
The Tcl interface to the SQLite library

The SQLite library is designed to be very easy to use from a Tcl, or Tcl/Tk script. SQLite began as a

Tcl extension and the primary test suite for SQLite is written in Tcl. SQLite can be used with any programming

language, but its connections to Tcl run deep.

This document gives an overview of the Tcl programming interface for SQLite.

package require sqlite3

The API

The interface to the SQLite library consists of single Tcl command named sqlite3.

Because there is only this one command, the interface is not placed in a separate namespace.

The sqlite3 command is mostly used as follows to open, or create a database:

sqlite3 dbcmd ?database-name? ?options?

To get information only, the sqlite3 command may be given exactly one argument, either "-version",

"-sourceid", or "-has-codec", which will return the specified datum with no other effect.

With other arguments, the sqlite3 command opens the database named in the second non-option argument, or

named {} if there is no such. If the open succeeds, a new Tcl command named by the first argument is created

and {} is returned. (This approach is similar to the way widgets are created in Tk.) If the open fails, an error is

raised without creating a Tcl command and an error message string is returned.

If the database does not already exist, the default behavior is for it to be created automatically (though this can

be changed by using the "-create false" option).

The name of the database is usually just the name of a disk file in which the database is stored. If the name of

the database is the special name ":memory:", then a new database is created in memory. If the name of the

database is an empty string {}, then the database is created in an empty file that is automatically deleted when

the database connection closes. URI filenames can be used if the "-uri yes" option is supplied on the sqlite3

command.

Options understood by the sqlite3 command include:

-create BOOLEAN

If "true", then a new database is created if one does not already exist. If "false", then an
attempt to open a database file that does not previously exist raises an error. The default
behavior is "true".

-nomutex BOOLEAN

If "true", then all mutexes for the database connection are disabled. This provides a small
performance boost in single-threaded applications.

-readonly BOOLEAN

If "true", then open the database file read-only. If "false", then the database is opened for
both reading and writing if filesystem permissions allow, or for reading only if filesystem
write permission is denied by the operating system. The default setting is "false". Note that if
the previous process to have the database did not exit cleanly and left behind a hot journal,
then the write permission is required to recover the database after opening, and the database
cannot be opened read-only.

https://www.sqlite.org/tclsqlite.html
http://www.tcl-lang.org/
https://www.sqlite.org/uri.html
https://www.sqlite.org/inmemorydb.html
https://www.sqlite.org/fileformat2.html#hotjrnl
https://www.sqlite.org/testing.html
http://www.tcl-lang.org/doc/tea/

-uri BOOLEAN

If "true", then interpret the filename argument as a URI filename. If "false", then the
argument is a literal filename. The default value is "false".

-vfs VFSNAME

Use an alternative VFS named by the argument.

-fullmutex BOOLEAN

If "true", multiple threads can safely attempt to use the database. If "false", such attempts are
unsafe. The default value depends upon how the extension is built.

-nofollow BOOLEAN

If "true", and the database name refers to a symbolic link, it will not be followed to open the
true database file. If "false", symbolic links will be followed. The default is "false".

Once a SQLite database is open, it can be controlled using methods of the dbcmd.

There are currently 40 methods defined:

• authorizer
• backup
• bind_fallback
• busy
• cache
• changes
• close
• collate
• collation_needed
• commit_hook
• complete
• config
• copy
• deserialize

• load_extension
• errorcode
• eval
• exists
• function
• incrblob
• interrupt
• last_insert_rowid
• nullvalue
• onecolumn
• preupdate
• profile
• progress
• restore

• rollback_hook
• serialize
• status
• timeout
• total_changes
• trace
• trace_v2
• transaction
• unlock_notify
• update_hook
• version
• wal_hook

The use of each of these methods will be explained in the sequel, though not in the order shown above.

The "eval" method

The most useful dbcmd method is "eval". The "eval" method is used to execute SQL on the database.

The syntax of the eval method looks like this:

dbcmd eval ?-withoutnulls? sql ?array-name? ?script?

The job of the "eval" method is to execute the SQL statement, or statements given in the second argument.

For example, to create a new table in a database, you can do this:

sqlite3 db1 ./testdb
db1 eval {CREATE TABLE t1(a int, b text)}

The above code creates a new table named t1 with columns a and b.

Query results are returned as a list of column values. If a query requests 2 columns and there are 3 rows

matching the query, then the returned list will contain 6 elements. For example:

https://www.sqlite.org/tclsqlite.html#wal_hook
https://www.sqlite.org/tclsqlite.html#version
https://www.sqlite.org/tclsqlite.html#update_hook
https://www.sqlite.org/tclsqlite.html#unlock_notify
https://www.sqlite.org/tclsqlite.html#transaction
https://www.sqlite.org/tclsqlite.html#trace_v2
https://www.sqlite.org/tclsqlite.html#trace
https://www.sqlite.org/tclsqlite.html#total_changes
https://www.sqlite.org/tclsqlite.html#timeout
https://www.sqlite.org/tclsqlite.html#status
https://www.sqlite.org/tclsqlite.html#serialize
https://www.sqlite.org/tclsqlite.html#rollback_hook
https://www.sqlite.org/tclsqlite.html#restore
https://www.sqlite.org/tclsqlite.html#progress
https://www.sqlite.org/tclsqlite.html#profile
https://www.sqlite.org/tclsqlite.html#preupdate
https://www.sqlite.org/tclsqlite.html#onecolumn
https://www.sqlite.org/tclsqlite.html#nullvalue
https://www.sqlite.org/tclsqlite.html#last_insert_rowid
https://www.sqlite.org/tclsqlite.html#interrupt
https://www.sqlite.org/tclsqlite.html#incrblob
https://www.sqlite.org/tclsqlite.html#function
https://www.sqlite.org/tclsqlite.html#exists
https://www.sqlite.org/tclsqlite.html#eval
https://www.sqlite.org/tclsqlite.html#errorcode
https://www.sqlite.org/tclsqlite.html#enable_load_extension
https://www.sqlite.org/tclsqlite.html#deserialize
https://www.sqlite.org/tclsqlite.html#copy
https://www.sqlite.org/tclsqlite.html#config
https://www.sqlite.org/tclsqlite.html#complete
https://www.sqlite.org/tclsqlite.html#commit_hook
https://www.sqlite.org/tclsqlite.html#collation_needed
https://www.sqlite.org/tclsqlite.html#collate
https://www.sqlite.org/tclsqlite.html#close
https://www.sqlite.org/tclsqlite.html#changes
https://www.sqlite.org/tclsqlite.html#cache
https://www.sqlite.org/tclsqlite.html#busy
https://www.sqlite.org/tclsqlite.html#bind_fallback
https://www.sqlite.org/tclsqlite.html#backup
https://www.sqlite.org/tclsqlite.html#authorizer
https://www.sqlite.org/vfs.html
https://www.sqlite.org/uri.html

db1 eval {INSERT INTO t1 VALUES(1,'hello')}
db1 eval {INSERT INTO t1 VALUES(2,'goodbye')}
db1 eval {INSERT INTO t1 VALUES(3,'howdy!')}
set x [db1 eval {SELECT * FROM t1 ORDER BY a}]

The variable $x is set by the above code to:

1 hello 2 goodbye 3 howdy!

You can also process the results of a query one row at a time by specifying the name of an array variable and a

script following the SQL code. For each row of the query result, the values of all columns will be inserted into

the array variable and the script will be executed. For instance:

db1 eval {SELECT * FROM t1 ORDER BY a} values {
 parray values
 chan puts {}
}

This last code will give the following output:

values(*) = a b
values(a) = 1
values(b) = hello

values(*) = a b
values(a) = 2
values(b) = goodbye

values(*) = a b
values(a) = 3
values(b) = howdy!

For each column in a row of the result, the name of that column is used as an index in to array and the value

of the column is stored in the corresponding array entry. (Caution: If two, or more columns in the result set

of a query have the same name, then the last column with that name will overwrite prior values and earlier

columns with the same name will be inaccessible.) The special array index * is used to store a list of column

names in the order that they appear.

Normally, NULL SQL results are stored in the array using the nullvalue setting. However, if the -withoutnulls

option is used, then NULL SQL values cause the corresponding array element to be unset instead.

If the array variable name is omitted, or is the empty string {}, then the value of each column is stored in a

variable with the same name as the column itself. For example:

db1 eval {SELECT * FROM t1 ORDER BY a} {
 chan puts "a=$a b=$b"
}

From this we get the following output:

a=1 b=hello
a=2 b=goodbye
a=3 b=howdy!

Tcl variable names can appear in the SQL statement of the second argument in any position where it is legal to

put a string, or number literal. The value of the variable is substituted for the variable name. If the variable

does not exist a NULL value is used. For example:

https://www.sqlite.org/tclsqlite.html#nullvalue

db1 eval {INSERT INTO t1 VALUES(5,$bigstring)}

Note that it is not necessary to quote the $bigstring value. That happens automatically. If $bigstring is a large

string, or binary object, this technique is not only easier to write, it is also much more efficient since it avoids

making a copy of the content of $bigstring.

If the $bigstring variable has both a string and a "bytearray" representation, then Tcl inserts the value as a

string. If it has only a "bytearray" representation, then the value is inserted as a BLOB. To force a value to be

inserted as a BLOB even if it also has a text representation, use a "@" character to in place of the "$". Like this:

db1 eval {INSERT INTO t1 VALUES(5,@bigstring)}

If the variable does not have a "bytearray" representation, then "@" works just like "$". Note that ":" works like

"$" in all cases so the following is another way to express the same statement:

db1 eval {INSERT INTO t1 VALUES(5,:bigstring)}

The use of ":" instead of "$" before the name of a variable can sometimes be useful if the SQL text is enclosed

in double-quotes "..." instead of curly-braces {...}. When the SQL is contained within double-quotes "..." then

Tcl will do the substitution of $-variables, which can lead to SQL injection if extreme care is not used. But Tcl

will never substitute a :-variable regardless of whether double-quotes "...", or curly-braces {...} are used to

enclose the SQL, so the use of :-variables adds an extra measure of defense against SQL injection.

The "close" method

As its name suggests, the "close" method to a SQLite database just closes the database. This has the side-effect

of deleting the dbcmd Tcl command. Here is an example of opening and then immediately closing a database:

sqlite3 db1 ./testdb
db1 close

If you delete the dbcmd directly, that has the same effect as invoking the "close" method. So the following code

is equivalent to the previous:

sqlite3 db1 ./testdb
rename db1 {}

The "transaction" method

The "transaction" method is used to execute a Tcl script inside a SQLite database transaction. The transaction

is committed when the script completes, or it rolls back if the script fails. If the transaction occurs within

another transaction (even one that is started manually using BEGIN) it is a no-op.

The "transaction" command can be used to group together several SQLite commands in a safe way. You can

always start transactions manually using BEGIN, of course. But if an error occurs so that the COMMIT, or

ROLLBACK are never run, then the database will remain locked indefinitely. Also, BEGIN does not nest, so

you have to make sure no other transactions are active before starting a new one. The "transaction" method

takes care of all of these details automatically.

The syntax looks like this:

dbcmd transaction ?transaction-type? script

The "transaction-type" can be one of deferred, exclusive, or immediate. The default is deferred.

The "cache" method

The "eval" method described above keeps a cache of prepared statements for recently evaluated SQL

commands. The "cache" method is used to control this cache. The first form of this command is:

dbcmd cache size N

This sets the maximum number of statements that can be cached. The upper limit is 100. The default is 10.

If you set the cache size to 0, no caching is done.

The second form of the command is this:

dbcmd cache flush

The "cache-flush" method finalizes (deletes) all prepared statements currently in the cache.

The "complete" method

The "complete" method takes a string of supposed SQL as its only argument. It returns "true" if the string is a

complete statement of SQL and "false" if there is more to be entered.

The "complete" method is useful when building interactive applications in order to know when the user has

finished entering a line of SQL code. This is really just an interface to the sqlite3_complete() C function.

The "config" method

The "config" method queries, or changes certain configuration settings for the database connection using the

sqlite3_db_config() interface. Run this method with no arguments to get a Tcl list of available configuration

settings and their current values:

dbcmd config

The above will return something like this:

defensive 0 dqs_ddl 1 dqs_dml 1 enable_fkey 0 enable_qpsg 0 enable_trigger 1 enable_view 1
fts3_tokenizer 1 legacy_alter_table 0 legacy_file_format 0 load_extension 0 no_ckpt_on_close 0
reset_database 0 trigger_eqp 0 trusted_schema 1 writable_schema 0

Add the name of an individual configuration setting to query the current value of that setting. Optionally add a

boolean value to change a setting.

The following four configuration changes are recommended for maximum application security. Turning off the

"trusted_schema" setting prevents virtual tables and dodgy SQL functions from being used inside of triggers,

views, CHECK constraints, generated columns, and expression indexes. Turning off the "dqs_dml" and

"dqs_ddl" settings prevents the use of double-quoted strings. Turning on "defensive" prevents direct writes to

shadow tables.

db config trusted_schema 0
db config dqs_dml 0
db config dqs_ddl 0
db config defensive 1
db config load_extension 0

The "copy" method

The "copy" method copies data from a file into a table. It returns the number of rows processed successfully

from the file. The syntax of the copy method looks like this:

dbcmd copy conflict-algorithm table-name file-name ?column-separator? ?null-indicator?

https://www.sqlite.org/c3ref/db_config.html
https://www.sqlite.org/c3ref/complete.html
https://www.sqlite.org/c3ref/finalize.html
https://www.sqlite.org/c3ref/prepare.html
https://www.sqlite.org/tclsqlite.html#eval

"conflict-algorithm" must be one of the SQLite conflict algorithms for the INSERT statement: rollback, abort,

fail, ignore, or replace. See the SQLite Language section for ON CONFLICT for more information.

The "conflict-algorithm" must be specified in lower case.

"table-name" must already exists as a table. "file-name" must exist, and each row must contain the same

number of columns as defined in the table. If a line in the file contains more, or less columns than the number

of columns defined, the "copy" method rollbacks any inserts, and returns an error.

"column-separator" is an optional column separator string. The default is the ASCII tab character \t.

"null-indicator" is an optional string that indicates a column value is NULL. The default is an empty string {}.

Note that "column-separator" and "null-indicator" are optional positional arguments; if "null-indicator" is

specified, a "column-separator" argument must be specified and precede the "null-indicator" argument.

The "copy" method implements similar functionality to the .import SQLite shell command.

The "timeout" method

The "timeout" method is used to control how long the SQLite library will wait for locks to clear before giving

up on a database transaction. The default timeout is 0 millisecond. (In other words, the default behavior is not to

wait at all.)

The SQLite database allows multiple simultaneous readers, or a single writer but not both. If any process is

writing to the database no other process is allows to read, or write. If any process is reading the database other

processes are allowed to read but not write. The entire database shared a single lock.

When SQLite tries to open a database and finds that it is locked, it can optionally delay for a short while and try

to open the file again. This process repeats until the query times out and SQLite returns a failure. The timeout is

adjustable. It is set to 0 by default so that if the database is locked, the SQL statement fails immediately. But

you can use the "timeout" method to change the timeout value to a positive number. For example:

db1 timeout 2000

The argument to the "timeout" method is the maximum number of milliseconds to wait for the lock to clear.

So in the example above, the maximum delay would be 2 seconds.

The "busy" method

The "busy" method, like "timeout", only comes into play when the database is locked. But the "busy" method

gives the programmer much more control over what action to take. The "busy" method specifies a callback Tcl

procedure that is invoked whenever SQLite tries to open a locked database. A single integer argument is

appended to the callback before it is invoked. The argument is the number of prior calls to the busy callback

for the current locking event. It is intended that the callback will do some other useful work for a short while

(such as service GUI events) then return so that the lock can be tried again. The callback procedure should

return "0" if it wants SQLite to try again to open the database and should return "1" if it wants SQLite to

abandon the current operation.

If the "busy" method is invoked without an argument, the name of the callback procedure last set by the

"busy" method is returned. If no callback procedure has been set, an empty string {} is returned.

The "load_extension" method

The extension loading mechanism of SQLite (accessed using the load_extension() SQL function) is turned off

by default. This is a security precaution. If an application wants to make use of the load_extension() function it

must first turn the capability on using this method.

This method takes a single boolean argument which will turn the extension loading functionality on, or off.

https://www.sqlite.org/lang_corefunc.html#load_extension
https://www.sqlite.org/lang_corefunc.html#load_extension
https://www.sqlite.org/lang_conflict.html

For best security, do not use this method unless truly needed, and run PRAGMA trusted_schema=OFF, or the

"db config trusted_schema 0" method before invoking this method.

This method maps to the sqlite3_enable_load_extension() C/C++ interface.

The "exists" method

The "exists" method is similar to "onecolumn" and "eval" in that it executes SQL statements. The difference is

that the "exists" method always returns a boolean value which is "true" if a query in the SQL statement it

executes returns one, or more rows and "false" if the SQL returns an empty set.

The "exists" method is often used to test for the existence of rows in a table. For example:

if {[db exists {SELECT 1 FROM table1 WHERE user=$user}]} then {
 # Processing if $user exists
} else {
 # Processing if $user does not exist
}

The "last_insert_rowid" method

The "last_insert_rowid" method returns an integer which is the ROWID of the most recently inserted

database row.

The "function" method

The "function" method registers new SQL functions with the SQLite engine. The arguments are the name of

the new SQL function and a Tcl command prefix that implements that function. Arguments to the function are

appended to the Tcl command prefix before it is invoked.

For security reasons, it is recommended that applications first set PRAGMA trusted_schema=OFF, or run the

"db config trusted_schema 0" method before using this method.

The syntax looks like this:

dbcmd function sql-name ?options? script

The following example creates a new SQL function named "hex" that converts it's numeric argument into a

hexadecimal encoded string:

db function hex {format 0x%X}

The "function" method accepts the following options:

-argcount INTEGER

Specify the number of arguments that the SQL function accepts. The default value of -1
means any number of arguments.

-deterministic

This option indicates that the function will always return the same answer given the same
argument values. The SQLite query optimizer uses this information to cache answers from
function calls with constant inputs and reuse the result rather than invoke the function
repeatedly.

https://www.sqlite.org/tclsqlite.html#config
https://www.sqlite.org/pragma.html#pragma_trusted_schema
https://www.sqlite.org/c3ref/enable_load_extension.html
https://www.sqlite.org/tclsqlite.html#config
https://www.sqlite.org/pragma.html#pragma_trusted_schema

-directonly

This option restricts the function to only be usable by direct top-level SQL statement. The
function will not be accessible to triggers, views, CHECK constraints, generated columns, or
index expressions. This option is recommended for all application-defined SQL functions, and
is highly recommended for any SQL function that has side effects, or that reveals internal
state of the application.

Security warning: without this switch, an attacker might be able to change the schema of a
database file to include the new function inside a trigger, or view, or CHECK constraint and
thereby trick the application into running the function with parameters of the attacker's
choosing. Hence, if the new function has side effects, or reveals internal state about the
application and the -directonly option is not used, that is a potential security vulnerability.

-innocuous

This option indicates that the function has no side effects and does not leak any information
that cannot be computed directly from its input parameters. When this option is specified, the
function may be used in triggers, views, CHECK constraints, generated columns, and/or index
expressions even if PRAGMA trusted_schema=OFF. The use of this option is discouraged
unless it is truly needed.

-returntype integer|real|text|blob|any

This option is used to configure the type of the result returned by the function. If this option is
set to "any" (the default), SQLite attempts to determine the type of each value returned by the
function implementation based on the Tcl value's internal type. Or, if it is set to "text", or
"blob", the returned value is always a text, or blob value, respectively. If this option is set to
"integer", SQLite attempts to coerce the value returned by the function to an integer. If this is
not possible without data loss, it attempts to coerce it to a real value, and finally falls back to
text. If this option is set to "real", an attempt is made to return a real value, falling back to text
if this is not possible.

The "nullvalue" method

The "nullvalue" method changes the representation for NULL returned as result of the "eval" method.

db1 nullvalue NULL

The "nullvalue" method is useful to differ between NULL and empty string {} column values as Tcl lacks a

NULL representation. The default representation for NULL values is an empty string {}.

The "onecolumn" method

The "onecolumn" method works like "eval" in that it evaluates the SQL query statement given as its argument.

The difference is that "onecolumn" returns a single element which is the first column of the first row of the

query result.

This is a convenience method. It saves the user from having to do a "[lindex ... 0]" on the results of an "eval" in

order to extract a single column result.

The "changes" method

The "changes" method returns an integer which is the number of rows in the database that were inserted,

deleted, and/or modified by the most recent "eval" method.

https://www.sqlite.org/pragma.html#pragma_trusted_schema

The "total_changes" method

The "total_changes" method returns an integer which is the number of rows in the database that were

inserted, deleted, and/or modified since the current database connection was first opened.

The "authorizer" method

The "authorizer" method provides access to the sqlite3_set_authorizer C/C++ interface. The argument to

"authorizer" is the name of a procedure that is called when SQL statements are being compiled in order to

authorize certain operations. The callback procedure takes 5 arguments which describe the operation being

coded. If the callback returns the text string "SQLITE_OK", then the operation is allowed. If it returns

"SQLITE_IGNORE", then the operation is silently disabled. If the return is "SQLITE_DENY" then the

compilation fails with an error.

If the argument is an empty string {} then the "authorizer" is disabled. If the argument is omitted, then the

current "authorizer" is returned.

The "bind_fallback" method

The "bind_fallback" method gives the application control over how to handle parameter binding when no Tcl

variable matches the parameter name.

When the "eval" method sees a named SQL parameter such as "$abc", or ":def", or "@ghi" in a SQL statement,

it tries to look up a Tcl variable with the same name, and it binds the value of that Tcl variable to the SQL

parameter. If no such Tcl variable exists, the default behavior is to bind a SQL NULL value to the parameter.

However, if a "bind_fallback" procedure is specified, then that procedure is invoked with the name of the SQL

parameter as an argument and the return value from the procedure is bound to the SQL parameter. Or if the

procedure returns an error, then the SQL statement aborts with that error. If the procedure returns with some

code other than TCL_OK (0), or TCL_ERROR (1), then the SQL parameter is bound to NULL, as it would be

by default.

The "bind_fallback" method has a single optional argument. If the argument is an empty string {}, then the

"bind_fallback" is canceled and the default behavior is restored. If the argument is a non-empty string, then the

argument is a Tcl command (usually the name of a procedure) to invoke whenever a SQL parameter is seen

that does not match any Tcl variable. If the "bind_fallback" method is given no arguments, then the current

"bind_fallback" command is returned.

As an example, the following setup causes Tcl to throw an error if a SQL statement contains a parameter that

does not match any global Tcl variable:

proc bind_error {nm} {
 error "no such variable: $nm"
}
db bind_fallback bind_error

The "progress" method

This method registers a callback that is invoked periodically during query processing. There are two

arguments: the number of SQLite virtual machine opcodes between invocations, and the Tcl command to

invoke. Setting the progress callback to an empty string {} disables it.

The progress callback can be used to display the status of a lengthy query, or to process GUI events during a

lengthy query.

https://www.sqlite.org/c3ref/set_authorizer.html

The "collate" method

This method registers new text collating sequences. There are two arguments: the name of the collating

sequence and the name of a Tcl procedure that implements a comparison function for the collating sequence.

For example, the following code implements a collating sequence called "NOCASE" that sorts in text order

without regard to case:

proc nocase_compare {a b} {
 return [string compare [string tolower $a] [string tolower $b]]
}
db collate NOCASE nocase_compare

The "collation_needed" method

This method registers a callback routine that is invoked when the SQLite engine needs a particular collating

sequence but does not have that collating sequence registered. The callback can register the collating sequence.

The callback is invoked with a single parameter which is the name of the needed collating sequence.

The "commit_hook" method

This method registers a callback routine that is invoked just before SQLite tries to commit changes to a

database. If the callback throws an exception, or returns a non-zero result, then the transaction rolls back rather

than commit.

The "rollback_hook" method

This method registers a callback routine that is invoked just before SQLite tries to do a rollback. The script

argument is run without change.

The "status" method

This method returns status information from the most recently evaluated SQL statement. The "status" method

takes a single argument which should be either "steps", or "sorts". If the argument is "steps", then the method

returns the number of full table scan steps that the previous SQL statement evaluated. If the argument is "sorts",

the method returns the number of sort operations. This information can be used to detect queries that are not

using indices to speed up searching, or sorting.

The "status" method is basically a wrapper on the sqlite3_stmt_status() C language interface.

The "update_hook" method

This method registers a callback routine that is invoked just after each row is modified by an UPDATE,

INSERT, or DELETE statement. Four arguments are appended to the callback before it is invoked:

•The keyword "INSERT", "UPDATE", or "DELETE", as appropriate

•The name of the database which is being changed

•The table that is being changed

•The rowid of the row in the table being changed

The callback must not do anything that will modify the database connection that invoked the "update hook"

such as running queries.

The "preupdate" method

This method either registers a callback routine that is invoked just before each row is modified by an UPDATE,

INSERT, or DELETE statement, or may perform certain operations related to the impending update.

https://www.sqlite.org/c3ref/stmt_status.html

To register, or remove a "preupdate" callback, use this syntax:

dbcmd preupdate hook ?SCRIPT?

When a "preupdate" callback is registered, then prior to each row modification, the callback is run with these

arguments:

•The keyword "INSERT", "UPDATE", or "DELETE", as appropriate

•The name of the database which is being changed

•The table that is being changed

•The original rowid of the row in the table being changed

•The new rowid (if any) of the row in the table being changed

The callback must not do anything that will modify the database connection that invoked the "preupdate"

hook such as running queries.

When the callback is executing, and only then, these "preupdate" operations may be performed by use of the

indicated syntax:

dbcmd preupdate count
dbcmd preupdate depth
dbcmd preupdate new INDEX

dbcmd preupdate old INDEX

The count submethod returns the number of columns in the row that is being inserted, updated, or deleted.

The depth submethod returns the update nesting depth. This will be 0 for a direct insert, update, or delete

operation; 1 for inserts, updates, or deletes invoked by top-level triggers; or higher values for changes resulting

from trigger-invoked triggers.

The old and new submethods return the selected original, or changed column value respectively of the row

being updated.

Note that the Tcl interface (and underlying SQLite library) must have been built with the preprocessor symbol

SQLITE_ENABLE_PREUPDATE_HOOK defined for the "preupdate" method to be available.

The "wal_hook" method

This method registers a callback routine that is invoked after transaction commit when the database is in

WAL mode. Two arguments are appended to the callback command before it is invoked:

•The name of the database on which the transaction was committed

•The number of entries in the write-ahead log (WAL) file for that database

This method might decide to run a checkpoint either itself, or as a subsequent idle callback. Note that SQLite

only allows a single WAL hook. By default this single WAL hook is used for the auto-checkpointing. If you set

up an explicit WAL hook, then that one WAL hook must ensure that checkpoints are occurring since the auto-

checkpointing mechanism will be disabled.

This method should return an integer value that is equivalent to a SQLite error code (usually 0 for

SQLITE_OK in the case of success, or 1 for SQLITE_ERROR if some error occurs). As in sqlite3_wal_hook(),

the results of returning an integer that does not correspond to a SQLite error code are undefined. If the value

returned by the script cannot be interpreted as an integer value, or if the script throws a Tcl exception, no error

is returned to SQLite but a Tcl background error is raised.

https://www.sqlite.org/wal.html
https://www.sqlite.org/c3ref/wal_hook.html
https://www.sqlite.org/wal.html#ckpt

The "incrblob" method

This method opens a Tcl channel that can be used to read, or write into a preexisting BLOB in the database.

This method may only modify the contents of the BLOB, it's not possible to increase the size of a BLOB using

this API. The syntax is like this:

dbcmd incrblob ?-readonly? ?db? table column rowid

Parameter "db" is not the filename that contains the database, but rather the symbolic name of the database. For

attached databases, this is the name that appears after the AS keyword in the ATTACH statement. For the main

database file, the database name is "main". For TEMP tables, the database name is "temp".

The command returns a new Tcl channel for reading, or writing to the BLOB. The channel is opened using the

underlying sqlite3_blob_open() C language interface. Close the channel using the chan close command of Tcl.

The "errorcode" method

This method returns the numeric error code that resulted from the most recent SQLite operation.

The "trace" method

The "trace" method registers a callback that is invoked as each SQL statement is compiled. The text of the

SQL query is appended as a single string to the command prefix before it is invoked. This can be used (for

example) to keep a log of all SQL operations that an application performs. "dbcmd trace {}" removes the trace.

The "trace_v2" method

The "trace_v2" method registers a callback that is invoked as each SQL statement is compiled.

The syntax is as follows:

dbcmd trace_v2 ?callback? ?mask?

This command causes the "callback" script to be invoked whenever certain conditions occurs. The conditions

are determined by the "mask" argument, which should be a Tcl list of zero, or more of the following keywords:

"statement", "profile", "row", "close".

Traces for "statement" invoke the callback with two arguments whenever a new SQL statement is run. The

first argument is an integer which is the value of the pointer to the underlying sqlite3_stmt object. This integer

can be used to correlate SQL statement text with the result of a "profile", or "row" callback. The second

argument is the unexpanded text of the SQL statement being run. By "unexpanded", we mean that variable

substitutions in the text are not expanded into the variable values. This is different from the behavior of the

"trace" method which does expand variable substitutions.

Traces for "profile" invoke the callback with two arguments as each SQL statement finishes. The first

argument is an integer which is the value of the underlying sqlite3_stmt object. The second argument is the

approximate run-time for the statement in nanoseconds. The run-time is the best estimate available depending

on the capabilities of the platform on which the application is running.

Traces for "row" invoke the callback with a single argument whenever a new result row is available from a

SQL statement. The argument is an integer which is the value of the underlying sqlite3_stmt object pointer.

Traces for "close" invoke the callback with a single argument as the database connection is closing. The

argument is an integer which is the value of a pointer to the underlying sqlite3 object that is closing.

There can only be a single trace callback registered on a database connection.

Each use of "trace" or, "trace_v2" cancels all prior trace callbacks.

https://www.sqlite.org/c3ref/blob_write.html
https://www.sqlite.org/c3ref/stmt.html
https://www.sqlite.org/c3ref/stmt.html
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/c3ref/blob_open.html
https://www.sqlite.org/c3ref/sqlite3.html
https://www.sqlite.org/c3ref/stmt.html

The "backup" method

The "backup" method makes a backup copy of a live database. The command syntax is like this:

dbcmd backup ?source-database? backup-filename

The optional "source-database" argument tells which database in the current connection should be backed up.

The default value is "main" (or, in other words, the primary database file). To back up TEMP tables use

"temp". To backup an auxiliary database added to the connection using the ATTACH command, use the name

of that database as it was assigned in the ATTACH command (the name that appears after the AS keyword).

The "backup-filename" is the name of a file into which the backup is written. "backup-filename" does not

have to exist ahead of time, but if it does, it must be a well-formed SQLite database.

The "restore" method

The "restore" method copies the content from a separate database file into the current database connection,

overwriting any preexisting content. The command syntax is like this:

dbcmd restore ?target-database? source-filename

The optional "target-database" argument tells which database in the current connection should be overwritten

with new content. The default value is "main" (or, in other words, the primary database file). To repopulate the

TEMP tables use "temp". To overwrite an auxiliary database added to the connection using the ATTACH

command, use the name of that database as it was assigned in the ATTACH command.

The "source-filename" is the name of an existing well-formed SQLite database file from which the content is

extracted.

The "serialize" method

The "serialize" method creates a BLOB which is a complete copy of an underlying database.

The syntax is like this:

dbcmd serialize ?database?

The optional argument is the name of the schema, or database to be serialized. The default value is "main".

This routine returns a Tcl byte-array that is the complete content of the identified database. This byte-array

can be written into a file and then used as an ordinary SQLite database, or it can be sent over a TCP/IP

connection to some other application, or passed to the "deserialize" method of another database connection.

This method only functions if SQLite is compiled with -DSQLITE_ENABLE_DESERIALIZE.

The "deserialize" method

The "deserialize" method takes a Tcl byte-array that contains a SQLite database file and adds it to the database

connection. The syntax is:

dbcmd deserialize ?database? value

The optional "database" argument identifies which attached database should receive the deserialization.

The default is "main".

This command causes SQLite to disconnect from the previous database and reattach to an in-memory database

with the content in "value". If "value" is not a byte-array containing a well-defined SQLite database, then

subsequent commands will likely return SQLITE_CORRUPT errors.

This method only functions if SQLite is compiled with -DSQLITE_ENABLE_DESERIALIZE.

https://www.sqlite.org/rescode.html#corrupt
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/lang_attach.html

The "interrupt" method

The "interrupt" method invokes the sqlite3_interrupt() interface, causing any pending queries to halt.

The "version" method

Returns the current library version. For example, "3.40.1"

The "profile" method

This method is used to profile the execution of SQL statements run by the application. The syntax is as follows:

dbcmd profile ?script?

Unless "script" is an empty string {}, this method arranges for the "script" (command prefix) to be evaluated

after the execution of each SQL statement. Two arguments are appended to "script" before it is invoked: the

text of the SQL statement executed and the time elapsed while executing the statement, in nanoseconds.

A database handle may only have a single profile script registered at any time. If there is already a script

registered when the profile method is invoked, the previous profile script is replaced by the new one. If the

"script" argument is an empty string {}, previously registered profile callback is canceled but no new profile

script is registered.

The "unlock_notify" method

The "unlock_notify" method is used access the sqlite3_unlock_notify() interface to the SQLite core library for

testing purposes. The use of this method by applications is discouraged.

https://www.sqlite.org/c3ref/unlock_notify.html
https://www.sqlite.org/c3ref/interrupt.html

