double quotes, word and command separators like spaces, tabs, newlines and
semicolons are treated as ordinary characters.

% puts "This is line one;
This is line two"
> This 1s line one;

This is line two

Notice that spaces within the quoted string were ignored as word separators and neither the semicolon, nor the
newline, terminated the command.

Some other points to note about quoting using double quotes:

« The double quote character only has effect if it appears at the beginning of a word. A double quote in the
middle of a word is treated as an ordinary character. Moreover, the closing double quote must be followed by a
word separator or command terminator. Thus the following result in errors.

% set var foo"b ar" @
@ wrong # args: should be "set varName ?newValue?"

% set var "foo"bar @
@ extra characters after close-quote

© foo"bandar” are treated as separate words since double quotes within a word carry no special meaning
® C(losing quote not followed by word separator

+ Backslash, variable and command substitutions are all enabled within a double-quoted string.
% puts "$i\n[incr i]"

+ 16
17

+ To have a double quote appear as an ordinary character, use the standard escaping mechanism of preceding it
with a \ character.

% set var "foo\" bar"
+ foo" bar

30

Quoting using braces

3.3.2. Quoting using braces

The second form of quoting uses a pair of braces {} instead of double quotes to enclose the string. In this form,
with the single exception noted below, all special treatment for characters and all types of substitutions are
disabled within the enclosed string. Here is an example contrasting the two forms.

% puts "$i\n[incr i]" @
> 17
18

% puts {$i\n[incr 1]} (2}
+ $i\n[incr 1]

© Substitutions enabled inside double quotes
® Substitutions disabled inside braces

The one exception where substitution is still carried out is the backslash followed by newline sequence:
% puts {abc\
def}
s abc def
As always, the \, newline and any immediate whitespace is replaced by a single space character.
In other respects, quoting with braces follow similar rules to those for double quotes.

+ The leading brace must be the first character of a word.

+ The trailing brace must be followed immediately by a word separator or command terminator.
There is however an additional feature (or complication) with braces in that braced strings can nest so that the
quoted string is terminated only when the number of closing braces matches the number of opening braces.

set nested {Outer {Inner Words} Words} » Outer {Inner Words} Words

As we shall see this nesting property is useful for defining lists or dictionaries and for creating “code blocks” to be
executed by conditional or iterative commands like if orwhile.

There is one caveat with regarding to nesting and that has to with how you include a literal brace character within
the braced string. When a brace is preceded by a \ it does not count towards the nesting depth. However, because
backslash substitution rules are not in effect, the \ character is also included in the quoted string. For example,

puts {abc \}} » abc \}

So getting a literal brace character without a preceding \ character in a braced string is a little tricky. One
alternative is to switch to double quotes instead (taking care to properly escape unwanted substitutions).

puts "abc \}" -» abc }

The other option is to use an explicit string construction command such as format or subst or a backslash
substitution such as \x7d. Luckily this situation rarely arises.

3.3.3. Choosing the quoting mechanism

The question then arises as how to pick between the two forms of quoting. In most cases, the choice is fairly clear.
When interpolating strings with values in variable or computation results, the obvious choice is to use double
quotes as braces will not give the intended result.

% puts "The current time is [clock format [clock seconds] -format %H:%M]™

31

Argument expansion

> The current time is 11:45
% puts {The current time is [clock format [clock seconds] -format %H:%M]}
+ The current time is [clock format [clock seconds] -format %H:%M]

Conversely, there are situations where the choice of braces is obvious. The most common is when script blocks are
to be passed to Tcl commands such as while, proc etc. Other circumstances where braces are preferred include
representation of nested data structures and special situations like file paths in Windows systems where \ is also a
path separator. Using braces in this case is a lot more readable.

set path "C:\\Windows\\System32\\cmd.exe"
set path {C:\Windows\System32\cmd.exe}

Note that special treatment of braces as quoting characters is turned off when they occur within double-quoted
strings. The converse is also true in that double quotes are not special inside braces.

set var VALUE » VALUE
puts "{$var}" » {VALUE} @
puts {"$var"} » "$var" @

@ Braces inside double-quotes show up as literals and do not suppress variable substitution.
® Quotes inside braces show up as literal quotes.

Thus another basis for picking a quoting character is if the other one is present in the quoted string.

3.4. Argument expansion

The last action taken before a command is executed is argument expansion. Normally every word that is parsed
is passed to the command as a single argument. However, when a word is prefixed with the character sequence
{*}, the associated word is treated as a list of words and every element of the list is passed to the command as a
separate argument.

This is slightly tricky to explain so we will just illustrate with an example. Because it is tied in with list structures
which we will look at in detail in Chapter 5, we will first very briefly introduce the latter. A list is a ordered
sequence of values, referred to as elements of the list. The simplest method of creating a list is as a “string literal”
enclosed in braces. Thus the commands

set alist {one two three} » one two three
set blist {four five} » four five

create two lists containing three and two elements respectively. Now suppose we wanted to append the elements
of the second list to the first. We can use the lappend command for this. This command accepts any number of
arguments and appends them to the list contained in a variable.

lappend alist $blist six » one two three {four five} six

The command has added four five as a single element (as shown by their being enclosed in braces) whereas
we wanted four and five to be separate elements. This is where argument expansion using {*} comes in. It
treats the following word as a list and “explodes” its value into its elements which are then passed as separate
arguments.

set alist {one two three} > one two three
lappend alist {*}$blist six » one two three four five six

Note how four and five are now separate elements. In effect this is as if the command were written as

32

Commands

lappend alist four five six

Note that argument expansion applies no matter in what form the following word is supplied. It could be a
variable as in our example, or a quoted string or a bracketed command. For example,

% lappend alist {*}{7 8} @
» one two three four five six 7 8
% proc cmd_returning_a_list {} { return {9 10} }

% lappend alist {*}[cmd_returning_a_list] (2]
» one two three four five six 7 8 9 10

@ String quoted with braces
© Bracketed command

In all cases, the value that would be substituted is treated as a list and its elements are passed as separate
arguments to the command.

The above situation, where we need to pass the elements of a list to a command that expects them as separate
arguments, is not uncommon in Tcl programming.

3.5. Commands

He who wishes to be obeyed must know how to command.

-— Machiavelli

As described previously, the Tcl parser breaks up a Tcl program into a sequence of commands that are executed
in turn. We will now go into a little more, but still basic, depth regarding commands: how they are invoked, the
different types, their structure etc.

The first thing we will note is that the term command is used in the Tcl documentation (and in this book) in two
distinct, though related, ways. In our earlier example, we referred to the code fragment

puts "Hello World!"

as a command. This is the first usage for the term. The other usage refers to puts itself as a command. In most
cases, this distinction is clear from the context or immaterial. Where it matters, we will use the terms command
statement for the first usage.

3.5.1. Command invocation

Once a command statement is parsed into its final form, including any substitutions, argument expansion etc.,
the first word is looked up in the interpreter’s database of registered commands. If found, it is invoked with the
remaining words passed as arguments.

Note that the interpretation of arguments is completely up to the command. Tcl itself does not care. For example,
compare the following

puts "2 + 2" 2+ 2
expr "2 + 2" » 4
regexp "2 + 2" "2 + 2+ 3" 5 0

The puts command will treat its argument 2 + 2 as a string. The expr command on the other hand will treat it
as an arithmetic expression. The regexp command will treat it as a regular expression to be matched against the
second argument.

33

Command invocation

In other words, commands are completely free to treat their arguments as strings, nurnerics, even program code,
or whatever, in any manner they see fit.

Indirect invocation of commands

From our earlier discussion remember that substitutions are applied to the first word as well before it is
looked up as a command name. So we can write our ubiquitous example as

set str ts » ts
\x70\u0075%str "Hello world!™ » Hello world!

That is not particularly useful. What is useful though it being able to invoke a command indirectly
through a variable. This is commonly used in callbacks and such where a command name is passed as an

argument and invoked as a callback.

set cmd puts > puts
$cmd "Hello world!™ » Hello world!

3.5.1.1. Counting command invocations: info cmdcount
The info cmdcount command returns the total number of commands invoked in a Tcl interpreter since it was
started.

info cmdcount » 15261
info c¢mdcount » 15262

The count of command invocations is seen used in two scenarios. One involves the use of safe interpreters where
a limit is set for the number of commands an interpreter is allowed to execute before it is terminated. We will

examine this in Chapter 20.
The other use of info cmdcount is to generate identifiers at run time that are unique within that interpreter.
Examples include naming of objects, handles for resources, coroutines and so on.

proc make_id {{prefix id}} { return ${prefix}[info cmdcount] }
We can use this to generate new unique identifiers.

make_id » 1d15266
make_id coro » coro15269

The command invocation count is not incremented in certain cases due to optimizations

in the Tcl byte code compiler. However, it is safe to use for the above purpose as the info
cmdcount command itself will increment the count.

3.5.1.2. Unknown command handlers

If a command is not found, Tcl invokes a procedure called unknown passing it the name of the command and
associated arguments. The result of this procedure is then returned as the result of the original command.

The handling of unknown commands is a little different in the presence of namespaces

but since we have not discussed those yet, we will defer a full discussion to
Section 12.5.3.4.

34

Comments

Tcl provides a default implementation of unknown which can be overridden by redefining the procedure. The
default implementation takes the following steps to resolve an unknown command.

+ It will attempt to load the command by searching Tcl’s library paths via the auto_load command. This step is
skipped if the auto_noload global variable is defined.

« If Tcl is not running in interactive mode, an invalid command error exception is raised. If running in interactive
mode, the following additional steps are taken.

+ It will use auto_execok to try and locate an external program of that name. If found, it will run it with the exec
command returning the output of the program as the result of the original command.

+ If the above steps fail, it will check if the command matches one of the patterns for recalling commands from
the command history. If so, the corresponding entry from the command history is executed again and the result
returned to the caller.

* As alast resort, Tcl checks if the command name is an abbreviated form of exactly one existing command (so
there is no ambiguity) and if so, executes that command returning its result.

If all the above fail, Tcl raises an exception.

% put "Hello World!"
» Hello World!

The above command works because put is an unambigious prefix of a command — puts.

We can replace the unknown command to implement any behaviour that we choose.

rename unknown _old_unknown
proc unknown {args} {
if {$::tcl_interactive && [info level] == 1} {
if {I[catch {expr $args} result]} {
return $result
¥

}
error "Unknown command [lindex $args 0]"

Don’t worry about the details of how that works as we need to go into several Tcl features first. In a nutshell,
we treat any unknown command as an arithmetic expression but only if it was executed interactively from the
command line.

We can now use the Tcl shell as an interactive calculator.

% 2 + 4*10
» 42

Before we go on, let us restore the default implementation of unknown as we will need it later.

% rename unknown ""
% rename _old_unknown unknown

3.5.2. Comments

If the Tcl parser encounters a # character where it is expecting the first word of a command (the command name),
the # character and all characters till the end of that line are treated as a comment and ignored.

puts "This line will not print as it's commented out"

35

Comments

There are a number of subtleties involved in this seemingly simple description and we will go through them one at
a time.

The #is not treated as a comment if it appears anywhere other than where the first (non-whitespace) character of
a command is expected. So for example, you can print it, name a variable, or whatever.

puts #Hi > #Hi
set # "Hello world!" » Hello world!
puts ${#} 5 Hello world! @

© This uses the variable reference syntax described in Section 3.6.3

You can even define a command implemented as a procedure named #.

proc # {s} { puts $s }

However, the following invocation will not work because it will be treated as a comment.

"Hello world!" » (empty)
Instead we have to call it using one of the following syntaxes.

\# "Hello world!" > Hello world!
{#} "Hello world!" - Hello world!
set name # s> #

$name "Hello world" » Hello world

The above examples just illustrate the point that the check for the # character happens before any substitutions.
They are not something you will run into in real-world Tcl code. But we now bring to your attention two mistakes
that are commonly made at some point when you are learning Tcl.

Suppose we define a list of items as follows and add a comment to describe the list.

set fruit {
This is a list of fruilt
bananas
oranges

}

Then we print out list.

% print_list $fruit
> #
This
is
...Additional lines omitted...

What happened? Well, the # character was not in position where a command was expected and thus was not
treated as a comment. It became part of the list!
A second mistake is having an unmatched brace character in a comment.

proc demo {n} {

This 1s a comment with an unmatched { character
return $n

36

Command types

If you place this code in a file and try to source it, you will get the error

unmatched open brace in list

The check for comments happens after the parsing into words and before substitutions. When parsing the above
script into words, Tcl encounters the left brace character. At that point, it will look for the matching closing brace,
even across line boundaries. Not finding one will lead to the error.

The lesson in this? Match your braces even within comments! This is admittedly quirky coming from other
languages but a small price to pay for Tcl’s syntactic uniformity which is the root cause of this behaviour.

3.5.3. Command types
Commands may be implemented in Tcl by several means.
+ Native commands implemented in C
* Procedures defined through proc or apply.
+ Coroutines defined with the coroutine command
+ Aliases defined with the interp alias command
+ Namespace ensemble commands
+ Objects and classes defined through Tcl’s object-oriented facilities
Irrespective of how they are implemented, they are invoked the same way and can be manipulated in common

manner. We will discuss all these in the book with the exception of native implementation of commands in C.

3.5.4. Renaming a command

Tcl is a completely dynamic language where programming constructs can be added, removed or otherwise
manipulated at will. This applies to commands as well, even the ones built into Tcl. We can thus change the name
of any command with the rename command.

rename IITNAME NIWNAMNE
A common use for rename is to “wrap” a command to add some functionality or to modify its behaviour in some

way. We saw this in Section 3.5.1.2. As another example, let us say we wanted all output to be in upper case without
having to modify the application itself. We could then wrap the puts command as follows

% rename puts builtin_puts @
% puts "Hello world!" (2]
@ invalid command name "puts”

% builtin_puts "Hello world!" (3]
» Hello world!

© Save the built-in puts under another name
© TFails because there is no longer a command called puts...
© ..Dbut there is one called builtin_puts

Then we define a new puts command which makes use of the original command.

proc puts args {
set str [string toupper [lindex $args end]]
builtin_puts {*}[lreplace $args end end $str] (1)

+
puts "Hello world!"

37

Deleting a command

» HELLO WORLD!

@ See Section 3.4 for explanation of the {*} sequence

We now get all output in upper case. The above code fragment uses commands and features we have not gotten to
as yet but the main idea behind wrapping commands in this fashion should be clear. We transformed the original
data and passed it on to the original command.

Although the above method of "wrapping” commands works with puts, it is incomplete
and will not work correctly with commands whose behaviour is dependent on the Tcl call
stack. We will revisit this later in Section 10.5.7.

3.5.5. Deleting a command

We can also use the rename command to delete a command. If the second argument to rename is an empty string,
the command is deleted instead. We can use this to put things back the way they were.

3

% rename puts "" @

% puts "Hello world:" @

@ invalid command name “puts”
% rename builtin_puts puts ©
% puts "Hello world!™

+ Hello world!

© Getrid of our version of puts
© TFails because the command has been deleted
© Restore the original built-in version of puts

3.5.6. Redefining commands

In our prior example, we renamed the command before creating our own version of it because we wanted to
preserve the functionality of the original command. If that is not needed, we can just overwrite a command
implementation simply by defining a command of the same name.

Suppose you had to write a procedure that needed some expensive one time initialization. You might write it as:

proc my_proc {} {
global initialized
if {![1info exists initialized]} {
set initialized 1
puts "Pretend this is some expensive initialization"
}
puts "Now doing the real work"

We could write it like this instead redefining the procedure within itself.

proc my_proc {} {
puts "Pretend this is some expensive initialization"
proc my_proc {} {
puts "Now doing the real work"
}
tailcall my_proc

The tailcall command is explained in Section 10.5.7.

38

Enumerating commands: info commands

Now let us call it twice and see it in action.

%

my_proc

» Pretend this is some expensive initialization

%

Now doing the real work
my_proc

» Now doing the real work

Our procedure has gotten rid of both the initialized variable as well as an unnecessary check on every
subsequent call. A generalized form of procedure self initialization is illustrated in Section 10.8.1.

Note that although we have used procedures in our examples above, the renaming, redefinition, deletion can be
used for all command types. For example, renaming an object (see Chapter 14) to the empty string will destroy
it. Also, the redefinition does not have to be of the same command type so you can define a procedure that will
overwrite a C-implemented command of the same name.

Although Tcl allows redefinition of even the core commands like set, proc etc. you are
strongly advised against doing so unless you really know what you are doing and can
duplicate their exact behaviour.

You will find the renaming and redefining of commands commonly used in the Tk graphical toolkit where each
GUI widget instance name is also a command. One technique for extending a widget is to rename its “owning”
command and then define a new command of the same name that calls the renamed command while adding
additional behaviours.

3.5.7. Enumerating commands: info commands

The info commands returns a list of names of commands visible in the current namespace context.

info commands ?:

If PATTERNIs not specified, the command returns the names of all visible commands. Otherwise, only those names
matching PATTERN using the rules of string match are returned.

voaR 4 a2 4+ R

o0

info commands (1

print_args tell socket subst write_file open eof ne pwd _SetupCawtPkgs print_file glob ...
info commands co* (2]

coroutine concat continue

info commands ::tcl::mathfunc::* ©

citel:imathfunc::round ::tcl::mathfunc::wide ::tcl::mathfunc::sqrt ::tcl::mathfunc::sin...

info commands ::tcl;:*::*

All commands visible in the current namespace

All commands visible in the current namespace that start with co

Commands in the namespace ::tcl:mathfunc

Note that the namespace components in the pattern are not treated as wildcards so this returns an empty list

You can also use info commands to check for the existence of a command. For example, older versions of Tcl did
not have an Imap command so you might see code of the form

if {[1llength [info commands lmap}] == 0} {

proc lmap {args} {
A fallback implementation of lmap

¥

39

Procedures

If the 1map command existed, info commands would return a list containing Imap. If it returns a list of zero length
instead, the command does not exist and the code defines a 1Imap command implemented in script.

3.5.8. Procedures

Procedures allow you to define new Tcl commands at the script level. We have already seen simple examples of
procedures and we now delve into them in more detail.

Procedures may be named or anonymous. We will describe the former first before differentiating the latter.
3.5.8.1. Defining procedures: proc

Named procedures are defined with the proc command.

proc NAME

The command creates a new command called n¥aME replacing any command of that name if one exists.

The BODY argument is the Tcl script that implements the command defined by the procedure. The result of the
command is the result of the last statement executed in Bopy. This is not necessarily the last physical statement in
BODY but may be a return or other control command.

nvAME may include namespace qualifiers in which case the procedure is defined within the
E corresponding namespace context. We postpone that discussion to Chapter 12.

Just another command

We will take a segue to reiterate that proc is itself just a command like any other, not a keyword or
specially treated by the Tcl parser. Although by convention, the parameter definitions and the body
arguments are braced, there is no such requirement imposed by Tcl. As far as it is concerned, the
arguments to proc are evaluated with the same quoting and substitution rules as for any other command.
For example, sometimes you may want define a procedure “on the fly” where you want TcPs quoting and
substitution rules to come into play. Let us define a procedure that will create another procedure that
adds some fixed amount to a number.

proc make_adder {increment} { proc add$increment n "expr \$n + $increment" }

Then we can use it as follows.

make_adder 2 > (empty)
add2 3 5
make_adder 10 » (empty)
add10 20 » 30

Pay attention to the quoting and substitutions in the above and make sure you understand how it works.
We will have much more to say about this type of code construction in Section 10.8 and Section 20.9.2.

3.5.8.2. Procedure parameters

PARAMS is a list of parameter definitions for the command, each element in the list corresponding to an argument
that must be passed to the command when it is called (modulo some special cases described below). When
invoked, each argument supplied by the caller is assigned to a variable named after the corresponding parameter.

A procedure definition may have any number of parameters, including zero.

40

Procedures

proc likes {paramA paramB} {
puts "I like $paramA and $paramB."

}
likes ham cheese
+ I like ham and cheese.

Passing a different number of arguments than the number of parameters in a procedure definition results in an
error.

% likes ham

@ wrong # args: should be "likes paramA paramB"
% likes ham cheese eggs

@ wrong # args: should be "likes paramA paramB"

Note the distinction we make between parameters and arguments. The former goes with

E the procedure definition. The latter refers to the values passed when the procedure is
called. Each argument value is assigned to the corresponding parameter at the time of
procedure invocation. Parameters are also referred to as formal arguments.

3.5.8.2.1. Default argument values

Each parameter definition in a parameter list is specified as a list of one or two elements. The first element in the
list is the name of the parameter. The second element, if present, is the default argument value to assign to the
parameter if the caller does not supply one. Thus we can rewrite our procedure as

proc likes {paramA {paramB jelly}} {
puts "I like $paramA and $paramB."

I3

Now if the command invocation does not supply a second argument, the default value of jelly is passed instead.

likes "peanut butter” » I like peanut butter and jelly.
likes ham cheese » I like ham and cheese.

3.5.8.2.2. Variable number of arguments

Some commands support an arbitrary number of operands, for example the 1ist command which constructs

a list whose elements are the arguments passed to it. In other cases, commands support various options that
modify the behaviour of the command. In both cases, the command implementation has to be able to deal with an
arbitrary number of arguments passed to it.

Parameters without defaults must come before parameters that have a default specified,;
otherwise an error exception will be raised when the procedure is called.

If the last parameter in a procedure definition is named args, any additional arguments in a call to the procedure
beyond the number of parameters in the procedure definition are collected into a list. This list is then passed as the
value of the args argument. Let us modify our example.

proc likes {paramA {paramB jelly} args} {
puts "I like $paramA and $paramB."
if {[llength $args] != 0} {
puts "I also like [join $args {, }]"
}

41

Procedures

% likes "peanut butter”
» I like peanut butter and jelly.
% likes ham cheese apples bananas broccoli
+ I like ham and cheese.
I also like apples, bananas, broccoli

In the second call, ham and cheese are assigned to paramA and paramB respectively. The additional arguments
apples, bananas and broccoli are collected into a list. If the list is not empty, we print out the second line.

3.5.8.2.3. Named parameters

For this variable argument list feature, the args parameter must be the last parameter.
Otherwise it has not special significance.

Sometimes a procedure has a large number of parameters, many of which are optional. In such cases, it can be
awkward to call the procedure, having to remember the position of the parameters and supplying values for any
preceding parameters even when their defaults are adequate. For example, consider the following procedure
definition:

proc fontify {text {family Arial} {style normal} {weight medium} {size 10}} {
return "<span font-family='$family' font-style='$style’ \
font-weight="'$weight' font-size=$size>$text"

¥

Calling this procedure for a non-default style and font size requires all arguments to be specified even though most
use the default.

% fontify "Some text" Arial italic medium 12
» Some t...

Some languages have named parameters to deal with this problem so the above procedure can be called as

fontify "Some text" size 12 style italic

Note that the order of optional arguments is immaterial as they are identified by parameter name.

Although Tcl does not have built-in named parameters, we can achieve similar results through the args facility as
below.

proc fontify {text args} {
lassign {Arial normal medium 10} family style weight size
1f {[llength $args] & 1} {
error "No value specified for parameter [lindex $args end]"
}
foreach {param val} $args {
set $param $val
}
return "<span font-family='$family' font-style='$style’ \
font-weight="$weight' font-size=$size>$text"
¥
fontify "Some text" size 12 style italic
» Some t...

42

Procedures

We initialize the local variables to defaults using 1assign and then loop through the variable arguments
overwriting the defaults. Other means of accomplishing the above include using arrays or dictionaries. For
example, using dictionaries,

proc fontify {text args} {

set opts [dict merge {

family Arial style normal weight medium size 10

} sargs] @

dict with opts {} (2}

return "<span font-family='$family' font-style='$style' \

font-weight="'$weight' font-size=$size>$text"

b
fontify "Some text" size 12 style italic
> Some t...

© Merge default option value dictionary with provided arguments
® Copy dictionary elements into local variables

The above techniques have a couple of drawbacks. Errors like misspelt parameter names are not detected and
introspecting parameters provides limited information. Some of the techniques in the next section may provide
better solutions in this regard.

3.5.8.2.4. Option processing

In Tcl code, command options are far more prevalent than named parameters. They differ from named
parameters in the following respects. By convention, they always start with a specific character, -. More
importantly, options do not always have a value specified after them. The presence of the option itself acts as a
boolean switch.

You can of course code up your own solution similar to what we did for named parameters in the previous section
or use one of the scripted off-the-shelf implementations3 available for the purpose. We go in a different direction
for the following reason: though the scripted solutions are fine for parsing program options passed on the
command line, they can be much slower than standard procedure calls for parsing arguments to procedures that
are executed often. We will thus demonstrate options using the parse_args™ extension which is implemented in C
and much faster than Tcl-only solutions.

Let use redo our fontify procedure from the previous section except that we will change the style of the font
using a boolean -italic option instead of a -style option-value pair. We should he able to call it as

fontify "Some text" -italic -size 10

We will use the parse_args: :parse_args command from the parse_args package to reimplement our
procedure.

Tcl core language. It can be implemented in many forms as we will detail in Chapter 13.
We will make use of packages extensively throughout this book. For now it suffices to
know that before the commands in the package can be used, it must be loaded with the
package command as we do with the parse_args package in the code snippet below.

s A Tcl package is essentially a library of commands implementing functionality not in the

The command parse_args takes an option descriptor that describes the allowed options and their attributes. It
then parses the arguments based on this descriptor setting local variables corresponding to the option names.

3 hitp:/wiki.tcl.tk/1730
https://github.com/RubyLane/parse_args

43

Procedures

package require parse_args
proc fontify {text args} {
parse_args::parse_args $args {
-family {-default Arial}
-italic {-boolean}
-size {-default 10}
-weight {-default medium}
b
set style [expr {$italic ? "italic" : "normal"}]
return "<span font-family='$family' font-style='$style' \
font-weight="%weight' font-size=$size>$text"

b

We will not describe the full option syntax here, see the documentation® of the extension for details. In our simple
example, the -italic option is marked as boolean indicating it is boolean switch that takes the value 1 if specified
and 0 if absent. The other options have defaults specified. We can then call our rewritten procedure as below.

% fontify "Some text" -italic -size 10

s Some t...
% fontify "Some text" -slanted -size 10 @

@ bad option "-slanted": must be -family, -italic, -size, or -weight

@ Error-invalid option -slanted

Notice the automatically generated error message for the invalid option -slanted. The extension is flexible and
has many other capabilities. See its documentation for details.

3.5.8.3. Returning from a procedure: return

other languages. However, here we only describe its simplest forms. More advanced
capabilities will be described in Section 11.3. Likewise, other mechanisms for terminating
the execution of a procedure will also be described there.

E The return command is more flexible and powerful than you might have seen in

The return command can be used within a procedure to stop its execution and return a result back to the caller.
If an argument is supplied, it is used as the value to be passed back to the caller. If no argument is supplied, the
return value defaults to an erapty string.

proc signum {n} {

if {$n < 0} {
return -1
} elseif {$n == 0} {
return 0
} else {
return 1
}
}
signum -5
> -1

If the procedure does not have a return command, its execution is terminated after the last command in its body.
The result of this command is returned as the result of the procedure. Thus the result returned by the double
procedure below is the result of the expr command.

5 https://www.tcl.tk/community/tcl2016/assets/talk33/parse_args-paper.pd{

44

Procedures

proc double {n} { expr {2*$n} }
double 4
5> 8

3.5.8.4. Anonymous procedures: apply

There are many situations in programming, particularly the event driven style that is common in Tcl applications,
where code is executed via a callback mechanism. Examples include callbacks when a timer goes off, the user
clicks a mouse, a connection request arrives over the network and so on. In these cases where a "one-off"
procedure is needed it is inconvenient to have to define a named procedure elsewhere to be used as a callback. In
these situations, anonymous procedures provide a convenient alternative.

Why procedures are preferable to scripts as callbacks
There are a couple of advantages to passing a procedure as a callback as opposed to a script.
+ The first is performance since procedures are compiled into a byte code form for faster execution.

* The second is that any non-trivial script will use variables whose names will “pollute” the callback
context. For example, in the case of user interface callbacks from Tk which execute in the global
context, they will result in extraneous global variables being created. This problem does not arise with
procedures where any variables will be created in the procedure’s own local context.

Since anonymous procedures have no name, there has to be some facility to actually invoke them. This facility is
the apply command.

apply

The apply command takes a mandatory argument — the anonymous procedure — and invokes it passing it any
additional arguments that are supplied. The anonymous procedure avonproc itself is a list containing two or three
arguments:

+ the parameter definitions in the same form as for a named procedure
* the body of the procedure, again as for a named procedure
+ optionally, an identifier for the namespace (see Chapter 12) in which the anonymous procedure is to be defined.

We will illustrate with a simple example using the 1sort command. This command is described in detail with its
myriad options in Chapter 5 but here it suffices to know that it sorts lists and has an option, ~-command, which can
be used to specify how elements in the list are to be compared. Let us assume we want to sort a list of integers
based on their absolute values. The option -command takes a script which is invoked by 1sort to compare pairs
of elements. When this script is invoked, two additional arguments are appended to it — the elements to be
compared. The script has to return -1, 0 or 1 depending on whether the first element is less than, equal or greater
than the second element. We first create our list.

set list_of_ints {-1 5 -5 10 -5 -1000 100} > -1 5 -5 10 -5 -1000 100

We can then sort this with a custom anonymous procedure that does comparisons based on absolute values. Note
the similarity of the argument to apply to the structure of a named procedure definition: a list containing the
parameter definitions {a b} followed by the procedure body.

% lsort -command {apply {
{a b}
{
if {[abs $a] < [abs $bl} { return -1}

45

Procedures

if {[abs $a] > [abs $b]} { return 1 }
if {$a < $b} { return -1 }
if {$a > $b} { return 1 }
return 0
¥
> $list_of_ints
+ -1 -5-55 10 100 -1000

Nevertheless, the above looks slightly clumsy so very often a helper procedure, lambda, is defined for constructing
anonymous procedures.

proc lambda {params body args} {
return [list ::apply [list $params $body] {*}$args]
}

Then the above sort can be written as

lsort -command [lambda {a b} {
if {{abs $a] < [abs $b]l} { return -1 }
if {[abs $a] > [abs $bl} { return 1 }
if {$a < $b} { return -1}
if {$a > $b} { return 1 }
return 0

}] $list_of_ints

> -1 -5-5510 100 -1000

which looks cleaner. This construct is used so often that Tcllib® contains a package lambda that defines this
lambda command for you7.

Although not relevant to our discussion of anonymous procedures, in case you are
g wondering, the third and fourth lines

if {$a < $b} { return -1 }
if {$a > $b} { return 1 }

are not superfluous. We want the comparison function to be consistent given the
same pair of elements so 5 should always be deemed greater than -5 (not even equal)
irrespective of whether the arguments are passedas 5 -5or -5 5.

Could we have written the above as a named procedure? Of course. The choice is a personal preference. Defining a
named proc means one more suitable name to think of8, potentially less clarity compared with inline code and so
on.

3.5.8.5. Introspecting procedures: info procs|args|default|body

While info commands, which we saw earlier, returns the list of commands visible in the current context, the info
procs command only returns names of commands implemented as procedures.

info procs ?PATTERN?

If pATTERN s specified, it is matched using the rules of string match.

6 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.htrml
The name lambda comes from Lambda Calculus and generically refers to anonymous functions in programming languages.
This is not a trivial problem when there are a lot of callbacks, often with similar functionality, in an application!

46

Procedures

info procs » print_args write_file _SetupCawtPkgs print_file auto_load_index likes unknown my_proc

info procs tcl* » tclPkgUnknown tclPkgSetup tcllog
A number of commands return detailed information about a specific procedure.

info args &
info default ¢
info body iROCN

The info args command returns a list containing the names of the parameters defined for a procedure. We will
use our previously defined 1ikes procedure as the procedure of interest.

info args likes - paramA paramB args

Note this only returns the name of each parameter, not the entire parameter definition. To get the defaults
associated with a parameter, we have to use the info default command. If the parameter has a default, the
command returns 1 and stores the default in the specified variable.

info default likes paramA paramA_default » 0
info default likes paramB paramB_default » 1
puts $paramB_default + jelly

Lastly, the info body command returns the entire body of the procedure.

% info body likes
5
puts "I like $paramA and $paramB."
if {[llength $args] != 0} {
puts "I also like [join $args {, }1"
+

We can use these commands to entirely reconstruct a procedure definition at run time without access to source.

proc reconstruct {proc_name} {
set proc_name [uplevel 1 [list namespace which -command $proc_name]]
set params [lmap param_name [info args $proc_name] {
1f {[info default $proc_name $param_name defvall} {
list $param_name $defval
} else {
list $param_name
+
]

return [list proc $proc_name $params [info body $proc_name}]

We can then call it to reconstruct any procedure from the runtime environment.

% reconstruct likes
+ proc ::likes {paramA {paramB jelly} args} {
puts "I like $paramA and $paramB."”
1f {[llength $args] !'= 0} {
puts "I also like [join $args {, }1"
b
...Additional lines omitted...

47

Variables

There are a couple of commands in the reconstruct procedure that we will not look at until later so a short
explanation is in order. The first line converts the supplied procedure name to a fully qualified nare in case the
procedure is defined in a namespace. The Imap command command, described in Chapter S, loops through a list
and constructs a new list containing the result from each iteration.

This kind of reconstruction is useful in Tcl tools like profilers and debuggers as well as in metaprogramming
constructs like macros. Some Tcl packages, like pipethread, even use similar methods to ship code to other
remote interpreters as part of an RPC-like mechanism.

3.6. Variables

We have already seen basic usage of variables. It is time to go into more details including name syntax, scopes,
visibility and commands related to variable management.

3.6.1. Variable assignment: set

The basic command for assigning a value to a variable is the set command that we have seen before.

set Vi

If the vaLuE argument is not supplied, the command returns the value of the variable named varnauE if it exists
and raises an error if it does not. Otherwise, if the variable exists, its value is replaced and if it does not, it is
created and initialized. In all cases, the command returns the value of the variable.

set avar "Some value"” » Some value
set avar » Some value

Strange though it may seem, there is no guarantee that the return value of the command
- ‘ - (which is also the new value of the variable) is the specified varug! This is true not only
o e for set but other commands that modify variables as well. This can happen when there
are traces on the variable that modify it. See Section 10.6.1.

3.6.2. Getting a variable’s value
We have already seen how the value stored in a variable is retrieved either by prefixing its name with the $

character or using the single argument form of the set command.

puts $avar s Some value
puts [set avar] » Some value

We now look at some variations of these.

For starters, suppose we wanted to write a (very simple minded) procedure to return a phrase that pluralized a
word by tacking an s on the end. Clearly the following does not work because the Tcl parser will treat $nouns as a
reference to the variable nouns as opposed to a reference to noun followed by a literal s.

proc pluralize {count noun} {return "$count $nouns"} » (empty)
pluralize 10 car @ can't read "nouns": no such variable

To fix this, we can delimit the variable name with a pair of braces.

proc pluralize {count noun} {return "$count ${noun}s"} » (empty)
pluralize 10 car + 10 cars

48

Variable name syntax

In addition to this use to delimit the name when it is not terminated by a word separator, this braced form of
variable reference is also useful in a couple of other situations. The first is when the variable name itself is of an
unusual form as we will illustrate in the next section. The second is in conjunction with namespace names stored
in variables which we will describe in Chapter 12.

Variable indirection
There is a situation that sometimes arises, that involves accessing the value of a variable indirectly through
another variable that holds the name of the first. Consider the following

set avar "Some value" » Some value
set bvar "avar"® » avar

Given bvar, how does one retrieve the value whose name is stored in bvar? The following attempts fail.

puts $$bvar + $avar
puts ${$bvar} @ can't read "$bvar": no such variable

The first failure illustrates an important characteristic of the Tcl parser. When a substitution is made, it will never
go back and reparse the string. Thus the parser never sees the substituted string $avar.
The second atternpt fails because variables are never substituted inside the {} in the first place.

This is where the single argument form of the set command can be put to good use.

puts [set $bvar] » Some value

An alternative is to use upvar to create an alias, which is more convenient if the variable is referenced multiple
times.

upvar 0 $bvar ref » (empty)
puts $ref » Some value

This is a special case of the more generally applicable upvar command (see Section 10.5.4).

3.6.3. Variable name syntax

We have been using variable names in our examples that are alphabetic. However, unlike most other languages,
there are practically no restrictions on the characters that can be used in a variable name. It is convenient for
many reasons to restrict names to the “standard” alphanumeric plus underscore (_) convention but this is not
mandated. You can include spaces, newlines, and practically any character you wish in a variable name as long as
you take care to appropriately quote or escape it as per the Tcl parser rules discussed previously.

The following are all valid variable names.

set a_traditional_variable "A variable name"
set {Funky + Var # Name} "can be anything"

set "" "you like." @
puts "$a_traditional_variable ${Funky + Var # Name} ${}"
+ A variable name can be anything you like.

© Even an empty string can be a variable name!

Notice in the above example, the ${} variable syntax used for accessing variable names that contain funky9
characters. However, there are cases where even this syntax cannot be used and you have to resort to using the
set command to retrieve the value:

9A technical term.

49

Unsetting variables

set "{namewithbraces}" avalue -» avalue (1)

puts ${namewithbraces} @ can't read "namewithbraces": no such variable @
puts ${{namewithbraces}} @ can't read "{namewithbraces": no such variable

puts [set "{namewithbraces}"] » avalue (3]

© The variable name is {namewithbraces}, i.e. the name itself contains braces
© Fails. Cannot use $ in either form
© Resort to the single argument form of the set command

Needless to say, there is no reason to use weird variable names in your programs. However, the ability to do so is
useful in dynamic languages like Tcl where the variable can be indirectly referenced as we saw in the previous
section. For example, a network server may choose to store information associated with a client in a variable of
the same name as the client’s DNS name '°.

However, there are two special cases to keep in mind regarding variable names. The first is with regard to use of
parenthesis in array syntax. The other is that although a colon (:) character can be used in a variable name,

set var:with:colon "A variable with single colons" » A variable with single colons
two or more consecutive colons in the name signify a variable in a namespace. Namespaces are described later in

the chapter Chapter 12.

3.6.4. Unsetting variables

The unset command deletes one or more variables.

unset ?-nocomplain? ?--? ?va;

The command destroys all specified variables. Unless the -nocomplain option is provided, the command will raise
an error if the variable does not exist.

set avar "Some value" - Some value

unset avar > (empty)

unset avar @ can't unset "“avar": no such variable
unset -nocomplain avar - (empty)

The -- character sequence is used to disambiguate the -nocomplain option from a variable of the same name.

% set -nocomplain “-nocomplain is a perfectly valid variable name"
» -nocomplain is a perfectly valid variable name

unset -nocomplain

% set -nocomplain (1

» -nocomplain is a perfectly valid variable name

% unset -- -nocomplain

% set -nocomplain @

@ can't read "-nocomplain”: no such variable

a2

© The variable still exists because the command treates -nocomplain as an option with no variables specified!
© Now it is gone because the - - marked the end of options, resolving the ambiguity.

10 Not to suggest that is necessarily a good idea. Using arrays or dictionaries would be better.

50

Variable scopes, lifetimes and visibility

3.6.5. Variable scopes, lifetimes and visibility

A variable’s scope is the region within which a variable is defined and can be referenced without special
qualification. Tcl defines three scopes:

+ local scope where a variable is defined within a procedure

* namespace scope where a variable is defined within a namespace. This is described in Chapter 12 and we will
not say more about it here.

+ global scope where the variable is defined outside any procedure or namespace.

3.6.5.1. Local variables

Local variables are defined within a procedure. There is no special declaration to declare them as local. They

are automatically created as local when the variable name is assigned to and there is no global or variable
command within the procedure that declares them to be global or within a namespace. The parameters defined
for a procedure are also local variables that are automatically assigned from the arguments when the procedure is
called.

Local variables can also be accessed from other procedures called by the procedure where they are defined. The
mechanisms for this are described in Section 10.5.4.

Local variables live until the procedure returns or they are explicitly destroyed with the unset command.

proc demo {} {
set localvar "I am local”

}

demo

puts $localvar @
@ can't read "localvar": no such variable

© Generates error because localvar is only defined within the demo procedure and destroyed when it returns.

3.6.5.2. Global variables: global

Global variables are defined outside any procedure. Any reference to an unqualified variable outside a procedure
refers to the global variable. (We are ignoring variables in namespaces which we discuss in Chapter 12). The
variables in our interactive examples in the Tcl shell were all created as global variables. Within a procedure or
namespace, global variables have to be either qualified or declared as global.

Qualifying a global variable is done by prefixing the variable name with the : : character sequence. This is a
special case of namespace qualification where the : : prefix indicates that the variable resides in the global
namespace.

set globalvar "I am global"
proc demo {} {

puts $::globalvar
}

demo
» I am global
Without the : : qualifier, an error would have been raised.

Alternatively, the variable can be declared to be global with the global command.
global ?varwame 2
The command declares its arguments to be names of global variables and creates local variables of the same name

linked to the corresponding global variables. The variable does not have to be explicitly qualified and access to it
result in the corresponding global variable being accessed. Thus the above procedure could also be written as

51

Variable scopes, lifetimes and visibility

proc demo {} {
global globalvar
puts $globalvar
¥

demo
+ I am global

Choosing qualification versus declaration with global is a personal preference. Use of explicit qualification
immediately makes it clear at the point of reference that a global variable is being used. On the other hand, if you
are into microoptimizations, using global is a tad more efficient if you reference the variable multiple times as in
a loop.

Global variables exist from the time of definition until they are explicitly destroyed with the unset command.

One more note regarding the global command. In common usage, the command links a local variable to a global
variable of the same name. However, if the argument to the command contains namespace qualifiers, the local
variable created is linked to that namespace variable, not a global one.

namespace eval ns {
variable avar "This is the namespace variable"

¥
set avar "This is the global variable"
proc demo {} {

global ns::avar

puts $avar

}
demo
» This is the namespace variable

3.6.5.3. Creation is not definition

We have so far used the words “creation” and “definition” somewhat interchangeably. However, these are not the
same so it is time to distinguish the two.

Following terminology from the Tcl reference pages, creation of a variable refers to creation of the variable name
and associating it with a scope (local, global, namespace etc.). Commands such as global, or variable that we
see in Chapter 12, perform this function. On the other hand, a variable is defined only when a value is assigned to
it. The difference is illustrated in following short example where we use the info exists command to check if a
variable has been defined.

proc demo {} {
global created_but_undefined
puts [info exists created_but_undefined]
set created_but_undefined "a value"
puts [info exists created_but_undefined]

The global command only creates a local variable of that name linked to a global variable. However, since it

has no value assigned to it, it is not defined as the output of info exists shows. Assigning a value results in the
variable being defined. In the rare case that you really care about the variable creation rather than definition, you
can use the namespace which command described in Section 12.5.4.

52

Variable introspection: info exists|vars|locals|globals

3.6.6. Variable introspection: info exists|vars|locals|globals

The info exists command can be used to check for existence of a variable within any scope.

info exists vaA

It returns 1 if a variable exists and 0 otherwise. Note exists means the variable is defined, i.e. has been created and
has an associated value as noted in the previous section.

set globalvar "I am global™
proc demo {} {
puts “"localvar: [info exists localvar]"
set localvar "I am local"
puts "localvar: [info exists localvar]"
puts "globalvar: [info exists globalvar]”
puts "globalvar: [info exists ::globalvar]”
global globalvar
puts “"globalvar: [info exists globalvarl"
I
demo
» localvar: 0
localvar: 1
globalvar: 0
globalvar: 1
globalvar: 1

Notice from the above output that info exists follows the same rules regarding qualification and global
declarations as any other variable reference.

The info locals, info globals and info vars commands can be used to enumerate local variables within a
procedure, global variables, and all variables that are visible in the current scope respectively.

info locals ?:
info globals ?
info vars 2.7

The script below illustrates their use.

proc demo {paramA} {

set localvar
puts "locals

"A local variable"
: [info locals]™

puts "globals: [info globals]"

puts "vars:

[info vars]"

global tcl _platform

puts "vars:

[info vars}”

+

demo "A parameter"

+ locals: paramA localvar
globals: tcl_version tcl_interactive var globalvar fruit created_but_undefined nested b...
vars: paramA localvar
vars: paramA localvar tcl_platform

Some of the variables we see in the output are predefined in Tcl. Others were created as a result of commands
executed in our earlier examples.

Notice that info locals includes the procedure parameters in its list. Also note the behaviour of info vars.
Unlike info globals, it will only include global variables if they have been brought into the local scope with a

53

Array variables

global declaration. Also, although not shown in our example, info vars will list namespace variables that have
been brought into the local scope.

In all cases, if PATTERN is specified, only variables matching the pattern using string match rules are returned.

% info globals tcl_*
» tcl_version tcl_interactive tcl_patchlLevel tcl_platform tcl_library

If the pattern includes namespaces, only the last component of the namespace variable is treated as wildcard
pattern. The namespace names are treated as literals. So for example,

info vars ns::* » ::ns::avar
info vars *::* 5 (empty) (1]

© Returns empty list because the namespace component * is not treated as a wildcard but a literal namespace

3.6.7. Array variables

Many languages provide array constructs where values are stored as elements in a collection and referenced using
a key. In languages like C, the elements have a specific sequence and the key must be an integer that specifies a
position in this sequence. In other languages, including Tcl, the key is not restricted to integers. These arrays are
also referred to as maps or associative arrays as they “map” or “associate” a value with a key.

In Tcl, arrays are actually not a collection of values but rather a collection of variables. They are denoted using the
special variable syntax

where both the array name and key may be arbitrary strings.

Tcl also has value based keyed collections called dictionaries. We describe dictionaries, as
well as contrast them with arrays, in Chapter 6.

3.6.7.1. Basic array operations

Because each element in an array is just a variable, they are used in the same fashion. We can access them with the
$ prefix and use any commands like set, append, incr etc. that operate on variables to modify an element.

% set populations(Mumbai) 12500000

+» 12500000

% puts "The population of Mumbai is now $populations(Mumbai)."

» The population of Mumbai is now 12500000.

% puts "Next year it will be [incr populations(Mumbai) 1000000]"
» Next year it will be 13500000

The key (or index) need not be a literal string. We may use a variable or a bracketed command as well.

set city "New York"

New York

set populations($city) 8500000
8500000

parray populations
populations(Mumbai) = 13500000
populations(New York) = 8500000

L -SR-S

54

Array variables

3.6.7.2. Printing an array: parray

The parray command prints out the contents of an array.
parray ARRAYNAME ?FATTERN?

If PATTERNis not specified, the array prints on standard output all elements of 2ArRrRAvNAME based on the sort order
of the keys. If PATTERN is specified, the commmand only outputs elements whose keys match PATTERN using the
pattern matching rules of string match. The command is primarily intended for interactive use.

% parray populations

+ populations(Mumbal) = 13500000
populations(New York) = 8500000

% parray populations N*

s populations(New York) = 8500000

3.6.7.3. Operating on multiple elements: array set, array get, array unset

Although individual array elements can be treated like any other variable, it is often convenient to operate on
multiple elements at a time. Several subcommands of array are provided for this purpose.

The array set command assigns to multiple elements.

ARRAYNAME is the name of the variable which either does not exist or must be an array if it does. An error will be
raised if ARRAYNANME is the name of an existing variable which is not an array.

L1sTis alist of alternating key value pairs. Each value is assigned to the array element identified by the key,
overwriting its value if it already exists and creating it otherwise.

array set populations {
Moscow 12200000
Lagos 17000000
Mumbai 12500000

}

parray populations

» populations(Lagos) = 17000000
populations(Moscow) = 12200000
populations(Mumbai) = 12500000

populations(New York) = 8500000

Correspondingly, the array get command returns multiple elements as a list of alternating keys and values.

array get aiia:

If PATTERN is not specified, the command returns all elements in the array. Otherwise, only those elements whose
keys match pATTERN using string match rules are returned.

% array get populations

» Moscow 12200000 Lagos 17000000 {New York} 8500000 Mumbai 12500000
% array get populations M*

> Moscow 12200000 Mumbai 12500000

There is no guarantee regarding the order in which elements are returned. The order may not even be maintained
across successive iterations. If a specific order is desired, you can use the 1sort command.

55

Array variables

% lsort -nocase -stride 2 [array get populations] (1)
Lagos 17000000 Moscow 12200000 Mumbai 12500000 {New York} 8500000
lsort -integer -index 1 -stride 2 [array get populations] (2]
{New York} 8500000 Moscow 12200000 Mumbai 12500000 Lagos 17000000

¥

S

v

© Sort by name
©® Sort by population

See Section 5.7 for an explanation of the options.

Finally, while unset can be used with array elements as with other variables, array unset provides a means to
unset multiple array elements.

array unset ARRAY!

If PATTERN is not specified, the entire array is unset. Otherwise, only those elements whose keys match PATTERN
using string match rules are unset. If ARRAYNAME does not exist or is not an array, the command does not raise
an error and has no effect.

array unset populations N*

parray populations

» populations(Lagos) = 17000000
populations(Moscow) = 12200000
populations(Mumbai) = 12500000

-&-
LA array unset my_array *
array unset my_array

Note the difference in the following commands

The first will remove all elements from the array but the array itself will continue to
exist. In the second case, the array variable itself will be unset.

3.6.7.4. Checking for arrays: array exists

We can use the array exists command to check if a variable is an array. It returns 1 if a variable exists and is an
array and 0 otherwise.

set scalar "some value" > some value
array exists populations -» 1
array exists scalar - 0
array exists nosuchvar -+ 0

3.6.7.5. Checking for element existence: info exists, array names

Since array elements are variables, the standard info exists command which can be used to check the existence
of a variable can be also used to check for array elements. The command returns 1 if the element exists and 0
otherwise.

info exists populations(Mumbai) - 1
info exists populations(London) » 0

The array names command returns a list of keys for the elements in an arrayn.

1l”l“he Tcl reference documents uses the nomenclature names for keys in an array and keys for a dictionary. We stick to using keys for both
cases.

56

Array variables

E? ?FATTERN?

array names ARRAYNAME ?M(

If PATTERN is not specified, the command returns the keys for all elements in the array. Otherwise, only keys that
match pATTERN are returned. The matching method depends on the MopE option. If it is unspecified or has the
value -glob the matching is done using string match rules. If MODE is -regexp, the matching is done as for
regular expressions. If MODE is -exact, only the key that exactly matches pATTERN is returned if it exists.

The command returns an empty list if no matching elements are found, or if the array variable does not exist or is
not an array.

array names populations > Moscow Lagos Mumbai
array names populations M* > Moscow Mumbai
array names populations -regexp o..0 » Moscow

3.6.7.6. Array statistics: array size,array statistics

The array size command returns the number of elements in an array. In case the specified variable does not
exist or is not an array, the command returns 0.

array size populations » 3
array size nosuchvar - 0

The array statistics command is rarely used in practice and we include it here only for completeness. It prints
detailed internal statistics about the hash tables used to implement arrays.

% array statistics populations

» 3 entries in table, 4 buckets
number of buckets with 0 entries: 1
number of buckets with 1 entries: 3

...Additional lines omitted...

Its primary use is development of the array implementation itself and possibly to diagnose pathological behaviour
with very large arrays.

3.6.7.7. Iterating over arrays: array startsearch|nextelement|anymore|
donesearch

Tcl has a very flexible iteration command for lists, foreach that can be used to iterate over arrays by retrieving
their content in list form using array names or array get.

foreach city [array names populations] {
puts "The population of $city is $populations($city)"

» The population of Moscow is 12200000
The population of Lagos is 17000000
The population of Mumbai is 12500000

Or in an alterative form,

foreach {city population} [array get population] {
puts “The population of $city is $population”
¥

These commands provide the most efficient and convenient means of iteration and are fully described in
Section 5.9. Here we describe an alternate means specific to iterating over arrays.

57

Array variables

The primary benefit of this alternative method is that there is no conversion into list format and thus memory
requirements are much smaller. This is only an issue when very large arrays are involved.

The first step is to retrieve a handle to an iterator with the array startsearch command.
set iter [array startsearch populations] » s-1-populations

The array anymore command is used in conjunction with array nextelement, which retrieves the next element
from the iterator, to loop over all the elements. It returns 1 if there are more elements left and 0 otherwise.

while {[array anymore populations $iter]} {
set city [array nextelement populations $iter]
puts “The population of $city is $populations($city)”
¥
» The population of Moscow is 12200000
The population of Lagos 1s 17000000
The population of Mumbai is 12500000

Finally, when the iteration has ended, the handle has to be released with array donesearch.
array donesearch populations $iter -» (empty)
There are a few special cases to be aware of, like multiple parallel searches and deletion of elements in the middle

of the iteration. See the Tcl reference manual for details.

It is worth reiterating that this method is slow, almost never required and should not be used unless you are
dealing with arrays that are so large as to cause memory allocation failures if converted to lists.

3.6.7.8. More on array keys
There are some additional points to be noted about keys.
Key equality

Keys are strings. Thus the keys 1 and 0x1 point to different array elements though in numeric calculations they
represent the same values. Additionally, keys are case sensitive. Thus keys abc and Abc point to different array
elements.

Multiple dimensions

There is no built-in notion of multidimensional arrays. They are sometimes simulated by concatenating the
multiple “indices” using some separator string and using the result as the array key. For example, the results of
tennis matches may be stored using keys like Federer ,Nadal. However, you need to be careful that the separator
string itself does not occur in the index values as it would lead to ambiguities. Also remember that Federer ,Nadal
and Federer, Nadal (with a space before the N) are different keys so even extraneous whitespace will lead to
erroneous results if not used consistently. For these reasons, dictionaries are preferable for such structures.

Empty strings as keys

As a piece of trivia, note that erpty strings are acceptable for both the array and the key. So for example,

set (key) value - value (1]
set arr() value » value (2}
set () value 5 value ©

© Array name is the empty string
© The key is an empty string
© Both the array name and key are empty strings

58

Predefined variables

Keys containing whitespace

Earlier we assigned an element for the key United States via a variable reference. What if we wanted to assign
to an element directly instead when the key included a space character? The following attempts lead to either
errors or unexpected results.

% set populations(Hong Kong) 7300000

@ wrong # args: should be “set varName ?newvalue?"
% set populations("Hong Kong") 7300000

@ wrong # args: should be “"set varName ?newValue?"

The correct way to set the variable is either of

set populations(Hong\ Kong) 7300000 - 7300000
set "populations(Hong Kong)" 7300000 » 7300000

On the other hand, when referencing the variable we can use the natural syntax or the braced form of variable
references.

puts $populations(Hong Kong) > 7300000
puts ${populations(Hong Kong)} » 7300000

Explaining treatment of keys with whitespace

To understand this seeming inconsistency in treatment of key literals containing white space, we have to
go back to the Tcl parser we discussed earlier.

When parsing the statement

set populations(Hong Kong) 7300000

the Tcl parser breaks it up into four words, set, then populations (Hong, followed by Kong) and finally
7300000. In essence, it does not treat the parenthesis as a special character. The set command raises an
error on receiving three arguments when it expects only one or two.

On the other hand, in the case of a statement like the one below, variable substitution comes into play.

puts $populations(Hong Kong)

When Tcl sees the $, the variable substitution rules are triggered. These do understand the variable
syntax used for array elements and treat all characters until the terminating parenthesis as a single word
doing backslash, command and variable substitution in the process.

In practice, most array accesses are through variables and rarely does this inconsistency matter.

3.6.8. Predefined variables

Tcl predefines a number of global variables such as tcl_platform, tcl_version etc. You can get a complete
list from the info globals command in the Tcl shell. We will describe these variables elsewhere in the sections
related to their use.

3.7. Getting error information

Tcl has powerful mechanisms for dealing with errors and exceptions that we describe in Chapter 11. Here we only
mention a couple of points that are useful to know when starting with Tcl in interactive mode.

59

Introspection

We have already seen that on invalid input most Tcl commands will print an informational message that identifies
the cause of the error. For example,

% binary decode hex

@ wrong # args: should be "binary decode hex ?options? data"

% string size "foo"

@ unknown or ambiguous subcommand “"size": must be bytelength, cat, compare, equal, first,
L index, is, last, length, map, match, range, repeat, replace, reverse, tolower, totitle,
L, toupper, trim, trimleft, trimright, wordend, or wordstart

In addition, if an error occurs in a nested procedure call, you can examine the global variable errorInfo for the
call stack at the point the error occured.

proc demo2 {x y} {}

proc demo args { demo2 {*}$args }

demo A B C

wrong # args: should be "demo2 x y"

puts $errorinfo @

wrong # args: should be "demo2 x y"
while executing

"demo2 {*}$args "
(procedure "demo" line 1)
invoked from within

"demo A B C"

YR R R R

@ Print the error stack

This can be very useful in diagnosing the root cause of an error.

0.0

If you are using an enhanced Tcl console like tkcon, error messages are highlighted and
clicking on them with the mouse will display the error stack in a popup window.

3.8. Introspection

There are three things extremely hard: steel, a diamond, and to know one’s self.

— Benjamin Franklin

Luckily for us, the last part does not hold for Tcl. Tcl offers deep and comprehensive introspection capabilities
into almost every aspect of its runtime. Introspection is useful in all kinds of situations ranging from
metaprogramming, runtime debugging and tracing, construction of dynamic object systems and more. It is even
useful in interactive development. For example, what arguments does our demo2 procedure take?

info args demo2 » x y
In most cases this information is available through the info command. We have already seen a few examples
such as info procs and info globals. You can see all the other categories of information available by passing a

bogus argument to info.

% info bogus
@ unknown or ambiguous subcommand "bogus”: must be args, body, class, cmdcount, commands,...

We will describe these introspection capabilities in detail in the sections pertaining to their subject.

60

The EIAS principle

3.9. The EIAS principle

The universe is a symphony of vibrating strings.
— Michio Kaku

Having looked at the basics of the language, we will now touch upon a core philosophy on which Tl is
based — EIAS (Everything Is A String). You will hear this referenced from time to time in various language
discussions and sometimes used to denigrate Tcl (the horrort).

Let us dispense with this last because it arises from a misunderstanding of what EIAS means:
+ EIAS does not mean Tcl only operates on strings with no facilities for numerics, structured data etc.

+ EIAS does not mean that all data is internally stored in string form.
* EIAS does not mean operations on numbers and structures entail conversion back and forth from string forms.

Having looked at what EIAS is not, let us look at what it is.

* Every value has a string representation. A “string” as we see in the next chapter, is a finite sequence of
characters supporting operations that return its length, indexing and so on. This also means that every value is
automatically serializable.

* Every value that produces the same string representation must be treated by every command in exactly the
same way no matter how those values were constructed. For example, a value with the string representation
100 may arise as the concatenation of the strings 10 and 0 or as the result of squaring the numeric value 10.
The result of both operations must be treated by all commands in the same manner. A command requiring
numeric operands cannot accept the second value and reject the first.

* Arguments to procedures, values stored in variables, etc. are conceptually passed as strings though the
implementation may not do so for reasons of efficiency.

* Because of the above, there is no need for mechanisms such as templates or generics because all values are
treated uniformly. Your hash table can contain any value without needing “type-specific” versions.

+ Although everything is a string to Tcl, commands are free to operate only on a subset of values in the string
universe. The arithmetic operations will only operate on the subset of values that represent numbers.

* A program element can also be a string. That includes, for example, procedure bodies. You can dynamically
construct procedure definitions as strings and invoke them. However, not all program elements are strings.
Namespaces, interpreters are not themselves strings though they have names that are. This does not violate
EIAS because they are not values. Thus EIAS is perhaps better named as EVIAS (Every Value Is A String).

Much of TcI’s malleability and ease of programming comes from this uniform treatment of values proscribed by
EIAS.

3.10. Chapter sumnmary

In this chapter we introduced the basic elements of Tcl — the syntax, command evaluation, procedures, and
variables. In the next few chapters, we will focus on the Tcl commands for manipulating data in various forms.

61

Strings

For the most part, you can think of strings in Tcl as a sequence of characters, or specifically, Unicode characters 1
However, they are actually a sequence of Unicode code points, not characters, in the range U+0000 to U+FFFF. The
difference arises because a character may map to more than one sequence of Unicode code points. For example,
the character é may be represented as either the single code point U+00E9 or the sequence U+0065 (letter e)
followed by U+0301 (combining acute accent). Tcl considers the two representations as distinct characters. Tcl
currently only supports Unicode code-points up to U+FFFF (the "Basic Multilingual Plane’, or BMP). Support for
Unicode characters beyond this range is a work-in-progress.

4.1. String indices

Commands that manipulate strings often take arguments that indicate the character positions, called indices, in
the string. These indices are 0-based so 0 references the first character in the string, 1 references the second and
S0 on. As a special case, end can be used to signify either the last character of a string or the position after the last
character depending on the specific command.

In addition, string indices may be specified in one of the special forms

INTEGER[+] -] N7
end(+]-1. x5

where INTEGER may be either an integer literal or a variable containing an integer. The resulting expression is
used as the index into the string.

We will see examples of these various forms throughout this chapter.

| There must be no whitespace between the operands and the operator in these forms.

4.2. Constructing strings

At some level, since all values in Tcl have a string representation, every command can be thought of as
constructing a string! In this section, we describe those commands whose main purpose is to construct a string, not
produce a string as a side effect of some other computation.

4.2.1. String literals

We have already seen the most basic forms of string construction using quotes and braces. To refresh your
memory,

% set interjection Hello @

1Ifthe term Unicode and code points are unfamiliar to you, please see one of the many tutorials on the Web, such as the one from joel on
Software [http:/www.joelonsoftware.com/articles/Unicode.html] or unicode.org [http:/junicode.org/standard/tutorial-info.html]

63

Concatenating strings: string cat

> Hello

% set greeting {$interjection World!} [2)
$interjection World!

% set greeting "$interjection World!" (3]
» Hello Wworld!

+

© No quotes needed if no whitespace or special characters
© No string interpolation inside braces
© String interpolation inside double quotes

To enter certain non-printable or control characters such as newline, backslash sequences can be used.

% set text "First line\nSecond line™
> First line
Second line

In the general case, any Unicode character can be entered using one of the Unicode escape syntaxes \x, \u or \U.

% set text "\x55\x6e\x69\u0063\u006f\u0064\U00000065"
» Unicode

The details regarding these various forms were discussed earlier in Section 3.2.1 and Section 3.3.

We now look at the additional commands provided in Tcl for conveniently and efficiently constructing strings
from other strings.

4.2.2. Concatenating strings: string cat

An alternative to string interpolation using literals is the string cat command.

string cat ?s5¢
It takes an arbitrary number of arguments and returns the string formed by their concatenation.

% proc demo {} {return bar}

% set var foo

» foo

% string cat $var {[this is a literal string, not a command]} [demo]
» foo[this is a literal string, not a command]bar

This is more convenient than string interpolation in some cases. In the above example for instance, literal
interpolation would be a littte awkward due to the need to protect the braced string from substitutions while
allowing it for $var and [demo].

The command is also useful when we need to return a result from a script that is the concatenation of one or more
strings. Here is an example using the Imap command to construct a list.

set la {abc def}

set 1lb {123 456}

lmap a $la b $1b {
string cat $a " " $b

+

> {abc 123} {def 456}

The 1map command (see Section 5.5.1) constructs a list whose elements are the result of successive evaluation of a
script. In this simple example, we want to construct a new list whose elements are formed from the corresponding

64

Constructing with substitutions: subst

elements of 1a and 1b separated by a space. Using string cat to construct the script result as above is more
convenient and lucid than the alternatives such as append.

4.2.3. Constructing with substitutions: subst

The subst command offers yet another flexible form of string interpolation.

subst ?-nobackslashes? ?-nocommands? ?-novariables? =s7rR7ue

The command performs backslash, variable and command substitution on the STR7NG argument in the same
manner as the Tcl command parser and returns the result. Variable references of the form $var, command

invocations enclosed in [] and backslash sequences are all replaced.

% set var 2

> 2
% subst {The sum $var+$var\t=\t[expr {$var+$var}]}
+ The sum 2+2 = 4

Make a note that when the subst command is invoked two rounds of substitution take
place, first by the Tcl parser, and then by the subst command.

subst "(\\t)" » () @
subst {(\\t)} » (\t) @
subst {(\T)} = () ©

O subst sees (\t) as Tcl parser does one round of substitution
© subst sees (\\t) as the braces prevent substitution by the Tcl parser

© substsees (\t)

The examples below use {} to prevent the Tcl command parser from making
substitutions so as to make the subst command behaviour clear.

The -nobackslashes, -nocommands and -novariables options provide additional control over what forms of
substitutions are carried out by subst. These options selectively prevent substitution of backslash sequences,

command invocations and variables respectively.

% subst {The sum $var+$var\t=\t[expr {2+2}]}

s The sum 2+2 = 4

% subst -nobackslashes {The sum $var+$var\t=\t[expr {2+2}]1}
» The sum 2+2\t=\t4

% subst -nocommands {The sum $var+$var\t=\t[expr {2+2}]}

» The sum 2+2 = [expr {2+2}]
% subst -novariables {The sum $var+$var\t=\t[expr {2+2}1}
> The sum $var+$var = 4

Of course, multiple options may be combined as desired.

There are some subtleties in the interaction among the various options to subst and in
n cases where commands return with a result code other than ok. For example, consider

% subst -novariables {The sum $var+$var\t=\t[expr {$var+$var}]}
> The sum $var+$var = 4

65

Formatting strings: format

and notice how the variables inside the expr expression have been substituted despite
the -novariables option. See the Tcl reference documentation for such special cases.

Many Tcl libraries for generating HTML via templates are based on the subst command. The HTML page is
constructed from one or more fragments containing a mixture of HTML and Tcl variables whose values (for
example) have been retrieved from a database. The page is generated by passing it through subst. See substifyz in
the Tcler’s Wiki® for one example implemented in just a few lines.

4.2.4. Formatting strings: format

The commands discussed so far construct strings in a somewhat “free-form” fashion using either their natural
representation or how they were initialized.

% set sixteen Ox10 ; puts "sixteen 1s $sixteen”
» sixteen is 0x10

% incr sixteen 0 ; puts "sixteen is $sixteen”

» sixteen is 16

Sometimes however, you need to construct strings where the values have precise representation and structure.
For example, you may need to write floating point values to a CSV file to be imported by another application which
requires exactly two decimal places. Or you may need to generate a report where values with different widths
have to be adjusted to a specific column width.

The format command lets you do precisely that by letting you specify details of how values are represented, their
location in the constructed string, maximum lengths, padding and so on.

format ORM

Here FORMATSTRING is a “template” for the string to be constructed and contains literal text as well as field
specifiers that are placeholders for the values supplied as arguments to the command. The command returns
FORMATSTRING with the field specifiers replaced by the argument values, appropriately formatted. For example,

% format "%d times %#x 1s %e" 10 10 100
> 10 times Oxa is 1.000000e+002

Here %d, %#x and %e are field specifiers that control how the numbers are formatted.

A field specifier controls the representation, widths etc. of the corresponding argument value and consists of the
parts or components listed below.

» Aliteral % character

+ An optional XPG3 specifier

» An optional sequence of flag characters
* An optional minimal width

+ An optional precision or bound

* An optional size modifier

* The conversion character

Note that all the parts above are optional except the starting % and conversion character. All parts that are present
must be in the order listed.

We illustrate each of the above in turn with some examples.

2 Jtp://wiki.tcltk/18455
3 hutpiwiki.teltk

66

Formatting strings: format

4.2.4.1. Conversion characters

The conversion character controls the type of conversion to be applied to the corresponding argument. In the
simplest case, the format string includes only the conversion characters and no optional parts.

The conversion specifiers may be classified as string, integer and floating point depending on the type of value to
be formatted. The string and character conversion characters are shown in Table 4.1.

Table 4.1. String specifiers for format

Character Description Example

s Format as string (so effectively as-is). Useful with

modifiers like width etc. format %s Oxffffffff » OxfFffffff

d Character corresponding to the Unicode code

point given by the integer argument value. format %c 42 >

format %c 0x662D » R

% Inserts the percent character itself. .
% format "Tcl! %d%% pure fun!" 100

» Tcl! 100% pure fun!

The format specifiers for integer values are shown in Table 4.2.

Table 4.2. Integer specifiers for format

Character Description Example
d Signed decimal integer
format %d Oxffffffff » -1
format %d 42 + 42
u Unsigned decimal integer
format %u OxFFFFFfff » 4294967295
X Lower case hexadecimal integer
format %x 42 » 2a
X Upper case hexadecimal integer
format %X 42 > 2A
0 Octal integer
format %o 42 > 52
b Binary integer

format %b 42 » 101010

Finally, the specifiers for formatting numbers in floating point representation are shown in Table 4.3.

Table 4.3. Floating point specifiers for format

Character Description Example
f Signed decimal

format %f 4.2e1 » 42.000000
e Scientific representation

format %e 42 » 4.200000e+001
E Scientific representation

format %E 42 » 4.200000E+001

67

Formatting strings: format

Character Description Wi&éfnple

g Behaves as f or e depending on argument value
except for trailing 0’s and decimal point. See Tcl
reference.

format %g 420e-1 » 42

G Behaves as f or E depending on argument value
except for trailing 0’s and decimal point. See Tcl
reference.

format %G 42e0 - 42

4.2.4.2. XPG3 format position specifiers

Normally, the format specifiers and supplied arguments are matched up in the order they occur. For example, in
the command below %d and %s get matched up in order with 31 and January respectively.

% format “There are %d days in %s." 31 January
» There are 31 days in January.

However, there are circumstances where you want to be able to change the order in which argument values are
inserted without changing the order in which they are passed. An example of this is formatting of strings localized
for different languages. The way localization is commonly done is by passing an identifier string into the message
catalog facility (see Section 4.15), msgcat, which returns the appropriate string for that language. The location of
the insertions then is dependent on the grammar for the language. When using the format command as above
however, we do not know the order of the specifiers and therefore could very well pass the arguments in the
wrong order. For example, assume this naive procedure to print a localized message for the days in a month.

set english "There are %d days in %s." (1]

set canadian "%s has %d days, eh!"

proc print_days {fmt month days} {puts [format $fmt $days $month]}
print_days $english January 31

» There are 31 days in January.

© Assume returned from localized message catalogs

This worked fine for English because the order of arguments matches the order in the message catalog string.
However, we have problems in Canada.

% print_days $canadian January 31
@ expected integer but got "January"
Clearly that is not workable because the argument order no longer matches the specifiers in the catalog string.

The XPG3 position specifiers address this issue. A position specifer immediately follows the leading % and consists
of a number followed by a $ character. This number indicates the position of the corresponding argument in the
list of arguments.

The message catalog strings in the above example then should have been written as follows using XPG3 specifiers.

set english {There are %1%$d days in %2%$s.}
set canadian {%2$%$s has %1%$d days, eh!}

Now the order of arguments that is passed to format is fixed while still allowing for the insertions to take place in
a different order. The Canadians are now happy.

print_days $english January 31 » There are 31 days in January.
print_days $canadian January 31 » January has 31 days, eh!

68

Formatting strings: format

Note that an argument index may be repeated if desired. For example,

% format {%1%$d == 0x%1$x == 00%1%0} 42
» 42 == 0x2a == 0052

repeats a single integer argument thrice with different formats.

If a format string uses XPG3 position specifiers, all specifiers in the format string must
e include XPG3 position specifiers. Breaking this rule will generate an error exception.

4.2.4.3. Specifying minimum field widths

Although the flags component comes before the minimum field width in a field specifier, we describe the latter
first as the flags act as modifiers for minimum widths.

The minimal width part of a specifier mandates a minimal number of characters in the inserted argument value
and is particularly useful when formatting data in tabular form where the representation width has to match the
desired width for a table column. The width can be specified as either a number or the * character which indicates
the width is indirectly supplied as an additional argument.

format "(%d)" 10 » (10)
format "(%8d)" 10 > (10)

format "(%*d)" 8 10 » (10) @

© Field width 8 supplied as an additional argument

In the above examples, we have enclosed the format string in parentheses to make it clear how fields are
formatted in the presence of whitespace padding.

4.2.4.4. Format flags
The flags component of the specifier controls a variety of attributes as illustrated in the following examples.
The first set of flags deal with justification and pad characters.

+ The - flag forces left justification when padding to meet minimum width requirements.

+ The 0 flag implies padding with 0’s instead of spaces.

format (%8d) 10 -~ (10)

format (%-8d) 10 » (10)

format (%08d) 10 » (00000010)

The next set of flags affects representation of positive numbers.

* The + flag causes positive numbers to be preceded with the + sign.

*+ Asingle space character for the flag specifies a single space before a number unless a sign is present.

format (%+d) 10 + (+10)
format "(% d)" 10 > (10)
format "(% d)" -10 » (-10) ©

© Note no space in output because a sign is present.

Finally, the flag # modifies the representation in various ways depending on the underlying conversion character.
For binary, octal and hexadecimal fields, the flag specifies an appropriate prefix is to be output, for example 0x

69

Formatting strings: format

for hexadecimal. For decimal and floating point fields, it specifies that a decimal point is output even for whole
integers.

format %#x 10
format %#X 10
format %#o 10
format %#b 10
format %#g 10

Oxa

OXA

012
0b1010
10.0000

D 2

4.2.4.5. Precision specifier

The fourth part, also optional, of a conversion specifier consists of a period (.) followed by a number or a *
character. In the latter case, the number is supplied through an additional argument to the command.

The semantics depend on the conversion being applied. For string and integer conversion, it specifies the
maximum and minimum number of characters to be printed respectively.

format %.2s abc » ab @
format %.5d 10 » 00010 @
format %.*d 4 10 » 0010 ©

© Atmost two characters
© Atleast five characters
© Atleast four characters as specified by additional argument

For the e, E and F conversions, it specifies the number of digits to output to the right of the decimal point.

format %f 1.12999 > 1.129990 @
format %.2f 1.12999 » 1.13

© Note by default 6 digits printed

For g and G conversions, it specifies the total number of digits output (with some caveats - see the Tcl reference
documentation).

format %g 1.12999 - 1.12999
format %.2g 1.12999 > 1.1

4.2.4.6. The size modifier

The last optional component is the size modifier which specifies the range that an integer argument is to be
truncated to. It consists of one of the character sequences h, 1 and 11 whose effect is shown below.

set val 777777777777777777777777777777777777777 » 777777777777777777777777777777777777777

format %d $val 5 1908874353 ©

format %hd $val 5 7281 O

format %ld $val 5 3296802724926397553 ©

format %lld $val > 777777777777777777777777777777777777777 (4]

Default: truncate to an int value, generally 32 bits
h: truncate to an 16-bit value

1: truncate to an wide value, generally 64 bits

11: no truncation is performed

00O

Joining strings with separators: join

4.2.5. Joining strings with separators: join

Done with the complexities of the format command, we move on to the simple join command which constructs
a string by concatenating the elements of a list with a specified separator string placed between every pair of
elements.

join 1137 ?3EiARATVOR?
We will look at lists in detail in the next chapter, but here is an example of using join.

% set quote [list "I came" "I saw" "I conquered"]
» {I came} {I saw} {I conquered}

% join $quote ", "

» I came, I saw, I conquered

The separator is optional, and if unspecified defaults to a single space character.

% join $quote
> I came I saw I conquered

You can also specify the empty string as the separator when concatenating strings with join.

% join $quote ""
» I camel sawl conquered

4.2.6. Repeating strings: string repeat

One final form of string construction is repetition via the string repeat command.

string repeat SURING

The command returns the result of concatenating counT repetitions of STRING.

% set title "Underlined title"

+ Underlined title

% puts "$title\n[string repeat - [string length $titlej]"
» Underlined title

Tcl commands often have subcommands. We’ve already seen an example in the info

- ‘ - command. The string command is another example, that contains subcommands
o for manipulating strings. A command with subcommands is known as an ensemble
command.

4.3. Modifying strings

A number of commands deal with modification of strings by adding or deleting characters. Some of these actually
modify the contents of a variable while others take a string value as argument and return a new modified string.

4.3.1. Appending in place: append

The first of these is the append command which appends zero or more arguments to a variable.

append V2R ?

71

Replacing substrings by position: string replace

Unlike most other string related commands, note that this command alters the variable varin place in addition to
returning the new string value. The command will create the variable if it does not already exist, effectively acting
like the set command for that case.

% append newvar "Hello" (1]
» Hello

% set who "World"

> World

% append newvar " " $who "!" (2]

» Hello World!

@ Creates the variable newvar if it does not exist
@ append can take multiple arguments

Note that we do not use a dollar-sign when passing the variable newvar to this command. This is because the
command expects the name of a variable, rather than the value contained in it.

LAl 4 set newvar "$newvar $who!"

The above could also have been written making use of string interpolation as

which might even be clearer to read. The benefit of the append though is that it is
significantly more efficient in both memory and CPU, particularly when long strings are
involved.

4.3.2. Replacing substrings by position: string replace

The command string replace replaces a range of characters in a string with another string.
string replace SWRING FIRST LAST PRESLACEMENT?

The command returns a new string constructed by replacing the substring of STRING at indices FIRSTt0 LAST with
the string REPLACEMENT.

% string replace "Hello, World!" 0 4 Goodbye
» Goodbye, World!

To replace substrings by content instead of by position, see the string map or regsub commands later.

4.3.3. Deleting substrings by position

There is no explicit command in Tcl to delete characters from a string. The string replace commmand can be
used to delete a range of characters by not specifying a replacement string.

% string replace "Hello, World!" 5 end-1
» Hello!

To delete occurrences of one or more substrings by content instead of by position, see the string map command
later.

4.3.4. Deleting repeated characters at end: string trim|trimleft|trimright

A specialized form of deletion is provided by the string trimleft, string trimright or string trim
commands.

string of SVRING 20HARS?

72

Comparing strings

Here orpmay be one of trimleft, trimright or trim. These trim any occurrences of a given set of characters
from the start, end or both sides of a string respectively and return the result. The most common use of these
commands is to trim leading and trailing whitespace from a string.

% set s "\t Hello, World \n"
> Hello, World

% string trimleft $s
> Hello, World

% string trimright $s

> Hello, World
% string trim $s

Hello, World

+

%
However, any set of characters can be trimmed by providing an additional optional argument.

% string trimleft "Hello, World!" "lHe!"
+» 0, World!

Note that the second argument is considered as a set of characters rather than a string.
The textutil package in Tellib* offers more flexible versions of these built-in

- ‘ - commands that permit specification of a regular expression that controls the trimmed

et characters.

4.4. Comparing strings
4.4.1. Comparing for equality: string equal

The string equal command compares two strings for equality.

string equal ?-nocase? ?-length . oUNT? STRINGD 51

The command returns 1 if the two strings are identical and 0 otherwise. The comparison is case-sensitive by
default. The -nocase option makes it case-insensitive instead.

set s Hello » Hello
string equal $s Hello s 1
string equal hello $s 2 0

string equal -nocase hello $s > 1

You can use the -length option to indicate that only counT number of initial characters of the strings are to be
compared.

string equal "Hello World!" "Hello Universe!"

> 0
string equal -length 5 "Hello World!" "Hello Universe!" - 1

4.4.2. Ordering strings: string compare

Instead of comparing for equality, you can also compare two strings for lexicographical ordering using the string

compare command.

4 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

73

Locating and extracting substrings

string compare ?-nocase? ?-length <

The command returns -1, 0 or 1 depending on whether the first argument is lexicographically less than, equal, or
greater than the second.

string compare abcd BCDE > 1
string compare -nocase abcd BCDE -» -1
string compare 2 10 > 1@

© Compared as strings, not numbers

The -nocase and -1ength options specify a case-insensitive comparison and a maximum character count just as
for the string equal command.

4.5. Locating and extracting substrings

4.5.1. Locating substrings: string first|last

The string firstandstring last return the location of a substring within a string.

string first
string last

The former returns the location of the first occurence of NEEDLE in the HAYSTACK argument while the latter
returns the last (effectively searching from the end). The commands return the string index of the first character of
occurence if found and -1 otherwise.

string first "da" "Madam, I'm Adam" > 2
string last "da" "Madam, I'm Adam"™ > 12

The commands accept an additional optional parameter sTaArT that controls where the search begins.

string first "da" “Madam, I'm Adam" 3 + 12
string last "da" "Madam, I'm Adam" end-5 » 2

Tel has additional facilities for searching and locating substrings based on regular expressions. These are
sufficiently powerful and flexible as to deserve their own sections and are described in Section 4.12.

can be used to locate characters and substrings. However, these are deprecated and we

The string command has two additional subcommands, wordstart and wordend, that
E do not describe them here.

4.5.2. Retrieving a character by position: string index

The command string index returns the character at a specified position in a string.

string index =

The InDEX argument specifies the position, starting with 0, in STRING. It can take any of the forms specified in
Section 4.1.

set pos 4 >
string index "Hello, World!™ $pos 30
string index "Hello, World!" end > !

74

Retrieving substring ranges: string range

string index "Hello, World!" $pos+3 » W
string index "Hello, World!" end-5 - W

4.5.3. Retrieving substring ranges: string range

The related command string range returns a range of characters between two indices in a string.
string range STRING FIRST

The returned string includes all characters between, and including, indices F7rs7Tand LASTin STRING. Like
string index, the command also accepts the special syntax for indexing from the end of the string.

string range "Hello, World!"™ 0 4 > Hello
string range “Hello, World!“ $pos+2 end » World!

The commands here extract substrings based on their position. For extracting substrings based on content, see
Section 4.12.1.

4.6. Transforming strings
Several string subcommands described here return a string by applying some transform on a given string.

4.6.1. Replacing substrings: string map

Previously we described the string replace command that replaces a range of characters in a string based on
position. Another form of replacement is provided by string map.

string map ?-nocase? xai

Rather than replacing by position, this command allows replacement of all occurences of one or more substrings
within a string. The STRING argument is the string in which the replacement is to be done. The ¥4 PPTNG argument
is a list of alternating elements, the first being the substring to be replaced and the second being the corresponding
replacement value. The command replaces all occurences of the former with the latter and returns the result.

% string map {ab Q cd XYZ} abacdabccd
» QaXYZQcXYzZ

Like the string replace command, string map can also be used for deleting characters. Setting the
replacement value to an empty string will result in deletion of all occurences of the substring.

% string map {bc ""} abcdabcbdabc

» adabda

% string map {rma {o} o {}} "Hello Norma!"
» Hell No!

This last example illustrates another point about string map semantics. The target string is iterated over exactly
once. At each position the mapping list is searched in sequence and the first match, if found, is replaced. This
replaced substring is not matched again against the mapping list. So after rma is replaced with o, the o itself does
not get replaced with an empty string.

A related point is that the order of strings in the mapping list is important since matches are checked in that order.
Thus if one match string is a prefix of another, the latter should appear first else it will never match.

string map {bc XY bcd XYZ} abcdabcbdabc » aXYdaXYbdaXxy
string map {bcd XYZ bc XY} abcdabcbdabc » aXYZaXYbdaXy

75

Changing character case: string tolower, toupper, totitle

The string comparisons are case-sensitive unless the the -nocase option is specified.

string map {bC XY} abcdabcbdabc » abcdabcbdabc
string map -nocase {bC XY} abcdabcbdabc -» aXYdaXYbdaXy

A more flexible but less efficient command, regsub, that has similar functionality based on regular expressions is
described in Section 4.12.2.

4.6.2. Changing character case: string tolower, toupper, totitle

A third set of string transform commands, string tolower, string toupper and string totitle pertain to
character case.

string tolower =
string toupper
string totitle :

The meaning of the first two should be obvious. The last capitalizes the first letter in the string and changes all
remaining letters to lower case.

string tolower "Hello, World!" -+ hello, world!
string toupper "Hello, World!"™ » HELLO, WORLD!
string totitle "hELLO, WORLD!™ » Hello, world!

The optional FTRST and 1AST arguments take the form of string indices and specify the indices of the substring to
be modified within STRING.

string tolower "Hello, World!" 0 4 s> hello, World!
string tolower "Hello, World!" 7 > Hello, world!
string toupper "Hello, World!" end-5 end » Hello, WORLD!
string totitle "Hello, World!" 1 end » HEllo, world!
4.6.3. Reversing a string: string reverse

The string reverse command transforms a string by reversing the order of characters.

string reverse SiRING
For example, Napolean’s lament

% string reverse “able was I ere I saw elba”
5> able was I ere I saw elba

Hmm... probably not a good example!

4.6.4. Wrapping text: textutil::adjust, textutil::indent

The Tcl core does not have any built-in commands for wrapping and indenting multiple lines of text. The adjust
and indent commands in the textutil::adjust module of Tcllib® may be used for this purpose instead.

package require textutil
set text [textutil::adjust {
The adjust command has number of options that let you control

5 http://core.tcl.tk/tcllib/doc/trunk/embedded/index.html

76

Parsing strings: scan

justification, line length and hyphenation.
} -length 40]
» The adjust command has number of options
that let you control justification, line
length and hyphenation.

The indent command will indent each line in a string by prefixing it with the supplied argument.

% textutil::adjust::indent $text "...."

sThe adjust command has number of options
....that let you control justification, line
....length and hyphenation.

The undent command will undo the effect by removing the prefix that is common to all lines.

% textutil::adjust::undent $text

+ The adjust command has number of options
that let you control justification, line
length and hyphenation.

In combination, these three commands let you create wrapped text in various forms. See the Tcllib 8 reference
documentation for details of working and options for these commands.

4.7. Parsing strings: scan

There are two Tcl commands that are commonly used in parsing. One of them, regexp, is based on regular
expressions and we describe it in Section 4.12.1. The other one, scan, is similar to the sscanf library function in C
and described here.

The format command we saw earlier generates a string composed from input values formatted as per a
specification. Conversely, the scan command provides a means to parse strings that are known to be in a specific
format, converting its substrings to values of a specific type.

The command takes one of two forms, one where the parsed values are returned as the result of the command and
the other where they are stored in variables.

scan
scan

In both forms, INPUTSTRING is the string to be parsed while FORMATSTRING controls the parsing. The command
works by iterating over each character in FORMATSTRING and matching it against INPUTSTRING as follows:

« If the format character is a space or a tab, the command skips over zero or more consecutive whitespace
characters in the input string.

+ If the format character is %, it is the start of a conversion specifier. The input string is parsed based on the
specifier and the value extracted as per specifier type. This is detailed below.

* Any other format character must exactly match the character in the input string in which case the scan
continues with the next character. Otherwise the scan is ended and any remaining characters in INPUTSTRING
are ignored. Note that this is not treated as an error.

If the first form of the command is used where only two arguments are present, the extracted values are returned
as the result of the command. We will refer to this as the inline form. In the second form, the additional arguments
are treated as names of variables into which the extracted values are to be stored. In this case, the return value
from the command is the number of conversions performed. For example,

6 http://core.tcl.tk/tellib/doc/trunk/embedded/index.html

77

Scan termination

3.14159" "%s = %f"

% scan "pil

> pi 3.14159
% scan "pi = 3.14159" "%s = %f" name value
5> 2

% puts “The value of $name is $value."
> The value of pi is 3.14159.
The parsing in the above example proceeds as follows:
» the %s format string is matched with p1i in the input string
« the space character is matched against multiple spaces in the input string
« the = literal in the format string exactly matches the one in the input string
+ spaces are skipped again
+ finally the %f format results in the parsing of 3.14159 as a floating point value

The format string is composed of literal characters and conversion specifiers. A conversion specifier is a string of
characters composed of the following parts or components in order.

* The character %

» An optional XPG3 specifier

» An optional maximum substring width
+ An optional size modifier

* The conversion character

Note that only the starting % and the conversion character need be present.

4.7.1. Scan termination

There are several conditions under which the scan command will terminate further processing of the input string.
The command results are different in each case as we illustrate below. Our examples use the %d specifier which
attempts conversion of the input substring to an integer value.

In the first scenario, the end of the input string is reached before any conversions are attempted (although
the reference manual says performed). In this case, scan returns an empty string in the inline version of the
command. If variables are specified for storing the result, the command returns -1 and no variables are assigned.

scan abc abc%d + (empty)
scan abc abc%d val » -1
info exists val + 0

In the above example, the abc in the input string matches the abc in the format string. At that point, no further
processing is done because no input remains.

In the second scenario shown below, the processing stops before the end of the input string is reached because

a scan conversion fails. In this case, the inline version returns a list of the same length as the number of scan
specifiers in the format string. The elements in the returned list corresponding to conversions that failed, or were
not attempted due to scan termination, are set to the empty string.

scan abcX %d > {}
scan "abc10 def 20" "abc%d %d %d" »> 10 {} {}

Compare the first result in this scenario with that in the first scenario above. There the command returned an
empty string. Here it returns a list containing one element which is the empty string7 corresponding to the single

7Tal represents empty elements within a list as empty braces.

78

Conversion characters

format specifier present. Similarly, in the second result, the last two elements in the returned list are empty as the
second conversion failed thereby terminating the parse.

If variables are specified in this scenario, the return value of the command is the number of conversions
performed. The variables corresponding to failed conversions will not be modified if they existed or created if they
did not.

scan abcX %d vara > 0
info exists vara > 0
scan "abc10 def 20" "abc%d %d %d" vara varb varc » 1
set vara > 10
info exists varb > 0

@ Note the difference from the first scenario above where the return value was -1
© Only one conversion successful

Because the parsing was terminated by the failed match on the second %d specifier, variables varb and varc are
not assigned.

The final scenario is when all conversions succeed. The scan is then terminated irrespective of whether there are
any remaining characters in either the input or the format string. In the inline version, the returned value is a list
each element of which is the value resulting from a successful conversion for the corresponding field specifier.

In the non-inline version, the return value equals the number of field specifiers and each variable contains the
corresponding value.

scan "abc10 15 20xyz" "abc%kd %d %d" 5 10 15 20
scan "abc10 15 20" "abc%d %d %d" vara varb varc - 3
set varc + 20
When variables are specified, their number must match the number of successful
E conversions else the command will raise an error exception.

4.7.2. Conversion characters

The conversion character part of the specifier controls the type of conversion to be performed on the input string.

The string and character conversion characters are shown in Table 4.4.

Table 4.4. String specifiers for scan

Character Description Example
S Parse as a string up to the next white space

character. scan "foo bar" %s » foo
C Convert a character to its Unicode code

point value scan A %c » 65

[CHARS] Matches any character in CHARS.
scan "A sentence. Or two." {%[~.?!] %[.?!1}
» {A sentence}
[NCHARS] Matches any character not in CHARS. See above.
% Matches the percent character itself.

scan "10% off!" "%d%% off" - 10

The scan specifiers for integer values are shown in Table 4.5.

79

XPG3 scan position specifier

Table 4.5. Integer specifiers for scan

Character Description Example

d Decimal integer.
scan 0100 %d » 100

scan -100 %d » -100

u Unsigned decimal integer

scan 0100 %u -» 100
X Hexadecimal integer

scan 0100 %x » 256
X Hexadecimal integer

scan 0100 %X » 256
o} Octal integer

scan 0100 %o » 64
b Binary integer

scan 0100 %b » 4

For floating point conversion, any of f, e, E, g and G can be used. Note these all have the same effect and are
interchangeable.

scan 100 %f > 100.0
scan 12.34e-56 %g » 1.234e-55

The final conversion specifier is n which is a special case in that it does not parse the input string at all. Instead it
returns the number of characters of the input string that have been parsed so far.

scan "100 200" "%d %n%d" » 100 8 200

The n conversion is useful when scanning incrementally through the input string. Its
value can be used to determine where the next scan invocation should begin.

A conversion specifier keeps matching each successive character in the input string as long as the character is
valid for the conversion For example, compare the following conversions:

scan 123abx %d%s » 123 abx
scan 123abx %x%s » 74667 X

The difference arises because a and b are valid hexadecimal characters but not valid decimal characters.

4.7.3. XPG3 scan position specifier

We now move on to the optional parts of a scan conversion specifier. By default, the extracted values are returned
from the command, or stored in the passed variables, in the same order that they are encountered in the input
string. The XPG3 position specifier allows this to be changed. This serves a purpose similar to that of the XPG3
position specifier described in Section 4.2.4.2 for the format command.

The position specifier, if present, must immediately follow the % at the start of a conversion specifier. It consists
of either a number followed by a $ character or a single * character. In the former case, the number indicates the
position that the extracted value should occupy in the returned values.

80

Specifying maximum widths

scan "first second” "%s %s"

first second

scan "first second" {%2%s %13$s} ©

second first

scan "first second" {%2%$s %1$s} varA varB
2

puts "varA=$varA, varB=$varB"
varA=second, varB=first

YRV RV R L

© Note use of {} to protect the $ from interpretation by the Tcl command parser
A * character in a XPG3 position specifier indicates that the input string should be parsed as per the conversion
specifier but the extracted value should not be returned or stored into the output variables.

% scan "100 200 300" {%d %*d %d}
» 100 300

o

Position specifiers can be used in scan to help with localization similar to their use with format we described for
format. However this is less common as parsing of localized strings is generally a much more complex process
than their generation.

4.7.4. Specifying maximum widths

This optional specifier part is a number that limits number of characters consumed by a conversion.

If a format string uses XPG3 position specifiers, all specifiers in the format string must
have XPG3 position specifiers.

% scan 12345 "%d%s"
> 12345 {3}

% scan 12345 "%2d%s" @
5 12 345

© Thed conversion can consume at most 2 input characters

Some file formats are bhased on fixed lengths for each field in a line representing a data record. This width modifer
is useful in such cases.

4.7.5. The size modifier

The last optional component is the size modifier which defines the permitted range of an integer argument. [t
consists of one of the character sequences h, 1, L and 11 whose effect is shown in Table 4.6 below. When overflow
occurs, the maximum value possible for that size is stored.

Table 4.6. Integer size modifiers for scan

- Character Description

h An int value, generally 32 bits on most platforms. Overflows storing Ox7fffffff,
Not present Defaults to h
1L A wide integer value, generally 64 bits. Overflows storing Ox7ffffffffffffte.

11 Arbitrary precision with no overflow.

The examples below illustrate the difference between the various size modifiers.

81

Counting characters: string length

% set val 777777777777777777777777777777777777777
5 777777777777777777777777777777777777777
% scan $val %d
> 2147483647

% scan $val %hd

> 2147483647

% scan $val %ld

> 9223372036854775807

% scan $val %Ld

» 9223372036854775807

% scan $val %1ld

5 777777777777777777777777777777777777777

We have described the main features of the scan command with some rudimentary examples. Some examples of
real-world use can be seen in the Tcl reference documentation.

4.8. Counting characters: string length
The command string length returns the length of a string.
string length siyrinG
Note that the length of the string is defined as the number of characters, Unicode code points to be precise, in

the string. It should not be interpreted as the number of bytes required to represent the string in memory orin a
transmitted message etc. unless STRING is a binary string produced by commands like encoding convertto.

string length “Hello, World!™ » 13

4.9. String validation: string is

The string is command performs validation on a string to determine if it can be interpreted as belonging to a
given class of values.

string is ¢rass ?-strict? ?-failindex VAR? 5T

The command returns 1 if STRING belongs to the class specified by czass and 0 otherwise.

The empty string " is treated as a valid value for any class unless the -strict option is specified in which case it
is treated as invalid.

Validation of empty strings

This default treatment of the empty string as a valid value is an artifact of the fact that historically the
command was meant primarily for validating user input, rather than for general type checking. In Tk
GUIs for example, integer fields are permitted to be empty. This is really a misfeature and in most cases
you will want to use the -strict option.

The -failindex option is used to retrieve the index in the string of the first character that does not belong to the
specified class. If the command returns 0, the variable var s set to this index. It is not modified if the command
returns 1.

The possible values of czAss are shown in Table 4.7.

82

String validation: string is

Table 4.7. String validation classes

Class

alnum
alpha
ascii

false
true

boolean

control
digit
double
entier

- graph, print

integer
list

lower

upper

punct

space
wideinteger

wordchar

xdigit

Lower or upper case hexadecimal characters

Description

Any alphanumeric Unicode characters
Any alphabetic Unicode characters
Ascii characters

Any string that is interpreted as a boolean false value. This includes 1,
false, no and of f or any upper case or abbreviated form of these.

Any string that is interpreted as a boolean true value. This includes 1, true,
yes and on or any upper case or abbreviated form of these.

The boolean class includes any string that can be interpreted as a boolean
value. Accepted values are the union of the ones listed above for false and
true. Note the command returns 0 for integers other than 0 and 1 even
though they are treated as valid booleans in numeric expressions.

Unicode control characters

Unicode digits

Any representation of doubles

Any representation of integers of arbitrary size

Unicode printing characters. The print class includes whitespace while
graph does not.

Any Tcl representation of 32-bit integer values
Any string that can be interpreted as a valid Tcl list
Lower case Unicode characters

Upper case Unicode characters

Unicode punctuation characters

Unicode whitespace characters

Any Tcl representation of 64-bit integer values

Alphanumeric characters and connector punctuation such as underscore

The following examples illustrate use of the command:

string is integer -10
string is wideinteger 0x777777777777
string is xdigit -failindex charpos abcqdef -

set charpos

string is double 2.1828
string is integer ""

string is integer -strict "

string is boolean 2

€L
OO0 = WO = —
e

000

@ charpos will contain failing character index

© Empty strings are accepted by default...

© ..unlessthe -strict option is specified

O Integers other than 0/1 are not treated as boolean though they are accepted as booleans in numeric

expressions.

83

String prefixes: : :tcl: :prefix

The varying numeric classes as well as the 1ist class accept surrounding whitespace in the string.

string is double " -5e+10 " >
string is list " a\ b ¢ {d e} "

The commands for numeric classes also check for overflow and underflow, returning 0 in these cases and setting
the -failindex variable, if specified, to -1.

% string is entier -failindex failpos 9999999999999999999999999999999999 (1]

> 1

% string is wideinteger -failindex failpos 9999999999999999999999999999999999
> 0

% puts $failpos

> -1

@ Entiers have infinite precision

The alphanumeric character classes such as alnum, digit etc. all deal in Unicode. So for example the Unicode
character U+096D (Devanagari 7) is a valid digit.

string is digit \u096d - 1
Note however that
string is integer \u096d » 0
because even though it is a Unicode digit, it is not a valid way to represent an integer in Tcl.

0.0

Tcl’s regular expression facilities provide an alternate means of validating strings using
character classes.

4.10. String prefixes: : :tcl: :prefix

The ::tcl: prefix command is used to check if a given string is a prefix of one or more strings. This
operation is most commonly used for implementing new commands that accept unique prefixes of options and
subcommands in similar fashion to Tcl itself. Note that the command lies in the tcl namespace, not at the global
level.

The tcl: :prefix command is actually an ensemble commmand with several subcommands. The first of these is
tcl::prefix all.

cotcel:prefix all ¢y pREETH

The command returns a list of all strings from 757 that begin with PrREFIX or an empty list if no such strings are
found. For example, if 7,757 is a subset of the string classes used for the string is command,

citcl::prefix all {alnum alpha digit integer} al -+ alnum alpha

One use case for this is to display valid choices for completion when the user types in the first few letters from a
list of allowed options.

The tcl: :prefix longest command returns the longest possible prefix common to all strings in a list that start
with a given prefix.

84

String prefixes: : :tcl: :prefix

citcl:iprefix longest 57 PREFTX

In scenarios like command completion, this provides an easy means to fill in as many characters as possible from
the valid choices in L1sTthat begin with PREFIX.

% ::tcl::prefix longest {radix range repeat replace} re
> rep

Here only repeat and replace are elements that begin with re and their longest common prefix is rep so that is
what the command returns.

The last, and probably the most useful, command is tcl: :prefix match.

7

citcliiprefix match ?-exact? ?-message MEz3asi? ?-error OPTIONS? TiST

s

If PREFIX is a prefix of exactly one string in L1757, that string is returned as the result of the command. If PREFTX
matches a string in its entirety, it is returned even if it also happens to be a prefix of another.

% ::tcl::prefix match {radix range repeat replace} rad

+ radix

% 1:tcl::prefix match {-ignore -ignorewarnings -ignoreerrors} -ignore
+ -ignore

By default, an error is generated if the number of matches is not exactly one.

% ::tcl::prefix match {radix range repeat replace} ra @
@ ambiguous option "ra": must be radix, range, repeat, or replace

% ::tcl::prefix match {radix range repeat replace} rap @

@ bad option "rap": must be radix, range, repeat, or replace
% puts $errorCode

+ TCL LOOKUP INDEX option rap

@ Error because multiple matches
® Error because no matches

The -message option changes how the error message refers to the word being checked. For example,
% ::tcli:prefix match -message command {radix range repeat replace} ra
@ ambiguous command "ra": must be radix, range, repeat, or replace
Note how the error message now says command instead of option.
The behaviour with respect to failed matches can be changed with the -error option. If specified as an empty

string, the command will return an empty string on the above failures instead of raising an exception.

% ::itcliiprefix match -error "" {radix range repeat replace} ra
% ::tcliiprefix match -error "" {radix range repeat replace} rap

If not an empty string, the value passed for the -error option must be in the form of a return options dictionary.
We will go into the details of the return options dictionary in Section 11.2.3. For now, here is an exarple that
changes the global error code set on an exception.

% ::tcl::prefix match {radix range repeat replace} rap
@ bad option “"rap": must be radix, range, repeat, or replace

% set errorCode @

85

Glob pattern matching

5> TCL LOOKUP INDEX option rap

% ::tcl::prefix match -error {-errorcode {BADOPT RTFM}} {radix range repeat replace} rap
@ bad option “"rap": must be radix, range, repeat, or replace

% set errorCode

> BADOPT RTFM

@ Default error code

One final option, -exact, specifies that the pREFIx must be an exact match, not just a prefix. Its effect can be seen
through the following commands.

% ::tcl::prefix match {radix range repeat replace} ran

> range

% ::tcl::prefix match -exact {radix range repeat replace} ran
@ bad option "ran": must be radix, range, repeat, or replace

Most commonly, tcl: :prefix is used for implementing subcommands and options in procedures. For example,

proc transform {s cmd} {
switch -exact -- [tcl::prefix match {lower upper reverse} $cmd] {
lower { string tolower $s }
upper { string toupper $s }
reverse { string reverse $s }

}

Then we can call the command using abbreviations.

% transform foo rev
> oof

% transform foo bogus @
@ bad option "bogus": must be lower, upper, or reverse

@ Error messages for free!

4.11. Glob pattern matching

Tcl provides a couple of ways of matching strings against patterns — the string match command based on
wildcard patterns, and regexp based on regular expressions. We describe the former in this section.

A glob pattern is a sequence of characters which must be the same as the corresponding character in the string
being matched except for the wildcard characters listed in Table 4.8 which are treated specially when present in
the pattern.

Table 4.8. Pattern matching characters

Character Description

* Matches any number (including zero) of arbitrary characters.

? Matches exactly one occurrence of an arbitrary character.

[..] Matches one occurrence of any of the characters included within the brackets. A range of
characters can also be specified. For example, [a-z] will match any lower-case letter.

\ The backslash escapes the following special character such as * or ? so that it is treated
as an ordinary character. This allows you to write glob patterns that match literal glob-
sensitive characters, which would otherwise be treated specially.

86

Regular expressions

In addition to string match, glob pattern matching is also used by the switch, 1search and glob commands.

The string match command takes a glob pattern and determines if a given string matches the pattern.

SO TRING

string match ?-nocase? »ar

The command returns 1 if the specified glob pattern PaTTERN matches sTRING and 0 otherwise. Some exarnples
using * to match arbitrary number of characters.

string match f*r fun >0
string match f*r fur s 1
string match f*r* fury > 1
string match f*r* furious » 1

The ? character on the other hand matches exactly one character.

string match f?r? fur > 0
string match f?r? fury » 1
string match f?r? furious » 0

Character sets can be used to match exactly one character as long they belong to that set.

string match {[a-f1*} boo
string match {[{a-f1*} zoo
string match {[a-zA-Z]*} Zoo
string match {[az]*} zoo

R 2
_ e O -

Backslash escaping is required to match literal characters that have special meaning in a glob pattern.

string match a*d abcd 21
string match {a*d} abcd » 0
string match {a*d} a*d - 1

Notice from the examples above that we use braces to protect the pattern in cases where it might contain
characters that are special to the Tcl parser.
Use of the -nocase option triggers case insensitive matching.

string match {{a-z]*} Boo > 0
string match -nocase {[a-z]*} Boo » 1

If you have more complex pattern matching requirements, or need to simultaneously extract information as well
as match it, then regular expressions provide a more powerful (but more complex) facility. We describe that next.

4.12. Regular expressions

Like the glob patterns we saw previously, a regular expression (RE) is a pattern used for matching against strings

where certain characters in the pattern, termed metacharacters, have a special meaning. Compared to glob
patterns though, regular expressions are both considerably more powerful and potentially more complex. For

those new to regular expressions, here we will only provide a basic introduction in terms of their use in Tcl. For a

full understanding of regular expressions, see the references cited at the end of this chapter.

For those who do understand regular expressions from other languages, such as the PCRE engine, note that their

Tcl implementation differs slightly in their syntax, particularly when it comes to more advanced features.

87

Matching regular expressions: regexp

In fact, Tcl itself supports three forms of regular expressions. Basic, Extended and
Advanced. Only the last of these is described here as it is almost completely a superset of
the others.

Table 4.9 gives the basic elements of RE syntax.

Table 4.9. Basic regular expression syntax

Character Diescripti'(')n

A Matches the beginning of the string

$ Matches the end of the string
Matches any single character

[..] Matches any character in the set between the brackets

\ Acts as an escape to assign special meaning to the next character or treat a metacharacter
as a literal

[a-2z] Matches any character in the range a..z

[~.] Matches any character not in the set given

() Groups a pattern into a sub-pattern

rla Matches pattern p or pattern ¢

* Matches 0 or more occurences of the previous pattern

+ Matches 1 or more occurrences of the previous pattern

? Matches 0 or 1 occurrences of the previous pattern

{n} Matches exactly n occurrences of the previous pattern

{n,m} Matches between n and m occurrences of the previous pattern

We will see examples of the above as well as more advanced constructs as we describe Tcl’'s RE support through
regexp, used for searching, and regsub, which does substitutions.

4.12.1. Matching regular expressions: regexp

The regexp command has the syntax

regexp ot fons? KESPRING PMATURVAR MAY

In its simplest form, with no optional parts specified, the command returns 1 if STRING matches the regular
expression RE and 0 otherwise.

We will first describe regular expressions using this minimal form of the command.
4.12.1.1. Matching specific characters
A character that is not a metacharacter in RE will match that specific character in the STRING. Thus to look for the

sequence XY in a string,

regexp XY aaXYbb - 1
regexp XY aaYXbb » 0

Notice that all of STRING does not have to match the expression, any substring will do.

88

Matching regular expressions: regexp

Character escapes

Certain characters that do not have a printable representation or are otherwise difficult to include in text can be
included via an escape sequence prefixed with a backslash (\). For example, the newline character is represented
by the sequence \n and Unicode characters can be represented as \uhhhh or \Uhhhhhhhh sequences (where h is
a hexadecimal digit). See the documentation for re_syntax in the Tcl command reference for a list of character

escape sequences.

The processing of these backslash sequences is in addition to any backslash substitution that might be done
by the Tcl parser. Thus the following two commands are equivalent.

regexp "\\t" abc\tdef -» 1
regexp {\t} abc\tdef -1

In the first case, the Tcl parser converts the \\ sequence to a single \ so the regexp command sees the argument

as \t. In the second case, the enclosing braces prevent the Tcl parser from any backslash processing and again the
regexp command sees \t.

4.12.1.2. Matching any character

Backslashes are also used for purposes other than character escapes. We will see these as
we go along.

The metacharacter period (.) in an RE matches any character in the string. For example, X. Y will match substrings
containing an X and Y separated by exactly one character.

regexp X.Y aXcyb 1
regexp X.Y ax¥b - 0
regexp X.Y aXccYb » 0

4.12.1.3. Bracketed expressions and character classes

We have already seen that characters in RE that are not metacharacters are matched against themselves in the
string. If instead of matching any character, we wanted to match any of a set of characters, we can specify them as
a character class by enclosing them in brackets [].

regexp {ab[XYZlcd} abYcd - 1 (1)
regexp {ab[XYZ]cd} abQcd - 0 O
regexp {ab[{XYZ]cd} abXvcd » 0 (3]

@ Match since Y is in the bracketed expression
@& No match since Q is not in the bracketed expression
© No match since XY is not a single character

The RE in the above example is enclosed in braces because the characters [] have special

E meaning to both the Tcl parser as well as RE syntax. Enclosing them in braces ensures
they will not be treated as special characters by the Tcl parser. Because there are several
other characters such as $ and \ that are treated specially by both the parser and RE, it is
generally a good idea to enclose the RE in braces in all but the simplest cases.

A bracketed expression has its own set of special character sequences described below and most RE
metacharacters like ., * and ? are treated as normal characters within the brackets. Notice in the next example
how . loses its metacharacter status when placed within a bracketed character class.

89

Matching regular expressions: regexp

regexp {a.c} abc > 1
regexp {al.]c} abc » 0
regexp {a[.]c} a.c » 1

When there are many characters to be included in the bracketed expression, several facilities are available for
common cases.

An expression of the form x- v includes all characters between x and v. For example a-z includes all lower case
English alphabetic characters, 0-9 includes all digits and so on.

regexp {[0-91} abc -
regexp {[0-9]} ab5c -

0
1
regexp {[-0-9]} a-c » 1

1]

@ Toinclude -, specify it as the first character

We reiterate again that as illustrated above, regular expressions do not need to match the entire string, unless
anchored (described later). In the above examples, we are matching a single character which may be present
anywhere in the string.

Another way to specify characters in bracketed expressions involves character classes of the form
[:crassnaMe:] where CLASSNAME is a name denoting a predefined set of characters. Tcl defines several
characters classes shown in Table 4.10.

Table 4.10. Regular expression character classes

Class Description

[:alnum:] Alphanumeric character

[:alpha:] A letter

[:blank:] Space or tab character

[:entrl:] Control characters (ASCII codes 0-31)
[:digit:] Decimal digit

[:graph:] A character with a graphical representation
[:lower:] Lower case letter

[:print:] A printable character (same as graph plus the space character)
[:punct:] Punctuation character

[:space:] White space character

[:upper:] Upper case letter

[:xdigit:] Hexadecimal digit

Our previous examples using character classes in bracketed expressions instead of character ranges would be

regexp {[[:digit:]}]1} abc » 0
regexp {[[:digit:]1} a5c » 1

Note the doubled [[]], the outermost set indicating a bracket expression and the inner set indicating character
classes.
There are two additional features of bracket expressions:

+ A bracketed expression can include multiple characters, character ranges and classes concatenated together to
indicate a “inclusive-or” combination.

90

Matching regular expressions: regexp

* If the bracketed expression starts with A, it matches characters not in the rest of the expression.

The first of these is demonstrated by the following RE which will match a string beginning with a, followed by any
of the characters x, y, any upper case letter or digit, and ending in a b.

regexp {alxy[:upper:][:digit:]1]b} axb
regexp {aixy[:upper:]{:digit:]11b} a5b
regexp {alxy[:upper:][:digit:]]b} aQb
regexp {alxy[:upper:J[:digit:]lb} agb

D A 2

[JENE SN

The second feature, the use of to complement a character set is illustrated by the example below.

regexp {alxy[:digit:]]b} as5b
regexp {a[~xy[:digit:]1b} ayb
regexp {a[~xy[:digit:]]lb} a5b
regexp {a[~xy[:digit:]1b} aQb

o Sl e S

Yooy

Tcl regular expressions also support an additional \ prefixed shorthands for some commonly used classes. These
are shown in Table 4.11.

Table 4.11. Character class shorthands

Shorthand Equivalent bracket expression Des.criptidn

\d [[:digit:]] Digit

\D [AM[:digit:]1] Non-digit

\s [[:space:]] White space

\S [~ :space:]] Non-white space

\w [[:alnum:]_] Alphanumeric or underscore ()

\W [Al:alnum:]_] Any character other than alphanumeric and
underscore ()

For example, using \d in lieu of [:digit:], expression.

regexp {a\db} a5b » 1
regexp {a\bb} aSb » 0

The \d, \'s and \w shorthands can be used inside of bracketed expressions as well but the inverse versions of these,
\D, \S and \W, cannot and you have to use the /A prefix instead.

regexp {a[\d\s]b} a5b > 1

regexp {af\d\slb} a\tb - 1

regexp {a[~\d\s]b} as5b » 0
4.12.1.4. Atoms and Quantifiers
An atom is a single character in any of the forms described earlier (literal character, character escape or character
class) or a group that we will describe later. Thus in the RE

a[f:digit:1]\n

the components a, [[:digit:]] and \n are all atoms.

Quantifiers are appended to an atom to specify how many consecutive occurences of that atoms are permitted in a
string. For example, the expression a+ would match one or more consecutive occurences of the character a.

91

Matching regular expressions: regexp

The various forms of quantifiers are shown in Table 4.12.

Table 4.12. Regular expression quantifiers

buantiﬁer Description Exé;ﬁplé

* Matches 0 or more occurences of the atom
regexp {aXx*b} ab -1

regexp {aXx*b} aXb - 1
regexp {aX*b} aXxb - 1

+ Matches 1 or more occurences of the atom
regexp {aXx+b} ab - 0O

regexp {aX+b} axb - 1
regexp {aX+b} aXxb - 1

? Matches 0 or 1 occurences of the atom
regexp {aX?b} ab - 1

regexp {ax?b} axb - 1
regexp {ax?b} axXb » 0

{m} Matches exactly M occurences
regexp aX{2}b axb -+ 0
regexp aX{2}b axXxb -1
regexp aX{2}b aXXxb » 0

{M,} Matches M or more occurences
regexp ax{2,}b axb > 0
regexp ax{2,}b aXxb > 1
regexp ax{2,}b axxxb » 1

{M, N} Matches M to N occurences (both inclusive)
regexp aX{2,4}b aXb

+ 0
regexp ax{2,4}b axxxb - 1
regexp ax{2,4}b axXXXXxb » 0

4.12.1.5. Groups

Subexpressions within a RE can be grouped with parenthesis. This treats the contents within the parenthesis as a
single atom to which quantifiers, alternation and such can be applied. In the first line in the example below, the +
quantifier only applies to Y while in the second it applies to XY.

regexp {aXY+b} aXYXyb > 0
regexp {a(XY)+b} aXYXYb » 1

Groups as used above use capturing parenthesis in that the string matching the subexpressions within parenthesis
can be used in back references (see Section 4.12.1.8) and substring extraction.

An alternate form of grouping uses non-capturing parenthesis specified as (?: r5) where the leading left
parenthesis is followed immediately by a ?. The equivalent non-capturing version of our example above would be

regexp {a(?:XY)+b} aXyXyb » 1

The difference from capturing parenthesis is that in this case the substring matching the RE expression is not
accessible via back references and cannot be extracted.

We will see examples and use of these forms in later sections.

92

Matching regular expressions: regexp

4.12.1.6. Alternation and branches

Regular expressions can be combined using the | metacharacter to form a RE that will match a string that matches

any of the expressions being combined. Each subexpression is termed an alternative or a branch of the combined
expression. For example, the expression apple|banana would match either apple or banana.

Any of the following would match day of the week.

The alternation metacharacter binds at a low precedence so apple |banana is equivalent
to (apple) | (banana) and not appl(e|b)anana.

% regexp {Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday} Monday
> 1

% regexp {(Sun{Mon|Tues|Wednes|Thurs|Fri|Sat)day} Friday

> 1

% regexp {(Mon|Wednes|Fri|T(uesfhurs)|S(atjun))day} Tuesday

> 1

4.12.1.7. Constraints

A regular expression constraint matches the empty string (i.e. it does not “consume” any characters in the string
being matched) but only when certain conditions are met. An example of such a condition might be the
beginning or a line or word. This section describes the available constraints in Tcl regular expressions.

4.12.1.7.1. Anchoring with A and $

As we saw above, the regular expression RE will match if it matches any substring of STRING. If instead we want
to check that the RE matches all of STRING, we can “anchor” the RE with the metacharacters » and $. The former
constrains the match to start at the beginning of the string.

regexp {"XY} axy » 0
regexp {"XY} XYb » 1

Similarly, $ constrains the RE to match the end of the string.

regexp {XY$} axy -» 1
regexp {XY$} Xyb » 0

They may of course be used in combination to force the entire string to match.

regexp XY axYb > 1
regexp {AXY$} aX¥b » 0
regexp {"XY$} XY > 1

4.12.1.7.2. Constraint escapes

The options -1ine and -1lineanchor impose different semantics on the ~ and $ anchors
(see Section 4.12.1.14).

Tcl also defines a number of position based constraints via the escape sequences shown in Table 4.13.

93

Matching regular expressions: regexp

Table 4.13. Constraint escape sequences

Escape Description Example

\A Matches at the beginning of the string.
regexp {\AX} "aXb"

regexp {\AX} "Xab" > 1

+
o

\Z Matches at the end of the string.
regexp {X\Z} "axb" » 0
regexp {X\Z} "abX" - 1
\m Matches at the beginning of a word.
regexp {\mX} "axb" -+ 0
regexp {\mX} "a Xb" » 1
\M Matches at the end of a word.
regexp {X\M} "a Xb" » 0
regexp {X\M} "aX b" » 1
\y Matches at the beginning or the end of a word.
regexp {\yX} "axb" -» 0
regexp {\yX} "a Xb" -» 1
regexp {X\y} "aX b" -+ 1
\Y Matches when not at the beginning or the end of a
word. regexp {\YX} "aXb" -+ 1

regexp {\YX} "a Xb" -
regexp {X\Y} "aX b" » 0

o

The sequences \A and \Z behave similarly to the A and $ constraints but do not change behaviour when "newline
sensitive matching" (see Section 4.12.1.14) is in effect.

The word related constraints, \m, \M, \y and \Y treat alphanumeric characters and underscore (_) as word
characters just like the \w character escape.

4.12.1.7.3. Lookahead constraints

Another form of constraint is based on matching a subexpression without actually including the matched text
as part of the match. Lookahead comes in two forms:

 Positive lookaheads have the form (?=L00KaHEAD) where 1,00KAHEAD is the RE that should be matched at that
point.

 Negative lookaheads have the form (?! LookaHEAD) and are similar except that the LookAHEAD must not be
matched for the matching of the rest of the RE to proceed.

For example, suppose you wanted to match against part numbers whose format specifies a string of one or more
uppercase alphabetic characters followed by one or more digits with the further constraint that the entire part
number be at most 10 characters. Here is a regular expression that serves the purpose.

% set re {"N(?=.{2,10}$)[[:upper:1]1+[[:digit:]1]+%$}
> AN(?7=.{2,10}$)[[:upper:3]+[[:digit:]1+$

We can break this up into two parts. The first part of the RE is the lookahead
(?=.{2,10}%)

This ensures the length conditions are met (between 2 and 10 characters in the string) but does not say anything
about the expected format. The second part

94

Matching regular expressions: regexp

[[:upper:]1]+[[:digit:]1]+

then requires the part number to be a sequence of upper case letters followed by a sequence of digits.

We can then do syntactic checks for valid part numbers as

regexp $re A0 > 1
regexp $re ABC2345678 - 1
regexp $re 1234567890 - 0 @
regexp $re ABC12345678 » 0 (2}

© Only digits

© More than 10 characters

The crucial effect of using lookaheads as illustrated here is that the lookahead expression does not “eat up”
characters in the target string; the following RE still matches from the same point as the lookahead expression. Try

writing the expression without the constraint keeping in mind that both the alphabetic and the numeric parts may
have more than one character.

4.12.1.8. Back references

There are times when it is useful to match a substring based on what was previously matched by the RE. The
standard example of this is finding if a word is mistakenly repeated in a document, for example the word has in
the sentence below. We can construct a RE to detect this.

% regexp {\mhas\s+has\M} "This sentence has has repeated words." (1]
> 1

© Note use of \m and \M word constraints.

However this is not a general solution given that we do not know a priori which word might be repeated. Instead
we have to match words using generic regular expressions. We then need a mechanism that lets us specify the next
part of the expression to be the word that was just matched. Back references provide exactly that capability.

A back reference in a RE is specified in the form \ v where ~is a number which references a group enclosed by
capturing parenthesis (see Section 4.12.1.5). When multiple groups are present, the corresponding “captures” are
numbered in the order of the position of their opening parenthesis.

To solve our problem then, the matching RE should

1. begin only at a position that is the beginning of a word indicated by the \m constraint

2. followed by any word matched as \w+

3. followed by any amount of whitespace matched as \s+

4. followed by the same string that was just matched by the above \w+

5. followed by the end of word constraint \M.
So we need to “transport” the word matched in step 2 to the match required by step 4. To do this we enclose the
word specifier in capturing parenthesis as (\w+) so that the result of its match can be referenced through a back

reference. Since this is the only, and therefore the first, capturing parenthesis in the expression, it is referenced as
\1 and we use that in step 4.

Thus the entire matching expression becomes that shown below:
% regexp {\m(\w+)\s+\1\M} "This sentence has has repeated words."

> 1
% regexp {\m(\w+)\s+\1\M} "This sentence has no repeated words."

95

Matching regular expressions: regexp

> 0
% regexp {\m(\w+)\s+\1\M} "To be or not to be." @
> 0

© Repeated but not consecutive

Back references are especially useful when substituting using regular expressions and we will see examples of
their use when we describe the regsub command.

4.12.1.9. Counting number of matches

A regular expression may match multiple times in a string. If the -all option is specified, the command will return
the number of matches found in the string.

regexp -all X+ aXXbXCXXX » 3

The -all option also has other uses as we will see in a bit.

4.12.1.10. Retrieving matches

Up to this point, we have only dealt with the simplest form of the regexp command — one that tells us whether a
given string matches a RE or not. We now look at the various means of having regexp actually tell us what was
matched.

4.12.1.10.1. Retrieving matched content

If additional arguments are specified for the regexp command, they are treated as names of variables in which
the match is to be stored. For example,

% regexp X+ axXXc xes
> 1

% set xes

> XXX

If the RE matches, the command returns 1 and stores the matched content in the passed variable (xes in this case).
If no match occurs, the command returns 0 and the variable is unchanged.

If there is a need to retrieve the content of subexpressions, additional variables can be specified. Matches for
subexpressions enclosed in capturing parenthesis are successively stored in any specified variables. Non-capturing
subexpression matches are ignored for the purpose of storing.

% regexp {(X+)(?:Y+)(Z+)} aXXYYZZZb match xes zes
> 1

% puts "$match, $xes, $zes"

5 XXYYZZZ, XX, 7222

4.12.1.10.2. Retrieving matched indices

In some parsing situations, it is more useful to retrieve the string indices of the matches than the actual content
itself. Specifying the - indices option stores in each specified variable a pair consisting of the start and end
indices of the corresponding match.

% regexp -indices {(X+)(?:Y+)(Z+)} aXXYYZZZb match xes zes
> 1

% puts "$match, $xes, $zes"

>17,12,57

96

Matching regular expressions: regexp

When parsing large amounts of text using regular expressions, storing indices is often
- ‘ - more efficient in time and space than the matched content. The original text being parsed

e is maintained as the “master” copy and the consumer of the parse can use the indices to
retrieve substrings as and when needed.

4.12.1.10.3. Retrieving matches with -inline

Instead of storing matches in variables, you can have regexp return the matches by specifying the -inline
option. Additional variable name arguments must not be specified with the option.

The return value from regexp is a list containing the same values as would have been stored in any variable name
arguments if -inline was not specified.

% regexp -inline {(X+)(?7:Y+)(Z+)} aXxXYYZzZzb

+ XXYYZZZ XX ZZZ

% regexp -inline -indices {(X+)(?:Y+)(Z+)} aXXYYZZZb
+ {1 7y {2}y {57}

If the RE does not match, the command will return an empty list.
regexp -inline {(X+)(?:Y+)(Z+)} aYYZZZb » (empty)

4.12.1.10.4. Retrieving all matches

As we saw earlier, the -all option can be specified to count the number of matches found. If variables are
specified for the command, only the results corresponding to the last match found will be stored in them.

% regexp -all {(X+)(?:Y+)(Z+)} aXXYYZZZbXYZ match xes zes

> 2
% puts "$match, $xes, $zes"
+ XYZ, X, Z

If you want information for all matches, not just the last one, use the inline version.

% regexp -inline -all {(X+)(?:Y+)(Z+)} aXXYYZZZbXYZ

> XXYYZZZ XX ZZZ XYZ X Z

% regexp -inline -indices -all {(X+)(?:Y+)(Z+)} aXXYYZZZbXYZ
+ {1 7y {1 2}y {57} {9 11} {9 9} {11 11}

The return value, as shown above, is a flat list containing all matches and submatches.

4.12.1.11. Option metasyntax

Some regexp command options can instead be embedded into the RE by beginning the expression with the
metasyntax (?0pP7S) where 0PTS is a sequence of one or more characters, each corresponding to an option. Thus
for example, 1 corresponds to the use of -nocase and n to newline sensitive matching, so the two statements

regexp -nocase -line {r#} JURING
regexp {(?ic)ii} sening

are equivalent. Embedded options can only appear at the beginning of the regular expression.

We will discuss this embedded metasyntax alongside their option equivalents.

97

Matching regular expressions: regexp

4.12.1.12. Case-independent matching

By default, regexp implements case sensitive matching.

regexp xy axyb - 1
regexp xy axyb » 0

Specifying the -nocase option will result in case being ignored.

regexp -nocase xy aXYb » 1

Alternatively, the (?1) metasyntax can be used to specify case-insensitive matching. Conversely, (?c) specifies
case-sensitive matching.

regexp {(?1)xy} aX¥b - 1
regexp {(?c)xy} ax¥b » 0

4.12.1.13. Matching literal strings

Because of its many options, regexp can be useful even for exact matching of literal strings. For example supposed
we wanted to count the number of occurences of a literal string.

% set search_string "XY"

» XY

% regexp -all $search_string aXYbXcXvd
> 2

The above works fine when the search_string does not contain any literal characters that might be
misinterpreted as metacharacters. But if it does, then we get unexpected results.

% set search_string "X."

> X.

% regexp -all $search_string aX.bXcX.d
» 3

The problem is with regexp treating . as a metacharacter when we want to actually treat it as a literal character.
One solution is to preprocess the search string to escape any metacharacters with a \. An easier way is to prefix
the search expression with ***= which indicates to the regexp command that the rest of the expression is to be
treated as a literal string.

% regexp -all "**¥*=g§search_string" aX.bXcX.d

> 2
The above construct ***= is not useful when the literal is part of a larger regular
- ‘ - expression which is not a literal itself. In that case the metacharacters in the literal must
o e be escaped, for example with the regsub command we will see later.

regsub -all {[1[*+?{}()<>|.A$\\]} S$literal_string {\\&}

The string map command, probably more efficient, may also be used for this.

98

Matching regular expressions: regexp

4.12.1.14. Newline-sensitive matching

By default no special treatment is afforded to newline characters embedded in the string being matched. For some
use cases, such as matching lines read from a file in a manner similar to egrep, this requires reading in the file
line by line doing a regexp match on each line.

A more efficient option is to use newline-sensitive matching by specifying the -1ine option to regexp. When this
option is specified, certain matching behaviour changes:

* The metacharacters » and $ are treated as matching the beginning of a line and end of a line respectively. Note
that the \A and \Z constraints are unchanged and continue to match the beginning and end of the entire string.

*» The . metacharacter is now treated as matching all characters except newlines. Similarly, bracket expressions
of the form [A..] (ie. matching characters not in a set) never matches a newline.

Thus we can count the number of lines with extraneous trailing whitespace.

% set file_content "First line\nSecond line with trailing space A\nThird line with tab\t"
» First line

Second line with trailing space

Third line with tab

% regexp -all {\s+3$} $file_content 1)
E

% regexp -all -line {\s+$} $file_content @
+ 2

© Only sees trailing tab at end of content
© Sees all lines ending in whitespace

The two behavioural changes above can actually be controlled separately with the -1ineanchor and -1linestop
options to regexp. The option -1ine is equivalent to the combination of these. Specifying -1ineanchor changes
the behaviour of » and $ as described above while -1inestop controls the behaviour of . and {#..] matching.

Newline sensitive matching can also be enabled through embedded option metasyntax as an alternative to the
above options. The correspondences are shown in the table below

Table 4.14. Table

(?n) Equivalent to the -1ine option
(?w) Equivalent to the -1ineanchor option
(?p) Equivalent to the -1inestop option

So the following would be equivalent to the above example.

regexp -all {(?n)\s+$} $file_content » 2

4.12.1.15. Matching at an offset: -start

On occasion, for example incrementally parsing a grammar using regular expressions, you need to begin the
matching from somewhere other than the start of the string. You can use the -start option for this purpose.

% regexp -inline -all a+ "aaabacaa"

+ aaa a aa

% regexp -start 4 -inline -all a+ "aaabacaa"
+ 2 aa

99

Matching regular expressions: regexp

This feature is commonly useful in conjunction with the -indices option where the returned indices are used as
the argument to -start for the next match attempt.

4.12.1.16. Controlling greediness

There are times when a RE may match a string in multiple ways. Consider the following match

% regexp -inline {A(x+)(.*y)$} xxyy
2 XXYY XX VY

The RE matches with the first subexpression matching xx and the second matching yy. The RE could also have
matched with the first subexpression matching as x and the second as xyy.

The difference between the two matches is that by default a quantifier (like + above) will match as much as
possible in a “greedy” manner. Hence the first subexpression matches the whole sequence of x characters. In some
situations, examples of which we will see later, it is desirable to match the fewest number of characters possible.
The greedy quantifier can be converted into a non-greedy one by appending a ?. It will then match the least
number of characters required for the match to be successful.

% regexp -inline {A(x+?)(.*y)$} xxyy
> XXYY X Xyy

Make a note of the different subexpression matches with respect to the previous result.

The rules for greediness are detailed in the Tcl reference pages and we will not go into them here other than
provide an example where the distinction is useful. Consider we want to extract content enclosed in an XML tag
<Item>..</Item> .(Using regular expressions to parse XML is not recommended in general but is often adequate
for quick throwaway scripts.) We might write an expression as follows

% regexp {<Item>(.*)</Item>} "<Item>Item 1</Item>" -> content
> 1
% puts $content

» Item 1
You will often see -> used in Tcl regexp commands to indicate that the full match (which
- ‘ - lands up being stored in a variable of that name) is of no interest.
* -

That seems to work except it doesn’t. When you have multiple tags the result is not what is desired.

% regexp {<Item>(.*)</Item>} "<Item>Item 1</Item><Item>Item 2</Item>" -> content
> 1

% puts $content

> Item 1</Item><Item>Item 2

The problem is again one of greed where the (.*) expression matches as much as it can till the second </Item>
while we would have wanted it to stop at the first. Appending a ? to the * quantifier to force non-greedy matching
gives the desired behaviour.

% regexp {<Item>(.*?)</Item>} "<Item>Item 1</Item><Item>Item 2</Item>" -> content
> 1

% puts $content

> Item 1

100

Substituting regular expressions: regsub

4.12.1.17. Comments and expanded syntax

The power of regular expressions is accompanied by related complexity and it can be difficult to discern the
purpose of various parts of even a moderately complex RE. Regular expressions in Tcl offer a solution to this
problem in the form of an expanded syntax which is enabled by specifying the -expanded option to the regexp
command.

Expanded syntax differs from normal RE syntax in the following ways:

» Whitespace in the RE is no longer significant unlike in the normal RE syntax. You can therefore use spaces and
tabs to indent and spread a RE out over multiple lines.

» The # character starts a comment and all characters till the end of the line or the expression are ignored.
There are a some exceptions to the above.

* A whitespace or # character preceded by a \ is treated as a significant character and not ignored.
+ A whitespace or # character within a bracketed expression is significant.

* Whitespace and # are illegal within multicharacter symbols. We don’t discuss these at all here. See the Tcl
reference page for more information.

As an example, here is a previous example for detecting repeated words rewritten in expanded syntax.

regexp -inline -all -expanded {

\m # Beginning of a word

(\w+) # followed by one or more word characters

\s+ # then whitespace

\1 # then the word that was matched

\M # then end of the word (a non-word char, end of string etc.)

} "This sentence has has repeated words.™
» {has has} has

Expanded syntax can also be enabled with the (?x) metasyntax instead of with the -expanded option.

The embedded metasyntax has to be right at the beginning of the regular expression

ﬂ since the expanded syntax begins after the closing parenthesis. Thus there must not
be any character, including space or newline, preceding the (?x) at the start of the
expression.

4.12.2. Substituting regular expressions: regsub

The regsub command allows substitutions to be performed on a string based on the matching of a RE pattern,
either returning the modified string or saving it in a new variable. It has the syntax

regsub foptiops? REOSTRING

where R£ is the regular expression, STRING is the string in which substitutions are to be made and suBspPrc is the
specification of the substitution. If VARNAME is not specified, the command returns the result of the substitution.
If varnvamg is specified, the result of the substitution is stored in the variable of that name and the number of
substitutions is returned.

The substitution string suBspeC can itself refer to elements of the matched rE pattern, by using one or more back
references of the form \N where N is a number between 0 and 9: \0 will be replaced with the string that matched
the entire RE, \ 1 with the string that matched the first sub-pattern, and so on. You can also use the character & in
place of \0.

% regsub {(\d+) (\d+)} "Example: 100 200" {\O reversed is \2 \1}
> Example: 100 200 reversed is 200 100

101

Designing regular expressions

% regsub {(\d+) (\d+)} "Example: 100 200" {& reversed is \2 \1} var
s 1

% puts $var

+ Example: 100 200 reversed is 200 100

Here \0 and & match 100 200 while the back references \ 1 and \2 refer to the capturing parenthesis content 100
and 200 respectively. The part of the string that does not match the regular expression is preserved. Thus the
string “Example: * is left untouched in the result.

By default, regsub only substitutes the first occurence of the RE. You can use the -all switch to substitute all
occurences instead.

Going back to an example we saw earlier, detection of repeated words in text, we can instead use regsub to fix the
errors instead of just detecting them.

% regsub -all {\m(\w+)(\s+)\1\M} {
Words are often repeated when
when a word appears at the end of a line
line and is repeated on the next.

P A}

5
Words are often repeated when a word appears at the end of a line and is repeated o...

Note again the parts of the text that do not match the regular expression are left as they are.

The regsub command accepts many, but not all, of the options of the regexp command, in particular -nocase, -
start, -line, -linestop, -lineanchor and -expanded.

% regsub -all {(c)olor} "Colors colors" {\l1olour}

» Colors colours

% regsub -nocase -all {(c)olor} "Colors colors” {\lolour}
» Colours colours

These options have the same effect as for the regexp command and we do not further describe them further here.

The following example from RosettaCode ® illustrates the combined use of string map, regsub and subst to
decode URLs. You will often find this combination of commands used in tasks involving decoding operations.

proc urlDecode {str} {
set specialMap {"[" "%5B" "]" "%5D"}
set segRE {%([0-9a-fA-F1{2})}
set replacement {[format “%c" [scan “\1" "%2x"]11}
set modStr [regsub -all $seqRE [string map $specialMap $str] $replacement]
return [encoding convertfrom utf-8 [subst -nobackslash -novariable $modStr]]
}
urlDecode "http%3A%2F%2Ffoo%20bar%2F"
> http://foo bar/

Since we have covered the relevant commands (well, except encoding), grokking the code is left as an exercise for
the reader.

4.12.3. Designing regular expressions

We have described the tools and features related to regular expressions that are available in Tcl. We have not
delved into how to go about designing regular expressions for specific tasks. Regular expressions are useful and

8 https://www.rosettacode.org/wiki/URL_decoding#Tcl

102

Binary strings

powerful but complex and often difficult to think about. You are encouraged to consult the references at the end of
this chapter that go into the theory and practice of regular expressions.

There are also a number of tools are available to help experimenting with regular expressions such as Visual
REGEXP?. These are very useful in both building and debugging regular expressions.

4.13. Binary strings

As we stated, strings in Tcl are sequences of Unicode code points or (roughly speaking) characters. Many
applications, such as those dealing with network packets or compressed data, need to work with binary data
where individual bytes, and even bits, are manipulated. Such data is handled in Tcl as binary strings, which are
nothing but ordinary strings with all characters with Unicode code points in the range U+0000-U+00FF (thus each
fitting in a byte). Most string commands such as string length, string index etc. work naturally with binary
strings. For constructing and parsing binary strings, and conversion to common human readable encodings such
as base64, Tcl provides the binary ensemble command.

For ease of displaying binary data, we will first define a simple (but not the most efficient) procedure, bin2hex,
using the binary encode command that we will see later.

proc bin2hex {args} {

regexp -inline -all .. [binary encode hex [join $args ""1]
I
This will dump each byte in a binary string in hexadecimal format.

* .

The above illustrates a quick and dirty method of using regexp for splitting strings into
equal size chunks.

4.13.1. Binary literals

The easiest way to create simple binary string constants with known content is to use the \x syntax.

set 1it "\x01\x80\xff"
binZhex $lit
+ 01 80 ff

This creates a binary string that is a sequence of three bytes. Creating a binary literal is even easier if it contains
only 7-bit values, i.e. a pure ASCII string. In that that case the ASCII value of a character is used as the value of the

byte.
bin2hex "XYZ" » 58 59 5a

4.13.2. Encoding binary strings as ASCII

There are many times when binary data has to be encoded into 7- or 8-bit ASCII form. This might be required for
transporting through binary data through email, for human readability, storage of binary data in files based on
ASCII encodings and so on.

There are three commonly used ASCII based formats used for encoding binary data— plain hexadecimal encoding,
base64 and uuencode. Tcl supports encoding and decoding from all three formats with the binary encode and
binary decode commands.

9 http://laurent.riesterer.free.fr/regexp/

103

Encoding binary strings as ASCII

4.13.2.1. Hexadecimal encoding of binaries: binary encode|decode hex

The binary encode hex and binary decode hex commands convert binary strings to and from hexadecimal
ASCII strings.

binary encode hex HiNZATA
binary decode hex ?-strict? rnoonnn

Each byte of the B7nDATA is encoded as a pair of hexadecimal digits, most significant nibble first.

binary encode hex XYZ + 58595a
binary encode hex "\xfe\xfO\x0f" » fef0Of
binary decode hex "58595a" + XYZ

The decoding will raise an error if the argument contains anything other than hexadecimal characters and
whitespace (which are ignored). If given the -strict option even whitespace is not allowed.

% binary decode hex "58 595a"

> XYZ
% binary decode hex -strict "58 595a"
@ invalid hexadecimal digit " " at position 2

4.13.2.2. Base64 format: binary encode|decode base64

The binary encode base64 and binary decode base64 commands convert binary strings to and from base64
encoded ASCII strings.

binary encode base64 ?-maxlen 1
binary decode base64 ?-strict? #r¢

T? ?-wrapchar CHAR? BINDATA

The binary encode base64 command can take two options. The -max1len option specifies the maximum line
length of the encoded string beyond which a line should be split into multiple lines. By default lines are not split.
The -wrapchar option, which is the newline character by default, specifies the character to use to separate the
split lines.

% binary encode base64 "\xfe\xfO\x0f"
> /vAP
% set enc [binary encode base64 -maxlen 30 [string repeat XYZ 20]]
> WFlawFlawFlaWFlawFlawFlawFlaWF
laWFlaWFlawFlaWFlaWFlaWFlaWFla
WFlawFlawFlawFlawWFla
% binary decode base64 $enc
> XYZ

3

3

Like for hexadecimal decoding, the hase64 decoding form takes a -strict option that will raise an error if any
whitespace is present. By default whitespace is ignored. Thus the following will raise an error since we wrapped
the encoded output with newlines above.

% binary decode base64 -strict $enc
@ invalid base64 character "
" at position 30

4.13.2.3. Uuencode format: binary encode|decode uuencode

The final form of binary to ASCII encoding, the uuencode format, is implemented by the binary encode
uuencode and binary decode uuencode commands.

104

Constructing binary strings: binary format

binary encode uuencode ?-maxlen
binary decode uuencode ?-strict?

i7? ?-wrapchar o

This supports the same -maxlen and -wrapchar options as the base64 encoding above.

% binary encode uuencode "\xfe\xfO\x0f"
+ #.0'/
% set enc [binary encode uuencode -maxlen 30 [string repeat XYZ 20]1]
3 S6%E : 6%E : 6%E : 6%E : 6%E : 6%E : 6%E :
S6%E : 6%E : 6%E : 6%E : 6%E : 6%E : 6%E :
26%E : 6%E : 6%E : 6%E : 6%E : 6%E :
% binary decode uuencode $enc
> XYZ

Note however, that the -strict option for the uuencode version only throws an error if whitespace appears in
unexpected places as the format itself allows for it in some locations.

4.13.3. Constructing binary strings: binary format

Thebinary format command is used to construct a binary string in a similar fashion to how the format
command is used for constructing character strings.

binary format #ORMATS

The FORMATSTRING argument specifies the structure or layout of the binary string as a sequence of fields of
various types and sizes. The command returns the binary string constructed by filling each field with the value of
the corresponding argument formatted appropriately.

As an example, consider the initial part of a TCP header for an HTTP connection, which consists of

* a 16-bit source port numbers, say 5000 or 0x1388 in hex

* a 16-bit destination port number 80, or 0x0050 hex

*+ a 32-bit sequence number, say 1000000, or 0x000F4240 hex

+ a 32-bit acknowledgement number, say 100 or 0x00000064 hex

All fields are sent in network byte order (big endian, most significant byte first) so the stream of bytes appear in
hexadecimal as

13 88 00 50 00 OF 42 40 00 00 00 64

Within a Tcl script the above header fields might be stored in variables and the binary format command used to
construct the packet header.

set srcport 5000

set dstport 80

set seqnum 1000000

set acknum 100

set header [binary format SSII $srcport $dstport $segnum $acknum]
bin2hex $header

+ 13 88 00 50 00 Of 42 40 00 00 00 64

The format types S and I specify 16-bit big endian and 32-bit big endian fields as per the desired layout. Because
the constructed header contains non-printable data, we use our bin2hex wrapper around the binary encode
hex command to display it in hexadecimal form.

The format string may include spaces for readability purposes. In the above example the format string SSII may
have been specifiedasS S I TorSS I I etc. withno difference in the generated binary string.

105

Constructing binary strings: binary format

In general, FORMATSTRING should be a sequence of field specifiers each of which is
« asingle character that either specifies a type or a cursor movement
» optionally followed by an flag character
» optionally followed by a numeric count field

The type and cursor specifiers are detailed later.

The flag character, for which u is the only valid value, is ignored and not discussed here. It is accepted by the
binary format command only for compatibility with the binary scan command allowing the same format
string to be used for both.

The count field may be either a positive integer value or the character *. An integer value specifies the number of
fields of that type to be placed at that position. The values are picked up from the corresponding argument which
may be a string or a list depending on the type specifier. The * character works similarly except that it indicates
that all the values in the corresponding argument are to be used.

Thus our previous example could also have been written (among many other possibilities) as

set header [binary format "S2 I*" [list $srcport $dstport] [list $seqnum $acknum]]
bin2hex $header

> 13 88 00 50 00 Of 42 40 00 00 00 64

4.13.3.1. Type specifiers for binary format

The type character, such a S or I in our example, indicates both the type (integer, real etc.) of a field as well as its
layout (width, endianness). Table 4.15 summarizes the various type specifiers.

Table 4.15. Type specifiers for binary format

Specifiers ~ Description

a,A Byte string padded with null bytes or binary value 32/0x20 (ASCII space) respectively.

b, B Bit string. Arguments must be a string of binary digits 0 and 1. Packed within each output
byte in low to high or high to low order respectively.

h, H String of hexadecimal digits packed in each byte in low to high or high to low order
respectively.

d List of integers if a count is specified. Only the low order 8 bits are stored in the output
byte.

s,S,t List of integers. Only the low order 16 bits are stored in the output in little endian, big

endian and native order respectively.

i,I,n List of integers. Only the low order 32 bits are stored in the output in little endian, big
endian and native order respectively.

w, W, m List of integers. Only the low order 64 bits are stored in the output in little endian, big
endian and native order respectively.

r,Rf List of single precision floating point numbers. Stored in little endian, big endian and
native order respectively.

q,Q,d List of double precision floating point numbers. Stored in little endian, big endian and
native order respectively.

X Stores zeroes in the output.

The details of each format with examples are given below.

106

Constructing binary strings: binary format

Binary formats: a, A

The character a specifies a single byte field. The argument is a character string and the value stored in the field is
taken from the low 8 bits of the Unicode code point for the corresponding character. Thus this command should
not be used to generate binary representations of general Unicode strings. Use the encoding command instead.

bin2hex [binary format a z] + 7a
bin2hex [binary format a \u0102] » 02 @

© Note truncation to low 8 bits

If a count specifier is present, the appropriate number of characters from the argument string are used. Any
extra characters in the argument are ignored. If the argument has fewer characters than the specified count, the
remaining bytes are filled with null bytes.

bin2hex [binary format a3 wxyz] - 77 78 79 @
bin2hex [binary format a3a yz x] » 79 7a 00 78 (2]

© Only 3 characters used
©® Note padding first argument with nulls

E If the string has only ASCII characters, calling binary format is essentially a no-op.

bin2hex [binary format a* wxyz] » 77 78 79 7a
bin2hex wxyz > 77 78 79 7a

The specifier A is similar except that if the string argument has fewer characters than the specified count, the
remaining bytes are filled with the binary value 32/0x20 (corresponding to an ASCII space) instead of null bytes.

bin2hex [binary format A*A3 wxyz yz] » 77 78 79 7a 79 7a 20 @

©@ Note padding with spaces

Binary format: b, B

Arguments must be a string of binary digits 0 and 1. For b, these are packed into output bytes in low to high order
within each byte. Zeroes are used if the argument string is shorter than the count for a field or if the number of
bits is not a multiple of 8. B is similar except that bits are stored in high to low order within a byte.

bin2hex [binary format b8 10101010] > 55
bin2hex [binary format B8 10101010] 5> aa ©
binzhex [binary format "b8 b5" 101 111111 » 05 1f @
bin2hex [binary format "B8 B5" 101 11111] 5> a0 f8 ©
bin2hex [binary format b* 1011001110001110] » cd 71 @

Note different output bit order from above
Zero fill high bits

Zero fill low bits

Output as many bytes as needed

o009

Binary format: h, H

The argument is a string of hexadecimal digits. Both lower and upper case characters are accepted. In the case of
h (almost never used), the hex digits are packed in the output bytes in low to high order whereas for H they are

107

Constructing binary strings: binary format

packed in the high to low order which is what is normally desired. Zeroes are used to fill if the argument string is
shorter than the count for a field or if the number of hexadecimal characters is not even.

bin2hex [binary format h* 0aB] » a0 Ob
bin2hex [binary format H* 0aB] » 0a b0
Binary format: ¢

If count is not specified, the argument must be an integer the low 8 bits of which are stored in the byte. If count
is specified, the argument must be a list of at least that many integers. The generated output is then a sequence of
bytes each containing the low 8 bits of the corresponding integer element. Extra elements in the list are ignored.

bin2hex [binary format cc2 10 {-1 1}] » 0a ff 01
bin2zhex [binary format c* {254 255 256 257}] » fe ff 00 01 1)

© Note truncation to low 8 hits
Binary format: s, S, t

If count is not specified, the argument must be an integer the low 16 hits of which are stored in two bytes in little
endian, big endian and native order for s, S and t respectively.

If count is specified, the argument must be a list of at least that many integers. The generated output is then a
sequence of bytes each containing the low 16 bits of the corresponding integer element. Extra elements in the list
are ignored.

binzhex [binary format ss* 33825 {-2 65537}] » 21 84 fe ff 01 00

bin2hex [binary format SS* 33825 {-2 65537}] » 84 21 ff fe 00 01

bin2hex [binary format tt* 33825 {-2 65537}] » 21 84 fe ff 01 00

Binary format: 1, I, n

Similar to s except that i, I and n store 32-bit integers in 4 byte output sequences in little endian, big endian and
native order respectively.

bin2hex [binary format ii* 2151678465 {-2 65537}] » 01 02 40 80 fe ff ff ff 01 00 01 00
bin2hex [binary format II* 2151678465 {-2 65537}] + 80 40 02 01 ff ff ff fe 00 01 00 01
Binary format: w, W, m
Similar to s except that w, W and m store 64-bit integers in 8 byte output sequences in little endian, big endian and

native order respectively.

bin2hex [binary format w 18049651735527937] » 01 02 04 08 10 20 40 00
bin2hex [binary format W 18049651735527937] » 00 40 20 10 08 04 02 01

Binary format: r, R, f
Stores single precision floating point number in little endian, big endian and native order respectively. The
number of bytes produced is dependent on the machine architecture.

bin2hex [binary format r 2.71828] -» 4d f8 2d 40
bin2hex [binary format R 2.71828] » 40 2d f8 4d

108

Parsing binary strings: binary scan

Binary format: q, Q, d

Stores double precision floating point number in little endian, big endian and native order respectively. The
number of bytes produced is dependent on the machine architecture.

bin2hex [binary format q 2.71828] » 90 f7 aa 95 09 bf 05 40
bin2hex [binary format Q 2.71828] » 40 05 bf 09 95 aa f7 90
Binary format: x

Stores zeroes in the output. This differs from the other types in that it does not consume an argument and does not
permit the count to be specified as *.

bin2hex [binary format cxcx2c 255 254 253] » ff 00 fe 00 00 fd

4.13.3.2. Cursor movement for formatting

In addition to the types, the format specification can include cursor movement characters. The binary format
command writes output bytes at a position in the string indicated by a cursor. Normally the cursor is positioned
right after the last position that was written in the output string. Cursor movement characters change the position
of this cursor and unlike type specifiers do not consume any arguments.

Table 4.16. Binary format cursor movement characters

‘ Specxfler Description
X Moves the cursor backward in the output string by the specified count or by one

character if not count is specified. If the count is is * or greater than the current position,
the cursor is placed at the first position.

bin2hex [binary format c3c2 {0 1 2} {3 4}] + 00 01 02 03 04
binZhex [binary format c3X2c2 {0 1 2} {3 4}] » 00 03 04

@ Moves the cursor to the absolute position given by count which must be specified. If
the count is greater than the current output string length, the output is padded with the
appropriate number of zeroes. If the count is *, the cursor is placed at the end of the
string.

bin2hex [binary format c5@2c2@*c {0 1 2 3 4} {5 6} 7] » 00 01 05 06 04 07

4.13.4. Parsing binary strings: binary scan

The binary scan command is used to parse a binary string in a similar fashion to how the scan command is used
for parsing character strings. It is conceptually the inverse of the binary format command.

binary scan z:ixge®

It parses the binary string BINSTRING driven by a format string SCANFORMAT that specifies the expected
structure or layout of BINSTRING as a sequence of fields of various types and sizes. The values are extracted and
stored in the variables passed as additional arguments. The command returns the number of variables that were
set.

As an example, the following code parses the binary TCP header we generated in the previous section.

109

Parsing binary strings: binary scan

% binzhex $header

> 13 88 00 50 00 Of 42 40 00 00 00 64

% binary scan $header SSII scan_srcport scan_dstport scan_seq scan_ack
> 4

% puts "$scan_srcport, $scan_dstport, $scan_seq, $scan_ack"

» 5000, 80, 1000000, 100

The syntax of the SCANFORMAT argument is the same as the format specifiers used for the binary format
command. It is a sequence of field specifiers each of which is

+ asingle character that either specifies a type or a cursor movement.
* optionally followed by an flag character
» optionally followed by a numeric count field.

The field specifiers may be optionally separated by spaces.

The scan begins at the start of the input binary string and maintains a cursor position within the string that is
updated after each field specifier. If the field specifier denotes a type, the bytes following the cursor position are
scanned as binary data of that type and the cursor is moved to point to the following byte. If the field specifier
denotes cursor movement, the cursor is moved without any bytes being scanned.

The flag character, for which u is the only valid value, may be specified with any type but only has effect for
certain integer types where it marks the field to be interpreted as an unsigned value. For example,

% bin2hex [set bin [binary format 1 Oxffffffff]]
> ff ff ff ff

% binary scan $bin i value; puts $value @

> -1

% binary scan $bin iu value; puts $value (2]

+ 4294967295

@ i specifies 32-bit little endian integer
© iuspecified unsigned 32-bit little endian integer

The count field may be

« a positive integer value in which case it specifies the number of fields of that type to be parsed and stored in the
corresponding variable

+ the character * which indicates that all the remaining bytes are to be parsed as that type

The binary string being parsed may not have sufficient bytes to satisfy the scan string specification. This is
not treated as an error. Instead as many field specifiers as can be fully satisfied are parsed and stored in the
corresponding variables. Remaining variables are not affected.

% binary scan $header SSIII scan_srcport scan_dstport scan_seq scan_ack extra_var
> 4

% puts "$scan_srcport, $scan_dstport, $scan_seq, $scan_ack"

» 5000, 80, 1000000, 100

% puts [info exists extra_var]

> 0

4.13.4.1. Type specifiers for binary scan

The type character, such a S or I in our example, indicates hoth the type (integer, real etc.) of a field as well as its
layout (width, endianness). Table 4.17 shows the various type specifiers available.

110

Parsing binary strings: binary scan

Table 4.17. Type specifiers for binary scan

Specifier Description

a, A Extract a single byte differing in their treatment of trailing spaces and zero bytes. The byte is
treated as a Unicode character in the range U+0000-U+0OFF.

' b,B Extract bits in a byte in low to high and high to low order respectively.

h,H Extract the nibbles of a byte as a pair of hexadecimal digits in low to high or high to low order
respectively.

C Extracts bytes as signed 8-bit integers or unsigned if the u flag is specified.

s,S, t Extract pairs of bytes as 16-bit signed, or unsigned if the u flag is specified, integers in little

endian, big endian and native order respectively.

1,I,n Extract pairs of bytes as 32-bit signed, or unsigned if the u flag is specified, integers in little
endian, big endian and native order respectively.

w, W, m Extract pairs of bytes as 64-bit signed, or unsigned if the u flag is specified, integers in little
endian, big endian and native order respectively.

r,R, Extract single precision floating point numbers stored in little endian, big endian and native
order respectively.

q,Qd Extract double precision floating point numbers stored in little endian, big endian and native
order respectively.

Details and examples of each format are helow.
Binary scan: a, A

The a specifier denotes a single byte field. The value is stored as a Unicode character in the range U+0000-U+00FF.
The A specifier is similar with the solitary difference that trailing spaces and zero bytes are stripped from each
value stored.

% set bin "abc def " @

> abc def

% binary scan $bin a5a* vall val2
> 2

% puts "<$vall>, <3$val2>"

+ <abc >, < def >

% binary scan $bin A5A* valtl val2
+ 2

% puts “"<$vall>, <3$val2>"

> <abc>, < def>

©® Remember for pure ASCII this is the same as [binary format a* "abc def "]

Binary scan: b, B

The b specifier parses bits in a byte in low to high order storing them in the variable as a string of 0 and 1
characters. The B specifier is similar except that the bits are processed in high to low order within a byte.

% binary scan "\x00\x5f\xaa" b13b* vall val2
> 2

% puts "$vall, $val2"

» 0000000011111, 01010101

% binary scan "\x00\x5f\xaa" B13B* vall val2
> 2

% puts "$vall, $val2"

0000000001011, 10101010

+

111

Parsing binary strings: binary scan

Note how each field specifier always begins at a byte boundary. The first specifier maps 13 bits. The remaining
3 bits to the next byte are skipped since the next specifier will only start at the next byte boundary.

Binary scan: h,H

Parses the binary data into a string of hexadecimal digits. The digits are taken from low to high order for each byte
for h and the (natural) high to low order for H.

% binary scan "\xab\xcd\xef" H3H* val1l val2

> 2

% puts "$vall, $val2“

» abc, ef

% binary scan "\xab\xcd\xef" h3h* vall val2
> 2

% puts "$vall, $val2”

» bad, fe

Again, note how each field specifier always begins at a byte boundary.

Binary scan: c

The byte(s) in the binary string are converted to signed 8-bit integers and stored in the corresponding variable as a
list. Adding the u flag stores treates the bytes as unsigned 8-bit integers.

% binary scan \xff\x00\x01\xfe\x0f\x80 cc2c* var1l var2 var3

+ 3

% puts "$varl, $var2, $var3"

» -1, 01, -215 -128

% binary scan \xff\x00\x01\xfe\x0f\x80 cuc2cu* varl var2 var3
> 3

% puts "$varit, $var2, $var3"

» 255, 0 1, 254 15 128

Binary scan: s, S, t

The data is interpreted as 16-bit signed integers stored in little endian, big endian and native order respectively. As
for the c specifier, adding the u flag results in a field being treated as unsigned.

% binary scan \xff\x00\x00\xffAxff\x00\x00\xff s2su* valt val2
> 2

% puts "$val1l, $val2"

» 255 -256, 255 65280

% binary scan \xffAx00\x00\xff\xff\x00\x00\xff S2Su* vall val2
5 2

% puts "$vall, $val2"

» -256 255, 65280 255

Binary scan: i, I,n

The data is interpreted as 32-bit signed integers stored in little endian, big endian and native order respectively.
Adding the u flag results in a field being treated as unsigned.

% binary scan \x00\x00\x00\xff\x00\x00\x00\xff iiu vall val2
> 2

% puts "$valt, $val2"

+ -16777216, 4278190080

112

Parsing binary strings: binary scan

Binary scan: w, W, m

The data is interpreted as 64-bit signed integers stored in little endian, big endian and native order respectively.
Adding the u flag results in a field being treated as unsigned.

% binary scan \xff\Ax00\x00\x00\x00\x00\x00\x00 wu vali1
501

% puts "$val1"

+ 255

% binary scan \xff\x00\x00\x00\x00\x00\x00\x00 W val1l
> 1

% puts "$vall"

+ -72057594037927936

Binary scan: r, R, f

The data is interpreted as single precision floating point numbers stored in little endian, big endian and native
order respectively.

% bin2hex [set bin [binary format r 2.71828]]
s> 4d 8 2d 40

% binary scan $bin r e

> 1

% puts "$e"

» 2.718280076980591

The difference of course stems from floating point representation rounding errors.

Binary scan: g, Q, d

The data is interpreted as double precision floating point numbers stored in little endian, big endian and native
order respectively.

% bin2hex [set bin [binary format q 3.14159]]
> 6e 86 1b f0 f9 21 09 40
% binary scan $bin q pi

> 1
% puts "$pi"
> 3.14159

4.13.4.2. Cursor movement for scanning

In addition to the field types, the scan specification can include the cursor movement characters shown in
Table 4.18 that control the scan position for the next specifier.

Table 4.18. Binary scan cursor movement characters

ﬂS”pécifiérs o Desériptidn
X Moves the cursor forward.
X Moves the cursor backward.
@ Moves the cursor to an absolute position.

Binary scan: x

Moves the cursor forward by one byte or the specified count. If count is specified as * or is larger than the
remaining byte count, the cursor is placed at the end of the input binary string.

113

Character encoding

binary scan \x01\x02\x03\x04\x05\06 cxcx2c vall val2 val3 » 3
puts "$vall, $val2, $val3" > 1, 3, 6

Binary scan: X

| Moves the cursor backward by the specified count or by one if no count is specified. If the count is * or greater
than the current position, the cursor is placed at the start.

binary scan \x01\x02\x03\x04\x05\06 c2Xc3X2c vall val2 val3 » 3
puts "$vall, $val2, $val3™ > 12,234, 3

Binary scan: @

Moves the cursor to the absolute position given by count which must be specified. If the count is greater than the
current output string length, the cursor is placed at the end of the string.

binary scan \x01\x02\x03\x04\x05\06 c2@0c3@5c vall val2 val3 » 3
puts "$valt, $val2, $val3” >12,123,6

4.14. Character encoding

Although at the script level, Tcl strings are best thought of as an abstract sequence of Unicode characters, when it
comes to storing on disk or passing data to other programs, these strings need to be converted to a specific physical
format as a sequence of bytes.

The method by which a character sequence is transformed into a sequence of bytes is defined by an encoding
and naturally there are multiple ways this might be done. Standards for this purpose are defined by various
international standards bodies or by system vendors for their specific platforms. For example, consider the
encoding of Unicode code point sequence U+004f U+006c U+00e1 which is the Portuguese word Ola. As a
physical sequence of bytes in a file it may be stored as

+ 4f 6c el (ISO8859-9)
+ 4F 6¢ ¢c3 a1 (UTF-8)
+ 4f 00 6c 00 e1 00 (UCS-2)

amongst many other possible encodings.

of differing length. Moreover, not all characters can be represented in every encoding.
In modern times, the UTF-8 encoding which is capable of representing all Unicode
characters, is generally used for sharing data between applications.

E An encoding may be variable length with different characters encoded to byte sequences

Some commonly used encodings are UTF-8 which is almost universally the encoding of choice in modern
protocols, IS08859-1 intended for Western European languages, Shift]IS for Japanese and Big5 for Chinese.

Tel provides built-in facilities for conversion to and from a wide variety of encodings with the encoding
command.

4.14.1. Retrieving supported encodings with encoding names

The list of encodings supported by the Tcl application can be obtained with the encoding names command.

% encoding names
> Cp860 cp861 cp862 cp863 tis-620 cp864 cp865 cp866 gb12345 gh2312-raw cp949 cp950 cp869 ...

Note the encoding names are all lower case and can differ slightly from their common usage forms.

114

Encoding characters: encode convertto

The supported encodings can differ even within a single Tcl version as the list of included encodings can be
changed at compile time though some like ascii, utf-8, unicode and is08859-1 will always be present.

The encoding named unicode is really a misnomer. It is actually little endian UCS-2. In
- ‘ - any case, it is very rarely used in general data exchange though the Windows API uses it
o e for character strings.

4.14.2. Encoding characters: encode convertto

A string can be converted to a specific encoding with the encoding convertto command.

encoding convertto =

This returns a binary string containing the sequence of bytes in the specified encoding ENCODING. Thus assuming
the variable hello contained the word 013,

% bin2hex [encoding convertto i1s08859-9 $hello]
+ 4f 6¢ el

% bin2hex [encoding convertto utf-8 $hello]

> 4f 6c ¢3 a1l

% bin2hex [encoding convertto unicode $hello]
+» 4f 00 6¢c 00 et 00

4.14.3. Decoding characters: encode convertfrom

The encoding convertfrom command performs the inverse operation, converting encoded data to a string of
characters.

encoding convertfrom inconix: R

Here ENCODING is the name of the encoding that the binary string BINSTRING was encoded in. Thus the inverse of
our previous encoding would be of the form

% encoding convertfrom utf-8 "\x4f\x6c\xc3\xal"
» 013

4.14.4. Adding new encodings: encoding dirs

The encodings supported within a Tcl executable can be extended by adding new ones. The encoding dirs
command returns a list of directories containing files with extension . enc from which encoding definitions are

loaded.

% encoding dirs
5 C:/tcl/866/x64/1ib/tcl8.6/encoding

New encodings can be placed in one of the directories returned by the command.

You can also change the list of directories that are searched by supplying an additional argument to the command.
For example, to add a new directory to the search path for encodings,

% encoding dirs [linsert [encoding dirs] end C:/my/extra/encodings]
s €:/tcl/866/x64/1ib/tcl8.6/encoding C:/my/extra/encodings

The 1insert command that we will see in Section 5.4.3 inserts elements into a list.

115

The system encoding

4.14.5. The system encoding

The system encoding is the encoding used when Tcl makes system calls that take string arguments. The encoding
system command returns the encoding in use for this purpose.

% encoding system
» €pl1252

Because the ramification of doing so can be both unexpected and severe, we will not mention that the encoding
used for system interaction can be changed by supplying the name of another encoding as an argument to this
command. Do not do that unless you really know what you are doing.

4.14.6. Reading and writing encoded data

Tcl provides the ability to configure input and output streams to automatically convert from and to a specific
encoding without having to explicitly invoke the encode command. We will discuss this when we talk about I/0
and channel encodings in Section 9.3.8.

There are times though when you need to explicitly use the encoding command, for example when you need to
calculate a checksum over the encoded data. In this case, you need to remember that the channel must be placed
in binary mode so that it does not do any encoding itself. Otherwise conversions will effectively happen twice
which is probably not what you want.

4.15. Localization and message catalogs

To speak another language is to possess a second soul.

— Charlemagne

Tcl’'s message catalog facility provides a means for applications that support multiple languages to easily display
text in the user’s preferred language. It separates the application code from the language specific text allowing for
easy addition of new languages, modification of existing text etc. without having to change the application.

As an introductory example, consider localizing our famous Hello world! greeting.

% puts "Hello world!"
+ Hello world!

The message catalog commands are implemented by the msgcat package so we need to load that first.

% package require msgcat
+ 1.6.0

The translation for the greeting has to be defined. Normally this is done in message catalog files that are loaded by
the application as we will see. But for our example we will just define it interactively.

% msgcat::mcset fr "Hello world!" "Bonjour le monde!"
+ Bonjour le monde!

The command to output our greeting now becomes

puts [msgcat::mc "Hello world!"]
» Hello world!

Now, to switch to French at the user’s request, we would simply change the locale to fr.

116

Locales

% msgcat::mclocale fr
s> fr

Our greeting would then show up in French.

% puts [msgcat::mc "Hello world!"]
» Bonjour le monde!

Notice that we only needed to add appropriate entries in the message catalog; the actual puts call itself did not
have to change after switching to French.

4.15.1. Locales

A locale is a container for a collection of settings such as time and date formats and string translations. Locales are
identified in Tcl by a locale string consisting of

+ alanguage code as defined in international standard ISO 639
+ optionally followed by an _ and a country code as defined in standard ISO 3166,
» optionally followed by an _ and a system specific code.

For example, en identifies the generic English locale while en_US and en_GB identify the variations for USA and
Great Britain respectively.

When an application starts, the initial locale is set based on the values of the LC_ALL, LC_MESSAGES and LANG
environment variables in that order. On Windows, if none of these are defined, the locale is retrieved from
registry settings. If none of these are available, the initial locale is set to C.

4.15.1.1. Retrieving and setting the locale: mclocale

Themsgcat::mclocale is used to set and retrieve the current locale for the application.
msgcat::mclocale ?;oari?

If no argument is specified, the command returns the current locale. If LoCALE is specified, the current locale is
changed to the one specified.

% msgcat::mclocale

s fr

% msgcat::mclocale en_gb
- en_gb

In the case of an application running multiple Tcl interpreters, the mclocale only
changes the locale for the interpreter in which the command is invoked. We will discuss
multiple interpreters in Chapter 20.

4.15.1.2. Locale inheritance: mcpreferences

Locales are structured in a hierarchy so for example en_gb inherits from en. If a setting is not found in en_gb, it
will be looked up in en. The "msgcat::mcpreferences’ returns this list of locales.

msgcat::mcpreferences » en_gb en {}

The top of this inheritance is always the ROOT locale identified by the empty string.

117

Creating message catalogs: mcset, mcmset, mcflset, mcflmset

4.15.2. Creating message catalogs: mcset, mcmset, mcflset, mcflmset

The translations for each locale are stored in separate files within a single directory. The files have the form
1.OCALE.msg where LOCALE is a lower case string identifying the locale. Thus the file es.msg will store the Spanish
translations. As a special case the translations for the ROOT locale are stored in a file called ROOT.msg (note the
upper case name).

Each application or package will normally store all its localization files within a single application or package
specific directory. The Tcl core localization files are stored in the TCLINSTALLDIR/11b/TclVERSION/mMSES
directory.

Within each file, the localization strings for that locale are defined using one of the four commands
msgcat::mcset, msgcat: :mcmset, msgcat: :mcflset and msgcat: :memflset.

mcset L0
mcmset i
mcflset xev
mcflmset

The commands are all similar and provide different syntactic conveniences.

We have already seen an example of mcset which defines mapping of a single key for a specific locale. If
LOCALIZEDSTRING is not specified, it defaults to xzv itself. Thus the following two are equivalent.

msgcat::mcset en_us "Hello world!™ "Hello world!"
msgcat::mcset en_us "Hello world!™

The msgcat: :mcmset is both more convenient and more efficient when multiple strings are being defined. It takes
an argument LOCALIZATIONLIST which is a list of alternating keys and localized strings. Thus the following

msgcat::mcset fr "Hello world!"™ "Bonjour le monde!"
msgcat::mcset fr "Goodbye cruel world!" "Adieu monde cruelt"

may be more conveniently written as

msgcat::mcmset fr {
"Hello world!" "Bonjour le monde!"
"Goodbye cruel world!"™ “Adieu monde cruel!"
}

when many strings are being defined.

The mcflset and mcflmset are analogous to mcset and mcmset respectively except they do not even require
specification of the locale. They can only be used inside of message catalog files loaded with the mcload command
and default to the locale based on the file name being loaded. For example, the following inside a message catalog
file de.msg will add the strings to the de locale.

msgcat::mcflmset {

"Hello world!™" "Hallo Welt!™

"Goodbye cruel world!"™ "auf Wiedersehen, grausame Welt!"
b

Both mcflset and mcflmset will raise exceptions unless called via a mcload cormmand.

118

Loading message catalogs: mcload

4.15.3. Loading message catalogs: mcload
Before the translations defined by an application can take effect, they must be loaded with the msgcat: :mcload
command.

msgcat::mcload MicoAvii

The message catalog files may be stored in any directory but it is common to store them in a subdirectory under
the package’s script directory. Thus a common method for loading message files is invoking

msgcat::mcload [file join [file dirname [info script]] msgs]

from the main package script at the time it is loaded.

4.15.4. Retrieving localized strings: mc

The msgcat: :mc command returns localized strings based on the current locale as returned by mclocale.
msgcat: mc ~iY PARS L7

We have already seen this command and examples of use at the beginning of this section. We now expand on some
of its other features.

The first argument xzy passed to the mc command is used as the key for looking up the localized strings. If no entry
is found, by default the key itself is returned from the command unless this behaviour is changed. In our earlier
example, we used the English localization itself as the key but this is not necessary. We could have used any token
as the translation lookup key, say greet001.

% puts [msgcat::mc greet001] (1]

5> greet001

% msgcat::mcset en greet001 "Hello world!"
» Hello world!

% puts [msgcat::mc greetQ01]

» Hello world!

© We have not assigned a value for greet001 for the current locale

Although it is convenient to use the English (or any language for that matter) localization

- ‘ - as the key so as to not have to explicitly define an entry in the message catalog for it, this
D relies on the default behaviour of the mcunknown cornmand. It is therefore sometimes
recommended to explicitly define localizations for every string and language pair as
above.

If any additional arguments are passed to the mc command, it passes them to the format command along with the
localized string and returns the result. For example, assume the fr and en message catalogs contain the following
lines respectively:

msgcat::mcset fr TIME "L'heure actuelle est %s"
msgcat::mcset en TIME "The current time is %s"

We can print the current time as

% set now [clock format [clock seconds] -format %T]
+ 11:45:41

% puts [msgcat::mc TIME $now]

s> The current time is 11:45:41

119

Partitioning catalogs with namespaces

The above is roughly equivalent to

% set fmt [msgcat::mc TIME]

> The current time is %S

% puts [format $fmt $now]

» The current time is 11:45:41

If we were to switch to the fr locale,

% msgcat::mclocale fr

> fr

% puts [msgcat::mc TIME $now]
> L'heure actuelle est 11:45:41

we get the French version of the message.

4.15.5. Partitioning catalogs with namespaces

One issue that can arise when multiple independent packages have their own message catalogs is the potential for
conflict between the key strings used by each package. The message catalog system solves this through the use of
namespaces, a topic we cover in Chapter 12.

Packages that make use of the message catalogs should invoke the mcset family of definition commands from
within the package’s namespace. For example, the de.msg file example in the previous section should contain the
following content instead.

namespace eval greetings {
msgcat::mcflmset {
"Hello world!" "Hallo Welt!"
"Goodbye cruel world!" "auf Wiedersehen, grausame Welt!"

}

The localized strings are then loaded within the greetings namespace and will not conflict with localizations
defined in the global or other namespaces.

Conversely, when localized strings are retrieved with the “mc’ command, it looks up the message catalog within
the context of the namespace from which it is called.

Here is an illustrative example. The English localization file for our anniversary package may contain

namespace eval anniversary {
msgcat::mcset en greeting "Happy anniversary!"

}
» Happy anniversary!

Similarly, the Christmas greetings package localization file contains

namespace eval xmas {
msgcat::mcset en greeting “"Merry Christmas!”

b
+ Merry Christmas!

These files define the greeting message hased on the occasion as reflected by the containing namespace. The
printed greeting as shown helow will then depend on the namespace context in which the message is retrieved
with the mc command.

120

Handling unknown message keys

% msgcat::mclocale en_us

s en_us

% puts [msgcat::mc greeting] (1]
+ greeting

% namespace eval anniversary {puts {[msgcat::mc greeting]}

» Happy anniversary!

% namespace eval xmas {puts [msgcat::mc greetingl}

» Merry Christmas!

© Will output greeting because no message catalog entry for greeting in global namespace

One final point to be related to the use of namespaces with msgcat is that if a namespace does not define
a message catalog entry that matches the locale, all ancestor namespaces are searched in order. So if the
anniversary namespace had a child namespace golden, the following would work.

namespace eval anniversary::golden {puts [msgcat::mc greeting]} - Happy anniversary!

On failing to find a greeting entry in any suitable English locale in the anniversary: : golden namespace, the mc
command would check anniversary and the global namespaces in turn.

4.15.6. Handling unknown message keys

When the mc command does not find a localization defined in the current locale, it invokes the

msgcat: :mcunknown procedure and returns its value. The default definition of mcunknown simply returns the
passed lookup key. An application can redefine this to take some other action it wishes, like logging or raising an
error, or using an online automatic translation API etc.

The redefined command is called using the following syntax and should be defined accordingly.
msgcat: mcunknown o047 R REY 2ERS LD

where rocark is the locale to be looked up. £y and the remaining arguments are as passed to the mc command.

The return value from the command is passed back to the original caller. Therefore any redefinition should take
care to handle additional arguments in the same manner as mc.

4.16. Data compression

The z11b family of data compression algorithms and data formats are widely used in the computing world.
The most common applications include compression in the HTTP protocol used for Web access and the zip and
gzip file compression formats. Because of their ubiquity, Tcl provides built-in commands for compressing and
decompressing using these formats.

The zlib family really consists of three different specifications:
« The raw compression algorithm, DEFLATE, defined in RFC 1951 1%, We refer to data compressed using this
algorithm as deflated data.

+ A data format, the ZLIB compressed data format, defined in RFC 1950 that wraps the raw deflated data to
include additional metadata such as checksums. We refer to this as zlib compressed data.

* Another data format, the GZIP file format, defined in RFC 1952 '? that also wraps the raw compressed data to
include additional metadata. We refer to this as gzip compressed data.

Tcl provides commands related to all three of these. Moreover, these commands fall into four categories:

10 https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1952

121

Compressing strings

« Commands that operate on the entire data to be compressed or decompressed. These are discussed below in
Section 4.16.1.

+ Commands that operate in stream mode where the data is incrementally compressed or decompressed These
are described below in Section 4.16.2.

« Channel transforms where data is transparently compressed or decompressed during input-output operations.
We will postpone a discussion of these to Section 17.2.5 in the Chapter 17 where we introduce channel
transforms.

« Utility commands for calculating checksums. These are discussed in Section 4.16.3.
All commands related to zlib compression are subcommands of the z1ib command.
Since the compression algorithms all operate on binary data, they must be passed binary

strings, for example those directly constructed with the binary format command or by
encoding text strings with encoding convertto command.

4.16.1. Compressing strings

The commands discussed in this section expect the binary string that is to be operated on to be provided in a single
argument. Let us create such a string to use for our examples.

% set bin [encoding convertto utf-8 [string repeat abcd 200]]

4.16.1.1. Raw DEFLATE compression: z1ib deflate|inflate

The first pair, z1ib deflate and z1ib inflate, implement compression and expansion respectively using the
raw DEFLATE algorithm of RFC 1951. No headers or metadata are attached to the compressed data.

zlib deflate ziwzvn:
zlib inflate

The r£vEL argument should be a number between 0 and 9 with a level of 0 indicating no corpression and 9
indicating maximal compression, at the cost of performance. The default value is 1.

% bin2hex [set zbin [z1lib deflate $bin]]

+ 4b 4c 4a 4e 49 1c ¢5 a3 78 14 63 c5 00

(Our repeated input string results in excellent compression!)
The inverse command is z1ib inflate.

% encoding convertfrom utf-8 {zlib inflate $zbin]
5 abcdabcdabcdabedabedabcdabcdabedabedabedabedabedabedabcdabedabedabedabedabedabedabedabe. . .

When uncompressing, the inflate command will grow the buffer required for the uncompressed data as
required. As a performance optimization, you can specify BUFFERSTZE as the expected length of data so that
memory reallocations are avoided.

% encoding convertfrom utf-8 [zlib inflate $zbin 1000]
5 abcdabcdabcdabecdabedabedabedabedabcdabecdabedabedabedabedabcdabedabedabedabedabedabedabe. ..

122

Compressing strings

4.16.1.2. Zlib compression: z1ib compress|decompress

A second set of commands, z1ib compress and z1ib decompress, implement compression and expansion
respectively using the Zlib compressed data format defined in RFC 1950. This format uses the same DEFLATE
compression algorithm used by the z1ib deflate butincludes additional meta information, in particular an
Adler-32 checksum. The well known zip compressed files primarily use this format.

The syntax is similar to that of z1ib deflate and z1ib inflate.

zlib compress i
z)lib decompress opMPi

The optional LEVEL and BUFFERSIZE parameters have the same meaning as described above for the z1ib
deflate and z1ib inflate commands respectively.

% bin2hex [set zbin [zlib compress $bin]]

5 78 9c 4b 4c 4a 4e 49 1c c5 a3 78 14 63 c5 00 aa 4f 33 e0

% encoding convertfrom utf-8 [zlib decompress $zbin]

» abcdabcdabcdabcdabecdabecdabcdabecdabedabcdabedabecdabecdabedabecdabecdabedabedabecdabedabedabe. ..

Notice from the output of the bin2hex command that the Zlib compression format contains within it the output of
the raw DEFLATE data we printed in the previous section.

4.16.1.3. Gzip compression: z1ib gzip|gunzip

The last set of commands in this category z1ib gzip and z1ib gunzip are also based on the DEFLATE
compression algorithm but this time using the format defined in RFC 1952. The popular gzip and gunzip
command line utilities that produce . gz files use this format.

The syntax of these commands differs slightly from their brethren because the format supports more metadata
values.

z1lib gzip !
z1lib gunzip

: ?-level :vii? ?-header iiwiiou?
i ?-headerVar arnamME?

The -1evel option serves the same purpose as the LEvEL argument in z1ib deflate except it is supplied as an
option switch instead of a plain argument.

The -header option allows the caller to supply the associated metadata. #zprDICT should be a dictionary
containing any of the keys shown in Table 4.19.

Table 4.19. Gzip header keys

] Key Value
comment A comment to be included in the Gzip metadata
cre Aboolean value. If true, the GZIP header CRC is computed. This should be false if
! interoperability with the gzip program is desired.
filename The name of the file that was the source of the data.
0Ss The operating or file system type code as defined in RFC 1952. Common ones are 0 for
FAT, 3 for Unix, 11 for NTFS.
time The last modified time of the file as returned by clock seconds or file mtime. i
type One of the values binary or text indicating the type of data being compressed. Programs
handling Gzip format files may or may not pay heed to this flag.

All keys above are optional.

123

Compressing streams

Correspondingly, if the -headerVar option is used with the z1ib gunzip command, the metadata values
retrieved from the compressed data are stored in the variable varname in the caller’s context. The data is stored as
a dictionary which may contain the same keys shown in Table 4.19 and an additional key, size, that contains the
size of the compressed data.

% set hdr [list time [clock seconds] comment "A demo file™]

» time 1499148941 comment {A demo file}

% bin2hex [set zbin [zlib gzip $bin -header $hdr]]

> 1f 8b 08 10 8d 32 Sb 59 00 00 41 20 64 65 6d 6f 20 66 69 6¢C 65 00 4b 4cC 4a 4e 49 1c c5 ...
encoding convertfrom utf-8 [zlib gunzip $zbin -headerVar hdr2]

+ abcdabcdabcdabcdabcdabcdabcdabcdabecdabcdabcdabcdabcdabcdabecdabedabcdabedabedabedabedabe. ..
% print_dict $hdr2

32

> comment = A demo file
cre =0
0s =0
size = 800
time = 1499148941

...Additional lines omitted...

4.16.2. Compressing streams

The commands discussed in the previous section all work with in a “single-shot” manner where all the data that
is to be operated on is provided in one call. This is neither convenient nor performant in terms of memory usage
when the data becomes available in a discrete or piecemeal fashion. For such cases, Tcl provides the z1ib stream
command where data can be fed into the compression engine in incremental fashion.

Before going into the details, a short example that mirrors our previous ones:

set strm [zlib stream deflate]
for {set 1 0} {$i < 200} {incr i} {
$strm put [encoding convertto utf-8 "abcd"]
}
$strm finalize
set zbin [$strm get]
$strm close
bin2hex $zbin

The script creates a new zlib stream command that will compress any data passed to it via the put subcommand.
When we are done, finalize completes the compression process. The compressed data can then be retrieved
with get. Finally, we release resources associated with the stream by calling close.

The sequence of commands for decompression would be very similar except that we call z1ib stream inflate
to create the stream. Likewise, to compress using the Zlib or Gzip formats, we would call z1ib stream compress
and z1ib stream gzip respectively.

4.16.2.1. Creating a compression stream

A compression stream is created with a command of the form

zlib stream iNGINE ?0FTICNS

The ENGINE parameter is one of deflate, inflate, compress, decompress, gzip or gunzip and corresponds
to the various compression and decompression commands described in the preceding sections. The command
returns a new command representing a streaming compression instance to which data can be written and read.

The options that can be used with the various engines is shown in Table 4.20.

124

Compressing streams

Option

-dictionary BINDATA

-header HEADER

-level LEVEL

Table 4.20. Compression stream options

Description

Specifies a compression dictionary to be used for compressing or
decompressing. BINDATA IS a binary string and is not to be confused with a
Tcl dictionary. See the explanation of the preset dictionary in RFC 1950 13 This
option can be used with the deflate, inflate, compress and decompress
engines.

Specifies the Gzip format metadata header. This option can only be used with
the gzip engine.

Specifies the compression level. This option can be used with the deflate,

compress and gzip engines.

Let us open streams to do Gzip compression and decompression.

% set compressor [zlib stream gzip -header {comment "A zlib demo"}]
» 1:tcl::zlib::streamcmd_2

% set decompressor [zlib stream gunzip]

» ::tel::zlib::streamemd_3

The commands returned are then invoked for various read and write operations on the stream.

4.16.2.2. Writing to a compression stream

A stream is written to with the put command.

A OPUT POETIONS? HINDATA
Multiple put commands may be invoked to add data in incremental fashion. For example,

% $compressor put [encoding convertto utf-8 "abcd"]
% $compressor put [encoding convertto utf-8 "efgh"]

The command supports the options shown in Table 4.21.

Table 4.21. Compression stream put options

Option Description

-dictionary BINDICT Sets BInDICT as the compression dictionary as described in Table 4.20.
. -finalize The use of this option is described in Section 4.16.2.3.

-flush The use of this option is described in Section 4.16.2.9.

-fullflush The use of this option is described in Section 4.16.2.9.

Note that only one of -finalize, -flush or - fullflush may be specified.

4.16.2