

" Table of Contents
" Index
" Examples
Practical Programming in Tcl and Tk, Fourth Edition
By Brent B. Welch, Ken Jones, Jeffrey Hobbs

Publisher : Prentice Hall PTR
Pub Date : June 10, 2003

ISBN : 0-13-038560-3
Pages : 960

Practical Programming in Tcl/Tk is described as the "bible"
for Tcl programmers. It is a guide to the Tcl/Tk
programming language and GUI toolkit. This revision
includes substantial updates to cover the new version 8.4-
giving both an overview of the features, as well as details
about every command in the language. The third edition,
written on version 8.2, sold over 30,000 copies. Version 8.4
of Tcl - Tool Command Language-provides substantial
updates to one of the most popular UNIX scripting
languages. The latest release, includes the addition of a
virtual filesystem (VFS), many additional programming
widgets (spinbox, panedwindow, labelframe),and improved
performance of about 20% over 8.3. The book provides a
guide to the best ways to use the tooklit. It not only gives
accurate details, but includes extensive examples that

http://safariexamples.informit.com/0130385603
http://www.informit.com/safari/author_bio.asp@ISBN=0130385603
http://www.informit.com/safari/author_bio.asp@ISBN=0130385603
http://www.informit.com/safari/author_bio.asp@ISBN=0130385603

demonstrate the best way to use the toolkit. The authors
are experts that have both developed the technology and
used it to solve problems, so they have many valuable
insights to relate to the readers.

" Table of Contents
" Index
" Examples
Practical Programming in Tcl and Tk, Fourth Edition
By Brent B. Welch, Ken Jones, Jeffrey Hobbs

Publisher : Prentice Hall PTR
Pub Date : June 10, 2003

ISBN : 0-13-038560-3
Pages : 960

 Copyright
 List of Examples
 List of Tables
 Preface
 Why Tcl?

 Tcl and Tk Versions

 Extending Tcl and Tk

 Tcl on the World Wide Web

 Ftp Archives

 Newsgroups

 Who Should Read This Book

 How to Read This Book

 On-line Examples

 Typographic Conventions

 Hot Tips

 Book Organization

http://safariexamples.informit.com/0130385603
http://www.informit.com/safari/author_bio.asp@ISBN=0130385603
http://www.informit.com/safari/author_bio.asp@ISBN=0130385603
http://www.informit.com/safari/author_bio.asp@ISBN=0130385603

 What's New in the Fourth Edition

 Other Tcl Books

 First Edition Thanks

 Second Edition Thanks

 Third Edition Thanks

 Fourth Edition Thanks

 Contact the Author

 Part I. Tcl Basics
 Chapter 1. Tcl Fundamentals

 Tcl Commands

 Hello, World!

 Variables

 Command Substitution

 Math Expressions

 Backslash Substitution

 Grouping with Braces and Double Quotes

 Procedures

 A Factorial Example

 More about Variables

 More about Math Expressions

 Comments

 Substitution and Grouping Summary

 Fine Points

 Reference

 Chapter 2. Getting Started

 The source Command

 UNIX Tcl Scripts

 Windows Start Menu

 Macintosh OS 8/9 and ResEdit

 The console Command

 Command-Line Arguments

 Predefined Variables

 Chapter 3. The Guestbook CGI Application

 A Quick Introduction to HTML

 CGI for Dynamic Pages

 The guestbook.cgi Script

 Defining Forms and Processing Form Data

 Handling Errors in CGI Scripts

 Next Steps

 Chapter 4. String Processing in Tcl

 The string Command

 The append Command

 The format Command

 The scan Command

 The binary Command

 Related Chapters

 Chapter 5. Tcl Lists

 Tcl Lists

 Constructing Lists

 Getting List Elements: llength, lindex, and lrange
 Modifying Lists: linsert and lreplace
 Searching Lists: lsearch
 Sorting Lists: lsort
 The split Command

 The join Command

 Related Chapters

 Chapter 6. Control Structure Commands

 If Then Else
 Switch
 While
 Foreach
 For
 Break and Continue
 Catch
 Error
 Return

 Chapter 7. Procedures and Scope

 The proc Command

 Changing Command Names with rename
 Scope

 The global Command

 Call by Name Using upvar
 Variable Aliases with upvar

 Chapter 8. Tcl Arrays

 Array Syntax

 The array Command

 Building Data Structures with Arrays

 Chapter 9. Working with Files and Programs

 Running Programs with exec
 The file Command

 Cross-Platform File Naming

 Manipulating Files and Directories

 File Attributes

 Input/Output Command Summary

 Opening Files for I/O

 Reading and Writing

 The Current Directory ÿ cd and pwd
 Matching File Names with glob
 The exit and pid Commands

 Environment Variables

 The registry Command

 Part II. Advanced Tcl
 Chapter 10. Quoting Issues and Eval

 Constructing Code with the list Command

 Exploiting the concat inside eval
 The uplevel Command

 The subst Command

 Chapter 11. Regular Expressions

 When to Use Regular Expressions

 Regular Expression Syntax

 Advanced Regular Expressions

 Syntax Summary

 The regexp Command

 The regsub Command

 Transforming Data to Program with regsub
 Other Commands That Use Regular Expressions

 Chapter 12. Script Libraries and Packages

 Locating Packages: The auto_path Variable

 Using Packages

 Summary of Package Loading

 The package Command

 Libraries Based on the tclIndex File

 The unknown Command

 Interactive Conveniences

 Tcl Shell Library Environment

 Coding Style

 Chapter 13. Reflection and Debugging

 The clock Command

 The info Command

 Cross-Platform Support

 Tracing Variables and Commands

 Interactive Command History

 Debugging

 Tcl Dev Kit

 Other Tools

 Performance Tuning

 Chapter 14. Namespaces

 Using Namespaces

 Namespace Variables

 Command Lookup

 Nested Namespaces

 Importing and Exporting Procedures

 Callbacks and Namespaces

 Introspection

 The namespace Command

 Converting Existing Packages to use Namespaces

 [incr Tcl] Object System

 xotcl Object System

 Notes

 Chapter 15. Internationalization

 Character Sets and Encodings

 Message Catalogs

 Chapter 16. Event-Driven Programming

 The Tcl Event Loop

 The after Command

 The fileevent Command

 The vwait Command

 The fconfigure Command

 Chapter 17. Socket Programming

 Networking Extensions for Tcl

 Client Sockets

 Server Sockets

 The Echo Service

 Fetching a URL with HTTP

 The http Package

 Basic Authentication

 Chapter 18. TclHttpd Web Server

 Integrating TclHttpd with Your Application

 Domain Handlers

 Application Direct URLs

 Document Types

 HTML + Tcl Templates

 Form Handlers

 Programming Reference

 Standard Application Direct URLs

 The TclHttpd Distribution

 Server Configuration

 Chapter 19. Multiple Interpreters and Safe-Tcl

 The interp Command

 Creating Interpreters

 Safe Interpreters

 Command Aliases

 Hidden Commands

 Substitutions

 I/O from Safe Interpreters

 The Safe Base

 Security Policies

 Chapter 20. Safe-Tk and the Browser Plugin

 Tk in Child Interpreters

 The Browser Plugin

 Security Policies and Browser Plugin
 Configuring Security Policies

 Chapter 21. Multi-Threaded Tcl Scripts

 What are Threads?

 Thread Support in Tcl

 Getting Started with the Thread Extension

 Sending Messages to Threads

 Preserving and Releasing Threads

 Error Handling

 Shared Resources

 Managing I/O Channels

 Shared Variables

 Mutexes and Condition Variables

 Thread Pools

 The Thread Package Commands

 Chapter 22. Tclkit and Starkits

 Getting Started with Tclkit

 Virtual File Systems

 Using sdx to Bundle Applications

 Exploring the Virtual File System in a Starkit

 Creating tclhttpd.kit
 Creating a Shared Starkit

 Metakit

 More Ideas

 Part III. Tk Basics
 Chapter 23. Tk Fundamentals

 Hello, World! in Tk

 Naming Tk Widgets

 Configuring Tk Widgets

 Tk Widget Attributes and the Resource Database

 Summary of the Tk Commands

 Other Widget Sets

 Chapter 24. Tk by Example

 ExecLog

 The Example Browser

 A Tcl Shell

 Chapter 25. The Pack Geometry Manager

 Packing toward a Side

 Horizontal and Vertical Stacking

 The Cavity Model

 Packing Space and Display Space

 Resizing and -expand
 Anchoring

 Packing Order

 Choosing the Parent for Packing

 Unpacking a Widget

 Packer Summary

 Window Stacking Order

 Chapter 26. The Grid Geometry Manager

 A Basic Grid

 Spanning Rows and Columns

 Row and Column Constraints

 The grid Command

 Chapter 27. The Place Geometry Manager

 place Basics

 The Pane Manager

 The place Command

 Chapter 28. The Panedwindow Widget

 Using the Panedwindow

 Programming Panedwindow Widgets

 Panedwindow Attributes

 Chapter 29. Binding Commands to Events

 The bind Command

 The bindtags Command

 Event Syntax

 Modifiers

 Event Sequences

 Virtual Events

 Generating Events

 Event Summary

 Part IV. Tk Widgets
 Chapter 30. Buttons and Menus

 Button Commands and Scope Issues

 Buttons Associated with Tcl Variables

 Button Attributes

 Button Operations

 Menus and Menubuttons

 Menu Bindings and Events

 Manipulating Menus and Menu Entries

 Menu Attributes

 A Menu by Name Package

 Chapter 31. The Resource Database

 An Introduction to Resources

 Loading Option Database Files

 Adding Individual Database Entries

 Accessing the Database

 User-Defined Buttons

 User-Defined Menus

 Chapter 32. Simple Tk Widgets

 Frames, Labelframes, and Toplevel Windows

 The Label Widget

 The Message Widget

 The Scale Widget

 The bell Command

 Chapter 33. Scrollbars

 Using Scrollbars

 The Scrollbar Protocol

 The Scrollbar Widget

 Chapter 34. The Entry and Spinbox Widgets

 Using Entry Widgets

 Using Spinbox Widgets

 Entry and Spinbox Bindings

 Entry and Spinbox Attributes

 Programming Entry and Spinbox Widgets

 Chapter 35. The Listbox Widget

 Using Listboxes

 The Listbox Widget

 Listbox Bindings and Events

 Listbox Attributes

 Chapter 36. The Text Widget

 Text Indices

 Text Marks

 Text Tags

 The Selection

 Tag Bindings

 Searching Text

 Embedded Widgets

 Embedded Images

 Looking inside the Text Widget

 The Undo Mechanism

 Text Bindings and Events

 Text Operations

 Text Attributes

 Chapter 37. The Canvas Widget

 Canvas Coordinates

 Hello, World!

 The Min Max Scale Example

 Canvas Objects

 Canvas Operations

 Generating Postscript

 Canvas Attributes

 Hints

 Part V. Tk Details
 Chapter 38. Selections and the Clipboard>

 The Selection Model

 The selection Command

 The clipboard Command

 Selection Handlers

 Chapter 39. Focus, Grabs, and Dialogs

 Standard Dialogs

 Custom Dialogs

 Animation with the update Command

 Chapter 40. Tk Widget Attributes

 Configuring Attributes

 Size

 Borders and Relief

 The Focus Highlight

 Padding and Anchors

 Chapter 41. Color, Images, and Cursors

 Colors

 Colormaps and Visuals

 Bitmaps and Images

 The Text Insert Cursor

 The Mouse Cursor

 Chapter 42. Fonts and Text Attributes

 Naming a Font

 X Font Names

 Font Metrics

 The font Command

 Text Attributes

 Gridding, Resizing, and Geometry

 A Font Selection Application

 Chapter 43. Send

 The send Command

 The Sender Script

 Communicating Processes

 Remote eval through Sockets

 Chapter 44. Window Managers and Window Information

 The wm Command

 The winfo Command

 The tk Command

 Chapter 45. Managing User Preferences

 App-Defaults Files

 Defining Preferences

 The Preferences User Interface

 Managing the Preferences File

 Tracing Changes to Preference Variables

 Improving the Package

 Chapter 46. A User Interface to Bindings

 A Pair of Listboxes Working Together

 The Editing Interface

 Saving and Loading Bindings

 Part VI. C Programming
 Chapter 47. C Programming and Tcl

 Basic Concepts

 Creating a Loadable Package

 A C Command Procedure

 The blob Command Example

 CONST in the Tcl 8.4 APIs

 Strings and Internationalization

 Tcl_Main and Tcl_AppInit
 The Event Loop

 Invoking Scripts from C

 Chapter 48. Compiling Tcl and Extensions

 Standard Directory Structure

 Building Tcl from Source

 Using Stub Libraries

 Using autoconf
 The Sample Extension

 Chapter 49. Writing a Tk Widget in C

 Initializing the Extension

 The Widget Data Structure

 The Widget Class Command

 The Widget Instance Command

 Configuring and Reconfiguring Attributes

 Specifying Widget Attributes

 Displaying the Clock

 The Window Event Procedure

 Final Cleanup

 Chapter 50. C Library Overview

 An Overview of the Tcl C Library

 An Overview of the Tk C Library

 Part VII. Changes
 Chapter 51. Tcl 7.4/Tk 4.0

 wish

 Obsolete Features

 The cget Operation

 Input Focus Highlight

 Bindings

 Scrollbar Interface

 pack info
 Focus

 The send Command

 Internal Button Padding

 Radiobutton Value

 Entry Widget

 Menus

 Listboxes

 No geometry Attribute

 Text Widget

 Color Attributes

 Color Allocation and tk colormodel
 Canvas scrollincrement
 The Selection

 The bell Command

 Chapter 52. Tcl 7.5/Tk 4.1

 Cross-Platform Scripts

 The clock Command

 The load Command

 The package Command

 Multiple foreach loop variables

 Event Loop Moves from Tk to Tcl

 Network Sockets

 Multiple Interpreters and Safe-Tcl

 The grid Geometry Manager

 The Text Widget

 The Entry Widget

 Chapter 53. Tcl 7.6/Tk 4.2

 More file Operations

 Virtual Events

 Standard Dialogs

 New grid Geometry Manager

 Macintosh unsupported1 Command

 Chapter 54. Tcl/Tk 8.0

 The Tcl Compiler

 Namespaces

 Safe-Tcl

 New lsort
 tcl_precision Variable

 Year 2000 Convention

 Http Package

 Serial Line I/O

 Platform-Independent Fonts

 The tk scaling Command

 Application Embedding

 Native Menus and Menubars

 CDE Border Width

 Native Buttons and Scrollbars

 Images in Text Widgets

 No Errors from destroy
 grid rowconfigure
 The Patch Releases

 Chapter 55. Tcl/Tk 8.1

 Unicode and Internationalization

 Thread Safety

 Advanced Regular Expressions

 New String Commands

 The DDE Extension

 Miscellaneous

 Chapter 56. Tcl/Tk 8.2

 The Trf Patch

 Faster String Operations

 Empty Array Names

 Browser Plugin Compatibility

 Finer Control of Windows Serial Port Monitoring

 Regular Expression Expanded Syntax Option

 Chapter 57. Tcl/Tk 8.3

 New File Manipulation Commands and Options

 New glob Options

 Regular Expression Command Enhancements
 Direct Return of scan Matches

 Removing Duplicate List Elements with lsort
 Deleting Elements from an Array

 Enhanced clock Features

 Support for Delayed Package Loading in pkg_mkIndex
 The Img Patch

 The Dash Patch

 Other New Tk Features

 The Patch Releases

 Chapter 58. Tcl/Tk 8.4

 64-Bit Support

 Additional Filesystem Features and Commands

 New and Enhanced List Commands

 Array Searching and Statistics

 Enhanced Support for Serial Communications

 New String Comparison Operators

 Command Tracing

 Additional Introspection Commands

 Other Tcl Changes

 New Tk Widgets

 Text Widget Undo Mechanism and Other Enhancements

 New pack and grid Features

 Displaying Both Text and an Image in a Widget

 New Button Relief Attributes

 Controlling the State of Entries and Listboxes

 More Window Manager Interaction

 Other Tk Changes

 Chapter 59. About The CD-ROM

 Technical Support

 Index

Copyright
Library of Congress Cataloging-in-Publication available

Editorial/production supervision: Kathleen M. Caren

Executive Editor: Mark Taub

Editorial Assistant: Noreen Regina

Marketing Manager: Kate Hargett

Manufacturing Manager: Maura Zaldivar

Cover Design Director: Jerry Votta

© 2003 Pearson Education Inc.

Publishing as Prentice Hall PTR

Upper Saddle River, NJ 07458

Prentice Hall books are widely used by corporations and government agencies for
training, marketing, and resale.

For information regarding corporate and government bulk discounts, contact:

Corporate and Government Sales: (800) 382-3419 or
corpsales@pearsontechgroup.com

All products mentioned herein are trademarks or registered trademarks of their
respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson EducationÿJapan
Pearson Education Malaysia, Pte. Ltd.

mailto:corpsales@pearsontechgroup.com

Dedication

to

Jody, Christopher, Daniel, and Michael

ÿBrent

Dean, for his support and patience

ÿKen

List of Examples
1. Tcl Fundamentals

1.1 The "Hello, World!" example

1.2 Tcl variables

1.3 Command substitution

1.4 Simple arithmetic

1.5 Nested commands

1.6 Built-in math functions

1.7 Grouping expressions with braces

1.8 Quoting special characters with backslash

1.9 Continuing long lines with backslashes

1.10 Grouping with double quotes vs. braces

1.11 Embedded command and variable substitution

1.12 Defining a procedure

1.13 A while loop to compute factorial

1.14 A recursive definition of factorial

1.15 Using set to return a variable value

1.16 Embedded variable references

1.17 Using info to determine if a variable exists

1.18 Controlling precision with tcl_precision

2. Getting Started

2.1 A standalone Tcl script on UNIX

2.2 A standalone Tk script on UNIX

2.3 Using /bin/sh to run a Tcl script

2.4 The EchoArgs script

3. The Guestbook CGI Application

3.1 A simple CGI script

3.2 Output of Example 3-1

3.3 The guestbook.cgi script, version 1

3.4 The Cgi_Header procedure

3.5 The guestbook.cgi script, version 2

3.6 Initial output of guestbook.cgi with no data

3.7 Output of guestbook.cgi with guestbook data

3.8 The newguest.html form

3.9 The newguest.cgi script

3.10 The newguest.cgi script with error handling

4. String Processing in Tcl

4.1 Comparing strings with string compare

4.2 Comparing strings with string equal

4.3 Comparing strings with eq

4.4 Mapping Microsoft World special characters to ASCII

5. Tcl Lists

5.1 Constructing a list with the list command

5.2 Using lappend to add elements to a list

5.3 Using lset to set an element of a list

5.4 Using concat to splice lists together

5.5 Double quotes compared to the concat and list commands

5.6 Modifying lists with lreplace

5.7 Deleting a list element by value

5.8 Sorting a list using a comparison function

5.9 Use split to turn input data into Tcl lists

5.10 Implementing join in Tcl

6. Control Structure Commands

6.1 A conditional if then else command

6.2 Chained conditional with elseif

6.3 Using switch for an exact match

6.4 Using switch with substitutions in the patterns

6.5 A switch with "fall through" cases

6.6 Comments in switch commands

6.7 A while loop to read standard input

6.8 Looping with foreach

6.9 Parsing command-line arguments

6.10 Using list with foreach

6.11 Multiple loop variables with foreach

6.12 Multiple value lists with foreach

6.13 A for loop

6.14 A standard catch phrase

6.15 A longer catch phrase

6.16 There are several possible return values from catch

6.17 Raising an error

6.18 Preserving errorInfo when calling error

6.19 Raising an error with return

7. Procedures and Scope

7.1 Default parameter values

7.2 Variable number of arguments

7.3 Variable scope and Tcl procedures

7.4 A random number generator

7.5 Print variable by name

7.6 Improved incr procedure

8. Tcl Arrays

8.1 Using arrays

8.2 Referencing an array indirectly

8.3 Referencing an array indirectly using upvar

8.4 ArrayInvert inverts an array

8.5 Using arrays for records, version 1

8.6 Using arrays for records, version 2

8.7 Using arrays for records, version 3

8.8 Using a list to implement a stack

8.9 Using an array to implement a stack

8.10 A list of arrays

8.11 A list of arrays

8.12 A simple in-memory database

9. Working with Files and Programs

9.1 Using exec on a process pipeline

9.2 Comparing file modify times

9.3 Determining whether pathnames reference the same file

9.4 Opening a file for writing

9.5 A more careful use of open

9.6 Opening a process pipeline

9.7 Prompting for input

9.8 A read loop using gets

9.9 A read loop using read and split

9.10 Copy a file and translate to native format

9.11 Finding a file by name

9.12 Printing environment variable values

10. Quoting Issues and Eval

10.1 Using list to construct commands

10.2 Generating procedures dynamically with a template

10.3 Using eval with $args

10.4 lassign: list assignment with foreach

10.5 The File_Process procedure iterates over lines in a file

11. Regular Expressions

11.1 Expanded regular expressions allow comments

11.2 Using regular expressions to parse a string

11.3 A pattern to match URLs

11.4 An advanced regular expression to match URLs

11.5 The Url_Decode procedure

11.6 The Cgi_List and Cgi_Query procedures

11.7 Cgi_Parse and Cgi_Value store query data in the cgi array

11.8 Html_DecodeEntity

11.9 Html_Parse

12. Script Libraries and Packages

12.1 Maintaining a tclIndex file

12.2 Loading a tclIndex file

13. Reflection and Debugging

13.1 Calculating clicks per second

13.2 Printing a procedure definition

13.3 Mapping form data onto procedure arguments

13.4 Finding built-in commands

13.5 Getting a trace of the Tcl call stack

13.6 A procedure to read and evaluate commands

13.7 Using info script to find related files

13.8 Tracing variables

13.9 Creating array elements with array traces

13.10 Interactive history usage

13.11 Implementing special history syntax

13.12 A Debug procedure

13.13 Time Stamps in log records

14. Namespaces

14.1 Random number generator using namespaces

14.2 Random number generator using qualified names

14.3 Nested namespaces

14.4 The code procedure to wrap callbacks

14.5 Listing commands defined by a namespace

15. Internationalization

15.1 MIME character sets and file encodings

15.2 Using scripts in nonstandard encodings

15.3 Three sample message catalog files

15.4 Using msgcat::mcunknown to share message catalogs

16. Event-Driven Programming

16.1 A read event file handler

16.2 Using vwait to activate the event loop

16.3 A read event file handler for a nonblocking channel

17. Socket Programming

17.1 Opening a client socket with a timeout

17.2 Opening a server socket

17.3 The echo service

17.4 A client of the echo service

17.5 Opening a connection to an HTTP server

17.6 Opening a connection through a HTTP proxy

17.7 Http_Head validates a URL

17.8 Using Http_Head

17.9 Http_Get fetches the contents of a URL"
endterm="ch17list09.title"/>

17.10 HttpGetText reads text URLs

17.11 HttpCopyDone is used with fcopy

17.12 Downloading files with http::geturl

17.13 Basic Authentication using http::geturl

18. TclHttpd Web Server

18.1 The hello.tcl file implements /hello/world

18.2 A simple URL domain

18.3 Application Direct URLs

18.4 Alternate types for Application Direct URLs

18.5 A sample document type handler

18.6 A one-level site structure

18.7 A two-level site structure

18.8 A HTML + Tcl template file

18.9 SitePage template procedure, version 1

18.10 SiteMenu and SiteFooter template procedures

18.11 The SiteLink procedure

18.12 Mail form results with /mail/forminfo

18.13 Mail message sent by /mail/forminfo

18.14 Processing mail sent by /mail/forminfo

18.15 Processing mail sent by /mail/forminfo, Safe-Tcl version

18.16 A self-checking form procedure

18.17 A page with a self-checking form

18.18 Generating a table with html::foreach

18.19 The /debug/source Application Direct URL implementation

19. Multiple Interpreters and Safe-Tcl

19.1 Creating and deleting an interpreter

19.2 Creating a hierarchy of interpreters

19.3 A command alias for exit

19.4 Querying aliases

19.5 Dumping aliases as Tcl commands

19.6 Substitutions and hidden commands

19.7 Opening a file for an unsafe interpreter

19.8 The Safesock security policy

19.9 The Tempfile security policy

19.10 Restricted puts using hidden commands

19.11 A safe after command

20. Safe-Tk and the Browser Plugin

20.1 Using EMBED to insert a Tclet

21. Multi-Threaded Tcl Scripts

21.1 Creating a separate thread to perform a lengthy operation

21.2 Initializing a thread before entering its event loop

21.3 Creating several threads in an application

21.4 Using joinable threads to detect thread termination

21.5 Examples of synchronous message sending

21.6 Using a return variable with synchronous message sending

21.7 Executing commands after thread::wait returns

21.8 Creating a custom thread error handler

21.9 A basic implementation of a logging thread

21.10 Deferring socket transfer until after the connection callback

21.11 Working around Tcl's socket transfer bug

21.12 A multi-threaded echo server

21.13 Using a mutex to protect a shared resource

21.14 Standard condition variable use for a signalling thread

21.15 Standard condition variable use for a waiting thread

22. Tclkit and Starkits

22.1 Accessing a Zip file through a VFS

22.2 The output of sdx lsk hello.kit

22.3 The main program of a Starkit

22.4 The pkgIndex.tcl in a Starkit

22.5 A Starkit that examines its Virtual File System

22.6 Creating a simple Starkit

22.7 The contents of the tclhttpd.vfs directory, version 1

22.8 The main program for the TclHttpd Starkit, version 1

22.9 Contents of the tclhttpd.vfs directory, version 2

22.10 The main program for the TclHttpd Starkit, version 2

22.11 The Standard Tcl Library Starkit main.tcl file

22.12 The main program for TclHttpd Starkit, version 3

22.13 Examining the views in a Metakit database

22.14 Examining data in a Metakit view

22.15 Selecting data with mk::select

22.16 Creating a new view

22.17 Adding data to a view

22.18 Storing data in a Starkit

23. Tk Fundamentals

23.1 "Hello, World!" Tk program

23.2 Looking at all widget attributes

24. Tk by Example

24.1 Logging the output of a program run with exec

24.2 A platform-specific cancel event

24.3 A browser for the code examples in the book

24.4 A Tcl shell in a text widget

24.5 Macintosh look and feel

24.6 Windows look and feel

24.7 UNIX look and feel

25. The Pack Geometry Manager

25.1 Two frames packed inside the main frame

25.2 Turning off geometry propagation

25.3 A horizontal stack inside a vertical stack

25.4 Even more nesting of horizontal and vertical stacks

25.5 Mixing bottom and right packing sides

25.6 Filling the display into extra packing space

25.7 Using horizontal fill in a menu bar

25.8 The effects of internal padding (-ipady)

25.9 Button padding vs. packer padding

25.10 The look of a default button

25.11 Resizing without the expand option

25.12 Resizing with expand turned on

25.13 More than one expanding widget

25.14 Setup for anchor experiments

25.15 The effects of noncenter anchors

25.16 Animating the packing anchors

25.17 Controlling the packing order

25.18 Packing into other relatives

26. The Grid Geometry Manager

26.1 A basic grid

26.2 A grid with sticky settings

26.3 A grid with row and column specifications

26.4 A grid with external padding

26.5 A grid with internal padding

26.6 All combinations of -sticky settings

26.7 Explicit row and column span

26.8 Grid syntax row and column span

26.9 Row padding compared to cell padding

26.10 Gridding a text widget and scrollbar

26.11 Uniform column width

27. The Place Geometry Manager

27.1 Centering a window with place

27.2 Covering a window with place

27.3 Combining relative and absolute sizes

27.4 Positioning a window above a sibling with place

27.5 Pane_Create sets up vertical or horizontal panes

27.6 PaneDrag adjusts the percentage

27.7 PaneGeometry updates the layout

28. The Panedwindow Widget

28.1 A panedwindow with complex managed widgets

29. Binding Commands to Events

29.1 Bindings on different binding tags

29.2 Output from the UNIX xmodmap program

29.3 Emacs-like binding convention for Meta and Escape

29.4 Virtual events for cut, copy, and paste

30. Buttons and Menus

30.1 A troublesome button command

30.2 Fixing the troublesome situation

30.3 A button associated with a Tcl procedure

30.4 Radiobuttons and checkbuttons

30.5 A command on a radiobutton or checkbutton

30.6 A menu sampler

30.7 A menu bar in Tk 8.0

30.8 Using the <<MenuSelect>> virtual event

30.9 A simple menu by name package

30.10 Using the Tk 8.0 menu bar facility

30.11 MenuGet maps from name to menu

30.12 Adding menu entries

30.13 A wrapper for cascade entries

30.14 Using the menu by name package

30.15 Keeping the accelerator display up to date

31. The Resource Database

31.1 Reading an option database file

31.2 A file containing resource specifications

31.3 Using resources to specify user-defined buttons

31.4 Resource_ButtonFrame defines buttons based on resources

31.5 Using Resource_ButtonFrame

31.6 Specifying menu entries via resources

31.7 Defining menus from resource specifications

31.8 Resource_GetFamily merges user and application resources

32. Simple Tk Widgets

32.1 Labelframe example

32.2 Using the labelAnchor option to position a labelframe's anchor

32.3 Associating an existing label widget with a labelframe

32.4 Macintosh window styles

32.5 A label that displays different strings

32.6 The message widget formats long lines of text

32.7 Controlling the text layout in a message widget

32.8 A scale widget

33. Scrollbars

33.1 A text widget and two scrollbars

33.2 Scroll_Set manages optional scrollbars

33.3 Listbox with optional scrollbars

34. The Entry and Spinbox Widgets

34.1 Associating entry widgets with variables and commands

34.2 Restricting entry text to integer values

34.3 Reestablishing validation using an idle task

34.4 A simple spinbox with calculated values

34.5 Formatting numeric values in a spinbox

34.6 Enumerating spinbox values and wrapping

34.7 Using the spinbox readonly state

35. The Listbox Widget

35.1 Using -listvariable to link a listbox and variable

35.2 Choosing items from a listbox

35.3 Using the <<ListboxSelect>> virtual event

36. The Text Widget

36.1 Tag configurations for basic character styles

36.2 Line spacing and justification in the text widget

36.3 An active text button

36.4 Delayed creation of embedded widgets

36.5 Using embedded images for a bulleted list

36.6 Finding the current range of a text tag

36.7 Dumping the text widget

36.8 Dumping the text widget with a command callback

37. The Canvas Widget

37.1 A large scrolling canvas

37.2 The canvas "Hello, World!" example

37.3 A min max scale canvas example

37.4 Moving the markers for the min max scale

37.5 Canvas arc items

37.6 Canvas bitmap items

37.7 Canvas image items

37.8 A canvas stroke drawing example

37.9 Canvas oval items

37.10 Canvas polygon items

37.11 Dragging out a box

37.12 Simple edit bindings for canvas text items

37.13 Using a canvas to scroll a set of widgets

37.14 Generating Postscript from a canvas

38. Selections and the Clipboard

38.1 Paste the PRIMARY or CLIPBOARD selection

38.2 Separate paste actions

38.3 Bindings for canvas selection

38.4 Selecting objects

38.5 A canvas selection handler

38.6 The copy and cut operations

38.7 Pasting onto the canvas

39. Focus, Grabs, and Dialogs

39.1 Procedures to help build dialogs

39.2 A simple dialog

39.3 A feedback procedure

40. Tk Widget Attributes

40.1 Equal-sized labels

40.2 3D relief sampler

40.3 Padding provided by labels and buttons

40.4 Anchoring text in a label or button

40.5 Borders and padding

41. Color, Images, and Cursors

41.1 Resources for reverse video

41.2 Computing a darker color

41.3 Specifying an image for a widget

41.4 Specifying a bitmap for a widget

41.5 The built-in bitmaps

41.6 The Tk cursors

42. Fonts and Text Attributes

42.1 The FontWidget procedure handles missing fonts

42.2 Font metrics

42.3 A gridded, resizable listbox

42.4 Font selection dialog

43. Send

43.1 The sender application

43.2 Hooking the browser to an eval server

43.3 Making the shell into an eval server

43.4 Remote eval using sockets

43.5 Reading commands from a socket

43.6 The client side of remote evaluation

44. Window Managers and Window Information

44.1 Gridded geometry for a canvas

44.2 Telling other applications what your name is

45. Managing User Preferences

45.1 Preferences initialization

45.2 Adding preference items

45.3 Setting preference variables

45.4 Using the preferences package

45.5 A user interface to the preference items

45.6 Interface objects for different preference types

45.7 Displaying the help text for an item

45.8 Saving preferences settings to a file

45.9 Read settings from the preferences file

45.10 Tracing a Tcl variable in a preference item

46. A User Interface to Bindings

46.1 A user interface to widget bindings

46.2 Bind_Display presents the bindings for a widget or class

46.3 Related listboxes are configured to select items together

46.4 Controlling a pair of listboxes with one scrollbar

46.5 Drag-scrolling a pair of listboxes together

46.6 An interface to define bindings

46.7 Defining and saving bindings

47. C Programming and Tcl

47.1 The initialization procedure for a loadable package

47.2 The RandomCmd C command procedure

47.3 The RandomObjCmd C command procedure

47.4 The Tcl_Obj structure

47.5 The Plus1ObjCmd procedure

47.6 The Blob and BlobState data structures

47.7 The Blob_Init and BlobCleanup procedures

47.8 The BlobCmd command procedure

47.9 BlobCreate and BlobDelete

47.10 The BlobNames procedure

47.11 \The BlobN and BlobData procedures

47.12 The BlobCommand and BlobPoke procedures

47.13 A canonical Tcl main program and Tcl_AppInit

47.14 A canonical Tk main program and Tk_AppInit

47.15 Calling C command procedure directly with Tcl_Invoke

48. Compiling Tcl and Extensions

Writing a Tk Widget in C

49.1 The Clock_Init procedure

49.2 The Clock widget data structure

49.3 The ClockCmd command procedure

49.4 The ClockObjCmd command procedure

49.5 The ClockInstanceCmd command procedure

49.6 The ClockInstanceObjCmd command procedure

49.7 ClockConfigure allocates resources for the widget

49.8 ClockObjConfigure allocates resources for the widget

49.9 The Tk_ConfigSpec typedef

49.10 Configuration specs for the clock widget

49.11 The Tk_OptionSpec typedef

49.12 The Tk_OptionSpec structure for the clock widget

49.13 ComputeGeometry computes the widget's size

49.14 The ClockDisplay procedure

49.15 The ClockEventProc handles window events

49.16 The ClockDestroy cleanup procedure

49.17 The ClockObjDelete command

500C Library Overview

List of Tables
1. Tcl Fundamentals

1-1 Backslash sequences

1-2 Arithmetic operators from highest to lowest precedence

1-3 Built-in math functions

1-4 Built-in Tcl commands

2. Getting Started

2-1 Wish command line options

2-2 Variables defined by tclsh and wish

3. The Guestbook CGI Application

3-1 HTML tags used in the examples

4. String Processing in Tcl

4-1 The string command

4-2 Matching characters used with string match

4-3 Character class names

4-4 Format conversions

4-5 Format flags

4-6 Binary conversion types

5. Tcl Lists

5-1 List-related commands

5-2 Options to the lsearch command

8. Tcl Arrays

8-1 The array command

9. Working with Files and Programs

9-1 Summary of the exec syntax for I/O redirection

9-2 The file command options

9-3 Array elements defined by file stat

9-4 Platform-specific file attributes

9-5 Tcl commands used for file access

9-6 Summary of the open access arguments

9-7 Summary of POSIX flags for the access argument

9-8 glob command options

9-9 The registry command

9-10 The registry data types

11. Regular Expressions

11-1 Additional advanced regular expression syntax

11-2 Backslash escapes in regular expressions

11-3 Character classes

11-4 Embedded option characters used with the (?x) syntax

11-5 Options to the regexp command

11-6 Sample regular expressions

12. Script Libraries and Packages

12-1 Options to the pkg_mkIndex command

12-2 The package command

13. Reflection and Debugging

13-1 clock format keywords

13-2 The clock command

13-3 The info command

13-4 The history command

13-5 Special history syntax

14. Namespaces

14-1 The namespace command

15. Internationalization

15-1 The encoding command

15-2 The msgcat package

16. Event-Driven Programming

16-1 The after command

16-2 The fileevent command

16-3 I/O channel properties controlled by fconfigure

16-4 Serial line properties controlled by fconfigure

16-5 End of line translation modes

17. Socket Programming

17-1 Options to the http::geturl command

17-2 The http support procedures

17-3 Elements of the http::geturl state array

18. TclHttpd Web Server

18-1 Httpd support procedures

18-2 Url support procedures

18-3 Doc procedures for configuration

18-4 Doc procedures for generating responses

18-5 Doc procedures that support template processing

18-6 Elements of the page array

18-7 Elements of the env array

18-8 Status Application Direct URLs

18-9 Debug Application Direct URLs

18-10 Application Direct URLS that email form results

18-11 Basic TclHttpd parameters

19. Multiple Interpreters and Safe-Tcl

19-1 The interp command

19-2 Commands hidden from safe interpreters

19-3 The safe base master interface

19-4 The safe base slave aliases

20. Safe-Tk and the Browser Plugin

20-1 Tk commands omitted from safe interpreters

20-2 Aliases defined by the browser package

20-3 The browser::getURL callbacks

21. Multi-Threaded Tcl Scripts

21-1 The commands of the thread namespace

21-2 Thread configuration options

21-3 The commands of the tsv namespace

21-4 The commands of the tpool namespace

21-5 Thread pool configuration options

22. Tclkit and Starkits

22-1 Return values of the starkit::startup procedure

23. Tk Fundamentals

23-1 Tk widget-creation commands

23-2 Tk widget-manipulation commands

23-3 Tk support procedures

25. The Pack Geometry Manager

25-1 The pack command

25-2 Packing options

26. The Grid Geometry Manager

26-1 The grid command

26-2 Grid widget options

27. The Place Geometry Manager

27-1 The place command

27-2 Placement options

28. The Panedwindow Widget

28-1 Panedwindow operations

28-2 Panedwindow attributes

28-3 Panedwindow managed widget options

29. Binding Commands to Events

29-1 Event types

29-2 Event modifiers

29-3 The event command

29-4 A summary of the event keywords

30. Buttons and Menus

30-1 Resource names of attributes for all button widgets

30-2 Button operations

30-3 Menu entry index keywords

30-4 Menu operations

30-5 Menu attribute resource names

30-6 Attributes for menu entries

32. Simple Tk Widgets

32-1 Attributes for frame, labelframe, and toplevel widgets

32-2 Label Attributes

32-3 Message Attributes

32-4 Bindings for scale widgets

32-5 Attributes for scale widgets

32-6 Operations on the scale widget

33. Scrollbars

33-1 Attributes for the scrollbar widget

33-2 Bindings for the scrollbar widget

33-3 Operations on the scrollbar widget

34. The Entry and Spinbox Widgets

34-1 Entry and spinbox validation substitutions

34-2 Entry and spinbox bindings

34-3 Entry and spinbox attribute resource names

34-4 Entry and spinbox indices

34-5 Entry and spinbox operations

35. The Listbox Widget

35-1 Listbox indices

35-2 Listbox operations

35-3 Listbox item configuration options

35-4 The values for the selectMode of a listbox

35-5 Bindings for browse selection mode

35-6 Bindings for single selection mode

35-7 Bindings for extended selection mode

35-8 Bindings for multiple selection mode

35-9 Listbox scroll bindings

35-10 Listbox attribute resource names

36. The Text Widget

36-1 Text indices

36-2 Index modifiers for text widgets

36-3 Attributes for text tags

36-4 Options to the search operation

36-5 Window and image alignment options

36-6 Options to the window create operation

36-7 Options to the image create operation

36-8 Bindings for the text widget

36-9 Operations for the text widget

36-10 Text attribute resource names

37. The Canvas Widget

37-1 Common canvas item attributes

37-2 Canvas dash pattern characters

37-3 Arc attributes

37-4 Bitmap attributes

37-5 Image attributes

37-6 Line attributes

37-7 Polygon attributes

37-8 Indices for canvas text items

37-9 Canvas operations that apply to text items

37-10 Text attributes

37-11 Window attributes

37-12 Operations on a canvas widget

37-13 Canvas postscript options

37-14 Canvas attribute resource names

38. Selections and the Clipboard

38-1 The selection command

38-2 The clipboard command

39. Focus, Grabs, and Dialogs

39-1 Options to tk_messageBox

39-2 Options to the standard file and directory dialogs

39-3 Options to tk_chooseColor

39-4 The focus command

39-5 The grab command

39-6 he tkwait command

40. Tk Widget Attributes

40-1 Size attribute resource names

40-2 Border and relief attribute resource names

40-3 Highlight attribute resource names

40-4 Layout attribute resource names

41. Color, Images, and Cursors

41-1 Color attribute resource names

41-2 Windows system colors

41-3 Macintosh system colors

41-4 Visual classes for displays

41-5 Summary of the image command

41-6 Bitmap image options

41-7 Photo image attributes

41-8 Photo image operations

41-9 Copy options for photo images

41-10 Read options for photo images

41-11 Write options for photo images

41-12 Cursor attribute resource names

42. Fonts and Text Attributes

42-1 Font attributes

42-2 X Font specification components

42-3 Layout attribute resource names

42-4 The font command

42-5 Selection attribute resource names

43. Send

43-1 Options to the send command

44. Window Managers and Window Information

44-1 Size, placement and decoration window manager operations

44-2 Window manager commands for icons

44-3 Session-related window manager operations

44-4 Miscellaneous window manager operations

44-5 send command information

44-6 Window hierarchy information

44-7 Window location information

44-8 Window size information

44-9 Virtual root window information

44-10 Atom and window ID information

44-11 Colormap and visual class information

44-12 The tk command operations

47. C Programming and Tcl

47-1 Defines to control the meaning of CONST in the Tcl APIs

48. Compiling Tcl and Extensions

48-1 The Tcl source directory structure

48-2 The installation directory structure

48-3 Standard configure flags

48-4 TEA standard Makefile targets

49. Writing a Tk Widget in C

49-1 Configuration flags and corresponding C types

51. Tcl 7.4/Tk 4.0

51-1 Changes in color attribute names

55. Tcl/Tk 8.1

55-1 The testthread command

55-2 The dde command options

Preface
Tcl stands for Tool Command Language. Tcl is really two things: a scripting
language, and an interpreter for that language that is designed to be easy to embed
into your application. Tcl and its associated graphical user-interface toolkit, Tk, were
designed and crafted by Professor John Ousterhout of the University of California,
Berkeley. You can find these packages on the Internet and use them freely in your
application, even if it is commercial. The Tcl interpreter has been ported from UNIX
to DOS, PalmOS, VMS, Windows, OS/2, NT, and Macintosh environments. The Tk
toolkit has been ported from the X window system to Windows and Macintosh.

I first heard about Tcl in 1988 while I was Ousterhout's Ph.D. student at Berkeley.
We were designing a network operating system, Sprite. While the students hacked
on a new kernel, John wrote a new editor and terminal emulator. He used Tcl as the
command language for both tools so that users could define menus and otherwise
customize those programs. This was in the days of X10, and he had plans for an X
toolkit based on Tcl that would help programs cooperate with each other by
communicating with Tcl commands. To me, this cooperation among tools was the
essence of Tcl.

This early vision imagined that applications would be large bodies of compiled code
and a small amount of Tcl used for configuration and high-level commands. John's
editor, mx, and the terminal emulator, tx, followed this model. While this model
remains valid, it has also turned out to be possible to write entire applications in Tcl.
This is because the Tcl/Tk shell, wish, provides access to other programs, the file
system, network sockets, plus the ability to create a graphical user interface. For
better or worse, it is now common to find applications that contain thousands of
lines of Tcl script.

This book was written because, while I found it enjoyable and productive to use Tcl
and Tk, there were times when I was frustrated. In addition, working at Xerox
PARC, with many experts in languages and systems, I was compelled to understand
both the strengths and weaknesses of Tcl and Tk. Although many of my colleagues
adopted Tcl and Tk for their projects, they were also just as quick to point out its
flaws. In response, I have built up a set of programming techniques that exploit the
power of Tcl and Tk while avoiding troublesome areas. This book is meant as a
practical guide to help you get the most out of Tcl and Tk and avoid some of the
frustrations I experienced.

It has been about 14 years since I was introduced to Tcl, and about eight years
since the first edition of this book. During several of those years I worked under
John Ousterhout, first at Sun Microsystems and then at Scriptics Corporation. There
I remained mostly a Tcl programmer while others in our group have delved into the
C implementation of Tcl itself. I've built applications like HTML editors, email user
interfaces, Web servers, and the customer database we ran our business on. This
experience is reflected in this book. The bulk of the book is about Tcl scripting, and
the aspects of C programming to create Tcl extensions is given a lighter treatment. I
have been lucky to remain involved in the core Tcl development, and I hope I can
pass along the insights I have gained by working with Tcl.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Why Tcl?

As a scripting language, Tcl is similar to other UNIX shell languages such as the
Bourne Shell (sh), the C Shell (csh), the Korn Shell (ksh), and Perl. Shell programs
let you execute other programs. They provide enough programmability (variables,
control flow, and procedures) to let you build complex scripts that assemble existing
programs into a new tool tailored for your needs. Shells are wonderful for
automating routine chores.

It is the ability to easily add a Tcl interpreter to your application that sets it apart
from other shells. Tcl fills the role of an extension language that is used to configure
and customize applications. There is no need to invent a configuration file format or
a command language for your new application, or struggle to provide some sort of
user-programmability for your tool. Instead, by adding a Tcl interpreter, you
structure your application as a set of primitive operations that can be composed by
a script to best suit the needs of your users. It also allows other programs to have
programmatic control over your application, leading to suites of applications that
work well together.

The Tcl C library has clean interfaces and is simple to use. The library implements
the basic interpreter and a set of core scripting commands that implement variables,
flow control, and procedures (see page 22). There is also a broad set of APIs that
access operating system services to run other programs, access the file system, and
use network sockets. Tk adds commands to create graphical user interfaces. The Tcl
and Tk C APIs provide a "virtual machine" that is portable across UNIX, Windows,
and Macintosh environments.

The Tcl virtual machine is extensible because your application can define new Tcl
commands. These commands are associated with a C or C++ procedure that your
application provides. The result is applications that are split into a set of primitives
written in a compiled language and exported as Tcl commands. A Tcl script is used
to compose the primitives into the overall application. The script layer has access to
shell-like capability to run other programs, has access to the file system, and can
call directly into the compiled part of the application through the Tcl commands you
define. In addition, from the C programming level, you can call Tcl scripts, set and
query Tcl variables, and even trace the execution of the Tcl interpreter.

There are many Tcl extensions freely available on the Internet. Most extensions
include a C library that provides some new functionality, and a Tcl interface to the
library. Examples include database access, telephone control, MIDI controller
access, and expect, which adds Tcl commands to control interactive programs.

The most notable extension is Tk, a toolkit for graphical user interfaces. Tk defines
Tcl commands that let you create and manipulate user interface widgets. The script-
based approach to user interface programming has three benefits:

Development is fast because of the rapid turnaround; there is no waiting for
long compilations.

The Tcl commands provide a higher-level interface than most standard C
library user-interface toolkits. Simple user interfaces require just a handful of
commands to define them. At the same time, it is possible to refine the user
interface in order to get every detail just so. The fast turnaround aids the
refinement process.

The user interface can be factored out from the rest of your application. The
developer can concentrate on the implementation of the application core and
then fairly painlessly work up a user interface. The core set of Tk widgets is
often sufficient for all your user interface needs. However, it is also possible to
write custom Tk widgets in C, and again there are many contributed Tk
widgets available on the network.

There are other choices for extension languages that include Visual Basic, Scheme,
Elisp, Perl, Python, Ruby and Javascript. Your choice between them is partly a
matter of taste. Tcl has simple constructs and looks somewhat like C. It is easy to
add new Tcl primitives by writing C procedures. Tcl is very easy to learn, and I have
heard many great stories of users completing impressive projects in a short amount
of time (e.g., a few weeks), even though they never used Tcl before.

Java has exploded onto the computer scene since this book was first published. Java
is a great systems programming language that in the long run could displace C and
C++. This is fine for Tcl, which is designed to glue together building blocks written
in any system programming language. Tcl was designed to work with C, but has
been adapted to work with the Java Virtual Machine. Where I say "C or C++", you
can now say "C, C++, or Java," but the details are a bit different with Java. This
book does not describe the Tcl/Java interface, but you can find TclBlend on the CD-
ROM. TclBlend loads the Java Virtual Machine into your Tcl application and lets you
invoke Java methods. It also lets you implement Tcl commands in Java instead of C
or C++. Jacl is a Tcl interpreter written in Java. It has some limitations compared
with the native C-based Tcl interpreter, but Jacl is great if you cannot use the native
interpreter.

Javascript is a language from Netscape that is designed to script interactions with
Web pages. Javascript is important because of its use in HTML user interfaces.
However, Tcl provides a more general purpose scripting solution that can be used in
a wide variety of applications. The Tcl/Tk Web browser plugin provides a way to run
Tcl in your browser. It turns out to be more of a Java alternative than a JavaScript
alternative. The plugin lets you run Tcl applications inside your browser, while
JavaScript gives you fine grain control over the browser and HTML display. The
plugin is described in Chapter 20.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Tcl and Tk Versions

Tcl and Tk continue to evolve. See http://www.beedub.com/book/ for updates and
news about the latest Tcl releases. Tcl and Tk have had separate version numbers
for historical reasons, but they are released in pairs that work together. The original
edition of this book was based on Tcl 7.4 and Tk 4.0, and there were a few
references to features in Tk 3.6. This fourth edition has been updated to reflect new
features added through Tcl/Tk 8.4:

Tcl 7.5 and Tk 4.1 had their final release in May 1996. These releases feature
the port of Tk to the Windows and Macintosh environments. The Safe-Tcl
security mechanism was introduced to support safe execution of network
applets. There is also network socket support and a new Input/Output (I/O)
subsystem to support high-performance event-driven I/O.

Tcl 7.6 and Tk 4.2 had their final release in October 1996. These releases
include improvements in Safe-Tcl, and improvements to the grid geometry
manager introduced in Tk 4.1. Cross-platform support includes virtual events
(e.g., <<Copy>> as opposed to <Control-c>), standard dialogs, and more file
manipulation commands.

Tcl 7.7 and Tk 4.3 were internal releases used for the development of the
Tcl/Tk plug-in for the Netscape Navigator and Microsoft Internet Explorer Web
browsers. Their development actually proceeded in parallel to Tcl 7.6 and Tk
4.2. The plug-in has been released for a wide variety of platforms, including
Solaris/SPARC, Solaris/INTEL, SunOS, Linux, Digital UNIX, IRIX, HP/UX,
Windows 95, Windows NT, and the Macintosh. The browser plug-in supports Tcl
applets in Web pages and uses the sophisticated security mechanism of Safe-
Tcl to provide safety.

Tcl 8.0 features an on-the-fly compiler for Tcl that provides many-times faster
Tcl scripts. Tcl 8.0 supports strings with embedded null characters. The
compiler is transparent to Tcl scripts, but extension writers need to learn some
new C APIs to take advantage of its potential. The release history of 8.0
spread out over a couple of years as John Ousterhout moved from Sun
Microsystems to Scriptics Corporation. The widely used 8.0p2 release was
made in the fall of 1997, but the final patch release, 8.0.5, was made in the
spring of 1999.

Tk changed its version to match Tcl at 8.0. Tk 8.0 includes a new platform-
independent font mechanism, native menus and menu bars, and more native
widgets for better native look and feel on Windows and Macintosh.

Tcl/Tk 8.1 features full Unicode support, a new regular expression engine that
provides all the features found in Perl 5, and thread safety so that you can
embed Tcl into multi threaded applications. Tk does a heroic job of finding the

http://www.beedub.com/book/default.htm

correct font to display your Unicode characters, and it adds a message catalog
facility so that you can write internationalized applications. The release history
of Tcl/Tk 8.1 also straddled the Sun to Scriptics transition. The first alpha
release was made in the fall of 1997, and the final patch release, 8.1.1, was
made in May 1999.

Tcl/Tk 8.2 is primarily a bug fix and stabilization release. There are a few
minor additions to the Tcl C library APIs to support more extensions without
requiring core patches. Tcl/Tk 8.2 went rapidly into final release in the summer
of 1999.

Tcl/Tk 8.3 adds a broad collection of enhancements to Tcl and Tk. Tk started to
get some long deserved attention with adoption of the Dash and Image
patches from Jan Nijtmans. The 8.3.0 release was in February, 2000, and the
last patch release, 8.3.5, was made in October, 2002.

Tcl/Tk 8.4 features a focus on performance, the addition of the Virtual File
System Interface, and 3 new core Tk widgets: spinbox, labeledframe, and
panedwindow. This release was a long time in development. The first beta
release was in June, 2000, and the 8.4.2 release was made in March, 2003.

Extending Tcl and Tk

Tcl is designed so that interesting additions can be made as extensions that do not
require changes to the Tcl core. Many extensions are available today: You can find
them on the Web at:

http://www.tcl.tk/resource/

However, some changes require changes to Tcl/Tk itself. If you are interested in
contributing to the continued improvement of Tcl/Tk, you can help. There is a Tcl
Core Team (TCT) and a formal Tcl Improvement Process (TIP). You can browse the
current TIPs or contribute your own at:

http://www.tcl.tk/cgi-bin/tct/tip/

The Tcl and Tk source code is maintained on a SourceForge project:

http://www.sourceforge.net/projects/tcl

http://www.sourceforge.net/projects/tktoolkit

All bug reports and patch submissions are logged in a database. Source code
patches that are made according to the Tcl Engineering Manual guidelines have the
most chance of adoption. These guidelines describe code appearance (e.g.,
indentation), test suite requirements, and documentation requirements.

http://www.tcl.tk/resource/default.htm
http://www.tcl.tk/cgi-bin/tct/tip/default.htm
http://www.sourceforge.net/projects/tcl
http://www.sourceforge.net/projects/tktoolkit
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Tcl on the World Wide Web

Start with these World Wide Web pages about Tcl:

http://www.tcl.tk/

http://tcl.activestate.com/

http://www.purl.org/NET/Tcl-FAQ/

The Tcler's Wiki is a very active site that is updated by its users (i.e., by you) with
lots of great information about Tcl and its extensions:

http://wiki.tcl.tk/

The home page for this book contains errata for all editions. This is the only URL I
control personally, and I plan to keep it up-to-date indefinitely:

http://www.beedub.com/book/

The Prentice Hall Web site is:

http://www.prenhall.com/

http://www.tcl.tk/default.htm
http://tcl.activestate.com/default.htm
http://www.purl.org/NET/Tcl-FAQ/default.htm
http://wiki.tcl.tk/default.htm
http://www.beedub.com/book/default.htm
http://www.prenhall.com/default.htm

Ftp Archives

These are some of the FTP sites that maintain Tcl archives:

ftp://ftp.tcl.tk/pub/tcl

ftp://src.doc.ic.ac.uk/packages/tcl/

ftp://ftp.luth.se/pub/unix/tcl/

ftp://ftp.sunet.se/pub/lang/tcl

ftp://ftp.cs.columbia.edu/archives/tcl

ftp://ftp.funet.fi/pub/languages/tcl

You can use a World Wide Web browser like Mozilla, Netscape, Internet Explorer, or
Lynx to access these sites.

ftp://ftp.tcl.tk/pub/tcl
ftp://src.doc.ic.ac.uk/packages/tcl/default.htm
ftp://ftp.luth.se/pub/unix/tcl/default.htm
ftp://ftp.sunet.se/pub/lang/tcl
ftp://ftp.cs.columbia.edu/archives/tcl
ftp://ftp.funet.fi/pub/languages/tcl
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Newsgroups

The comp.lang.tcl newsgroup is very active. It provides a forum for questions and
answers about Tcl. Announcements about Tcl extensions and applications are posted
to the comp.lang.tcl.announce newsgroup. The following web service provides a
convenient way to read newsgroups. Enter comp.lang.tcl in the search field on this
page:

http://groups.google.com

http://groups.google.com/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Who Should Read This Book

This book is meant to be useful to the beginner in Tcl as well as the expert. For the
beginner and expert alike, I recommend careful study of Chapter 1, Tcl
Fundamentals. The programming model of Tcl is designed to be simple, but it is
different from many programming languages. The model is based on string
substitutions, and it is important that you understand it properly to avoid trouble in
complex cases. The remainder of the book consists of examples that demonstrate
how to use Tcl and Tk productively. For your reference, each chapter has tables that
summarize the Tcl commands and Tk widgets they describe.

This book assumes that you have some programming experience, although you
should be able to get by even if you are a complete novice. Knowledge of UNIX shell
programming will help, but it is not required. Where aspects of window systems are
relevant, I provide some background information. Chapter 2 describes the details of
using Tcl and Tk on UNIX, Windows, and Macintosh.

How to Read This Book

This book is best used in a hands-on manner, trying the examples at the computer.
The book tries to fill the gap between the terse Tcl and Tk manual pages, which are
complete but lack context and examples, and existing Tcl programs that may or may
not be documented or well written.

I recommend the on-line manual pages for the Tcl and Tk commands. They provide
a detailed reference guide to each command. This book summarizes much of the
information from the manual pages, but it does not provide the complete details,
which can vary from release to release. HTML versions of the on-line manual pages
can be found on the CD-ROM that comes with this book.

On-line Examples

The book comes with a CD-ROM that has source code for all of the examples, plus a
selection of Tcl freeware found on the Internet. The CD-ROM is readable on UNIX,
Windows, and Macintosh. There, you will find the versions of Tcl and Tk that were
available as the book went to press. You can also retrieve the sources shown in the
book from my personal Web site:

http://www.beedub.com/book/

http://www.beedub.com/book/default.htm

Typographic Conventions

The more important examples are set apart with a title and horizontal rules, while
others appear in-line. The examples use courier for Tcl and C code. When
interesting results are returned by a Tcl command, those are presented below in
oblique courier. The => is not part of the return value in the following example.

expr 5 + 8
=> 13

The courier font is also used when naming Tcl commands and C procedures within
sentences.

The usage of a Tcl command is presented in the following example. The command
name and constant keywords appear in courier. Variable values appear in courier
oblique. Optional arguments are surrounded with question marks.

set varname ?value?

The name of a program is in italics:

xterm

Hot Tips

The icon in the margin marks a "hot tip" as
judged by the reviewers of the book. The
visual markers help you locate the more
useful sections in the book. These are also
listed in the index under Hot Tip.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Book Organization

The chapters of the book are divided into seven parts. The first part describes basic
Tcl features. The first chapter describes the fundamental mechanisms that
characterize the Tcl language. This is an important chapter that provides the basic
grounding you will need to use Tcl effectively. Even if you have programmed in Tcl
already, you should review Chapter 1. Chapter 2 goes over the details of using Tcl
and Tk on UNIX, Windows, and Macintosh. Chapter 3 presents a sample application,
a CGI script, that illustrates typical Tcl programming. The rest of Part I covers the
basic Tcl commands in more detail, including string handling, data types, control
flow, procedures, and scoping issues. Part I finishes with a description of the
facilities for file I/O and running other programs.

Part II describes advanced Tcl programming. It starts with eval, which lets you
generate Tcl programs on the fly. Regular expressions provide powerful string
processing. If your data-processing application runs slowly, you can probably boost
its performance significantly with the regular expression facilities. Namespaces
partition the global scope of procedures and variables. Unicode and message
catalogs support internationalized applications. Libraries and packages provide a
way to organize your code for sharing among projects. The introspection facilities of
Tcl tell you about the internal state of Tcl. Event driven I/O helps server applications
manage several clients simultaneously. Network sockets are used to implement the
HTTP protocol used to fetch pages on the World Wide Web.

The last few chapters in Part II describe platforms and frameworks for application
development. Safe-Tcl is used to provide a secure environment to execute Tcl
applets in a Web browser. TclHttpd is an extensible web server built in Tcl. You can
build applications on top of this server, or embed it into your existing applications to
give them a web interface. Starkits are an exciting new way to package and deploy
Tcl/Tk applications. They use the new Virtual File System (VFS) facilities to embed a
private file system right in the Starkit.

Part III introduces Tk. It gives an overview of the toolkit facilities. A few complete
examples are examined in detail to illustrate the features of Tk. Event bindings
associate Tcl commands with events like keystrokes and button clicks. Part III ends
with three chapters on the Tk geometry managers that provide powerful facilities for
organizing your user interface.

Part IV describes the Tk widgets. These include buttons, menus, scrollbars, labels,
text entries, multiline and multifont text areas, drawing canvases, listboxes, and
scales. The Tk widgets are highly configurable and very programmable, but their
default behaviors make them easy to use as well. The resource database that can
configure widgets provides an easy way to control the overall look of your
application.

Part V describes the rest of the Tk facilities. These include selections, keyboard
focus, and standard dialogs. Fonts, colors, images, and other attributes that are
common to the Tk widgets are described in detail. This part ends with a few larger
Tk examples.

Part VI is an introduction to C programming and Tcl. The goal of this part is to get
you started in the right direction when you need to extend Tcl with new commands
written in C or integrate Tcl into custom applications.

Part VII provides a chapter for each of the Tcl/Tk releases covered by the book.
These chapters provide details about what features were changed and added. They
also provide a quick reference if you need to update a program or start to use a new
version.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

What's New in the Fourth Edition

The fourth edition is up-to-date with Tcl/Tk 8.4, which adds many new features. Tcl
has a new Virtual File System (VFS) feature that lets you transparently embed a file
system in your application, or make remote resources such as FTP and Web sites
visible through the regular file system interface. Chapter 22 is a new chapter on
Tclkit and Starkits that use the Metakit embedded database to store scripts and
other files. The VFS makes these files appear in a private file system. Starkits
provide a new way to package and deploy Tcl/Tk applications. Chapter 21 is a new
chapter on using the multi-threading support in Tcl. This is very useful when
embedding Tcl in threaded server applications. There are a number of new Tk
features, including three new widgets. The spinbox (i.e., combobox) is like an entry
widget with a drop-down selection box. The labeled frame provides a new way to
decorate frames. The panedwindow is a specialized geometry manager that provides
a new way to organize your user interfaces.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Other Tcl Books

This book was the second Tcl book after the original book by John Ousterhout, the
creator of Tcl. Since then, many other Tcl books have been published. The following
are just some of the books currently available.

Tcl/Tk: A Developer's Guide, 2nd Ed. (Academic Press, 2003) by Clif Flynt is a good
example-oriented book that has been recently updated.

Tcl and the Tk Toolkit (Addison-Wesley, 1994) by John Ousterhout provides a broad
overview of all aspects of Tcl and Tk, even though it covers only Tcl 7.3 and Tk 3.6.
The book provides a more detailed treatment of C programming for Tcl extensions.

Exploring Expect (O'Reilly & Associates, Inc., 1995) by Don Libes is a great book
about an extremely useful Tcl extension. Expect lets you automate the use of
interactive programs like ftp and telnet that expect to interact with a user. By
combining Expect and Tk, you can create graphical user interfaces for old
applications that you cannot modify directly.

Tcl/Tk in a Nutshell (O'Reilly, 1999) by Paul Raines and Jeff Tranter is a handy
reference guide. It covers several popular extensions including Expect, [incr Tcl],
Tix, TclX, BLT, SybTcl, OraTcl, and TclODBC. There is a tiny pocket-reference guide
for Tcl/Tk that may eliminate the need to thumb through my large book to find the
syntax of a particular Tcl or Tk command.

Web Tcl Complete (McGraw Hill, 1999) by Steve Ball describes programming with
the Tcl Web Server. It also covers Tcl/Java integration using TclBlend.

[incr Tcl] From The Ground Up (Osborn-McGraw Hill, 1999) by Chad Smith describes
the [incr Tcl] object-oriented extension to Tcl.

Tcl/Tk for Programmers (IEEE Computer Society, 1998) by Adrian Zimmer describes
Unix and Windows programming with Tcl/Tk. This book also includes solved
exercises at the end of each chapter.

Building Network Management Tools with Tcl/Tk (Prentice Hall, 1998) by Dave
Zeltserman and Gerald Puoplo. This describes how to build SNMP tools.

Graphical Applications with Tcl & Tk (M&T Books, 1997) by Eric Johnson is oriented
toward Windows users. The second edition covers Tcl/Tk 8.0.

Tcl/Tk Tools (O'Reilly & Associates, Inc., 1997) by Mark Harrison describes many
useful Tcl extensions. These include Oracle and Sybase interfaces, object-oriented
language enhancements, additional Tk widgets, and much more. The chapters were
contributed by the authors of the extensions, so they provide authoritative
information on some excellent additions to the Tcl toolbox.

Effective Tcl/Tk Programming (Addison Wesley, 1997) by Michael McLennan and
Mark Harrison illustrate Tcl and Tk with examples and application design guidelines.

First Edition Thanks

I would like to thank my managers and colleagues at Xerox PARC for their patience
with me as I worked on this book. The tips and tricks in this book came partly from
my own work as I helped lab members use Tcl, and partly from them as they taught
me. Dave Nichols' probing questions forced me to understand the basic mechanisms
of the Tcl interpreter. Dan Swinehart and Lawrence Butcher kept me sharp with their
own critiques. Ron Frederick and Berry Kerchival adopted Tk for their graphical
interfaces and amazed me with their rapid results. Becky Burwell, Rich Gold, Carl
Hauser, John Maxwell, Ken Pier, Marvin Theimer, and Mohan Vishwanath made use
of my early drafts, and their questions pointed out large holes in the text. Karin
Petersen, Bill Schilit, and Terri Watson kept life interesting by using Tcl in very
nonstandard ways. I especially thank my managers, Mark Weiser and Doug Terry,
for their understanding and support.

I thank John Ousterhout for Tcl and Tk, which are wonderful systems built with
excellent craftsmanship. John was kind enough to provide me with an advance
version of Tk 4.0 so that I could learn about its new features well before its first
beta release.

Thanks to the Tcl programmers out on the Net, from whom I learned many tricks.
John LoVerso and Stephen Uhler are the hottest Tcl programmers I know.

Many thanks to the patient reviewers of early drafts: Pierre David, Clif Flynt, Simon
Kenyon, Eugene Lee, Don Libes, Lee Moore, Joe Moss, Hador Shemtov, Frank
Stajano, Charles Thayer, and Jim Thornton.

Many folks contributed suggestions by email: Miguel Angel, Stephen Bensen, Jeff
Blaine, Tom Charnock, Brian Cooper, Patrick D'Cruze, Benoit Desrosiers, Ted
Dunning, Mark Eichin, Paul Friberg, Carl Gauthier, David Gerdes, Klaus Hackenberg,
Torkle Hasle, Marti Hearst, Jean-Pierre Herbert, Jamie Honan, Norman Klein, Joe
Konstan, Susan Larson, Håkan Liljegren, Lionel Mallet, Dejan Milojicic, Greg
Minshall, Bernd Mohr, Will Morse, Heiko Nardmann, Gerd Neugebauer, TV Raman,
Cary Renzema, Rob Riepel, Dan Schenk, Jean-Guy Schneider, Elizabeth Scholl, Karl
Schwamb, Rony Shapiro, Peter Simanyi, Vince Skahan, Bill Stumbo, Glen
Vanderburg, Larry Virden, Reed Wade, and Jim Wight. Unfortunately, I could not
respond to every suggestion, even some that were excellent.

Thanks to the editors and staff at Prentice Hall. Mark Taub has been very helpful as I
progressed through my first book. Lynn Schneider and Kerry Reardon were excellent
copy and production editors, respectively.

Second Edition Thanks

I get to thank John Ousterhout again, this time for supporting me as I worked in the
Tcl/Tk group at Sun Microsystems. The rest of the group deserve a lot of credit for
turning Tcl and Tk into a dynamite cross-platform solution. Scott Stanton led the Tk
port to the PC. Ray Johnson led the Tk port to the Macintosh. Jacob Levy
implemented the event-driven I/O system, Safe-Tcl, and the browser plug-in. Brian
Lewis built the Tcl compiler. Ken Corey worked on Java integration and helped with
the SpecTcl user interface builder. Syd Polk generalized the menu system to work
with native widgets on the Macintosh and Windows. Colin Stevens generalized the
font mechanism and worked on internationalization for Tk.

Stephen Uhler deserves special thanks for inspiring many of the cool examples I use
in this book. He was the lead on the SpecTcl user interface builder. He built the core
HTML display library on which I based an editor. We worked closely together on the
first versions of TclHttpd. He taught me how to write compact, efficient Tcl code and
to use regular expression substitutions in amazing ways. I hope he has learned at
least a little from me.

Thanks again to Mark Taub, Eileen Clark, and Martha Williams at Prentice Hall.
George Williams helped me assemble the files for the CD-ROM.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Third Edition Thanks

John Ousterhout continues his wonderful role as Tcl benefactor, now as founder of
Scriptics Corporation. I'd like to thank every one of the great folks that I work with
at Scriptics, especially the pioneering crew of Sarah Daniels, Scott Stanton, Ray
Johnson, Bryan Surles, Melissa Chawla, Lee Bernhard, Suresh Sastry, Emil Scaffon,
Pat P., Scott Redman, and Berry Kercheval. The rest of the gang deserves a big
thanks for making Scriptics such an enjoyable place to work. Jerry Peek, who is a
notable author himself, provided valuable advice and wonderfully detailed
comments! Ken Jones told me about a great indexing tool.

I'd like to thank all the readers that drop me the encouraging note or probing
question via email. I am always interested in new and interesting uses of Tcl!

Thanks to the editors at Prentice Hall: Mark Taub, Joan McNamara, and Joan Eurell.
Mark continues to encourage me to come out with new editions, and the Joans
helped me complete this third edition on time.

Fourth Edition Thanks

I'd like to thank Jeff Hobbs and Ken Jones for making this project happen. Jeff has
done a great service to the Tcl community as "The Tcl Guy". His leadership and hard
work have been responsible for the steady pace of new Tcl/Tk releases. Ken is a
great Tcl teacher and his experiences teaching are reflected in his additions to the
book for this 4th edition. Again, without these two lending a hand, I just wouldn't
have found the time for this edition.

I'd like to thank the Tcl Core Team and the supporting cast of contributors to the
Tcl/Tk code base. The TCT provides a great framework to keep Tcl a high quality
software product that continues to adopt new an interesting features.

I'd like to thank Jean-Claude Wippler and Steve Landers for Metakit, Tclkit, and
Starkits. These provide a delightful way to package and deploy Tcl applications. I
expect to see a lot more from these technologies in the future. Several readers
provided great feedback on the Starkit material: Robert Techentin, Steve Blinkhorn,
Frank Sergeant, Arjen Markus, Uwe Koloska, Larry Virden, Tom Krehbiel, and Donald
Porter.

I'd like to thank Prentice Hall for their continued support. Mark Taub continues his
role as godfather of this book. Kathleen Caren was the able production editor for
this edition.

Finally, I thank my wonderful wife Jody for her love, kindness, patience, wit, and
understanding as I worked long hours. Happily, many of those hours were spent
working from home. I now have three sons, Christopher, Daniel, and Michael, who
get the credit for keeping me from degenerating into a complete nerd.

Contact the Author

I am always open to comments about this book. My email address is
welch@acm.org. It helps me sort through my mail if you put the word "book" or the
title of the book into the email subject line. Visit my Web site for current news about
the book and my other interests. I maintain an errata page for each edition, so
please consult that and feel free to send bug reports!

http://www.beedub.com/

mailto:welch@acm.org
http://www.beedub.com/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Part I: Tcl Basics
Part I introduces the basics of Tcl. Everyone should read Chapter 1, which
describes the fundamental properties of the language. Tcl is really quite
simple, so beginners can pick it up quickly. The experienced programmer
should review Chapter 1 to eliminate any misconceptions that come from using
other languages.

Chapter 2 is a short introduction to running Tcl and Tk on UNIX, Windows, and
Macintosh systems. You may want to look at this chapter first so you can try
out the examples as you read Chapter 1.

Chapter 3 presents a sample application, a CGI script, that implements a
guestbook for a Web site. The example uses several facilities that are
described in detail in later chapters. The goal is to provide a working example
that illustrates the power of Tcl.

The rest of Part I covers basic programming with Tcl. Simple string processing
is covered in Chapter 4. Tcl lists, which share the syntax rules of Tcl
commands, are explained in Chapter 5. Control structure like loops and if
statements are described in Chapter 6. Chapter 7 describes Tcl procedures,
which are new commands that you write in Tcl. Chapter 8 discusses Tcl arrays.
Arrays are the most flexible and useful data structure in Tcl. Chapter 9
describes file I/O and running other programs. These facilities let you build Tcl
scripts that glue together other programs and process data in files.

After reading Part I you will know enough Tcl to read and understand other Tcl
programs, and to write simple programs yourself.

Chapter 1. Tcl Fundamentals
This chapter describes the basic syntax rules for the Tcl scripting language. It
describes the basic mechanisms used by the Tcl interpreter: substitution and
grouping. It touches lightly on the following Tcl commands: puts, format, set,
expr, string, while, incr, and proc.

Tcl is a string-based command language. The language has only a few fundamental
constructs and relatively little syntax, which makes it easy to learn. The Tcl syntax is
meant to be simple. Tcl is designed to be a glue that assembles software building
blocks into applications. A simpler glue makes the job easier. In addition, Tcl is
interpreted when the application runs. The interpreter makes it easy to build and
refine your application in an interactive manner. A great way to learn Tcl is to try out
commands interactively. If you are not sure how to run Tcl on your system, see
Chapter 2 for instructions for starting Tcl on UNIX, Windows, and Macintosh
systems.

This chapter takes you through the basics of the Tcl language syntax. Even if you
are an expert programmer, it is worth taking the time to read these few pages to
make sure you understand the fundamentals of Tcl. The basic mechanisms are all
related to strings and string substitutions, so it is fairly easy to visualize what is
going on in the interpreter. The model is a little different from some other
programming languages with which you may already be familiar, so it is worth
making sure you understand the basic concepts.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Tcl Commands

Tcl stands for Tool Command Language. A command does something for you, like
output a string, compute a math expression, or display a widget on the screen. Tcl
casts everything into the mold of a command, even programming constructs like
variable assignment and procedure definition. Tcl adds a tiny amount of syntax
needed to properly invoke commands, and then it leaves all the hard work up to the
command implementation.

The basic syntax for a Tcl command is:

command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure. White
space (i.e., spaces or tabs) is used to separate the command name and its
arguments, and a newline (i.e., the end of line character) or semicolon is used to
terminate a command. Tcl does not interpret the arguments to the commands
except to perform grouping, which allows multiple words in one argument, and
substitution, which is used with programming variables and nested command calls.
The behavior of the Tcl command processor can be summarized in three basic steps:

Argument grouping.

Value substitution of nested commands, variables, and backslash escapes.

Command invocation. It is up to the command to interpret its arguments.

This model is described in detail in this Chapter.

Hello, World!

Example 1-1 The "Hello, World!" example

puts stdout {Hello, World!}
=> Hello, World!

In this example, the command is puts, which takes two arguments: an I/O stream
identifier and a string. puts writes the string to the I/O stream along with a trailing
newline character. There are two points to emphasize:

Arguments are interpreted by the command. In the example, stdout is used
to identify the standard output stream. The use of stdout as a name is a
convention employed by puts and the other I/O commands. Also, stderr is
used to identify the standard error output, and stdin is used to identify the
standard input. Chapter 9 describes how to open other files for I/O.

Curly braces are used to group words together into a single argument. The
puts command receives Hello, World! as its second argument.

The braces are not part of the value.

The braces are syntax for the interpreter, and they get stripped off before the value
is passed to the command. Braces group all characters, including newlines and
nested braces, until a matching brace is found. Tcl also uses double quotes for
grouping. Grouping arguments will be described in more detail later.

Variables

The set command is used to assign a value to a variable. It takes two arguments:
The first is the name of the variable, and the second is the value. Variable names
can be any length, and case is significant. In fact, you can use any character in a
variable name.

It is not necessary to declare Tcl variables before you use them.

The interpreter will create the variable when it is first assigned a value. The value of
a variable is obtained later with the dollar-sign syntax, illustrated in Example 1-2:

Example 1-2 Tcl variables

set var 5
=> 5
set b $var
=> 5

The second set command assigns to variable b the value of variable var. The use of
the dollar sign is our first example of substitution. You can imagine that the second
set command gets rewritten by substituting the value of var for $var to obtain a
new command.

set b 5

The actual implementation of substitution is more efficient, which is important when
the value is large.

Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, []. The Tcl interpreter takes everything between the
brackets and evaluates it as a command. It rewrites the outer command by
replacing the square brackets and everything between them with the result of the
nested command. This is similar to the use of backquotes in other shells, except
that it has the additional advantage of supporting arbitrary nesting of commands.

Example 1-3 Command substitution

set len [string length foobar]
=> 6

In Example 1-3, the nested command is:

string length foobar

This command returns the length of the string foobar. The string command is
described in detail starting on page 49. The nested command runs first. Then,
command substitution causes the outer command to be rewritten as if it were:

set len 6

If there are several cases of command substitution within a single command, the
interpreter processes them from left to right. As each right bracket is encountered,
the command it delimits is evaluated. This results in a sensible ordering in which
nested commands are evaluated first so that their result can be used in arguments
to the outer command.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Math Expressions

The Tcl interpreter itself does not evaluate math expressions. Tcl just does grouping,
substitutions and command invocations. The expr command is used to parse and
evaluate math expressions.

Example 1-4 Simple arithmetic

expr 7.2 / 4
=> 1.8

The math syntax supported by expr is the same as the C expression syntax. The
expr command deals with integer, floating point, and boolean values. Logical
operations return either 0 (false) or 1 (true). Integer values are promoted to
floating point values as needed. Octal values are indicated by a leading zero (e.g.,
033 is 27 decimal). Hexadecimal values are indicated by a leading 0x. Scientific
notation for floating point numbers is supported. A summary of the operator
precedence is given on page 20.

You can include variable references and nested commands in math expressions. The
following example uses expr to add the value of x to the length of the string
foobar. As a result of the innermost command substitution, the expr command
sees 6 + 7, and len gets the value 13:

Example 1-5 Nested commands

set x 7
set len [expr [string length foobar] + $x]
=> 13

The expression evaluator supports a number of built-in math functions. (For a
complete listing, see page 21.) Example 1-6 computes the value of pi:

Example 1-6 Built-in math functions

set pi [expr 2*asin(1.0)]
=> 3.1415926535897931

The implementation of expr is careful to preserve accurate numeric values and
avoid conversions between numbers and strings. However, you can make expr
operate more efficiently by grouping the entire expression in curly braces. The
explanation has to do with the byte code compiler that Tcl uses internally, and its
effects are explained in more detail on page 15. For now, you should be aware that
these expressions are all valid and run faster than the examples shown above:

Example 1-7 Grouping expressions with braces

expr {7.2 / 4}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Backslash Substitution

The final type of substitution done by the Tcl interpreter is backslash substitution.
This is used to quote characters that have special meaning to the interpreter. For
example, you can specify a literal dollar sign, brace, or bracket by quoting it with a
backslash. As a rule, however, if you find yourself using lots of backslashes, there is
probably a simpler way to achieve the effect you are striving for. In particular, the
list command described on page 65 will do quoting for you automatically. In
Example 1-8 backslash is used to get a literal $:

Example 1-8 Quoting special characters with backslash

set dollar \$foo
=> $foo
set x $dollar
=> $foo

Only a single round of interpretation is done.

The second set command in the example illustrates an important property of Tcl.
The value of dollar does not affect the substitution performed in the assignment to
x. In other words, the Tcl parser does not care about the value of a variable when it
does the substitution. In the example, the value of x and dollar is the string $foo.
In general, you do not have to worry about the value of variables until you use
eval, which is described in Chapter 10.

You can also use backslash sequences to specify characters with their Unicode,
hexadecimal, or octal value:

set escape \u001b
set escape \0x1b
set escape \033

The value of variable escape is the ASCII ESC character, which has character code
27. Table 1-1 on page 20 summarizes backslash substitutions.

A common use of backslashes is to continue long commands on multiple lines. This
is necessary because a newline terminates a command. The backslash in the next
example is required; otherwise the expr command gets terminated by the newline
after the plus sign.

Example 1-9 Continuing long lines with backslashes

set totalLength [expr [string length $one] + \
 [string length $two]]

There are two fine points to escaping newlines. First, if you are grouping an
argument as described in the next section, then you do not need to escape
newlines; the newlines are automatically part of the group and do not terminate the
command. Second, a backslash as the last character in a line is converted into a
space, and all the white space at the beginning of the next line is replaced by this
substitution. In other words, the backslash-newline sequence also consumes all the
leading white space on the next line.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Grouping with Braces and Double Quotes

Double quotes and curly braces are used to group words together into one
argument. The difference between double quotes and curly braces is that quotes
allow substitutions to occur in the group, while curly braces prevent substitutions.
This rule applies to command, variable, and backslash substitutions.

Example 1-10 Grouping with double quotes vs. braces

set s Hello
=> Hello
puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the second command of Example 1-10, the Tcl interpreter does variable and
command substitution on the second argument to puts. In the third command,
substitutions are prevented, so the string is printed as is.

In practice, grouping with curly braces is used when substitutions on the argument
must be delayed until a later time (or never done at all). Examples include loops,
conditional statements, and procedure declarations. Double quotes are useful in
simple cases like the puts command previously shown.

Another common use of quotes is with the format command. This is similar to the C
printf function. The first argument to format is a format specifier that often
includes special characters like newlines, tabs, and spaces. The easiest way to
specify these characters is with backslash sequences (e.g., \n for newline and \t for
tab). The backslashes must be substituted before the format command is called, so
you need to use quotes to group the format specifier.

puts [format "Item: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and %5.3f
indicate how the remaining arguments to format are to be formatted. Note that the
trailing \n usually found in a C printf call is not needed because puts provides one
for us. For more information about the format command, see page 56.

Square Brackets Do Not Group

The square bracket syntax used for command substitution does not provide
grouping. Instead, a nested command is considered part of the current group. In
the command below, the double quotes group the last argument, and the nested
command is just part of that group.

puts stdout "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to group it
with double-quotes because the Tcl parser treats the whole nested command as part
of the group.

puts stdout [string length $s]

The following is a redundant use of double quotes:

puts stdout "[expr $x + $y]"

Grouping before Substitution

The Tcl parser makes a single pass through a command as it makes grouping
decisions and performs string substitutions. Grouping decisions are made before
substitutions are performed, which is an important property of Tcl. This means that
the values being substituted do not affect grouping because the grouping decisions
have already been made.

The following example demonstrates how nested command substitution affects
grouping. A nested command is treated as an unbroken sequence of characters,
regardless of its internal structure. It is included with the surrounding group of
characters when collecting arguments for the main command.

Example 1-11 Embedded command and variable substitution

set x 7; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In Example 1-11, the second argument to puts is:

$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of grouping
the argument. By the time Tcl encounters the left bracket, it has already done some
variable substitutions to obtain:

7+9=

When the left bracket is encountered, the interpreter calls itself recursively to
evaluate the nested command. Again, the $x and $y are substituted before calling
expr. Finally, the result of expr is substituted for everything from the left bracket to
the right bracket. The puts command gets the following as its second argument:

7+9=16

Grouping before substitution.

The point of this example is that the grouping decision about puts's second
argument is made before the command substitution is done. Even if the result of the
nested command contained spaces or other special characters, they would be
ignored for the purposes of grouping the arguments to the outer command.
Grouping and variable substitution interact the same as grouping and command
substitution. Spaces or special characters in variable values do not affect grouping
decisions because these decisions are made before the variable values are
substituted.

If you want the output to look nicer in the example, with spaces around the + and =,
then you must use double quotes to explicitly group the argument to puts:

puts stdout "$x + $y = [expr $x + $y]"

The double quotes are used for grouping in this case to allow the variable and
command substitution on the argument to puts.

Grouping Math Expressions with Braces

It turns out that expr does its own substitutions inside curly braces. This is
explained in more detail on page 15. This means you can write commands like the
one below and the substitutions on the variables in the expression still occur:

puts stdout "$x + $y = [expr {$x + $y}]"

More Substitution Examples

If you have several substitutions with no white space between them, you can avoid
grouping with quotes. The following command sets concat to the value of variables
a, b, and c all concatenated together:

set concat ab$c

Again, if you want to add spaces, you'll need to use quotes:

set concat "$a $b $c"

In general, you can place a bracketed command or variable reference anywhere.
The following computes a command name:

[findCommand $x] arg arg

When you use Tk, you often use widget names as command names:

$text insert end "Hello, World!"

Procedures

Tcl uses the proc command to define procedures. Once defined, a Tcl procedure is
used just like any of the other built-in Tcl commands. The basic syntax to define a
procedure is:

proc name arglist body

The first argument is the name of the procedure being defined. The second
argument is a list of parameters to the procedure. The third argument is a command
body that is one or more Tcl commands.

The procedure name is case sensitive, and in fact it can contain any characters.
Procedure names and variable names do not conflict with each other. As a
convention, this book begins procedure names with uppercase letters and it begins
variable names with lowercase letters. Good programming style is important as your
Tcl scripts get larger. Tcl coding style is discussed in Chapter 12.

Example 1-12 Defining a procedure

proc Diag {a b} {
 set c [expr {sqrt($a * $a + $b * $b)}]
 return $c
}
puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"
=> The diagonal of a 3, 4 right triangle is 5.0

The Diag procedure defined in the example computes the length of the diagonal
side of a right triangle given the lengths of the other two sides. The sqrt function is
one of many math functions supported by the expr command. The variable c is local
to the procedure; it is defined only during execution of Diag. Variable scope is
discussed further in Chapter 7. It is not really necessary to use the variable c in this
example. The procedure can also be written as:

proc Diag {a b} {
 return [expr {sqrt($a * $a + $b * $b)}]
}

The return command is used to return the result of the procedure. The return
command is optional in this example because the Tcl interpreter returns the value of
the last command in the body as the value of the procedure. So, the procedure
could be reduced to:

proc Diag {a b} {
 expr {sqrt($a * $a + $b * $b)}
}

Note the stylized use of curly braces in the example. The curly brace at the end of
the first line starts the third argument to proc, which is the command body. In this

case, the Tcl interpreter sees the opening left brace, causing it to ignore newline
characters and scan the text until a matching right brace is found. Double quotes
have the same property. They group characters, including newlines, until another
double quote is found. The result of the grouping is that the third argument to proc
is a sequence of commands. When they are evaluated later, the embedded newlines
will terminate each command.

The other crucial effect of the curly braces around the procedure body is to delay
any substitutions in the body until the time the procedure is called. For example, the
variables a, b, and c are not defined until the procedure is called, so we do not want
to do variable substitution at the time Diag is defined.

The proc command supports additional features such as having variable numbers of
arguments and default values for arguments. These are described in detail in
Chapter 7.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

A Factorial Example

To reinforce what we have learned so far, below is a longer example that uses a
while loop to compute the factorial function:

Example 1-13 A while loop to compute factorial

proc Factorial {x} {
 set i 1; set product 1
 while {$i <= $x} {
 set product [expr {$product * $i}]
 incr i
 }
 return $product
}
Factorial 10
=> 3628800

The semicolon is used on the first line to remind you that it is a command
terminator just like the newline character. The while loop is used to multiply all the
numbers from one up to the value of x. The first argument to while is a boolean
expression, and its second argument is a command body to execute. The while
command and other control structures are described in Chapter 6.

The same math expression evaluator used by the expr command is used by while
to evaluate the boolean expression. There is no need to explicitly use the expr
command in the first argument to while, even if you have a much more complex
expression.

The loop body and the procedure body are grouped with curly braces in the same
way. The opening curly brace must be on the same line as proc and while. If you
like to put opening curly braces on the line after a while or if statement, you must
escape the newline with a backslash:

while {$i < $x} \
{
 set product ...
}

Always group expressions and command bodies with curly braces.

Curly braces around the boolean expression are crucial because they delay variable
substitution until the while command implementation tests the expression. The
following example is an infinite loop:

set i 1; while $i<=10 {incr i}

The loop will run indefinitely.[*] The reason is that the Tcl interpreter will substitute
for $i before while is called, so while gets a constant expression 1<=10 that will
always be true. You can avoid these kinds of errors by adopting a consistent coding
style that groups expressions with curly braces:

[*] Ironically, Tcl 8.0 introduced a byte-code compiler, and the first releases of Tcl 8.0 had a bug in the compiler that caused this loop
to terminate! This bug is fixed in the 8.0.5 patch release.

set i 1; while {$i<=10} {incr i}

The incr command is used to increment the value of the loop variable i. This is a
handy command that saves us from the longer command:

set i [expr {$i + 1}]

The incr command can take an additional argument, a positive or negative integer
by which to change the value of the variable. Using this form, it is possible to
eliminate the loop variable i and just modify the parameter x. The loop body can be
written like this:

while {$x > 1} {
 set product [expr {$product * $x}]
 incr x -1
}

Example 1-14 shows factorial again, this time using a recursive definition. A
recursive function is one that calls itself to complete its work. Each recursive call
decrements x by one, and when x is one, then the recursion stops.

Example 1-14 A recursive definition of factorial

proc Factorial {x} {
 if {$x <= 1} {
 return 1
 } else {
 return [expr {$x * [Factorial [expr {$x - 1}]]}]
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

More about Variables

The set command will return the value of a variable if it is only passed a single
argument. It treats that argument as a variable name and returns the current value
of the variable. The dollar-sign syntax used to get the value of a variable is really
just an easy way to use the set command. Example 1-15 shows a trick you can play
by putting the name of one variable into another variable:

Example 1-15 Using set to return a variable value

set var {the value of var}
=> the value of var
set name var
=> var
set name
=> var
set $name
=> the value of var

This is a somewhat tricky example. In the last command, $name gets substituted
with var. Then, the set command returns the value of var, which is the value of
var. Nested set commands provide another way to achieve a level of indirection.
The last set command above can be written as follows:

set [set name]
=> the value of var

Using a variable to store the name of another variable may seem overly complex.
However, there are some times when it is very useful. There is even a special
command, upvar, that makes this sort of trick easier. The upvar command is
described in detail in Chapter 7.

Funny Variable Names

The Tcl interpreter makes some assumptions about variable names that make it
easy to embed variable references into other strings. By default, it assumes that
variable names contain only letters, digits, and the underscore. The construct
$foo.o represents a concatenation of the value of foo and the literal ".o".

If the variable reference is not delimited by punctuation or white space, then you
can use curly braces to explicitly delimit the variable name (e.g., ${x}). You can
also use this to reference variables with funny characters in their name, although
you probably do not want variables named like that. If you find yourself using funny
variable names, or computing the names of variables, then you may want to use the
upvar command.

Example 1-16 Embedded variable references

set foo filename
set object $foo.o
=> filename.o
set a AAA
set b abc${a}def
=> abcAAAdef
set .o yuk!
set x ${.o}y
=> yuk!y

The unset Command

You can delete a variable with the unset command:

unset ?-nocomplain? ?--? varName varName2 ...

Any number of variable names can be passed to the unset command. However,
unset will raise an error if a variable is not already defined, unless the -nocomplain
is given. Use -- to unset a variable named -nocomplain.

Using info to Find Out about Variables

The existence of a variable can be tested with the info exists command. For
example, because incr requires that a variable exist, you might have to test for the
existence of the variable first.

Example 1-17 Using info to determine if a variable exists

if {![info exists foobar]} {
 set foobar 0
} else {
 incr foobar
}

Example 7-6 on page 92 implements a version of incr which handles this case.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

More about Math Expressions

This section describes a few fine points about math in Tcl scripts. In Tcl 7.6 and
earlier versions math is not that efficient because of conversions between strings
and numbers. The expr command must convert its arguments from strings to
numbers. It then does all its computations with double precision floating point
values. The result is formatted into a string that has, by default, 12 significant
digits. This number can be changed by setting the tcl_precision variable to the
number of significant digits desired. Seventeen digits of precision are enough to
ensure that no information is lost when converting back and forth between a string
and an IEEE double precision number:

Example 1-18 Controlling precision with tcl_precision

expr 1 / 3
=> 0
expr 1 / 3.0
=> 0.333333333333
set tcl_precision 17
=> 17
expr 1 / 3.0
The trailing 1 is the IEEE rounding digit
=> 0.33333333333333331

In Tcl 8.0 and later versions, the overhead of conversions is eliminated in most
cases by the built-in compiler. Even so, Tcl was not designed to support math-
intensive applications. You may want to implement math-intensive code in a
compiled language and register the function as a Tcl command as described in
Chapter 47.

There is support for string comparisons by expr, so you can test string values in if
statements. You must use quotes so that expr knows to do string comparisons:

if {$answer == "yes"} { ... }

However, the string compare and string equal commands described in Chapter 4
are more reliable because expr may do conversions on strings that look like
numbers. The issues with string operations and expr are discussed on page 52. Tcl
8.4 introduced eq and ne expr operators to allow strict string based comparison.

Expressions can include variable and command substitutions and still be grouped
with curly braces. This is because an argument to expr is subject to two rounds of
substitution: one by the Tcl interpreter, and a second by expr itself. Ordinarily this is
not a problem because math values do not contain the characters that are special to
the Tcl interpreter. The second round of substitutions is needed to support
commands like while and if that use the expression evaluator internally.

Grouping expressions can make them run more efficiently.

You should always group expressions in curly braces and let expr do command and
variable substitutions. Otherwise, your values may suffer extra conversions from
numbers to strings and back to numbers. Not only is this process slow, but the
conversions can lose precision in certain circumstances. For example, suppose x is
computed from a math function:

set x [expr {sqrt(2.0)}]

At this point the value of x is a double-precision floating point value, just as you
would expect. If you do this:

set two [expr $x * $x]

then you may or may not get 2.0 as the result! This is because Tcl will substitute $x
and expr will concatenate all its arguments into one string, and then parse the
expression again. In contrast, if you do this:

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating
point value of x. The expression will be more accurate and run more efficiently
because no string conversions will be done. The story behind Tcl values is described
in more detail in Chapter 47 on C programming and Tcl.

Comments

Tcl uses the pound character, #, for comments. Unlike in many other languages, the
must occur at the beginning of a command. A # that occurs elsewhere is not
treated specially. An easy trick to append a comment to the end of a command is to
precede the # with a semicolon to terminate the previous command:

Here are some parameters
set rate 7.0 ;# The interest rate
set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a comment
line onto the next line of the script. In addition, a semicolon inside a comment is not
significant. Only a newline terminates comments:

Here is the start of a Tcl comment \
and some more of it; still in the comment

The behavior of a backslash in comments is pretty obscure, but it can be exploited
as shown in Example 2-3 on page 27.

A surprising property of Tcl comments is that curly braces inside comments are still
counted for the purposes of finding matching brackets. The motivation for this odd
feature was to keep the original Tcl parser simpler. However, it means that the
following will not work as expected to comment out an alternate version of an if
expression:

if {boolean expression1} {
if {boolean expression2} {
 some commands
}

The previous sequence results in an extra left curly brace, and probably a complaint
about a missing close brace at the end of your script! A technique I use to comment
out large chunks of code is to put the code inside an if block that will never
execute:

if {0} {
unused code here
}

Substitution and Grouping Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a command:

Command arguments are separated by white space, unless arguments are
grouped with curly braces or double quotes as described below.

Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right brace in
the group, including newlines, semicolons, and nested braces. The enclosing
(i.e., outermost) braces are not included in the group's value.

Grouping with double quotes, " ", allows substitutions. The interpreter groups
everything until another double quote is found, including newlines and
semicolons. The enclosing quotes are not included in the group of characters.
A double-quote character can be included in the group by quoting it with a
backslash, (e.g., \").

Grouping decisions are made before substitutions are performed, which means
that the values of variables or command results do not affect grouping.

A dollar sign, $, causes variable substitution. Variable names can be any
length, and case is significant. If variable references are embedded into other
strings, or if they include characters other than letters, digits, and the
underscore, they can be distinguished with the ${varname} syntax.

Square brackets, [], cause command substitution. Everything between the
brackets is treated as a command, and everything including the brackets is
replaced with the result of the command. Nesting is allowed.

The backslash character, \, is used to quote special characters. You can think
of this as another form of substitution in which the backslash and the next
character or group of characters are replaced with a new character.

Substitutions can occur anywhere unless prevented by curly brace grouping.
Part of a group can be a constant string, and other parts of it can be the result
of substitutions. Even the command name can be affected by substitutions.

A single round of substitutions is performed before command invocation. The
result of a substitution is not interpreted a second time. This rule is important
if you have a variable value or a command result that contains special
characters such as spaces, dollar signs, square brackets, or braces. Because
only a single round of substitution is done, you do not have to worry about
special characters in values causing extra substitutions.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Fine Points

A common error is to forget a space between arguments when grouping with
braces or quotes. This is because white space is used as the separator, while
the braces or quotes only provide grouping. If you forget the space, you will
get syntax errors about unexpected characters after the closing brace or
quote. The following is an error because of the missing space between } and
{:

if {$x > 1}{puts "x = $x"}

A double quote is only used for grouping when it comes after white space. This
means you can include a double quote in the middle of a group without
quoting it with a backslash. This requires that curly braces or white space
delimit the group. I do not recommend using this obscure feature, but this is
what it looks like:

set silly a"b

When double quotes are used for grouping, the special effect of curly braces is
turned off. Substitutions occur everywhere inside a group formed with double
quotes. In the next command, the variables are still substituted:

set x xvalue
set y "foo {$x} bar"
=> foo {xvalue} bar

When double quotes are used for grouping and a nested command is
encountered, the nested command can use double quotes for grouping, too.

puts "results [format "%f %f" $x $y]"

Spaces are not required around the square brackets used for command
substitution. For the purposes of grouping, the interpreter considers
everything between the square brackets as part of the current group. The
following sets x to the concatenation of two command results because there is
no space between] and [.

set x [cmd1][cmd2]

Newlines and semicolons are ignored when grouping with braces or double
quotes. They get included in the group of characters just like all the others.
The following sets x to a string that contains newlines:

set x "This is line one.
This is line two.
This is line three."

During command substitution, newlines and semicolons are significant as
command terminators. If you have a long command that is nested in square
brackets, put a backslash before the newline if you want to continue the
command on another line. This was illustrated in Example 1-9 on page 8.

A dollar sign followed by something other than a letter, digit, underscore, or
left parenthesis is treated as a literal dollar sign. The following sets x to the
single character $.

set x $

Reference

Backslash Sequences

Table 1-1. Backslash sequences

\a Bell. (0x7)

\b Backspace. (0x8)

\f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0xd)

\t Tab. (0x9)

\v Vertical tab. (0xb)

\
<newline>

Replace the newline and the leading white space on the next line with a
space.

\\ Backslash. ('\')

\ooo Octal specification of character code. 1, 2, or 3 octal digits (0-7).

\xhh Hexadecimal specification of character code. 1 or 2 hex digits. Be
careful when using this in a string of characters, because all
hexadecimal characters following the \x will be consumed, but only the
last 2 will specify the value.

\uhhhh Hexadecimal specification of a 16-bit Unicode character value. 4 hex
digits.

\c Replaced with literal c if c is not one of the cases listed above. In
particular, \$, \", \{, \}, \], and \[are used to obtain these
characters.

Arithmetic Operators

Table 1-2. Arithmetic operators from highest to lowest precedence

- ~ ! Unary minus, bitwise NOT, logical NOT.

* / % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Left shift, right shift.

< > <= >= Comparison: less, greater, less or equal, greater or equal.

== != eq ne Equal, not equal, string equal (Tcl 8.4), string not equal (Tcl 8.4).

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.

|| Logical OR.

x?y:z If x then y else z.

Built-in Math Functions

Table 1-3. Built-in math functions

acos(x) Arccosine of x.

asin(x) Arcsine of x.

atan(x) Arctangent of x.

atan2(y,x) Rectangular (x,y) to polar (r,th). atan2 gives th.

ceil(x) Least integral value greater than or equal to x.

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

exp(x) Exponential, ex.

floor(x) Greatest integral value less than or equal to x.

fmod(x,y) Floating point remainder of x/y.

hypot(x,y) Returns sqrt(x*x + y*y). r part of polar coordinates.

log(x) Natural log of x.

log10(x) Log base 10 of x.

pow(x,y) x to the y power, xy.

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.

abs(x) Absolute value of x.

double(x) Promote x to floating point.

int(x) Truncate x to an integer.

round(x) Round x to an integer.

rand() Return a random floating point value between 0.0 and 1.0.

srand(x) Set the seed for the random number generator to the integer x.

wide(x) Promote x to a wide (64-bit) integer. (Tcl 8.4)

Core Tcl Commands

The pages listed in Table 1-4 give the primary references for the command.

Table 1-4. Built-in Tcl commands

Command Pg. Description

Command Pg. Description

after 228Schedule a Tcl command for later execution.

append 56Append arguments to a variable's value. No spaces added.

array 97Query array state and search through elements.

binary 59Convert between strings and binary data.

break 83Exit loop prematurely.

catch 83Trap errors.

cd 122Change working directory.

clock 183Get the time and format date strings.

close 121Close an open I/O stream.

concat 65Concatenate arguments with spaces between. Splices lists.

console 29Control the console used to enter commands interactively.

continue 83Continue with next loop iteration.

error 85Raise an error.

eof 116Check for end of file.

eval 130Concatenate arguments and evaluate them as a command.

exec 105Fork and execute a UNIX program.

exit 124Terminate the process.

Command Pg. Description

expr 6Evaluate a math expression.

fblocked 233Poll an I/O channel to see if data is ready.

fconfigure 231Set and query I/O channel properties.

fcopy 250Copy from one I/O channel to another.

file 108Query the file system.

fileevent 229Register callback for event-driven I/O.

flush 116Flush output from an I/O stream's internal buffers.

for 82Loop construct similar to C for statement.

foreach 79Loop construct over a list, or lists, of values.

format 56Format a string similar to C sprintf.

gets 119Read a line of input from an I/O stream.

glob 122Expand a pattern to matching file names.

global 90Declare global variables.

history 196Use command-line history.

if 76Test a condition. Allows else and elseif clauses.

incr 12Increment a variable by an integer amount.

info 186Query the state of the Tcl interpreter.

Command Pg. Description

interp 292Create additional Tcl interpreters.

join 72Concatenate list elements with a given separator string.

lappend 66Add elements to the end of a list.

lindex 68Fetch an element of a list.

linsert 68Insert elements into a list.

list 65Create a list out of the arguments.

llength 68Return the number of elements in a list.

load 697Load shared libraries that define Tcl commands.

lrange 68Return a range of list elements.

lreplace 68Replace elements of a list.

lsearch 69Search for an element of a list that matches a pattern.

lset 62Set an element in a list. (Tcl 8.4)

lsort 70Sort a list.

namespace 213Create and manipulate namespaces.

open 116Open a file or process pipeline for I/O.

package 175Provide or require code packages.

pid 124Return the process ID.

Command Pg. Description

proc 87Define a Tcl procedure.

puts 119Output a string to an I/O stream.

pwd 122Return the current working directory.

read 120Read blocks of characters from an I/O stream.

regexp 158Match regular expressions.

regsub 162Substitute based on regular expressions.

rename 88Change the name of a Tcl command.

return 86Return a value from a procedure.

scan 58Parse a string according to a format specification.

seek 121Set the seek offset of an I/O stream.

set 5Assign a value to a variable.

socket 239Open a TCP/IP network connection.

source 26Evaluate the Tcl commands in a file.

split 71Chop a string up into list elements.

string 49Operate on strings.

subst 140Substitute embedded commands and variable references.

switch 77Test several conditions.

Command Pg. Description

tell 121Return the current seek offset of an I/O stream.

time 202Measure the execution time of a command.

trace 193Monitor variable assignments.

unknown 178Handle unknown commands.

unset 13Delete variables.

uplevel 138Execute a command in a different scope.

upvar 91Reference a variable in a different scope.

variable 207Declare namespace variables.

vwait 230Wait for a variable to be modified.

while 79Loop until a boolean expression is false.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Chapter 2. Getting Started
This chapter explains how to run Tcl and Tk on different operating system platforms:
UNIX, Windows, and Macintosh. Tcl commands discussed are: source, console and
info.

This chapter explains how to run Tcl scripts on different computer systems. While
you can write Tcl scripts that are portable among UNIX, Windows, and Macintosh,
the details about getting started are different for each system. If you are looking for
a current version of Tcl/Tk, use the CD-ROM or check the URLs listed in the Preface
on page liv.

The main Tcl/Tk program is wish. Wish stands for windowing shell, and with it you
can create graphical applications that run on all these platforms. The name of the
program is a little different on each of the UNIX, Windows, and Macintosh systems.
On UNIX it is just wish. On Windows you will find wish.exe, and on the Macintosh
the application name is Wish. A version number may also be part of the name, such
as wish8.0, wish83.exe, or Wish 8.4. The differences among versions are introduced
on page lii, and described in more detail in Part VII of the book. This book will use
wish to refer to all of these possibilities.

Tk adds Tcl commands that are used to create graphical user interfaces, and Tk is
described in Part III. You can run Tcl without Tk if you do not need a graphical
interface, such as with the CGI script discussed in Chapter 3. In this case the
program is tclsh, tclsh.exe or Tclsh.

When you run wish, it displays an empty window and prompts for a Tcl command
with a % prompt. You can enter Tcl commands interactively and experiment with the
examples in this book. On Windows and Macintosh, a console window is used to
prompt for Tcl commands. On UNIX, your terminal window is used. As described
later, you can also set up standalone Tcl/Tk scripts that are self-contained
applications.

The source Command

It is a good idea to try out the examples in this book as you read along. The
highlighted examples from the book are on the CD-ROM in the exsource folder. You
can edit these scripts in your favorite editor. Save your examples to a file and then
execute them with the Tcl source command:

source filename

The source command reads Tcl commands from a file and evaluates them just as if
you had typed them interactively.

Chapter 3 develops a sample application. To get started, just open an editor on a file
named cgi1.tcl. Each time you update this file you can save it, reload it into Tcl
with the source command, and test it again. Development goes quickly because you
do not wait for things to compile!

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

UNIX Tcl Scripts

On UNIX you can create a standalone Tcl or Tcl/Tk script much like an sh or csh
script. The trick is in the first line of the file that contains your script. If the first line
of a file begins with #!pathname, then UNIX uses pathname as the interpreter for the
rest of the script. The "Hello, World!" program from Chapter 1 is repeated in
Example 2-1 with the special starting line:

Example 2-1 A standalone Tcl script on UNIX

#!/usr/local/bin/tclsh
puts stdout {Hello, World!}

The Tk hello world program from Chapter 23 is shown in Example 2-2:

Example 2-2 A standalone Tk script on UNIX

#!/usr/local/bin/wish
button .hello -text Hello -command {puts "Hello, World!"}
pack .hello -padx 10 -pady 10

The actual pathnames for tclsh and wish may be different on your system. If you
type the pathname for the interpreter wrong, you receive a confusing "command not
found" error. You can find out the complete pathname of the Tcl interpreter with the
info nameofexecutable command. This is what appears on my system:

info nameofexecutable
=> /home/welch/install/linux-ix86/bin/tclsh8.4

Watch out for long pathnames.

On most UNIX systems, this special first line is limited to 32 characters, including
the #!. If the pathname is too long, you may end up with /bin/sh trying to
interpret your script, giving you syntax errors. You might try using a symbolic link
from a short name to the true, long name of the interpreter. However, watch out for
systems like older versions of Solaris in which the script interpreter cannot be a
symbolic link. Fortunately, Solaris doesn't impose a 32-character limit on the
pathname, so you can just use a long pathname.

The next example shows a trick that works around the pathname length limitation in
all cases. The trick comes from a posting to comp.lang.tcl by Kevin Kenny. It takes
advantage of a difference between comments in Tcl and the Bourne shell. Tcl
comments are described on page 16. In the example, the exec Bourne shell
command that runs the Tcl interpreter is hidden in a comment as far as Tcl is
concerned, but it is visible to /bin/sh. The exec command (in /bin/sh) replaces
the current program, so that is all that the Bourne shell processes; Tcl interprets the
rest of the script.

Example 2-3 Using /bin/sh to run a Tcl script

#!/bin/sh
The backslash makes the next line a comment in Tcl \
exec /some/very/long/path/to/wish "$0" ${1+"$@"}
... Tcl script goes here ...

You do not even have to know the complete pathname of tclsh or wish to use this
trick. You can just do the following:

#!/bin/sh
Run wish from the users PATH \
exec wish -f "$0" ${1+"$@"}

The drawback of an incomplete pathname is that many sites have different versions
of wish and tclsh that correspond to different versions of Tcl and Tk. In addition,
some users may not have these programs in their PATH.

You can hide more than one Bourne shell command in a script with this trick. For
example, you might need to set environment variables:

#!/bin/sh
\
export LD_LIBRARY_PATH=/usr/local/lib
\
exec /usr/local/bin/tclsh "$0" ${1+"$@"}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Windows Start Menu

You can add your Tcl/Tk programs to the Windows start menu. The command is the
complete name of the wish.exe program and the name of the script. The trick is that
the name of wish.exe has a space in it in the default configuration, so you must use
quotes. Your start command will look something like this:

"c:\Program Files\Tcl84\wish84.exe" "c:\My Files\script.tcl"

This starts c:\My Files\script.tcl as a standalone Tcl/Tk program.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Macintosh OS 8/9 and ResEdit

If you want to create a self-contained Tcl/Tk application on Macintosh OS 8 or 9, you
must copy the Wish program and add a Macintosh resource named tclshrc that has
the start-up Tcl code. The Tcl code can be a single source command that reads your
script file. Here are step-by-step instructions to create the resource using ResEdit:

First, make a copy of Wish and open the copy in ResEdit.

Pull down the Resource menu and select Create New Resource operation to
make a new TEXT resource.

ResEdit opens a window and you can type in text. Type in a source command
that names your script:

source "Hard Disk:Tcl/Tk 8.3:Applications:MyScript.tcl"

Set the name of the resource to be tclshrc. You do this through the Get
Resource Info dialog under the Resources menu in ResEdit.

This sequence of commands is captured in an application called Drag n Drop Tclets,
which comes with the Macintosh Tcl distribution. If you drag a Tcl script onto this
icon, it will create a copy of Wish and create the tclshrc text resource that has a
source command that will load that script.

If you have a Macintosh development environment, you can build a version of Wish
that has additional resources built right in. You add the resources to the
applicationInit.r file. If a resource contains Tcl code, you use it like this:

source -rcrc resource

If you don't want to edit resources, you can just use the Wish Source menu to
select a script to run.

Macintosh OS X

Mac OS X can run the same Tcl/Tk as Macintosh system 8 or 9. However, the
preferred version for Mac OS X is Tcl/Tk Aqua, which uses the native windowing
system known as Aqua. There are some differences in the application structure due
to the new application framework used when building this variant. Wish checks the
Resources/Scripts directory in its application bundle for a file called AppMain.tcl,
if found it is used as the startup script and the Scripts folder is added to the
auto_path. This is similar in spirit to the tclshrc resource described above. Daniel
Steffen deserves a great deal of credit for the Tcl/Tk Aqua port and his continued
support of the Macintosh platform. He has put together a great distribution that

includes many popular extensions, which you can find on the CD-ROM. You can find
out more about Tcl/Tk on Macintosh through these URLs:

http://wiki.tcl.tk/macos/

http://www.maths.mq.edu.au/~steffen/tcltk/

http://wiki.tcl.tk/macos/default.htm
http://www.maths.mq.edu.au/~steffen/tcltk/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The console Command

The Windows and Macintosh platforms have a built-in console that is used to enter
Tcl commands interactively. You can control this console with the console
command. The console is visible by default. Hide the console like this:

console hide

Display the console like this:

console show

The console is implemented by a second Tcl interpreter. You can evaluate Tcl
commands in that interpreter with:

console eval command

There is an alternate version of this console called TkCon. It is included on the CD-
ROM, and you can find current versions on the Internet. TkCon was created by Jeff
Hobbs and has lots of nice features. You can use TkCon on Unix systems, too. Some
of its features were added to console in 8.4.

Command-Line Arguments

If you run a script from the command line, for example from a UNIX shell, you can
pass the script command-line arguments. You can also specify these arguments in
the shortcut command in Windows. For example, under UNIX you can type this at a
shell:

% myscript.tcl arg1 arg2 arg3

In Windows, you can have a shortcut that runs wish on your script and also passes
additional arguments:

"c:\Program Files\Tcl84\wish.exe" c:\your\script.tcl arg1

The Tcl shells pass the command-line arguments to the script as the value of the
argv variable. The number of command-line arguments is given by the argc
variable. The name of the program, or script, is not part of argv nor is it counted by
argc. Instead, it is put into the argv0 variable. Table 2-2 lists all the predefined
variables in the Tcl shells. argv is a list, so you can use the lindex command, which
is described on page 63, to extract items from it:

set arg1 [lindex $argv 0]

The following script prints its arguments (foreach is described on page 79):

Example 2-4 The EchoArgs script

Tcl script to echo command line arguments
puts "Program: $argv0"
puts "Number of arguments: $argc"
set i 0
foreach arg $argv {
 puts "Arg $i: $arg"
 incr i
}

Command-Line Options to Wish

Some command-line options are interpreted by wish, and they do not appear in the
argv variable. The general form of the wish command line is:

wish ?options? ?script? ?arg1 arg2?

If no script is specified, then wish just enters an interactive command loop. Table 2-
1 lists the options that wish supports:

Table 2-1. Wish command line options

-colormap new Use a new private colormap. See page 624.

-display display Use the specified X display. UNIX only.

-geometry
geometry

The size and position of the window. See page 658.

-name name Specify the Tk application name. See page 648.

-sync Run X synchronously. UNIX only.

-use id Use the window specified by id for the main window. See page
667.

-visual visual Specify the visual for the main window. See page 624.

-- Terminate options to wish.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Predefined Variables

Table 2-2. Variables defined by tclsh and wish

argc The number of command-line arguments.

argv A list of the command-line arguments.

argv0 The name of the script being executed. If being used
interactively, argv0 is the name of the shell program.

embed_args The list of arguments in the <EMBED> tag. Tcl applets only. See
page 314.

env An array of the environment variables. See page 124.

tcl_interactive True (one) if the tclsh is prompting for commands.

tcl_library The script library directory.

tcl_patchLevel Modified version number, e.g., 8.0b1.

tcl_platform Array containing operating system information. See page 192.

tcl_prompt1 If defined, this is a command that outputs the prompt.

tcl_prompt2 If defined, this is a command that outputs the prompt if the
current command is not yet complete.

tcl_version Version number.

auto_path The search path for script library directories. See page 172.

auto_index A map from command name to a Tcl command that defines it.

auto_noload If set, the library facility is disabled.

auto_noexec If set, the auto execute facility is disabled.

geometry (wish only). The value of the -geometry argument.

Chapter 3. The Guestbook CGI Application
This chapter presents a simple Tcl program that computes a Web page. The chapter
provides a brief background to HTML and the CGI interface to Web servers. The
chapter uses the ncgi package from the standard Tcl library.

This chapter presents a complete, but simple, guestbook program that computes an
HTML document, or Web page, based on the contents of a simple database. The
basic idea is that a user with a Web browser visits a page that is computed by the
program. The details of how the page gets from your program to the user with the
Web browser vary from system to system. The Tcl Web Server described in Chapter
18 comes with this guestbook example already set up. You can also use these
scripts on your own Web server, but you will need help from your Webmaster to set
things up.

The chapter provides a very brief introduction to HTML and CGI programming. HTML
is a way to specify text formatting, including hypertext links to other pages on the
World Wide Web. CGI is a standard for communication between a Web server that
delivers documents and a program that computes documents for the server. There
are many books on these subjects alone.

A guestbook is a place for visitors to sign their name and perhaps provide other
information. We will build a guestbook that takes advantage of the World Wide Web.
Our guests can leave their address as a Universal Resource Location (URL). The
guestbook will be presented as a page that has hypertext links to all these URLs so
that other guests can visit them. The program works by keeping a simple database
of the guests, and it generates the guestbook page from the database.

The Tcl scripts described in this chapter use commands and techniques that are
described in more detail in later chapters. The goal of the examples is to
demonstrate the power of Tcl without explaining every detail. If the examples in this
chapter raise questions, you can follow the references to examples in other chapters
that do go into more depth.

A Quick Introduction to HTML

Web pages are written in a text markup language called HTML (HyperText Markup
Language). The idea of HTML is that you annotate, or mark up, regular text with
special tags that indicate structure and formatting. For example, the title of a Web
page is defined like this:

<TITLE>My Home Page</TITLE>

The tags provide general formatting guidelines, but the browsers that display HTML
pages have freedom in how they display things. This keeps the markup simple. The
general syntax for HTML tags is:

<tag parameters>normal text</tag>

As shown here, the tags usually come in pairs. The open tag may have some
parameters, and the close tag name begins with a slash. The case of a tag is not
considered, so <title>, <Title>, and <TITLE> are all valid and mean the same
thing. The corresponding close tag could be </title>, </Title>, </TITLE>, or even
</TiTlE>.

The <A> tag defines hypertext links that reference other pages on the Web. The
hypertext links connect pages into a Web so that you can move from page to page
to page and find related information. It is the flexibility of the links that makes the
Web so interesting. The <A> tag takes an HREF parameter that defines the
destination of the link. If you wanted to link to my home page, you would put this in
your page:

Brent Welch

When this construct appears in a Web page, your browser typically displays "Brent
Welch" in blue underlined text. When you click on that text, your browser switches
to the page at the address "http://www.beedub.com/". There is a lot more to HTML,
of course, but this should give you a basic idea of what is going on in the examples.
Table 3-1 summarizes the HTML tags that will be used in the examples:

Table 3-1. HTML tags used in the examples

HTML Main tag that surrounds the whole document.

HEAD Delimits head section of the HTML document.

TITLE Defines the title of the page.

BODY Delimits the body section. Lets you specify page colors.

H1 - H6 HTML defines 6 heading levels: H1, H2, H3, H4, H5, H6.

P Start a new paragraph.

BR One blank line.

B Bold text.

I Italic text.

A Used for hypertext links.

IMG Specify an image.

DL Definition list.

DT Term clause in a definition list.

DD Definition clause in a definition list.

UL An unordered list.

LI A bulleted item within a list.

TABLE Create a table.

TR A table row.

TD A cell within a table row.

FORM Defines a data entry form.

INPUT A one-line entry field, checkbox, radio button, or submit button.

TEXTAREA A multiline text field.

CGI for Dynamic Pages

There are two classes of pages on the Web: static and dynamic. A static page is
written and stored on a Web server, and the same thing is returned each time a user
views the page. This is the easy way to think about Web pages. You have some
information to share, so you compose a page and tinker with the HTML tags to get
the information to look good. If you have a home page, it is probably in this class.

In contrast, a dynamic page is computed each time it is viewed. This is how pages
that give up-to-the-minute stock prices work, for example. A dynamic page does not
mean it includes animations; it just means that a program computes the page
contents when a user visits the page. The advantage of this approach is that a user
might see something different each time he or she visits the page. As we shall see,
it is also easier to maintain information in a database of some sort and generate the
HTML formatting for the data with a program.

A CGI (Common Gateway Interface) program is used to compute Web pages. The
CGI standard defines how inputs are passed to the program as well as a way to
identify different types of results, such as images, plain text, or HTML markup. A
CGI program simply writes the contents of the document to its standard output, and
the Web server takes care of delivering the document to the user's Web browser.
Example 3-1 is a very simple CGI script:

Example 3-1 A simple CGI script

puts "Content-Type: text/html"
puts ""
puts "<TITLE>The Current Time</TITLE>"
puts "The time is [clock format [clock seconds]]"

The program computes a simple HTML page that has the current time. Each time a
user visits the page, she will see the current time on the server. The server that has
the CGI program and the user viewing the page might be on different sides of the
planet. The output of the program is divided into two sections: the protocol header
and the page contents. In this simple example, the protocol header just has a
Content-Type line that tells your Web browser what kind of data comes next. A
blank line separates the protocol header from the page, which starts with a
<TITLE> tag, in this case.

The clock command is used twice: once to get the current time in seconds, and a
second time to format the time into a nice-looking string. The clock command is
described in detail on page 183. Fortunately, there is no conflict between the
markup syntax used by HTML and the Tcl syntax for embedded commands, so we
can mix the two in the argument to the puts command. Double quotes are used to
group the argument to puts so that the clock command will be executed. Example
3-2 shows what the output of the program will look like:

Example 3-2 Output of Example 3-1

Content-Type: text/html

<TITLE>The Current Time</TITLE>
The time is Wed Jul 10 14:29:36 2002

This example is a bit sloppy in its use of HTML, but it should display properly in
most Web browsers. Example 3-3 includes all the required tags for a proper HTML
document.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The guestbook.cgi Script

The guestbook.cgi script computes a page that lists all the registered guests.
Example 3-3 is shown first, and then each part of it is discussed in more detail later.
One thing to note right away is that the HTML tags are generated by procedures
that hide the details of the HTML syntax. The first lines of the script use the UNIX
trick to have tclsh interpret the script. This is described on page 26:

Example 3-3 The guestbook.cgi script, version 1

#!/bin/sh
guestbook.cgi
Implement a simple guestbook page.
The set of visitors is kept in a simple database.
The newguest.cgi script will update the database.
\
exec tclsh "$0" ${1+"$@"}

The guestbook.data file has the database
The datafile is in the same directory as the script

set dir [file dirname [info script]]
set datafile [file join $dir guestbook.data]

puts "text/html"
puts ""
set title "Brent's Guestbook"
puts "<HTML><HEAD><TITLE>$title</TITLE></HEAD>"
puts "<BODY BGCOLOR=white TEXT=black>"
puts "<H1>$title</H1>"

if {![file exists $datafile]} {
 puts "No registered guests, yet.
 <P>
 Be the first
 registered guest!"
} else {
 puts "The following folks have registered in my GuestBook.
 <P>
 Register
 <H2>Guests</H2>"
 catch {source $datafile}
 foreach name [lsort [array names Guestbook]] {
 set item $Guestbook($name)
 set homepage [lindex $item 0]
 set markup [lindex $item 1]
 puts "<H3>$name</H3>"
 puts $markup
 }

}
puts "</BODY></HTML>"

Using a Script Library File

If you write one CGI script, you are likely to write several. You could start making
copies and modifying your first script, but that quickly becomes hard to maintain. If
you learn something new after writing your third script, will you remember to
update the first two scripts you wrote? Probably not. The best way to approach this
problem is to create a collection of Tcl procedures in a file that you share among all
your CGI scripts.

The Standard Tcl Library, tcllib, provides several packages of procedures that you
can use. Later in this chapter, we will look at the ncgi package that helps handle
form data. Before we do that, let's start a simple collection of our own procedures
and learn how to share them among several different CGI scripts. Suppose you have
a file cgihacks.tcl that contains your Tcl procedures. The source command loads
that file into your script. The naive approach shown here probably won't work:

source cgihacks.tcl

Loading a file from the same directory as your script

The problem is that the current directory of the CGI process may not be the same
as the directory that contains the CGI script or the cgihacks.tcl file. You can use
the info script command to find out where the CGI script is, and from that load
the supporting file. The file dirname and file join commands manipulate file
names in a platform-independent way. They are described on page 108. I use the
following trick to avoid putting absolute file names into my scripts, which would
have to be changed if the program moves later:

set dir [file dirname [info script]]
source [file join $dir cgihacks.tcl]

You can also create script libraries as described in Chapter 12. That chapter
describes tools to create an index of procedures so an application can quickly load
the procedures it needs, and how to create packages of procedures so you can keep
your code organized. However you set them up, it is always a good idea to have a
library of procedures you share with other applications.

Beginning the HTML Page

The way you start your HTML page is a great candidate for capturing in a Tcl
procedure. For example, I like to have the page title appear in the TITLE tag in the
head, and repeated in an H1 tag at the beginning of the body. You may also have a
favorite set of colors or fonts that you want to specify in the BODY tag. By putting
all this into a Tcl procedure, you can make it easy to share this among all your
scripts. If your tastes change tomorrow, then you can change the Tcl procedure in
one spot and affect all CGI scripts that share the procedure. Example 3-4 shows
Cgi_Header that generates a simple standard page header:

Example 3-4 The Cgi_Header procedure

proc Cgi_Header {title {body {bgcolor=white text=black}}} {
 puts stdout "Content-Type: text/html

<HTML>
<HEAD>
<TITLE>$title</TITLE>
</HEAD>
<BODY $body>
<H1>$title</H1>"
}

The Cgi_Header procedure takes as arguments the title for the page and some
optional parameters for the HTML BODY tag. The procedure definition uses the
syntax for an optional parameter, so you do not have to pass bodyparams to
Cgi_Header. The default specifies black text on a white background to avoid the
standard gray background of most browsers. Default values for procedure
parameters are described on page 87.

Example 3-5 The guestbook.cgi script, version 2

#!/bin/sh
guestbook.cgi
Implement a simple guestbook page.
The set of visitors is kept in a simple database.
The newguest.cgi script will update the database.
\
exec tclsh "$0" ${1+"$@"}

The guestbook.data file has the database
The datafile is in the same directory as the script

set dir [file dirname [info script]]
set datafile [file join $dir guestbook.data]

Load our supporting Tcl procedures to define Cgi_Header

source [file join $dir cgihacks.tcl]
Cgi_Header "Brent's Guestbook"

if {![file exists $datafile]} {
 puts "No registered guests, yet.
 <P>
 Be the first
 registered guest!"
} else {
 puts "The following folks have registered in my GuestBook.
 <P>
 Register
 <h2>Guests</h2>"
 catch {source $datafile}
 foreach name [lsort [array names Guestbook]] {
 set item $Guestbook($name)
 set homepage [lindex $item 0]
 set markup [lindex $item 1]
 puts "<H3>$name</H3>"
 puts $markup
 }
}
puts "</BODY></HTML>"

Example 3-5 is a new version of the original CGI script that loads the cgihacks.tcl
file and uses Cgi_Header. The Cgi_Header procedure just contains a single puts
command that generates the standard boilerplate that appears at the beginning of
the output. Note that several lines are grouped together with double quotes. Double
quotes are used so that the variable references mixed into the HTML are substituted
properly. The output of the Cgi_Header procedure matches what we wrote by hand
in Example 3-3.

Sample Output of the CGI Script

The program tests to see whether there are any registered guests or not. The file
command, which is described in detail on page 108, is used to see whether there is
any data. The exclamation point means "not" in a boolean expression:

if {![file exists $datafile]} {

If the database file does not exist, a different page is displayed to encourage a
registration. The page includes a hypertext link to a registration page,
newguest.html, which is described on page 43. The output of the program would be
as below in Example 3-6 if there were no data file:

Example 3-6 Initial output of guestbook.cgi with no data

Content-Type: text/html

<HTML>
<HEAD>

<TITLE>Brent's Guestbook</TITLE>
</HEAD>
<BODY BGCOLOR=white TEXT=black>
<H1>Brent's Guestbook</H1>
<P>
No registered guests.
 <P>
 Be the first
 registered guest!
</BODY></HTML>

Note the inconsistent indentation of the HTML that comes from the indentation in
the puts command used for that part of the page. The browser doesn't care about
white space in the HTML. You have a choice between lining up the Tcl commands in
your CGI script, or lining up the HTML output. Here we have two different examples.
The Cgi_Header procedure produces output that is lined up, but the procedure
definition looks a bit odd. The main script, in contrast, keeps its Tcl commands
neatly indented, but that shows up in the output. If you generate most of your
HTML from code, you may choose to keep your code tidy.

Example 3-7 shows the output of the guestbook.cgi script when there is some data
in the data file:

Example 3-7 Output of guestbook.cgi with guestbook data

Content-Type: text/html

<HTML>
<HEAD>
<TITLE>Brent's Guestbook</TITLE>
</HEAD>
<BODY BGCOLOR=white TEXT=black>
<H1>Brent's Guestbook</H1>
<P>
The following folks have registered in my guestbook.
 <P>
 Register
 <H2>Guests</H2>
<H3>Brent Welch</H3>

</BODY></HTML>

Using a Tcl Array for the Database

The data file contains Tcl commands that define an array that holds the guestbook
data. If this file is kept in the same directory as the guestbook.cgi script, then you
can compute its name:

set dir [file dirname [info script]]
set datafile [file join $dir guestbook.data]

By using Tcl commands to represent the data, we can load the data with the source
command. The catch command is used to protect the script from a bad data file,
which will show up as an error from the source command. Catching errors is
described in detail on page 85:

catch {source $datafile}

The Guestbook variable is the array defined in guestbook.data. Array variables are
the topic of Chapter 8. Each element of the array is defined with a Tcl command that
looks like this:

set Guestbook(key) {url markup}

The person's name is the array index, or key. The value of the array element is a Tcl
list with two elements: their URL and some additional HTML markup that they can
include in the guestbook. Tcl lists are the topic of Chapter 5. The following example
shows what the command looks like with real data:

set {Guestbook(Brent Welch)} {
 http://www.beedub.com/
 {}
}

The spaces in the name result in additional braces to group the whole variable name
and each list element. This syntax is explained on page 96. Do not worry about it
now. We will see on page 46 that all the braces in the previous statement are
generated automatically. The main point is that the person's name is the key, and
the value is a list with two elements.

The array names command returns all the indices, or keys, in the array, and the
lsort command sorts these alphabetically. The foreach command loops over the
sorted list, setting the loop variable x to each key in turn:

foreach name [lsort [array names Guestbook]] {

The lsort command will sort the names based on the person's first name. You can
have lsort sort things in a variety of ways. One trick we can use here is to have
lsort treat each key as a list and sort on the last item in the list (i.e., the last
name):

foreach name [lsort -index end [array names Guestbook]] {

The lsort command is described in more detail on page 70. The foreach command
assigns name to each key of the Guestbook array. We get the value like this:

set item $Guestbook($name)

The two list elements are extracted with lindex, which is described on page 68.

set homepage [lindex $item 0]
set markup [lindex $item 1]

We generate the HTML for the guestbook entry as a level-three header that contains
a hypertext link to the guest's home page. We follow the link with any HTML markup
text that the guest has supplied to embellish his or her entry:

puts "<H3>$name</H3>"
puts $markup

The homepage and markup variables are not strictly necessary, and the code could be
written more compactly without them. However, the variables make the code more
understandable. Here is what it looks like without the temporary variables:

puts "<H3>$name</H3>"
puts [lindex $item 1]

Defining Forms and Processing Form Data

The guestbook.cgi script only generates output. The other half of CGI deals with input from the
user. Input is more complex for two reasons. First, we have to define another HTML page that has
a form for the user to fill out. Second, the data from the form is organized and encoded in a
standard form that must be decoded by the script. Example 3-8 on page 43 defines a very simple
form, and the procedure that decodes the form data is shown in Example 11-6 on page 165.

The guestbook page contains a link to newguest.html. This page contains a form that lets a user
register his or her name, home page URL, and some additional HTML markup. The form has a
submit button. When a user clicks that button in her browser, the information from the form is
passed to the newguest.cgi script. This script updates the database and computes another page
for the user that acknowledges the user's contribution.

The newguest.html Form

An HTML form contains tags that define data entry fields, buttons, checkboxes, and other
elements that let the user specify values. For example, a one-line entry field that is used to enter
the home page URL is defined like this:

<INPUT TYPE=text NAME=url>

The INPUT tag is used to define several kinds of input elements, and its type parameter indicates
what kind. In this case, TYPE=text creates a one-line text entry field. The submit button is
defined with an INPUT tag that has TYPE=submit, and the VALUE parameter becomes the text that
appears on the submit button:

<INPUT TYPE=submit NAME=submit VALUE=Register>

A general type-in window is defined with the TEXTAREA tag. This creates a multiline, scrolling text
field that is useful for specifying lots of information, such as a free-form comment. In our case, we
will let guests type in HTML that will appear with their guestbook entry. The text between the
open and close TEXT-AREA tags is inserted into the type-in window when the page is first
displayed.

<TEXTAREA NAME=markup ROWS=10 COLS=50>Hello.</TEXTAREA>

A common parameter to the form tags is NAME=something. This name identifies the data that will
come back from the form. The tags also have parameters that affect their display, such as the
label on the submit button and the size of the text area. Those details are not important for our
example. The complete form is shown in Example 3-8:

Example 3-8 The newguest.html form

<HTML>
<HEAD>
<TITLE>Register in my Guestbook</TITLE>
</HEAD>
<BODY BGCOLOR=white TEXT=black>

<FORM ACTION="newguest.cgi" METHOD="POST">

<H1>Register in my Guestbook</H1>

Name <INPUT TYPE="text" NAME="name" SIZE="40">

URL <INPUT TYPE="text" NAME="url" SIZE="40">
<P>
If you don't have a home page, you can use an email URL like "mailto:welch@acm.org"
Additional HTML to include after your link:

<TEXTAREA NAME="html" COLS="60" ROWS="15">
</TEXTAREA>
<INPUT TYPE="submit" NAME="new" VALUE="Add me to your guestbook">
<INPUT TYPE="submit" NAME="update" VALUE="Update my guestbook entry">

</FORM>

</BODY>
</HTML>

The ncgi and cgi.tcl Packages

The newguest.cgi script uses the ncgi package to process form data. This is one of many
packages available in the Standard Tcl Library, commonly known as "tcllib". If you don't have tcllib
installed, you can find it on the CD-ROM, on SourceForge at www.sf.net/projects/tcllib, or via the
main www.tcl.tk Web site. If your Tcl installation includes tcllib, then you use the package
command to load the package.

package require ncgi

The procedures in the ncgi package are in the ncgi namespace. Tcl namespaces are described in
detail in Chapter 14. Procedures in a namespace are qualified with the name of the namespace
and :: syntax. For example, the standard setup procedure for a CGI script is ncgi::parse.

The "n" in ncgi is for "new". Don Libes wrote the original package for CGI scripts known as
cgi.tcl. There is also the cgilib.tcl package that contains Cgi_Header and some other
procedures described in earlier editions of this book. The ncgi and html packages of tcllib provide
most of the features in both cgi.tcl and cgilib.tcl, but follow the standard namespace
conventions use by the packages in tcllib. You can still find cgi.tcl on the Web at

http://expect.nist.gov/cgi.tcl/

The newguest.cgi Script

When the user clicks the Submit button in her browser, the data from the form is passed to the
program identified by the ACTION parameter of the form tag. That program takes the data, does
something useful with it, and then returns a new page for the browser to display. In our case, the
FORM tag names newguest.cgi as the program to handle the data:

<FORM ACTION=newguest.cgi METHOD=POST>

The CGI specification defines how the data from the form is passed to the program. The data is
encoded and organized so that the program can figure out the values the user specified for each
form element. The encoding is handled rather nicely with some regular expression tricks that are
done in ncgi::parse. ncgi::parse saves the form data, and ncgi::value gets a form value in
the script. These procedures are described in Example 11-6 on page 165. Example 3-9 starts out
by calling ncgi::parse:

Example 3-9 The newguest.cgi script

http://www.sf.net/projects/tcllib
http://www.tcl.tk/default.htm
http://expect.nist.gov/cgi.tcl/default.htm

#!/bin/sh
\
exec tclsh "$0" ${1+"$@"}

Use the ncgi package from tcllib to process form data

package require ncgi
ncgi::parse

Load our data file and supporting procedures

set dir [file dirname [info script]]
set datafile [file join $dir guestbook.data]
source [file join $dir cgihacks.tcl]

Open the datafile in append mode

if {[catch {open $datafile a} out]} {
 Cgi_Header "Guestbook Registration Error" \
 {BGCOLOR=black TEXT=red}
 puts "<P>Cannot open the data file<P>"
 puts $out;# the error message
 exit 0
}

Append a Tcl set command that defines the guest's entry

puts $out ""
puts $out [list set Guestbook([ncgi::value name]) \
 [list [ncgi::value url] [ncgi::value html]]]
close $out

Return a page to the browser

Cgi_Header "Guestbook Registration Confirmed" \
 {BGCOLOR=white TEXT=black}

puts "
<TABLE BORDER=1>
<TR><TD>Name</TD>
<TD>[ncgi::value name]</TD></TR>
<TR><TD>URL</TD>
<TD>[ncgi::value url]</TD></TR>
<TR><TD>Extra HTML</TD>
<TD>[ncgi::value html]</TD></TR>
</TABLE>
"

puts </BODY></HTML>

Using Tcl Scripts to Store Data

The main idea of the newguest.cgi script is that it saves the data to a file as a Tcl command that
defines an element of the Guestbook array. This lets the guestbook.cgi script simply load the
data by using the Tcl source command. This trick of storing data as a Tcl script saves us from the
chore of defining a new file format and writing code to parse it. Instead, we can rely on the well-
tuned Tcl implementation to do the hard work for us efficiently.

The script opens the datafile in append mode so that it can add a new record to the end. Opening
files is described in detail on page 116. The script uses a catch command to guard against errors.
If an error occurs, a page explaining the error is returned to the user. Working with files is one of
the most common sources of errors (permission denied, disk full, file-not-found, and so on), so I
always open the file inside a catch statement:

if {[catch {open $datafile a} out]} {
 # an error occurred
} else {
 # open was ok
}

In this command, the variable out gets the result of the open command, which is either a file
descriptor or an error message. This style of using catch is described in detail in Example 6-14 on
page 83.

Use list to generate Tcl commands.

The script writes the data as a Tcl set command. The list command is used to format the data
properly:

puts $out [list set Guestbook([ncgi::value name]) \
 [list [ncgi::value url] [ncgi::value html]]]

There are two lists. First, the url and html values are formatted into one list. This list will be the
value of the array element. Then the whole Tcl command is formed as a list. In simplified form,
the command is generated from this:

list set variable value

Using the list command ensures that the result will always be a valid Tcl command that sets the
variable to the given value. This is a very important technique. If you want to generate Tcl
commands, the best way to do it is to generate lists using list manipulation commands. The list
command is described in more detail on page 65.

Handling Errors in CGI Scripts

One of the more frustrating aspects of CGI programming is that errors in your script
result in blank browser pages, and it may be difficult or impossible to find any trace
of the error message. The other main problem is that your Web server may not be
configured properly to find your CGI script. I use two simple tricks to track down the
source of these errors. The first trick simply verifies that my script has run at all by
creating an empty file somewhere on the Web server. On a UNIX system, you can
put this line at the beginning of your script:

close [open /tmp/my_cgi_script_ran w]

When you aim the browser at your CGI script, it should at least create the file. If
not, then the Web server cannot find your script, or it cannot find the Tclsh required
by your script. Double-check your setup and the #! line in your script. On Windows,
your best bet may be to use the TclHttpd Web server, which has a built-in ability to
run Tcl CGI scripts. TclHttpd has other even cooler ways to generate pages, too.

If your script suddenly stops working after you've modified it, then you have
introduced a programming bug. I generally put all of the script into a catch
statement and print out any errors that occur. That way the errors will be displayed
by the browser instead of filed into the void by your Web server. Example 3-10
shows the newguest.cgi script rewritten so the catch statement surrounds all the
statements. At the end, the value of the errorInfo variable is printed out if an error
has occurred:

Example 3-10 The newguest.cgi script with error handling

#!/bin/sh
\
exec tclsh "$0" ${1+"$@"}

Trap all errors

if {[catch {

Use the ncgi package from tcllib to process form data

package require ncgi
ncgi::parse

Load our data file and supporting procedures

set dir [file dirname [info script]]
set datafile [file join $dir guestbook.data]
source [file join $dir cgihacks.tcl]

Open the datafile in append mode

set out [open $datafile a]

Append a Tcl set command that defines the guest's entry

puts $out ""
puts $out [list set Guestbook([ncgi::value name]) \
 [list [ncgi::value url] [ncgi::value html]]]
close $out

Return a page to the browser
Cgi_Header "Guestbook Registration Confirmed" \
 {BGCOLOR=white TEXT=black}

puts "
<TABLE BORDER=1>
<TR><TD>Name</TD>
<TD>[ncgi::value name]</TD></TR>
<TR><TD>URL</TD>
<TD>[ncgi::value url]</TD></TR>
<TR><TD>Extra HTML</TD>
<TD>[ncgi::value html]</TD></TR>
</TABLE>
</BODY></HTML>
"

End of main script

} err]} {

 # Error occurred - display in the Web page

 puts "Content-Type: text/plain"
 puts ""
 puts "CGI error occurred in [info script]"
 puts $errorInfo

}

Next Steps

There are a number of details that can be added to this example. Users may want to
update their entry, for example. They could do that now, but they would have to
retype everything. They might also like a chance to check the results of their
registration and make changes before committing them. This requires another page
that displays their guest entry as it would appear on a page, and also has the fields
that let them update the data.

The details of how a CGI script is hooked up with a Web server vary from server to
server. You should ask your local Webmaster for help if you want to try this out on
your local Web site. The Tcl Web Server comes with this guestbook example already
set up, plus it has a number of other very interesting ways to generate pages. My
own taste in Web page generation has shifted from CGI to a template-based
approach supported by the Tcl Web Server. This is the topic of Chapter 18.

The next few chapters describe basic Tcl commands and data structures. We return
to the CGI example in Chapter 11 on regular expressions.

Chapter 4. String Processing in Tcl
This chapter describes string manipulation and simple pattern matching. Tcl
commands described are: string, append, format, scan, and binary. The string
command is a collection of several useful string manipulation operations.

Strings are the basic data item in Tcl, so it should not be surprising that there are a
large number of commands to manipulate strings. A closely related topic is pattern
matching, in which string comparisons are made more powerful by matching a
string against a pattern. This chapter describes a simple pattern matching
mechanism that is similar to that used in many other shell languages. Chapter 11
describes a more complex and powerful regular expression pattern matching
mechanism.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The string Command

The string command is really a collection of operations you can perform on strings. The following example
calculates the length of the value of a variable.

set name "Brent Welch"
string length $name
=> 11

The first argument to string determines the operation. You can ask string for valid operations by giving it
a bad one:

[View full width]

string junk
=> bad option "junk": should be bytelength, compare, equal, first, index, is, last, length
, map, match, range, repeat, replace, tolower, totitle, toupper, trim, trimleft, trimright,
 wordend, or wordstart

This trick of feeding a Tcl command bad arguments to find out its usage is common across many
commands. Table 4-1 summarizes the string command.

Table 4-1. The string command

string
bytelength str

Returns the number of bytes used to store a string, which may be different from the
character length returned by string length because of UTF-8 encoding. See page 220
of Chapter 15 about Unicode and UTF-8.

string compare
?-nocase? ?-
length len?
str1 str2

Compares strings lexicographically. Use -nocase for case insensitive comparison. Use -
length to limit the comparison to the first len characters. Returns 0 if equal, -1 if str1
sorts before str2, else 1.

string equal ?-
nocase? str1
str2

Compares strings and returns 1 if they are the same. Use -nocase for case insensitive
comparison.

string first
subString
string ?
startIndex?

Returns the index in string of the first occurrence of subString, or -1 if string is not
found. startIndex may be specified to start in the middle of string.

string index
string index

Returns the character at the specified index. An index counts from zero. Use end for the
last character.

string is class
?-strict? ?-
failindex
varname? string

Returns 1 if string belongs to class. If -strict, then empty strings never match,
otherwise they always match. If -failindex is specified, then varname is assigned the
index of the character in string that prevented it from being a member of class. See
Table 4-3 on page 54 for character class names.

string last
subString
string ?
startIndex?

Returns the index in string of the last occurrence of subString, or -1 if subString is
not found. startIndex may be specified to start in the middle of string.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/&r=noccc&xmlid=0-13-038560-3/ch04lev1sec1#PLID1

string length
string

Returns the number of characters in string.

string map ?-
nocase? charMap
string

Returns a new string created by mapping characters in string according to the input,
output list in charMap. See page 55.

string match ?-
nocase? pattern
str

Returns 1 if str matches the pattern, else 0. Glob-style matching is used. See page 53.

string range
str i j

Returns the range of characters in str from i to j.

string repeat
str count

Returns str repeated count times.

string replace
str first last
?newstr?

Returns a new string created by replacing characters first through last with newstr,
or nothing.

string tolower
string ?first?
?last?

Returns string in lower case. first and last determine the range of string on which
to operate.

string totitle
string ?first?
?last?

Capitalizes string by replacing its first character with the Unicode title case, or upper
case, and the rest with lower case. first and last determine the range of string on
which to operate.

string toupper
string ?first?
?last?

Returns string in upper case. first and last determine the range of string on which
to operate.

string trim
string ?chars?

Trims the characters in chars from both ends of string. chars defaults to whitespace.

string trimleft
string ?chars?

Trims the characters in chars from the beginning of string. chars defaults to
whitespace.

string
trimright
string ?chars?

Trims the characters in chars from the end of string. chars defaults to whitespace.

string wordend
str ix

Returns the index in str of the character after the word containing the character at
index ix.

string
wordstart str
ix

Returns the index in str of the first character in the word containing the character at
index ix.

These are the string operations I use most:

The equal operation, which is shown in Example 4-2 on page 53.

String match. This pattern matching operation is described on page 53.

The tolower, totitle, and toupper operations convert case.

The trim, trimright, and trimleft operations are handy for cleaning up strings.

These new operations were added in Tcl 8.1 (actually, they first appeared in the 8.1.1 patch release):

The equal operation, which is simpler than using string compare.

The is operation that test for kinds of strings. String classes are listed in Table 4-3 on page 54.

The map operation that translates characters (e.g., like the Unix tr command.)

The repeat and replace operations.

The totitle operation, which is handy for capitalizing words.

String Indices

Several of the string operations involve string indices that are positions within a string. Tcl counts characters
in strings starting with zero. The special index end is used to specify the last character in a string:

string range abcd 2 end
=> cd

Tcl 8.1 added syntax for specifying an index relative to the end. Specify end-N to get the Nth character
before the end. For example, the following command returns a new string that drops the first and last
characters from the original:

string range $string 1 end-1

There are several operations that pick apart strings: first, last, wordstart, wordend, index, and range.
If you find yourself using combinations of these operations to pick apart data, it may be faster if you can do
it with the regular expression pattern matcher described in Chapter 11.

Strings and Expressions

Strings can be compared with expr, if, and while using the comparison operators eq, ne, ==, !=, < and >.
However, there are a number of subtle issues that can cause problems. First, you must quote the string
value so that the expression parser can identify it as a string type. Then, you must group the expression
with curly braces to prevent the double quotes from being stripped off by the main interpreter:

if {$x == "foo"} command

expr is only reliable for string comparison when using eq or ne.

Despite the quotes, the expression operators that work on numbers and strings first convert try converting
items to numbers if possible, and then converts them back if it detects a case of string comparison. The
conversion back is always done as a decimal number. This can lead to unexpected conversions between
strings that look like hexadecimal or octal numbers. The following boolean expression is true!

if {"0xa" == "10"} { puts stdout ack! }
=> ack!

A safe way to compare strings is to use the string compare and string equal operations. The eq and ne
expr operators were introduced in 8.4 to allow more compact strict string comparison. These operations
also work faster because the unnecessary conversions are eliminated. Like the C library strcmp function,
string compare returns 0 if the strings are equal, minus 1 if the first string is lexicographically less than
the second, or 1 if the first string is greater than the second:

Example 4-1 Comparing strings with string compare

if {[string compare $s1 $s2] == 0} {
 # strings are equal
}

The string equal command added in Tcl 8.1 makes this simpler:

Example 4-2 Comparing strings with string equal

if {[string equal $s1 $s2]} {
 # strings are equal
}

The eq operator added in Tcl 8.4 is semantically equal, but more compact. It also avoids any internal format
conversions. There is also a ne operator to efficiently test for inequality.

Example 4-3 Comparing strings with eq

if {$s1 eq $s2} {
 # strings are equal
}

String Matching

The string match command implements glob-style pattern matching that is modeled after the file name
pattern matching done by various UNIX shells. The heritage of the word "glob" is rooted in UNIX, and Tcl
preserves this historical oddity in the glob command that does pattern matching on file names. The glob
command is described on page 122. Table 4-2 shows the three constructs used in string match patterns:

Table 4-2. Matching characters used with string match

* Match any number of any characters.

? Match exactly one character.

[chars] Match any character in chars.

Any other characters in a pattern are taken as literals that must match the input exactly. The following
example matches all strings that begin with a:

string match a* alpha
=> 1

To match all two-letter strings:

string match ?? XY
=> 1

To match all strings that begin with either a or b:

string match {[ab]*} cello
=> 0

Be careful! Square brackets are also special to the Tcl interpreter, so you will need to wrap the pattern up in
curly braces to prevent it from being interpreted as a nested command. Another approach is to put the
pattern into a variable:

set pat {[ab]*x}
string match $pat box
=> 1

You can specify a range of characters with the syntax [x-y]. For example, [a-z] represents the set of all
lower-case letters, and [0-9] represents all the digits. You can include more than one range in a set. Any
letter, digit, or the underscore is matched with:

string match {[a-zA-Z0-9_]} $char

The set matches only a single character. To match more complicated patterns, like one or more characters
from a set, then you need to use regular expression matching, which is described on page 158.

If you need to include a literal *, ?, or bracket in your pattern, preface it with a backslash:

string match {*\?} what?
=> 1

In this case the pattern is quoted with curly braces because the Tcl interpreter is also doing backslash
substitutions. Without the braces, you would have to use two backslashes. They are replaced with a single
backslash by Tcl before string match is called.

string match *\\? what?

Character Classes

The string is command tests a string to see whether it belongs to a particular class. This is useful for
input validation. For example, to make sure something is a number, you do:

if {![string is integer -strict $input]} {
 error "Invalid input. Please enter a number."
}

Classes are defined in terms of the Unicode character set, which means they are more general than
specifying character sets with ranges over the ASCII encoding. For example, alpha includes many
characters outside the range of [A-Za-z] because of different characters in other alphabets. The classes are
listed in Table 4-3.

Table 4-3. Character class names

alnum Any alphabet or digit character.

alpha Any alphabet character.

ascii Any character with a 7-bit character code (i.e., less than 128.)

boolean A valid Tcl boolean value, such as 0, 1, true, false (in any case).

control Character code less than 32, and not NULL.

digit Any digit character.

double A valid floating point number.

false A valid Tcl boolean false value, such as 0 or false (in any case).

graph Any printing characters, not including space characters.

integer A valid integer.

lower A string in all lower case.

print A synonym for alnum.

punct Any punctuation character.

space Space, tab, newline, carriage return, vertical tab, backspace.

true A valid Tcl boolean true value, such as 1 or true (in any case).

upper A string all in upper case.

wordchar Alphabet, digit, and the underscore.

xdigit Valid hexadecimal digits.

Mapping Strings

The string map command translates a string based on a character map. The map is in the form of a input,
output list. Wherever a string contains an input sequence, that is replaced with the corresponding output.
For example:

string map {f p d l} food
=> pool

The inputs and outputs can be more than one character and they do not have to be the same length:

string map {f p d ll oo u} food
=> pull

Example 4-4 is more practical. It uses string map to replace fancy quotes and hyphens produced by
Microsoft Word into ASCII equivalents. It uses the open, read, and close file operations that are described
in Chapter 9, and the fconfigure command described on page 234 to ensure that the file format is UNIX
friendly.

Example 4-4 Mapping Microsoft World special characters to ASCII

proc Dos2Unix {filename} {
 set input [open $filename]
 set output [open $filename.new]
 fconfigure $output -translation lf
 puts $output [string map {
 \223 "
 \224 "
 \222 '
 \226 -
 } [read $input]]
 close $input
 close $output
}

The append Command

The append command takes a variable name as its first argument and concatenates
its remaining arguments onto the current value of the named variable. The variable
is created if it does not already exist:

set foo z
append foo a b c
set foo
=> zabc

The append command is efficient with large strings.

The append command provides an efficient way to add items to the end of a string.
It modifies a variable directly, so it can exploit the memory allocation scheme used
internally by Tcl. Using the append command like this:

append x " some new stuff"

is always faster than this:

set x "$x some new stuff"

The lappend command described on page 65 has similar performance benefits when
working with Tcl lists.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The format Command

The format command is similar to the C printf function. It formats a string
according to a format specification:

format spec value1 value2 ...

The spec argument includes literals and keywords. The literals are placed in the
result as is, while each keyword indicates how to format the corresponding
argument. The keywords are introduced with a percent sign, %, followed by zero or
more modifiers, and terminate with a conversion specifier. The most general
keyword specification for each argument contains up to six parts:

position specifier

flags

field width

precision

word length

conversion character

Example keywords include %f for floating point, %d for integer, and %s for string
format. Use %% to obtain a single percent character. The following examples use
double quotes around the format specification. This is because often the format
contains white space, so grouping is required, as well as backslash substitutions like
\t or \n, and the quotes allow substitution of these special characters. Table 4-4
lists the conversion characters:

Table 4-4. Format conversions

d Signed integer.

u Unsigned integer.

i Signed integer. The argument may be in hex (0x) or octal (0) format.

o Unsigned octal.

x or X Unsigned hexadecimal. 'x' gives lowercase results.

c Map from an integer to the ASCII character it represents.

s A string.

f Floating point number in the format a.b.

e or E Floating point number in scientific notation, a.bE+-c.

g or G Floating point number in either %f or %e format, whichever is shorter.

A position specifier is i$, which means take the value from argument i as opposed
to the normally corresponding argument. The position counts from 1. If a position is
specified for one format keyword, the position must be used for all of them. If you
group the format specification with double quotes, you need to quote the $ with a
backslash:

set lang 2
format "%${lang}\$s" one un uno
=> un

The position specifier is useful for picking a string from a set, such as this simple
language-specific example. The message catalog facility described in Chapter 15 is a
much more sophisticated way to solve this problem. The position is also useful if the
same value is repeated in the formatted string.

The flags in a format are used to specify padding and justification. In the following
examples, the # causes a leading 0x to be printed in the hexadecimal value. The
zero in 08 causes the field to be padded with zeros. Table 4-5 summarizes the
format flag characters.

format "%#x" 20
=> 0x14
format "%#08x" 10
=> 0x0000000a

After the flags you can specify a minimum field width value. The value is padded to
this width with spaces, or with zeros if the 0 flag is used:

Table 4-5. Format flags

- Left justify the field.

+ Always include a sign, either + or -.

space Precede a number with a space, unless the number has a leading sign.
Useful for packing numbers close together.

0 Pad with zeros.

Leading 0 for octal. Leading 0x for hex. Always include a decimal point in
floating point. Do not remove trailing zeros (%g).

format "%-20s %3d" Label 2
=> Label 2

You can compute a field width and pass it to format as one of the arguments by
using * as the field width specifier. In this case the next argument is used as the
field width instead of the value, and the argument after that is the value that gets
formatted.

set maxl 8
format "%-*s = %s" $maxl Key Value
=> Key = Value

The precision comes next, and it is specified with a period and a number. For %f and
%e it indicates how many digits come after the decimal point. For %g it indicates the
total number of significant digits used. For %d and %x it indicates how many digits
will be printed, padding with zeros if necessary.

format "%6.2f %6.2d" 1 1
=> 1.00 01

The storage length part comes last but it only became useful in Tcl 8.4 where wide
integer support was added. Otherwise Tcl maintains all floating point values in
double-precision, and all integers as long words. Wide integers are a minimum of
64-bits wide. By adding the l (long) word length specifier, we can see the difference
between regular and wide integers.

format %u -1
=> 4294967295
format %lu -1
=> 18446744073709551615

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The scan Command

The scan command parses a string according to a format specification and assigns
values to variables. It returns the number of successful conversions it made, unless
no capture variables are given, in which case it returns the scan matches in a list.
The general form of the command is:

scan string format ?var? ?var? ?var? ...

The format for scan is nearly the same as in the format command. The %c scan
format converts one character to its decimal value.

The scan format includes a set notation. Use square brackets to delimit a set of
characters. The set matches one or more characters that are copied into the
variable. A dash is used to specify a range. The following scans a field of all
lowercase letters.

scan abcABC {%[a-z]} result
=> 1
set result
=> abc

If the first character in the set is a right square bracket, then it is considered part of
the set. If the first character in the set is ^, then characters not in the set match.
Again, put a right square bracket immediately after the ^ to include it in the set.
Nothing special is required to include a left square bracket in the set. As in the
previous example, you will want to protect the format with braces, or use
backslashes, because square brackets are special to the Tcl parser.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The binary Command

Tcl 8.0 added support for binary strings. Previous versions of Tcl used null-
terminated strings internally, which foils the manipulation of some types of data. Tcl
now uses counted strings, so it can tolerate a null byte in a string value without
truncating it.

This section describes the binary command that provides conversions between
strings and packed binary data representations. The binary format command takes
values and packs them according to a template. For example, this can be used to
format a floating point vector in memory suitable for passing to Fortran. The
resulting binary value is returned:

binary format template value ?value ...?

The binary scan command extracts values from a binary string according to a
similar template. For example, this is useful for extracting data stored in binary data
file. It assigns values to a set of Tcl variables:

binary scan value template variable ?variable ...?

Format Templates

The format template consists of type keys and counts. The count is interpreted
differently depending on the type. For types like integer (i) and double (d), the
count is a repetition count (e.g., i3 means three integers). For strings, the count is
a length (e.g., a3 means a three-character string). If no count is specified, it
defaults to 1. If count is *, then binary scan uses all the remaining bytes in the
value.

Several type keys can be specified in a template. Each key-count combination
moves an imaginary cursor through the binary data. There are special type keys to
move the cursor. The x key generates null bytes in binary format, and it skips
over bytes in binary scan. The @ key uses its count as an absolute byte offset to
which to set the cursor. As a special case, @* skips to the end of the data. The X key
backs up count bytes. The types are summarized in Table 4-6. In the table, count is
the optional count following the type letter.

Table 4-6. Binary conversion types

a A character string of length count. Padded with nulls in binary format.

A A character string of length count. Padded with spaces in binary format. Trailing
nulls and blanks are discarded in binary scan.

b A binary string of length count. Low-to-high order.

B A binary string of length count. High-to-low order.

h A hexadecimal string of length count. Low-to-high order.

H A hexadecimal string of length count. High-to-low order. (More commonly used
than h.)

c An 8-bit character code. The count is for repetition.

s A 16-bit integer in little-endian byte order. The count is for repetition.

S A 16-bit integer in big-endian byte order. The count is for repetition.

i A 32-bit integer in little-endian byte order. The count is for repetition.

I A 32-bit integer in big-endian byte order. The count is for repetition.

f Single-precision floating point value in native format.The count is for repetition.

d Double-precision floating point value in native format. The count is for repetition.

w A 64-bit integer in little-endian byte order. The count is for repetition. (Tcl 8.4)

W A 64-bit integer in big-endian byte order. The count is for repetition. (Tcl 8.4)

x Pack count null bytes with binary format.

Skip count bytes with binary scan.

X Backup count bytes.

@ Skip to absolute position specified by count. If count is *, skip to the end.

Numeric types have a particular byte order that determines how their value is laid
out in memory. The type keys are lowercase for little-endian byte order (e.g., Intel)
and uppercase for big-endian byte order (e.g., SPARC and Motorola). Different
integer sizes are 16-bit (s or S), 32-bit (i or I), and, with Tcl 8.4 or greater, 64-bit
(w or W). Note that the official byte order for data transmitted over a network is big-
endian. Floating point values are always machine-specific, so it only makes sense to
format and scan these values on the same machine.

There are three string types: character (a or A), binary (b or B), and hexadecimal (h
or H). With these types the count is the length of the string. The a type pads its
value to the specified length with null bytes in binary format and the A type pads
its value with spaces. If the value is too long, it is truncated. In binary scan, the A
type strips trailing blanks and nulls.

A binary string consists of zeros and ones. The b type specifies bits from low-to-high
order, and the B type specifies bits from high-to-low order. A hexadecimal string
specifies 4 bits (i.e., nybbles) with each character. The h type specifies nybbles from
low-to-high order, and the H type specifies nybbles from high-to-low order. The B
and H formats match the way you normally write out numbers.

Examples

When you experiment with binary format and binary scan, remember that Tcl
treats things as strings by default. A "6", for example, is the character 6 with
character code 54 or 0x36. The c type returns these character codes:

set input 6
binary scan $input "c" 6val
set 6val
=> 54

You can scan several character codes at a time:

binary scan abc "c3" list
=> 1
set list
=> 97 98 99

The previous example uses a single type key, so binary scan sets one
corresponding Tcl variable. If you want each character code in a separate variable,
use separate type keys:

binary scan abc "ccc" x y z
=> 3
set z
=> 99

Use the H format to get hexadecimal values:

binary scan 6 "H2" 6val
set 6val
=> 36

Use the a and A formats to extract fixed width fields. Here the * count is used to get
all the rest of the string. Note that A trims trailing spaces:

binary scan "hello world " a3x2A* first second
puts "\"$first\" \"$second\""
=> "hel" " world"

Use the @ key to seek to a particular offset in a value. The following command gets
the second double-precision number from a vector. Assume the vector is read from
a binary data file:

binary scan $vector "@8d" double

With binary format, the a and A types create fixed width fields. A pads its field
with spaces, if necessary. The value is truncated if the string is too long:

binary format "A9A3" hello world
=> hello wor

An array of floating point values can be created with this command:

binary format "f*" 1.2 3.45 7.43 -45.67 1.03e4

Remember that floating point values are always in native format, so you have to
read them on the same type of machine that they were created. With integer data
you specify either big-endian or little-endian formats. The tcl_platform variable
described on page 193 can tell you the byte order of the current platform.

Binary Data and File I/O

When working with binary data in files, you need to turn off the newline translations
and character set encoding that Tcl performs automatically. These are described in
more detail on pages 120 and 219. For example, if you are generating binary data,
the following command puts your standard output in binary mode:

fconfigure stdout -translation binary -encoding binary
puts [binary format "B8" 11001010]

Related Chapters

To learn more about manipulating data in Tcl, read about lists in Chapter 5 and
arrays in Chapter 8.

For more about pattern matching, read about regular expressions in Chapter
11.

For more about file I/O, see Chapter 9.

For information on Unicode and other Internationalization issues, see Chapter
15.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Chapter 5. Tcl Lists
This chapter describes Tcl lists. Tcl commands described are: list, lindex,
llength, lrange, lappend, linsert, lreplace, lsearch, lset, lsort, concat,
join, and split.

Lists in Tcl have the same structure as Tcl commands. All the rules you learned
about grouping arguments in Chapter 1 apply to creating valid Tcl lists. However,
when you work with Tcl lists, it is best to think of lists in terms of operations instead
of syntax. Tcl commands provide operations to put values into a list, get elements
from lists, count the elements of lists, replace elements of lists, and so on. It is a
good habit to use commands like list and lappend to construct lists, instead of
creating them by hand. Lists are used with commands such as foreach that take
lists as arguments. In addition, lists are important when you are building up a
command to be evaluated later. Delayed command evaluation with eval is described
in Chapter 10, and similar issues with Tk callback commands are described in
Chapter 30.

However, Tcl lists are not often the right way to build complicated data structures in
scripts. You may find Tcl arrays more useful, and they are the topic of Chapter 8.
List operations are also not right for handling unstructured data such as user input.
Use regular expressions instead, which are described in Chapter 11.

Tcl Lists

A Tcl list is a sequence of values. When you write out a list, it has the same syntax
as a Tcl command. A list has its elements separated by white space. Braces or
quotes can be used to group words with white space into a single list element.
Because of the relationship between lists and commands, the list-related commands
described in this chapter are used often when constructing Tcl commands.

Since Tcl 8.0, lists are really 1-dimensional object arrays.

Early versions of Tcl represented all values as strings. Lists were just strings with
special syntax to group their elements. The string representation was parsed on
each list access, so you could have performance problems with large lists. The
performance of lists was improved by the Tcl compiler added in Tcl 8.0. The Tcl
runtime now stores lists using an C array of pointers to each element. (The Tcl_Obj
type is described on page 694.) Tcl can access any element in the list with the same
cost. Appending new elements to a list is made efficient by over allocating the array
so there is room to grow. The internal format also records the number of list
elements, so getting the length of a list is cheap. However, you can still get into
performance trouble if you use a big Tcl list like a string, e.g., for output. Tcl will
convert the list into a string representation if you print it to a file, or manipulate it
with string commands. Table 5-1 describes Tcl commands for lists.

Table 5-1. List-related commands

list arg1
arg2 ...

Creates a list out of all its arguments.

lindex
list ?i
...?

Returns the ith element from list. Specifying multiple index
elements allows you to descend into nested lists easily.

llength
list

Returns the number of elements in list.

lrange
list i j

Returns the ith through jth elements from list.

lappend
listVar
arg ...

Appends elements to the value of listVar.

linsert
list index
arg arg ...

Inserts elements into list before the element at position index.
Returns a new list.

lreplace
list i j
arg arg ...

Replaces elements i through j of list with the args. Returns a new
list.

lsearch ?
options?
list value

Returns the index of the element in list that matches the value
according to the options. Glob matching is the default. Returns -1 if
not found.

lset
listVar ?i
...?
newValue

Set the ith element in variable listVar to newValue. (Tcl 8.4)

lsort ?
switches?
list

Sorts elements of the list according to the switches: -ascii, -
dictionary, -integer, -real, -increasing, -decreasing, -index
ix, -unique, -command command. Returns a new list.

concat
list list
...

Joins multiple lists together into one list.

join list
joinString

Merges the elements of a list together by separating them with
joinString.

split
string
splitChars

Splits a string up into list elements, using the characters in
splitChars as boundaries between list elements.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Constructing Lists

Constructing a list can be tricky if you try to write the proper list syntax by hand.
The manual approach works for simple cases. In more complex cases, however, you
should use Tcl commands that build lists. Using list commands eliminates the
struggle to get the grouping and quoting right, and the list is maintained in an
efficient internal format. If you create lists by hand with quoting, there is additional
overhead to parse the string representation the first time you use the list.

The list command

The list command constructs a list out of its arguments so that there is one list
element for each argument. The simple beauty of list is that any special characters
in the list elements do not matter. Spaces inside an element do not cause it to
become more than one list element. The list command is efficient, too. It doesn't
matter if list is making a list of three single-character values, or three 10 kilobyte
values. The cost to make that three element list is the same in either case. The
most compelling uses of list involve making lists out of variables that could have
arbitrary values, as shown in Example 5-1.

Example 5-1 Constructing a list with the list command

set x {1 2}
=> 1 2
set y \$foo
=> $foo
set l1 [list $x "a b" $y]
=> {1 2} {a b} {$foo}
set l2 [list $l1 $x]
=> {{1 2} {a b} {$foo}}} {1 2}

The list command does automatic quoting.

The first list, l1, has three elements. The values of the elements do not affect the
list structure. The second list, l2, has two elements, the value of l1 and the value
of x. Internally Tcl shares values instead of making copies, so constructing lists out
of other values is quite efficient.

When you first experiment with Tcl lists, the treatment of curly braces can be
confusing. In the assignment to x, for example, the curly braces disappear.
However, they seem to come back again when $x is put into a bigger list. Also, the
double quotes around a b get changed into curly braces. What's going on? There
are three steps in the process. In the first step, the Tcl parser groups arguments to
the list command. In the grouping process, the braces and quotes are syntax that
define groups. These syntax characters get stripped off. The braces and quotes are
not part of the values being grouped. In the second step, the list command
creates an internal list structure. This is an array of references to each value. In the
third step the value is printed out. This step requires conversion of the list into a
string representation. The string representation of the list uses curly braces to group
values back into list elements.

The lappend Command

The lappend command is used to append elements to the end of a list. The first
argument to lappend is the name of a Tcl variable, and the rest of the arguments
are added to the variable's value as new list elements. Like list, lappend operates
efficiently on the internal representation of the list value. It is always more efficient
to use lappend than to try and append elements by hand.

Example 5-2 Using lappend to add elements to a list

lappend new 1 2
=> 1 2
lappend new 3 "4 5"
=> 1 2 3 {4 5}
set new
=> 1 2 3 {4 5}

The lappend command is unique among the list-related commands because its first
argument is the name of a list-valued variable, while all the other commands take
list values as arguments. You can call lappend with the name of an undefined
variable and the variable will be created.

The lset Command

The lset command was introduced in Tcl 8.4 to make it easier, and more efficient,
to set one element of a list or nested list. Like lappend, the first argument to lset
is the name of a list variable. The last argument is the value to set. The middle
arguments, if any, specify which element to set. If no index is specified, the whole
variable is set to the new value. If the index is a single integer, or end-integer,
then that element of the list is set. If you have a nested list, then you can specify
several indices, and each one navigates into the nested list structure. This is
illustrated in Example 5-3. If you specify several indices they can be separate
arguments, or grouped into a list. Range checking in lset is strict and an error will

be thrown for indices given outside of the list or sublist range. The new value of the
list in the variable is returned, although you rarely need this because lset modifies
the list variable directly.

Example 5-3 Using lset to set an element of a list

lset new "a b c"
=> a b c
lset new 1 "d e"
=> a {d e} c
lset new 1 0 "g h"
=> a {{g h} e} c

The concat Command

The concat command is useful for splicing lists together. It works by concatenating
its arguments, separating them with spaces. This joins multiple lists into one list
where the top-level list elements in each input list become top-level list elements in
the resulting list:

Example 5-4 Using concat to splice lists together

set x {4 5 6}
set y {2 3}
set z 1
concat $z $y $x
=> 1 2 3 4 5 6

Double quotes behave much like the concat command. In simple cases, double
quotes behave exactly like concat. However, the concat command trims extra white
space from the end of its arguments before joining them together with a single
separating space character. Example 5-5 compares the use of list, concat, and
double quotes:

Example 5-5 Double quotes compared to the concat and list
commands

set x {1 2}
=> 1 2
set y "$x 3"
=> 1 2 3
set y [concat $x 3]
=> 1 2 3
set s { 2 }
=> 2
set y "1 $s 3"

=> 1 2 3
set y [concat 1 $s 3]
=> 1 2 3
set z [list $x $s 3]
=> {1 2} { 2 } 3

The distinction between list and concat becomes important when Tcl commands
are built dynamically. The basic rule is that list and lappend preserve list
structure, while concat (or double quotes) eliminates one level of list structure. The
distinction can be subtle because there are examples where list and concat return
the same results. Unfortunately, this can lead to data-dependent bugs. Throughout
the examples of this book, you will see the list command used to safely construct
lists. This issue is discussed more in Chapter 10.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Getting List Elements: llength, lindex, and lrange

The llength command returns the number of elements in a list.

llength {a b {c d} "e f g" h}
=> 5
llength {}
=> 0

The lindex command returns a particular element of a list. It takes an index; list
indices count from zero.

set x {1 2 3}
lindex $x 1
=> 2

You can use the keyword end to specify the last element of a list, or the syntax end-
N to count back from the end of the list. The following commands are equivalent
ways to get the element just before the last element in a list.

lindex $list [expr {[llength $list] - 2}]
lindex $list end-1

The lrange command returns a range of list elements. It takes a list and two indices
as arguments. Again, end or end-N can be used as an index:

lrange {1 2 3 {4 5}} 2 end
=> 3 {4 5}

Modifying Lists: linsert and lreplace

The linsert command inserts elements into a list value at a specified index. If the
index is zero or less, then the elements are added to the front. If the index is equal
to or greater than the length of the list, then the elements are appended to the end.
Otherwise, the elements are inserted before the element that is currently at the
specified index. The following command adds to the front of a list:

linsert {1 2} 0 new stuff
=> new stuff 1 2

lreplace replaces a range of list elements with new elements. If you don't specify
any new elements, you effectively delete elements from a list.

Note: linsert and lreplace do not modify an existing list like the lappend and
lset commands. Instead, they return a new list value. In the Example 5-6, the
lreplace command does not change the value of x:

Example 5-6 Modifying lists with lreplace

set x [list a {b c} e d]
=> a {b c} e d
lreplace $x 1 2 B C
=> a B C d
lreplace $x 0 0
=> {b c} e d

Searching Lists: lsearch

lsearch returns the index of a value in the list, or -1 if it is not present. lsearch
supports pattern matching in its search. Simple pattern matching is the default, and
this can be disabled with the -exact option. The glob pattern matching lsearch
uses is described in more detail on page 53. The -regexp option lets you specify the
list value with a regular expression. Regular expressions are described in Chapter
11.

In the following example, the glob pattern l* matches the value list, and lsearch
returns the index of that element in the input list:

lsearch {here is a list} l*
=> 3

Example 5-7 shows ldelete as a combination of lreplace and lsearch:

Example 5-7 Deleting a list element by value

proc ldelete { list value } {
 set ix [lsearch -exact $list $value]
 if {$ix >= 0} {
 return [lreplace $list $ix $ix]
 } else {
 return $list
 }
}

Tcl 8.4 added several features to lsearch, including typed searching, optimized
searches for sorted lists, and the ability to find all matching elements of a list. The
lsearch typed searches use the internal object representation for efficiency and
speed. For example, if you have a list of numbers, the -integer option tells
lsearch to leave the values in their native integer format. Otherwise it would
convert them to strings as it did the search. If your list has been sorted, the -
sorted option tells lsearch to perform an efficient binary search. Sorting lists is
described on page 70.

The -inline option returns the list value instead of the index. This is most useful
when you are matching a pattern, and it works well with the -all option that
returns all matching indices, or values:

set foo {the quick brown fox jumped over a lazy dog}
lsearch -inline -all $foo *o*
=> brown fox over dog

The lsearch options are described in Table 5-2:

Table 5-2. Options to the lsearch command

-all Search for all items that match and return a list of matching indices.

-ascii The list elements are to be compared as ascii strings. Only meaningful
when used with -exact or -sorted.

-
decreasing

Assume list elements are in decreasing order. Only meaningful when
used with -sorted.

-
dictionary

The list elements are to be compared using dictionary-style
comparison. Only meaningful when used with -exact or -sorted.

-exact Do exact string matching. Mutually exclusive with -glob and -regexp.

-glob Do glob-style pattern matching (default). Mutually exclusive with -
exact and -regexp.

-
increasing

Assume list elements are in increasing order. Only meaning when used
with -sorted.

-inline Return the actual matching element(s) instead of the index to the
element. An empty string is returned if no elements match.

-integer The list elements are to be compared as integers. Only meaning when
used with -exact or -sorted.

-not Negate the sense of the match.

-real Examine all elements as real (floating-point) values. Only meaning
when used with -exact or -sorted.

-regexp Do regular expression pattern matching. Mutually exclusive with -
exact and -glob. Regular expressions are described in Chapter 11.

-sorted Specifies that the list is presorted, so Tcl can do a faster binary search
to find the pattern.

-start ix Specify the start index in the list to begin searching.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Sorting Lists: lsort

You can sort a list in a variety of ways with lsort. The list is not sorted in place.
Instead, a new list value is returned. The basic types of sorts are specified with the
-ascii, -dictionary, -integer, or -real options. The -increasing or -
decreasing option indicate the sorting order. The default option set is -ascii -
increasing. An ASCII sort uses character codes, and a dictionary sort folds
together case and treats digits like numbers. For example:

lsort -ascii {a Z n2 n100}
=> Z a n100 n2
lsort -dictionary {a Z n2 n100}
=> a n2 n100 Z

You can provide your own sorting function for special-purpose sorting. For example,
suppose you have a list of names, where each element is itself a list containing the
person's first name, middle name (if any), and last name. The default sorts by
everyone's first name. If you want to sort by their last name, you need to supply a
sorting command.

Example 5-8 Sorting a list using a comparison function

proc NameCompare {a b} {
 set alast [lindex $a end]
 set blast [lindex $b end]
 set res [string compare $alast $blast]
 if {$res != 0} {
 return $res
 } else {
 return [string compare $a $b]
 }
}
set list {{Brent B. Welch} {John Ousterhout} {Miles Davis}}
=> {Brent B. Welch} {John Ousterhout} {Miles Davis}
lsort -command NameCompare $list
=> {Miles Davis} {John Ousterhout} {Brent B. Welch}

The NameCompare procedure extracts the last element from each of its arguments
and compares those. If they are equal, then it just compares the whole of each
argument.

Tcl 8.0 added a -index option to lsort that can be used to sort lists on an index.
Instead of using NameCompare, you could do this:

lsort -index end $list

Tcl 8.3 added a -unique option that removes duplicates during sort:

lsort -unique {a b a z c b}
=> a b c z

The split Command

The split command takes a string and turns it into a list by breaking it at specified
characters and ensuring that the result has the proper list syntax. The split
command provides a robust way to turn input lines into proper Tcl lists:

set line {welch:*:28405:100:Brent Welch:/usr/welch:/bin/csh}
split $line :
=> welch * 28405 100 {Brent Welch} /usr/welch /bin/csh
lindex [split $line :] 4
=> Brent Welch

Do not use list operations on arbitrary data.

Even if your data has space-separated words, you should be careful when using list
operators on arbitrary input data. Otherwise, stray double quotes or curly braces in
the input can result in invalid list structure and errors in your script. Your code will
work with simple test cases, but when invalid list syntax appears in the input, your
script will raise an error. The next example shows what happens when input is not a
valid list. The syntax error, an unmatched quote, occurs in the middle of the list.
However, you cannot access any of the list because the lindex command tries to
convert the value to a list before returning any part of it.

Example 5-9 Use split to turn input data into Tcl lists

set line {this is "not a tcl list}
lindex $line 1
=> unmatched open quote in list
lindex [split $line] 2
=> "not

The default separator character for split is white space, which contains spaces,
tabs, and newlines. If there are multiple separator characters in a row, these result
in empty list elements; the separators are not collapsed. The following command
splits on commas, periods, spaces, and tabs. The backslashÿspace sequence is
used to include a space in the set of characters. You could also group the argument
to split with double quotes:

set line "\tHello, world."
split $line \ ,.\t
=> {} Hello {} world {}

A trick that splits each character into a list element is to specify an empty string as
the split character. This lets you get at individual characters with list operations:

split abc {}
=> a b c

However, if you write scripts that process data one character at a time, they may
run slowly. Read Chapter 11 about regular expressions for hints on really efficient
string processing and using regexp for a multi-character split routine.

The join Command

The join command is the inverse of split. It takes a list value and reformats it
with specified characters separating the list elements. In doing so, it removes any
curly braces from the string representation of the list that are used to group the
top-level elements. For example:

join {1 {2 3} {4 5 6}} :
=> 1:2 3:4 5 6

If the treatment of braces is puzzling, remember that the first value is parsed into a
list. The braces around element values disappear in the process. Example 5-10
shows a way to implement join in a Tcl procedure, which may help to understand
the process:

Example 5-10 Implementing join in Tcl

proc join {list sep} {
 set s {} ;# s is the current separator
 set result {}
 foreach x $list {
 append result $s $x
 set s $sep
 }
 return $result
}

Related Chapters

Arrays are the other main data structure in Tcl. They are described in Chapter
8.

List operations are used when generating Tcl code dynamically. Chapter 10
describes these techniques when using the eval command.

The foreach command loops over the values in a list. It is described on page
79 in Chapter 6.

Chapter 6. Control Structure Commands
This chapter describes the Tcl commands that implement control structures: if,
switch, foreach, while, for, break, continue, catch, error, and return.

Control structure in Tcl is achieved with commands, just like everything else. There
are looping commands: while, foreach, and for. There are conditional commands:
if and switch. There is an error handling command: catch. Finally, there are some
commands to fine-tune control structures: break, continue, return, and error.

A control structure command often has a command body that is executed later,
either conditionally or in a loop. In this case, it is important to group the command
body with curly braces to avoid substitutions at the time the control structure
command is invoked. Group with braces, and let the control structure command
trigger evaluation at the proper time. A control structure command returns the
value of the last command it chose to execute.

Another pleasant property of curly braces is that they group things together while
including newlines. The examples use braces in a way that is both readable and
convenient for extending the control structure commands across multiple lines.

Commands like if, for, and while involve boolean expressions. They use the expr
command internally, so there is no need for you to invoke expr explicitly to evaluate
their boolean test expressions.

If Then Else

The if command is the basic conditional command. If an expression is true, then
execute one command body; otherwise, execute another command body. The
second command body (the else clause) is optional. The syntax of the command is:

if expression ?then? body1 ?else? ?body2?

The then and else keywords are optional. In practice, I omit then but use else as
illustrated in the next example. I always use braces around the command bodies,
even in the simplest cases:

Example 6-1 A conditional if then else command

if {$x == 0} {
 puts stderr "Divide by zero!"
} else {
 set slope [expr $y/$x]
}

Curly brace positioning is important.

The style of this example takes advantage of the way the Tcl interpreter parses
commands. Recall that newlines are command terminators, except when the
interpreter is in the middle of a group defined by braces or double quotes. The
stylized placement of the opening curly brace at the end of the first and third lines
exploits this property to extend the if command over multiple lines.

The first argument to if is a boolean expression. As a matter of style this
expression is grouped with curly braces. The expression evaluator performs variable
and command substitution on the expression. Using curly braces ensures that these
substitutions are performed at the proper time. It is possible to be lax in this regard,
with constructs such as:

if $x break continue

This is a sloppy, albeit legitimate, if command that will either break out of a loop or
continue with the next iteration depending on the value of variable x. This style is
fragile and error prone. Instead, always use braces around the command bodies to
avoid trouble later when you modify the command. The following is much better
(use then if it suits your taste):

if {$x} {
 break
} else {
 continue
}

When you are testing the result of a command, you can get away without using
curly braces around the command, like this:

if [command] body1

However, it turns out that you can execute the if statement more efficiently if you
always group the expression with braces, like this:

if {[command]} body1

You can create chained conditionals by using the elseif keyword. Again, note the
careful placement of curly braces that create a single if command:

Example 6-2 Chained conditional with elseif

if {$key < 0} {
 incr range 1
} elseif {$key == 0} {
 return $range
} else {
 incr range -1
}

Any number of conditionals can be chained in this manner. However, the switch
command provides a more powerful way to test multiple conditions.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Switch

The switch command is used to branch to one of many command bodies depending
on the value of an expression. The choice can be made on the basis of pattern
matching as well as simple comparisons. Pattern matching is discussed in more
detail in Chapter 4 and Chapter 11. The general form of the command is:

switch flags value pat1 body1 pat2 body2 ...

Any number of pattern-body pairs can be specified. If multiple patterns match, only
the body of the first matching pattern is evaluated. You can also group all the
pattern-body pairs into one argument:

switch flags value { pat1 body1 pat2 body2 ... }

The first form allows substitutions on the patterns but will require backslashes to
continue the command onto multiple lines. This is shown in Example 6-4 on page
78. The second form groups all the patterns and bodies into one argument. This
makes it easy to group the whole command without worrying about newlines, but it
suppresses any substitutions on the patterns. This is shown in Example 6-3. In
either case, you should always group the command bodies with curly braces so that
substitution occurs only on the body with the pattern that matches the value.

There are four possible flags that determine how value is matched.

-exact Matches the value exactly to one of the patterns. This is the default.

-glob Uses glob-style pattern matching. See page 53.

-regexp Uses regular expression pattern matching. See page 144.

-- No flag (or end of flags). Necessary when value can begin with -.

The switch command raises an error if any other flag is specified or if the value
begins with -. In practice I always use the -- flag before value so that I don't have
to worry about that problem.

If the pattern associated with the last body is default, then this command body is
executed if no other patterns match. The default keyword works only on the last
pattern-body pair. If you use the default pattern on an earlier body, it will be
treated as a pattern to match the literal string default:

Example 6-3 Using switch for an exact match

switch -exact -- $value {
 foo { doFoo; incr count(foo) }
 bar { doBar; return $count(foo)}
 default { incr count(other) }
}

If you have variable references or backslash sequences in the patterns, then you
cannot use braces around all the pattern-body pairs. You must use backslashes to
escape the newlines in the command:

Example 6-4 Using switch with substitutions in the patterns

switch -regexp -- $value \
 ^$key { body1 }\
 \t### { body2 }\
 {[0-9]*} { body3 }

In this example, the first and second patterns have substitutions performed to
replace $key with its value and \t with a tab character. The third pattern is quoted
with curly braces to prevent command substitution; square brackets are part of the
regular expression syntax, too. (See page Chapter 11.)

If the body associated with a pattern is just a dash, -, then the switch command
"falls through" to the body associated with the next pattern. You can tie together
any number of patterns in this manner.

Example 6-5 A switch with "fall through" cases

switch -glob -- $value {
 X* -
 Y* { takeXorYaction $value }
}

Comments in switch Commands

A comment can occur only where the Tcl
parser expects a command to begin. This
restricts the location of comments in a switch
command. You must put them inside the
command body associated with a pattern, as
shown in Example 6-6. If you put a comment
at the same level as the patterns, the switch

command will try to interpret the comment as
one or more pattern-body pairs.

Example 6-6 Comments in switch commands

switch -- $value {
 # this comment confuses switch
 pattern { # this comment is ok }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

While

The while command takes two arguments, a test and a command body:

while booleanExpr body

The while command repeatedly tests the boolean expression and then executes the
body if the expression is true (nonzero). Because the test expression is evaluated
again before each iteration of the loop, it is crucial to protect the expression from
any substitutions before the while command is invoked. The following is an infinite
loop (see also Example 1-13 on page 12):

set i 0 ; while $i<10 {incr i}

The following behaves as expected:

set i 0 ; while {$i<10} {incr i}

It is also possible to put nested commands in the boolean expression. The following
example uses gets to read standard input. The gets command returns the number
of characters read, returning -1 upon end of file. Each time through the loop, the
variable line contains the next line in the file:

Example 6-7 A while loop to read standard input

set numLines 0 ; set numChars 0
while {[gets stdin line] >= 0} {
 incr numLines
 incr numChars [string length $line]
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Foreach

The foreach command loops over a command body assigning one or more loop
variables to each of the values in one or more lists. Multiple loop variables, which
were introduced in Tcl 7.5, are a very useful feature. The syntax for the simple case
of a single variable and a single list is:

foreach loopVar valueList commandBody

The first argument is the name of a variable, and the command body is executed
once for each element in the list with the loop variable taking on successive values
in the list. The list can be entered explicitly, as in the next example:

Example 6-8 Looping with foreach

set i 1
foreach value {1 3 5 7 11 13 17 19 23} {
 set i [expr $i*$value]
}
set i
=> 111546435

It is also common to use a list-valued variable or command result instead of a static
list value. The next example loops through command-line arguments. The variable
argv is set by the Tcl interpreter to be a list of the command-line arguments given
when the interpreter was started:

Example 6-9 Parsing command-line arguments

argv is set by the Tcl shells
possible flags are:
-max integer
-force
-verbose
set state flag
set force 0
set verbose 0
set max 10
foreach arg $argv {
 switch -- $state {
 flag {
 switch -glob -- $arg {
 -f* {set force 1}
 -v* {set verbose 1}
 -max {set state max}
 default {error "unknown flag $arg"}
 }
 }

 max {
 set max $arg
 set state flag
 }
 }
}

The loop uses the state variable to keep track of what is expected next, which in
this example is either a flag or the integer value for -max. The -- flag to switch is
required in this example because the switch command complains about a bad flag if
the pattern begins with a - character. The -glob option lets the user abbreviate the
-force and -verbose options.

If the list of values is to contain variable
values or command results, then the list
command should be used to form the list.
Avoid double quotes because if any values or
command results contain spaces or braces,
the list structure will be reparsed, which can
lead to errors or unexpected results.

Example 6-10 Using list with foreach

foreach x [list $a $b [foo]] {
 puts stdout "x = $x"
}

The loop variable x will take on the value of a, the value of b, and the result of the
foo command, regardless of any special characters or whitespace in those values.

Multiple Loop Variables

You can have more than one loop variable with foreach. Suppose you have two loop
variables x and y. In the first iteration of the loop, x gets the first value from the
value list and y gets the second value. In the second iteration, x gets the third value
and y gets the fourth value. This continues until there are no more values. If there
are not enough values to assign to all the loop variables, the extra variables get the
empty string as their value.

Example 6-11 Multiple loop variables with foreach

foreach {key value} {orange 55 blue 72 red 24 green} {
 puts "$key: $value"
}
orange: 55
blue: 72
red: 24
green:

If you have a command that returns a short list of values, then you can abuse the
foreach command to assign the results of the commands to several variables all at
once. For example, suppose the command MinMax returns two values as a list: the
minimum and maximum values. Here is one way to get the values:

set result [MinMax $list]
set min [lindex $result 0]
set max [lindex $result 1]

The foreach command lets us do this much more compactly:

foreach {min max} [MinMax $list] {break}

The break in the body of the foreach loop guards against the case where the
command returns more values than we expected. This trick is encapsulated into the
lassign procedure in Example 10-4 on page 139.

Multiple Value Lists

The foreach command has the ability to loop over multiple value lists in parallel. In
this case, each value list can also have one or more variables. The foreach
command keeps iterating until all values are used from all value lists. If a value list
runs out of values before the last iteration of the loop, its corresponding loop
variables just get the empty string for their value.

Example 6-12 Multiple value lists with foreach

foreach {k1 k2} {orange blue red green black} value {55 72 24} {
 puts "$k1 $k2: $value"
}
orange blue: 55
red green: 72
black : 24

For

The for command is similar to the C for statement. It takes four arguments:

for initial test final body

The first argument is a command to initialize the loop. The second argument is a
boolean expression that determines whether the loop body will execute. The third
argument is a command to execute after the loop body:

Example 6-13 A for loop

for {set i 0} {$i < 10} {incr i 3} {
 lappend aList $i
}
set aList
=> 0 3 6 9

You could use for to iterate over a list, but you should really use foreach instead.
Code like the following is slow and cluttered:

for {set i 0} {$i < [llength $list]} {incr i} {
 set value [lindex $list $i]
}

This is the same as:

foreach value $list {
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Break and Continue

You can control loop execution with the break and continue commands. The break
command causes immediate exit from a loop, while the continue command causes
the loop to continue with the next iteration. There is no goto command in Tcl.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Catch

Until now we have ignored the possibility of errors. In practice, however, a
command will raise an error if it is called with the wrong number of arguments, or if
it detects some error condition particular to its implementation. An uncaught error
aborts execution of a script.[*] The catch command is used to trap such errors. It
takes two arguments:

[*] More precisely, the Tcl script unwinds and the current Tcl_Eval procedure in the C runtime library returns

TCL_ERROR. There are three cases. In interactive use, the Tcl shell prints the error message. In Tk, errors that arise during

event handling trigger a call to bgerror, a Tcl procedure you can implement in your application. In your own C code, you should

check the result of Tcl_Eval and take appropriate action in the case of an error.

catch command ?resultVar?

The first argument to catch is a command body. The second argument is the name
of a variable that will contain the result of the command, or an error message if the
command raises an error. catch returns zero if there was no error caught, or a
nonzero error code if it did catch an error.

You should use curly braces to group the command instead of double quotes
because catch invokes the full Tcl interpreter on the command. If double quotes are
used, an extra round of substitutions occurs before catch is even called. The
simplest use of catch looks like the following:

catch { command }

A more careful catch phrase saves the result and prints an error message:

Example 6-14 A standard catch phrase

if {[catch { command arg1 arg2 ... } result]} {
 puts stderr $result
} else {
 # command was ok, result contains the return value
}

A more general catch phrase is shown in the next example. Multiple commands are
grouped into a command body. The errorInfo variable is set by the Tcl interpreter
after an error to reflect the stack trace from the point of the error:

Example 6-15 A longer catch phrase

if {[catch {
 command1
 command2
 command3

} result]} {
 global errorInfo
 puts stderr $result
 puts stderr "*** Tcl TRACE ***"
 puts stderr $errorInfo
} else {
 # command body ok, result of last command is in result
}

These examples have not grouped the call to catch with curly braces. This is
acceptable because catch always returns an integer, so the if command will parse
correctly. However, if we had used while instead of if, then curly braces would be
necessary to ensure that the catch phrase was evaluated repeatedly.

Catching More Than Errors

The catch command catches more than just errors. If the command body contains
return, break, or continue commands, these terminate the command body and
are reflected by catch as nonzero return codes. You need to be aware of this if you
try to isolate troublesome code with a catch phrase. An innocent looking return
command will cause the catch to signal an apparent error. The next example uses
switch to find out exactly what catch returns. Nonerror cases are passed up to the
surrounding code by invoking return, break, or continue:

Example 6-16 There are several possible return values from catch

switch [catch {
 command1
 command2
 ...
} result] {
 0 { # Normal completion }
 1 { # Error case }
 2 { return $result ;# return from procedure}
 3 { break ;# break out of the loop}
 4 { continue ;# continue loop}
 default { # User-defined error codes }
}

Error

The error command raises an error condition that terminates a script unless it is
trapped with the catch command. The command takes up to three arguments:

error message ?info? ?code?

The message becomes the error message stored in the result variable of the catch
command.

If the info argument is provided, then the Tcl interpreter uses this to initialize the
errorInfo global variable. That variable is used to collect a stack trace from the
point of the error. If the info argument is not provided, then the error command
itself is used to initialize the errorInfo trace.

Example 6-17 Raising an error

proc foo {} {
 error bogus
}
foo
=> bogus
set errorInfo
=> bogus
 while executing
"error bogus"
 (procedure "foo" line 2)
 invoked from within
"foo"

In the previous example, the error command itself appears in the trace. One
common use of the info argument is to preserve the errorInfo that is available
after a catch. In the next example, the information from the original error is
preserved:

Example 6-18 Preserving errorInfo when calling error

if {[catch {foo} result]} {
 global errorInfo
 set savedInfo $errorInfo
 # Attempt to handle the error here, but cannot...
 error $result $savedInfo
}

The code argument specifies a concise, machine-readable description of the error. It
is stored into the global errorCode variable. It defaults to NONE. Many of the file

system commands return an errorCode that has three elements: POSIX, the error
name (e.g., ENOENT), and the associated error message:

POSIX ENOENT {No such file or directory}

In addition, your application can define error codes of its own. Catch phrases can
examine the code in the global errorCode variable and decide how to respond to
the error.

Return

The return command is used to return from a procedure. It is needed if return is to
occur before the end of the procedure body, or if a constant value needs to be
returned. As a matter of style, I also use return at the end of a procedure, even
though a procedure returns the value of the last command executed in the body.

Exceptional return conditions can be specified with some optional arguments to
return. The complete syntax is:

return ?-code c? ?-errorinfo i? ?-errorcode ec? string

The -code option value is one of ok, error, return, break, continue, or an integer.
ok is the default if -code is not specified.

The -code error option makes return behave much like the error command. The
-errorcode option sets the global errorCode variable, and the -errorinfo option
initializes the errorInfo global variable. When you use return -code error, there
is no error command in the stack trace. Compare Example 6-17 with Example 6-
19:

Example 6-19 Raising an error with return

proc bar {} {
 return -code error bogus
}
catch {bar} result
=> 1
set result
=> bogus
set errorInfo
=> bogus
 while executing
"bar"

The return, break, and continue code options take effect in the caller of the
procedure doing the exceptional return. If -code return is specified, then the
calling procedure returns. If -code break is specified, then the calling procedure
breaks out of a loop, and if -code continue is specified, then the calling procedure
continues to the next iteration of the loop. These -code options to return enable
the construction of new control structures entirely in Tcl. The following example
implements the break command with a Tcl procedure:

proc break {} {
 return -code break
}

You can return integer-valued codes of your own with return -code, and trap them
with catch in order to create your own control structures. There are also a number

of exception packages available on the net that provide Java-like try-catch-except
structures for Tcl, although the Tcl exception mechanism strikes a nice balance
between simplicity and power.

Chapter 7. Procedures and Scope
Procedures encapsulate a set of commands, and they introduce a local scope for
variables. Commands described are: proc, global, and upvar.

Procedures parameterize a commonly used sequence of commands. In addition,
each procedure has a new local scope for variables. The scope of a variable is the
range of commands over which it is defined. Originally, Tcl had one global scope for
shared variables, local scopes within procedures, and one global scope for
procedures. Tcl 8.0 added namespaces that provide new scopes for procedures and
global variables. For simple applications you can ignore namespaces and just use
the global scope. Namespaces are described in Chapter 14.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The proc Command

A Tcl procedure is defined with the proc command. It takes three arguments:

proc name params body

The first argument is the procedure name, which is added to the set of commands
understood by the Tcl interpreter. The name is case sensitive and can contain any
characters. Procedure names do not conflict with variable names. The second
argument is a list of parameter names. The last argument is the body of the
procedure.

Once defined, a Tcl procedure is used just like any other Tcl command. When it is
called, each argument is assigned to the corresponding parameter and the body is
evaluated. The result of the procedure is the result returned by the last command in
the body. The return command can be used to return a specific value.

Procedures can have default parameters so that the caller can leave out some of the
command arguments. A default parameter is specified with its name and default
value, as shown in the next example:

Example 7-1 Default parameter values

proc P2 {a {b 7} {c -2} } {
 expr $a / $b + $c
}
P2 6 3
=> 0

Here the procedure P2 can be called with one, two, or three arguments. If it is called
with only one argument, then the parameters b and c take on the values specified in
the proc command. If two arguments are provided, then only c gets the default
value, and the arguments are assigned to a and b. At least one argument and no
more than three arguments can be passed to P2.

A procedure can take a variable number of arguments by specifying the args
keyword as the last parameter. When the procedure is called, the args parameter is
a list that contains all the remaining values:

Example 7-2 Variable number of arguments

proc ArgTest {a {b foo} args} {
 foreach param {a b args} {
 puts stdout "\t$param = [set $param]"
 }
}
set x one

set y {two things}
set z \[special\$
ArgTest $x
=> a = one
 b = foo
 args =
ArgTest $y $z
=> a = two things
 b = [special$
 args =
ArgTest $x $y $z
=> a = one
 b = two things
 args = {[special$}
ArgTest $z $y $z $x
=> a = [special$
 b = two things
 args = {[special$} one

The effect of the list structure in args is illustrated by the treatment of variable z in
Example 7-2. The value of z has special characters in it. When $z is passed as the
value of parameter b, its value comes through to the procedure unchanged. When
$z is part of the optional parameters, quoting is automatically added to create a
valid Tcl list as the value of args. Example 10-3 on page 136 illustrates a technique
that uses eval to undo the effect of the added list structure.

Changing Command Names with rename

The rename command changes the name of a command. There are two main uses
for rename. The first is to augment an existing procedure. Before you redefine it
with proc, rename the existing command:

rename foo foo.orig

From within the new implementation of foo you can invoke the original command as
foo.orig. Existing users of foo will transparently use the new version.

The other thing you can do with rename is completely remove a command by
renaming it to the empty string. For example, you might not want users to execute
UNIX programs, so you could disable exec with the following command:

rename exec {}

Command renaming and deletion can be traced with the trace command described
in Chapter 13.

Scope

By default there is a single, global scope for procedure names. This means that you
can use a procedure anywhere in your script. Variables defined outside any
procedure are global variables. However, as described below, global variables are
not automatically visible inside procedures. There is a different namespace for
variables and procedures, so you could have a procedure and a global variable with
the same name without conflict. You can use the namespace facility described in
Chapter 7 to manage procedures and global variables.

Each procedure has a local scope for variables. That is, variables introduced in the
procedure live only for the duration of the procedure call. After the procedure
returns, those variables are undefined. Variables defined outside the procedure are
not visible to a procedure unless the upvar or global scope commands are used.
You can also use qualified names to name variables in a namespace scope. The
global and upvar commands are described later in this chapter. Qualified names
are described on page 208. If the same variable name exists in an outer scope, it is
unaffected by the use of that variable name inside a procedure.

In Example 7-3, the variable a in the global scope is different from the parameter a
to P1. Similarly, the global variable b is different from the variable b inside P1:

Example 7-3 Variable scope and Tcl procedures

set a 5
set b -8
proc P1 {a} {
 set b 42
 if {$a < 0} {
 return $b
 } else {
 return $a
 }
}
P1 $b
=> 42
P1 [expr {$a*2}]
=> 10

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The global Command

Global scope is the toplevel scope. This scope is outside of any procedure. Variables
defined at the global scope must be made accessible to the commands inside a
procedure by using the global command. The syntax for global is:

global varName1 varName2 ...

The global command goes inside a procedure.

The global command adds a global variable to the current scope. A common
mistake is to have a single global command and expect that to apply to all
procedures. However, a global command in the global scope has no effect. Instead,
you must put a global command in all procedures that access the global variable.
The variable can be undefined at the time the global command is used. When the
variable is defined, it becomes visible in the global scope.

Example 7-4 shows a random number generator. Before we look at the example, let
me point out that the best way to get random numbers in Tcl is to use the rand()
math function:

expr rand()
=> .137287362934

The point of the example is to show a state variable, the seed, that has to persist
between calls to random, so it is kept in a global variable. The choice of randomSeed
as the name of the global variable associates it with the random number generator.
It is important to pick names of global variables carefully to avoid conflict with other
parts of your program. For comparison, Example 14-1 on page 206 uses
namespaces to hide the state variable:

Example 7-4 A random number generator.[*]

proc RandomInit { seed } {
 global randomSeed
 set randomSeed $seed
}
proc Random {} {
 global randomSeed
 set randomSeed [expr ($randomSeed*9301 + 49297) % 233280]
 return [expr $randomSeed/double(233280)]
}

proc RandomRange { range } {
 expr int([Random]*$range)
}
RandomInit [pid]
=> 5049
Random
=> 0.517686899863
Random
=> 0.217176783265
RandomRange 100
=> 17

[*] Adapted from Exploring Expect by Don Libes, O'Reilly & Associates, Inc., 1995, and from Numerical Recipes in C by Press et al.,
Cambridge University Press, 1988.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Call by Name Using upvar

Use the upvar command when you need to pass the name of a variable, as opposed
to its value, into a procedure. The upvar command associates a local variable with a
variable in a scope up the Tcl call stack. The syntax of the upvar command is:

upvar ?level? varName localvar

The level argument is optional, and it defaults to 1, which means one level up the
Tcl call stack. You can specify some other number of frames to go up, or you can
specify an absolute frame number with a #number syntax. Level #0 is the global
scope, so the global foo command is equivalent to:

upvar #0 foo foo

The variable in the uplevel stack frame can be either a scalar variable, an array
element, or an array name. In the first two cases, the local variable is treated like a
scalar variable. In the case of an array name, then the local variable is treated like
an array. The use of upvar and arrays is discussed further in Chapter 8 on page 99.
The following procedure uses upvar to print the value of a variable given its name.

Example 7-5 Print variable by name

proc PrintByName { varName } {
 upvar 1 $varName var
 puts stdout "$varName = $var"
}

You can use upvar to fix the incr command. One drawback of the built-in incr is
that it raises an error if the variable does not exist. We can define a new version of
incr that initializes the variable if it does not already exist:

Example 7-6 Improved incr procedure

proc incr { varName {amount 1}} {
 upvar 1 $varName var
 if {[info exists var]} {
 set var [expr $var + $amount]
 } else {
 set var $amount
 }
 return $var
}

Variable Aliases with upvar

The upvar command is useful in any situation where you have the name of a
variable stored in another variable. In Example 7-2 on page 88, the loop variable
param holds the names of other variables. Their value is obtained with this
construct:

puts stdout "\t$param = [set $param]"

Another way to do this is to use upvar. It eliminates the need to use awkward
constructs like [set $param]. If the variable is in the same scope, use zero as the
scope number with upvar. The following is equivalent:

upvar 0 $param x
puts stdout "\t$param = $x"

Associating State with Data

Suppose you have a program that maintains state about a set of objects like files,
URLs, or people. You can use the name of these objects as the name of a variable
that keeps state about the object. The upvar command makes this more
convenient:

upvar #0 $name state

Using the name directly like this is somewhat risky. If there were an object named
x, then this trick might conflict with an unrelated variable named x elsewhere in
your program. You can modify the name to make this trick more robust:

upvar #0 state$name state

Your code can pass name around as a handle on an object, then use upvar to get
access to the data associated with the object. Your code is just written to use the
state variable, which is an alias to the state variable for the current object. This
technique is illustrated in Example 17-7 on page 245.

Namespaces and upvar

You can use upvar to create aliases for namespace variables, too. Namespaces are
described in Chapter 14. For example, as an alternative to reserving all global
variables beginning with state, you can use a namespace to hide these variables:

upvar #0 state::$name state

Now state is an alias to the namespace variable. This upvar trick works from inside
any namespace.

Commands That Take Variable Names

Several Tcl commands involve variable names. For example, the Tk widgets can be
associated with a global Tcl variable. The vwait and tkwait commands also take
variable names as arguments.

Upvar aliases do not work with Tk widget text variables.

The aliases created with upvar do not work with these commands, nor do they work
if you use trace, which is described on page 193. Instead, you must use the actual
name of the global variable. To continue the above example where state is an alias,
you cannot:

vwait state(foo)
button .b -textvariable state(foo)

Instead, you must

vwait state$name\(foo)
button .b -textvariable state$name\(foo)

The backslash turns off the array reference so Tcl does not try to access name as an
array. You do not need to worry about special characters in $name, except
parentheses. Once the name has been passed into the Tk widget it will be used
directly as a variable name. Text variables for labels are explained on page 490, and
text variables for entry widgets are illustrated in Example 34-1 on page 508.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Chapter 8. Tcl Arrays
This chapter describes Tcl arrays, which provide a flexible mechanism to build many
other data structures in Tcl. Tcl command described is: array.

An array is a Tcl variable with a string-valued index. You can think of the index as a
key, and the array as a collection of related data items identified by different keys.
The index, or key, can be any string value. Internally, an array is implemented with
a hash table, so the cost of accessing each array element is about the same. Before
Tcl 8.0, arrays had a performance advantage over lists that took time to access
proportional to the size of the list.

The flexibility of arrays makes them an important tool for the Tcl programmer. A
common use of arrays is to manage a collection of variables, much as you use a C
struct or Pascal record. This chapter shows how to create several simple data
structures using Tcl arrays.

Array Syntax

The index of an array is delimited by parentheses. The index can have any string
value, and it can be the result of variable or command substitution. Array elements
are defined with set:

set arr(index) value

The value of an array element is obtained with $ substitution:

set foo $arr(index)

Example 8-1 uses the loop variable value $i as an array index. It sets arr(x) to the
product of 1 * 2 * ... * x:

Example 8-1 Using arrays

set arr(0) 1
for {set i 1} {$i <= 10} {incr i} {
 set arr($i) [expr {$i * $arr([expr {$i-1}])}]
}

Complex Indices

An array index can be any string, like orange, 5, 3.1415, or foo,bar. The examples
in this chapter, and in this book, often use indices that are pretty complex strings to
create flexible data structures. As a rule of thumb, you can use any string for an
index, but avoid using a string that contains spaces.

Parentheses are not a grouping mechanism.

The main Tcl parser does not know about array syntax. All the rules about grouping
and substitution described in Chapter 1 are still the same in spite of the array
syntax described here. Parentheses do not group like curly braces or quotes, which
is why a space causes problems. If you have complex indices, use a comma to
separate different parts of the index. If you use a space in an index instead, then
you have a quoting problem. The space in the index needs to be quoted with a
backslash, or the whole variable reference needs to be grouped:

set {arr(I'm asking for trouble)} {I told you so.}
set arr(I'm\ asking\ for\ trouble) {I told you so.}

If the array index is stored in a variable, then there is no problem with spaces in the
variable's value. The following works well:

set index {I'm asking for trouble}
set arr($index) {I told you so.}

Array Variables

You can use an array element as you would a simple variable. For example, you can
test for its existence with info exists, increment its value with incr, and append
elements to it with lappend:

if {[info exists stats($event)]} {incr stats($event)}

You can delete an entire array, or just a single array element with unset. Using
unset on an array is a convenient way to clear out a big data structure.

It is an error to use a variable as both an array and a normal variable. The following
is an error:

set arr(0) 1
set arr 3
=> can't set "arr": variable is array

The name of the array can be the result of a substitution. This is a tricky situation,
as shown in Example 8-2:

Example 8-2 Referencing an array indirectly

set name TheArray
=> TheArray
set ${name}(xyz) {some value}
=> some value
set x $TheArray(xyz)
=> some value
set x ${name}(xyz)
=> TheArray(xyz)
set x [set ${name}(xyz)]
=> some value

A better way to deal with this situation is to use the upvar command, which is
introduced on page 91. The previous example is much cleaner when upvar is used:

Example 8-3 Referencing an array indirectly using upvar

set name TheArray
=> TheArray
upvar 0 $name a
set a(xyz) {some value}
=> some value
set x $TheArray(xyz)
=> some value

The array Command

The array command returns information about array variables. The array names
command returns the index names that are defined in the array. If the array
variable is not defined, then array names just returns an empty list. It allows easy
iteration through an array with a foreach loop:

foreach index [array names arr pattern] {
 # use arr($index)
}

The order of the names returned by array names is arbitrary. It is essentially
determined by the hash table implementation of the array. You can limit what
names are returned by specifying a pattern that matches indices. The pattern is
the kind supported by the string match command, which is described on page 53.

It is also possible to iterate through the elements of an array one at a time using
the search-related commands listed in Table 8-1. The ordering is also random, and I
find the foreach over the results of array names much more convenient. If your
array has an extremely large number of elements, or if you need to manage an
iteration over a long period of time, then the array search operations might be more
appropriate. Frankly, I never use them. Table 8-1 summarizes the array command:

Table 8-1. The array command

array exists
arr

Returns 1 if arr is an array variable.

array get
arr ?
pattern?

Returns a list that alternates between an index and the
corresponding array value. pattern selects matching indices. If not
specified, all indices and values are returned.

array names
arr ?mode? ?
pattern?

Returns the list of all indices defined for arr, or those that match
pattern. mode specifies the pattern type and may be -exact, -glob
(default) or -regexp.

array set
arr list

Initializes the array arr from list, which has the same form as the
list returned byarray get.

array size
arr

Returns the number of indices defined for arr.

array unset
arr ?
pattern?

Unset elements in arr matching the specified glob-style pattern. If
not specified, unset arr. (Tcl 8.3)

array
startsearch
arr

Returns a search token for a search through arr.

array
nextelement
arr id

Returns the value of the next element in arr in the search identified
by the token id. Returns an empty string if no more elements
remain in the search.

array
anymore arr
id

Returns 1 if more elements remain in the search.

array
donesearch
arr id

Ends the search identified by id.

array
statistics
arr

Returns statistics about the array hash table. (Tcl 8.4)

Converting Between Arrays and Lists

The array get and array set operations are used to convert between an array and
a list. The list returned by array get has an even number of elements. The first
element is an index, and the next is the corresponding array value. The list
elements continue to alternate between index and value. The list argument to array
set must have the same structure.

array set fruit {
 best kiwi
 worst peach
 ok banana
}
array get fruit
=> ok banana best kiwi worst peach

Another way to loop through the contents of an array is to use array get and the
two-variable form of the foreach command.

foreach {key value} [array get fruit] {
 # key is ok, best, or worst
 # value is some fruit
}

Passing Arrays by Name

The upvar command works on arrays. You can pass an array name to a procedure
and use the upvar command to get an indirect reference to the array variable in the
caller's scope. This is illustrated in Example 8-4, which inverts an array. As with
array names, you can specify a pattern to array get to limit what part of the array
is returned. This example uses upvar because the array names are passed into the
ArrayInvert procedure. The inverse array does not need to exist before you call
ArrayInvert.

Example 8-4 ArrayInvert inverts an array

proc ArrayInvert {arrName inverseName {pattern *}} {
 upvar $arrName array $inverseName inverse
 foreach {index value} [array get array $pattern] {
 set inverse($value) $index
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Building Data Structures with Arrays

This section describes several data structures you can build with Tcl arrays. These
examples are presented as procedures that implement access functions to the data
structure. Wrapping up your data structures in procedures is good practice. It
shields the user of your data structure from the details of its implementation.

Use arrays to collect related variables.

A good use for arrays is to collect together a set of related variables for a module,
much as one would use a record in other languages. By collecting these together in
an array that has the same name as the module, name conflicts between different
modules are avoided. Also, in each of the module's procedures, a single global
statement will suffice to make all the state variables visible. You can also use upvar
to manage a collection of arrays, as shown in Example 8-9 on page 101.

Simple Records

Suppose we have a database of information about people. The following examples
show three different ways to store the employee name, ID, manager, and phone
number. Each example implements Emp_AddRecord that stores the values, and one
example accessor function that returns information about the employee (e.g.,
Emp_Manager.) By using simple procedures to return fields of the record, the
implementation is hidden so that you can change it more easily. Example 8-5 uses
on array for each field. The name of the person is the index into each array:

Example 8-5 Using arrays for records, version 1

proc Emp_AddRecord {id name manager phone} {
 global employeeID employeeManager \
 employeePhone employeeName
 set employeeID($name) $id
 set employeeManager($name) $manager
 set employeePhone($name) $phone
 set employeeName($id) $name
}
proc Emp_Manager {name} {
 global employeeManager
 return $employeeManager($name)
}

The employeeName array provides a secondary key. It maps from the employee ID to
the name so that the other information can be obtained if you have an ID instead of
a name. Example 8-6 implements the same little database using a single array with
more complex indices:

Example 8-6 Using arrays for records, version 2

proc Emp_AddRecord {id name manager phone} {
 global employee
 set employee(id,$name) $id
 set employee(manager,$name) $manager
 set employee(phone,$name) $phone
 set employee(name,$id) $name
}
proc Emp_Manager {name} {
 global employee
 return $employee(manager,$name)
}

Example 8-7 shows the last approach. Each array element is a list of fields, and the
accessor functions hide the lindex command used to pick out the right field. Here
the cross referencing by ID is implement differently. If we can assume that names
and IDs are distinct, we can keep the cross reference in the same array:

Example 8-7 Using arrays for records, version 3

proc Emp_AddRecord {id name manager phone} {
 global employee
 set employee($name) [list $name $id $manager $phone]
 set employee($id) $name
}
proc Emp_Manager {name} {
 global employee
 return [lindex $employee($name) 2]
}

The difference between these three approaches is partly a matter of taste. Using a
single array can be more convenient because there are fewer variables to manage.
Using the lists for the fields is probably the most space efficient because there are
fewer elements in the array, but maintaining the lindex offsets is tedious. In any
case, you should hide the implementation in a small set of procedures.

A Stack

A stack can be implemented with either a list or an array. If you use a list, then the
push and pop operations have a runtime cost that is proportional to the size of the
stack. If the stack has a few elements this is fine. If there are a lot of items in a
stack, you may wish to use arrays instead.

Example 8-8 Using a list to implement a stack

proc Push { stack value } {
 upvar $stack list
 lappend list $value
}
proc Pop { stack } {
 upvar $stack list
 set value [lindex $list end]
 set list [lrange $list 0 [expr [llength $list]-2]]
 return $value
}

In these examples, the name of the stack is a parameter, and upvar is used to
convert that into the data used for the stack. The variable is a list in Example 8-8
and an array in Example 8-9. The user of the stack module does not have to know.

The array implementation of a stack uses one array element to record the number
of items in the stack. The other elements of the array have the stack values. The
Push and Pop procedures both guard against a nonexistent array with the info
exists command. When the first assignment to S(top) is done by Push, the array
variable is created in the caller's scope. The example uses array indices in two ways.
The top index records the depth of the stack. The other indices are numbers, so the
construct $S($S(top)) is used to reference the top of the stack.

Example 8-9 Using an array to implement a stack

proc Push { stack value } {
 upvar $stack S
 if {![info exists S(top)]} {
 set S(top) 0
 }
 set S($S(top)) $value
 incr S(top)
}
proc Pop { stack } {
 upvar $stack S
 if {![info exists S(top)]} {
 return {}
 }
 if {$S(top) == 0} {
 return {}
 } else {
 incr S(top) -1
 set x $S($S(top))
 unset S($S(top))
 return $x
 }
}

A List of Arrays

Suppose you have many arrays, each of which stores some data, and you want to
maintain an overall ordering among the data sets. One approach is to keep a Tcl list
with the name of each array in order. Example 8-10 defines RecordInsert to add an
array to the list, and an iterator function, RecordIterate, that applies a script to
each array in order. The iterator uses upvar to make data an alias for the current
array. The script is executed with eval, which is described in detail in Chapter 10.
The Tcl commands in script can reference the arrays with the name data:

Example 8-10 A list of arrays

proc RecordAppend {listName arrayName} {
 upvar $listName list
 lappend list $arrayName
}
proc RecordIterate {listName script} {
 upvar $listName list
 foreach arrayName $list {
 upvar #0 $arrayName data
 eval $script
 }
}

Another way to implement this list-of-records structure is to keep references to the
arrays that come before and after each record. Example 8-11 shows the insert
function and the iterator function when using this approach. Once again, upvar is
used to set up data as an alias for the current array in the iterator. In this case, the
loop is terminated by testing for the existence of the next array. It is perfectly all
right to make an alias with upvar to a nonexistent variable. It is also all right to
change the target of the upvar alias. One detail that is missing from the example is
the initialization of the very first record so that its next element is the empty string:

Example 8-11 A list of arrays

proc RecordInsert {recName afterThis} {
 upvar $recName record $afterThis after
 set record(next) $after(next)
 set after(next) $recName
}
proc RecordIterate {firstRecord body} {
 upvar #0 $firstRecord data
 while {[info exists data]} {
 eval $body
 upvar #0 $data(next) data
 }
}

A Simple In-Memory Database

Suppose you have to manage a lot of records, each of which contain a large chunk
of data and one or more key values you use to look up those values. The procedure
to add a record is called like this:

Db_Insert keylist datablob

The datablob might be a name, value list suitable for passing to array set, or
simply a large chunk of text or binary data. One implementation of Db_Insert might
just be:

foreach key $keylist {
 lappend Db($key) $datablob
}

The problem with this approach is that it duplicates the data chunks under each key.
A better approach is to use two arrays. One stores all the data chunks under a
simple ID that is generated automatically. The other array stores the association
between the keys and the data chunks. Example 8-12, which uses the namespace
syntax described in Chapter 14, illustrates this approach. The example also shows
how you can easily dump data structures by writing array set commands to a file,
and then load them later with a source command:

Example 8-12 A simple in-memory database

namespace eval db {
 variable data ;# Array of data blobs
 variable uid 0 ;# Index into data
 variable index ;# Cross references into data
}
proc db::insert {keylist datablob} {
 variable data
 variable uid
 variable index
 set data([incr uid]) $datablob
 foreach key $keylist {
 lappend index($key) $uid
 }
}
proc db::get {key} {
 variable data
 variable index
 set result {}
 if {![info exist index($key)]} {
 return {}
 }
 foreach uid $index($key) {
 lappend result $data($uid)
 }

 return $result
}
proc db::save {filename} {
 variable uid
 set out [open $filename w]
 puts $out [list namespace eval db \
 [list variable uid $uid]]
 puts $out [list array set db::data [array get db::data]]
 puts $out [list array set db::index [array get db::index]]
 close $out
}
proc db::load {filename} {
 source $filename
}

Alternatives to Using Arrays

While Tcl arrays are flexible and general purpose, they are not always the best
solution to your data structure problems. If you find yourself building elaborate data
structures, you should consider implementing a C library to encapsulate the data
structure and expose it to the scripting level with Tcl commands. For example,
Chapter 47 implements a blob data structure in C. You can also use the SWIG code
generator can quickly generate a Tcl command interface for a C API. Find out about
SWIG at http://www.swig.org.

The Metakit embedded database provides an efficient, easy, scriptable database for
Tcl. It is more powerful than the simple "flat file" databases implemented in this
Chapter, but it is not a full SQL database. It is part of Tclkit, or you can use it with
the mk4tcl extension. Tclkit and Metakit are described in Chapter 22.

http://www.swig.org/default.htm

Chapter 9. Working with Files and Programs
This chapter describes how to run programs, examine the file system, and access
environment variables through the env array. Tcl commands described are: exec,
file, open, close, read, write, puts, gets, flush, seek, tell, glob, pwd, cd,
exit, pid, and registry.

This chapter describes how to run programs and access the file system from Tcl.
These commands were designed for UNIX. In Tcl 7.5 they were implemented in the
Tcl ports to Windows and Macintosh. There are facilities for naming files and
manipulating file names in a platform-independent way, so you can write scripts that
are portable across systems. These capabilities enable your Tcl script to be a
general-purpose glue that assembles other programs into a tool that is customized
for your needs. Tcl 8.4 added support for 64-bit file systems, where available.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Running Programs with exec

The exec command runs programs from your Tcl script.[*] For example:

[*] Unlike other UNIX shell exec commands, the Tcl exec does not replace the current process with the new one. Instead, the Tcl library forks first and executes the
program as a child process.

set d [exec date]

The standard output of the program is returned as the value of the exec command. However, if the program
writes to its standard error channel or exits with a nonzero status code, then exec raises an error. If you do
not care about the exit status, or you use a program that insists on writing to standard error, then you can
use catch to mask the errors:

catch {exec program arg arg} result

The exec command supports a full set of I/O redirection and pipeline syntax. Each process normally has three
I/O channels associated with it: standard input, standard output, and standard error. With I/O redirection, you
can divert these I/O channels to files or to I/O channels you have opened with the Tcl open command. A
pipeline is a chain of processes that have the standard output of one command hooked up to the standard
input of the next command in the pipeline. Any number of programs can be linked together into a pipeline.

Example 9-1 Using exec on a process pipeline

set n [exec sort < /etc/passwd | uniq | wc -l 2> /dev/null]

Example 9-1 uses exec to run three programs in a pipeline. The first program is sort, which takes its input
from the file /etc/passwd. The output of sort is piped into uniq, which suppresses duplicate lines. The
output of uniq is piped into wc, which counts the lines. The error output of the command is diverted to the
null device to suppress any error messages. Table 9-1 provides a summary of the syntax understood by the
exec command.

Table 9-1. Summary of the exec syntax for I/O redirection

-keepnewline (First argument.) Do not discard trailing newline from the result.

| Pipes standard output from one process into another.

|& Pipes both standard output and standard error output.

< fileName Takes input from the named file.

<@ fileId Takes input from the I/O channel identified by fileId.

<< value Takes input from the given value.

> fileName Overwrites fileName with standard output.

2> fileName Overwrites fileName with standard error output.

>& fileName Overwrites fileName with both standard error and standard out.

>> fileName Appends standard output to the named file.

2>> fileName Appends standard error to the named file.

>>& fileName Appends both standard error and standard output to the named file.

>@ fileId Directs standard output to the I/O channel identified by fileId.

2>@ fileId Directs standard error to the I/O channel identified by fileId.

>&@ fileId Directs both standard error and standard output to the I/O channel.

& As the last argument, indicates pipeline should run in background.

A trailing & causes the program to run in the background. In this case, the process identifier is returned by
the exec command. Otherwise, the exec command blocks during execution of the program, and the standard
output of the program is the return value of exec. The trailing newline in the output is trimmed off, unless you
specify -keepnewline as the first argument to exec.

If you look closely at the I/O redirection syntax, you'll see that it is built up from a few basic building blocks.
The basic idea is that | stands for pipeline, > for output, and < for input. The standard error is joined to the
standard output by &. Standard error is diverted separately by using 2>. You can use your own I/O channels
by using @.

The auto_noexec Variable

The Tcl shell programs are set up during interactive use to attempt to execute unknown Tcl commands as
programs. For example, you can get a directory listing by typing:

ls

instead of:

exec ls

This is handy if you are using the Tcl interpreter as a general shell. It can also cause unexpected behavior
when you are just playing around. To turn this off, define the auto_noexec variable:

set auto_noexec anything

Limitations of exec on Windows

Windows 3.1 has an unfortunate combination of special cases that stem from console-mode programs, 16-bit
programs, and 32-bit programs. In addition, pipes are really just simulated by writing output from one
process to a temporary file and then having the next process read from that file. If exec or a process pipeline
fails, it is because of a fundamental limitation of Windows. The good news is that Windows 98 and Windows
NT cleaned up most of the problems with exec. Windows NT, Window 2000, and Windows XP are pretty
robust.

Tcl 8.0p2 was the last release to officially support Windows 3.1. That release includes Tcl1680.dll, which is
necessary to work with the win32s subsystem. If you copy that file into the same directory as the other Tcl
DLLs, you may be able to use some later releases of Tcl on Windows 3.1. However, Tcl 8.3 completely
removed support for win32s while adding support for Windows XP-64.

AppleScript on Macintosh

The exec command is not provided on the Macintosh. Tcl ships with an AppleScript extension that lets you
control other Macintosh applications. You can find documentation in the AppleScript.html that goes with the
distribution. You must use package require to load the AppleScript command:

package require Tclapplescript
AppleScript junk
=> bad option "junk": must be compile, decompile, delete, execute, info, load, run, or store.

The file Command

The file command provides several ways to check the status of files in the file
system. For example, you can find out if a file exists, what type of file it is, and
other file attributes. There are facilities for manipulating files in a platform-
independent manner. Table 9-2 provides a summary of the various forms of the
file command. They are described in more detail later. Note that several operations
have been added since the introduction of the file command; the table indicates
the version of Tcl in which they were added.

Table 9-2. The file command options

file atime name ?
time?

Returns access time as a decimal string. If time is specified,
the access time of the file is set.

file attributes
name ?option? ?
value? ...

Queries or sets file attributes. (Tcl 8.0)

file channels ?
pattern?

Returns the open channels in this interpreter, optionally
filtered by the glob-style pattern. (Tcl 8.3)

file copy ?-
force? source
destination

Copies file source to file destination. The source and
destination can be directories. (Tcl 7.6)

file delete ?-
force? name

Deletes the named file. (Tcl 7.6)

file dirname name Returns parent directory of file name.

file executable
name

Returns 1 if name has execute permission, else 0.

file exists name Returns 1 if name exists, else 0.

file extension
name

Returns the part of name from the last dot (i.e., .) to the end.
The dot is included in the return value.

file isdirectory
name

Returns 1 if name is a directory, else 0.

file isfile name Returns 1 if name is not a directory, symbolic link, or device,
else 0.

file join path
path...

Joins pathname components into a new pathname. (Tcl 7.5)

file link ?-type?
name ?target?

Returns the link pointed to by name, or creates a link to
target if it is specified. type can be -hard or -symbolic. (Tcl
8.4)

file lstat name
var

Places attributes of the link name into var.

file mkdir name Creates directory name. (Tcl 7.6)

file mtime name ?
time?

Returns modify time of name as a decimal string. If time is
specified, the modify time of the file is set.

file nativename
name

Returns the platform-native version of name. (Tk 8.0).

file normalize
name

Returns a unique, absolute, path for name while eliminating
extra /, /., and /.. components. (Tcl 8.4)

file owned name Returns 1 if current user owns the file name, else 0.

file pathtype
name

relative, absolute, or volumerelative. (Tcl 7.5)

file readable
name

Returns 1 if name has read permission, else 0.

file readlink
name

Returns the contents of the symbolic link name.

file rename ?-
force? old new

Changes the name of old to new. (Tcl 7.6)

file rootname
name

Returns all but the extension of name (i.e., up to but not
including the last . in name).

file separator ?
name?

Returns the default file separator character on this file
system, or the separator character for name if it is specified.
(Tcl 8.4)

file size name Returns the number of bytes in name.

file split name Splits name into its pathname components. (Tcl 7.5)

file stat name
var

Places attributes of name into array var. The elements defined
for var are listed in Table 9-3.

file system name Returns a tuple of the filesystem for name (e.g. native or
vfs) and the platform-specific type for name (e.g NTFS or
FAT32). (Tcl 8.4)

file tail name Returns the last pathname component of name.

file type name Returns type identifier, which is one of: file, directory,
characterSpecial, blockSpecial, fifo, link, or socket.

file volumes name Returns the available file volumes on this computer. On Unix,
this always returns /. On Windows, this would be a list like
{a:/ c:/}. (Tcl 8.3)

file writable
name

Returns 1 if name has write permission, else 0.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Cross-Platform File Naming

Files are named differently on UNIX, Windows, and Macintosh. UNIX separates file
name components with a forward slash (/), Macintosh separates components with a
colon (:), and Windows separates components with a backslash (\). In addition, the
way that absolute and relative names are distinguished is different. For example,
these are absolute pathnames for the Tcl script library (i.e., $tcl_library) on
Macintosh, Windows, and UNIX, respectively:

Disk:System Folder:Extensions:Tool Command Language:tcl7.6
c:\Program Files\Tcl\lib\Tcl7.6
/usr/local/tcl/lib/tcl7.6

The good news is that Tcl provides operations that let you deal with file pathnames
in a platform-independent manner. The file operations described in this chapter
allow either native format or the UNIX naming convention. The backslash used in
Windows pathnames is especially awkward because the backslash is special to Tcl.
Happily, you can use forward slashes instead:

c:/Program Files/Tcl/lib/Tcl7.6

There are some ambiguous cases that can be specified only with native pathnames.
On my Macintosh, Tcl and Tk are installed in a directory that has a slash in it. You
can name it only with the native Macintosh name:

Disk:Applications:Tcl/Tk 4.2

Another construct to watch out for is a leading // in a file name. This is the
Windows syntax for network names that reference files on other computers. You can
avoid accidentally constructing a network name by using the file join command
described next. Of course, you can use network names to access remote files.

If you must communicate with external programs, you may need to construct a file
name in the native syntax for the current platform. You can construct these names
with file join described later. You can also convert a UNIX-like name to a native
name with file nativename.

Several of the file operations operate on pathnames as opposed to returning
information about the file itself. You can use the dirname, extension, join,
normalize, pathtype, rootname, split, and tail operations on any string; there is
no requirement that the pathnames refer to an existing file.

Building up Pathnames: file join

You can get into trouble if you try to construct file names by simply joining
components with a slash. If part of the name is in native format, joining things with
slashes will result in incorrect pathnames on Macintosh and Windows. The same
problem arises when you accept user input. The user is likely to provide file names

in native format. For example, this construct will not create a valid pathname on the
Macintosh because $tcl_library is in native format:

set file $tcl_library/init.tcl

Use file join to construct file names.

The platform-independent way to construct file names is with file join. The
following command returns the name of the init.tcl file in native format:

set file [file join $tcl_library init.tcl]

The file join operation can join any number
of pathname components. In addition, it has
the feature that an absolute pathname
overrides any previous components. For
example (on UNIX), /b/c is an absolute
pathname, so it overrides any paths that come
before it in the arguments to file join:

file join a b/c d
=> a/b/c/d
file join a /b/c d
=> /b/c/d

On Macintosh, a relative pathname starts with a colon, and an absolute pathname
does not. To specify an absolute path, you put a trailing colon on the first
component so that it is interpreted as a volume specifier. These relative components
are joined into a relative pathname:

file join a :b:c d
=> :a:b:c:d

In the next case, b:c is an absolute pathname with b: as the volume specifier. The
absolute name overrides the previous relative name:

file join a b:c d
=> b:c:d

The file join operation converts UNIX-style pathnames to native format. For
example, on Macintosh you get this:

file join /usr/local/lib
=> usr:local:lib

Chopping Pathnames: split, dirname, tail

The file split command divides a pathname into components. It is the inverse of
file join. The split operation detects automatically if the input is in native or
UNIX format. The results of file split may contain some syntax to help resolve
ambiguous cases when the results are passed back to file join. For example, on
Macintosh a UNIX-style pathname is split on slash separators. The Macintosh syntax
for a volume specifier (Disk:) is returned on the leading component:

file split "/Disk/System Folder/Extensions"
=> Disk: {System Folder} Extensions

A common reason to split up pathnames is to divide a pathname into the directory
part and the file part. This task is handled directly by the dirname and tail
operations. The dirname operation returns the parent directory of a pathname,
while tail returns the trailing component of the pathname:

file dirname /a/b/c
=> /a/b
file tail /a/b/c
=> c

For a pathname with a single component, the dirname option returns ".", on UNIX
and Windows, or ":" on Macintosh. This is the name of the current directory.

The extension and root options are also complementary. The extension option
returns everything from the last period in the name to the end (i.e., the file suffix
including the period.) The root option returns everything up to, but not including,
the last period in the pathname:

file root /a/b.c
=> /a/b
file extension /a/b.c
=> .c

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Manipulating Files and Directories

Tcl 7.6 added file operations to copy files, delete files, rename files, and create
directories. In earlier versions it was necessary to exec other programs to do these
things, except on Macintosh, where cp, rm, mv, mkdir, and rmdir were built in.
These commands are no longer supported on the Macintosh. Your scripts should use
the file command operations described below to manipulate files in a platform-
independent way.

File name patterns are not directly supported by the file operations. Instead, you
can use the glob command described on page 122 to get a list of file names that
match a pattern.

Copying Files

The file copy operation copies files and directories. The following example copies
file1 to file2. If file2 already exists, the operation raises an error unless the -
force option is specified:

file copy ?-force? file1 file2

Several files can be copied into a destination directory. The names of the source files
are preserved. The -force option indicates that files under directory can be
replaced:

file copy ?-force? file1 file2 ... directory

Directories can be recursively copied. The -force option indicates that files under
dir2 can be replaced:

file copy ?-force? dir1 dir2

Creating Directories

The file mkdir operation creates one or more directories:

file mkdir dir dir ...

It is not an error if the directory already exists. Furthermore, intermediate
directories are created if needed. This means that you can always make sure a
directory exists with a single mkdir operation. Suppose /tmp has no subdirectories
at all. The following command creates /tmp/sub1 and /tmp/sub1/sub2:

file mkdir /tmp/sub1/sub2

The -force option is not understood by file mkdir, so the following command
accidentally creates a folder named -force, as well as one named oops.

file mkdir -force oops

Symbolic and Hard Links

The file link operation allows the user to manipulate links. Hard links are
directory entries that directly reference an existing file or directory. Symbolic (i.e.,
soft) links are files that contain the name of another file or directory. Generally,
opening a link opens the file referenced by the link. Operating system support for
links varies. Unix supports both types of links. Classic Macintosh only supports
symbolic links (i.e., aliases). Windows 95/98/ME do not support links at all, while
Windows NT/2000/XP support symbolic links to directories and hard links to files.

With only a single argument, file link returns the value of a symbolic link, or
raises an error if the file is not a symbolic link. With two pathname arguments, the
first is the name of the link, and the second is the name of the file referenced by the
link. If you leave out the -hard or -symbolic, the appropriate link type is created
for the current platform:

file link the_link the_existing_file

Deleting Files

The file delete operation deletes files and directories. It is not an error if the files
do not exist. A non-empty directory is not deleted unless the -force option is
specified, in which case it is recursively deleted:

file delete ?-force? name name ...

To delete a file or directory named -force, you must specify a nonexistent file
before the -force to prevent it from being interpreted as a flag (-force -force
won't work):

file delete xyzzy -force

Renaming Files and Directories

The file rename operation changes a file's name from old to new. The -force
option causes new to be replaced if it already exists.

file rename ?-force? old new

Using file rename is the best way to update an existing file. First, generate the
new version of the file in a temporary file. Then, use file rename to replace the old

version with the new version. This ensures that any other programs that access the
file will not see the new version until it is complete.

File Attributes

There are several file operations that return specific file attributes: atime,
executable, exists, isdirectory, isfile, mtime, owned, readable, readlink,
size and type. Refer to Table 9-2 on page 108 for their function. The following
command uses file mtime to compare the modify times of two files. If you have
ever resorted to piping the results of ls -l into awk in order to derive this information
in other shell scripts, you will appreciate this example:

Example 9-2 Comparing file modify times

proc newer { file1 file2 } {
 if {![file exists $file2]} {
 return 1
 } else {
 # Assume file1 exists
 expr {[file mtime $file1] > [file mtime $file2]}
 }
}

You can use the optional time argument to mtime and atime to set the file's time
attributes, like the Unix touch command. The stat and lstat operations return a
collection of file attributes. They take a third argument that is the name of an array
variable, and they initialize that array with elements that contain the file attributes.
If the file is a symbolic link, then the lstat operation returns information about the
link itself and the stat operation returns information about the target of the link.

Table 9-3. Array elements defined by file stat

atime The last access time, in seconds.

ctime The last change time (not the create time), in seconds.

dev The device identifier, an integer.

gid The group owner, an integer.

ino The file number (i.e., inode number), an integer.

mode The permission bits.

mtime The last modify time, in seconds.

nlink The number of links, or directory references, to the file.

size The number of bytes in the file.

type file, directory, characterSpecial, blockSpecial, fifo, link, or socket.

uid The owner's user ID, an integer.

The array elements are listed in Table 9-3. All the element values are decimal
strings, except for type, which can have the values returned by the type option.
The element names are based on the UNIX stat system call. Use the file attributes
command described later to get other platform-specific attributes.

Example 9-3 uses the device (dev) and inode (ino) attributes of a file to determine
whether two pathnames reference the same file. These attributes are UNIX specific;
they are not well defined on Windows and Macintosh.

Example 9-3 Determining whether pathnames reference the same
file

proc fileeq { path1 path2 } {
 file stat $path1 stat1
 file stat $path2 stat2
 expr {$stat1(ino) == $stat2(ino) && \
 $stat1(dev) == $stat2(dev)}
}

The file attributes operation was added in Tcl 8.0 to provide access to platform-
specific attributes. The attributes operation lets you set and query attributes. The
interface uses option-value pairs. With no options, all the current values are
returned.

file attributes book.doc
=> -creator FRAM -hidden 0 -readonly 0 -type MAKR

These Macintosh attributes are explained in Table 9-4. The four-character type
codes used on Macintosh are illustrated on page 600. With a single option, only that
value is returned:

file attributes book.doc -readonly
=> 0

The attributes are modified by specifying one or more optionÿvalue pairs. Setting
attributes can raise an error if you do not have the right permissions:

file attributes book.doc -readonly 1 -hidden 0

Table 9-4. Platform-specific file attributes

-
permissions
mode

File permission bits. mode is an octal number or symbolic
representation (e.g. a+x) with bits defined by the chmod system call,
or a simplified ls-style string of the form rwxrwxrwx (must be 9
characters). (UNIX)

-group ID The group owner of the file. (UNIX)

-owner ID The owner of the file. (UNIX)

-archive
bool

The archive bit, which is set by backup programs. (Windows)

-system
bool

If set, then you cannot remove the file. (Windows)

-longname The long (expanded) version of the pathname. Read-only. (Windows)

-shortname The short (8.3) version of the pathname. Read-only. (Windows)

-hidden
bool

If set, then the file does not appear in listings. (Windows, Macintosh)

-readonly
bool

If set, then you cannot write the file. (Windows, Macintosh)

-creator
type

type is 4-character code of creating application. (Macintosh)

-type type type is 4-character type code. (Macintosh)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Input/Output Command Summary

The following sections describe how to open, read, and write files. The basic model
is that you open a file, read or write it, then close the file. Network sockets also use
the commands described here. Socket programming is discussed in Chapter 17, and
more advanced event-driven I/O is described in Chapter 16. Table 9-5 lists the basic
commands associated with file I/O:

Table 9-5. Tcl commands used for file access

open what ?access? ?
permissions?

Returns channel ID for a file or pipeline.

puts ?-nonewline? ?channel?
string

Writes a string.

gets channel ?varname? Reads a line.

read channel ?numBytes? Reads numBytes bytes, or all data.

read -nonewline channel Reads all bytes and discard the last \n.

tell channel Returns the seek offset.

seek channel offset ?
origin?

Sets the seek offset. origin is one of start,
current, or end.

eof channel Queries end-of-file status.

flush channel Writes buffers of a channel.

close channel Closes an I/O channel.

Opening Files for I/O

The open command sets up an I/O channel to either a file or a pipeline of processes.
The return value of open is an identifier for the I/O channel. Store the result of open
in a variable and use the variable as you used the stdout, stdin, and stderr
identifiers in the examples so far. The basic syntax is:

open what ?access? ?permissions?

The what argument is either a file name or a pipeline specification similar to that
used by the exec command. The access argument can take two forms, either a
short character sequence that is compatible with the fopen library routine, or a list
of POSIX access flags. Table 9-6 summarizes the first form, while Table 9-7
summarizes the POSIX flags. If access is not specified, it defaults to read.

Example 9-4 Opening a file for writing

set fileId [open /tmp/foo w 0600]
puts $fileId "Hello, foo!"
close $fileId

The permissions argument is a value used for the permission bits on a newly
created file. UNIX uses three bits each for the owner, group, and everyone else. The
bits specify read, write, and execute permission. These bits are usually specified
with an octal number, which has a leading zero, so that there is one octal digit for
each set of bits. The default permission bits are 0666, which grant read/write access
to everybody. Example 9-4 specifies 0600 so that the file is readable and writable
only by the owner. 0775 would grant read, write, and execute permissions to the
owner and group, and read and execute permissions to everyone else. You can set
other special properties with additional high-order bits. Consult the UNIX manual
page on chmod command for more details.

Table 9-6. Summary of the open access arguments

r Opens for reading. The file must exist.

r+ Opens for reading and writing. The file must exist.

w Opens for writing. Truncate if it exists. Create if it does not exist.

w+ Opens for reading and writing. Truncate or create.

a Opens for writing. Data is appended to the file.

a+ Opens for reading and writing. Data is appended.

Table 9-7. Summary of POSIX flags for the access argument

RDONLY Opens for reading.

WRONLY Opens for writing.

RDWR Opens for reading and writing.

APPEND Opens for append.

CREAT Creates the file if it does not exist.

EXCL If CREAT is also specified, then the file cannot already exist.

NOCTTY Prevents terminal devices from becoming the controlling terminal.

NONBLOCK Does not block during the open.

TRUNC Truncates the file if it exists.

The following example illustrates how to use a list of POSIX access flags to open a
file for reading and writing, creating it if needed, and not truncating it. This is
something you cannot do with the simpler form of the access argument:

set fileId [open /tmp/bar {RDWR CREAT}]

Catch errors from open.

In general, you should check for errors when opening files. The following example
illustrates a catch phrase used to open files. Recall that catch returns 1 if it catches
an error; otherwise, it returns zero. It treats its second argument as the name of a
variable. In the error case, it puts the error message into the variable. In the normal
case, it puts the result of the command into the variable:

Example 9-5 A more careful use of open

if [catch {open /tmp/data r} fileId] {
 puts stderr "Cannot open /tmp/data: $fileId"
} else {
 # Read and process the file, then...
 close $fileId
}

Opening a Process Pipeline

You can open a process pipeline by specifying the pipe character, |, as the first
character of the first argument. The remainder of the pipeline specification is
interpreted just as with the exec command, including input and output redirection.
The second argument determines which end of the pipeline open returns. The
following example runs the UNIX sort program on the password file, and it uses the
split command to separate the output lines into list elements:

Example 9-6 Opening a process pipeline

set input [open "|sort /etc/passwd" r]
set contents [split [read $input] \n]
close $input

You can open a pipeline for both read and write by specifying the r+ access mode.
In this case, you need to worry about buffering. After a puts, the data may still be
in a buffer in the Tcl library. Use the flush command to force the data out to the
spawned processes before you try to read any output from the pipeline. You can
also use the fconfigure command described on page 233 to force line buffering.
Remember that read-write pipes will not work at all with Windows 3.1 because pipes
are simulated with files. Event-driven I/O is also very useful with pipes. It means
you can do other processing while the pipeline executes, and simply respond when
the pipe generates data. This is described in Chapter 16.

Expect

If you are trying to do sophisticated things with an external application, you will find
that the Expect extension provides a much more powerful interface than a process
pipeline. Expect adds Tcl commands that are used to control interactive applications.
It is extremely useful for automating a variety of applications such as ssh, Telnet,
and programs under test. Tcl is able to handle simple FTP sessions, telnet and many
command line controllable applications, but Expect has extra control at the tty level
that is essential for certain applications. It comes on some systems as a specially
built Tcl shell named expect, and it is also available as an extension that you can
dynamically load into Tcl shells with:

package require Expect

Expect was created by Don Libes at the National Institute of Standards and
Technology (NIST). Expect is described in Exploring Expect (Libes, O'Reilly &
Associates, Inc., 1995). You can find the software on the CD and on the web at:

http://expect.nist.gov/

http://expect.nist.gov/default.htm

Reading and Writing

The standard I/O channels are already open for you. There is a standard input
channel, a standard output channel, and a standard error output channel. These
channels are identified by stdin, stdout, and stderr, respectively. Other I/O
channels are returned by the open command, and by the socket command
described on page 239.

There may be cases when the standard I/O channels are not available. The wish
shells on Windows and Macintosh have no standard I/O channels. Some UNIX
window managers close the standard I/O channels when you start programs from
window manager menus. You can also close the standard I/O channels with close.

The puts and gets Commands

The puts command writes a string and a newline to the output channel. There are a
couple of details about the puts command that we have not yet used. It takes a -
nonewline argument that prevents the newline character that is normally appended
to the output channel. This is used in the prompt example below. The second
feature is that the channel identifier is optional, defaulting to stdout if not specified.
Note that you must use flush to force output of a partial line. This is illustrated in
Example 9-7.

Example 9-7 Prompting for input

puts -nonewline "Enter value: "
flush stdout ;# Necessary to get partial line output
set answer [gets stdin]

The gets command reads a line of input, and it has two forms. In the previous
example, with just a single argument, gets returns the line read from the specified
I/O channel. It discards the trailing newline from the return value. If end of file is
reached, an empty string is returned. You must use the eof command to tell the
difference between a blank line and end-of-file. eof returns 1 if there is end of file.
Given a second varName argument, gets stores the line into a named variable and
returns the number of bytes read. It discards the trailing newline, which is not
counted. A -1 is returned if the channel has reached the end of file.

Example 9-8 A read loop using gets

while {[gets $channel line] >= 0} {
 # Process line
}
close $channel

The read Command

The read command reads blocks of data, and this capability is often more efficient.
There are two forms for read: You can specify the -nonewline argument or the
numBytes argument, but not both. Without numBytes, the whole file (or what is left
in the I/O channel) is read and returned. The -nonewline argument causes the
trailing newline to be discarded. Given a byte count argument, read returns that
amount, or less if there is not enough data in the channel. The trailing newline is not
discarded in this case.

Example 9-9 A read loop using read and split

foreach line [split [read $channel] \n] {
 # Process line
}
close $channel

For moderate-sized files, it is about 10 percent faster to loop over the lines in a file
using the read loop in the second example. In this case, read returns the whole file,
and split chops the file into list elements, one for each line. For small files (less
than 1K) it doesn't really matter. For large files (megabytes) you might induce
paging with this approach.

Platform-Specific End of Line Characters

Tcl automatically detects different end of line conventions. On UNIX, text lines are
ended with a newline character (\n). On Macintosh, they are terminated with a
carriage return (\r). On Windows, they are terminated with a carriage return,
newline sequence (\r\n). Tcl accepts any of these, and the line terminator can even
change within a file. All these different conventions are converted to the UNIX style
so that once read, text lines are always terminated with a newline character (\n).
Both the read and gets commands do this conversion.

During output, text lines are generated in the platform-native format. The automatic
handling of line formats means that it is easy to convert a file to native format. You
just need to read it in and write it out:

puts -nonewline $out [read $in]

To suppress conversions, use the fconfigure command, which is described in more
detail on page 234.

Example 9-10 demonstrates a File_Copy procedure that translates files to native
format. It is complicated because it handles directories.

Example 9-10 Copy a file and translate to native format

proc File_Copy {src dest} {
 if {[file isdirectory $src]} {
 file mkdir $dest
 foreach f [glob -nocomplain [file join $src *]] {
 File_Copy $f [file join $dest [file tail $f]]
 }
 return
 }
 if {[file isdirectory $dest]} {
 set dest [file join $dest [file tail $src]]
 }
 set in [open $src]
 set out [open $dest w]
 puts -nonewline $out [read $in]
 close $out ; close $in
}

Random Access I/O

The seek and tell commands provide random access to I/O channels. Each channel
has a current position called the seek offset. Each read or write operation updates
the seek offset by the number of bytes transferred. The current value of the offset is
returned by the tell command. The seek command sets the seek offset by an
amount, which can be positive or negative, from an origin which is either start,
current, or end. If you are dealing with files greater than 2GB in size, you will need
Tcl 8.4 for its 64-bit file system support.

Closing I/O Channels

The close command is just as important as the others because it frees operating
system resources associated with the I/O channel. If you forget to close a channel,
it will be closed when your process exits. However, if you have a long-running
program, like a Tk script, you might exhaust some operating system resources if
you forget to close your I/O channels.

The close command can raise an error.

If the channel was a process pipeline and any of the processes wrote to their
standard error channel, then Tcl believes this is an error. The error is raised when
the channel to the pipeline is finally closed. Similarly, if any of the processes in the
pipeline exit with a nonzero status, close raises an error.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The Current Directory ÿ cd and pwd

Every process has a current directory that is used as the starting point when
resolving a relative pathname. The pwd command returns the current directory, and
the cd command changes the current directory. Example 9-11 uses these
commands.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Matching File Names with glob

The glob command expands a pattern into the set of matching file names. The
general form of the glob command is:

glob ?options? pattern ?pattern? ...

The pattern syntax is similar to the string match patterns:

* matches zero or more characters.

? matches a single character.

[abc] matches a set of characters.

{a,b,c} matches any of a, b, or c.

All other characters must match themselves.

Table 9-8 lists the options for the glob command.

Table 9-8. glob command options

-directory
dir

Search for files in the directory dir. (Tcl 8.3)

-join The remaining pattern arguments are treated as a single pattern
obtained by joining them with directory separators. (Tcl 8.3)

-
nocomplain

Causes glob to return an empty list if no files match. Otherwise an
error is raised.

-path path Search for files in the given path prefix path. Allows you to search in
areas that may contain glob-sensitive characters. (Tcl 8.3)

-tails Only return the part of each file found that follows the last directory
named in the -directory or -path argument. (Tcl 8.4)

-types
types

Only return files matching the types specified.

-- Signifies the end of flags. Must be used if pattern begins with a -.

Unlike the glob matching in csh, the Tcl glob command matches only the names of
existing files. In csh, the {a,b} construct can match nonexistent names. In addition,
the results of glob are not sorted. Use the lsort command to sort its result if you
find it important.

Example 9-11 shows the FindFile procedure, which traverses the file system
hierarchy using recursion. At each iteration it saves its current directory and then
attempts to change to the next subdirectory. A catch guards against bogus names.
The glob command matches file names:

Example 9-11 Finding a file by name

proc FindFile { startDir namePat } {
 set pwd [pwd]
 if {[catch {cd $startDir} err]} {
 puts stderr $err
 return
 }
 foreach match [glob -nocomplain -- $namePat] {
 puts stdout [file join $startDir $match]
 }
 foreach file {[glob -nocomplain *]} {
 if [file isdirectory $file] {
 FindFile [file join $startDir $file] $namePat
 }
 }
 cd $pwd
}

The -types option allows for special filtered matching similar to the UNIX find
command. The first form is like the -type option of find: b (block special file), c
(character special file), d (directory), f (plain file), l (symbolic link), p (named
pipe), or s (socket), where multiple types may be specified in the list. Glob will
return all files which match at least one of the types given.

The second form specifies types where all the types given must match. These are r
(readable), w (writable) and x (executable) as file permissions, and readonly and
hidden as special cases. On the Macintosh, MacOS types and creators are also
supported, where any item which is four characters long is assumed to be a MacOS
type (e.g. TEXT). Items which are of the form {macintosh type XXXX} or
{macintosh creator XXXX} will match types or creators respectively. Unrecognized
types, or specifications of multiple MacOS types/creators will signal an error.

The two forms may be mixed, so -types {d f r w} will find all regular files OR
directories that have both read AND write permissions.

Expanding Tilde in File Names

The glob command also expands a leading tilde (~) in filenames. There are two
cases:

~/ expands to the current user's home directory.

~user expands to the home directory of user.

If you have a file that starts with a literal tilde, you can avoid the tilde expansion by
adding a leading ./ (e.g., ./~foobar).

The exit and pid Commands

The exit command terminates your script. Note that exit causes termination of the
whole process that was running the script. If you supply an integer-valued argument
to exit, then that becomes the exit status of the process.

The pid command returns the process ID of the current process. This can be useful
as the seed for a random number generator because it changes each time you run
your script. It is also common to embed the process ID in the name of temporary
files.

You can also find out the process IDs associated with a process pipeline with pid:

set pipe [open "|command"]
set pids [pid $pipe]

There is no built-in mechanism to control processes in the Tcl core. On UNIX
systems you can exec the kill program to terminate a process:

exec kill $pid

Environment Variables

Environment variables are a collection of string-valued variables associated with
each process. The process's environment variables are available through the global
array env. The name of the environment variable is the index, (e.g., env(PATH)),
and the array element contains the current value of the environment variable. If
assignments are made to env, they result in changes to the corresponding
environment variable. Environment variables are inherited by child processes, so
programs run with the exec command inherit the environment of the Tcl script. The
following example prints the values of environment variables.

Example 9-12 Printing environment variable values

proc printenv { args } {
 global env
 set maxl 0
 if {[llength $args] == 0} {
 set args [lsort [array names env]]
 }
 foreach x $args {
 if {[string length $x] > $maxl} {
 set maxl [string length $x]
 }
 }
 incr maxl 2
 foreach x $args {
 puts stdout [format "%*s = %s" $maxl $x $env($x)]
 }
}
printenv USER SHELL TERM
=>
USER = welch
SHELL = /bin/csh
TERM = tx

Note: Environment variables can be initialized for Macintosh applications by editing
a resource of type STR# whose name is Tcl Environment Variables. This resource
is part of the tclsh and wish applications. Follow the directions on page 28 for using
ResEdit. The format of the resource values is NAME=VALUE.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The registry Command

Windows uses the registry to store various system configuration information. The
Windows tool to browse and edit the registry is called regedit. Tcl provides a
registry command. It is a loadable package that you must load by using:

package require registry

The registry structure has keys, value names, and typed data. The value names are
stored under a key, and each value name has data associated with it. The keys are
organized into a hierarchical naming system, so another way to think of the value
names is as an extra level in the hierarchy. The main point is that you need to
specify both a key name and a value name in order to get something out of the
registry. The key names have one of the following formats:

\\hostname\rootname\keypath
rootname\keypath
rootname

The rootname is one of HKEY_LOCAL_MACHINE, HKEY_PERFORMANCE_DATA,
HKEY_USERS, HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_CURRENT_CONFIG, or
HKEY_DYN_DATA. Tables 9-9 and 9-10 summarize the registry command and data
types:

Table 9-9. The registry command

registry delete key ?
valueName?

Deletes the key and the named value, or it deletes all
values under the key if valueName is not specified.

registry get key
valueName

Returns the value associated with valueName under key.

registry keys key ?
pat?

Returns the list of keys or value names under key that
match pat, which is a string match pattern.

registry set key Creates key.

registry set key
valueName data ?type?

Creates valueName under key with value data of the
given type. Types are listed in Table 9-10.

registry type key
valueName

Returns the type of valueName under key.

registry values key ?
pat?

Returns the names of the values stored under key that
match pat, which is a string match pattern.

Table 9-10. The registry data types

binary Arbitrary binary data.

none Arbitrary binary data.

expand_sz A string that contains references to environment variables with
the %VARNAME% syntax.

dword A 32-bit integer.

dword_big_endian A 32-bit integer in the other byte order. It is represented in Tcl
as a decimal string.

link A symbolic link.

multi_sz An array of strings, which are represented as a Tcl list.

resource_list A device driver resource list.

Part II: Advanced Tcl
Part II describes advanced programming techniques that support sophisticated
applications. The Tcl interfaces remain simple, so you can quickly construct
powerful applications.

Chapter 10 describes eval, which lets you create Tcl programs on the fly.
There are tricks with using eval correctly, and a few rules of thumb to make
your life easier.

Chapter 11 describes regular expressions. This is the most powerful string
processing facility in Tcl. This chapter includes a cookbook of useful regular
expressions.

Chapter 12 describes the library and package facility used to organize your
code into reusable modules.

Chapter 13 describes introspection and debugging. Introspection provides
information about the state of the Tcl interpreter.

Chapter 14 describes namespaces that partition the global scope for variables
and procedures. Namespaces help you structure large Tcl applications.

Chapter 15 describes the features that support Internationalization, including
Unicode, other character set encodings, and message catalogs.

Chapter 16 describes event-driven I/O programming. This lets you run process
pipelines in the background. It is also very useful with network socket
programming, which is the topic of Chapter 17.

Chapter 18 describes TclHttpd, a Web server built entirely in Tcl. You can build
applications on top of TclHttpd, or integrate the server into existing
applications to give them a web interface. TclHttpd also supports regular Web
sites.

Chapter 19 describes Safe-Tcl and using multiple Tcl interpreters. If an
interpreter is safe, then you can grant it restricted functionality. This is ideal
for supporting network applets that are downloaded from untrusted sites,
which is described in Chapter 20.

Chapter 21 describes how to use the Thread extension to create multi-
threaded Tcl scripts. The extension provides threads, synchronization with
mutexes and condition variables, shared variables, and thread pools.

Chapter 22 describes how to package and deploy Tcl applications as Starkits. A
Virtual File System facility is used to create a private file system inside the
Starkit to hold the scripts, graphics, and documentation that make up your
application.

Chapter 10. Quoting Issues and Eval
This chapter describes explicit calls to the interpreter with the eval command. An
extra round of substitutions is performed that results in some useful effects. The
chapter describes the quoting problems with eval and the ways to avoid them. The
uplevel command evaluates commands in a different scope. The subst command
does substitutions but no command invocation.

Dynamic evaluation makes Tcl flexible and powerful, but it can be tricky to use
properly. The basic idea is that you create a string and then use the eval command
to interpret that string as a command or a series of commands. Creating program
code on the fly is easy with an interpreted language like Tcl, and very hard, if not
impossible, with a statically compiled language like C++ or Java. There are several
ways that dynamic code evaluation is used in Tcl:

In some cases, a simple procedure isn't quite good enough, and you need to
glue together a command from a few different pieces and then execute the
result using eval. This often occurs with wrappers, which provide a thin layer
of functionality over existing commands.

Callbacks are script fragments that are saved and evaluated later in response
to some event. Examples include the commands associated with Tk buttons,
fileevent I/O handlers, and after timer handlers. Callbacks are a flexible
way to link different parts of an application together.

You can add new control structures to Tcl using the uplevel command. For
example, you can write a function that applies a command to each line in a file
or each node in a tree.

You can have a mixture of code and data, and just process the code part with
the subst command. For example, this is useful in HTML templates described
in Chapter 18. There are also some powerful combinations of subst and
regsub described in Chapter 11.

Constructing Code with the list Command

It can be tricky to assemble a command so that it is evaluated properly by eval.
The same difficulties apply to commands like after, uplevel, and the Tk send
command, all of which have similar properties to eval, except that the command
evaluation occurs later or in a different context. Constructing commands
dynamically is a source of many problems. The worst part is that you can write code
that works sometimes but not others, which can be very confusing.

Use list when constructing commands.

The root of the quoting problems is the internal use of concat by eval and similar
commands to concatenate their arguments into one command string. The concat
can lose some important list structure so that arguments are not passed through as
you expect. The general strategy to avoid these problems is to use list and
lappend to explicitly form the command callback as a single, well-structured list.

The eval Command

The eval command results in another call to the Tcl interpreter. If you construct a
command dynamically, you must use eval to interpret it. For example, suppose we
want to construct the following command now but execute it later:

puts stdout "Hello, World!"

In this case, it is sufficient to do the following:

set cmd {puts stdout "Hello, World!"}
=> puts stdout "Hello, World!"
sometime later...
eval $cmd
=> Hello, World!

In this case, the value of cmd is passed to Tcl. All the standard grouping and
substitution are done again on the value, which is a puts command.

However, suppose that part of the command is stored in a variable, but that variable
will not be defined at the time eval is used. We can artificially create this situation
like this:

set string "Hello, World!"
set cmd {puts stdout $string}
=> puts stdout $string
unset string
eval $cmd
=> can't read "string": no such variable

In this case, the command contains $string. When this is processed by eval, the
interpreter looks for the current value of string, which is undefined. This example
is contrived, but the same problem occurs if string is a local variable, and cmd will
be evaluated later in the global scope.

A common mistake is to use double quotes to group the command. That will let
$string be substituted now. However, this works only if string has a simple value,
but it fails if the value of string contains spaces or other Tcl special characters:

set cmd "puts stdout $string"
=> puts stdout Hello, World!
eval $cmd
=> bad argument "World!": should be "nonewline"

The problem is that we have lost some important structure. The identity of $string
as a single argument gets lost in the second round of parsing by eval. The solution
to this problem is to construct the command using list, as shown in the following
example:

Example 10-1 Using list to construct commands

set string "Hello, World!"
set cmd [list puts stdout $string]
=> puts stdout {Hello, World!}
unset string
eval $cmd
=> Hello, World!

The trick is that list has formed a list containing three elements: puts, stdout,
and the value of string. The substitution of $string occurs before list is called,
and list takes care of grouping that value for us. In contrast, using double quotes
is equivalent to:

set cmd [concat puts stdout $string]

Double quotes lose list structure.

The problem here is that concat does not preserve list structure. The main lesson is
that you should use list to construct commands if they contain variable values or
command results that must be substituted now. If you use double quotes, the
values are substituted but you lose proper command structure. If you use curly
braces, then values are not substituted until later, which may not be in the right
context.

Commands That Concatenate Their Arguments

The uplevel, after and send commands concatenate their arguments into a
command and execute it later in a different context. The uplevel command is
described on page 138, after is described on page 228, and send is described on
page 648. Whenever I discover such a command, I put it on my danger list and
make sure I explicitly form a single command argument with list instead of letting
the command concat items for me. Get in the habit now:

after 100 [list doCmd $param1 $param2]
send $interp [list doCmd $param1 $param2] ;# Safe!

The danger here is that concat and list can result in the same thing, so you can
be led down the rosy garden path only to get errors later when values change. The
two previous examples always work. The next two work only if param1 and param2
have values that are single list elements:

after 100 doCmd $param1 $param2
send $interp doCmd $param1 $param2 ;# Unsafe!

If you use other Tcl extensions that provide eval-like functionality, carefully check
their documentation to see whether they contain commands that concat their
arguments into a command. For example, Tcl-DP, which provides a network version
of send, dp_send, also uses concat.

Commands That Use Callbacks

The general strategy of passing out a command or script to call later is a flexible
way to assemble different parts of an application, and it is widely used by Tcl
commands. Examples include commands that are called when users click on Tk
buttons, commands that are called when I/O channels have data ready, or
commands that are called when clients connect to network servers. It is also easy to
write your own procedures or C extensions that accept scripts and call them later in
response to some event.

These other callback situations may not appear to have the "concat problem"
because they take a single script argument. However, as soon as you use double
quotes to group that argument, you have created the concat problem all over
again. So, all the caveats about using list to construct these commands still apply.

Command Prefix Callbacks

There is a variation on command callbacks called a command prefix. In this case,
the command is given additional arguments when it is invoked. In other words, you
provide only part of the command, the command prefix, and the module that
invokes the callback adds additional arguments before using eval to invoke the
command.

For example, when you create a network server, you supply a procedure that is
called when a client makes a connection. That procedure is called with three
additional arguments that indicate the client's socket, IP address, and port number.
This is described in more detail on page 240. The tricky thing is that you can define
your callback procedure to take four (or more) arguments. In this case you specify
some of the parameters when you define the callback, and then the socket
subsystem specifies the remaining arguments when it makes the callback. The
following command creates the server side of a socket:

set virtualhost www.beedub.com
socket -server [list Accept $virtualhost] 8080

However, you define the Accept procedure like this:

proc Accept {myname sock ipaddr port} { ... }

The myname parameter is set when you construct the command prefix. The
remaining parameters are set when the callback is invoked. The use of list in this
example is not strictly necessary because "we know" that virtualhost will always
be a single list element. However, using list is just a good habit when forming
callbacks, so I always write the code this way.

There are many other examples of callback arguments that are really command
prefixes. Some of these include the scrolling callbacks between Tk scrollbars and
their widgets, the command aliases used with Safe Tcl, the sorting functions in
lsort, and the completion callback used with fcopy. Example 13-6 on page 191
shows how to use eval to make callbacks from Tcl procedures.

Constructing Procedures Dynamically

The previous examples have all focused on creating single commands by using list
operations. Suppose you want to create a whole procedure dynamically.
Unfortunately, this can be particularly awkward because a procedure body is not a
simple list. Instead, it is a sequence of commands that are each lists, but they are
separated by newlines or semicolons. In turn, some of those commands may be
loops and if commands that have their own command bodies. To further compound
the problem, you typically have two kinds of variables in the procedure body: some
that are to be used as values when constructing the body, and some that are to be
used later when executing the procedure. The result can be very messy.

The main trick to this problem is to use either format or regsub to process a
template for your dynamically generated procedure. If you use format, then you can
put %s into your templates where you want to insert values. You may find the
positional notation of the format string (e.g., %1$s and %2$s) useful if you need to
repeat a value in several places within your procedure body. The following example
is a procedure that generates a new version of other procedures. The new version
includes code that counts the number of times the procedure was called and
measures the time it takes to run:

Example 10-2 Generating procedures dynamically with a template

proc TraceGen {procName} {
 rename s$procName $procName-orig
 set arglist {}
 foreach arg [info args $procName-orig] {
 append arglist "\$$arg "
 }
 proc $procName [info args $procName-orig] [format {
 global _trace_count _trace_msec
 incr _trace_count(%1$s)
 incr _trace_msec(%1$s) [lindex [time {
 set result [%1$s-orig %2$s]
 } 1] 0]
 return $result
 } $procName $arglist]
}

Suppose that we have a trivial procedure foo:

proc foo {x y} {
 return [expr $x * $y]
}

If you run TraceGen on it and look at the results, you see this:

TraceGen foo
info body foo
=>
 global _trace_count _trace_msec
 incr _trace_count(foo)
 incr _trace_msec(foo) [lindex [time {
 set result [foo-orig $x $y]
 } 1] 0]
 return $result

The tracing provided by TraceGen is similar to what you can achieve with the
features of the Tcl 8.4 trace command. With command tracing, which is described
on page 194, you can track the calls and results of procedures.

Exploiting the concat inside eval

The previous section warns about the danger of concatenation when forming
commands. However, there are times when concatenation is done for good reason.
This section illustrates cases where the concat done by eval is useful in assembling
a command by concatenating multiple lists into one list. A concat is done internally
by eval when it gets more than one argument:

eval list1 list2 list3 ...

The effect of concat is to join all the lists into one list; a new level of list structure is
not added. This is useful if the lists are fragments of a command. It is common to
use this form of eval with the args construct in procedures. Use the args
parameter to pass optional arguments through to another command. Invoke the
other command with eval, and the values in $args get concatenated onto the
command properly. The special args parameter is illustrated in Example 7-2 on
page 88.

Using eval in a Wrapper Procedure.

Here, we illustrate the use of eval and $args with a simple Tk example. In Tk, the
button command creates a button in the user interface. The button command can
take many arguments, and commonly you simply specify the text of the button and
the Tcl command that is executed when the user clicks on the button:

button .foo -text Foo -command foo

After a button is created, it is made visible by packing it into the display. The pack
command can also take many arguments to control screen placement. Here, we just
specify a side and let the packer take care of the rest of the details:

pack .foo -side left

Even though there are only two Tcl commands to create a user interface button, we
will write a procedure that replaces the two commands with one. Our first version
might be:

proc PackedButton {name txt cmd} {
 button $name -text $txt -command $cmd
 pack $name -side left
}

This is not a very flexible procedure. The main problem is that it hides the full power
of the Tk button command, which can really take more than 30 widget
configuration options, such as -background, -cursor, -relief, and more. They are
listed on page 459. For example, you can easily make a red button like this:

button .foo -text Foo -command foo -background red

A better version of PackedButton uses args to pass through extra configuration
options to the button command. The args parameter is a list of all the extra
arguments passed to the Tcl procedure. My first attempt to use $args looked like
this, but it was not correct:

proc PackedButton {name txt cmd args} {
 button $name -text $txt -command $cmd $args
 pack $name -side left
}
PackedButton .foo "Hello, World!" {exit} -background red
=> unknown option "-background red"

The problem is that $args is a list value, and button gets the whole list as a single
argument. Instead, button needs to get the elements of $args as individual
arguments.

Use eval with $args

In this case, you can use eval because it concatenates its arguments to form a
single list before evaluation. The single list is, by definition, the same as a single Tcl
command, so the button command parses correctly. Here we give eval two lists,
which it joins into one command:

eval {button $name -text $txt -command $cmd} $args

The use of the braces in this command is discussed in more detail below. We also
generalize our procedure to take some options to the pack command. This
argument, pack, must be a list of packing options. The final version of
PackedButton is shown in Example 10-3:

Example 10-3 Using eval with $args

PackedButton creates and packs a button.
proc PackedButton {path txt cmd {pack {-side right}} args} {
 eval {button $path -text $txt -command $cmd} $args
 eval {pack $path} $pack
}

In PackedButton, both pack and args are list-valued parameters that are used as
parts of a command. The internal concat done by eval is perfect for this situation.
The simplest call to PackedButton is:

PackedButton .new "New" { New }

The quotes and curly braces are redundant in this case but are retained to convey
some type information. The quotes imply a string label, and the braces imply a
command. The pack argument takes on its default value, and the args variable is
an empty list. The two commands executed by PackedButton are:

button .new -text New -command New
pack .new -side right

PackedButton creates a horizontal stack of buttons by default. The packing can be
controlled with a packing specification:

PackedButton .save "Save" { Save $file } {-side left}

The two commands executed by PackedButton are:

button .new -text Save -command { Save $file }
pack .new -side left

The remaining arguments, if any, are passed through to the button command. This
lets the caller fine-tune some of the button attributes:

PackedButton .quit Quit { Exit } {-side left -padx 5} \
 -background red

The two commands executed by PackedButton are:

button .quit -text Quit -command { Exit } -background red
pack .quit -side left -padx 5

You can see a difference between the pack and args argument in the call to
PackedButton. You need to group the packing options explicitly into a single
argument. The args parameter is automatically made into a list of all remaining
arguments. In fact, if you group the extra button parameters, it will be a mistake:

PackedButton .quit Quit { Exit } {-side left -padx 5} \
 {-background red}
=> unknown option "-background red"

Correct Quoting with eval

What about the peculiar placement of braces in PackedButton?

eval {button $path -text $txt -command $cmd} $args

By using braces, we control the number of times different parts of the command are
seen by the Tcl evaluator. Without any braces, everything goes through two rounds
of substitution. The braces prevent one of those rounds. In the above command,
only $args is substituted twice. Before eval is called, the $args is replaced with its
list value. Then, eval is invoked, and it concatenates its two list arguments into one
list, which is now a properly formed command. The second round of substitutions
done by eval replaces the txt and cmd values.

Do not use double quotes with eval.

You may be tempted to use double quotes instead of curly braces in your uses of
eval. Don't give in! Using double quotes is, mostly likely, wrong. Suppose the first
eval command is written like this:

eval "button $path -text $txt -command $cmd $args"

Incidentally, the previous is equivalent to:

eval button $path -text $txt -command $cmd $args

These versions happen to work with the following call because txt and cmd have
one-word values with no special characters in them:

PackedButton .quit Quit { Exit }

The button command that is ultimately evaluated is:

button .quit -text Quit -command { Exit }

In the next call, an error is raised:

PackedButton .save "Save As" [list Save $file]
=> unknown option "As"

This is because the button command is this:

button .save -text Save As -command Save /a/b/c

But it should look like this instead:

button .save -text {Save As} -command {Save /a/b/c}

The problem is that the structure of the button command is now wrong. The value
of txt and cmd are substituted first, before eval is even called, and then the whole
command is parsed again. The worst part is that sometimes using double quotes
works, and sometimes it fails. The success of using double quotes depends on the
value of the parameters. When those values contain spaces or special characters,
the command gets parsed incorrectly.

Braces: the one true way to group arguments to eval.

To repeat, the safe construct is:

eval {button $path -text $txt -command $cmd} $args

The following variations are also correct. The first uses list to do quoting
automatically, and the others use backslashes or braces to prevent the extra round
of substitutions:

eval [list button $path -text $txt -command $cmd] $args
eval button \$path -text \$txt -command \$cmd $args
eval button {$path} -text {$txt} -command {$cmd} $args

Finally, here is one more incorrect approach that tries to quote by hand:

eval "button {$path} -text {$txt} -command {$cmd} $args"

The problem is that double quotes disable the quoting you normally expect with
curly braces. Consider this little example that uses double quotes. The curly braces
around $blob have no special effect, and the interpreter sees unbalanced braces:

set blob "foo\{bar space"
=> foo{bar space
eval "puts {$blob}"
=> missing close brace

If we group instead with curly braces, then the variable substitution occurs once,
after the arguments to puts have been grouped, and there is no error.

eval puts {$blob}
=> foo{bar space

You can also be successful using list:

eval puts [list $blob]

Of course, these simple examples are contrived, but they illustrate the need to be
careful with your list construction when using eval!

The uplevel Command

The uplevel command is similar to eval, except that it evaluates a command in a
different scope than the current procedure. It is useful for defining new control
structures entirely in Tcl. The syntax for uplevel is:

uplevel ?level? command ?list1 list2 ...?

As with upvar, the level parameter is optional, but recommended for good style,
and defaults to 1, which means to execute the command in the scope of the calling
procedure. The other common use of level is #0, which means to evaluate the
command in the global scope. You can count up farther than one (e.g., 2 or 3), or
count down from the global level (e.g., #1 or #2), but these cases rarely make
sense.

When you specify the command argument, you must be aware of any substitutions
that might be performed by the Tcl interpreter before uplevel is called. If you are
entering the command directly, protect it with curly braces so that substitutions
occur in the other scope. The following affects the variable x in the caller's scope:

uplevel {set x [expr $x + 1]}

However, the following will use the value of x in the current scope to define the
value of x in the calling scope, which is probably not what was intended:

uplevel "set x [expr $x + 1]"

If you are constructing the command dynamically, again use list. This fragment is
used later in Example 10-4:

uplevel [list foreach $args $valueList {break}]

It is common to have the command in a variable. This is the case when the
command has been passed into your new control flow procedure as an argument In
this case, you should evaluate the command one level up. Put the level in explicitly
to avoid cases where $cmd looks like a number!

uplevel 1 $cmd

Another common scenario is reading commands from users as part of an
application. In this case, you should evaluate the command at the global scope.
Example 16-2 on page 230 illustrates this use of uplevel:

uplevel #0 $cmd

If you are assembling a command from a few different lists, such as the args
parameter, then you can use concat to form the command:

uplevel [concat $cmd $args]

The lists in $cmd and $args are concatenated into a single list, which is a valid Tcl
command. Like eval, uplevel uses concat internally if it is given extra arguments,
so you can leave out the explicit use of concat. The following commands are
equivalent:

uplevel [concat $cmd $args]
uplevel "$cmd $args"
uplevel $cmd $args

Example 10-4 shows list assignment using the foreach trick described on Page 81.
List assignment is useful if a command returns several values in a list. The lassign
procedure assigns the list elements to several variables. The lassign procedure
hides the foreach trick, but it must use the uplevel command so that the loop
variables get assigned in the correct scope. The list command is used to construct
the foreach command that is executed in the caller's scope. This is necessary so
that $variables and $values get substituted before the command is evaluated in
the other scope.

Example 10-4 lassign: list assignment with foreach

Assign a set of variables from a list of values.
If there are more values than variables, they are returned.
If there are fewer values than variables,
the variables get the empty string.

proc lassign {valueList args} {
 if {[llength $args] == 0} {
 error "wrong # args: lassign list varname ?varname..?"
 }
 if {[llength $valueList] == 0} {
 # Ensure one trip through the foreach loop
 set valueList [list {}]
 }
 uplevel 1 [list foreach $args $valueList {break}]
 return [lrange $valueList [llength $args] end]
}

Example 10-5 illustrates a new control structure with the File_Process procedure
that applies a callback to each line in a file. The call to uplevel allows the callback
to be concatenated with the line to form the command. The list command is used
to quote any special characters in line, so it appears as a single argument to the
command.

Example 10-5 The File_Process procedure iterates over lines in a file

proc File_Process {file callback} {
 set in [open $file]
 while {[gets $in line] >= 0} {
 uplevel 1 $callback [list $line]

 }
 close $in
}

What is the difference between these two commands?

uplevel 1 [list $callback $line]
uplevel 1 $callback [list $line]

The first form limits callback to be the name of the command, while the second
form allows callback to be a command prefix. Once again, what is the bug with
this version?

uplevel 1 $callback $line

The arbitrary value of $line is concatenated to the callback command, and it is
likely to be a malformed command when executed.

The subst Command

The subst command is useful when you have a mixture of Tcl commands, Tcl
variable references, and plain old data. The subst command looks through the data
for square brackets, dollar signs, and backslashes, and it does substitutions on
those. It leaves the rest of the data alone:

set a "foo bar"
subst {a=$a date=[exec date]}
=> a=foo bar date=Thu Dec 15 10:13:48 PST 1994

The subst command does not honor the quoting effect of curly braces. It does
substitutions regardless of braces:

subst {a=$a date={[exec date]}}
=> a=foo bar date={Thu Dec 15 10:15:31 PST 1994}

You can use backslashes to prevent variable and command substitution.

subst {a=\$a date=\[exec date]}
=> a=$a date=[exec date]

You can use other backslash substitutions like \uXXXX to get Unicode characters, \n
to get newlines, or \-newline to hide newlines.

The subst command takes flags that limit the substitutions it will perform. The flags
are -nobackslashes, -nocommands, or -novariables. You can specify one or more
of these flags before the string that needs to be substituted:

subst -novariables {a=$a date=[exec date]}
=> a=$a date=Thu Dec 15 10:15:31 PST 1994

String Processing with subst

The subst command can be used with the regsub command to do efficient, two-
step string processing. In the first step, regsub is used to rewrite an input string
into data with embedded Tcl commands. In the second step, subst or eval replaces
the Tcl commands with their result. By artfully mapping the data into Tcl commands,
you can dynamically construct a Tcl script that processes the data. The processing is
efficient because the Tcl parser and the regular expression processor have been
highly tuned. Chapter 11 has several examples that use this technique.

Chapter 11. Regular Expressions
This chapter describes regular expression pattern matching and string processing
based on regular expression substitutions. These features provide the most powerful
string processing facilities in Tcl. Tcl commands described are: regexp and regsub.

Regular expressions are a formal way to describe string patterns. They provide a
powerful and compact way to specify patterns in your data. Even better, there is a
very efficient implementation of the regular expression mechanism due to Henry
Spencer. If your script does much string processing, it is worth the effort to learn
about the regexp command. Your Tcl scripts will be compact and efficient. This
chapter uses many examples to show you the features of regular expressions.

Regular expression substitution is a mechanism that lets you rewrite a string based
on regular expression matching. The regsub command is another powerful tool, and
this chapter includes several examples that do a lot of work in just a few Tcl
commands. Stephen Uhler has shown me several ways to transform input data into
a Tcl script with regsub and then use subst or eval to process the data. The idea
takes a moment to get used to, but it provides a very efficient way to process
strings.

Tcl 8.1 added a new regular expression implementation that supports Unicode and
advanced regular expressions (ARE). This implementation adds more syntax and
escapes that makes it easier to write patterns, once you learn the new features! If
you know Perl, then you are already familiar with these features. The Tcl advanced
regular expressions are almost identical to the Perl 5 regular expressions. The new
features include a few very minor incompatibilities with the regular expressions
implemented in earlier versions of Tcl 8.0, but these rarely occur in practice. The
new regular expression package supports Unicode, of course, so you can write
patterns to match Japanese or Hindi documents!

When to Use Regular Expressions

Regular expressions can seem overly complex at first. They introduce their own
syntax and their own rules, and you may be tempted to use simpler commands like
string first, string range, or string match to process your strings. However,
often a single regular expression command can replace a sequence of several
string commands. Not only do you have to write less code, but you often get a
performance improvement because the regular expression matcher is implemented
in optimized C code, so pattern matching is fast.

The regular expression matcher does more than test for a match. It also tells you
what part of your input string matches the pattern. This is useful for picking data
out of a large input string. In fact, you can capture several pieces of data in just one
match by using subexpressions. The regexp Tcl command makes this easy by
assigning the matching data to Tcl variables. If you find yourself using string
first and string range to pick out data, remember that regexp can do it in one
step instead.

The regular expression matcher is structured so that patterns are first compiled into
an form that is efficient to match. If you use the same pattern frequently, then the
expensive compilation phase is done only once, and all your matching uses the
efficient form. These details are completely hidden by the Tcl interface. If you use a
pattern twice, Tcl will nearly always be able to retrieve the compiled form of the
pattern. As you can see, the regular expression matcher is optimized for lots of
heavy-duty string processing.

Avoiding a Common Problem

Group your patterns with curly braces.

One of the stumbling blocks with regular expressions is that they use some of the
same special characters as Tcl. Any pattern that contains brackets, dollar signs, or
spaces must be quoted when used in a Tcl command. In many cases you can group
the regular expression with curly braces, so Tcl pays no attention to it. However,
when using Tcl 8.0 (or earlier) you may need Tcl to do backslash substitutions on
part of the pattern, and then you need to worry about quoting the special characters
in the regular expression.

Advanced regular expressions eliminate this problem because backslash substitution
is now done by the regular expression engine. Previously, to get \n to mean the
newline character (or \t for tab) you had to let Tcl do the substitution. With Tcl 8.1,

\n and \t inside a regular expression mean newline and tab. In fact, there are now
about 20 backslash escapes you can use in patterns. Now more than ever,
remember to group your patterns with curly braces to avoid conflicts between Tcl
and the regular expression engine.

The patterns in the first sections of this chapter ignore this problem. The sample
expressions in Table 11-7 on page 161 are quoted for use within Tcl scripts. Most
are quoted simply by putting the whole pattern in braces, but some are shown
without braces for comparison.

Regular Expression Syntax

This section describes the basics of regular expression patterns, which are found in
all versions of Tcl. There are occasional references to features added by advanced
regular expressions, but they are covered in more detail starting on page 149.
There is enough syntax in regular expressions that there are five tables that
summarize all the options. These tables appear together starting at page 154.

A regular expression is a sequence of the following items:

A literal character.

A matching character, character set, or character class.

A repetition quantifier.

An alternation clause.

A subpattern grouped with parentheses.

Matching Characters

Most characters simply match themselves. The following pattern matches an a
followed by a b:

ab

The general wild-card character is the period, ".". It matches any single character.
The following pattern matches an a followed by any character:

a.

Remember that matches can occur anywhere within a string; a pattern does not
have to match the whole string. You can change that by using anchors, which are
described on page 147.

Character Sets

The matching character can be restricted to a set of characters with the [xyz]
syntax. Any of the characters between the two brackets is allowed to match. For
example, the following matches either Hello or hello:

[Hh]ello

The matching set can be specified as a range over the character set with the [x-y]
syntax. The following matches any digit:

[0-9]

There is also the ability to specify the complement of a set. That is, the matching
character can be anything except what is in the set. This is achieved with the
[^xyz] syntax. Ranges and complements can be combined. The following matches
anything except the uppercase and lowercase letters:

[^a-zA-Z]

Using special characters in character sets.

If you want a] in your character set, put it immediately after the initial opening
bracket. You do not need to do anything special to include [in your character set.
The following matches any square brackets or curly braces:

[][{}]

Most regular expression syntax characters are no longer special inside character
sets. This means you do not need to backslash anything inside a bracketed
character set except for backslash itself. The following pattern matches several of
the syntax characters used in regular expressions:

[][+*?()|\\]

Advanced regular expressions add names and backslash escapes as shorthand for
common sets of characters like white space, alpha, alphanumeric, and more. These
are described on page 149 and listed in Table 11-3 on page 156.

Quantifiers

Repetition is specified with *, for zero or more, +, for one or more, and ?, for zero or
one. These quantifiers apply to the previous item, which is either a matching
character, a character set, or a subpattern grouped with parentheses. The following
matches a string that contains b followed by zero or more a's:

ba*

You can group part of the pattern with parentheses and then apply a quantifier to
that part of the pattern. The following matches a string that has one or more
sequences of ab:

(ab)+

The pattern that matches anything, even the empty string, is:

.*

These quantifiers have a greedy matching behavior: They match as many characters
as possible. Advanced regular expressions add nongreedy matching, which is
described on page 151. For example, a pattern to match a single line might look like
this:

.*\n

However, as a greedy match, this will match all the lines in the input, ending with
the last newline in the input string. The following pattern matches up through the
first newline.

[^\n]*\n

We will shorten this pattern even further on page 151 by using nongreedy
quantifiers. There are also special newline sensitive modes you can turn on with
some options described on page 153.

Alternation

Alternation lets you test more than one pattern at the same time. The matching
engine is designed to be able to test multiple patterns in parallel, so alternation is
efficient. Alternation is specified with |, the pipe symbol. Another way to match
either Hello or hello is:

hello|Hello

You can also write this pattern as:

(h|H)ello

or as:

[hH]ello

Anchoring a Match

By default a pattern does not have to match the whole string. There can be
unmatched characters before and after the match. You can anchor the match to the
beginning of the string by starting the pattern with ^, or to the end of the string by
ending the pattern with $. You can force the pattern to match the whole string by
using both. All strings that begin with spaces or tabs are matched with:

^[\t]+

If you have many text lines in your input, you may be tempted to think of ^ as
meaning "beginning of line" instead of "beginning of string." By default, the ^ and $
anchors are relative to the whole input, and embedded newlines are ignored.
Advanced regular expressions support options that make the ^ and $ anchors line-
oriented. They also add the \A and \Z anchors that always match the beginning and
end of the string, respectively.

Backslash Quoting

Use the backslash character to turn off these special characters :

. * ? + [] () ^ $ | \

For example, to match the plus character, you will need:

\+

Remember that this quoting is not necessary inside a bracketed expression (i.e., a
character set definition.) For example, to match either plus or question mark, either
of these patterns will work:

(\+|\?)
[+?]

To match a single backslash, you need two. You must do this everywhere, even
inside a bracketed expression. Or you can use \B, which was added as part of
advanced regular expressions. Both of these match a single backslash:

\\
\B

Unknown backslash sequences are an error.

Versions of Tcl before 8.1 ignored unknown backslash sequences in regular
expressions. For example, \= was just =, and \w was just w. Even \n was just n,
which was probably frustrating to many beginners trying to get a newline into their
pattern. Advanced regular expressions add backslash sequences for tab, newline,
character classes, and more. This is a convenient improvement, but in rare cases it
may change the semantics of a pattern. Usually these cases are where an unneeded
backslash suddenly takes on meaning, or causes an error because it is unknown.

Matching Precedence

If a pattern can match several parts of a string, the matcher takes the match that
occurs earliest in the input string. Then, if there is more than one match from that
same point because of alternation in the pattern, the matcher takes the longest
possible match. The rule of thumb is: first, then longest. This rule gets changed by
nongreedy quantifiers that prefer a shorter match.

Watch out for *, which means zero or more, because zero of anything is pretty easy
to match. Suppose your pattern is:

[a-z]*

This pattern will match against 123abc, but not how you expect. Instead of
matching on the letters in the string, the pattern will match on the zero-length
substring at the very beginning of the input string! This behavior can be seen by
using the -indices option of the regexp command described on page 158. This
option tells you the location of the matching string instead of the value of the
matching string.

Capturing Subpatterns

Use parentheses to capture a subpattern. The string that matches the pattern within
parentheses is remembered in a matching variable, which is a Tcl variable that gets
assigned the string that matches the pattern. Using parentheses to capture
subpatterns is very useful. Suppose we want to get everything between the <td>
and </td> tags in some HTML. You can use this pattern:

<td>([^<]*)</td>

The matching variable gets assigned the part of the input string that matches the
pattern inside the parentheses. You can capture many subpatterns in one match,
which makes it a very efficient way to pick apart your data. Matching variables are
explained in more detail on page 158 in the context of the regexp command.

Sometimes you need to introduce parentheses but you do not care about the match
that occurs inside them. The pattern is slightly more efficient if the matcher does
not need to remember the match. Advanced regular expressions add noncapturing
parentheses with this syntax:

(?:pattern)

Advanced Regular Expressions

The syntax added by advanced regular expressions is mostly just shorthand
notation for constructs you can make with the basic syntax already described. There
are also some new features that add additional power: nongreedy quantifiers, back
references, look-ahead patterns, and named character classes. If you are just
starting out with regular expressions, you can ignore most of this section, except for
the one about backslash sequences. Once you master the basics, of if you are
already familiar with regular expressions in Tcl (or the UNIX vi editor or grep utility),
then you may be interested in the new features of advanced regular expressions.

Compatibility with Patterns in Tcl 8.0

Advanced regular expressions add syntax in an upward compatible way. Old
patterns continue to work with the new matcher, but advanced regular expressions
will raise errors if given to old versions of Tcl. For example, the question mark is
used in many of the new constructs, and it is artfully placed in locations that would
not be legal in older versions of regular expressions. The added syntax is
summarized in Table 11-2 on page 155.

If you have unbraced patterns from older code, they are very likely to be correct in
Tcl 8.1 and later versions. For example, the following pattern picks out everything
up to the next newline. The pattern is unbraced, so Tcl substitutes the newline
character for each occurrence of \n. The square brackets are quoted so that Tcl does
not think they delimit a nested command:

regexp "(\[^\n\]+)\n" $input

The above command behaves identically when using advanced regular expressions,
although you can now also write it like this:

regexp {([^\n]+)\n} $input

The curly braces hide the brackets from the Tcl parser, so they do not need to be
escaped with backslash. This saves us two characters and looks a bit cleaner.

Backslash Escape Sequences

The most significant change in advanced regular expression syntax is backslash
substitutions. In Tcl 8.0 and earlier, a backslash is only used to turn off special
characters such as: . + * ? []. Otherwise it was ignored. For example, \n was
simply n to the Tcl 8.0 regular expression engine. This was a source of confusion,
and it meant you could not always quote patterns in braces to hide their special
characters from Tcl's parser. In advanced regular expressions, \n now means the
newline character to the regular expression engine, so you should never need to let
Tcl do backslash processing.

Again, always group your pattern with curly braces to avoid confusion.

Advanced regular expressions add a lot of new backslash sequences. They are listed
in Table 11-4 on page 156. Some of the more useful ones include \s, which
matches space-like characters, \w, which matches letters, digit, and the
underscore, \y, which matches the beginning or end of a word, and \B, which
matches a backslash.

Character Classes

Character classes are names for sets of characters. The named character class
syntax is valid only inside a bracketed character set. The syntax is:

[:identifier:]

For example, alpha is the name for the set of uppercase and lowercase letters. The
following two patterns are almost the same:

[A-Za-z]
[[:alpha:]]

The difference is that the alpha character class also includes accented characters
like è. If you match data that contains nonASCII characters, the named character
classes are more general than trying to name the characters explicitly.

There are also backslash sequences that are shorthand for some of the named
character classes. The following patterns to match digits are equivalent:

[0-9]
[[:digit:]]
\d

The following patterns match space-like characters including backspace, form feed,
newline, carriage return, tag, and vertical tab:

[\b\f\n\r\t\v]
[[:space:]]
\s

The named character classes and the associated backslash sequence are listed in
Table 11-3 on page 156.

You can use character classes in combination with other characters or character
classes inside a character set definition. The following patterns match letters, digits,
and underscore:

[[:digit:][:alpha:]_]
[\d[:alpha:]_]
[[:alnum:]_]
\w

Note that \d, \s and \w can be used either inside or outside character sets. When
used outside a bracketed expression, they form their own character set. There are
also \D, \S, and \W, which are the complement of \d, \s, and \w. These escapes
(i.e., \D for not-a-digit) cannot be used inside a bracketed character set.

There are two special character classes, [[:<:] and [[:>:]], that match the
beginning and end of a word, respectively. A word is defined as one or more
characters that match \w.

Nongreedy Quantifiers

The *, +, and ? characters are quantifiers that specify repetition. By default these
match as many characters as possible, which is called greedy matching. A
nongreedy match will match as few characters as possible. You can specify
nongreedy matching by putting a question mark after these quantifiers. Consider
the pattern to match "one or more of not-a-newline followed by a newline." The not-
a-newline must be explicit with the greedy quantifier, as in:

[^\n]+\n

Otherwise, if the pattern were just

.+\n

then the "." could well match newlines, so the pattern would greedily consume
everything until the very last newline in the input. A nongreedy match would be
satisfied with the very first newline instead:

.+?\n

By using the nongreedy quantifier we've cut the pattern from eight characters to
five. Another example that is shorter with a nongreedy quantifier is the HTML
example from page 148. The following pattern also matches everything between
<td> and </td>:

<td>(.*?)</td>

Even ? can be made nongreedy, ??, which means it prefers to match zero instead of
one. This only makes sense inside the context of a larger pattern. Send me email if
you have a compelling example for it!

Bound Quantifiers

The {m,n} syntax is a quantifier that means match at least m and at most n of the
previous matching item. There are two variations on this syntax. A simple {m}
means match exactly m of the previous matching item. A {m,} means match m or
more of the previous matching item. All of these can be made nongreedy by adding
a ? after them.

Back References

A back reference is a feature you cannot easily get with basic regular expressions. A
back reference matches the value of a subpattern captured with parentheses. If you
have several sets of parentheses you can refer back to different captured
expressions with \1, \2, and so on. You count by left parentheses to determine the
reference.

For example, suppose you want to match a quoted string, where you can use either
single or double quotes. You need to use an alternation of two patterns to match
strings that are enclosed in double quotes or in single quotes:

("[^"]*"|'[^']*')

With a back reference, \1, the pattern becomes simpler:

('|").*?\1

The first set of parenthesis matches the leading quote, and then the \1 refers back
to that particular quote character. The nongreedy quantifier ensures that the pattern
matches up to the first occurrence of the matching quote.

Look-ahead

Look-ahead patterns are subexpressions that are matched but do not consume any
of the input. They act like constraints on the rest of the pattern, and they typically
occur at the end of your pattern. A positive look-ahead causes the pattern to match
if it also matches. A negative look-ahead causes the pattern to match if it would not
match. These constraints make more sense in the context of matching variables and
in regular expression substitutions done with the regsub command. For example,
the following pattern matches a filename that begins with A and ends with .txt

^A.*\.txt$

The next version of the pattern adds parentheses to group the file name suffix.

^A.*(\.txt$)

The parentheses are not strictly necessary, but they are introduced so that we can
compare the pattern to one that uses look-ahead. A version of the pattern that uses
look-ahead looks like this:

^A.*(?=\.txt$)

The pattern with the look-ahead constraint matches only the part of the filename
before the .txt, but only if the .txt is present. In other words, the .txt is not
consumed by the match. This is visible in the value of the matching variables used
with the regexp command. It would also affect the substitutions done in the regsub
command.

There is negative look-ahead too. The following pattern matches a filename that
begins with A and does not end with .txt.

^A.*(?!\.txt$)

Writing this pattern without negative look-ahead is awkward.

Character Codes

The \nn and \mmm syntax, where n and m are digits, can also mean an 8-bit
character code corresponding to the octal value nn or mmm. This has priority over a
back reference. However, I just wouldn't use this notation for character codes.
Instead, use the Unicode escape sequence, \unnnn, which specifies a 16-bit value.
The \xnn sequence also specifies an 8-bit character code. Unfortunately, the \x
escape consumes all hex digits after it (not just two!) and then truncates the
hexadecimal value down to 8 bits. This misfeature of \x is not considered a bug and
will probably not change even in future versions of Tcl.

The \Uyyyyyyyy syntax is reserved for 32-bit Unicode, but I don't expect to see that
implemented anytime soon.

Collating Elements

Collating elements are characters or long names for characters that you can use
inside character sets. Currently, Tcl only has some long names for various ASCII
punctuation characters. Potentially, it could support names for every Unicode
character, but it doesn't because the mapping tables would be huge. This section will
briefly mention the syntax so that you can understand it if you see it. But its
usefulness is still limited.

Within a bracketed expression, the following syntax is used to specify a collating
element:

[.identifier.]

The identifier can be a character or a long name. The supported long names can be
found in the generic/regc_locale.c file in the Tcl source code distribution. A few
examples are shown below:

[.c.]
[.#.]
[.number-sign.]

Equivalence Classes

An equivalence class is all characters that sort to the same position. This is another
feature that has limited usefulness in the current version of Tcl. In Tcl, characters

sort by their Unicode character value, so there are no equivalence classes that
contain more than one character! However, you could imagine a character class for
'o', 'ò', and other accented versions of the letter o. The syntax for equivalence
classes within bracketed expressions is:

[=char=]

where char is any one of the characters in the character class. This syntax is valid
only inside a character class definition.

Newline Sensitive Matching

By default, the newline character is just an ordinary character to the matching
engine. You can make the newline character special with two options: lineanchor
and linestop. You can set these options with flags to the regexp and regsub Tcl
commands, or you can use the embedded options described later in Table 11-5 on
page 157.

The lineanchor option makes the ^ and $ anchors work relative to newlines. The ^
matches immediately after a newline, and $ matches immediately before a newline.
These anchors continue to match the very beginning and end of the input, too. With
or without the lineanchor option, you can use \A and \Z to match the beginning
and end of the string.

The linestop option prevents . (i.e., period) and character sets that begin with ^
from matching a newline character. In other words, unless you explicitly include \n
in your pattern, it will not match across newlines.

Embedded Options

You can start a pattern with embedded options to turn on or off case sensitivity,
newline sensitivity, and expanded syntax, which is explained in the next section. You
can also switch from advanced regular expressions to a literal string, or to older
forms of regular expressions. The syntax is a leading:

(?chars)

where chars is any number of option characters. The option characters are listed in
Table 11-5 on page 157.

Expanded Syntax

Expanded syntax lets you include comments and extra white space in your patterns.
This can greatly improve the readability of complex patterns. Expanded syntax is
turned on with a regexp command option or an embedded option.

Comments start with a # and run until the end of line. Extra white space and
comments can occur anywhere except inside bracketed expressions (i.e., character
sets) or within multicharacter syntax elements like (?=. When you are in expanded
mode, you can turn off the comment character or include an explicit space by
preceding them with a backslash. Example 11-1 shows a pattern to match URLs.
The leading (?x) turns on expanded syntax. The whole pattern is grouped in curly
braces to hide it from Tcl. This example is considered again in more detail in
Example 11-3 on page 159:

Example 11-1 Expanded regular expressions allow comments

regexp {(?x) # A pattern to match URLS
 ([^:]+): # The protocol before the initial colon
 //([^:/]+) # The server name
 (:([0-9]+))? # The optional port number
 (/.*) # The trailing pathname
} $input

Syntax Summary

Table 11-1 summarizes the syntax of regular expressions available in all versions of
Tcl:

Table 11-1. Basic regular expression syntax

. Matches any character.

* Matches zero or more instances of the previous pattern item.

+ Matches one or more instances of the previous pattern item.

? Matches zero or one instances of the previous pattern item.

(
)

Groups a subpattern. The repetition and alternation operators apply to the
preceding subpattern.

| Alternation.

[
]

Delimit a set of characters. Ranges are specified as [x-y]. If the first character in
the set is ^, then there is a match if the remaining characters in the set are not
present.

^ Anchor the pattern to the beginning of the string. Only when first.

$ Anchor the pattern to the end of the string. Only when last.

Advanced regular expressions, which were introduced in Tcl 8.1, add more syntax
that is summarized in Table 11-2:

Table 11-2. Additional advanced regular expression syntax

{m} Matches m instances of the previous pattern item.

{m}? Matches m instances of the previous pattern item. Nongreedy.

{m,} Matches m or more instances of the previous pattern item.

{m,}? Matches m or more instances of the previous pattern item. Nongreedy.

{m,n} Matches m through n instances of the previous pattern item.

{m,n}? Matches m through n instances of the previous pattern item. Nongreedy.

*? Matches zero or more instances of the previous pattern item. Nongreedy.

+? Matches one or more instances of the previous pattern item. Nongreedy.

?? Matches zero or one instances of the previous pattern item. Nongreedy.

(?:re) Groups a subpattern, re, but does not capture the result.

(?=re) Positive look-ahead. Matches the point where re begins.

(?!re) Negative look-ahead. Matches the point where re does not begin.

(?abc) Embedded options, where abc is any number of option letters listed in Table
11-5.

\c One of many backslash escapes listed in Table 11-4.

[: :] Delimits a character class within a bracketed expression. See Table 11-3.

[. .] Delimits a collating element within a bracketed expression.

[= =] Delimits an equivalence class within a bracketed expression.

Table 11-3 lists the named character classes defined in advanced regular
expressions and their associated backslash sequences, if any. Character class names
are valid inside bracketed character sets with the [:class:] syntax.

Table 11-3. Character classes

alnum Upper and lower case letters and digits.

alpha Upper and lower case letters.

blank Space and tab.

cntrl Control characters: \u0001 through \u001F.

digit The digits zero through nine. Also \d.

graph Printing characters that are not in cntrl or space.

lower Lowercase letters.

print The same as alnum.

punct Punctuation characters.

space Space, newline, carriage return, tab, vertical tab, form feed. Also \s.

upper Uppercase letters.

xdigit Hexadecimal digits: zero through nine, a-f, A-F.

Table 11-4 lists backslash sequences supported in Tcl 8.1.

Table 11-4. Backslash escapes in regular expressions

\a Alert, or "bell", character.

\A Matches only at the beginning of the string.

\b Backspace character, \u0008.

\B Synonym for backslash.

\cX Control-X.

\d Digits. Same as [[:digit:]]

\D Not a digit. Same as [^[:digit:]]

\e Escape character, \u001B.

\f Form feed, \u000C.

\m Matches the beginning of a word.

\M Matches the end of a word.

\n Newline, \u000A.

\r Carriage return, \u000D.

\s Space. Same as [[:space:]]

\S Not a space. Same as [^[:space:]]

\t Horizontal tab, \u0009.

\uXXXX A 16-bit Unicode character code.

\v Vertical tab, \u000B.

\w Letters, digit, and underscore. Same as [[:alnum:]_]

\W Not a letter, digit, or underscore. Same as [^[:alnum:]_]

\xhh An 8-bit hexadecimal character code. Consumes all hex digits after \x.

\y Matches the beginning or end of a word.

\Y Matches a point that is not the beginning or end of a word.

\Z Matches the end of the string.

\0 NULL, \u0000

\x Where x is a digit, this is a back-reference.

\xy Where x and y are digits, either a decimal back-reference, or an 8-bit octal
character code.

\xyz Where x, y and z are digits, either a decimal back-reference or an 8-bit
octal character code.

Table 11-5 lists the embedded option characters used with the (?abc) syntax.

Table 11-5. Embedded option characters used with the (?x) syntax

b The rest of the pattern is a basic regular expression (a la vi or grep).

c Case sensitive matching. This is the default.

e The rest of the pattern is an extended regular expression (a la Tcl 8.0).

i Case insensitive matching.

m Synonym for the n option.

n Newline sensitive matching . Both lineanchor and linestop mode.

p Partial newline sensitive matching. Only linestop mode.

q The rest of the pattern is a literal string.

s No newline sensitivity. This is the default.

t Tight syntax; no embedded comments. This is the default.

w Inverse partial newline-sensitive matching. Only lineanchor mode.

x Expanded syntax with embedded white space and comments.

The regexp Command

The regexp command provides direct access to the regular expression matcher. Not
only does it tell you whether a string matches a pattern, it can also extract one or
more matching substrings. The return value is 1 if some part of the string matches
the pattern; it is 0 otherwise. Its syntax is:

regexp ?flags? pattern string ?match sub1 sub2...?

The flags are described in Table 11-6:

Table 11-6. Options to the regexp command

-nocase Lowercase characters in pattern can match either lowercase or
uppercase letters in string.

-indices The match variables each contain a pair of numbers that are in indices
delimiting the match within string. Otherwise, the matching string
itself is copied into the match variables.

-expanded The pattern uses the expanded syntax discussed on page 154.

-line The same as specifying both -lineanchor and -linestop.

-
lineanchor

Change the behavior of ^ and $ so they are line-oriented as discussed
on page 153.

-linestop Change matching so that . and character classes do not match
newlines as discussed on page 153.

-about Useful for debugging. It returns information about the pattern instead
of trying to match it against the input.

-- Signals the end of the options. You must use this if your pattern begins
with -.

The pattern argument is a regular expression as described earlier. If string
matches pattern, then regexp stores the results of the match in the variables

provided. These match variables are optional. If present, match is set to the part of
the string that matched the pattern. The remaining variables are set to the
substrings of string that matched the corresponding subpatterns in pattern. The
correspondence is based on the order of left parentheses in the pattern to avoid
ambiguities that can arise from nested subpatterns.

Example 11-2 uses regexp to pick the hostname out of the DISPLAY environment
variable, which has the form:

hostname:display.screen

Example 11-2 Using regular expressions to parse a string

set env(DISPLAY) sage:0.1
regexp {([^:]*):} $env(DISPLAY) match host
=> 1
set match
=> sage:
set host
=> sage

The pattern involves a complementary set, [^:], to match anything except a colon.
It uses repetition, *, to repeat that zero or more times. It groups that part into a
subexpression with parentheses. The literal colon ensures that the DISPLAY value
matches the format we expect. The part of the string that matches the complete
pattern is stored into the match variable. The part that matches the subpattern is
stored into host. The whole pattern has been grouped with braces to quote the
square brackets. Without braces it would be:

regexp (\[^:\]*): $env(DISPLAY) match host

With advanced regular expressions the nongreedy quantifier *? can replace the
complementary set:

regexp (.*?): $env(DISPLAY) match host

This is quite a powerful statement, and it is efficient. If we had only had the string
command to work with, we would have needed to resort to the following, which
takes roughly twice as long to interpret:

set i [string first : $env(DISPLAY)]
if {$i >= 0} {
 set host [string range $env(DISPLAY) 0 [expr $i-1]]
}

A Pattern to Match URLs

Example 11-3 demonstrates a pattern with several subpatterns that extract the
different parts of a URL. There are lots of subpatterns, and you can determine which

match variable is associated with which subpattern by counting the left parenthesis.
The pattern will be discussed in more detail after the example:

Example 11-3 A pattern to match URLs

set url http://www.beedub.com:80/index.html
regexp {([^:]+)://([^:/]+)(:([0-9]+))?(/.*)} $url \
 match protocol server x port path
=> 1
set match
=> http://www.beedub.com:80/index.html
set protocol
=> http
set server
=> www.beedub.com
set x
=> :80
set port
=> 80
set path
=> /index.html

Let's look at the pattern one piece at a time. The first part looks for the protocol,
which is separated by a colon from the rest of the URL. The first part of the pattern
is one or more characters that are not a colon, followed by a colon. This matches
the http: part of the URL:

[^:]+:

Using nongreedy +? quantifier, you could also write that as:

.+?:

The next part of the pattern looks for the server name, which comes after two
slashes. The server name is followed either by a colon and a port number, or by a
slash. The pattern uses a complementary set that specifies one or more characters
that are not a colon or a slash. This matches the //www.beedub.com part of the
URL:

//[^:/]+

The port number is optional, so a subpattern is delimited with parentheses and
followed by a question mark. An additional set of parentheses are added to capture
the port number without the leading colon. This matches the :80 part of the URL:

(:([0-9]+))?

The last part of the pattern is everything else, starting with a slash. This matches
the /index.html part of the URL:

/.*

Use subpatterns to parse strings.

To make this pattern really useful, we delimit several subpatterns with parentheses:

([^:]+)://([^:/]+)(:([0-9]+))?(/.*)

These parentheses do not change the way the pattern matches. Only the optional
port number really needs the parentheses in this example. However, the regexp
command gives us access to the strings that match these subpatterns. In one step
regexp can test for a valid URL and divide it into the protocol part, the server, the
port, and the trailing path.

The parentheses around the port number include the : before the digits. We've used
a dummy variable that gets the : and the port number, and another match variable
that just gets the port number. By using noncapturing parentheses in advanced
regular expressions, we can eliminate the unused match variable. We can also
replace both complementary character sets with a nongreedy .+? match. Example
11-4 shows this variation:

Example 11-4 An advanced regular expression to match URLs

set url http://www.beedub.com:80/book/
regexp {(.+?)://(.+?)(?::([0-9]+))?(/.*)$} $url \
 match protocol server port path
=> 1
set match
=> http://www.beedub.com:80/book/
set protocol
=> http
set server
=> www.beedub.com
set port
=> 80
set path
=> /book/

Bugs When Mixing Greedy and Non-Greedy Quantifiers

If you have a regular expression pattern that uses both greedy and non-greedy
quantifiers, then you can quickly run into trouble. The problem is that in complex
cases there can be ambiguous ways to resolve the quantifiers. Unfortunately, what
happens in practice is that Tcl tends to make all the quantifiers either greedy, or all
of them non-greedy. Example 11-4 has a $ at the end to force the last greedy term

to go to the end of the string. In theory, the greediness of the last subpattern
should match all the characters out to the end of the string. In practice, Tcl makes
all the quantifiers non-greedy, so the anchor is necessary to force the pattern to
match to the end of the string.

Sample Regular Expressions

The table in this section lists regular expressions as you would use them in Tcl
commands. Most are quoted with curly braces to turn off the special meaning of
square brackets and dollar signs. Other patterns are grouped with double quotes
and use backslash quoting because the patterns include backslash sequences like \n
and \t. In Tcl 8.0 and earlier, these must be substituted by Tcl before the regexp
command is called. In these cases, the equivalent advanced regular expression is
also shown.

Table 11-7. Sample regular expressions

{^[yY]} Begins with y or Y, as in a Yes answer.

{^(yes|YES|Yes)$} Exactly "yes", "Yes", or "YES".

{^[^ \t:\]+:} Begins with colon-delimited field that has no spaces or
tabs.

{^\S+?:} Same as above, using \S for "not space".

"^\[\t]*$" A string of all spaces or tabs.

{(?n)^\s*$} A blank line using newline sensitive mode.

"(\n|^)\[^\n\]*
(\n|$)"

A blank line, the hard way.

{^[A-Za-z]+$} Only letters.

{^[[:alpha:]]+$} Only letters, the Unicode way.

{[A-Za-z0-9_]+} Letters, digits, and the underscore.

{\w+} Letters, digits, and the underscore using \w.

{[][${}\\]} The set of Tcl special characters:] [$ { } \

"\[^\n\]*\n" Everything up to a newline.

{.*?\n} Everything up to a newline using nongreedy *?

{\.} A period.

{[][$^?+*()|\\]} The set of regular expression special characters:

] [$ ^ ? + * () | \

<H1>(.*?)</H1> An H1 HTML tag. The subpattern matches the string
between the tags.

<!--.*?--> HTML comments.

{[0-9a-hA-H][0-9a-
hA-H]}

2 hex digits.

{[[:xdigit:]]{2}} 2 hex digits, using advanced regular expressions.

{\d{1,3}} 1 to 3 digits, using advanced regular expressions.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The regsub Command

The regsub command does string substitution based on pattern matching. It is very
useful for processing your data. It can perform simple tasks like replacing sequences
of spaces and tabs with a single space. It can perform complex data transforms,
too, as described in the next section. Its syntax is:

regsub ?switches? pattern string subspec varname

The regsub command returns the number of matches and replacements, or 0 if
there was no match. regsub copies string to varname, replacing occurrences of
pattern with the substitution specified by subspec. If the pattern does not match,
then string is copied to varname without modification. The optional switches
include:

-all, which means to replace all occurrences of the pattern. Otherwise, only
the first occurrence is replaced.

The -nocase, -expanded, -line, -linestop, and -lineanchor switches are
the same as in the regexp command. They are described on page 158.

The -- switch separates the pattern from the switches, which is necessary if
your pattern begins with a -.

The replacement pattern, subspec, can contain literal characters as well as the
following special sequences:

& is replaced with the string that matched the pattern.

\x , where x is a number, is replaced with the string that matched the
corresponding subpattern in pattern. The correspondence is based on the
order of left parentheses in the pattern specification.

The following replaces a user's home directory with a ~:

regsub ^$env(HOME)/ $pathname ~/ newpath

The following constructs a C compile command line given a filename:

set file tclIO.c
regsub {([^\.]*)\.c$} $file {cc -c & -o \1.o} ccCmd

The matching pattern captures everything before the trailing .c in the file name.
The & is replaced with the complete match, tclIO.c, and \1 is replaced with tclIO,
which matches the pattern between the parentheses. The value assigned to ccCmd
is:

cc -c tclIO.c -o tclIO.o

We could execute that with:

eval exec $ccCmd

The following replaces sequences of multiple space characters with a single space:

regsub -all {\s+} $string " " string

It is perfectly safe to specify the same variable as the input value and the result.
Even if there is no match on the pattern, the input string is copied into the output
variable.

The regsub command can count things for us. The following command counts the
newlines in some text. In this case the substitution is not important:

set numLines [regsub -all \n $text {} ignore]

Transforming Data to Program with regsub

One of the most powerful combinations of Tcl commands is regsub and subst. This
section describes a few examples that use regsub to transform data into Tcl
commands, and then use subst to replace those commands with a new version of
the data. This technique is very efficient because it relies on two subsystems that
are written in highly optimized C code: the regular expression engine and the Tcl
parser. These examples are primarily written by Stephen Uhler.

URL Decoding

When a URL is transmitted over the network, it is encoded by replacing special
characters with a %xx sequence, where xx is the hexadecimal code for the character.
In addition, spaces are replaced with a plus (+). It would be tedious and very
inefficient to scan a URL one character at a time with Tcl statements to undo this
encoding. It would be more efficient to do this with a custom C program, but still
very tedious. Instead, a combination of regsub and subst can efficiently decode the
URL in just a few Tcl commands.

Replacing the + with spaces requires quoting the + because it is the one-or-more
special character in regular expressions:

regsub -all {\+} $url { } url

The %xx are replaced with a format command that will generate the right character:

regsub -all {%([0-9a-hA-H][0-9a-hA-H])} $url \
 {[format %c 0x\1]} url

The %c directive to format tells it to generate the character from a character code
number. We force a hexadecimal interpretation with a leading 0x. Advanced regular
expressions let us write the "2 hex digits" pattern a bit more cleanly:

regsub -all {%([[:xdigit:]]{2})} $url \
 {[format %c 0x\1]} url

The resulting string is passed to subst to get the format commands substituted:

set url [subst $url]

For example, if the input is %7ewelch, the result of the regsub is:

[format %c 0x7e]welch

And then subst generates:

~welch

Example 11-5 encapsulates this trick in the Url_Decode procedure.

Example 11-5 The Url_Decode procedure

proc Url_Decode {url} {
 regsub -all {\+} $url { } url
 regsub -all {%([:xdigit:]]{2})} $url \
 {[format %c 0x\1]} url
 return [subst $url]
}

CGI Argument Parsing

Example 11-6 builds upon Url_Decode to decode the inputs to a CGI program that
processes data from an HTML form. Each form element is identified by a name, and
the value is URL encoded. All the names and encoded values are passed to the CGI
program in the following format:

name1=value1&name2=value2&name3=value3

Example 11-6 shows Cgi_List and Cgi_Query. Cgi_Query receives the form data
from the standard input or the QUERY_STRING environment variable, depending on
whether the form data is transmitted with a POST or GET request. These HTTP
operations are described in detail in Chapter 17. Cgi_List uses split to get back a
list of names and values, and then it decodes them with Url_Decode. It returns a
Tcl-friendly name, value list that you can either iterate through with a foreach
command, or assign to an array with array set:

Example 11-6 The Cgi_List and Cgi_Query procedures

proc Cgi_List {} {
 set query [Cgi_Query]
 regsub -all {\+} $query { } query
 set result {}
 foreach {x} [split $query &=] {
 lappend result [Url_Decode $x]
 }
 return $result
}
proc Cgi_Query {} {
 global env
 if {![info exists env(QUERY_STRING)] ||
 [string length $env(QUERY_STRING)] == 0} {
 if {[info exists env(CONTENT_LENGTH)] &&
 [string length $env(CONTENT_LENGTH)] != 0} {
 set query [read stdin $env(CONTENT_LENGTH)]
 } else {
 gets stdin query
 }
 set env(QUERY_STRING) $query

 set env(CONTENT_LENGTH) 0
 }
 return $env(QUERY_STRING)
}

An HTML form can have several form elements with the same name, and this can
result in more than one value for each name. If you blindly use array set to map
the results of Cgi_List into an array, you will lose the repeated values. Example
11-7 shows Cgi_Parse and Cgi_Value that store the query data in a global cgi
array. Cgi_Parse adds list structure whenever it finds a repeated form value. The
global cgilist array keeps a record of how many times a form value is repeated.
The Cgi_Value procedure returns elements of the global cgi array, or the empty
string if the requested value is not present.

Example 11-7 Cgi_Parse and Cgi_Value store query data in the cgi
array

proc Cgi_Parse {} {
 global cgi cgilist
 catch {unset cgi cgilist}
 set query [Cgi_Query]
 regsub -all {\+} $query { } query
 foreach {name value} [split $query &=] {
 set name [CgiDecode $name]
 if {[info exists cgilist($name)] &&
 ($cgilist($name) == 1)} {
 # Add second value and create list structure
 set cgi($name) [list $cgi($name) \
 [Url_Decode $value]]
 } elseif {[info exists cgi($name)]} {
 # Add additional list elements
 lappend cgi($name) [CgiDecode $value]
 } else {
 # Add first value without list structure
 set cgi($name) [CgiDecode $value]
 set cgilist($name) 0 ;# May need to listify
 }
 incr cgilist($name)
 }
 return [array names cgi]
}
proc Cgi_Value {key} {
 global cgi
 if {[info exists cgi($key)]} {
 return $cgi($key)
 } else {
 return {}
 }
}
proc Cgi_Length {key} {
 global cgilist

 if {[info exist cgilist($key)]} {
 return $cgilist($key)
 } else {
 return 0
 }
}

Decoding HTML Entities

The next example is a decoder for HTML entities. In HTML, special characters are
encoded as entities. If you want a literal < or > in your document, you encode them
as the entities < and >, respectively, to avoid conflict with the <tag> syntax
used in HTML. HTML syntax is briefly described in Chapter 3 on page 34. Characters
with codes above 127 such as copyright © and egrave è are also encoded. There
are named entities, such as < for < and è for è. You can also use
decimal-valued entities such as © for ©. Finally, the trailing semicolon is
optional, so < or < can both be used to encode <.

The entity decoder is similar to Url_Decode. In this case, however, we need to be
more careful with subst. The text passed to the decoder could contain special
characters like a square bracket or dollar sign. With Url_Decode we can rely on
those special characters being encoded as, for example, %24. Entity encoding is
different (do not ask me why URLs and HTML have different encoding standards),
and dollar signs and square brackets are not necessarily encoded. This requires an
additional pass to quote these characters. This regsub puts a backslash in front of
all the brackets, dollar signs, and backslashes.

regsub -all {[][$\\]} $text {\\&} new

The decimal encoding (e.g., ©) is also more awkward than the hexadecimal
encoding used in URLs. We cannot force a decimal interpretation of a number in Tcl.
In particular, if the entity has a leading zero (e.g.,
) then Tcl interprets the
value (e.g., 010) as octal. The scan command is used to do a decimal interpretation.
It scans into a temporary variable, and set is used to get that value:

regsub -all {&#([0-9][0-9]?[0-9]?);?} $new \
 {[format %c [scan \1 %d tmp; set tmp]]} new

With advanced regular expressions, this could be written as follows using bound
quantifiers to specify one to three digits:

regsub -all {&#(\d{1,3});?} $new \
 {[format %c [scan \1 %d tmp;set tmp]]} new

The named entities are converted with an array that maps from the entity names to
the special character. The only detail is that unknown entity names (e.g., &foobar;)
are not converted. This mapping is done inside HtmlMapEntity, which guards
against invalid entities.

regsub -all {&([a-zA-Z]+)(;?)} $new \
 {[HtmlMapEntity \1 \\\2]} new

If the input text contained:

[x < y]

then the regsub would transform this into:

\[x [HtmlMapEntity lt \;] y\]

Finally, subst will result in:

[x < y]

Example 11-8 Html_DecodeEntity

proc Html_DecodeEntity {text} {
 if {![regexp & $text]} {return $text}
 regsub -all {[][$\\]} $text {\\&} new
 regsub -all {&#([0-9][0-9]?[0-9]?);?} $new {\
 [format %c [scan \1 %d tmp;set tmp]]} new
 regsub -all {&([a-zA-Z]+)(;?)} $new \
 {[HtmlMapEntity \1 \\\2]} new
 return [subst $new]
}
proc HtmlMapEntity {text {semi {}}} {
 global htmlEntityMap
 if {[info exist htmlEntityMap($text)]} {
 return $htmlEntityMap($text)
 } else {
 return $text$semi
 }
}
Some of the htmlEntityMap
array set htmlEntityMap {
 lt < gt > amp&
 aring \xe5 atilde \xe3
 copy \xa9 ecirc \xea egrave \xe8
}

A Simple HTML Parser

The following example is the brainchild of Stephen Uhler. It uses regsub to
transform HTML into a Tcl script. When it is evaluated the script calls a procedure to
handle each tag in an HTML document. This provides a general framework for
processing HTML. Different callback procedures can be applied to the tags to
achieve different effects. For example, the html_library-0.3 package on the CD-
ROM uses Html_Parse to display HTML in a Tk text widget.

Example 11-9 Html_Parse

proc Html_Parse {html cmd {start {}}} {

 # Map braces and backslashes into HTML entities
 regsub -all \{ $html {\&ob;} html
 regsub -all \} $html {\&cb;} html
 regsub -all {\\} $html {\&bsl;} html

 # This pattern matches the parts of an HTML tag
 set s" \t\r\n" ;# white space
 set exp <(/?)(\[^$s>]+)\[$s]*(\[^>]*)>

 # This generates a call to cmd with HTML tag parts
 # \1 is the leading /, if any
 # \2 is the HTML tag name
 # \3 is the parameters to the tag, if any
 # The curly braces at either end group of all the text
 # after the HTML tag, which becomes the last arg to $cmd.
 set sub "\}\n$cmd {\\2} {\\1} {\\3} \{"
 regsub -all $exp $html $sub html

 # This balances the curly braces,
 # and calls $cmd with $start as a pseudo-tag
 # at the beginning and end of the script.
 eval "$cmd {$start} {} {} {$html}"
 eval "$cmd {$start} / {} {}"
}

The main regsub pattern can be written more simply with advanced regular
expressions:

set exp {<(/?)(\S+?)\s*(.*?)>}

An example will help visualize the transformation. Given this HTML:

<Title>My Home Page</Title>
<Body bgcolor=white text=black>
<H1>My Home</H1>
This is my home page.

and a call to Html_Parse that looks like this:

Html_Parse $html {Render .text} hmstart

then the generated program is this:

Render .text {hmstart} {} {} {}
Render .text {Title} {} {} {My Home Page}
Render .text {Title} {/} {} {
}
Render .text {Body} {} {bgcolor=white text=black} {
}

Render .text {H1} {} {} {My Home}
Render .text {H1} {/} {} {
This is my }
Render .text {b} {} {} {home}
Render .text {b} {/} {} { page.
}
Render .text {hmstart} / {} {}

One overall point to make about this example is the difference between using eval
and subst with the generated script. The decoders shown in Examples 11-5 and 11-
8 use subst to selectively replace encoded characters while ignoring the rest of the
text. In Html_Parse we must process all the text. The main trick is to replace the
matching text (e.g., the HTML tag) with some Tcl code that ends in an open curly
brace and starts with a close curly brace. This effectively groups all the unmatched
text.

When eval is used this way you must do something with any braces and
backslashes in the unmatched text. Otherwise, the resulting script does not parse
correctly. In this case, these special characters are encoded as HTML entities. We
can afford to do this because the cmd that is called must deal with encoded entities
already. It is not possible to quote these special characters with backslashes
because all this text is inside curly braces, so no backslash substitution is
performed. If you try that the backslashes will be seen by the cmd callback.

Finally, I must admit that I am always surprised that this works:

eval "$cmd {$start} {} {} {$html}"

I always forget that $start and $html are substituted in spite of the braces. This is
because double quotes are being used to group the argument, so the quoting effect
of braces is turned off.

Stripping HTML Comments

The Html_Parse procedure does not correctly handle HTML comments. The problem
is that the syntax for HTML commands allows tags inside comments, so there can be
> characters inside the comment. HTML comments are also used to hide Javascript
inside pages, which can also contain >. We can fix this with a pass that eliminates
the comments.

The comment syntax is this:

<!-- HTML comment, could contain <markup> -->

Using nongreedy quantifiers, we can strip comments with a single regsub:

regsub -all <!--.*?--> $html {} html

Using only greedy quantifiers, it is awkward to match the closing --> without
getting stuck on embedded > characters, or without matching too much and going

all the way to the end of the last comment. Time for another trick:

regsub -all --> $html \x81 html

This replaces all the end comment sequences with a single character that is not
allowed in HTML. Now you can delete the comments like this:

regsub -all "<!--\[^\x81\]*\x81" $html {} html

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Other Commands That Use Regular Expressions

Several Tcl commands use regular expressions.

lsearch takes a -regexp flag so that you can search for list items that match
a regular expression. The lsearch command is described on page 69.

switch takes a -regexp flag, so you can branch based on a regular expression
match instead of an exact match or a string match style match. The switch
command is described on page 77.

The Tk text widget can search its contents based on a regular expression
match. Searching in the text widget is described on page 542.

The Expect Tcl extension can match the output of a program with regular
expressions. Expect is the subject of its own book, Exploring Expect (O'Reilly,
1995) by Don Libes.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Chapter 12. Script Libraries and Packages
Collections of Tcl commands are kept in libraries and organized into packages. Tcl
automatically loads libraries as an application uses their commands. Tcl commands
discussed are: package, pkg_mkIndex, auto_mkindex, unknown, and
tcl_findLibrary.

Libraries group useful sets of Tcl procedures so that they can be used by multiple
applications. For example, you could use any of the code examples that come with
this book by creating a script library and then directing your application to check in
that library for missing procedures. One way to structure a large application is to
have a short main script and a library of support scripts. The advantage of this
approach is that not all the Tcl code needs to be loaded to start the application.
Applications start up quickly, and as new features are accessed, the code that
implements them is loaded automatically.

The Tcl package facility supports version numbers and has a provide/require model
of use. Typically, each file in a library provides one package with a particular version
number. Packages also work with shared object libraries that implement Tcl
commands in compiled code, which are described in Chapter 47. A package can be
provided by a combination of script files and object files. Applications specify which
packages they require and the libraries are loaded automatically. The package
facility is an alternative to the auto loading scheme used in earlier versions of Tcl.
You can use either mechanism, and this chapter describes them both.

If you create a package you may wish to use the namespace facility to avoid
conflicts between procedures and global variables used in different packages.
Namespaces are the topic of Chapter 14. Before Tcl 8.0 you had to use your own
conventions to avoid conflicts. This chapter explains a simple coding convention for
large Tcl programs. I use this convention in exmh, a mail user interface that has
grown from about 2,000 to over 35,000 lines of Tcl code. A majority of the code has
been contributed by the exmh user community. Such growth might not have been
possible without coding conventions.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Locating Packages: The auto_path Variable

The package facility assumes that Tcl libraries are kept in well-known directories.
The list of well-known directories is kept in the auto_path Tcl variable. This is
initialized by tclsh and wish to include the Tcl script library directory, the Tk script
library directory (for wish), and the parent directory of the Tcl script library
directory. For example, on my Macintosh auto_path is a list of these three
directories:

Disk:System Folder:Extensions:Tool Command Language:tcl8.4
Disk:System Folder:Extensions:Tool Command Language
Disk:System Folder:Extensions:Tool Command Language:tk8.4

On my Windows 95 machine the auto_path lists these directories:

c:\Program Files\Tcl\lib\Tcl8.4
c:\Program Files\Tcl\lib
c:\Program Files\Tcl\lib\Tk8.4

On my UNIX workstation the auto_path lists these directories:

/usr/local/tcl/lib/tcl8.4
/usr/local/tcl/lib
/usr/local/tcl/lib/tk8.4

The package facility searches these directories and their subdirectories for
packages. The easiest way to manage your own packages is to create a directory at
the same level as the Tcl library:

/usr/local/tcl/lib/welchbook

Packages in this location, for example, will be found automatically because the
auto_path list includes /usr/local/tcl/lib. You can also add directories to the
auto_path explicitly:

lappend auto_path directory

One trick I often use is to put the directory containing the main script into the
auto_path. The following command sets this up:

lappend auto_path [file dirname [info script]]

If your code is split into bin and lib directories, then scripts in the bin directory
can add the adjacent lib directory to their auto_path with this command:

lappend auto_path \
 [file join [file dirname [info script]] ../lib]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Using Packages

Each script file in a library declares what package it implements with the package
provide command:

package provide name version

The name identifies the package, and the version has a major.minor format. The
convention is that the minor version number can change and the package
implementation will still be compatible. If the package changes in an incompatible
way, then the major version number should change. For example, Chapter 17
defines several procedures that use the HTTP network protocol. These include
http::geturl, http::wait, and http::cleanup. The file that contains the
procedures starts with this command:

package provide http 2.4

Case is significant in package names. In particular, the package that comes with Tcl
is named http ÿ all lowercase.

More than one file can contribute to the same package simply by specifying the
same name and version. In addition, different versions of the same package can be
kept in the same directory but in different files.

An application specifies the packages it needs with the package require command:

package require name ?version? ?-exact?

If the version is left off, then the highest available version is loaded. Otherwise the
highest version with the same major number is loaded. For example, if the client
requires version 1.1, version 1.2 could be loaded if it exists, but versions 1.0 and
2.0 would not be loaded. You can restrict the package to a specific version with the
-exact flag. If no matching version can be found, then the package require
command raises an error.

Loading Packages Automatically

The package require command depends on an index to record which files
implement which packages. The index must be maintained by you, your project
librarian, or your system administrator when packages change. The index is created
by the pkg_mkIndex command, which puts the index into a pkgIndex.tcl file in
each library directory. The pkg_mkIndex command takes the name of a directory
and one or more glob patterns that specify files within that directory. File name
patterns are described on page 122. The syntax is:

pkg_mkIndex ?options? directory pattern ?pattern ...?

For example:

pkg_mkIndex /usr/local/lib/welchbook *.tcl
pkg_mkIndex -lazy /usr/local/lib/Sybtcl *.so

The pkg_mkIndex command sources or loads all the files matched by the pattern,
detects what packages they provide, and computes the index. You should be aware
of this behavior because it works well only for libraries. If the pkg_mkIndex
command hangs or starts random applications, it is because it sourced an
application file instead of a library file.

The package index, pkgIndex.tcl, is sourced in response to a package require
command. The index instructs the package loading mechanism how to define the
package. By default, source or load commands are specified so that packages are
defined immediately as a side effect of package require. This is called direct
loading. However, the original package index system used a deferred loading
scheme layered on the auto_load mechanism and the unknown command hook,
which is described on page 178. If you want deferred loading, use the -lazy option
to pkg_mkIndex. The default behavior of pkg_mkIndex switched from -lazy to -
direct in Tcl 8.3. The pkg_mkIndex options are summarized in Table 12-1.

Table 12-1. Options to the pkg_mkIndex command

-direct Generates an index with source and load commands in it. This results in
packages being loaded directly as a result of package require. This is the
default starting with Tcl 8.3.

-lazy Generates an index that populates the auto_index array for deferred
loading of commands. This behavior was the default prior to Tcl 8.3.

-load
pattern

Dynamically loads packages that match pattern into the slave interpreter
used to compute the index. A common reason to need this is with the
tcbload package needed to load .tbc files compiled with TclPro Compiler.

-
verbose

Displays the name of each file processed and any errors that occur.

Packages Implemented in C Code

The files in a library can be either script files that define Tcl procedures or binary
files in shared library format that define Tcl commands in compiled code (i.e., a
Dynamic Link Library (DLL)). Chapter 47 describes how to implement Tcl commands
in C. There is a C API to the package facility that you use to declare the package
name for your commands. This is shown in Example 47-1 on page 698. Chapter 37

also describes the Tcl load command that is used instead of source to link in shared
libraries. The pkg_mkIndex command also handles shared libraries:

pkg_mkIndex directory *.tcl *.so *.shlib *.dll

In this example, .so, .shlib, and .dll are file suffixes for shared libraries on UNIX,
Macintosh, and Windows systems, respectively. You can have packages that have
some of their commands implemented in C, and some implemented as Tcl
procedures. The script files and the shared library must simply declare that they
implement the same package. The pkg_mkIndex procedure will detect this and set
up the auto_index, so some commands are defined by sourcing scripts, and some
are defined by loading shared libraries.

If your file servers support more than one machine architecture, such as Solaris and
Linux systems, you probably keep the shared library files in machine-specific
directories. In this case the auto_path should also list the machine-specific
directory so that the shared libraries there can be loaded automatically. If your
system administrator configured the Tcl installation properly, this should already be
set up. If not, or you have your shared libraries in a nonstandard place, you must
append the location to the auto_path variable.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Summary of Package Loading

The basic structure of package loading works like this:

An application does a package require command. If the package is already
loaded, the command just returns the version number of the already loaded
package. If is not loaded, the following steps occur.

The package facility checks to see if it knows about the package. If it does,
then it runs the Tcl scripts registered with the package ifneeded command.
These commands either load the package or set it up to be loaded
automatically when its commands are first used.

If the package is unknown, the tclPkgUnknown procedure is called to find it.
Actually, you can specify what procedure to call to do the lookup with the
package unknown command, but the standard one is tclPkgUnknown.

The tclPkgUnknown procedure looks through the auto_path directories and
their subdirectories for pkgIndex.tcl files. It sources those to build an
internal database of packages and version information. The pkgIndex.tcl files
contain calls to package ifneeded that specify what to do to define the
package. You can use the pkg_mkIndex command to create your
pkgIndex.tcl files, or you can create them by hand.

In the case of deferred package loading, the tclPkgSetup procedure defines
the auto_index array to contain the correct source or load commands to
define each command in the package. Automatic loading and the auto_index
array are described in more detail later.

As you can see, there are several levels of processing involved in finding packages.
The system is flexible enough that you can change the way packages are located
and how packages are loaded. The -lazy scenario is complicated because it uses
the delayed loading of source code that is described in the next section. Using the -
direct flag to pkg_mkIndex simplifies the situation. In any case, it all boils down to
three key steps:

Use pkg_mkIndex to maintain your index files. Decide at this time whether or
not to use direct or lazy package loading.

Put the appropriate package require and package provide commands in
your code.

Ensure that your library directories, or their parent directories, are listed in the
auto_path variable.

The package Command

The package command has several operations that are used primarily by the
pkg_mkIndex procedure and the automatic loading facility. These operations are
summarized in Table 12-2.

Table 12-2. The package command

package forget
package

Deletes registration information for package.

package ifneeded
package ?command?

Queries or sets the command used to set up automatic loading
of a package.

package names Returns the set of registered packages.

package provide
package version

Declares that a script file defines commands for package with
the given version.

package present
package ?version?
?-exact?

Equivalent to package require, except that no attempt to
load the package is made if it is not loaded.

package require
package ?version?
?-exact?

Declares that a script uses package. The -exact flag specifies
that the exact version must be loaded. Otherwise, the highest
matching version is loaded.

package unknown ?
command?

Queries or sets the command used to locate packages.

package vcompare
v1 v2

Compares version v1 and v2. Returns 0 if they are equal, -1 if
v1 is less than v2, or 1 if v1 is greater than v2.

package versions
package

Returns which versions of the package are registered.

package
vsatisfies v1 v2

Returns 1 if v1 is greater or equal to v2 and still has the same
major version number. Otherwise returns 0.

Libraries Based on the tclIndex File

You can create libraries without using the package command. The basic idea is that
a directory has a library of script files, and an index of the Tcl commands defined in
the library is kept in a tclIndex file. The drawback is that versions are not
supported and you may need to adjust the auto_path to list your library directory.
The main advantage of this approach is that this mechanism has been part of Tcl
since the earliest versions. If you currently maintain a library using tclIndex files, it
will still work.

You must generate the index that records what procedures are defined in the library.
The auto_mkindex procedure creates the index, which is stored in a file named
tclIndex that is kept in the script library directory. (Watch out for the difference in
capitalization between auto_mkindex and pkg_mkIndex!) Suppose all the examples
from this book are in the directory /usr/local/tcl/welchbook. You can make the
examples into a script library by creating the tclIndex file:

auto_mkindex /usr/local/tcl/welchbook *.tcl

You will need to update the tclIndex file if you add procedures or change any of
their names. A conservative approach to this is shown in the next example. It is
conservative because it re-creates the index if anything in the library has changed
since the tclIndex file was last generated, whether or not the change added or
removed a Tcl procedure.

Example 12-1 Maintaining a tclIndex file

proc Library_UpdateIndex { libdir } {
 set index [file join $libdir tclIndex]
 if {![file exists $index]} {
 set doit 1
 } else {
 set age [file mtime $index]
 set doit 0
 # Changes to directory may mean files were deleted
 if {[file mtime $libdir] > $age} {
 set doit 1
 } else {
 # Check each file for modification
 foreach file [glob [file join $libdir *.tcl]] {
 if {[file mtime $file] > $age} {
 set doit 1
 break
 }
 }
 }
 }
 if { $doit } {

 auto_mkindex $libdir *.tcl
 }
}

The auto_path variable contains a list of directories to search for unknown
commands. To continue our example, you can make the procedures in the book
examples available by putting this command at the beginning of your scripts:

lappend auto_path /usr/local/tcl/welchbook

This has no effect if you have not created the tclIndex file. If you want to be extra
careful, you can call Library_UpdateIndex. This will update the index if you add
new things to the library.

lappend auto_path /usr/local/tcl/welchbook
Library_UpdateIndex /usr/local/tcl/welchbook

This will not work if there is no tclIndex file at all because Tcl won't be able to find
the implementation of Library_UpdateIndex. Once the tclIndex has been created
for the first time, then this will ensure that any new procedures added to the library
will be installed into tclIndex. In practice, if you want this sort of automatic
update, it is wise to include something like the Library_UpdateIndex procedure
directly into your application as opposed to loading it from the library it is supposed
to be maintaining.

The unknown Command

The unknown command implements automatic loading of Tcl commands. Whenever
the Tcl interpreter encounters a command that it does not know about, it calls the
unknown command with the name of the missing command. The unknown command
is implemented in Tcl, so you are free to provide your own mechanism to handle
unknown commands. This chapter describes the behavior of the default
implementation of unknown, which can be found in the init.tcl file in the Tcl
library. The info library command returns the location of the library.

How Auto Loading Works

The unknown command uses an array named auto_index. One element of the array
is defined for each procedure that can be automatically loaded. The auto_index
array is initialized by the package mechanism or by tclIndex files. The value of an
auto_index element is a command that defines the procedure. Typical commands
are:

source [file join $dir bind_ui.tcl]
load [file join $dir mime.so] Mime

The $dir gets substituted with the name of the directory that contains the library
file, so the result is a source or load command that defines the missing Tcl
command. The substitution is done with eval, so you could initialize auto_index
with any commands at all. Example 12-2 is a simplified version of the code that
reads the tclIndex file.

Example 12-2 Loading a tclIndex file

This is a simplified part of the auto_load_index procedure.
Go through auto_path from back to front.
set i [expr [llength $auto_path]-1]
for {} {$i >= 0} {incr i -1} {
 set dir [lindex $auto_path $i]
 if [catch {open [file join $dir tclIndex]} f] {
 # No index
 continue
 }
 # eval the file as a script. Because eval is
 # used instead of source, an extra round of
 # substitutions is performed and $dir gets expanded
 # The real code checks for errors here.
 eval [read $f]
 close $f
}

Disabling the Library Facility: auto_noload

If you do not want the unknown procedure to try and load procedures, you can set
the auto_noload variable to disable the mechanism:

set auto_noload anything

Auto loading is quite fast. I use it regularly on applications both large and small. A
large application will start faster if you only need to load the code necessary to start
it up. As you access more features of your application, the code will load
automatically. Even a small application benefits from auto loading because it
encourages you to keep commonly used code in procedure libraries.

Interactive Conveniences

The unknown command provides a few other conveniences. These are used only
when you are typing commands directly. They are disabled once execution enters a
procedure or if the Tcl shell is not being used interactively. The convenience features
are automatic execution of programs, command history, and command abbreviation.
These options are tried, in order, if a command implementation cannot be loaded
from a script library.

Auto Execute

The unknown procedure implements a second feature: automatic execution of
external programs. This makes a Tcl shell behave more like other UNIX shells that
are used to execute programs. The search for external programs is done using the
standard PATH environment variable that is used by other shells to find programs. If
you want to disable the feature all together, set the auto_noexec variable:

set auto_noexec anything

History

The history facility described in Chapter 13 is implemented by the unknown
procedure.

Abbreviations

If you type a unique prefix of a command, unknown recognizes it and executes the
matching command for you. This is done after automatic program execution is
attempted and history substitutions are performed.

Tcl Shell Library Environment

Tcl searches for its script library directory when it starts up. In early versions of Tcl
you had to compile in the correct location, set a Windows registry value, or set the
TCL_LIBRARY environment variable to the correct location. Recent versions of Tcl
use a standard searching scheme to locate the script library. The search
understands the standard installation and build environments for Tcl, and it should
eliminate the need to use the TCL_LIBRARY environment variable. On Windows the
search for the library used to depend on registry values, but this has also been
discontinued in favor of a standard search. In summary, "it should just work."
However, this section explains how Tcl finds its script library so that you can
troubleshoot problems.

Locating the Tcl Script Library

The default library location is defined when you configure the source distribution,
which is explained on page 732. At this time an initial value for the auto_path
variable is defined. (This default value appears in tcl_pkgPath, but changing this
variable has no effect once Tcl has started. I just pretend tcl_pkgPath does not
exist.) These values are just hints; Tcl may use other directories depending on what
it finds in the file system.

When Tcl starts up, it searches for a directory that contains its init.tcl startup
script. You can short-circuit the search by defining the TCL_LIBRARY environment
variable. If this is defined, Tcl uses it only for its script library directory. However,
you should not need to define this with normal installations of Tcl 8.0.5 or later. In
my environment I'm often using several different versions of Tcl for various
applications and testing purposes, so setting TCL_LIBRARY is never correct for all
possibilities. If I find myself setting this environment variable, I know something is
wrong with my Tcl installations!

The standard search starts with the default value that is compiled into Tcl (e.g.,
/usr/local/lib/tcl8.4.) After that, the following directories are examined for an
init.tcl file. These example values assume Tcl version 8.4 and patch level 8.4.1:

../lib/tcl8.4

../../lib/tcl8.4

../library

../../tcl8.4.1/library

../../../tcl8.4.1/library

The first two directories correspond to the standard installation directories, while the
last three correspond to the standard build environment for Tcl or Tk. The first
directory in the list that contains a valid init.tcl file becomes the Tcl script library.
This directory location is saved in the tcl_library global variable, and it is also
returned by the info library command.

The primary thing defined by init.tcl is the implementation of the unknown
procedure. It also initializes auto_path to contain $tcl_library and the parent
directory of $tcl_library. There may be additional directories added to auto_path
depending on the compiled in value of tcl_pkgPath.

tcl_findLibrary

A generalization of this search is implemented by tcl_findLibrary. This procedure
is designed for use by extensions like Tk and [incr Tcl]. Of course, Tcl cannot use
tcl_findLibrary itself because it is defined in init.tcl!

The tcl_findLibrary procedure searches relative to the location of the main
program (e.g., tclsh or wish) and assumes a standard installation or a standard
build environment. It also supports an override by an environment variable, and it
takes care of sourcing an initialization script. The usage of tcl_findLibrary is:

tcl_findLibrary base version patch script enVar varName

The base is the prefix of the script library directory name. The version is the main
version number (e.g., "8.0"). The patch is the full patch level (e.g., "8.0.3"). The
script is the initialization script to source from the directory. The enVar names an
environment variable that can be used to override the default search path. The
varName is the name of a variable to set to name of the directory found by
tcl_findLibrary. A side effect of tcl_findLibrary is to source the script from the
directory. An example call is:

tcl_findLibrary tk 8.0 8.0.3 tk.tcl TK_LIBRARY tk_library

This call first checks to see whether TK_LIBRARY is defined in the environment. If so,
it uses its value. Otherwise, it searches the following directories for a file named
tk.tcl. It sources the script and sets the tk_library variable to the directory
containing that file. The search is relative to the value returned by info
nameofexecutable:

../lib/tk8.0

../../lib/tk8.0

../library

../../tk8.0.3/library

../../../tk8.0.3/library

Tk also adds $tk_library to the end of auto_path, so the other script files in that
directory are available to the application:

lappend auto_path $tk_library

Coding Style

If you supply a package, you need to follow some simple coding conventions to
make your library easier to use by other programmers. You can use the namespace
facility introduced in Tcl 8.0. You can also use conventions to avoid name conflicts
with other library packages and the main application. This section describes the
conventions I developed before namespaces were added to Tcl.

A Module Prefix for Procedure Names

The first convention is to choose an identifying prefix for the procedures in your
package. For example, the preferences package in Chapter 45 uses Pref as its
prefix. All the procedures provided by the library begin with Pref. This convention is
extended to distinguish between private and exported procedures. An exported
procedure has an underscore after its prefix, and it is acceptable to call this
procedure from the main application or other library packages. Examples include
Pref_Add, Pref_Init, and Pref_Dialog. A private procedure is meant for use only
by the other procedures in the same package. Its name does not have the
underscore. Examples include PrefDialogItem and PrefXres.

This naming convention precludes casual names like doit, setup, layout, and so
on. Without using namespaces, there is no way to hide procedure names, so you
must maintain the naming convention for all procedures in a package.

A Global Array for State Variables

You should use the same prefix on the global variables used by your package. You
can alter the capitalization; just keep the same prefix. I capitalize procedure names
and use lowercase letters for variables. By sticking with the same prefix you identify
what variables belong to the package and you avoid conflict with other packages.

Collect state in a global or namespaced array.

In general, I try to use a single global or namespaced array for a package
(namespaces are discussed in Chapter 14). The array provides a convenient place to
collect a set of related variables, much as a struct is used in C. For example, the
preferences package uses the pref array to hold all its state information. It is also a
good idea to keep the use of the array private. It is better coding practice to provide
exported procedures than to let other modules access your data structures directly.

This makes it easier to change the implementation of your package without affecting
its clients. When choosing a namespace name, try to make it significant to your
application.

If you do need to export a few key variables from your module, use the underscore
convention to distinguish exported variables. If you need more than one global
variable, just stick with the prefix convention to avoid conflicts, or provide accessor
functions instead.

The Official Tcl Style Guide

John Ousterhout has published two programming style guides, one for C
programming known as The Engineering Manual and one for Tcl scripts known as
The Style Guide. These describe details about file structure as well as naming
conventions for modules, procedures, and variables. The Tcl Style Guide
conventions use Tcl namespaces to separate packages. Namespaces automatically
provide a way to avoid conflict between procedure names. Namespaces also support
collections of variables without having to use arrays for grouping.

You can find these style guides on the CD-ROM and also in
ftp://ftp.tcl.tk/pub/tcl/doc. The Engineering Manual is distributed as a
compressed tar file, engManual.tar.Z, that contains sample files as well as the
main document. The Style Guide is distributed as styleGuide.ps (or .pdf).

Chapter 13. Reflection and Debugging
This chapter describes commands that give you a view into the interpreter. The
history command and a simple debugger are useful during development and
debugging. The info command provides a variety of information about the internal
state of the Tcl interpreter. The time command measures the time it takes to
execute a command. Tcl commands discussed are: clock, info, history, and time.

Reflection provides feedback to a script about the internal state of the interpreter.
This is useful in a variety of cases, from testing to see whether a variable exists to
dumping the state of the interpreter. The info command provides lots of different
information about the interpreter.

The clock command returns the time, formats time values, does time calculations,
and parses time strings. It is a great tool all by itself. It also provides high-
resolution timer information for precise measurements.

Interactive command history is the third topic of the chapter. The history facility can
save you some typing if you spend a lot of time entering commands interactively.

Debugging is the last topic. The old-fashioned approach of adding puts commands
to your code is often quite useful. For tough problems, however, a real debugger is
invaluable. The Tcl Dev Kit toolset from ActiveState include a high quality debugger
and static code checker. The tkinspect program is an inspector that lets you look
into the state of a Tk application. It can hook up to any Tk application dynamically,
so it proves quite useful.

The clock Command

The clock command has facilities for getting the current time, formatting time
values, and scanning printed time strings to get an integer time value. Table 13-1
summarizes the clock command:

Table 13-1. The clock command

clock clicks ?-
milliseconds?

A high resolution counter. The precision is milliseconds,
if specified (Tcl 8.4), or a system-dependent value.

clock format value ?-
format str?

Formats a clock value according to str. See Table 13-
2.

clock scan string ?-
base clock? ?-gmt
boolean?

Parses date string and return seconds value. The
clock value determines the date.

clock seconds Returns the current time in seconds.

The following command prints the current time:

clock format [clock seconds]
=> Fri Nov 22 4:09:14 PM PST 2002

The clock seconds command returns the current time, in seconds since a starting
epoch. The clock format command formats an integer value into a date string. It
takes an optional argument that controls the format. The format strings contains %
keywords that are replaced with the year, month, day, date, hours, minutes, and
seconds, in various formats. The default string is:

%a %b %d %H:%M:%S %Z %Y

Tables 13-2 summarizes the clock formatting strings:

Table 13-2. clock format keywords

%% Inserts a %.

%a Abbreviated weekday name (Mon, Tue, etc.).

%A Full weekday name (Monday, Tuesday, etc.).

%b Abbreviated month name (Jan, Feb, etc.).

%B Full month name.

%c Locale specific date and time (e.g., Nov 24 16:00:59 1996).

%C First two digits of the four-digit year (19 or 20).

%d Day of month (01 ÿ 31).

%D Date as %m/%d/%y (e.g., 02/19/97).

%e Day of month (1 ÿ 31), no leading zeros.

%h Abbreviated month name.

%H Hour in 24-hour format (00 ÿ 23).

%I Hour in 12-hour format (01 ÿ 12).

%j Day of year (001 ÿ 366).

%k Hour in 24-hour format, without leading zeros (0 - 23).

%l Hour in 12-hour format, without leading zeros (1 ÿ 12).

%m Month number (01 ÿ 12).

%M Minute (00 ÿ 59).

%n Inserts a newline.

%p AM/PM indicator.

%r Time as %I:%M:%S %p (e.g., 02:39:29 PM).

%R Time as %H:%M (e.g., 14:39).

%s Seconds since the epoch.

%S Seconds (00 ÿ 59).

%t Inserts a tab.

%T Time as %H:%M:%S (e.g., 14:34:29).

%u Weekday number (Monday = 1, Sunday = 7).

%U Week of year (00 ÿ 52) when Sunday starts the week.

%V Week of year according to ISO-8601 rules (Week 1 contains January 4).

%w Weekday number (Sunday = 0).

%W Week of year (00 ÿ 52) when Monday starts the week.

%x Locale specific date format (e.g., Feb 19 1997).

%X Locale specific time format (e.g., 20:10:13).

%y Year without century (00 ÿ 99).

%Y Year with century (e.g. 1997).

%Z Time zone name.

The clock clicks command returns the value of the system's highest resolution
clock. The units of the clicks is milliseconds if -milliseconds is specified, otherwise
it is undefined. The main use of this command is to measure the relative time of
different performance tuning trials. The -milliseconds flag was added in Tcl 8.4.
Example 13-1 shows how to calibrate the clicks value by counting the clicks per
second over 10 seconds, which will vary from system to system:

Example 13-1 Calculating clicks per second

set t1 [clock clicks]
after 10000 ;# See page 228
set t2 [clock clicks]
puts "[expr ($t2 - $t1)/10] Clicks/second"
=> 1001313 Clicks/second

The clock scan command parses a date string and returns a seconds value. The
command handles a variety of date formats. If you leave off the year, the current
year is assumed.

Year 2000 Compliance

Tcl implements the standard interpretation of two-digit year values, which is that
70ÿ99 are 1970ÿ1999, 00ÿ69 are 2000ÿ2069. Versions of Tcl before 8.0 did not
properly deal with two-digit years in all cases. Note, however, that Tcl is limited by
your system's time epoch and the number of bits in an integer. On Windows,
Macintosh, and most UNIX systems, the clock epoch is January 1, 1970. A 32-bit
integer can count enough seconds to reach forward into the year 2037, and
backward to the year 1903. If you try to clock scan a date outside that range, Tcl
will raise an error because the seconds counter will overflow or underflow. In this
case, Tcl is just reflecting limitations of the underlying system. Some 64-bit systems
(such as Solaris 8 64-bit) use 64-bit integers for the system clock, which Tcl 8.4
supports. This extends the recognized range into the billions of years.

If you leave out a date, clock scan assumes the current date. You can also use the
-base option to specify a date. The following example uses the current time as the
base, which is redundant:

clock scan "10:30:44 PM" -base [clock seconds]
=> 2931690644

The date parser allows these modifiers: year, month, fortnight (two weeks), week,
day, hour, minute, second. You can put a positive or negative number in front of a
modifier as a multiplier. For example:

clock format [clock scan "10:30:44 PM 1 week"]
=> Fri Nov 29 10:30:44 PM PST 2002
clock format [clock scan "10:30:44 PM -1 week"]
Fri Nov 15 10:30:44 PM PST 2002

You can also use tomorrow, yesterday, today, now, last, this, next, and ago, as
modifiers.

clock format [clock scan "3 years ago"]
=> Mon Nov 22 4:18:34 PM PST 1999

Both clock format and clock scan take a -gmt option that uses Greenwich Mean
Time. Otherwise, the local time zone is used.

clock format [clock seconds] -gmt true
=> Sat Nov 23 12:19:13 AM GMT 2002
clock format [clock seconds] -gmt false
=> Fri Nov 22 4:19:35 PM PST 2002

The info Command

Table 13-3 summarizes the info command. The operations are described in more
detail later.

Table 13-3. The info command

info args
procedure

A list of procedure's arguments.

info body
procedure

The commands in the body of procedure.

info cmdcount The number of commands executed so far.

info commands ?
pattern?

A list of all commands, or those matching pattern. Includes
built-ins and Tcl procedures.

info complete
string

True if string contains a complete Tcl command.

info default proc
arg var

True if arg has a default parameter value in procedure proc.
The default value is stored into var.

info exists
variable

True if variable is defined.

info functions ?
pattern?

A list of all math functions, or those matching pattern. (Tcl
8.4)

info globals ?
pattern?

A list of all global variables, or those matching pattern.

info hostname The name of the machine. This may be the empty string if
networking is not initialized.

info level The stack level of the current procedure, or 0 for the global
scope.

info level number A list of the command and its arguments at the specified
level of the stack.

info library The pathname of the Tcl library directory.

info loaded ?
interp?

A list of the libraries loaded into the interpreter named
interp, which defaults to the current one.

info locals ?
pattern?

A list of all local variables, or those matching pattern.

info
nameofexecutable

The file name of the program (e.g., of tclsh or wish).

info patchlevel The release patch level for Tcl.

info procs ?
pattern?

A list of all Tcl procedures, or those that match pattern.

info script ?
filename?

The name of the file being processed, or the empty string.

info
sharedlibextension

The file name suffix of shared libraries.

info tclversion The version number of Tcl.

info vars ?
pattern?

A list of all visible variables, or those matching pattern.

Variables

There are three categories of variables: local, global, and visible. Information about
these categories is returned by the locals, globals, and vars operations,
respectively. The local variables include procedure arguments as well as locally

defined variables. The global variables include all variables defined at the global
scope. The visible variables include locals, plus any variables made visible via
global or upvar commands. A pattern can be specified to limit the returned list of
variables to those that match the pattern. The pattern is interpreted according to
the rules of string match, which is described on page 53:

info globals auto*
=> auto_index auto_noexec auto_path

Namespaces, which are the topic of the next chapter, partition global variables into
different scopes. You query the variables visible in a namespace with:

info vars namespace::*

Remember that a variable may not be defined yet even though a global or upvar
command has declared it visible in the current scope. Use the info exists
command to test whether a variable or an array element is defined or not. An
example is shown on page 96.

Procedures

You can find out everything about a Tcl procedure with the args, body, and default
operations. This is illustrated in the following Proc_Show example. The puts
commands use the -nonewline flag because the newlines in the procedure body, if
any, are retained:

Example 13-2 Printing a procedure definition

proc Proc_Show {{namepat *} {file stdout}} {
 foreach proc [info procs $namepat] {
 set space ""
 puts -nonewline $file "proc $proc {"
 foreach arg [info args $proc] {
 if [info default $proc $arg value] {
 puts -nonewline $file "$space{$arg $value}"
 } else {
 puts -nonewline $file $space$arg
 }
 set space " "
 }
 # Double quotes allow substitution
 # of [info body $proc]

 puts $file "} {[info body $proc]}"

 }
}

Example 13-3 is a more elaborate example of procedure introspection that comes
from the direct.tcl file, which is part of the Tcl Web Server described in Chapter
18. This code is used to map URL requests and the associated query data directly
into Tcl procedure calls. This is discussed in more detail on page 262. The Web
server collects Web form data into an array called form. Example 13-3 matches up
elements of the form array with procedure arguments, and it collects extra elements
into an args parameter. If a form value is missing, then the default argument value
or the empty string is used:

Example 13-3 Mapping form data onto procedure arguments

cmd is the name of the procedure to invoke
form is an array containing form values

set cmdOrig $cmd
set params [info args $cmdOrig]

Match elements of the form array to parameters

foreach arg $params {
 if {![info exists form($arg)]} {
 if {[info default $cmdOrig $arg value]} {
 lappend cmd $value
 } elseif {[string equal $arg "args"]} {
 set needargs yes
 } else {
 lappend cmd {}
 }
 } else {
 lappend cmd $form($arg)
 }
}
If args is a parameter, then append the form data
that does not match other parameters as extra parameters

if {[info exists needargs]} {
 foreach {name value} [array get form] {
 if {[lsearch $params $name] < 0} {
 lappend cmd $name $value
 }
 }
}
Eval the command

set code [catch $cmd result]

The info commands operation returns a list of all commands, which includes both
built-in commands defined in C and Tcl procedures. There is no operation that just
returns the list of built-in commands. Example 13-4 finds the built-in commands by
removing all the procedures from the list of commands.

Example 13-4 Finding built-in commands

proc Command_Info {{pattern *}} {
 # Create a table of procedures for quick lookup

 foreach p [info procs $pattern] {
 set isproc($p) 1
 }

 # Look for command not in the procedure table
 set result {}
 foreach c [info commands $pattern] {
 if {![info exists isproc($c)]} {
 lappend result $c
 }
 }
 return [lsort $result]
}

The Call Stack

The info level operation returns information about the Tcl evaluation stack, or call
stack. The global level is numbered zero. A procedure called from the global level is
at level one in the call stack. A procedure it calls is at level two, and so on. The info
level command returns the current level number of the stack if no level number is
specified.

If a positive level number is specified (e.g., info level 3), then the command
returns the procedure name and argument values at that level in the call stack. If a
negative level is specified, then it is relative to the current call stack. Relative level
-1 is the level of the current procedure's caller, and relative level 0 is the current
procedure. The following example prints the call stack. The Call_trace procedure
avoids printing information about itself by starting at one less than the current call
stack level:

Example 13-5 Getting a trace of the Tcl call stack

proc Call_Trace {{file stdout}} {
 puts $file "Tcl Call Trace"
 for {set x [expr [info level]-1]} {$x > 0} {incr x -1} {
 puts $file "$x: [info level $x]"
 }
}

Command Evaluation

If you want to know how many Tcl commands are executed, use the info cmdcount
command. This counts all commands, not just top-level commands. The counter is
never reset, so you need to sample it before and after a test run if you want to
know how many commands are executed during a test.

Command tracing provides detailed information about the execution of commands.
It is described along with variable tracing on page 193.

The info complete operation figures out whether a string is a complete Tcl
command. This is useful for command interpreters that need to wait until the user
has typed in a complete Tcl command before passing it to eval. Example 13-6
defines Command_Process that gets a line of input and builds up a command. When
the command is complete, the command is executed at the global scope.
Command_Process takes two callbacks as arguments. The inCmd is evaluated to get
the line of input, and the outCmd is evaluated to display the results. Chapter 10
describes callbacks why the curly braces are used with eval as they are in this
example:

Example 13-6 A procedure to read and evaluate commands

proc Command_Process {inCmd outCmd} {
 global command
 append command(line) [eval $inCmd]
 if {[info complete $command(line)]} {
 set code [catch {uplevel #0 $command(line)} result]
 eval $outCmd {$result $code}
 set command(line) {}
 }
}
proc Command_Read {{in stdin}} {
 if {[eof $in]} {
 if {$in != "stdin"} {
 close $in
 }
 return {}
 }
 return [gets $in]
}
proc Command_Display {file result code} {
 puts stdout $result
}
while {![eof stdin]} {
 Command_Process {Command_Read stdin} \
 {Command_Display stdout}
}

Scripts and the Library

The name of the current script file is returned with the info script command. For
example, if you use the source command to read commands from a file, then info
script returns the name of that file if it is called during execution of the commands
in that script. This is true even if the info script command is called from a
procedure that is not defined in the script.

Use info script to find related files.

I often use info script to source or process files stored in the same directory as
the script that is running. A few examples are shown in Example 13-7.

Example 13-7 Using info script to find related files

Get the directory containing the current script.
set dir [file dirname [info script]]

Source a file in the same directory
source [file join $dir helper.tcl]

Add an adjacent script library directory to auto_path
The use of ../lib with file join is cross-platform safe.
lappend auto_path [file join $dir ../lib]

The pathname of the Tcl library is stored in the tcl_library variable, and it is also
returned by the info library command. While you could put scripts into this
directory, it might be better to have a separate directory and use the script library
facility described in Chapter 12. This makes it easier to deal with new releases of Tcl
and to package up your code if you want other sites to use it.

Version Numbers

Each Tcl release has a version number such as 7.4 or 8.0. This number is returned
by the info tclversion command. If you want your script to run on a variety of Tcl
releases, you may need to test the version number and take different actions in the
case of incompatibilities between releases.

The Tcl release cycle starts with one or two alpha and beta releases before the final
release, and there may even be a patch release after that. The info patchlevel
command returns a qualified version number, like 8.0b1 for the first beta release of
8.0. We switched from using "p" (e.g., 8.0p2) to a three-level scheme (e.g., 8.0.3)
for patch releases. The patch level is zero for the final release (e.g., 8.2.0). In
general, you should be prepared for feature changes during the beta cycle, but

there should only be bug fixes in the patch releases. Another rule of thumb is that
the Tcl script interface remains quite compatible between releases; feature additions
are upward compatible.

Execution Environment

The file name of the program being executed is returned with info
nameofexecutable. This is more precise than the name in the argv0 variable, which
could be a relative name or a name found in a command directory on your
command search path. It is still possible for info nameofexecutable to return a
relative pathname if the user runs your program as ./foo, for example. The
following construct always returns the absolute pathname of the current program. If
info nameofexecutable returns an absolute pathname, then the value of the
current directory is ignored. The pwd command is described on page 122:

file join [pwd] [info nameofexecutable]

A few operations support dynamic loading of shared libraries, which are described in
Chapter 47. The info sharedlibextension returns the file name suffix of dynamic
link libraries. The info loaded command returns a list of libraries that have been
loaded into an interpreter. Multiple interpreters are described in Chapter 19.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Cross-Platform Support

Tcl is designed so that you can write scripts that run unchanged on UNIX,
Macintosh, and Windows platforms. In practice, you may need a small amount of
code that is specific to a particular platform. You can find out information about the
platform via the tcl_platform variable. This is an array with these elements
defined:

tcl_platform(platform) is one of unix, macintosh, or windows.

tcl_platform(os) identifies the operating system. Examples include MacOS,
Solaris, Linux, Win32s (Windows 3.1 with the Win32 subsystem), Windows
95, Windows NT, and SunOS.

tcl_platform(osVersion) gives the version number of the operating system.

tcl_platform(machine) identifies the hardware. Examples include ppc (Power
PC), 68k (68000 family), sparc, intel, mips, and alpha.

tcl_platform(byteOrder) identifies the byte order of this machine and is one
of littleEndian or bigEndian.

tcl_platform(wordSize) identifies the size of the native machine word in
bytes. This was introduced in Tcl 8.4.

tcl_platform(isWrapped) indicates that the application has been wrapped up
into a single executable with TclPro Wrapper. This is not defined in normal
circumstances.

tcl_platform(user) gives the login name of the current user.

tcl_platform(debug) indicates that Tcl was compiled with debugging
symbols.

tcl_platform(threaded) indicates that Tcl was compiled with thread support
enabled.

On some platforms a hostname is defined. If available, it is returned with the info
hostname command. This command may return an empty string.

One of the most significant areas affected by cross-platform portability is the file
system and the way files are named. This topic is discussed on page 110.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Tracing Variables and Commands

The trace command registers a command to be called whenever a variable is
accessed, modified, or unset. Tcl 8.4 introduced an updated trace command which
includes support for command tracing. The original (and still supported) form of the
command applies only to variable traces:

trace variable name ops command
trace vdelete name ops command
trace vinfo name

The name is a Tcl variable name, which can be a simple variable, an array, or an
array element. If a whole array is traced, the trace is invoked when any element is
used according to ops. The ops argument is one or more of the letters r, for read
traces, w, for write traces, u, for unset traces, and a for array traces. The command is
executed when one of these events occurs. It is invoked as:

command name1 name2 op

The name1 argument is the variable or array name. The name2 argument is the name
of the array index, or null if the trace is on a simple variable. If there is an unset
trace on an entire array and the array is unset, name2 is also null. The value of the
variable is not passed to the procedure. The traced variable is one level up the Tcl
call stack. The upvar, uplevel, or global commands need to be used to make the
variable visible in the scope of command. These commands are described in more
detail in Chapter 7.

A read trace is invoked before the value of the variable is returned, so if it changes
the variable itself, the new value is returned. A write trace is called after the variable
is modified. The unset trace is called after the variable is unset. The array trace,
which was added in Tcl 8.4, is called before the array command (e.g., array
names) is used on the variable. A variable trace is automatically deleted when the
variable is unset.

Command Tracing

The new form of trace supports both variable and command tracing:

trace add type name ops command
trace remove type name ops command
trace info type name

The type is one of command, execution or variable. For command, ops is a list and
may contain rename, to trace the renaming of a Tcl command, or delete, to trace
the deletion of a command. Command tracing cannot be used to prevent the actual
deletion of a command, it just receives the notification. No command traces are
triggered when an interpreter is deleted. The command is invoked as:

command oldName newName op

For execution, the ops may be any of enter, leave, enterstep, and leavestep.
enter invokes command immediately before the command name is executed, and
leave will invoke command immediately following each execution. enterstep and
leavestep are similar but they operate on the Tcl procedure name, invoking command
for each Tcl command inside the procedure. In order to do this, they prevent the
bytecode compilation of that procedure. This allows you to create a simple debugger
in pure Tcl. The enter and enterstep operations invoke command as:

command command-string op

The leave and leavestep operations invoke command as:

command command-string code result op

The command-string is the current command being executed, code is the result
code of the execution and result is the result string. Example 6-16 on page 84
illustrates the different result codes.

For variable tracing, the ops may be one or more of read, write, unset, or array.
This is an alternate way to set up the variable traces described earlier.

Read-Only Variables

Example 13-8 uses traces to implement a read-only variable. A variable is modified
before the trace procedure is called, so the ReadOnly variable is needed to preserve
the original value. When a variable is unset, the traces are automatically removed,
so the unset trace action reestablishes the trace explicitly. Note that the upvar alias
(e.g., var) cannot be used to set up the trace. Instead, uplevel is used to create
the trace in the original context of the variable. In general, essentially all traces are
on global or namespace variables.

Example 13-8 Tracing variables

proc ReadOnlyVar {varName} {
 upvar 1 $varName var
 global ReadOnly
 set ReadOnly($varName) $var
 uplevel 1 [list trace variable $varName wu ReadOnlyTrace]
}
proc ReadOnlyTrace { varName index op } {
 global ReadOnly
 upvar 1 $varName var
 switch $op {
 w {
 set var $ReadOnly($varName)
 }
 u {

 set var $ReadOnly($varName)
 # Re-establish the trace using the true name
 uplevel 1 [list ReadOnlyVar $varName]
 }
 }
}

This example merely overrides the new value with the saved value. Another
alternative is to raise an error with the error command. This will cause the
command that modified the variable to return the error. Another common use of
trace is to update a user interface widget in response to a variable change. Several
of the Tk widgets have this feature built into them.

If more than one trace is set on a variable, then they are invoked in reverse order;
the most recent trace is executed first. If there is a trace on an array and on an
array element, then the trace on the array is invoked first.

Creating an Array with Traces

Example 13-9 uses an array trace to dynamically create array elements:

Example 13-9 Creating array elements with array traces

make sure variable is an array
set dynamic() {}
trace variable dynamic r FixupDynamic
proc FixupDynamic {name index op} {
 upvar 1 $name dynArray
 if {![info exists dynArray($index)]} {
 set dynArray($index) 0
 }
}

Information about traces on a variable is returned with the vinfo option:

trace vinfo dynamic
=> {r FixupDynamic}

A trace is deleted with the vdelete option, which has the same form as the
variable option. The trace in the previous example can be removed with the
following command:

trace vdelete dynamic r FixupDynamic

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Interactive Command History

Table 13-4. The history command

history Short for history info with no count.

history add
command ?exec?

Adds the command to the history list. If exec is specified,
then execute the command.

history change new
?event?

Changes the command specified by event to new in the
command history.

history event ?
event?

Returns the command specified by event.

history info ?
count?

Returns a formatted history list of the last count commands,
or of all commands.

history keep count Limits the history to the last count commands.

history nextid Returns the number of the next event.

history redo ?
event?

Repeats the specified command.

The Tcl shell programs keep a log of the commands that you type by using a history
facility. The log is controlled and accessed via the history command. The history
facility uses the term event to mean an entry in its history log. The events are just
commands, and they have an event ID that is their index in the log. You can also
specify an event with a negative index that counts backwards from the end of the
log. Event -1 is the previous event. Table 13-4 summarizes the Tcl history
command. In the table, event defaults to -1.

In practice you will want to take advantage of the ability to abbreviate the history
options and even the name of the history command itself. For the command, you
need to type a unique prefix, and this depends on what other commands are
already defined. For the options, there are unique one-letter abbreviations for all of
them. For example, you could reuse the last word of the previous command with

[history w $]. This works because a $ that is not followed by alphanumerics or an
open brace is treated as a literal $.

Several of the history operations update the history list. They remove the actual
history command and replace it with the command that resulted from the history
operation. The event and redo operations all behave in this manner. This makes
perfect sense because you would rather have the actual command in the history,
instead of the history command used to retrieve the command.

History Syntax

Some extra syntax is supported when running interactively to make the history
facility more convenient to use. Table 13-5 shows the special history syntax
supported by tclsh and wish.

Table 13-5. Special history syntax

!! Repeats the previous command.

!n Repeats command number n.If n is negative it counts backward from the
current command. The previous command is event -1.

!prefix Repeats the last command that begins with prefix.

!pattern Repeats the last command that matches pattern.

^old^new Globally replaces old with new in the last command.

The next example shows how some of the history operations work:

Example 13-10 Interactive history usage

% set a 5
5
% set a [expr $a+7]
12
% history
 1 set a 5
 2 set a [expr $a+7]
 3 history

% !2
19
% !!
26
% ^7^13
39
% !h
 1 set a 5
 2 set a [expr $a+7]
 3 history
 4 set a [expr $a+7]
 5 set a [expr $a+7]
 6 set a [expr $a+13]
 7 history

A Comparison to C Shell History Syntax

The history syntax shown in the previous example is simpler than the history syntax
provided by the C shell. Not all of the history operations are supported with special
syntax. The substitutions (using ^old^new) are performed globally on the previous
command. This is different from the quick-history of the C shell. Instead, it is like
the !:gs/old/new/ history command. So, for example, if the example had included
^a^b in an attempt to set b to 39, an error would have occurred because the
command would have used b before it was defined:

set b [expr $b+7]

If you want to improve the history syntax, you will need to modify the unknown
command, which is where it is implemented. This command is discussed in more
detail in Chapter 12. Here is the code from the unknown command that implements
the extra history syntax. The main limitation in comparison with the C shell history
syntax is that the ! substitutions are performed only when ! is at the beginning of
the command:

Example 13-11 Implementing special history syntax

Excerpts from the standard unknown command
uplevel is used to run the command in the right context
if {$name == "!!"} {
 set newcmd [history event]
} elseif {[regexp {^!(.+)$} $name dummy event]} {
 set newcmd [history event $event]
} elseif {[regexp {^\^([^^]*)\^([^^]*)\^?$} $name x old new]} {
 set newcmd [history event -1]
 catch {regsub -all -- $old $newcmd $new newcmd}
}
if {[info exists newcmd]} {
 history change $newcmd 0

 return [uplevel $newcmd]
}

Debugging

The rapid turnaround with Tcl coding means that it is often sufficient to add a few
puts statements to your script to gain some insight about its behavior. This solution
doesn't scale too well, however. A slight improvement is to add a Debug procedure
that can have its output controlled better. You can log the information to a file, or
turn it off completely. In a Tk application, it is simple to create a text widget to hold
the contents of the log so that you can view it from the application. Here is a simple
Debug procedure. To enable it you need to set the debug(enable) variable. To have
its output go to your terminal, set debug(file) to stderr.

Example 13-12 A Debug procedure

proc Debug { args } {
 global debug
 if {![info exists debug(enabled)]} {
 # Default is to do nothing
 return
 }
 puts $debug(file) [join $args " "]
}
proc DebugOn {{file {}}} {
 global debug
 set debug(enabled) 1
 if {[string length $file] == 0} {
 set debug(file) Stderr
 } else {
 if [catch {open $file w} fileID] {
 puts stderr "Cannot open $file: $fileID"
 set debug(file) stderr
 } else {
 puts stderr "Debug info to $file"
 set debug(file) $fileID
 }
 }
}
proc DebugOff {} {
 global debug
 if {[info exists debug(enabled)]} {
 unset debug(enabled)
 flush $debug(file)
 if {$debug(file) != "stderr" &&
 $debug(file) != "stdout"} {
 close $debug(file)
 unset debug(file)
 }
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Tcl Dev Kit

Tcl Dev Kit is a commercial development environment for Tcl based on the original
TclPro created by Scriptics. TclPro was released to the open-source community in
November 2001. ActiveState has enhanced Tcl Dev Kit with new tools and more
features. The development environment includes ActiveTcl[*], which is an extended
Tcl platform that includes [incr Tcl], Expect, and TclX. These extensions and Tcl/Tk
are distributed in source and binary form for Windows and a variety of UNIX
platforms. More information is available at this URL:

[*] ActiveTcl is a trademark of ActiveState Corporation.

http://www.activestate.com/Tcl

The current version of the Tcl Dev Kit contains these tools:

Debugger with Coverage

The Debugger provides a nice graphical user interface with all the features you
expect from a traditional debugger. You can set breakpoints, single step, examine
variables, and look at the call stack. It understands a subtle issue that can arise
from using the update command: nested call stacks. It is possible to launch a new
Tcl script as a side effect of the update command, which pushes the current state
onto the execution stack. This shows up clearly in the debugger stack trace. It
maintains project state, so it will remember breakpoint settings and other
preference items between runs. One of the most interesting features is that it can
debug remotely running applications. The debugger also has built-in code coverage
and hotspot profiling analysis. I use it regularly to debug Tcl code running inside the
Tcl Web Server.

Checker

The Checker is a static code checker. This is a real win for large program
development. It examines every line of your program looking for syntax errors and
dubious coding practices. It has detailed knowledge of Tcl, Tk, Expect, [incr Tcl], and
TclX commands and validates your use of them. It checks that you call Tcl
procedures with the correct number of arguments, and can cross-check large groups
of Tcl files. It knows about changes between Tcl versions, and it can warn you about
old code that needs to be updated.

Compiler

http://www.activestate.com/Tcl

The Compiler is really just a reader and writer for the byte codes that the Tcl byte-
code compiler generates internally. It lets you precompile scripts and save the
results, and then load the byte-code later instead of raw source. This provides a
great way to hide your source code, if that is important to you. It turns out to save
less time than you might think, however. By the time it reads the file from disk,
decodes it, and builds the necessary Tcl data structures, it is not much faster than
reading a source file and compiling it on the fly.

TclApp

TclApp assembles a collection of Tcl scripts, data files, and a Tcl/Tk interpreter into
Starkits and Starpacks, which are described in Chapter 22. TclApp provides a more
friendly user interface than the sdx command line tool described in that Chapter.
The Tcl Dev Kit comes with pre-built Starkit runtimes that include Metakit, Expect,
[incr Tcl], and TclX.

Tcl Service Manager

The Tcl Service Manager helps you turn your Tcl application into a service for
Windows NT/2000/XP. Services have to implement special OS interfaces that are not
supported by tclsh or wish. You can create services that use the DLLs and scripts
from an existing Tcl/Tk installation, or create stand alone services that have no
external dependencies.

Inspector

The Inspector is an improved version of the tkinspect application that lets you look
at the state of other Tk applications. It displays procedures, variables, and the Tk
widget hierarchy. You can issue commands to another application to change
variables or test out commands. This turns out to be a very useful way to debug Tk
applications. The original tkinspect was written by Sam Shen.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Other Tools

The Tcl community has built many interesting and useful tools to help your Tcl
development. Only two of them are mentioned below, but you can find many more
at the Tcl Resource Center:

http://www.tcl.tk/resource/

The tkcon Console

Tkcon is an enhanced Tk console application written purely in Tcl. It includes many
useful interactive control features, and may be embedded in other Tcl applications.
It was written by Jeff Hobbs and you can find it at:

http://tkcon.sourceforge.net/

Critcl

Critcl is a tool that lets you mix C code right into your Tcl scripts. When the cproc
command encounters its code for the first time, it automatically compiles it with gcc
and loads it into your application. This provides an easy way to recode small parts of
your application in C to get a performance boost. It's home page is:

http://www.equi4.com/critcl

The bgerror Command

When a Tcl script encounters an error during background processing, such as
handling file events or during the command associated with a button, it signals the
error by calling the bgerror procedure. A default implementation displays a dialog
and gives you an opportunity to view the Tcl call stack at the point of the error. You
can supply your own version of bgerror. For example, when my exmh mail
application gets an error it offers to send mail to me with a few words of explanation
from the user and a copy of the stack trace. I get interesting bug reports from all
over the world!

The bgerror command is called with one argument that is the error message. The
global variable errorInfo contains the stack trace information. There is an example
tkerror implementation in the on-line sources associated with this book.

The tkerror Command

http://www.tcl.tk/resource/default.htm
http://tkcon.sourceforge.net/default.htm
http://www.equi4.com/critcl

The bgerror command used to be called tkerror. When event processing shifted
from Tk into Tcl with Tcl 7.5 and Tk 4.1, the name tkerror was changed to
bgerror. Backwards compatibility is provided so that if tkerror is defined, then
tkerror is called instead of bgerror. I have run into problems with the
compatibility setup and have found it more reliable to update my applications to use
bgerror instead of tkerror. If you have an application that runs under either Tk
4.0 or Tk 4.1, you can simply define both:

proc bgerror [info args tkerror] [info body tkerror]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Performance Tuning

The time command measures the execution time of a Tcl command. It takes an
optional parameter that is a repetition count:

time {set a "Hello, World!"} 1000
=> 28 microseconds per iteration

If you need the result of the command being timed, use set to capture the result:

puts $log "command: [time {set result [command]}]"

An extensive benchmark suite that compares various Tcl versions is available at:

http://wiki.tcl.tk/Tcl%20Benchmarks

Time stamps in a Log

Another way to gain insight into the performance of your script is to generate log
records that contain time stamps. The clock seconds value is too coarse, but you
can couple it with the clock clicks value to get higher resolution measurements.
Use the code shown in Example 13-1 on page 185 to calibrate the clicks per second
on your system. Example 13-13 writes log records that contain the current time and
the number of clicks since the last record. There will be occasional glitches in the
clicks value when the system counter wraps around or is reset by the system clock,
but it will normally give pretty accurate results. The Log procedure adds overhead,
too, so you should take several measurements in a tight loop to see how long each
Log call takes:

Example 13-13 Time Stamps in log records

proc Log {args} {
 global log
 if [info exists log(file)] {
 set now [clock clicks]
 puts $log(file) [format "%s (%d)\t%s" \
 [clock format [clock seconds]] \
 [expr $now - $log(last)] \
 [join $args " "]]
 set log(last) $now
 }
}
proc Log_Open {file} {
 global log
 catch {close $log(file)}
 set log(file) [open $file w]
 set log(last) [clock clicks]

http://wiki.tcl.tk/Tcl%20Benchmarks

}
proc Log_Flush {} {
 global log
 catch {flush $log(file)}
}
proc Log_Close {} {
 global log
 catch {close $log(file)}
 catch {unset log(file)}
}

A more advanced profile command is part of the Extended Tcl (TclX) package. The
TclX profile command monitors the number of calls, the CPU time, and the elapsed
time spent in different procedures.

The Tcl Compiler

The built-in Tcl compiler improves performance in the following ways:

Tcl scripts are converted into an internal byte-code format that is efficient to
process. The byte codes are saved so that cost of compiling is paid only the
first time you execute a procedure or loop. After that, execution proceeds
much faster. Compilation is done as needed, so unused code is never
compiled. If you redefine a procedure, it is recompiled the next time it is
executed.

Variables and command arguments are kept in a native format as long as
possible and converted to strings only when necessary. There are several
native types, including integers, floating point numbers, Tcl lists, byte codes,
and arrays. There are C APIs for implementing new types. Tcl is still
dynamically typed, so a variable can contain different types during its lifetime.

Expressions and control structures are compiled into special byte codes, so
they are executed more efficiently. Because expr does its own round of
substitutions, the compiler generates better code if you group expressions with
braces. This means that expressions go through only one round of
substitutions. The compiler can generate efficient code because it does not
have to worry about strange code like:

set subexpr {$x+$y}
expr 5 * $subexpr

The previous expression is not fully defined until runtime, so it has to be parsed and
executed each time it is used. If the expression is grouped with braces, then the
compiler knows in advance what operations will be used and can generate byte
codes to implement the expression more efficiently.

The operation of the compiler is essentially transparent to scripts, but there are
some differences in lists and expressions. These are described in Chapter 54. With

lists, the good news is that large lists are more efficient. The problem is that lists
are parsed more aggressively, so syntax errors at the end of a list will be detected
even if you access only the beginning of the list. There were also some bugs in the
code generator in the widely used Tcl 8.0p2 release. Most of these were corner
cases like unbraced expressions in if and while commands. Most of these bugs
were fixed in the 8.0.3 patch release, and the rest were cleaned up in Tcl 8.1 with
the addition of a new internal parsing package.

The internal compiler continues to improve over time, with 8.4 extending the core
instruction table to significantly improve performance over previous versions.

Chapter 14. Namespaces
Namespaces group procedures and variables into separate name spaces.
Namespaces were added in Tcl 8.0. This chapter describes the namespace and
variable commands.

Namespaces provide new scopes for procedures and global variables. Originally Tcl
had one global scope for shared variables, local scopes within procedures, and one
global namespace for procedures. The single global scope for procedures and global
variables can become unmanageable as your Tcl application grows. I describe some
simple naming conventions on page 181 that I have used successfully in large
programs. The namespace facility is a more elegant solution that partitions the
global scope for procedure names and global variables.

Namespaces help structure large Tcl applications, but they add complexity. In
particular, command callbacks may have to be handled specially so that they
execute in the proper namespace. You choose whether or not you need the extra
structure and learning curve of namespaces. If your applications are small, then you
can ignore the namespace facility. If you are developing library packages that others
will use, you should pick a namespace for your procedures and data so that they will
not conflict with the applications in which they are used.

Using Namespaces

Namespaces add new syntax to procedure and variable names. A double colon, ::,
separates the namespace name from the variable or procedure name. You use this
syntax to reference procedures and variables in a different namespace. The
namespace import command lets you name things in other namespaces without the
extra syntax. Namespaces can be nested, so you can create a hierarchy of scopes.
These concepts are explained in more detail in the rest of this chapter.

One feature not provided by namespaces is any sort of protection, or a way to
enforce access controls between different namespaces. This sort of thing is
awkward, if not impossible, to provide in a dynamic language like Tcl. For example,
you are always free to use namespace eval to reach into any other namespace.
Instead of providing strict controls, namespaces are meant to provide structure that
enables large scale programming.

The package facility described in Chapter 12 was designed before namespaces. This
chapter illustrates a style that ties the two facilities together, but they are not
strictly related. It is possible to create a package named A that implements a
namespace B, or to use a package without namespaces, or a namespace without a
package. However, it makes sense to use the facilities together.

Example 14-1 repeats the random number generator from Example 7-4 on page 91
using namespaces. The standard naming style conventions for namespaces use
lowercase:

Example 14-1 Random number generator using namespaces

package provide random 1.0

namespace eval random {
 # Create a variable inside the namespace
 variable seed [clock seconds]

 # Make the procedures visible to namespace import
 namespace export init random range

 # Create procedures inside the namespace
 proc init { value } {
 variable seed
 set seed $value
 }
 proc random {} {
 variable seed
 set seed [expr {($seed*9301 + 49297) % 233280}]
 return [expr {$seed/double(233280)}]
 }
 proc range { range } {
 expr {int([random]*$range)}

 }
}

Example 14-1 defines three procedures and a variable inside the namespace
random. From inside the namespace, you can use these procedures and variables
directly. From outside the namespace, you use the :: syntax for namespace
qualifiers. For example, the state variable is just seed within the namespace, but
you use random::seed to refer to the variable from outside the namespace. Using
the procedures looks like this:

random::random
=> 0.3993355624142661
random::range 10
=> 4

If you use a package a lot you can import its procedures. A namespace declares
what procedures can be imported with the namespace export command. Once you
import a procedure, you can use it without a qualified name:

namespace import random::random
random
=> 0.54342849794238679

Importing and exporting are described in more detail later.

Namespace Variables

The variable command defines a variable inside a namespace. It is like the set
command because it can define a value for the variable. You can declare several
namespace variables with one variable command. The general form is:

variable name ?value? ?name value? ...

If you have an array, do not assign a value in the variable command. Instead, use
regular Tcl commands after you declare the variable. You can put any commands
inside a namespace block:

namespace eval foo {
 variable arr
 array set arr {name value name2 value2}
}

A namespace variable is similar to a global variable because it is outside the scope
of any procedures. Procedures use the variable command or qualified names to
reference namespace variables. For example, the random procedure has a variable
command that brings the namespace variable into the current scope:

variable seed

If a procedure has a variable command that names a new variable, it is created in
the namespace when it is first set.

Watch out for conflicts with global variables.

You need to be careful when you use variables inside a namespace block. If you
declare them with a variable command, they are clearly namespace variables.
However, if you forget to declare them, then they will either become namespace
variables, or latch onto an existing global variable by the same name. Consider the
following code:

namespace eval foo {
 variable table
 for {set i 1} {$i <= 256} {incr i} {
 set table($i) [format %c $i]
 }
}

If there is already a global variable i, then the for loop will use that variable.
Otherwise, it will create the foo::i variable. I found this behavior surprising, but it

does make it easier to access global variables like env without first declaring them
with global inside the namespace block.

Qualified Names

A fully qualified name begins with ::, which is the name for the global namespace.
A fully qualified name unambiguously names a procedure or a variable. The fully
qualified name works anywhere. If you use a fully qualified variable name, it is not
necessary to use a global command. For example, suppose namespace foo has a
namespace variable x, and there is also a global variable x. The global variable x
can be named with this:

::x

The :: syntax does not affect variable substitutions. You can get the value of the
global variable x with $::x. Name the namespace variable x with this:

::foo::x

A partially qualified name does not have a leading ::. In this case the name is
resolved from the current namespace. For example, the following also names the
namespace variable x:

foo::x

You can use qualified names with global. Once you do this, you can access the
variable with its short name:

global ::foo::x
set x 5

Declaring variables is more efficient than using qualified names.

The Tcl byte-code compiler generates faster code when you declare namespace and
global variables. Each procedure context has its own table of variables. The table
can be accessed by a direct slot index, or by a hash table lookup of the variable
name. The hash table lookup is slower than the direct slot access. When you use the
variable or global command, then the compiler can use a direct slot access. If you
use qualified names, the compiler uses the more general hash table lookup.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Command Lookup

A command is looked up first in the current name space. If it is not found there,
then it is looked up in the global namespace. This means that you can use all the
built-in Tcl commands inside a namespace with no special effort.

You can play games by redefining commands within a namespace. For example, a
namespace could define a procedure named set. To get the built-in set you could
use ::set, while set referred to the set defined inside namespace. Obviously you
need to be quite careful when you do this.

You can use qualified names when defining procedures. This eliminates the need to
put the proc commands inside a namespace block. However, you still need to use
namespace eval to create the namespace before you can create procedures inside
it. Example 14-2 repeats the random number generator using qualified names.
random::init does not need a variable command because it uses a qualified
name for seed:

Example 14-2 Random number generator using qualified names

namespace eval random {
 # Create a variable inside the namespace
 variable seed [clock seconds]
}
Create procedures inside the namespace
proc random::init { seed } {
 set ::random::seed $seed
}
proc random::random {} {
 variable seed
 set seed [expr {($seed*9301 + 49297) % 233280}]
 return [expr {$seed/double(233280)}]
}
proc random::range { range } {
 expr {int([random]*$range)}
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Nested Namespaces

Namespaces can be nested inside other namespaces. Example 14-3 shows three
namespaces that have their own specific variable x. The fully qualified names for
these variables are ::foo::x, ::bar::x, and ::bar::foo::x.

Example 14-3 Nested namespaces

namespace eval foo {
 variable x 1 ;# ::foo::x
}
namespace eval bar {
 variable x 2 ;# ::bar::x
 namespace eval foo {
 variable x 3 ;# ::bar::foo::x
 }
 puts $foo::x ;# prints 3
}
puts $foo::x ;# prints 1

Partially qualified names can refer to two different objects.

In Example 14-3 the partially qualified name foo::x can reference one of two
variables depending on the current namespace. From the global scope the name
foo::x refers to the namespace variable x inside ::foo. From the ::bar
namespace, foo::x refers to the variable x inside ::bar::foo.

If you want to unambiguously name a variable in the current namespace, you have
two choices. The simplest is to bring the variable into scope with the variable
command:

variable x
set x something

If you need to give out the name of the variable, then you have two choices. The
most general solution is to use the namespace current command to create a fully
qualified name:

trace variable [namespace current]::x r \
 [namespace current]::traceproc

However, it is simpler to just explicitly write out the namespace as in:

trace variable ::myname::x r ::myname::traceproc

The drawback of this approach is that it litters your code with references to
::myname::, which might be subject to change during program development.

Importing and Exporting Procedures

Commands can be imported from namespaces to make it easier to name them. An
imported command can be used without its namespace qualifier. Each namespace
specifies exported procedures that can be the target of an import. Variables cannot
be imported. Note that importing is only a convenience; you can always use
qualified names to access any procedure. As a matter of style, I avoid importing
names, so I know what package a command belongs to when I'm reading code.

The namespace export command goes inside the namespace block, and it specifies
what procedures a namespace exports. The specification is a list of string match
patterns that are compared against the set of commands defined in a namespace.
The export list can be defined before the procedures being exported. You can do
more than one namespace export to add more procedures, or patterns, to the
export list for a namespace. Use the -clear flag if you need to reset the export list.

namespace export ?-clear? ?pat? ?pat? ...

Only exported names appear in package indexes.

When you create the pkgIndex.tcl package index file with pkg_mkIndex, which is
described Chapter 12, you should be aware that only exported names appear in the
index. Because of this, I often resort to exporting everything. I never plan to import
the names, but I do rely on automatic code loading based on the index files. This
exports everything:

namespace export *

The namespace import command makes commands in another namespace visible in
the current namespace. An import can cause conflicts with commands in the
current namespace. The namespace import command raises an error if there is a
conflict. You can override this with the -force option. The general form of the
command is:

namespace import ?-force? namespace::pat ?namespace::pat?...

The pat is a string match type pattern that is matched against exported
commands defined in namespace. You cannot use patterns to match namespace. The
namespace can be a fully or partially qualified name of a namespace.

If you are lazy, you can import all procedures from a namespace:

namespace import random::*

The drawback of this approach is that random exports an init procedure, which
might conflict with another module you import in the same way. It is safer to import
just the procedures you plan on using:

namespace import random::random random::range

A namespace import takes a snapshot.

If the set of procedures in a namespace changes, or if its export list changes, then
this has no effect on any imports that have already occurred from that namespace.

Callbacks and Namespaces

Commands like after, bind, and button take arguments that are Tcl scripts that
are evaluated later. These callback commands execute later in the global scope by
default. If you want a callback to be evaluated in a particular namespace, you can
construct the callback with namespace code. This command does not execute the
callback. Instead, it generates a Tcl command that will execute in the current
namespace scope when it is evaluated later. For example, suppose ::current is the
current namespace. The namespace code command determines the current scope
and adds that to the namespace inscope command it generates:

set callback [namespace code {set x 1}]
=> namespace inscope ::current {set x 1}
sometime later ...
eval $callback

When you evaluate $callback later, it executes in the ::current namespace
because of the namespace inscope command. In particular, if there is a namespace
variable ::current::x, then that variable is modified. An alternative to using
namespace code is to name the variable with a qualified name:

set callback {set ::current::x 1}

The drawback of this approach is that it makes it tedious to move the code to a
different namespace.

If you need substitutions to occur on the command when you define it, use list to
construct it. Using list is discussed in more detail on pages 131 and 455. Example
14-4 wraps up the list and the namespace inscope into the code procedure, which
is handy because you almost always want to use list when constructing callbacks.
The uplevel in code ensures that the correct namespace is captured; you can use
code anywhere:

Example 14-4 The code procedure to wrap callbacks

proc code {args} {
 set namespace [uplevel {namespace current}]
 return [list namespace inscope $namespace $args]
}
namespace eval foo {
 variable y "y value" x {}
 set callback [code set x $y]
 => namespace inscope ::foo {set x {y value}}
}

The example defines a callback that will set ::foo::x to y value. If you want to set
x to the value that y has at the time of the callback, then you do not want to do any
substitutions. In that case, the original namespace code is what you want:

set callback [namespace code {set x $y}]
=> namespace inscope ::foo {set x $y}

If the callback has additional arguments added by the caller, namespace inscope
correctly adds them. For example, the scrollbar protocol described on page 501
adds parameters to the callback that controls a scrollbar.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Introspection

The info commands operation returns all the commands that are currently visible. It
is described in more detail on page 190. You can limit the information returned with
a string match pattern. You can also include a namespace specifier in the pattern
to see what is visible in a namespace. Remember that global commands and
imported commands are visible, so info commands returns more than just what is
defined by the namespace. Example 14-5 uses namespace origin, which returns
the original name of imported commands, to sort out the commands that are really
defined in a namespace:

Example 14-5 Listing commands defined by a namespace

proc Namespace_List {{namespace {}}} {
 if {[string length $namespace] == 0} {
 # Determine the namespace of our caller
 set namespace [uplevel {namespace current}]
 }
 set result {}
 foreach cmd [info commands ${namespace}::*] {
 if {[namespace origin $cmd] == $cmd} {
 lappend result $cmd
 }
 }
 return [lsort $result]
}

The namespace Command

Table 14-1 summarizes the namespace operations:

Table 14-1. The namespace command

namespace current Returns the current namespace.

namespace children
?name? ?pat?

Returns names of nested namespaces. name defaults to
current namespace. pat is a string match pattern that
limits what is returned.

namespace code
script

Generates a namespace inscope command that will eval
script in the current namespace.

namespace delete
name ?name? ...

Deletes the variables and commands from the specified
namespaces.

namespace eval
name cmd ?args?
...

Concatenates args, if present, onto cmd and evaluates it in
name namespace.

namespace exists
name

Returns 1 if namespace name exists, 0 otherwise. (Tcl 8.4)

namespace export ?
-clear? ?pat? ?
pat? ...

Adds patterns to the export list for current namespace.
Returns export list if no patterns.

namespace forget
pat ?pat? ...

Undoes the import of names matching patterns.

namespace import ?
-force? pat ?pat?
...

Adds the names matching the patterns to the current
namespace.

namespace inscope
name cmd ?args?
...

Appends args, if present, onto cmd as list elements and
evaluates it in name namespace.

namespace origin
cmd

Returns the original name of cmd.

namespace parent ?
name?

Returns the parent namespace of name, or of the current
namespace.

namespace
qualifiers name

Returns the part of name up to the last :: in it.

namespace which ?
flag? name

Returns the fully qualified version of name. The flag is one of
-command, -variable, or -namespace.

namespace tail
name

Returns the last component of name.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Converting Existing Packages to use Namespaces

Suppose you have an existing set of Tcl procedures that you want to wrap in a
namespace. Obviously, you start by surrounding your existing code in a namespace
eval block. However, you need to consider three things: global variables, exported
procedures, and callbacks.

Global variables remain global until you change your code to use variable
instead of global. Some variables may make sense to leave at the global
scope. Remember that the variables that Tcl defines are global, including env,
tcl_platform, and the others listed in Table 2-2 on page 31. If you use the
upvar #0 trick described on page 92, you can adapt this to namespaces by
doing this instead:

upvar #0 [namespace current]::$instance state

Exporting procedures makes it more convenient for users of your package. It
is not strictly necessary because they can always use qualified names to
reference your procedures. An export list is a good hint about which
procedures are expected to be used by other packages. Remember that the
export list determines what procedures are visible in the index created by
pkg_mkIndex.

Callbacks execute at the global scope. If you use variable traces and variables
associated with Tk widgets, these are also treated as global variables. If you
want a callback to invoke a namespace procedure, or if you give out the name
of a namespace variable, then you must construct fully qualified variable and
procedure names. You can hardwire the current namespace:

button .foo -command ::myname::callback \
 -textvariable ::myname::textvar

or you can use namespace current:

button .foo -command [namespace current]::callback \
 -textvariable [namespace current]::textvar

[incr Tcl] Object System

The Tcl namespace facility does not provide classes and inheritance. It just provides
new scopes and a way to hide procedures and variables inside a scope. There are Tcl
C APIs that support hooks in variable name and command lookup for object systems
so that they can implement classes and inheritance. By exploiting these interfaces,
various object systems can be added to Tcl as shared libraries.

The Tcl namespace facility was proposed by Michael McLennan based on his
experiences with [incr Tcl], which is the most widely used object-oriented extension
for Tcl. [incr Tcl] provides classes, inheritance, and protected variables and
commands. If you are familiar with C++, [incr Tcl] should feel similar. A complete
treatment of [incr Tcl] is not made in this book. [incr Tcl] From The Ground Up
(Chad Smith, Osborn-McGraw Hill, 1999) is an excellent source of information. You
can find a version of [incr Tcl] on the CD-ROM. The [incr Tcl] home page is:

http://www.tcltk.com/itcl/

The [incr Tcl] sources are maintained on SourceForge:

http://incrtcl.sourceforge.net/

http://www.tcltk.com/itcl/default.htm
http://incrtcl.sourceforge.net/default.htm

xotcl Object System

Xotcl is a more recently developed object-oriented extension that blends object-
orientation and scripting in a way that preserves the benefits of both. It includes
features such as dynamic object aggregation, per-object mixins, filters, dynamic
component loading and more. The xotcl home page is:

http://www.xotcl.org/

http://www.xotcl.org/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Notes

The final section of this chapter touches on a variety of features of the namespace
facility.

Names for Widgets, Images, and Interpreters

There are a number of Tcl extensions that are not affected by the namespaces
described in this chapter, which apply only to commands and variable names. For
example, when you create a Tk widget, a Tcl command is also created that
corresponds to the Tk widget. This command is always created in the global
command namespace even when you create the Tk widget from inside a namespace
eval block. Other examples include Tcl interpreters, which are described in Chapter
19, and Tk images, which are described in Chapter 41.

The variable command at the global scope

It turns out that you can use variable like the global command if your procedures
are not inside a namespace. This is consistent because it means "this variable
belongs to the current namespace," which might be the global namespace.

Auto Loading and auto_import

The following sequence of commands can be used to import commands from the
foo package:

package require foo
namespace import foo::*

However, because of the default behavior of packages, there may not be anything
that matches foo::* after the package require. Instead, there are entries in the
auto_index array that will be used to load those procedures when you first use
them. The auto loading mechanism is described in Chapter 12. To account for this,
Tcl calls out to a hook procedure called auto_import. This default implementation of
this procedure searches auto_index and forcibly loads any pending procedures that
match the import pattern. Packages like [incr Tcl] exploit this hook to implement
more elaborate schemes. The auto_import hook was first introduced in Tcl 8.0.3.

Namespaces and uplevel

Namespaces affect the Tcl call frames just like procedures do. If you walk the call
stack with info level, the namespace frames are visible. This means that you can

get access to all variables with uplevel and upvar. Level #0 is still the absolute
global scope, outside any namespace or procedure. Try out Call_Trace from
Example 13-5 on page 190 on your code that uses namespaces to see the effect.

Naming Quirks

When you name a namespace, you are allowed to have extra colons at the end. You
can also have two or more colons as the separator between namespace name
components. These rules make it easier to assemble names by adding to the value
returned from namespace current. These all name the same namespace:

::foo::bar
::foo::bar::
::foo:::::::bar

The name of the global namespace can be either :: or the empty string. This
follows from the treatment of :: in namespace names.

When you name a variable or command, a trailing :: is significant. In the following
command a variable inside the ::foo::bar namespace is modified. The variable has
an empty string for its name!

set ::foo::bar:: 3
namespace eval ::foo::bar { set {} }
=> 3

If you want to embed a reference to a variable just before two colons, use a
backslash to turn off the variable name parsing before the colons:

set x xval
set y $x\::foo
=> xval::foo

Miscellaneous

You can remove names you have imported:

namespace forget random::init

You can rename imported procedures to modify their names:

rename range Range

You can even move a procedure into another namespace with rename:

rename random::init myspace::init

Chapter 15. Internationalization
This chapter describes features that support text processing for different character
sets such as ASCII and Japanese. Tcl can read and write data in various character
set encodings, but it processes data in a standard character set called Unicode. Tcl
has a message catalog that lets you generate different versions of an application for
different languages. Tcl commands described are: encoding and msgcat.

Different languages use different alphabets, or character sets. An encoding is a
standard way to represent a character set. Tcl hides most of the issues associated
with encodings and character sets, but you need to be aware of them when you
write applications that are used in different countries. You can also write an
application using a message catalog so that the strings you display to users can be
in the language of their choice. Using a message catalog is more work, but Tcl
makes it as easy as possible.

Most of the hard work in dealing with character set encodings is done "under the
covers" by the Tcl C library. The Tcl C library underwent substantial changes to
support international character sets. Instead of using 8-bit bytes to store characters,
Tcl uses a 16-bit character set called Unicode, which is large enough to encode the
alphabets of all languages. There is also plenty of room left over to represent special
characters like and .

In spite of all the changes to support Unicode, there are few changes visible to the
Tcl script writer. Scripts written for Tcl 8.0 and earlier continue to work fine with Tcl
8.1 and later versions. You only need to modify scripts if you want to take
advantage of the features added to support internationalization.

This chapter begins with a discussion of what a character set is and why different
codings are used to represent them. It concludes with a discussion of message
catalogs.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Character Sets and Encodings

If you are from the United States, you've probably never thought twice about character sets. Most
computers use the ASCII encoding, which has 127 characters. That is enough for the 26 letters in the
English alphabet, upper case and lower case, plus numbers, various punctuation characters, and control
characters like tab and newline. ASCII fits easily in 8-bit characters, which can represent 256 different
values.

European alphabets include accented characters like è, ñ, and ä. The ISO Latin-1 encoding is a superset of
ASCII that encodes 256 characters. It shares the ASCII encoding in values 0 through 127 and uses the
"high half" of the encoding space to represent accented characters as well as special characters like ©.
There are several ISO Latin encodings to handle different alphabets, and these share the trick of encoding
ASCII in the lower half and other characters in the high half. You might see these encodings referred to as
iso8859-1, iso8859-2, and so on.

Asian character sets are simply too large to fit into 8-bit encodings. There are a number of 16-bit
encodings for these languages. If you work with these, you are probably familiar with the "Big 5" or
ShiftJIS encodings.

Unicode is an international standard character set encoding. There are both 16-bit Unicode and 32-bit
Unicode standards, but Tcl and just about everyone else use the 16-bit standard. Unicode has the
important property that it can encode all the important character sets without conflicts and overlap. By
converting all characters to the Unicode encoding, Tcl can work with different character sets
simultaneously. As of 8.4, Tcl is compliant with Unicode v3.1. For more information on Unicode, see
http://www.unicode.org/

The System Encoding

Computer systems are set up with a standard system encoding for their files. If you always work with this
encoding, then you can ignore character set issues. Tcl will read files and automatically convert them from
the system encoding to Unicode. When Tcl writes files, it automatically converts from Unicode to the
system encoding. If you are curious, you can find out the system encoding with:

encoding system
=> cp1252

The "cp" is short for "code page," the term that Windows uses to refer to different encodings. On my Unix
system, the system encoding is iso8859-1.

Do not change the system encoding.

You could also change the system encoding with:

encoding system encoding

But this is not a good idea. It immediately changes how Tcl passes strings to your operating system, and it
is likely to leave Tcl in an unusable state. Tcl automatically determines the system encoding for you. Don't
bother trying to set it yourself.

The encoding names command lists all the encodings that Tcl knows about. The encodings are kept in files
stored in the encoding directory under the Tcl script library. They are loaded automatically the first time
you use an encoding.

[View full width]

http://www.unicode.org/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/&r=noccc&xmlid=0-13-038560-3/ch15lev1sec1#PLID2

lsort [encoding names]
=> ascii big5 cp1250 cp1251 cp1252 cp1253 cp1254 cp1255 cp1256 cp1257 cp1258 cp437 cp737
 cp775 cp850 cp852 cp855 cp857 cp860 cp861 cp862 cp863 cp864 cp865 cp866 cp869 cp874 cp932
 cp936 cp949 cp950 dingbats euc-cn euc-jp euc-kr gb12345 gb1988 gb2312 identity iso2022
 iso2022-jp iso2022-kr iso8859-1 iso8859-2 iso8859-3 iso8859-4 iso8859-5 iso8859-6
 iso8859-7 iso8859-8 iso8859-9 jis0201 jis0208 jis0212 ksc5601 macCentEuro macCroatian
 macCyrillic macDingbats macGreek macIceland macJapan macRoman macRomania macThai
 macTurkish macUkraine shiftjis symbol unicode utf-8

The encoding names reflect their origin. The "cp" refers to the "code pages" that Windows uses to manage
encodings. The "mac" encodings come from the Macintosh. The "iso," "euc," "gb," and "jis" encodings
come from various standards bodies.

File Encodings and fconfigure

The conversion to Unicode happens automatically in the Tcl C library. When Tcl reads and writes files, it
translates from the current system encoding into Unicode. If you have files in different encodings, you can
use the fconfigure command to set the encoding. For example, to read a file in the standard Russian
encoding (iso8859-7):

set in [open README.russian]
fconfigure $in -encoding iso8859-7

Example 15-1 shows a simple utility I use in exmh,[*] a MIME-aware mail reader. MIME has its own
convention for specifying the character set encoding of a mail message that differs slightly from Tcl's
naming convention. The procedure launders the name and then sets the encoding. Exmh was already
aware of MIME character sets, so it could choose fonts for message display. Adding this procedure and
adding two calls to it was all I had to do to adapt exmh to Unicode.

[*] The exmh home page is http://www.beedub.com/exmh/. It is a wonderful tool that helps me manage tons of email. It is written in Tcl/Tk, of course, and relies on the
MH mail system, which limits it to UNIX.

Example 15-1 MIME character sets and file encodings

proc Mime_SetEncoding {file charset} {
 regsub -all {(iso|jis|us)-} $charset {\1} charset
 set charset [string tolower charset]
 regsub usascii $charset ascii charset
 fconfigure $file -encoding $charset
}

Scripts in Different Encodings

If you have scripts that are not in the system encoding, then you cannot use source to load them.
However, it is easy to read the files yourself under the proper encoding and use eval to process them.
Example 15-2 adds a -encoding flag to the source command. This is likely to become a built-in feature in
future versions of Tcl so that commands like info script will work properly:

Example 15-2 Using scripts in nonstandard encodings

proc Source {args} {
 set file [lindex $args end]
 if {[llength $args] == 3 &&
 [string equal -encoding [lindex $args 0]]} {
 set encoding [lindex $args 1]
 set in [open $file]
 fconfigure $in -encoding $encoding
 set script [read $in]
 close $in

http://www.beedub.com/exmh/default.htm

 return [uplevel 1 $script]
 } elseif {[llength $args] == 1} {
 return [uplevel 1 [list source $file]]
 } else {
 return -code error \
 "Usage: Source ?-encoding encoding? file?"
 }
}

Unicode and UTF-8

UTF-8 is an encoding for Unicode. While Unicode represents all characters with 16 bits, the UTF-8 encoding
uses either 8, 16, or 24 bits to represent one Unicode character. This variable-width encoding is useful
because it uses 8 bits to represent ASCII characters. This means that a pure ASCII string, one with
character codes all less than 128, is also a UTF-8 string. Tcl uses UTF-8 internally to make the transition to
Unicode easier. It allows interoperability with Tcl extensions that have not been made Unicode-aware. They
can continue to pass ASCII strings to Tcl, and Tcl will interpret them correctly.

As a Tcl script writer, you can mostly ignore UTF-8 and just think of Tcl as being built on Unicode (i.e., full
16-bit character set support). If you write Tcl extensions in C or C++, however, the impact of UTF-8 and
Unicode is quite visible. This is explained in more detail in Chapter 47.

Tcl lets you read and write files in UTF-8 encoding or directly in Unicode. This is useful if you need to use
the same file on systems that have different system encodings. These files might be scripts, message
catalogs, or documentation. Instead of using a particular native format, you can use Unicode or UTF-8 and
read the files the same way on any of your systems. Of course, you will have to set the encoding properly
by using fconfigure as shown earlier.

The Binary Encoding

If you want to read a data file and suppress all character set transformations, use the binary encoding:

fconfigure $in -encoding binary

Under the binary encoding, Tcl reads in each 8-bit byte and stores it into the lower half of a 16-bit Unicode
character with the high half set to zero. During binary output, Tcl writes out the lower byte of each Unicode
character. You can see that reading in binary and then writing it out doesn't change any bits. Watch out if
you read something in one encoding and then write it out in binary. Any information in the high byte of the
Unicode character gets lost!

Tcl actually handles the binary encoding more efficiently than just described, but logically the previous
description is still accurate. As described in Chapter 47, Tcl can manage data in several forms, not just
strings. When you read a file in binary format, Tcl stores the data as a ByteArray that is simply 8 bits of
data in each byte. However, if you ask for this data as a string (e.g., with the puts command), Tcl
automatically converts from 8-bit bytes to 16-bit Unicode characters by setting the high byte to all zeros.

The binary command also manipulates data in ByteArray format. If you read a file with the binary
encoding and then use the binary command to process the data, Tcl will keep the data in an efficient form.

The string command also understands the ByteArray format, so you can do operations like string
length, string range, and string index on binary data without suffering the conversion cost from a
ByteArray to a UTF-8 string.

Conversions Between Encodings

The encoding command lets you convert strings between encodings. The encoding convertfrom
command converts data in some other encoding into a Unicode string. The encoding convertto command
converts a Unicode string into some other encoding. For example, the following two sequences of
commands are equivalent. They both read data from a file that is in Big5 encoding and convert it to
Unicode:

fconfigure $input -encoding gb12345
set unicode [read $input]

or

fconfigure $input -encoding binary
set unicode [encoding convertfrom gb12345 [read $input]]

In general, you can lose information when you go from Unicode to any other encoding, so you ought to be
aware of the limitations of the encodings you are using. In particular, the binary encoding may not
preserve your data if it starts out from an arbitrary Unicode string. Similarly, an encoding like iso8859-2
may simply not have a representation of a given Unicode character.

The encoding Command

Table 15-1 summarizes the encoding command:

Table 15-1. The encoding command

encoding convertfrom ?
encoding?data

Converts binary data from the specified encoding, which defaults to the
system encoding, into Unicode.

encoding convertto ?
encoding? string

Converts string from Unicode into data in the encoding format, which
defaults to the system encoding.

encoding names Returns the names of known encodings.

encoding system ?
encoding?

Queries or change the system encoding.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Message Catalogs

A message catalog is a list of messages that your application will display. The main
idea is that you can maintain several catalogs, one for each language you support.
Unfortunately, you have to be explicit about using message catalogs. Everywhere
you generate output or display strings in Tk widgets, you need to change your code
to go through a message catalog. Fortunately, Tcl uses a nice trick to make this
fairly easy and to keep your code readable. Instead of using keys like "message42"
to get messages out of the catalog, Tcl just uses the strings you would use by
default. For example, instead of this code:

puts "Hello, World!"

A version that uses message catalogs looks like this:

puts [msgcat::mc "Hello, World!"]

If you have not already loaded your message catalog, or if your catalog doesn't
contain a mapping for "Hello, World!", then msgcat::mc just returns its argument.
Actually, you can define just what happens in the case of unknown inputs by
defining your own msgcat::mcunknown procedure, but the default behavior is quite
good.

The message catalog is implemented in Tcl in the msgcat package. You need to use
package require to make it available to your scripts:

package require msgcat

In addition, all the procedures in the package begin with "mc," so you can use
namespace import to shorten their names further. I am not a big fan of namespace
import, but if you use message catalogs, you will be calling the msgcat::mc
function a lot, so it may be worthwhile to import it:

namespace import msgcat::mc
puts [mc "Hello, World!"]

Specifying a Locale

A locale identifies a language or language dialect to use in your output. A three-level
scheme is used in the locale identifier:

language_country_dialect

The language codes are defined by the ISO-3166 standard. For example, "en" is
English and "es" is Spanish. The country codes are defined by the ISO-639
standard. For example, US is for the United States and UK is for the United
Kingdom. The dialect is up to you. The country and dialect parts are optional.
Finally, the locale specifier is case insensitive. The following examples are all valid
locale specifiers:

es
en
en_US
en_us
en_UK
en_UK_Scottish
en_uk_scottish

Users can set their initial locale with the LANG and LOCALE environment variables. If
there is no locale information in the environment, then the "c" locale is used (i.e.,
the C programming language.) You can also set and query the locale with the
msgcat::mclocale procedure:

msgcat::mclocale
=> c
msgcat::mclocale en_US

The msgcat::mcpreferences procedure returns a list of the user's locale
preferences from most specific (i.e., including the dialect) to most general (i.e., only
the language). For example:

msgcat::mclocale en_UK_Scottish
msgcat::mcpreferences
=> en_UK_Scottish en_UK en

Managing Message Catalog Files

A message catalog is simply a Tcl source file that contains a series of
msgcat::mcset commands that define entries in the catalog. The syntax of the
msgcat::mcset procedure is:

msgcat::mcset locale src-string ?dest-string?

The locale is a locale description like es or en_US_Scottish. The src-string is the
string used as the key when calling msgcat::mc. The dest-string is the result of
msgcat::mc when the locale is in force.

The msgcat::mcload procedure should be used to load your message catalog files.
It expects the files to be named according to their locale (e.g.,
en_US_Scottish.msg), and it binds the message catalog to the current namespace.

The msgcat::mcload procedure loads files that match the msgcat::mcpreferences
and have the .msg suffix. For example, with a locale of en_UK_Scottish,
msgcat::mcload would look for these files:

en_UK_Scottish.msg en_UK.msg en.msg

The standard place for message catalog files is in the msgs directory below the
directory containing a package. With this arrangement you can call msgcat::mcload

as shown below. The use of info script to find related files is explained on page
192.

msgcat::mcload [file join [file dirname [info script]] msgs]

The message catalog file is sourced, so it can contain any Tcl commands. You might
find it convenient to import the msgcat::mcset procedure. Be sure to use -force
with namespace import because that command might already have been imported
as a result of loading other message catalog files. Example 15-3 shows three trivial
message catalog files:

Example 15-3 Three sample message catalog files

en.msg
namespace import -force msgcat::mcset

mcset en Hello Hello_en
mcset en Goodbye Goodbye_en
mcset en String String_en
end of en.msg

en_US.msg
namespace import -force msgcat::mcset

mcset en_US Hello Hello_en_US
mcset en_US Goodbye Goodbye_en_US
end of en_US.msg

en_US_Texan.msg
namespace import -force msgcat::mcset

mcset en_US_Texan Hello Howdy!
end of en_US_Texan.msg

Assuming the files from Example 15-3 are all in the msgs directory below your
script, you can load all these files with these commands:

msgcat::mclocale en_US_Texan
msgcat::mcload [file join [file dirname [info script]] msgs]

The dialect has the highest priority:

msgcat::mc Hello
=> Howdy!

If the dialect does not specify a mapping, then the country mapping is checked:

msgcat::mc Goodbye
=> Goodbye_en_US

Finally, the lowest priority is the language mapping:

msgcat::mc String
=> String_en

Message Catalogs and Namespaces

What happens if two different library packages have conflicting message catalogs?
Suppose the foo package contains this call:

msgcat::set fr Hello Bonjour

But the bar package contains this conflicting definition:

msgcat::mcset fr Hello Ello

What happens is that msgcat::mcset and msgcat::mc are sensitive to the current
Tcl namespace. Namespaces are described in detail in Chapter 14. If the foo
package loads its message catalog while inside the foo namespace, then any calls
to msgcat::mc from inside the foo namespace will see those definitions. In fact, if
you call msgcat::mc from inside any namespace, it will find only message catalog
definitions defined from within that namespace.

If you want to share message catalogs between namespaces, you will need to
implement your own version of msgcat::mcunknown that looks in the shared
location. Example 15-4 shows a version that looks in the global namespace before
returning the default string.

Example 15-4 Using msgcat::mcunknown to share message catalogs

proc msgcat::mcunknown {local src} {
 variable insideUnknown
 if {![info exist insideUnknown]} {

 # Try the global namespace, being careful to note
 # that we are already inside this procedure.

 set insideUnknown true
 set result [namespace eval :: [list \
 msgcat::mc $src \
]]
 unset insideUnknown
 return $result
 } else {

 # Being called because the message isn't found
 # in the global namespace

 return $src
 }
}

The msgcat package

Table 15-2 summarizes the msgcat package.

Table 15-2. The msgcat package

msgcat::mc src Returns the translation of src according to the current
locale and namespace.

msgcat::mclocale ?
locale?

Queries or set the current locale.

msgcat::mcmax ?src-
string src-string
...?

Returns the length of the longest src-string after
translation. (Tcl 8.3)

msgcat::mcpreferences Returns a list of locale preferences ordered from the most
specific to the most general.

msgcat::mcload
directory

Loads message files for the current locale from
directory.

msgcat::mcset locale
src translation

Defines a mapping for the src string in locale to the
translation string. (Tcl 8.3)

msgcat::mcmset src-
trans-list

Define multiple src-translation pairs in a single call.

msgcat::mcunknown
locale src

This procedure is called to resolve unknown translations.
Applications can provide their own implementations.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Chapter 16. Event-Driven Programming
This chapter describes event-driven programming using timers and asynchronous
I/O facilities. The after command causes Tcl commands to occur at a time in the
future, and the fileevent command registers a command to occur in response to
file input/output (I/O). Tcl commands discussed are: after, fblocked, fconfigure,
fileevent, and vwait.

Event-driven programming is used in long-running programs like network servers
and graphical user interfaces. This chapter introduces event-driven programming in
Tcl. Tcl provides an easy model in which you register Tcl commands, and the system
then calls those commands when a particular event occurs. The after command is
used to execute Tcl commands at a later time, and the fileevent command is used
to execute Tcl commands when the system is ready for I/O. The vwait command is
used to wait for events. During the wait, Tcl automatically calls Tcl commands that
are associated with different events.

The event model is also used when programming user interfaces using Tk.
Originally, event processing was associated only with Tk. The event loop moved
from Tk to Tcl in the Tcl 7.5/Tk 4.1 release.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The Tcl Event Loop

An event loop is built into Tcl, which checks for events and calls out to handlers that
have been registered for different types of events. Some of the events are
processed internally to Tcl. You can register Tcl commands to be called in response
to events. There are also C APIs for the event loop, which are described on page
781. Event processing is active all the time in Tk applications. If you do not use Tk,
you can start the event loop with the vwait command as shown in Example 16-2 on
page 230. The four event classes are handled in the following order:

Window events. These include keystrokes and button clicks. Handlers are set
up for these automatically by the Tk widgets, and you can register window
event handlers with the bind command described in Chapter 29.

File and socket I/O events. The fileevent command registers handlers for
these events.

Timer events. The after command registers commands to occur at specific
times.

Idle events. These events are processed when there is nothing else to do. The
Tk widgets use idle events to display themselves. The after idle command
registers a command to run at the next idle time.

The after Command

The after command sets up commands to happen in the future. In its simplest
form, it pauses the application for a specified time, in milliseconds. The example
below waits for half a second:

after 500

During this time, the application does not process events. You can use the vwait
command as shown on page 230 to keep the Tcl event loop active during the waiting
period. The after command can register a Tcl command to occur after a period of
time, in milliseconds:

after milliseconds cmd arg arg...

The after command treats its arguments like eval; if you give it extra arguments,
it concatenates them to form a single command. If your argument structure is
important, use list to build the command. The following example always works, no
matter what the value of myvariable is:

after 500 [list puts $myvariable]

The return value of after is an identifier for the registered command. You can
cancel this command with the after cancel operation. You specify either the
identifier returned from after, or the command string. In the latter case, the event
that matches the command string exactly is canceled.

Table 16-1 summarizes the after command:

Table 16-1. The after command

after
milliseconds

Pauses for milliseconds.

after ms arg
?arg...?

Concatenates the args into a command and executes it after ms
milliseconds. Immediately returns an ID.

after cancel
id

Cancels the command registered under id.

after cancel
command

Cancels the registered command.

after idle
command

Runs command at the next idle moment.

after info ?
id?

Returns a list of IDs for outstanding after events, or the command
associated with id.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The fileevent Command

The fileevent command registers a procedure that is called when an I/O channel is
ready for read or write events. For example, you can open a pipeline or network
socket for reading, and then process the data from the pipeline or socket using a
command registered with fileevent. The advantage of this approach is that your
application can do other things, like update the user interface, while waiting for data
from the pipeline or socket. Network servers use fileevent to manage connections
to many clients. You can use fileevent on stdin and stdout, too. Using network
sockets is described in Chapter 17.

The command registered with fileevent uses the regular Tcl commands to read or
write data on the I/O channel. For example, if the pipeline generates line-oriented
output, you should use gets to read a line of input. If you try and read more data
than is available, your application may block waiting for more input. For this reason,
you should read one line in your fileevent handler, assuming the data is line-
oriented. If you know the pipeline will generate data in fixed-sized blocks, then you
can use the read command to read one block.

The fconfigure command, which is described on page 232, can put a channel into
nonblocking mode. This is not strictly necessary when using fileevent. The pros
and cons of nonblocking I/O are discussed later.

End of file makes a channel readable.

You should check for end of file in your read handler because it will be called when
end of file occurs. It is important to close the channel inside the handler because
closing the channel automatically unregisters the handler. If you forget to close the
channel, your read event handler will be called repeatedly.

Example 16-1 shows a read event handler. A pipeline is opened for reading and its
command executes in the background. The Reader command is invoked when data
is available on the pipe. When end of file is detected a variable is set, which signals
the application waiting with vwait. Otherwise, a single line of input is read and
processed. The vwait command is described on the next page. Example 24-1 on
page 378 also uses fileevent to read from a pipeline.

Example 16-1 A read event file handler

proc Reader { pipe } {
 global done

 if {[eof $pipe]} {
 catch {close $pipe}
 set done 1
 return
 }
 gets $pipe line
 # Process the line here...
}
set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
vwait done

There can be at most one read handler and one write handler for an I/O channel. If
you register a handler and one is already registered, then the old registration is
removed. If you call fileevent without a command argument, it returns the
currently registered command, or it returns the empty string if there is none. If you
register the empty string, it deletes the current file handler. Table 16-2 summarizes
the fileevent command.

Table 16-2. The fileevent command

fileevent fileId readable
?command?

Queries or registers command to be called when
fileId is readable.

fileevent fileId writable
?command?

Queries or registers command to be called when
fileId is writable.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The vwait Command

The vwait command waits until a variable is modified. For example, you can set
variable x at a future time, and then wait for that variable to be set with vwait.

set x 0
after 500 {set x 1}
vwait x

Waiting with vwait causes Tcl to enter the event loop. Tcl will process events until
the variable x is modified. The vwait command completes when some Tcl code runs
in response to an event and modifies the variable. In this case the event is a timer
event, and the Tcl code is simply:

set x 1

In some cases vwait is used only to start the event loop. Example 16-2 sets up a
file event handler for stdin that will read and execute commands. Once this is set
up, vwait is used to enter the event loop and process commands until the input
channel is closed. The process exits at that point, so the vwait variable
Stdin(wait) is not used:

Example 16-2 Using vwait to activate the event loop

proc Stdin_Start {prompt} {
 global Stdin
 set Stdin(line) ""
 puts -nonewline $prompt
 flush stdout
 fileevent stdin readable [list StdinRead $prompt]
 vwait Stdin(wait)
}
proc StdinRead {prompt} {
 global Stdin
 if {[eof stdin]} {
 exit
 }
 append Stdin(line) [gets stdin]
 if {[info complete $Stdin(line)]} {
 catch {uplevel #0 $Stdin(line)} result
 puts $result
 puts -nonewline $prompt
 flush stdout
 set Stdin(line) {}
 } else {
 append Stdin(line) \n
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

The fconfigure Command

The fconfigure command sets and queries several properties of I/O channels. The default
settings for channels are suitable for most cases. If you do event-driven I/O you may want to
set your channel into nonblocking mode. If you handle binary data, you should turn off end of
line and character set translations. You can query the channel parameters like this:

[View full width]

fconfigure stdin
=> -blocking 1 -buffering none -buffersize 4096 -encoding iso8859-1 -eofchar {}
 -translation lf

Table 16-3 summarizes the properties controlled by fconfigure, not including properties for
serial lines.

Table 16-3. I/O channel properties controlled by fconfigure

-blocking Blocks until I/O channel is ready: 0 or 1.

-buffering Buffer mode: none, line, or full.

-buffersize Number of characters in the buffer.

-encoding The character set encoding.

-eofchar Special end of file character. Control-z (\x1a) for DOS. Null otherwise.

-lasterror Returns the last POSIX error message associated with a channel.

-translation End of line translation: auto, lf, cr, crlf, binary.

-peername Sockets only. IP address of remote host.

-peerport Sockets only. Port number of remote host.

Serial lines have many additional properties. Before Tcl 8.4, you could only control the baud
rate, parity and number of bits using the -mode property. Many new properties for serial line
control were added in Tcl 8.4. Table 16-4 lists the serial line properties set by fconfigure.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/&r=noccc&xmlid=0-13-038560-3/ch16lev1sec5#PLID0

Table 16-4. Serial line properties controlled by fconfigure

-mode Format: baud,parity,data,stop.

-queue Returns a list of two integers representing the current number of bytes in the
input and output queues. Tcl 8.4.

-timeout Specifies the timeout in milliseconds for blocking reads. Tcl 8.4.

-ttycontrol Sets up the handshake output lines. Tcl 8.4.

-ttystatus Returns the current serial line status. Tcl 8.4.

-xchar Specifies the software handshake characters. Tcl 8.4.

-handshake Specifies one of rtscts, xonxoff or (Windows only) dtrdsr. Tcl 8.4.

-
pollinterval

Sets the maximum time for polling of fileevents (Windows only.) Tcl 8.4.

-sysbuffer Specifies the size of system buffers for a serial channel. (Windows only.) Tcl
8.4.

Nonblocking I/O

By default, I/O channels are blocking. A gets or read will wait until data is available before
returning. A puts may also wait if the I/O channel is not ready to accept data. This behavior
is all right if you are using disk files, which are essentially always ready. If you use pipelines
or network sockets, however, the blocking behavior can hang up your application.

The fconfigure command can set a channel into nonblocking mode. A gets or read
command may return immediately with no data. This occurs when there is no data available
on a socket or pipeline. A puts to a nonblocking channel will accept all the data and buffer it
internally. When the underlying device (i.e., a pipeline or socket) is ready, then Tcl
automatically writes out the buffered data. Nonblocking channels are useful because your
application can do something else while waiting for the I/O channel. You can also manage
several nonblocking I/O channels at once. Nonblocking channels should be used with the
fileevent command described earlier. The following command puts a channel into
nonblocking mode:

fconfigure fileID -blocking 0

It is not strictly necessary to put a channel into nonblocking mode if you use fileevent.
However, if the channel is in blocking mode, then it is still possible for the gets or read done

by your fileevent procedure to block. For example, an I/O channel might have some data
ready, but not a complete line. In this case, a gets would block, unless the channel is
nonblocking. Perhaps the best motivation for a nonblocking channel is the buffering behavior
of a nonblocking puts. You can even close a channel that has buffered data, and Tcl will
automatically write out the buffers as the channel becomes ready. For these reasons, it is
common to use a nonblocking channel with fileevent. Example 16-3 shows a fileevent
handler for a nonblocking channel. As described above, the gets may not find a complete
line, in which case it doesn't read anything and returns -1.

Example 16-3 A read event file handler for a nonblocking channel

set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
fconfigure $pipe -blocking 0
proc Reader { pipe } {
 global done
 if {[eof $pipe]} {
 catch {close $pipe}
 set done 1
 return
 }
 if {[gets $pipe line] < 0} {
 # We blocked anyway because only part of a line
 # was available for input
 } else {
 # Process one line
 }
}
vwait done

The fblocked Command

The fblocked command returns 1 if a channel does not have data ready. Normally the
fileevent command takes care of waiting for data, so I have seen fblocked useful only in
testing channel implementations.

Buffering

By default, Tcl buffers data, so I/O is more efficient. The underlying device is accessed less
frequently, so there is less overhead. In some cases you may want data to be visible
immediately and buffering gets in the way. The following turns off all buffering:

fconfigure fileID -buffering none

Full buffering means that output data is accumulated until a buffer fills; then a write is
performed. For reading, Tcl attempts to read a whole buffer each time more data is needed.
The read-ahead for buffering will not block. The -buffersize parameter controls the buffer
size:

fconfigure fileID -buffering full -buffersize 8192

Line buffering is used by default on stdin and stdout. Each newline in an output channel
causes a write operation. Read buffering is the same as full buffering. The following command
turns on line buffering:

fconfigure fileID -buffering line

End of Line Translations

On UNIX, text lines end with a newline character (\n). On Macintosh they end with a carriage
return (\r). On Windows they end with a carriage return, newline sequence (\r\n). Network
sockets also use the carriage return, newline sequence. By default, Tcl accepts any of these,
and the line terminator can even change within a channel. All of these different conventions
are converted to the UNIX style so that once read, text lines always end with a newline
character (\n). Both the read and gets commands do this conversion. By default, text lines
are generated in the platform-native format during output.

The default behavior is almost always what you want, but you can control the translation with
fconfigure. Table 16-5 shows settings for -translation:

Table 16-5. End of line translation modes

binary No translation at all.

lf UNIX-style, which also means no translations.

cr Macintosh style. On input, carriage returns are converted to newlines. On output,
newlines are converted to carriage returns.

crlf Windows and Network style. On input, carriage return, newline is converted to a
newline. On output, a newline is converted to a carriage return, newline.

auto The default behavior. On input, all end of line conventions are converted to a
newline. Output is in native format.

End of File Character

In DOS file systems, there may be a Control-z character (\x1a) at the end of a text file. By
default, this character is ignored on the Windows platform if it occurs at the end of the file,
and this character is output when you close the file. You can turn this off by specifying an
empty string for the end of file character:

fconfigure fileID -eofchar {}

In Tcl 8.4 the end-of-file character trick is used by Tcl_EvalFile and source to allow Tclkit
and other tools to append non-script data to script files. This is enabled by default, and

should not normally interfere with your scripts.

Serial Devices

The -mode attribute specifies the baud rate, parity mode, the number of data bits, and the
number of stop bits:

set tty [open /dev/ttya]
fconfigure $tty -mode
=> 9600,0,8,2

Tcl 8.4 added the enhanced control of serial channels for Windows and Unix systems. The
options are listed in Table 16-4.

Windows has some special device names that always connect you to the serial line devices
when you use open. They are com1 through com9. To access com devices above 9, use this
form: {\\.\comXX}. The Windows system console is named con. The Windows null device is
nul.

UNIX has names for serial devices in /dev. The serial devices are /dev/ttya, /dev/ttyb, and
so on. The system console is /dev/console. The current terminal is /dev/tty. The null
device is /dev/null.

Macintosh needs a special command to open serial devices. This is provided by a third-party
extension that you can find at the Tcl Resource Center under:

http://www.tcl.tk/resource/software/extensions/macintosh/

Character Set Encodings

Tcl automatically converts various character set encodings into Unicode internally. It cannot
automatically detect the encoding for a file or network socket, however, so you need to use
fconfigure -encoding if you are reading data that is not in the system's default encoding.
Character set issues are explained in more detail in Chapter 15.

Configuring Read-Write Channels

If you have a channel that is used for both input and output, you can set the channel
parameters independently for input and output. In this case, you can specify a two-element
list for the parameter value. The first element is for the input side of the channel, and the
second element is for the output side of the channel. If you specify only a single element, it
applies to both input and output. For example, the following command forces output end of
line translations to be crlf mode, leaves the input channel on automatic, and sets the buffer
size for both input and output:

fconfigure pipe -translation {auto crlf} -buffersize 4096

http://www.tcl.tk/resource/software/extensions/macintosh/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Chapter 17. Socket Programming
This chapter shows how to use sockets for programming network clients and
servers. Advanced I/O techniques for sockets are described, including nonblocking
I/O and control over I/O uffering. Tcl commands discussed are: socket,
fconfigure, and http::geturl.

Sockets are network communication channels. The sockets described in this chapter
use the TCP network protocol, although you can find Tcl extensions that create
sockets using other protocols. TCP provides a reliable byte stream between two
hosts connected to a network. TCP handles all the issues about routing information
across the network, and it automatically recovers if data is lost or corrupted along
the way. TCP is the basis for other protocols like Telnet, FTP, and HTTP.

A Tcl script can use a network socket just like an open file or pipeline. Instead of
using the Tcl open command, you use the socket command to open a socket. Then
you use gets, puts, and read to transfer data. The close command closes a
network socket.

Network programming distinguishes between clients and servers. A server is a
process or program that runs for long periods of time and controls access to some
resource. For example, an FTP server governs access to files, and an HTTP server
provides access to hypertext pages on the World Wide Web. A client typically
connects to the server for a limited time in order to gain access to the resource. For
example, when a Web browser fetches a hypertext page, it is acting as a client. The
extended examples in this chapter show how to program the client side of the HTTP
protocol.

Networking Extensions for Tcl

This chapter describes the basic programming techniques for sockets. Socket
programing in Tcl is pretty easy, and a variety of extensions have been created to
handle common protocols. This section reviews some of the packages that are
available, and then the rest of the chapter describes how to program sockets
yourself.

Scotty

The Scotty extension supports many network protocols.

The Scotty Tcl extension provides access to other network protocols like UDP, DNS,
and RPC. It also supports the SNMP network management protocol and the MIB
database associated with SNMP. Scotty is a great extension package that is widely
used for network management applications. It is a C-level extension, so you have to
compile it yourself or find a binary distribution. Its home page is:

http://wwwsnmp.cs.utwente.nl/~schoenw/scotty/

Standard Tcl Library

The Standard Tcl Library (tcllib) has several packages that support widely used TCP-
based protocols. These are all pure-Tcl implementations. There are packages for:

DNS client. Map between hostnames and IP addresses.

FTP client. Open FTP connections and download files from FTP servers.

FTP server. Implement a simple, extensible FTP server.

IRC client. Implement a chat client.

NNTP client. Fetch news from a news server.

POP3 client. Post Office Protocol lets you fetch email from mail servers.

http://wwwsnmp.cs.utwente.nl/~schoenw/scotty/default.htm

POP3 server. Implement a mail server.

SMTP client. Send email via the SMTP protocol.

SMTP server. Accept incoming email via SMTP.

URI manipulation. Package for parsing URLs.

There is good on-line documentation for these packages at:

http://tcllib.sourceforge.net/tcllib/doc/

HTTP

The Tcl distribution includes an HTTP client, which is described on page 251. You
don't need to add tcllib to get this. In addition, there is a nice web server built in Tcl,
which is the topic of Chapter 18.

http://tcllib.sourceforge.net/tcllib/doc/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Client Sockets

A client opens a socket by specifying the host address and port number for the
server of the socket. The host address gives the network location (i.e., which
computer), and the port selects a particular server from all the possible servers that
may be running on that host. For example, HTTP servers typically use port 80, while
FTP servers use port 20. The following example shows how to open a client socket
to a Web server:

set s [socket www.tcl.tk 80]

There are two forms for host names. The previous example uses a domain name:
www.tcl.tk. You can also specify raw IP addresses, which are specified with four
dot-separated integers (e.g., 192.220.75.86). A domain name is mapped into a raw
IP address by the system software, and it is almost always a better idea to use a
domain name in case the IP address assignment for the host changes. This can
happen when hosts are upgraded or they move to a different part of the network.

Some systems also provide symbolic names for well-known port numbers. For
example, instead of using 20 for the FTP service, you can use ftp. On UNIX
systems, the well-known port numbers are listed in the file named /etc/services.

Client Socket Options

The socket command accepts some optional arguments when opening the client-
side socket. The general form of the command is:

socket ?-async? ?-myaddr address? ?-myport myport? host port

Ordinarily the address and port on the client side are chosen automatically. If your
computer has multiple network interfaces, you can select one with the -myaddr
option. The address value can be a domain name or an IP address. If your
application needs a specific client port, it can choose one with the -myport option. If
the port is in use, the socket command will raise an error.

The -async option causes connection to happen in the background, and the socket
command returns immediately. The socket becomes writable when the connection
completes, or fails. You can use fileevent to get a callback when this occurs. This
is shown in Example 17-1. If you use the socket before the connection completes,
and the socket is in blocking mode, then Tcl automatically blocks and waits for the
connection to complete. If the socket is in nonblocking mode, attempts to use the
socket return immediately. The gets and read commands would return -1, and
fblocked would return 1 in this situation.

In some cases, it can take a long time to open the connection to the server. Usually
this occurs when the server host is down, and it may take longer than you want for

the connection to time out. The following example sets up a timer with after so
that you can choose your own timeout limit on the connection:

Example 17-1 Opening a client socket with a timeout

proc Socket_Client {host port timeout} {
 global connected
 after $timeout {set connected timeout}
 set sock [socket -async $host $port]
 fileevent $sock w {set connected ok}
 vwait connected
 fileevent $sock w {}
 if {$connected == "timeout"} {
 return -code error timeout
 } else {
 return $sock
 }
}

Server Sockets

A TCP server socket allows multiple clients. The way this works is that the socket
command creates a listening socket, and then new sockets are created when clients
make connections to the server. Tcl takes care of all the details and makes this easy
to use. You simply specify a port number and give the socket command a callback to
execute when a client connects to your server socket. The callback is just a Tcl
command. A simple example is shown below:

Example 17-2 Opening a server socket

set listenSocket [socket -server Accept 2540]
proc Accept {newSock addr port} {
 puts "Accepted $newSock from $addr port $port"
}
vwait forever

The Accept command is the callback made when clients connect to the server. Tcl
adds additional arguments to the callback before it calls it. The arguments are the
new socket connection, and the host and port number of the remote client. In this
simple example, Accept just prints out its arguments.

The vwait command puts Tcl into its event loop so that it can do the background
processing necessary to accept connections. The vwait command will wait until the
forever variable is modified, which won't happen in this simple example. The key
point is that Tcl processes other events (e.g., network connections and other file
I/O) while it waits. If you have a Tk application (e.g., wish), then it already has an
event loop to handle window system events, so you do not need to use vwait. The
Tcl event loop is discussed on page 227.

Server Socket Options

By default, Tcl lets the operating system choose the network interface used for the
server socket, and you simply supply the port number. If your computer has
multiple interfaces, you may want to specify a particular one. Use the -myaddr
option for this. The general form of the command to open server sockets is:

socket -server callback ?-myaddr address? port

The last argument to the socket command is the server's port number. For your
own unofficial servers, you'll need to pick port numbers higher than 1024 to avoid
conflicts with existing services. UNIX systems prevent user programs from opening
server sockets with port numbers less than 1024. If you use 0 as the port number,
then the operating system will pick the listening port number for you. You must use
fconfigure to find out what port you have:

fconfigure $sock -sockname
=> ipaddr hostname port

The Echo Service

Example 17-3 The echo service

proc Echo_Server {port} {
 global echo
 set echo(main) [socket -server EchoAccept $port]
}
proc EchoAccept {sock addr port} {
 global echo
 puts "Accept $sock from $addr port $port"
 set echo(addr,$sock) [list $addr $port]
 fconfigure $sock -buffering line
 fileevent $sock readable [list Echo $sock]
}
proc Echo {sock} {
 global echo
 if {[eof $sock] || [catch {gets $sock line}]} {
 # end of file or abnormal connection drop
 close $sock
 puts "Close $echo(addr,$sock)"
 unset echo(addr,$sock)
 } else {
 if {[string compare $line "quit"] == 0} {
 # Prevent new connections.
 # Existing connections stay open.
 close $echo(main)
 }
 puts $sock $line
 }
}

The echo server accepts connections from clients. It reads data from the clients and
writes that data back. The example uses fileevent to wait for data from the client,
and it uses fconfigure to adjust the buffering behavior of the network socket. You
can use Example 17-3 as a template for more interesting services.

The Echo_Server procedure opens the socket and saves the result in echo(main).
When this socket is closed later, the server stops accepting new connections but
existing connections won't be affected. If you want to experiment with this server,
start it and wait for connections like this:

Echo_Server 2540
vwait forever

The EchoAccept procedure uses the fconfigure command to set up line buffering.
This means that each puts by the server results in a network transmission to the
client. The importance of this will be described in more detail later. A complete
description of the fconfigure command is given in Chapter 16. The EchoAccept

procedure uses the fileevent command to register a procedure that handles I/O
on the socket. In this example, the Echo procedure will be called whenever the
socket is readable. Note that it is not necessary to put the socket into nonblocking
mode when using the fileevent callback. The effects of nonblocking mode are
discussed on page 232.

EchoAccept saves information about each client in the echo array. This is used only
to print out a message when a client closes its connection. In a more sophisticated
server, however, you may need to keep more interesting state about each client.
The name of the socket provides a convenient handle on the client. In this case, it is
used as part of the array index.

The Echo procedure first checks to see whether the socket has been closed by the
client or there is an error when reading the socket. The if expression only performs
the gets if the eof does not return true:

if {[eof $sock] || [catch {gets $sock line}]} {

Closing the socket automatically clears the fileevent registration. If you forget to
close the socket upon the end of file condition, the Tcl event loop will invoke your
callback repeatedly. It is important to close it when you detect end of file.

Example 17-4 A client of the echo service

proc Echo_Client {host port} {
 set s [socket $host $port]
 fconfigure $s -buffering line
 return $s
}
set s [Echo_Client localhost 2540]
puts $s "Hello!"
gets $s
=> Hello!

In the normal case, the server simply reads a line with gets and then writes it back
to the client with puts. If the line is "quit," then the server closes its main socket.
This prevents any more connections by new clients, but it doesn't affect any clients
that are already connected.

Example 17-4 shows a sample client of the Echo service. The main point is to
ensure that the socket is line buffered so that each puts by the client results in a
network transmission. (Or, more precisely, each newline character results in a
network transmission.) If you forget to set line buffering with fconfigure, the
client's gets command will probably hang because the server will not get any data;
it will be stuck in buffers on the client.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_8071533.html

Fetching a URL with HTTP

The HyperText Transport Protocol (HTTP) is the protocol used on the World Wide
Web. This section presents a procedure to fetch pages or images from a server on
the Web. Items in the Web are identified with a Universal Resource Location (URL)
that specifies a host, port, and location on the host. The basic outline of HTTP is that
a client sends a URL to a server, and the server responds with some header
information and some content data. The header information describes the content,
which can be hypertext, images, postscript, and more.

Example 17-5 Opening a connection to an HTTP server

proc Http_Open {url} {
 global http
 if {![regexp -nocase {^(http://)?([^:/]+)(:([0-9]+))?(/.*)} \
 $url x protocol server y port path]} {
 error "bogus URL: $url"
 }
 if {[string length $port] == 0} {
 set port 80
 }
 set sock [socket $server $port]
 puts $sock "GET $path HTTP/1.0"
 puts $sock "Host: $server"
 puts $sock "User-Agent: Tcl/Tk Http_Open"
 puts $sock ""
 flush $sock
 return $sock
}

The Http_Open procedure uses regexp to pick out the server and port from the URL.
This regular expression is described in detail on page 159. The leading http:// is
optional, and so is the port number. If the port is left off, then the standard port 80
is used. If the regular expression matches, then a socket command opens the
network connection.

The protocol begins with the client sending a line that identifies the command (GET),
the path, and the protocol version. The path is the part of the URL after the server
and port specification. The rest of the request is lines in the following format:

key: value

The Host identifies the server, which supports servers that implement more than
one server name. The User-Agent identifies the client program, which is often a
browser like Netscape Navigator, Mozilla, or Internet Explorer. The key-value lines
are terminated with a blank line. This data is flushed out of the Tcl buffering system
with the flush command. The server will respond by sending the URL contents back
over the socket. This is described shortly, but first we consider proxies.

Proxy Servers

A proxy is used to get through firewalls that many organizations set up to isolate
their network from the Internet. The proxy accepts HTTP requests from clients
inside the firewall and then forwards the requests outside the firewall. It also relays
the server's response back to the client. The protocol is nearly the same when using
the proxy. The difference is that the complete URL is passed to the GET command so
that the proxy can locate the server. Example 17-6 uses a proxy if one is defined:

Example 17-6 Opening a connection through a HTTP proxy

Http_Proxy sets or queries the proxy
proc Http_Proxy {{new {}}} {
 global http
 if ![info exists http(proxy)] {
 return {}
 }
 if {[string length $new] == 0} {
 return $http(proxy):$http(proxyPort)
 } else {
 regexp {^([^:]+):([0-9]+)$} $new x \
 http(proxy) http(proxyPort)
 }
}

proc Http_Open {url {cmd GET} {query {}}} {
 global http
 if {![regexp -nocase {^(http://)?([^:/]+)(:([0-9]+))?(/.*)} \
 $url x protocol server y port path]} {
 error "bogus URL: $url"
 }
 if {[string length $port] == 0} {
 set port 80
 }
 if {[info exists http(proxy)] &&
 [string length $http(proxy)]} {
 set sock [socket $http(proxy) $http(proxyPort)]
 puts $sock "$cmd http://$server:$port$path HTTP/1.0"
 } else {
 set sock [socket $server $port]
 puts $sock "$cmd $path HTTP/1.0"
 }
 puts $sock "User-Agent: Tcl/Tk Http_Open"
 puts $sock "Host: $server"
 if {[string length $query] > 0} {
 puts $sock "Content-Length: [string length $query]"
 puts $sock ""
 puts $sock $query
 }
 puts $sock ""

 flush $sock
 fconfigure $sock -blocking 0
 return $sock
}

The HEAD Request

In Example 17-6, the Http_Open procedure takes a cmd parameter so that the user
of Http_Open can perform different operations. The GET operation fetches the
contents of a URL. The HEAD operation just fetches the description of a URL, which is
useful to validate a URL. The POST operation transmits query data to the server
(e.g., values from a form) and also fetches the contents of the URL. All of these
operations follow a similar protocol. The reply from the server is a status line
followed by lines that have key-value pairs. This format is similar to the client's
request. The reply header is followed by content data with GET and POST operations.
Example 17-7 implements the HEAD command, which does not involve any reply
data:

Example 17-7 Http_Head validates a URL

proc Http_Head {url} {
 upvar #0 $url state
 catch {unset state}
 set state(sock) [Http_Open $url HEAD]
 fileevent $state(sock) readable [list HttpHeader $url]
 # Specify the real name, not the upvar alias, to vwait
 vwait $url\(status)
 catch {close $state(sock)}
 return $state(status)
}
proc HttpHeader {url} {
 upvar #0 $url state
 if {[eof $state(sock)]} {
 set state(status) eof
 close $state(sock)
 return
 }
 if {[catch {gets $state(sock) line} nbytes]} {
 set state(status) error
 lappend state(headers) [list error $nbytes]
 close $state(sock)
 return
 }
 if {$nbytes < 0} {
 # Read would block
 return
 } elseif {$nbytes == 0} {
 # Header complete
 set state(status) head

 } elseif {![info exists state(headers)]} {
 # Initial status reply from the server
 set state(headers) [list http $line]
 } else {
 # Process key-value pairs
 regexp {^([^:]+): *(.*)$} $line x key value
 lappend state(headers) [string tolower $key] $value
 }
}

The Http_Head procedure uses Http_Open to contact the server. The HttpHeader
procedure is registered as a fileevent handler to read the server's reply. A global
array keeps state about each operation. The URL is used in the array name, and
upvar is used to create an alias to the name (upvar is described on page 92):

upvar #0 $url state

You cannot use the upvar alias as the variable specified to vwait. Instead, you must
use the actual name. The backslash turns off the array reference in order to pass
the name of the array element to vwait, otherwise Tcl tries to reference url as an
array:

vwait $url\(status)

The HttpHeader procedure checks for special cases: end of file, an error on the
gets, or a short read on a nonblocking socket. The very first reply line contains a
status code from the server that is in a different format than the rest of the header
lines:

code message

The code is a three-digit numeric code. 200 is OK. Codes in the 400's and 500's
indicate an error. The codes are explained fully in RFC 1945 that specifies HTTP 1.0.
The first line is saved with the key http:

set state(headers) [list http $line]

The rest of the header lines are parsed into key-value pairs and appended onto
state(headers). This format can be used to initialize an array:

array set header $state(headers)

When HttpHeader gets an empty line, the header is complete and it sets the
state(status) variable, which signals Http_Head. Finally, Http_Head returns the
status to its caller. The complete information about the request is still in the global
array named by the URL. Example 17-8 illustrates the use of Http_Head:

Example 17-8 Using Http_Head

set url http://www.sun.com/
set status [Http_Head $url]

=> eof
upvar #0 $url state
array set info $state(headers)
parray info
info(http) HTTP/1.0 200 OK
info(server) Apache/1.1.1
info(last-modified) Nov ...
info(content-type) text/html

The GET and POST Requests

Example 17-9 shows Http_Get, which implements the GET and POST requests. The
difference between these is that POST sends query data to the server after the
request header. Both operations get a reply from the server that is divided into a
descriptive header and the content data. The Http_Open procedure sends the
request and the query, if present, and reads the reply header. Http_Get reads the
content.

The descriptive header returned by the server is in the same format as the client's
request. One of the key-value pairs returned by the server specifies the Content-
Type of the URL. The content-types come from the MIME standard, which is
described in RFC 1521. Typical content-types are:

text/html ÿ HyperText Markup Language (HTML), which is introduced in
Chapter 3.

text/plain ÿ plain text with no markup.

image/gif ÿ image data in GIF format.

image/jpeg ÿ image data in JPEG format.

application/postscript ÿ a postscript document.

application/x-tcl ÿ a Tcl program! This type is discussed in Chapter 20.

Example 17-9 Http_Get fetches the contents of a URL

proc Http_Get {url {query {}}} {
 upvar #0 $url state ;# Alias to global array
 catch {unset state} ;# Aliases still valid.
 if {[string length $query] > 0} {
 set state(sock) [Http_Open $url POST $query]
 } else {
 set state(sock) [Http_Open $url GET]
 }
 set sock $state(sock)

 fileevent $sock readable [list HttpHeader $url]

 # Specify the real name, not the upvar alias, to vwait
 vwait $url\(status)
 set header(content-type) {}
 set header(http) "500 unknown error"
 array set header $state(headers)

 # Check return status.
 # 200 is OK, other codes indicate a problem.
 regsub "HTTP/1.. " $header(http) {} header(http)
 if {![string match 2* $header(http)]} {
 catch {close $sock}
 if {[info exists header(location)] &&
 [string match 3* $header(http)]} {
 # 3xx is a redirection to another URL
 set state(link) $header(location)
 return [Http_Get $header(location) $query]
 }
 return -code error $header(http)
 }
 # Set up to read the content data
 switch -glob -- $header(content-type) {
 text/* {
 # Read HTML into memory
 fileevent $sock readable [list HttpGetText $url]
 }
 default {
 # Copy content data to a file
 fconfigure $sock -translation binary
 set state(filename) [File_TempName http]
 if [catch {open $state(filename) w} out] {
 set state(status) error
 set state(error) $out
 close $sock
 return $header(content-type)
 }
 set state(fd) $out
 fcopy $sock $out -command [list HttpCopyDone $url]
 }
 }
 vwait $url\(status)
 return $header(content-type)
}

Http_Get uses Http_Open to initiate the request, and then it looks for errors. It
handles redirection errors that occur if a URL has changed. These have error codes
that begin with 3. A common case of this error is when a user omits the trailing
slash on a URL (e.g., http://www.tcl.tk). Most servers respond with:

302 Document has moved
Location: http://www.tcl.tk/

If the content-type is text, then Http_Get sets up a fileevent handler to read
this data into memory. The socket is in nonblocking mode, so the read handler can
read as much data as possible each time it is called. This is more efficient than
using gets to read a line at a time. The text will be stored in the state(body)
variable for use by the caller of Http_Get. Example 17-10 shows the HttpGetText
fileevent handler:

Example 17-10 HttpGetText reads text URLs

proc HttpGetText {url} {
 upvar #0 $url state
 if {[eof $state(sock)]} {
 # Content complete
 set state(status) done
 close $state(sock)
 } elseif {[catch {read $state(sock)} block]} {
 set state(status) error
 lappend state(headers) [list error $block]
 close $state(sock)
 } else {
 append state(body) $block
 }
}

The content may be in binary format. This poses a problem for Tcl 7.6 and earlier. A
null character will terminate the value, so values with embedded nulls cannot be
processed safely by Tcl scripts. Tcl 8.0 supports strings and variable values with
arbitrary binary data. Example 17-9 uses fcopy to copy data from the socket to a
file without storing it in Tcl variables. This command was introduced in Tcl 7.5 as
unsupported0, and became fcopy in Tcl 8.0. It takes a callback argument that is
invoked when the copy is complete. The callback gets additional arguments that are
the bytes transferred and an optional error string. In this case, these arguments are
added to the url argument specified in the fcopy command. Example 17-11 shows
the HttpCopyDone callback:

Example 17-11 HttpCopyDone is used with fcopy

proc HttpCopyDone {url bytes {error {}}} {
 upvar #0 $url state
 if {[string length $error]} {
 set state(status) error
 lappend state(headers) [list error $error]
 } else {
 set state(status) ok
 }
 close $state(sock)
 close $state(fd)
}

The user of Http_Get uses the information in the state array to determine the
status of the fetch and where to find the content. There are four cases to deal with:

There was an error, which is indicated by the state(error) element.

There was a redirection, in which case, the new URL is in state(link). The
client of Http_Get should change the URL and look at its state instead. You
can use upvar to redefine the alias for the state array:

upvar #0 $state(link) state

There was text content. The content is in state(body).

There was another content-type that was copied to state(filename).

The fcopy Command

The fcopy command can do a complete copy in the background. It automatically
sets up fileevent handlers, so you do not have to use fileevent yourself. It also
manages its buffers efficiently. The general form of the command is:

fcopy input output ?-size size? ?-command callback?

The -command argument makes fcopy work in the background. When the copy is
complete or an error occurs, the callback is invoked with one or two additional
arguments: the number of bytes copied, and, in the case of an error, it is also
passed an error string:

fcopy $in $out -command [list CopyDone $in $out]
proc CopyDone {in out bytes {error {}} {
 close $in ; close $out
}

With a background copy, the fcopy command transfers data from input until end of
file or size bytes have been transferred. If no -size argument is given, then the
copy goes until end of file. It is not safe to do other I/O operations with input or
output during a background fcopy. If either input or output gets closed while the
copy is in progress, the current copy is stopped. If the input is closed, then all data
already queued for output is written out.

Without a -command argument, the fcopy command reads as much as possible
depending on the blocking mode of input and the optional size parameter.
Everything it reads is queued for output before fcopy returns. If output is blocking,
then fcopy returns after the data is written out. If input is blocking, then fcopy can
block attempting to read size bytes or until end of file.

The fcopy command had a bug which ignored the encoding on the channels which
was corrected in 8.3.4.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The http Package

The standard Tcl library includes an http package that is based on the code I wrote
for this chapter. This section documents the package, which has a slightly different
interface. The library version uses namespaces and combines the Http_Get,
Http_Head, and Http_Post procedures into a single http::geturl procedure. The
examples in this chapter are still interesting, but you should use the standard http
package for your production code.

http::config

The http::config command is used to set the proxy information, time-outs, and
the User-Agent and Accept headers that are generated in the HTTP request. You
can specify the proxy host and port, or you can specify a Tcl command that is run to
determine the proxy. With no arguments, http::config returns the current
settings:

http::config
=> -accept */* -proxyfilter http::ProxyRequired
-proxyhost {} -proxyport {}
-useragent {Tcl http client package 2.4}

If you specify just one option, its value is returned:

http::config -proxyfilter
=> http::ProxyRequired

You can set one or more options:

http::config -proxyhost webcache.eng -proxyport 8080

The default proxy filter just returns the -proxyhost and -proxyport values if they
are set. You can supply a smarter filter that picks a proxy based on the host in the
URL. The proxy filter is called with the hostname and should return a list of two
elements, the proxy host and port. If no proxy is required, return an empty list.

http::geturl

The http::geturl procedure does a GET, POST, or HEAD transaction depending on
its arguments. By default, http::geturl blocks until the request completes and it
returns a token that represents the transaction. As described below, you use the
token to get the results of the transaction. If you supply a -command callback
option, then http::geturl returns immediately and invokes callback when the
transaction completes. The callback is passed the token that represents the
transaction.

For simple applications you can simply block on the transaction:

set token [http::geturl www.beedub.com/index.html]
=> http::1

The leading http:// in the URL is optional. The return value is a token that
represents the transaction. There are other http:: commands that return
information when passed the token. The token is also the name of an array that
contains state about the transaction. Make sure to clean up this array to free
memory when you are done:

http::cleanup $token

If you need to access the array directly, use upvar to create an alias:

upvar #0 $token data

Table 17-1 lists the options to http::geturl.

Table 17-1. Options to the http::geturl command

-binary
boolean

Specifies whether we should do a binary transfer of the data. (Tcl
8.3)

-blocksize num Block size when copying to a channel.

-channel
fileID

The fileID is an open file or socket. The URL data is copied to
this channel instead of saving it in memory.

-command
callback

Calls callback when the transaction completes. The token from
http::geturl is passed to callback.

-handler
command

Called from the event handler to read data from the URL.

-headers list The list specifies a set of headers that are included in the HTTP
request. The list alternates between header keys and values.

-progress
command

Calls command after each block is copied to a channel. It gets
called with three parameters:

command token totalsize currentsize

-query
codedstring

Issues a POST request with the codedstring form data.

-
queryblocksize
num

Block size when copying to the query channel.

-querychannel
fileID

The fileID is an open file or socket. The query data is copied
from this channel instead of passed in a string.

-queryprogress
command

Calls command after each block is copied from the query channel.
It gets called with three parameters:

command token totalsize currentsize

-timeout msec Aborts the request after msec milliseconds have elapsed.

-type mime-
type

Use mime-type as the Content-Type value during a POST
operation.

-validate bool If bool is true, a HEAD request is made.

Table 17-2 lists the access functions to the state array.

Table 17-2. The http support procedures

http::cleanup
$token

Unsets the state array named by $token.

http::code $token Returns state(http).

http::data $token Returns state(body).

http::error $token Returns state(error).

http::ncode $token Returns the numeric return code contained in
state(http).

http::size $token Return the number of bytes read from the URL so far.

http::status $token Returns state(status).

http::wait $token Blocks until the transaction completes.

The array elements are listed in Table 17-3:

Table 17-3. Elements of the http::geturl state array

body The contents of the URL.

charset The value of the charset attribute from the Content-Type meta-data
value. If none was specified, this defaults to the RFC standard
iso8859-1.

coding A copy of the Content-Encoding meta-data value.

currentsize The current number of bytes transferred.

error An explanation of why the transaction was aborted.

http The HTTP reply status.

meta A list of the keys and values in the reply header.

posterror An explanation of why the transaction was aborted when writing post
query data, if any.

status The current status: pending, ok, eof, or reset.

totalsize The expected size of the returned data.

type The content type of the returned data.

url The URL of the request.

You can take advantage of the asynchronous interface by specifying a command
that is called when the transaction completes. The callback is passed the token
returned from http::geturl so that it can access the transaction state:

http::geturl $url -command [list Url_Display $text $url]
proc Url_Display {text url token} {
 upvar #0 $token state
 # Display the url in text
}

You can have http::geturl copy the URL to a file or socket with the -channel
option. This is useful for downloading large files or images. In this case, you can get
a progress callback so that you can provide user feedback during the transaction.
Example 17-12 shows a simple downloading script:

Example 17-12 Downloading files with http::geturl

#!/usr/local/bin/tclsh8.4
if {$argc < 2} {
 puts stderr "Usage: $argv0 url file"
 exit 1
}
package require http
set url [lindex $argv 0]
set file [lindex $argv 1]
set out [open $file w]
proc progress {token total current} {
 puts -nonewline "."
}
http::config -proxyhost webcache.eng -proxyport 8080
set token [http::geturl $url -progress progress \
 -headers {Pragma no-cache} -channel $out]
close $out
Print out the return header information
puts ""
upvar #0 $token state
puts $state(http)
foreach {key value} $state(meta) {
 puts "$key: $value"
}
exit 0

http::formatQuery

If you specify form data with the -query option, then http::geturl does a POST
transaction. You need to encode the form data for safe transmission. The
http::formatQuery procedure takes a list of keys and values and encodes them in
x-www-url-encoded format. Pass this result as the query data:

http::formatQuery name "Brent Welch" title "Tcl Programmer"
=> name=Brent+Welch&title=Tcl+Programmer

http::register and http::unregister

The http::register procedure registers a protocol handler for URL protocols other
than HTTP. The http::unregister procedure removes the handler registration. The
primary application is to provide secure web access via HTTPS and the TLS
extension.

package require tls
http::register https 443 ::tls::socket
set token [http::geturl https://my.secure.site/]

http::reset

You can cancel an outstanding transaction with http::reset:

http::reset $token

This is done automatically when you setup a -timeout with http::config.

http::cleanup

When you are done with the data returned from http::geturl, use the
http::cleanup procedure to unset the state variable used to store the data.

Basic Authentication

Web pages are often password protected. The most common form of this uses a
protocol called Basic Authentication, which is not very strong, but easy to
implement. With this scheme, the server responds to an HTTP request with a 401
error status and a Www-Authenticate header, which specifies the authentication
protocol the server wants to use. For example, the server response can contain the
following information:

HTTP/1.0 401 Authorization Required
Www-Authenticate: Basic realm="My Pages"

The realm is meant to be an authentication domain. In practice, it is used in the
string that gets displayed to the user as part of the password prompt. For example,
a Web browser will display this prompt:

Enter the password for My Pages at www.beedub.com

After getting the user name and password from the user, the Web browser tries its
HTTP request again. This time it includes an Authorization header that contains
the user name and password encoded with base64 encoding. There is no encryption
at all ÿ anyone can decode the string, which is why this is not a strong form of
protection. The Standard Tcl Library includes a base64 package that has
base64::encode and base64::decode procedures. Example 17-13 illustrates the
Basic Authentication protocol. It uses the -headers option to http::geturl that
lets you pass additional headers in the request.

Example 17-13 Basic Authentication using http::geturl

package require base64
package require http
proc BasicAuthentication {url promptProc} {
 set token [http::geturl $url]
 http::wait $token
 if {[string match *401* [http::code $token]]} {
 upvar #0 $token data

 # Extract the realm from the Www-Authenticate line

 array set reply $data(meta)
 if {[regexp {realm=(.*)} $reply(Www-Authenticate) \
 x realm]} {

 # Call back to prompt for username, password

 set answer [$promptProc $realm]
 http::cleanup $token

 # Encode username:password and pass this in

 # the Authorization header

 set auth [base64::encode \
 [lindex $answer 0]:[lindex $answer 1]]
 set token [http::geturl $url -headers \
 [list Authorization "Basic $auth"]]
 http::wait $token
 }
 }
 return $token
}

Example 17-13 takes a promptProc argument that is the name of a procedure to
call to get the username and password. This procedure could display a Tk dialog
box, or prompt for user input from the terminal. In practice, you probably already
know the username and password. In this case, you can skip the initial
challengeÿresponse steps and simply supply the Authorization header on the first
request:

http::geturl $url -headers \
 [list Authorization \
 "Basic [base64::encode $username:$password]"]

Chapter 18. TclHttpd Web Server
This chapter describes TclHttpd, a Web server built entirely in Tcl. The Web server
can be used as a standalone server, or it can be embedded into applications to Web-
enable them. TclHttpd provides a Tcl+HTML template facility that is useful for
maintaining site-wide look and feel, and an Application Direct URL that invokes a Tcl
procedure in an application.

TclHttpd started out as about 175 lines of Tcl that could serve up HTML pages and
images. The Tcl socket and I/O commands make this easy, and the C language
implementation of the Tcl runtime library makes the server surprisingly fast. Of
course, there are lots of features in Web servers like Apache or Netscape that were
not present in the first prototype. Steve Uhler took my prototype, refined the HTTP
handling, and aimed to keep the basic server under 250 lines. I went the other
direction, setting up a modular architecture, adding in features found in other Web
servers, and adding some interesting ways to connect TclHttpd to Tcl applications.

Today TclHttpd is used both as a general-purpose Web server, and as a framework
for building server applications. It implements www.tcl.tk and a number of other
general purpose Web sites. It is also built into several commercial applications such
as license servers and mail spam filters. The server is freely available, just like Tcl
itself, and you can use it in any application without restriction or license fees.
Instructions for setting up the TclHttpd on your platform are given toward the end of
the chapter, on page 284. It works on Unix, Windows, and Macintosh. Using
TclHttpd, you can have your own Web server up and running quickly.

This chapter provides an overview of the server and several examples of how you
can use it. The chapter is not an exhaustive reference to every feature. Instead, it
concentrates on a very useful subset of server features that I use the most.

http://www.tcl.tk/default.htm

Integrating TclHttpd with Your Application

The bulk of this chapter describes the various ways you can extend the server and
integrate it into your application. TclHttpd is interesting because, as a Tcl script, it is
easy to add to your application. Suddenly your application has an interface that is
accessible to Web browsers in your company's intranet or the global Internet. The
Web server provides several ways you can connect it to your application:

Static pages ÿ As a "normal" Web server, you can serve static documents that
describe your application.

Domain handlers ÿ You can arrange for all URL requests in a section of your
Web site to be handled by your application. This is a very general interface
where you interpret what the URL means and what sort of pages to return to
each request. For example, http://www.tcl.tk/resource is implemented this
way. The URL past /resource selects an index in a simple database, and the
server returns a page describing the pages under that index.

Application Direct URLs ÿ This is a domain handler that maps URLs onto Tcl
procedures. The form query data that is part of the HTTP GET or POST request
is automatically mapped onto the parameters of the Application Direct
procedure. The procedure simply computes the page as its return value. This
is an elegant and efficient alternative to the CGI interface. For example, in
TclHttpd, the URLs under /status report various statistics about the Web
server's operation.

Document handlers ÿ You can define a Tcl procedure that handles all files of a
particular type. For example, the server has a handler for CGI scripts, HTML
files, image maps, and HTML+Tcl template files.

HTML+Tcl Templates ÿ These are Web pages that mix Tcl and HTML markup.
The server replaces the Tcl using the subst command and returns the result.
The server can cache the result in a regular HTML file to avoid the overhead of
template processing on future requests. Templates are a great way to maintain
the common look and feel to a family of Web pages, as well as to implement
more advanced dynamic HTML features like self-checking forms.

TclHttpd Architecture

You may find it helpful to read the code to learn more about the features of the
server. In this section, there are references to Tcl files in the source, which are in
the lib directory of the distribution that is on the CD-ROM.

Figure 18-1 shows the basic components of the server. At the core is the Httpd
module (httpd.tcl), which implements the server side of the HTTP protocol. The

http://www.tcl.tk/resource

"d" in Httpd stands for daemon, which is the name given to system servers on UNIX.
This module manages network requests, dispatches them to the Url module, and
provides routines used to return the results to requests.

Figure 18-1. The dotted box represents one application that
embeds TclHttpd. Document templates and Application Direct URLs

provide direct connections from an HTTP request to your
application. You can also implement completely custom URL

handlers.

The Url module (url.tcl) divides the Web site into domains, which are subtrees of
the URL hierarchy provided by the server. The idea is that different domains may
have completely different implementations. For example, the Document domain
(doc.tcl) maps its URLs into files and directories on your hard disk, while the
Application Direct domain (direct.tcl) maps URLs into Tcl procedure calls within
your application. The CGI domain (cgi.tcl) maps URLs onto other programs that
compute Web pages.

Adding Code to TclHttpd

The TclHttpd distribution, which is described in more detail starting at page 284, is
set up so you can easily add code for your application into the server. For simple
applications, you simply put your files into a special directory for custom code, and
the server loads them automatically upon startup. These files should define Tcl
procedures and register them as Domain Handlers, Direct URL handlers, or
Document handlers. Example 18-1 implements /hello/world:

Example 18-1 The hello.tcl file implements /hello/world

Direct_Url /hello Hello
proc Hello/world {} {
 return "Hello, World!"
}

Suppose you put that file into the directory /tmp/tclhttpd_test. Then you can
start the server like this:

tclsh8.3 bin/httpd.tcl -library /tmp/tclhttpd_test -debug 1

Now access this URL:

http://localhost:8015/hello/world

Custom Main Programs

The TclHttpd main program, bin/httpd.tcl, may conflict with the main program of
your existing application. For those applications that embed Tcl interpreters in a
more custom manner, you will need to modify bin/httpd.tcl for use with your
application. That script is not very big, and it is well-commented. The key elements
are the Httpd_Server call that opens the listening socket for the Web server, and
the vwait at the very end that activates the event loop. The rest is all about
argument parsing and initializing the various modules that support the server. It is
those aspects that may differ for your custom server application.

Domain Handlers

You can implement new kinds of domains that provide your own interpretation of a
URL. This is the most flexible interface available to extend the Web server. You
provide a callback that is invoked to handle every request in a domain, or subtree,
of the URL hierarchy. The callback interprets the URL, computes the page content,
and returns the data using routines from the Httpd module.

Example 18-2 defines a simple domain that always returns the same page to every
request. The domain is registered with the Url_PrefixInstall command. The
arguments to Url_PrefixInstall are the URL prefix and a callback that is called to
handle all URLs that match that prefix. In the example, all URLs that have the prefix
/simple are dispatched to the SimpleDomain procedure.

The SimpleDomain handler illustrates several properties of domain handlers. The
sock and suffix arguments to SimpleDomain are appended by Url_Dispatch when
it invokes the domain handler. The sock is the socket connection to the client. The
suffix parameter is the part of the URL after the prefix. For example, if the server
receives a request for the URL /simple/page, then the prefix is /simple and the
suffix is /page.

The prefix argument is defined when the callback is registered with
Url_PrefixInstall. You can specify whatever information you need to pass to the
domain handler. In this simple example, we probably don't need the prefix, but if
you implement several different URL domains with the same handler, then you can
pass in the prefix to distinguish them.

Example 18-2 A simple URL domain

Url_PrefixInstall /simple [list SimpleDomain /simple]

proc SimpleDomain {prefix sock suffix} {
 upvar #0 Httpd$sock data

 # Generate page header

 set html "<title>A simple page</title>\n"
 append html "<h1>$prefix$suffix</h1>\n"
 append html "<h1>Date and Time</h1>\n"
 append html [clock format [clock seconds]]

 # Display connection state

 append html "<h1>Connection State</h1>"
 append html [html::tableFromArray data border=1]

 # Display query data

 if {[info exist data(query)]} {
 append html "<h1>Query Data</h1>\n"
 append html [html::tableFromList [ncgi::nvlist] border=1]
 }
 Httpd_ReturnData $sock text/html $html
}

Connection State and Query Data

The sock parameter is a handle on the socket connection to the remote client. This
variable is also used to name a state variable that the Httpd module maintains
about the connection. The name of the state array is Httpd$sock. In some cases,
you may need access to this information, and the standard idiom is to use upvar to
get a more convenient name for this array (i.e., data):

upvar #0 Httpd$sock data

The html and ncgi Packages

The html package provides many procedures useful for generating fragments of
HTML. The html::tableFromArray procedure is used to dump out the connection
state in the data array. Its cousin, html::tableFromList, is used to dump out the
query data. The query data is obtained with the ncgi::nvlist procedure. TclHttpd
initializes the ncgi module so you can use ncgi::nvlist, ncgi::value, and other
procedures to access query data in your domain handlers. Note: it is not necessary
to call ncgi::parse as you would from a CGI script. The html package has some
other features, which are described later, that are very useful when generating
HTML forms. These packages are part of the Standard Tcl Library, tcllib, which can
be found along with Tcl and TclHttpd.

Returning Results

Finally, once the page has been computed, the Httpd_ReturnData procedure is used
to return the page to the client. This takes care of the HTTP protocol as well as
returning the data. There are three related procedures, Httpd_ReturnFile,
Httpd_Error, and Httpd_Redirect. These are summarized in Table 18-1 on page
277.

Application Direct URLs

The Application Direct domain implementation provides the simplest way to extend
the Web server. It hides the details associated with query data, decoding URL paths,
and returning results. All you do is define Tcl procedures that correspond to URLs.
Their arguments are automatically matched up to the query data, as shown in
Example 13-3 on page 189. The Tcl procedures compute a string that is the result
data, which is usually HTML. That's all there is to it.

The name of the Tcl procedure that implements an Application Direct URL is related
to the name of the URL. This way, TclHttpd can automatically look up the Tcl
procedure that should implement a given URL. The Tcl procedure name and the URL
have distinct prefixes, but the suffix is the same. For example, if the Tcl procedure
prefix is Demo and the URL prefix is /demo, then the Demo/time Tcl procedure
implements the /demo/time URL. The Direct_Url procedure sets up the
correspondence between the procedures and URLs. This is shown in Example 18-3:

Example 18-3 Application Direct URLs

Direct_Url /demo Demo
proc Demo {} {
 return "<html><head><title>Demo page</title></head>\n\
 <body><h1>Demo page</h1>\n\
 What time is it?\n\
 <form action=/demo/echo>\n\
 Data: <input type=text name=data>\n\

\n\
 <input type=submit name=echo value='Echo Data'>\n\
 </form>\n\
 </body></html>"
}
proc Demo/time {{format "%H:%M:%S"}} {
 return [clock format [clock seconds] -format $format]
}
proc Demo/echo {args} {
 # Compute a page that echoes the query data
 set html "<head><title>Echo</title></head>\n"
 append html "<body>"
 append html [html::tableFromList $args "border=1"]
 return $html
}

Example 18-3 defines /demo as an Application Direct URL domain that is
implemented by procedures that begin with Demo. There are just three URLs
defined:

/demo
/demo/time
/demo/echo

The /demo page displays a hypertext link to the /demo/time page and a simple form
that will be handled by the /demo/echo page. This page is static, so there is just one
return command in the procedure body. Each line of the string ends with:

\n\

This is just a formatting trick to let me indent each line in the procedure, without
having the line indented in the resulting string. Actually, the \-newline will be
replaced by one space, so each line will be indented one space. You can leave those
off and the page will display the same in the browser, but when you view the page
source, you'll see the indenting. Or you could not indent the lines in the string, but
then your code looks somewhat odd.

The /demo/time procedure just returns the result of clock format. It doesn't even
bother adding <html>, <head>, or <body> tags, which you can get away with in
today's browsers. A simple result like this is also useful if you are using programs to
fetch information via HTTP requests to your application.

Using Query Data

Application Direct URL handlers have their parameters automatically assigned to
values from the query data. Like any Tcl procedure, your Application Direct URL
procedure can have named parameters, named parameters with default values, and
the args parameter. The server matches the names of form values with names of
your procedure parameters in order to assign their values. There are three cases:

The name of the procedure parameter matches the name of a query data
item. The query value is assigned to the parameter.

The name of the procedure parameter does not appear in the query data. The
parameter is assigned the empty string or its default value, if it has one. The
/demo/time procedure is defined with an optional format argument. If a
format value is present in the query data, then it overrides the default value
given in the procedure definition.

The query data item does not match any of the parameters. If the procedure
has an args parameter as its last parameter, then the name and value of the
query data item are appended to the args value. Otherwise, the query value is
simply ignored. For example, the /demo/echo procedure's args parameter
gets filled in with a name-value list of all query data.

You can see that missing arguments or extra arguments do not cause errors. If you
want to do strict parameter checking, then just use args and check the name-value
query list yourself.

Here is another example to illustrate the different ways that form data is assigned to
procedure parameters. Suppose you have an Application Direct procedure declared
like this:

proc Demo/param { a b {c cdef} args} { body }

You could create an HTML form that had elements named a, b, and c, and specified
/demo/param for the ACTION parameter of the FORM tag. Or you could type the
following into your browser to embed the query data right into the URL:

/demo/param?a=5&b=7&c=red&d=%7ewelch&e=two+words

The ? separates the query data from the URL, and each query item is separated by
&. In this case, when your procedure is called, a is 5, b is 7, c is red, and the args
parameter becomes a list of:

d ~welch e {two words}

The %7e and the + are special codes for nonalphanumeric characters in the query
data. The + becomes a space, and the %xx sequence is replaced by the character
with character code xx (e.g., %7e becomes ~). Normally, this encoding is taken care
of automatically by the Web browser when it gets data from a form and passes it to
the Web server. However, if you type query data directly or format URLs with
complex query data in them, then you need to encode special values as we did here.
Use the Url_Encode procedure to encode URLs that you put into Web pages. The
Web server automatically decodes the values as it makes the assignments to the
Application Direct URL procedure parameters.

If a parameter does not match the query data, it gets its default value from the
procedure definition, or it gets the empty string. Consider this example:

/demo/param?b=5

In this case, a is "", b is 5, c is cdef, and args is an empty list.

Returning Other Content Types

The default content type for Application Direct URLs is text/html. You can specify
other content types by using a global variable with the same name as your
procedure. (Yes, this is a crude way to craft an interface.) Example 18-4 shows part
of the faces.tcl file that implements an interface to a database of picons ÿ
personal icons ÿ that is organized by user and domain names. The idea is that the
database contains images corresponding to your email correspondents. The
Faces_ByEmail procedure, which is not shown, looks up an appropriate image file.
The Application Direct procedure is Faces/byemail, and it sets the global variable
Faces/byemail to the correct Content-Type value based on the filename extension.
The mapping from extension to content type is implemented by the Mtype
procedure (mtype.tcl). MIME is the multimedia content standard for email, and it
originated the various content types now also used in HTTP, hence the term "MIME
type."

Example 18-4 Alternate types for Application Direct URLs

Direct_Url /faces Faces
proc Faces/byemail {email} {
 global Faces/byemail
 set filename [Faces_ByEmail $email]
 set Faces/byemail [Mtype $filename]
 set in [open $filename]
 fconfigure $in -translation binary
 set X [read $in]
 close $in
 return $X
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Document Types

The Document domain (doc.tcl) maps URLs onto files and directories. It provides
more ways to extend the server by registering different document type handlers.
You can make up new types to support your application. Example 18-5 shows the
pieces needed to create a handler for a fictitious document type
application/myjunk that is invoked to handle files with the .junk suffix. Use the
Mtype_Add procedure to register the mapping from file suffix to document type:

Example 18-5 A sample document type handler

Register the mapping from suffix to MIME type
Mtype_Add application/myjunk .junk

Define the document handler procedure
path is the name of the file on disk
suffix is part of the URL after the domain prefix
sock is the handle on the client connection

proc Doc_application/myjunk {path suffix sock} {
 upvar #0 Httpd$sock data
 # data(url) is more useful than the suffix parameter.

 # Use the contents of file $path to compute a page
 set contents [somefunc $path]

 # Determine your content type
 set type text/html

 # Return the page
 Httpd_ReturnData $sock $type $data
}

The server finds the document handler in a two-step process. First, the type of a file
is determined by its suffix. The mime.types file contains a map from suffixes to
MIME types such as text/html or image/gif. This map is controlled by the Mtype
module in mtype.tcl. Second, the server checks for a Tcl procedure with the
appropriate name:

Doc_mimetype

The matching procedure, if any, is called to handle the URL request. The procedure
should use routines in the Httpd module to return data for the request. If there is
no matching Doc_mimetype procedure, then the default document handler uses
Httpd_ReturnFile and specifies the Content Type based on the file extension. This
is the heart of the default document handler:

Httpd_ReturnFile $sock [Mtype $path] $path

As another example, the HTML+Tcl templates use the .tml suffix that is mapped to
the application/x-tcl-template type. You can find the document handler
Doc_application/x-tcl-template in doc.tcl. The TclHttpd distribution also
includes support for files with a .snmp extension that implements a template-based
Web interface to the Scotty SNMP Tcl extension.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

HTML + Tcl Templates

The template system uses HTML pages that embed Tcl commands and Tcl variable
references. The server replaces these using the subst command and returns the
results. The server comes with a general template system, but using subst is so
easy you could create your own template system. The TclHttpd template framework
has these components:

Each page.html can have a corresponding page.tml template file. This feature
is enabled with the Doc_CheckTemplates command in the server's
configuration file. Normally, the server returns the page.html file unless the
corresponding page.tml file has been modified more recently. In this case, the
server processes the template with subst, caches the result in the page.html
file, and returns the result.

A dynamic template (e.g., a form handler) must be processed each time it is
requested. If you put the Doc_Dynamic command into your page, it turns off
the caching of the result in the page.html page. The server responds to a
request for a page.html page by processing the page.tml page. Or you can
just reference the page.tml file directly and the server will always processes
the template.

The server creates a page global Tcl variable that has context about the page
being processed. Table 18-6 lists the elements of the page array.

The server initializes the env global Tcl variable with similar information, but in
the standard way for CGI scripts. Table 18-7 lists the elements of the env
array that are set by Cgi_SetEnv in cgi.tcl.

The server initializes the ncgi module so you can use the ncgi procedures to
access query data.

The server supports per-directory .tml files that contain Tcl source code.
These files are designed to contain procedure definitions and variable settings
that are shared among pages. The name of the file is simply ".tml", with
nothing before the period. This is a standard way to hide files in UNIX, but it
can be confusing to talk about the per-directory .tml files and the page.tml
templates that correspond to page.html pages. Before processing each
page.tml file, the server will source the .tml files in all directories leading
down to the directory containing the template file. The server compares the
modify time of these files against the template file and will process the
template if these .tml files are newer than the cached page.html file. So, by
modifying the .tml file in the root of your URL hierarchy, you invalidate all the
cached page.html files.

Where to Put Your Tcl Code

There are three places you can put the code of your application: directly in your
template pages, in the per-directory .tml files, or in the library directory. There are
pros and cons to each:

The library directory is where you should put most of your code. The library
directory is specified with the -library command line argument, and the
server loads all files in the library upon startup. The advantage of putting
procedure definitions in the library is that they are defined one time but
executed many times. This works well with the Tcl byte-code compiler. The
disadvantage is that if you modify procedures in these files, you have to
explicitly source them into the server for these changes to take effect. You can
restart the server, or you can use the /debug/source URL described on page
282 to reload source files into the running server.

The .tml files are best for variable definitions that you want to share among
pages in a directory, or as a staging area for procedures during development.
The advantage of putting code into the per-directory .tml files is that changes
are picked up immediately with no effort on your part. The server
automatically checks if these files are modified and sources them each time it
processes your templates. However, using .tml files tends to scatter your code
around the URL tree and can make it harder to maintain.

I try to put as little code as possible directly in my page.tml template files. It
is awkward to put lots of code there, and you cannot share procedures and
variable definitions easily with other pages. Instead, my goal is to have only
procedure calls in the template files, and put the procedure definitions
elsewhere. If you want control structures in your page, such as if and
foreach, you may want to use the version of those commands provided by the
html package, as described on page 277.

Templates for Site Structure

The next few examples show a simple template system used to maintain a common
"look and feel" across the pages of a site. The key to a successful template system
is a data structure that defines the structure of the site, and some procedures that
generate standard navigational HTML structure for your pages. Once you do this,
then you can easily add new pages by updating your data structure. The template
procedures automatically reformat your site to include the new pages. Example 18-6
shows a simple one-level site definition that is kept in the root .tml file. This
structure lists the title and URL of each page in the site:

Example 18-6 A one-level site structure

set site(pages) {
 Home /index.html
 "Ordering Computers"/ordering.html
 "New Machine Setup" /setup.html
 "Adding a New User" /newuser.html
 "Network Addresses" /network.html
}

Of course, your Web site is likely to have more pages and a more elaborate
structure. For example, you might have several main sections, each with a collection
of pages, or even a three-level hierarchy of pages. Example 18-7 shows another
simple data structure to define a two-level structure. The site(sections) variable
stores the names and URLs of the main sections. For each section, there is an
element of site that lists the pages in that section. Only the About section is shown
in the example:

Example 18-7 A two-level site structure

set site(sections) {
 About /about
 Products /products
 Support /support
}
set site(About) {
 Company company.html
 Contacts contacts.html
 Directions directions.html
}

In practice, you may want to include more information in your data structure to help
you generate HTML. For example, if you have graphics for the main sections, you
may need to record their size. Whatever you need, collect it into your data
structures and then generate the HTML from procedures. You can quickly give your
whole site a face lift with new graphics by changing the template procedures that
generate your pages. In contrast, if you hand-code all your pages, it can take
months instead of days.

Example 18-8 shows a sample template file for the one-level structure shown in
Example 18-6. Each page includes two commands, SitePage and SiteFooter, that
generate HTML for the navigational part of the page. Between these commands is
regular HTML for the page content:

Example 18-8 A HTML + Tcl template file

[SitePage "New Machine Setup"]
This page describes the steps to take when setting up a new
computer in our environment. See
[SiteLink "Ordering Computers"]
for instructions on ordering machines.

Unpack and setup the machine.
Use the Network control panel to set the IP address
and hostname.
<!-- Several steps omitted -->
Reboot for the last time.

[SiteFooter]

The SitePage procedure takes the page title as an argument. It generates HTML to
implement a standard navigational structure. Example 18-9 has a simple
implementation of SitePage:

Example 18-9 SitePage template procedure, version 1

proc SitePage {title} {
 global site
 set html "<html><head><title>$title</title></head>\n"
 append html "<body bgcolor=white text=black>\n"
 append html "<h1>$title</h1>\n"
 set sep ""
 foreach {label url} $site(pages) {
 append html $sep
 if {[string compare $label $title] == 0} {
 append html "$label"
 } else {
 append html "$label"
 }
 set sep " | "
 }
 return $html
}

The foreach loop that computes the simple menu of links turns out to be useful in
many places. Example 18-10 splits out the loop and uses it in a new version of
SitePage along with the SiteFooter procedure. This version of the templates
creates a left column for the navigation and a right column for the page content.
The example also puts a few more visual elements (e.g., page background color)
into the site array so you can easily maintain them:

Example 18-10 SiteMenu and SiteFooter template procedures

array set site {
 bg white
 fg black
 mainlogo /images/mainLogo.gif
}
proc SitePage {title} {
 global site
 set html "<html><head><title>$title</title></head>\n\
 <body bgcolor=$site(bg) text=$site(fg)>\n\

 <!-- Two Column Layout -->\n\
 <table cellpadding=0>\n\
 <tr><td>\n\
 <!-- Left Column -->\n\
 \n\
 \n\
 [SiteMenu
 $site(pages)]\n\
 \n\
 </td><td>\n\
 <!-- Right Column -->\n\
 <h1>$title</h1>\n\
 <p>\n"
 return $html
}
proc SiteFooter {} {
 global site
 set html "<p><hr>\n\
 [SiteMenu | $site(pages)]\n\
 <!-- Close Right Column -->\n\
 </td></tr></table>\n"
 return $html
}
proc SiteMenu {sep list} {
 global page
 set s ""
 set html ""
 foreach {label url} $list {
 if {[string compare $page(url) $url] == 0} {
 append html slabel
 } else {
 append html "slabel"
 }
 set s $sep
 }
 return $html
}

There are many other applications for "macros" that make repetitive HTML coding
chores easy. For example, take the SiteLink procedure call in Example 18-8.
Instead of hand-coding the <A> tag with the link to /ordering.html, the page uses
the SiteLink procedure to format the link with a consistent label for the link. Using
the procedure also means that the page will automatically get updated if you change
the URL associated with the ordering page by modifying site(pages). Example 18-
11 shows SiteLink:

Example 18-11 The SiteLink procedure

proc SiteLink {label} {
 global site
 array set map $site(pages)
 if {[info exist map($label)]} {

 return "$label"
 } else {
 return $label
 }
}

Using Variables for Important Site Information

Another useful feature of templates is the ability to embed variable references in
your pages. Instead of hard coding the sales phone number, or the current product
version number, or even the product name, you can put variables into your pages.
For example, SiteLink and SitePage take a parameter that is the page title.
Instead of hard coding your page titles, you could keep all of your page titles in an
array, and use array references everywhere. That puts all the text in one place and
makes it easy to change. The array definition would look something like this:

array set title {
 Home Home
 Order "Ordering Computers"
 Setup "New Machine Setup"
 AddUser "Adding a New User"
 Network "Network Addresses"
}

And the calls to SitePage or SiteLink could be made like this:

[SitePage $title(Order)]

The .tml pages are a good place to define the variables because the definitions are
shared by all pages in that directory, and in any subdirectories. Also, the definitions
in the per-directory .tml override any definitions that come from the top-level .tml
file at the root of your URL tree. Changing the definition of the variable in the .tml
file immediately updates all the pages that share it.

The main drawback to variable references is the clash with $ in pricing. If you put
$10 into a page.tml file, it will raise an error (unless the variable 10 is defined). It
turns out that you want to generate prices from some database anyway, so you
should avoid hard coding prices into your pages anyway. It is much better to put
[price T-shirt] or $price(T-shirt) into your page than $10, although if you
must do that, just quote the $ with a backslash, \$10.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Form Handlers

HTML forms and form-handling programs go together. The form is presented to the
user on the client machine. The form handler runs on the server after the user fills
out the form and presses the submit button. The form presents input widgets like
radiobuttons, checkbuttons, selection lists, and text entry fields. Each of these
widgets is assigned a name, and each widget gets a value based on the user's input.
The form handler is a program that looks at the names and values from the form
and computes the next page for the user to read.

CGI is a standard way to hook external programs to Web servers for the purpose of
processing form data. CGI has a special encoding for values so that they can be
transported safely. The encoded data is either read from standard input or taken
from the command line. The CGI program decodes the data, processes it, and writes
a new HTML page on its standard output. Chapter 3 describes writing CGI scripts in
Tcl.

TclHttpd provides alternatives to CGI that are more efficient because they are built
right into the server. This eliminates the overhead that comes from running an
external program to compute the page. Another advantage is that the Web server
can maintain state between client requests in Tcl variables. If you use CGI, you
must use some sort of database or file storage to maintain information between
requests.

Application Direct Handlers

The server comes with several built-in form handlers that you can use with little
effort. The /mail/forminfo URL will package up the query data and mail it to you.
You use form fields to set various mail headers, and the rest of the data is packaged
up into a Tcl-readable mail message. Example 18-12 shows a form that uses this
handler. Other built-in handlers are described starting at page 281.

Example 18-12 Mail form results with /mail/forminfo

<form action=/mail/forminfo method=post>
 <input type=hidden name=sendto value=mailreader@my.com>
 <input type=hidden name=subject value="Name and Address">
 <table>
 <tr><td>Name</td><td><input name=name></td></tr>
 <tr><td>Address</td><td><input name=addr1></td></tr>
 <tr><td> </td><td><input name=addr2></td></tr>
 <tr><td>City</td><td><input name=city></td></tr>
 <tr><td>State</td><td><input name=state></td></tr>
 <tr><td>Zip/Postal</td><td><input name=zip></td></tr>
 <tr><td>Country</td><td><input name=country></td></tr>
 </table>
</form>

The mail message sent by /mail/forminfo is shown in Example 18-13.

Example 18-13 Mail message sent by /mail/forminfo

To: mailreader@my.com
Subject: Name and Address

data {
 name {Joe Visitor}
 addr1 {Acme Company}
 addr2 {100 Main Street}
 city {Mountain View}
 state California
 zip 12345
 country USA
}

The email message is designed to be easily processed by a Tcl program. You can use
a mail processor like procmail to filter all mail with a given Subject or To field to a
program for processing. It is easy to write a script that strips the headers, defines a
data procedure, and uses eval to process the message body. Whenever you send
data via email, if you format it with Tcl list structure, you can process it quite easily.
The basic structure of such a mail reader procedure is shown in Example 18-14:

Example 18-14 Processing mail sent by /mail/forminfo

Assume the mail message is on standard input

set X [read stdin]

Strip off the mail headers, when end with a blank line
if {[regsub {.*?\n\ndata} $X {data} X] != 1} {
 error "Malformed mail message"
}
proc data {fields} {
 foreach {name value} $fields {
 # Do something
 }
}
Process the message.
eval $X

The raw eval in the mail handler is dangerous. It will be fine if the only source of
email to that program is the /mail/forminfo URL handler. However, an attacker
could send you an email that results in arbitrary Tcl commands being evaluated by
your mail processor. The safe way to process the email is with a safe interpreter,
which is described in Chapter 19. Example 18-15 adds just a few commands to
create a safe interpreter for processing the incoming data. The data command is
evaluated in the trusted interpreter by the alias mechanism. All other commands in

the email are evaluated in the safe interpreter, and any malicious commands simply
raise Tcl errors but cause no harm:

Example 18-15 Processing mail sent by /mail/forminfo, Safe-Tcl
version

Assume the mail message is on standard input

set X [read stdin]

Strip off the mail headers, when end with a blank line
if {[regsub {.*?\n\ndata} $X {data} X] != 1} {
 error "Malformed mail message"
}
proc data {fields} {
 foreach {name value} $fields {
 # Do something
 }
}
Create the safe interpreter
set i [interp create -safe]

Link the data command in the safe interpreter to the
data procedure in this interpreter
interp alias $i data {} data

Process the message in the safe interpreter
interp eval $i $X

Template Form Handlers

The drawback of using Application Direct URL form handlers is that you must modify
their Tcl implementation to change the resulting page. Another approach is to use
templates for the result page that embed a command that handles the form data.
The Mail_FormInfo procedure, for example, mails form data. It takes no
arguments. Instead, it looks in the query data for sendto and subject values, and
if they are present, it sends the rest of the data in an email. It returns an HTML
comment that flags that mail was sent.

When you use templates to process form data, you need to turn off result caching
because the server must process the template each time the form is submitted. To
turn off caching, embed the Doc_Dynamic command into your form handler pages,
or set the page(dynamic) variable to 1. Alternatively, you can simply post directly to
the file.tml page instead of to the file.html page.

Self-Posting Forms

This section illustrates a self-posting form. This is a form on a page that posts the
form data to back to the same page. The page embeds a Tcl command to check its
own form data. Once the data is correct, the page triggers a redirect to the next
page in the flow. This is a powerful technique that I use to create complex page
flows using templates. Of course, you need to save the form data at each step. You
can put the data in Tcl variables, use the data to control your application, or store it
into a database. TclHttpd comes with a Session module, which is one way to
manage this information. For details, you should scan the session.tcl file in the
distribution.

Example 18-16 shows the Form_Simple procedure that generates a simple self-
checking form. Its arguments are a unique ID for the form, a description of the form
fields, and the URL of the next page in the flow. The field description is a list with
three elements for each field: a required flag, a form element name, and a label to
display with the form element:

Example 18-16 A self-checking form procedure

proc Form_Simple {id fields nextpage} {
 global page
 if {![html::varEmpty formid]} {
 # Incoming form values, check them
 set check 1
 } else {
 # First time through the page
 set check 0
 }
 set html "<!-- Self-posting. Next page is $nextpage -->\n"
 append html "<form action=\"$page(url)\" method=post>\n"
 append html "<input type=hidden name=formid value=$id>\n"
 append html "<table border=1>\n"
 foreach {required key label} $fields {
 append html "<tr><td>"
 if {$check && $required && [html::varEmpty $key]} {
 lappend missing $label
 append html "*"
 }
 append html "</td><td>$label</td>\n"
 append html "<td><input [html::formValue $key]></td>\n"
 append html "</tr>\n"
 }
 append html "</table>\n"
 if {$check} {
 if {![info exist missing]} {

 # No missing fields, so advance to the next page.
 # In practice, you must save the existing fields
 # at this point before redirecting to the next page.

 Doc_Redirect $nextpage
 } else {

 set msg "Please fill in "
 append msg [join $missing ", "]
 append msg ""
 set html <p>$msg\n$html
 }
 }
 append html "<input type=submit>\n</form>\n"
 return $html
}

The Form_Simple procedure does two things at once: it computes the HTML form,
and it also checks if the required fields are present. It uses some procedures from
the html module to generate form elements that retain values from the previous
page. If all the required fields are present, then it triggers a redirect by calling
Doc_Redirect. Example 18-17 shows a page template that calls Form_Simple with
the required field description:

Example 18-17 A page with a self-checking form

<html><head>
 <title>Name and Address Form</title>
</head>
<body bgcolor=white text=black>
 <h1>Name and Address</h1>
 Please enter your name and address.
 [Form_Simple nameaddr {
 1 name "Name"
 1 addr1 "Address"
 0 addr2" "Address"
 1 city "City"
 0 state "State"
 1 zip "Zip Code"
 0 country "Country"
 } nameok.html]
</body></html>

The html Package

The Standard Tcl Library, tcllib, includes an html package that is designed to support
page generation and self-posting forms. The html package works in conjunction
with the ncgi package, which was introduced in Chapter 3. The Form_Simple
procedure uses html::varEmpty to test if particular form values are present in the
query data. For example, it tests to see whether the formid field is present so that
the procedure knows whether or not to check for the rest of the fields. The
html::formValue procedure is useful for constructing form elements on self-posting
form pages. It returns:

name="name" value="value"

The value is the value of form element name based on incoming query data, or just
the empty string if the query value for name is undefined. As a result, the form can
post to itself and retain values from the previous version of the page. It is used like
this:

<input type=text [html::formValue name]>

The html::checkValue and html::radioValue procedures are similar to
html::formValue, but are designed for checkbuttons and radio buttons. The
html::select procedure formats a selection list and highlights the selected values.

The html package includes a versions of foreach and if that are designed for use
in templates. These commands perform a subst on their body instead of evaluating
it. This lets you put HTML with variable and command references into the body to
build up results. Example 18-18 shows the html::foreach procedure used to
generate a table with several rows. Note that you don't have to worry about the $ in
the prices because they are inside the braces of the html::foreach value list:

Example 18-18 Generating a table with html::foreach

<TABLE BORDER=1>
[html::foreach {product price} {
 T-Shirt $10.00
 YoYo $7.50
 Footbag $15.00
} {
 <TR>
 <TD>$product</TD>
 <TD ALIGN=RIGHT>$price</TD>
 </TR>
}
</TABLE>

Programming Reference

This section summarizes many of the more useful functions defined by the server.
These tables are not complete, however. You are encouraged to read through the
code to learn more about the features offered by the server. A simple naming
convention is used to distinguish procedures that are private to a file (e.g.,
HttpdEvent) and procedures that are meant to be used by other modules or by the
main application (e.g., Httpd_Server). The underscore after the module prefix
indicates that the procedure is public.

This section does not detail the ncgi and html packages, which are quite useful to
the TclHttpd programmer. There are doc files that come with tcllib, and you can find
man pages for the tcllib packages in the www.tcl.tk manual section.

Table 18-1 shows Httpd functions used when returning pages to the client.

Table 18-1. Httpd support procedures

Httpd_Error sock
code

Returns a simple error page to the client. The code is a
numeric error code such as 404 or 500.

Httpd_ReturnData
sock type data

Returns a page with Content-Type type and content data.

Httpd_ReturnFile
sock type file

Returns a file with Content-Type type.

Httpd_Redirect
newurl sock

Generates a 302 error return with a Location of newurl.

Httpd_SelfUrl url Expands url to include the proper http://server:port
prefix to reference the current server.

Table 18-2 summarizes a few useful procedures provided by the Url module
(url.tcl). The Url_DecodeQuery is used to decode query data into a Tcl-friendly
list. The Url_Encode procedure is useful when encoding values directly into URLs.
URL encoding is discussed in more detail on page 262

Table 18-2. Url support procedures

http://www.tcl.tk/default.htm

Url_DecodeQuery
query

Decodes a www-url-encoded query string and returns a name,
value list. Depreciated. This is equivalent to ncgi::nvlist,
which takes no arguments.

Url_Encode value Returns value encoded according to the www-url-encoded
standard.

Url_PrefxInstall
prefix handler ?
-thread bool? ?-
callback cmd? ?-
readpost bool?

Registers handler as the handler for all URLs that begin with
prefix. The handler is invoked with two additional arguments:
sock, the handle to the client, and suffix, the part of the URL
after prefix. Use -thread 1 to have the handler run in a
worker thread. Use -callback cmd to register a callback
invoked at the very end of URL processing. Use -readpost 0 to
disable pre-reading post data.

The Doc module procedures for configuration are listed in Table 18-3.

Table 18-3. Doc procedures for configuration

Doc_Root ?
directory?

Sets or queries the directory that corresponds to the root
of the URL hierarchy.

Doc_AddRoot virtual
directory

Maps the file system directory into the URL subtree
starting at virtual.

Doc_ErrorPage file Specifies a file relative to the document root used as a
simple template for error messages. This is processed by
DocSubstSystem file in doc.tcl.

Doc_CheckTemplates
how

If how is 1, then .html files are compared against
corresponding .tml files and regenerated, if necessary.

Doc_IndexFile
pattern

Registers a file name pattern that will be searched for the
default index file in directories.

Doc_NotFoundPage
file

Specifies a file relative to the document root used as a
simple template for page not found messages. This is
processed by DocSubstSystem file in doc.tcl.

Doc_PublicHtml
dirname

Defines the directory used for each user's home directory.
When a URL such as ~user is specified, the dirname under
their home directory is accessed.

Doc_TemplateLibrary
directory

Adds directory to the auto_path so that the source files in
it are available to the server.

Doc_TemplateInterp
interp

Specifies an alternate interpreter in which to process
document templates (i.e., .tml files.)

Doc_Webmaster ?
email?

Sets or queries the email for the Webmaster.

The Doc module procedures for generating results are listed in Table 18-4

Table 18-4. Doc procedures for generating responses

Doc_Error
sock
errorInfo

Generates a 500 response on sock based on the template
registered with Doc_ErrorPage. errorInfo is a copy of the Tcl error
trace after the error.

Doc_NotFound
sock

Generates a 404 response on sock by using the template registered
with Doc_NotFoundPage.

Doc_Subst
sock file ?
interp?

Performs a subst on the file and return the resulting page on sock.
interp specifies an alternate Tcl interpreter.

The Doc module also provides procedures for cookies and redirects that are useful in
document templates. These are described in Table 18-5.

Table 18-5. Doc procedures that support template processing

Doc_Coookie name Returns the cookie name passed to the server for this
request, or the empty string if it is not present.

Doc_Dynamic Turns off caching of the HTML result. Meant to be called
from inside a page template.

Doc_IsLinkToSelf url Returns 1 if the url is a link to the current page.

Doc_Redirect newurl Raises a special error that aborts template processing
and triggers a page redirect to newurl.

Doc_SetCookie -name
name -value value -path
path -domain domain -
expires date

Sets cookie name with the given value that will be
returned to the client as part of the response. The path
and domain restrict the scope of the cooke. The date
sets an expiration date.

Table 18-6 shows the initial elements of the page array that are defined during the
processing of a template.

Table 18-6. Elements of the page array

query The decoded query data in a name, value list. Also available through
ncgi.

dynamic If 1, the results of processing the template are not cached in the
corresponding .html file.

filename The file system pathname of the requested file (e.g.,
/usr/local/htdocs/tclhttpd/index.html).

template The file system pathname of the template file (e.g.,
/usr/local/htdocs/tclhttpd/index.tml).

url The part of the URL after the server name (e.g., /tclhttpd/index.tml).

root A relative path from the template file back to the root of the URL tree.

Table 18-7 shows the elements of the env array. These are defined during CGI
requests, Application Direct URL handlers, and page template processing:

Table 18-7. Elements of the env array

AUTH_TYPE Authentication protocol (e.g., Basic).

CONTENT_LENGTH The size of the query data.

CONTENT_TYPE The type of the query data.

DOCUMENT_ROOT File system pathname of the document root.

GATEWAY_INTERFACE Protocol version, which is CGI/1.1.

HTTP_ACCEPT The Accept headers from the request.

HTTP_AUTHORIZATION The Authorization challenge from the request.

HTTP_COOKIE The cookie from the request.

HTTP_FROM The From: header of the request.

HTTP_REFERER The Referer indicates the previous page.

HTTP_USER_AGENT An ID string for the Web browser.

PATH_INFO Extra path information after the template file.

PATH_TRANSLATED The extra path information appended to the document root.

QUERY_STRING The form query data.

REMOTE_ADDR The client's IP address.

REMOTE_USER The remote user name specified by Basic authentication.

REQUEST_METHOD GET, POST, or HEAD.

REQUEST_URI The complete URL that was requested.

SCRIPT_NAME The name of the current file relative to the document root.

SERVER_NAME The server name, e.g., www.beedub.com.

SERVER_PORT The server's port, e.g., 80.

SERVER_PROTOCOL The protocol (e.g., http or https).

SERVER_SOFTWARE A software version string for the server.

Standard Application Direct URLs

The server has several modules that provide Application Direct URLs. These
Application Direct URLs let you control the server or examine its state from any Web
browser. You can look at the implementation of these modules as examples for your
own application.

Status

The /status URL is implemented in the status.tcl file. The status module
implements the display of hit counts, document hits, and document misses (i.e.,
documents not found). The Status_Url command enables the Application Direct
URLs and assigns the top-level URL for the status module. The default configuration
file contains this command:

Status_Url /status

Table 18-8 shows the URLs implemented by the status module:

Table 18-8. Status Application Direct URLs

/status Main status page showing summary counters and hit count
histograms.

/status/doc Shows hit counts for each page. This page lets you sort by
name or hit count, and limit files by patterns.

/status/domain Shows hit counts for each domain in the server.

/status/hello A trivial URL that returns "hello".

/status/notfound Shows miss counts for URLs that users tried to fetch.

/status/size Displays an estimated size of Tcl code and Tcl data used by the
TclHttpd program.

/status/text This is a version of the main status page that doesn't use the
graphical histograms of hit counts.

Debugging

The /debug URL is implemented in the debug.tcl file. The debug module has
several useful URLs that let you examine variable values and other internal state. It
is turned on with this command in the default configuration file:

Debug_Url /debug

Table 18-9 lists the /debug URLs. These URLs often require parameters that you can
specify directly in the URL. For example, the /debug/echo URL echoes its query
parameters:

http://yourserver:port/debug/echo?name=value&name2=val2

Note: The debug URL is active in the default configuration. If it makes you nervous,
then delete the call to Debug_Url from the httpdthread.tcl file.

The sample URL tree that is included in the distribution includes the file
htdocs/hacks.html. This file has several small forms that use the /debug URLs to
examine variables and source files. It may seem dangerous to have these facilities,
but I reason that because my source directories are under my control, it cannot hurt
to reload any source files. In general, the library scripts contain only procedure
definitions and no global code that might reset state inappropriately. In practice, the
ability to tune (i.e., fix bugs) in the running server has proven useful to me on many
occasions. It lets you evolve your application without restarting it!

Table 18-9. Debug Application Direct URLs

/debug/after Lists the outstanding after events.

/debug/dbg Connects to TclPro Debugger. This takes a host and port
parameter. You need to install prodebug.tcl from TclPro into
the server's script library directory.

/debug/echo Echoes its query parameters. Accepts a title parameter.

/debug/errorInfo Displays the errorInfo variable along with the server's version
number and Webmaster email. Accepts title and errorInfo
arguments.

/debug/parray Displays a global array variable. The name of the variable is
specified with the aname parameter.

/debug/pvalue A more general value display function. The name of the variable
is specified with the aname parameter. This can be a variable
name, an array name, or a pattern that matches several
variable names.

/debug/raise Raises an error (to test error handling). Any parameters
become the error string.

/debug/source Sources a file from either the server's main library directory or
the Doc_TemplateLibrary directory. The file is specified with
the source parameter.

Example 18-19 shows the implementation of /debug/source. You can see that it
limits the files to the main script library and to the script library associated with
document templates.

Example 18-19 The /debug/source Application Direct URL
implementation

proc Debug/source {source} {
 global Httpd Config errorInfo
 set source [file tail $source]
 set dirlist $Httpd(library) ;# TclHttpd implementation
 lappend dirlist $Config(lib) ;# Application custom code
 foreach dir $dirlist {
 set file [file join $dir $source]
 if {[file exists $file]} break
 }
 set error [catch {uplevel #0 [list source $file]} result]
 set html "<title>Source $source</title>\n"
 if {$error} {
 append html "<H1>Error in $source</H1>\n"
 append html "<pre>$result<p>$errorInfo</pre>"
 } else {
 append html "<H1>Reloaded $source</H1>\n"
 append html "<pre>$result</pre>"
 }
 return $html
}

Sending Email

The /mail URL is implemented in the mail.tcl file. The mail module implements
various form handlers that email form data. Currently, it is UNIX-specific because it

uses /usr/lib/sendmail to send the mail. It is turned on with this command in the
default configuration file:

Mail_Url /mail

The Application Direct URLs shown in Table 18-10 are useful form handlers. You can
specify them as the ACTION parameter in your <FORM> tags. The mail module
provides two Tcl procedures that are generally useful. The MailInner procedure is
the one that sends mail. It is called like this:

Table 18-10. Application Direct URLS that email form results

/mail/bugreport Sends email with the errorInfo from a server error. It takes an
email parameter for the destination address and an errorInfo
parameter. Any additional arguments get included into the
message.

/mail/forminfo Sends email containing form results. It requires these
parameters: sendto for the destination address, subject for the
mail subject, href and label for a link to display on the results
page. Any additional arguments are formatted with the Tcl list
command for easy processing by programs that read the mail.

/mail/formdata This is an older form of /mail/forminfo that doesn't format the
data into Tcl lists. It requires only the email and subject
parameters. The rest are formatted into the message body.

MailInner sendto subject from type body

The sendto and from arguments are email addresses. The type is the MIME type
(e.g., text/plain or text/html) and appears in a Content-Type header. The body
contains the mail message without any headers.

The Mail_FormInfo procedure is designed for use in HTML+Tcl template files. It
takes no arguments but instead looks in current query data for its parameters. It
expects to find the same arguments as the /mail/forminfo direct URL. Using a
template with Mail_FormInfo gives you more control over the result page than
posting directly to /mail/forminfo, and is illustrated in Example 18-12 on page
272.

The TclHttpd Distribution

Get the TclHttpd distribution from the CD-ROM, or find it on the Internet at:

ftp://ftp.tcl.tk/pub/tcl/httpd/

http://www.tcl.tk/software/tclhttpd/

http://www.sourceforge.net/projects/tclhttpd

Quick Start

Unpack the tar file or the zip file, and you can run the server from the httpd.tcl
script in the bin directory. On UNIX:

tclsh bin/httpd.tcl -port 80

This command will start the Web server on the standard port (80). On UNIX, you
need to be root to run a server on this port. By default TclHttpd uses port 8015
instead. If you run it with the -help flag, it will tell you what command line options
are available. If you use wish instead of tclsh, then a simple Tk user interface is
displayed that shows how many hits the server is getting.

On Windows, you can double-click the httpd.tcl script to start the server. It will
use wish and display the user interface. Again it will start on port 8015. You will
need to create a shortcut that passes the -port argument, or edit the associated
configuration file to change this. Configuring the server is described later.

Once you have the server running, you can connect to it from your Web browser.
Use this URL if you are running on the default (nonstandard) port:

http://hostname:8015/

If you are running without a network connection, you may need to specify
127.0.0.1 for the hostname. This is the "localhost" address and will bypass the
network subsystem.

http://127.0.0.1:8015/

Inside the Distribution

The TclHttpd distribution is organized into the following directories:

ftp://ftp.tcl.tk/pub/tcl/httpd/default.htm
http://www.tcl.tk/software/tclhttpd/default.htm
http://www.sourceforge.net/projects/tclhttpd

bin ÿ This has sample start-up scripts and configuration files. The httpd.tcl
script runs the server. The tclhttpd.rc file is the standard configuration file.

bin/mini ÿ This has a few tiny versions of the server that provide a basic
server in about 300 lines of code. Use these as a starting point by modifying
the HttpdRespond procedure.

bin/test ÿ This has a number of test scripts, including the torture.tcl file
that can fetch many URLs at once from a server.

certs ÿ This has sample certificates you can use to test a secure server for
https URLs. If you have your own server certificates, put the server.pem file
here.

config ÿ This contains autoconf support used by C extensions you can build
with the server.

custom ÿ This is where you put your own custom code. Files here are
automatically loaded by the server on startup. This contains a few samples.

doc ÿ This has a UNIX-style manual page for how to run the server.

htaccess ÿ This has sample access control files.

htdocs ÿ This is a sample URL tree that demonstrates the features of the Web
server. There is also some documentation there. One directory to note is
htdocs/libtml, which is the standard place to put site-specific Tcl scripts used
with the Tcl+HTML template facility.

lib ÿ This has all the Tcl sources. In general, each file provides a package.
You will see the package require commands partly in bin/httpd.tcl and
partly in bin/httpdthread.tcl.

src ÿ There are a few C source files for a some optional packages. These
have been precompiled for some platforms, and you can find the compiled
libraries under src/Solaris and src/Linux.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Server Configuration

TclHttpd configures itself with two main steps: setting configuration parameters and
loading packages. The configuration step uses a configuration file and command line
arguments to set basic configuration parameters. The default configuration file is
named tclhttpd.rc in the same directory as the start-up script (i.e.,
bin/tclhttpd.rc). Specify an alternate configuration file with the -config
command line argument. You can override the configuration file with additional
command line arguments, which are described in Table 18-11. The configuration
values from the file and the command line are copied into the Config Tcl array.

Package loading is split into two parts. The main bin/httpd.tcl script loads some
core packages. The rest are loaded in the bin/httpdthread.tcl script. The reason
for the split is to try to isolate the core of the server from application-specific
functions. In addition, in the threaded version of the server, every thread loads and
runs the bin/httpdthread.tcl script. You can specify an alternate package loading
script with the -main command line argument.

For example, to start the server for the document tree under /usr/local/htdocs
and your own email address as Webmaster, you can execute this command to start
the server:

tclsh httpd.tcl -docRoot /usr/local/htdocs -webmaster welch

If you are using the Tclkit version described in Chapter 22:

tclkit tclhttpd.kit -docRoot /usr/local/htdocs -webmaster welch

Alternatively, you can put these settings into a configuration file, and start the
server with that configuration file:

tclsh httpd.tcl -config mytclhttpd.rc

Command Line Arguments

There are several parameters you may need to set for a standard Web server. These
are shown below in Table 18-11. The command line values are mapped into the
Config array by the httpd.tcl startup script.

Table 18-11. Basic TclHttpd parameters

Parameter Command
Option Config Variable

Parameter Command
Option Config Variable

Port number. The default is 8015. -port
number

Config(port)

Server name. The default is [info hostname]. -name name Config(name)

IP address. The default is 0, for "any address". -ipaddr
address

Config(ipaddr)

Directory of the root of the URL tree. The default
is the htdocs directory.

-docRoot
directory

Config(docRoot)

User ID of the TclHttpd process. The default is
50. (UNIX only.)

-uid uid Config(uid)

Group ID of the TclHttpd process. The default is
100. (UNIX only.)

-gid gid Config(gid)

Webmaster email. The default is webmaster. -webmaster
email

Config(webmaster)

Configuration file. The default is tclhttpd.rc. -config
filename

Config(file)

Directory containing custom code. The server
loads all files found in this directory.

-library
directory

Config(library)

Server Name and Port

The name and port parameters define how your server is known to Web browsers.
The URLs that access your server begin with:

http://name:port/

If the port number is 80, you can leave out the port specification. The call that
starts the server using these parameters is found in httpd.tcl as:

Httpd_Server $Config(name) $Config(port) $Config(ipaddr)

Specifying the IP address is necessary only if you have several network interfaces
(or several IP addresses assigned to one network interface) and want the server to
listen to requests on a particular network address. Otherwise, by default, the server
accepts requests from any network interface.

User and Group ID

The user and group IDs are used on UNIX systems with the setuid and setgid
system calls. This lets you start the server as root, which is necessary to listen on
port 80, and then switch to a less privileged user account. If you use Tcl+HTML
templates that cache the results in HTML files, then you need to pick an account
that can write those files. Otherwise, you may want to pick a very unprivileged
account.

The setuid function is available through the TclX (Extended Tcl) id command, or
through a setuid extension distributed with TclHttpd under the src directory. If
either of these facilities is not available, then the attempt to change user ID
gracefully fails. See the README file in the src directory for instructions on compiling
and installing the extensions found there.

Webmaster Email

The Webmaster email address is used for automatic error reporting in the case of
server errors. This is defined in the configuration file with the following command:

Doc_Webmaster $Config(webmaster)

If you call Doc_Webmaster with no arguments, it returns the email address you
previously defined. This is useful when generating pages that contain mailto: URLs
with the Webmaster address.

Document Root

The document root is the directory that contains the static files, templates, CGI
scripts, and so on that make up your Web site. By default, the httpd.tcl script uses
the htdocs directory next to the directory containing httpd.tcl. It is worth noting the
trick used to locate this directory:

file join [file dirname [info script]] ../htdocs

The info script command returns the full name of the http.tcl script, file
dirname computes its directory, and file join finds the adjacent directory. The
path ../htdocs works with file join on any platform. The default location of the
configuration file is found in a similar way:

file join [file dirname [info script]] tclhttpd.rc

The configuration file initializes the document root with this call:

Doc_Root $Config(docRoot)

If you need to find out what the document root is, you can call Doc_Root with no
arguments and it returns the directory of the document root. If you want to add
additional document trees into your Web site, you can do that with a call like this in
your configuration file:

Doc_AddRoot directory urlprefix

Other Document Settings

The Doc_IndexFile command sets a pattern used to find the index file in a
directory. The command used in the default configuration file is:

Doc_IndexFile index.{htm,html,tml,subst}

If you invent other file types with different file suffixes, you can alter this pattern to
include them. This pattern will be used by the Tcl glob command.

The Doc_PublicHtml command is used to define "home directories" on your HTML
site. If the URL begins with ~username, then the Web server will look under the
home directory of the user for a particular directory. The command in the default
configuration file is:

Doc_PublicHtml public_html

For example, if my home directory is /home/welch, then the URL ~welch maps to
the directory /home/welch/public_html. If there is no Doc_PublicHtml command,
then this mapping does not occur.

You can register two special pages that are used when the server encounters an
error and when a user specifies an unknown URL. The default configuration file has
these commands:

Doc_ErrorPage error.html
Doc_NotFoundPage notfound.html

These files are treated like templates in that they are passed through subst in order
to include the error information or the URL of the missing page. These are pretty
crude templates compared to the templates described earlier. You can count only on
the Doc and Httpd arrays being defined. Look at the Doc_SubstSystemFile in
doc.tcl for the truth about how these files are processed.

Document Templates

The template mechanism has two main configuration options. The first specifies an
additional library directory that contains your application-specific scripts. This lets

you keep your application-specific files separate from the TclHttpd implementation.
The command in the default configuration file specifies the libtml directory of the
document tree:

Doc_TemplateLibrary [file join $Config(docRoot) libtml]

You can also specify an alternate Tcl interpreter in which to process the templates.
The default is to use the main interpreter, which is named {} according to the
conventions described in Chapter 19.

Doc_TemplateInterp {}

Log Files

The server keeps standard format log files. The Log_SetFile command defines the
base name of the log file. The default configuration file uses this command:

Log_SetFile /tmp/log$Config(port)_

By default, the server rotates the log file each night at midnight. Each day's log file
is suffixed with the current date (e.g., /tmp/logport_990218.) The error log,
however, is not rotated, and all errors are accumulated in /tmp/logport_error.

The log records are normally flushed every few minutes to eliminate an extra I/O
operation on each HTTP transaction. You can set this period with
Log_FlushMinutes. If minutes is 0, the log is flushed on every HTTP transaction.
The default configuration file contains:

Log_FlushMinutes 1

CGI Directories

You can register a directory that contains CGI programs with the Cgi_Directory
command. This command has the interesting effect of forcing all files in the
directory to be executed as CGI scripts, so you cannot put normal HTML files there.
The default configuration file contains:

Cgi_Directory /cgi-bin

This means that the cgi-bin directory under the document root is a CGI directory.
If you supply another argument to Cgi_Directory, then this is a file system
directory that gets mapped into the URL defined by the first argument. You can also
put CGI scripts into other directories and use the .cgi suffix to indicate that they
should be executed as CGI scripts.

The cgi.tcl file has some additional parameters that you can tune only by setting
some elements of the Cgi Tcl array. See the comments in the beginning of that file
for details.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 19. Multiple Interpreters and Safe-Tcl
This chapter describes how to create more than one Tcl interpreter in your
application. A child interpreter can be made safe so that it can execute untrusted
scripts without compromising your application or your computer. Command aliases,
hidden commands, and shared I/O channels enable communication among
interpreters. Tcl command described is: interp.

Safe-Tcl was invented by Nathaniel Borenstein and Marshall Rose so that they could
send Tcl scripts via email and have the recipient safely execute the script without
worry of viruses or other attacks. Safe-Tcl works by removing dangerous commands
like exec and open that would let an untrusted script damage the host computer.
You can think of this restricted interpreter as a "padded cell" in which it is safe to
execute untrusted scripts. To continue the analogy, if the untrusted code wants to
do anything potentially unsafe, it must ask permission. This works by adding
additional commands, or aliases, that are implemented by a different Tcl interpreter.
For example, a safeopen command could be implemented by limiting file space to a
temporary directory that is deleted when the untrusted code terminates.

The key concept of Safe-Tcl is that there are two Tcl interpreters in the application, a
trusted one and an untrusted (or "safe") one. The trusted interpreter can do
anything, and it is used for the main application (e.g., the Web browser or email
user interface). When the main application receives a message containing an
untrusted script, it evaluates that script in the context of the untrusted interpreter.
The restricted nature of the untrusted interpreter means that the application is safe
from attack. This model is much like user mode and kernel mode in a multiuser
operating system like UNIX or Windows/NT. In these systems, applications run in
user mode and trap into the kernel to access resources like files and the network.
The kernel implements access controls so that users cannot read and write each
other's files, or hijack network services. In Safe-Tcl the application implements
access controls for untrusted scripts.

The dual interpreter model of Safe-Tcl has been generalized in Tcl 7.5 and made
accessible to Tcl scripts. A Tcl script can create other interpreters, destroy them,
create command aliases among them, share I/O channels among them, and
evaluate scripts in them.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The interp Command

The interp command is used to create and manipulate interpreters. The interpreter
being created is called a slave, and the interpreter that creates it is called the
master. The master has complete control over the slave. The interp command is
summarized in Table 19-1.

Table 19-1. The interp command

interp aliases slave Lists aliases that are defined in slave.

interp alias slave cmd1 Returns target command and arguments for the
alias cmd1 in slave.

interp alias slave cmd1
master cmd2 arg ...

Defines cmd1 in slave that is an alias to cmd2 in
master with additional args.

interp create ?-safe? slave Creates an interpreter named slave.

interp delete slave Destroys interpreter slave.

interp eval slave cmd args
...

Evaluates cmd and args in slave.

interp exists slave Returns 1 if slave is an interpreter, else 0.

interp expose slave cmd Exposes hidden command cmd in slave.

interp hide slave cmd Hides cmd from slave.

interp hidden slave Returns the commands hidden from slave.

interp invokehidden slave
cmd arg ...

Invokes hidden command cmd and args in slave.

interp issafe slave Returns 1 if slave was created with -safe flag.

interp marktrusted slave Clears the issafe property of slave.

interp recursionlimit slave
?limit?

Set or get the interpreter recursion limit for
slave. (Tcl 8.4)

interp share master file
slave

Shares the I/O descriptor named file in master
with slave.

interp slaves master Returns the list of slave interpreters of master.

interp target slave cmd Returns the name of the interpreter that is the
target of alias cmd in slave.

interp transfer master file
slave

Transfers the I/O descriptor named file from
master to slave.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Creating Interpreters

Here is a simple example that creates an interpreter, evaluates a couple of
commands in it, and then deletes the interpreter:

Example 19-1 Creating and deleting an interpreter

interp create foo
=> foo
interp eval foo {set a 5}
=> 5
set sum [interp eval foo {expr {$a + $a}}]
=> 10
interp delete foo

In Example 19-1 the interpreter is named foo. Two commands are evaluated in the
foo interpreter:

set a 5
expr {$a + $a}

Note that curly braces are used to protect the commands from any interpretation by
the main interpreter. The variable a is defined in the foo interpreter and does not
conflict with variables in the main interpreter. The set of variables and procedures in
each interpreter is completely independent.

The Interpreter Hierarchy

A slave interpreter can itself create interpreters, resulting in a hierarchy. The next
examples illustrates this, and it shows how the grandparent of an interpreter can
reference the grandchild by name. The example uses interp slaves to query the
existence of child interpreters.

Example 19-2 Creating a hierarchy of interpreters

interp create foo
=> foo
interp eval foo {interp create bar}
=> bar
interp create {foo bar2}
=> foo bar2
interp slaves
=> foo
interp slaves foo
=> bar bar2
interp delete bar

=> interpreter named "bar" not found
interp delete {foo bar}

The example creates foo, and then it creates two children of foo. The first one is
created by foo with this command:

interp eval foo {interp create bar}

The second child is created by the main interpreter. In this case, the grandchild
must be named by a two-element list to indicate that it is a child of a child. The
same naming convention is used when the grandchild is deleted:

interp create {foo bar2}
interp delete {foo bar2}

The interp slaves operation returns the names of child (i.e., slave) interpreters.
The names are relative to their parent, so the slaves of foo are reported simply as
bar and bar2. The name for the current interpreter is the empty list, or {}. This is
useful in command aliases and file sharing described later. For security reasons, it is
not possible to name the master interpreter from within the slave.

The Interpreter Name as a Command

After interpreter slave is created, a new command is available in the main
interpreter, also called slave, that operates on the child interpreter. The following
two forms are equivalent most operations:

slave operation args ...
interp operation slave args ...

For example, the following are equivalent commands:

foo eval {set a 5}
interp eval foo {set a 5}

And so are these:

foo issafe
interp issafe foo

However, the operations delete, exists, share, slaves, target, and transfer
cannot be used with the per interpreter command. In particular, there is no foo
delete operation; you must use interp delete foo.

If you have a deep hierarchy of interpreters, the command corresponding to the
slave is defined only in the parent. For example, if a master creates foo, and foo
creates bar, then the master must operate on bar with the interp command. There
is no "foo bar" command defined in the master.

Use list with interp eval

The interp eval command treats its arguments like eval. If there are extra
arguments, they are all concatenated together first. This can lose important
structure, as described in Chapter 10. To be safe, use list to construct your
commands. For example, to safely define a variable in the slave, you should do this:

interp eval slave [list set var $value]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Safe Interpreters

A child can be created either safe (i.e., untrusted) or fully functional. In the
examples so far, the children have been trusted and fully functional; they have all
the basic Tcl commands available to them. An interpreter is made safe by
eliminating certain commands. Table 19-2 lists the commands removed from safe
interpreters. As described later, these commands can be used by the master on
behalf of the safe interpreter. To create a safe interpreter, use the -safe flag:

interp create -safe untrusted

Table 19-2. Commands hidden from safe interpreters

cd Changes directory.

exec Executes another program.

exit Terminates the process.

fconfigure Sets modes of an I/O stream.

file Queries file attributes.

glob Matches on file name patterns.

load Dynamically loads object code.

open Opens files and process pipelines.

pwd Determines the current directory.

socket Opens network sockets.

source Loads scripts.

A safe interpreter does not have commands to manipulate the file system and other
programs (e.g., cd, open, and exec). This ensures that untrusted scripts cannot
harm the host computer. The socket command is removed so that untrusted scripts
cannot access the network. The exit, source, and load commands are removed so
that an untrusted script cannot harm the hosting application. Note that commands
like puts and gets are not removed. A safe interpreter can still do I/O, but it cannot
create an I/O channel. We will show how to pass an I/O channel to a child
interpreter on page 299.

The initial state of a safe interpreter is very safe, but it is too limited. The only thing
a safe interpreter can do is compute a string and return that value to the parent. By
creating command aliases, a master can give a safe interpreter controlled access to
resources. A security policy implements a set of command aliases that add
controlled capabilities to a safe interpreter. We will show, for example, how to
provide limited network and file system access to untrusted slaves. Tcl provides a
framework to manage several security policies, which is described in Chapter 20.

Command Aliases

A command alias is a command in one interpreter that is implemented by a
command in another interpreter. The master interpreter installs command aliases in
its slaves. The command to create an alias has the following general form:

interp alias slave cmd1 target cmd2 ?arg arg ...?

This creates cmd1 in slave that is an alias for cmd2 in target. When cmd1 is invoked
in slave, cmd2 is invoked in target. The alias mechanism is transparent to the
slave. Whatever cmd2 returns, the slave sees as the return value of cmd1. If cmd2
raises an error, the error is propagated to the slave.

Name the current interpreter with {}.

If target is the current interpreter, name it with {}. The empty list is the way to
name yourself as the interpreter. This is the most common case, although target
can be a different slave. The slave and target can even be the same interpreter.

The arguments to cmd1 are passed to cmd2, after any additional arguments to cmd2
that were specified when the alias was created. These hidden arguments provide a
safe way to pass extra arguments to an alias. For example, it is quite common to
pass the name of the slave to the alias. In Example 19-3, exit in the interpreter
foo is an alias that is implemented in the current interpreter (i.e., {}). When the
slave executes exit, the master executes:

interp delete foo

Example 19-3 A command alias for exit

interp create foo
interp alias foo exit {} interp delete foo
interp eval foo exit
Child foo is gone.

Alias Introspection

You can query what aliases are defined for a child interpreter. The interp aliases
command lists the aliases; the interp alias command can also return the value of

an alias, and the interp target command tells you what interpreter implements an
alias. These are illustrated in the following examples:

Example 19-4 Querying aliases

proc Interp_ListAliases {name out} {
 puts $out "Aliases for $name"
 foreach alias [interp aliases $name] {
 puts $out [format "%-20s => (%s) %s" $alias \
 [interp target $name $alias] \
 [interp alias $name $alias]]
 }
}

Example 19-4 generates output in a human readable format. Example 19-5
generates the aliases as Tcl commands that can be used to re-create them later:

Example 19-5 Dumping aliases as Tcl commands

proc Interp_DumpAliases {name out} {
 puts $out "# Aliases for $name"
 foreach alias [interp aliases $name] {
 puts $out [format "interp alias %s %s %s %s" \
 $name $alias [list [interp target $name $alias]] \
 [interp alias $name $alias]]
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Hidden Commands

The commands listed in Table 19-2 are hidden instead of being completely removed.
A hidden command can be invoked in a slave by its master. For example, a master
can load Tcl scripts into a slave by using its hidden source command:

interp create -safe slave
interp invokehidden slave source filename

Without hidden commands, the master has to do a bit more work to achieve the
same thing. It must open and read the file and eval the contents of the file in the
slave. File operations are described in Chapter 9.

interp create -safe slave
set in [open filename]
interp eval slave [read $in]
close $in

Hidden commands were added in Tcl 7.7 in order to better support the Tcl/Tk
browser plug-in described in Chapter 20. In some cases, hidden commands are
strictly necessary; it is not possible to simulate them any other way. The best
examples are in the context of Safe-Tk, where the master creates widgets or does
potentially dangerous things on behalf of the slave. These will be discussed in more
detail later.

A master can hide and expose commands using the interp hide and interp
expose operations, respectively. You can even hide Tcl procedures. However, the
commands inside the procedure run with the same privilege as that of the slave. For
example, if you are really paranoid, you might not want an untrusted interpreter to
read the clock or get timing information. You can hide the clock and time
commands:

interp create -safe slave
interp hide slave clock
interp hide slave time

You can remove commands from the slave entirely like this:

interp eval slave [list rename clock {}]
interp eval slave [list rename time {}]

Substitutions

You must be aware of Tcl parsing and substitutions when commands are invoked in
other interpreters. There are three cases corresponding to interp eval, interp
invokehidden, and command aliases.

With interp eval the command is subject to a complete round of parsing and
substitutions in the target interpreter. This occurs after the parsing and substitutions
for the interp eval command itself. In addition, if you pass several arguments to
interp eval, those are concatenated before evaluation. This is similar to the way
the eval command works as described in Chapter 19. The most reliable way to use
interp eval is to construct a list to ensure the command is well structured:

interp eval slave [list cmd arg1 arg2]

With hidden commands, the command and arguments are taken directly from the
arguments to interp invokehidden, and there are no substitutions done in the
target interpreter. This means that the master has complete control over the
command structure, and nothing funny can happen in the other interpreter. For this
reason you should not create a list. If you do that, the whole list will be interpreted
as the command name! Instead, just pass separate arguments to interp
invokehidden and they are passed straight through to the target:

interp invokehidden slave command arg1 arg2

Never eval alias arguments.

With aliases, all the parsing and substitutions occur in the slave before the alias is
invoked in the master. The alias implementation should never eval or subst any
values it gets from the slave to avoid executing arbitrary code.

For example, suppose there is an alias to open files. The alias does some checking
and then invokes the hidden open command. An untrusted script might pass [exit]
as the name of the file to open in order to create mischief. The untrusted code is
hoping that the master will accidentally eval the filename and cause the application
to exit. This attack has nothing to do with opening files; it just hopes for a poor alias
implementation. Example 19-6 shows an alias that is not subject to this attack:

Example 19-6 Substitutions and hidden commands

interp alias slave open {} safeopen slave
proc safeopen {slave filename {mode r}} {
 # do some checks, then...
 interp invokehidden $slave open $filename $mode
}
interp eval slave {open \[exit\]}

The command in the slave starts out as:

open \[exit\]

The master has to quote the brackets in its interp eval command or else the slave
will try to invoke exit because of command substitution. Presumably exit isn't
defined, or it is defined to terminate the slave. Once this quoting is done, the value
of filename is [exit] and it is not subject to substitutions. It is safe to use
$filename in the interp invokehidden command because it is only substituted
once, in the master. The hidden open command also gets [exit] as its filename
argument, which is never evaluated as a Tcl command.

I/O from Safe Interpreters

A safe child interpreter cannot open files or network sockets directly. An alias can
create an I/O channel (i.e., open a file or socket) and give the child access to it. The
parent can share the I/O channel with the child, or it can transfer the I/O channel to
the child. If the channel is shared, both the parent and the child can use it. If the
channel is transferred, the parent no longer has access to the channel. In general,
transferring an I/O channel is simpler, but sharing an I/O channel gives the parent
more control over an unsafe child. The differences are illustrated in Example 19-7
and Example 19-9.

There are three properties of I/O channels that are important to consider when
choosing between sharing and transferring: the name, the seek offset, and the
reference count.

The name of the I/O channel (e.g., file4) is the same in all interpreters. If a
parent transfers a channel to a child, it can close the channel by evaluating a
close command in the child. Although names are shared, an interpreter
cannot attempt I/O on a channel to which it has not been given access.

The seek offset of the I/O channel is shared by all interpreters that share the
I/O channel. An I/O operation on the channel updates the seek offset for all
interpreters that share the channel. This means that if two interpreters share
an I/O channel, their output will be cleanly interleaved in the channel. If they
both read from the I/O channel, they will get different data. Seek offsets are
explained in more detail on page 121.

A channel has a reference count of all interpreters that share the I/O channel.
The channel remains open until all references are closed. When a parent
transfers an I/O channel, the reference count stays the same. When a parent
shares an I/O channel, the reference count increments by one. When an
interpreter closes a channel with close, the reference count is decremented
by one. When an interpreter is deleted, all of its references to I/O channels are
removed.

The syntax of commands to share or transfer an I/O channel is:

interp share interp1 chanName interp2
interp transfer interp1 chanName interp2

In these commands, chanName exists in interp1 and is being shared or transferred
to interp2. As with command aliases, if interp1 is the current interpreter, name it
with {}.

The following example creates a temporary file for an unsafe interpreter. The file is
opened for reading and writing, and the slave can use it to store data temporarily.

Example 19-7 Opening a file for an unsafe interpreter

proc TempfileAlias {slave} {
 set i 0
 while {[file exists Temp$slave$i]} {
 incr i
 }
 set out [open Temp$slave$i w+]
 interp transfer {} $out $slave
 return $out
}
proc TempfileExitAlias {slave} {
 foreach file [glob -nocomplain Temp$slave*] {
 file delete -force $file
 }
 interp delete $slave
}
interp create -safe foo
interp alias foo Tempfile {} TempfileAlias foo
interp alias foo exit {} TempfileExitAlias foo

The TempfileAlias procedure is invoked in the parent when the child interpreter
invokes Tempfile. TempfileAlias returns the name of the open channel, which
becomes the return value from Tempfile. TempfileAlias uses interp transfer to
pass the I/O channel to the child so that the child has permission to access the I/O
channel. In this example, it would also work to invoke the hidden open command to
create the I/O channel directly in the slave.

Example 19-7 is not fully safe because the unsafe interpreter can still overflow the
disk or create a million files. Because the parent has transferred the I/O channel to
the child, it cannot easily monitor the I/O activity by the child. Example 19-9
addresses these issues.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Safe Base

An safe interpreter created with interp create -safe has no script library
environment and no way to source scripts. Tcl provides a safe base that extends a
raw safe interpreter with the ability to source scripts and packages which are
described in Chapter 12. The safe base also defines an exit alias that terminates
the slave like the one in Example 19-7. The safe base is implemented as Tcl scripts
that are part of the standard Tcl script library. Create an interpreter that uses the
safe base with safe::interpCreate:

safe::interpCreate foo

The safe base has source and load aliases that only access directories on an access
path defined by the master interpreter. The master has complete control over what
files can be loaded into a slave. In general, it would be all right to source any Tcl
program into an untrusted interpreter. However, untrusted scripts might learn things
from the error messages they get by sourcing arbitrary files. The safe base also has
versions of the package and unknown commands that support the library facility.
Table 19-3 lists the Tcl procedures in the safe base:

Table 19-3. The safe base master interface

safe::interpCreate ?slave? ?
options?

Creates a safe interpreter and initialize the
security policy mechanism.

safe::interpInit slave ?
options?

Initializes a safe interpreter so it can use security
policies.

safe::interpConfigure slave
?options?

Options are -accessPath pathlist, -
nostatics, -deleteHook script, -
nestedLoadOk.

safe::interpDelete slave Deletes a safe interpreter.

safe::interpAddToAccessPath
slave directory

Adds a directory to the slave's access path.

safe::interpFindInAccessPath Maps from a directory to the token visible in the
slave for that directory.

safe::setLogCmd ?cmd arg ...
?

Sets or queries the logging command used by the
safe base.

Table 19-4 lists the aliases defined in a safe interpreter by the safe base.

Table 19-4. The safe base slave aliases

source Loads scripts from directories in the access path.

load Loads binary extensions from the slaves access path.

file Only the dirname, join, extension, root, tail, pathname, and split
operations are allowed.

exit Destroys the slave interpreter.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Security Policies

A security policy defines what a safe interpreter can do. Designing security policies
that are secure is difficult. If you design your own, make sure to have your
colleagues review the code. Give out prizes to folks who can break your policy. Good
policy implementations are proven with lots of review and trial attacks. The good
news is that Safe-Tcl security policies can be implemented in relatively small
amounts of Tcl code. This makes them easier to analyze and get correct. Here are a
number of rules of thumb:

Small policies are better than big, complex policies. If you do a lot of complex
processing to allow or disallow access to resources, chances are there are
holes in your policy. Keep it simple.

Never eval arguments to aliases. If an alias accepts arguments that are
passed by the slave, you must avoid being tricked into executing arbitrary Tcl
code. The primary way to avoid this is never to eval arguments that are
passed into an alias. Watch your expressions, too. The expr command does an
extra round of substitutions, so brace all your expressions so that an attacker
cannot pass [exit] where you expect a number!

Security policies do not compose. Each time you add a new alias to a security
policy, it changes the nature of the policy. Even if alias1 and alias2 are safe
in isolation, there is no guarantee that they cannot be used together to mount
an attack. Each addition to a security policy requires careful review.

Limited Socket Access

The Safesock security policy provides limited socket access. The policy is designed
around a simple table of allowed hosts and ports. An untrusted interpreter can
connect only to addresses listed in the table. For example, I would never let
untrusted code connect to the sendmail, ftp, or telnet ports on my hosts. There are
just too many attacks possible on these ports. On the other hand, I might want to
let untrusted code fetch a URL from certain hosts, or connect to a database server
for an intranet application. The goal of this policy is to have a simple way to specify
exactly what hosts and ports a slave can access. Example 19-8 shows a simplified
version of the Safesock security policy that is distributed with Tcl 8.0.

Example 19-8 The Safesock security policy

The index is a host name, and the
value is a list of port specifications, which can be
an exact port number
a lower bound on port number: N-

a range of port numbers, inclusive: N-M
array set safesock {
 sage.eng 3000-4000
 www.sun.com 80
 webcache.eng {80 8080}
 bisque.eng {80 1025-}
}
proc Safesock_PolicyInit {slave} {
 interp alias $slave socket {} SafesockAlias $slave
}
proc SafesockAlias {slave host port} {
 global safesock
 if ![info exists safesock($host)] {
 error "unknown host: $host"
 }

 foreach portspec $safesock($host) {
 set low [set high ""]
 if {[regexp {^([0-9]+)-([0-9]*)$} $portspec x low high]} {
 if {($low <= $port && $high == "") ||
 ($low <= $port && $high >= $port)} {
 set good $port
 break
 }
 } elseif {$port == $portspec} {
 set good $port
 }
 }

 if [info exists good] {
 set sock [interp invokehidden $slave socket $host $good]
 interp invokehidden $slave fconfigure $sock \
 -blocking 0
 return $sock
 }
 error "bad port: $port"
}

The policy is initialized with Safesock_PolicyInit. The name of this procedure
follows a naming convention used by the safe base. In this case, a single alias is
installed. The alias gives the slave a socket command that is implemented by
SafesockAlias in the master.

The alias checks for a port that matches one of the port specifications for the host.
If a match is found, then the invokehidden operation is used to invoke two
commands in the slave. The socket command creates the network connection, and
the fconfigure command puts the socket into nonblocking mode so that read and
gets by the slave do not block the application:

set sock [interp invokehidden $slave socket $host $good]
interp invokehidden $slave fconfigure $sock -blocking 0

The socket alias in the slave does not conflict with the hidden socket command.
There are two distinct sets of commands, hidden and exposed. It is quite common
for the alias implementation to invoke the hidden command after various permission
checks are made.

The Tcl Web browser plug-in ships with a slightly improved version of the Safesock
policy. It adds an alias for fconfigure so that the http package can set end of line
translations and buffering modes. The fconfigure alias does not let you change the
blocking behavior of the socket. The policy has also been extended to classify hosts
into trusted and untrusted hosts based on their address. A different table of allowed
ports is used for the two classes of hosts. The classification is done with two tables:
One table lists patterns that match trusted hosts, and the other table lists hosts that
should not be trusted even though they match the first table. The improved version
also lets a downloaded script connect to the Web server that it came from. The Web
browser plug-in is described in Chapter 20.

Limited Temporary Files

Example 19-9 improves on Example 19-7 by limiting the number of temporary files
and the size of the files. It is written to work with the safe base, so it has a
Tempfile_PolicyInit that takes the name of the slave as an argument.
TempfileOpenAlias lets the child specify a file by name, yet it limits the files to a
single directory.

The example demonstrates a shared I/O channel that gives the master control over
output. TempfilePutsAlias restricts the amount of data that can be written to a
file. By sharing the I/O channel for the temporary file, the slave can use commands
like gets, eof, and close, while the master does the puts. The need for shared I/O
channels is somewhat reduced by hidden commands, which were added to Safe-Tcl
more recently than shared I/O channels. For example, the puts alias can either
write to a shared channel after checking the file size, or it can invoke the hidden
puts in the slave. This alternative is shown in Example 19-10.

Example 19-9 The Tempfile security policy

Policy parameters:
directory is the location for the files
maxfile is the number of files allowed in the directory
maxsize is the max size for any single file.

array set tempfile {
 maxfile 4
 maxsize 65536
}
tempfile(directory) is computed dynamically based on
the source of the script

proc Tempfile_PolicyInit {slave} {

 global tempfile
 interp alias $slave open {} \
 TempfileOpenAlias $slave $tempfile(directory) \
 $tempfile(maxfile)
 interp alias $slave puts {} TempfilePutsAlias $slave \
 $tempfile(maxsize)
 interp alias $slave exit {} TempfileExitAlias $slave
}
proc TempfileOpenAlias {slave dir maxfile name {m r} {p 0777}} {
 global tempfile
 # remove sneaky characters
 regsub -all {|/:} [file tail $name] {} real
 set real [file join $dir $real]
 # Limit the number of files
 set files [glob -nocomplain [file join $dir *]]
 set N [llength $files]
 if {($N >= $maxfile) && (\
 [lsearch -exact $files $real] < 0)} {
 error "permission denied"
 }
 if [catch {open $real $m $p} out] {
 return -code error "$name: permission denied"
 }
 lappend tempfile(channels,$slave) $out
 interp share {} $out $slave
 return $out
}
proc TempfileExitAlias {slave} {
 global tempfile
 interp delete $slave
 if [info exists tempfile(channels,$slave)] {
 foreach out $tempfile(channels,$slave) {
 catch {close $out}
 }
 unset tempfile(channels,$slave)
 }
}
See also the puts alias in Example 24ÿ4 on page 389
proc TempfilePutsAlias {slave max chan args} {
 # max is the file size limit, in bytes
 # chan is the I/O channel
 # args is either a single string argument,
 # or the -nonewline flag plus the string.

 if {[llength $args] > 2} {
 error "invalid arguments"
 }
 if {[llength $args] == 2} {
 if {![string match -n* [lindex $argv 0]]} {
 error "invalid arguments"
 }
 set string [lindex $args 1]
 } else {

 set string [lindex $args 0]\n
 }
 set size [expr [tell $chan] + [string length $string]]
 if {$size > $max} {
 error "File size exceeded"
 } else {
 puts -nonewline $chan $string
 }
}

The TempfileAlias procedure is generalized in Example 19-9 to have parameters
that specify the directory, name, and a limit to the number of files allowed. The
directory and maxfile limit are part of the alias definition. Their existence is
transparent to the slave. The slave specifies only the name and access mode (i.e.,
for reading or writing.) The Tempfile policy can be used by different slave
interpreters with different parameters.

The master is careful to restrict the files to the specified directory. It uses file
tail to strip off any leading pathname components that the slave might specify.
The tempfile(directory) definition is not shown in the example. The application
must choose a directory when it creates the safe interpreter. The Browser security
policy described on page 317 chooses a directory based on the name of the URL
containing the untrusted script.

The TempfilePutsAlias procedure implements a limited form of puts. It checks the
size of the file with tell and measures the output string to see if the total exceeds
the limit. The limit comes from a parameter defined when the alias is created. The
file cannot grow past the limit, at least not by any action of the child interpreter. The
args parameter is used to allow an optional -nonewline flag to puts. The value of
args is checked explicitly instead of using the eval trick described in Example 10-3
on page 136. Never eval arguments to aliases or else a slave can attack you with
arguments that contain embedded Tcl commands.

The master and slave share the I/O channel. The name of the I/O channel is
recorded in tempfile, and TempfileExitAlias uses this information to close the
channel when the child interpreter is deleted. This is necessary because both parent
and child have a reference to the channel when it is shared. The child's reference is
automatically removed when the interpreter is deleted, but the parent must close its
own reference.

The shared I/O channel lets the master use puts and tell. It is also possible to
implement this policy by using hidden puts and tell commands. The reason tell
must be hidden is to prevent the slave from implementing its own version of tell
that lies about the seek offset value. One advantage of using hidden commands is
that there is no need to clean up the tempfile state about open channels. You can
also layer the puts alias on top of any existing puts implementation. For example, a
script may define puts to be a procedure that inserts data into a text widget.
Example 19-10 shows the difference when using hidden commands.

Example 19-10 Restricted puts using hidden commands

proc Tempfile_PolicyInit {slave} {
 global tempfile
 interp alias $slave open {} \
 TempfileOpenAlias $slave $tempfile(directory) \
 $tempfile(maxfile)
 interp hide $slave tell
 interp alias $slave tell {} TempfileTellAlias $slave
 interp hide $slave puts
 interp alias $slave puts {} TempfilePutsAlias $slave \
 $tempfile(maxsize)
 # no special exit alias required
}
proc TempfileOpenAlias {slave dir maxfile name {m r} {p 0777}} {
 # remove sneaky characters
 regsub -all {|/:} [file tail $name] {} real
 set real [file join $dir $real]
 # Limit the number of files
 set files [glob -nocomplain [file join $dir *]]
 set N [llength $files]
 if {($N >= $maxfile) && (\
 [lsearch -exact $files $real] < 0)} {
 error "permission denied"
 }
 if [catch {interp invokehidden $slave \
 open $real $m $p} out] {
 return -code error "$name: permission denied"
 }
 return $out
}
proc TempfileTellAlias {slave chan} {
 interp invokehidden $slave tell $chan
}
proc TempfilePutsAlias {slave max chan args} {
 if {[llength $args] > 2} {
 error "invalid arguments"
 }
 if {[llength $args] == 2} {
 if {![string match -n* [lindex $args 0]]} {
 error "invalid arguments"
 }
 set string [lindex $args 1]
 } else {
 set string [lindex $args 0]\n
 }
 set size [interp invokehidden $slave tell $chan]
 incr size [string length $string]
 if {$size > $max} {
 error "File size exceeded"
 } else {
 interp invokehidden $slave \
 puts -nonewline $chan $string
 }
}

Safe after Command

The after command is unsafe because it can block the application for an arbitrary
amount of time. This happens if you only specify a time but do not specify a
command. In this case, Tcl just waits for the time period and processes no events.
This will stop all interpreters, not just the one doing the after command. This is a
kind of resource attack. It doesn't leak information or damage anything, but it
disrupts the main application.

Example 19-11 defines an alias that implements after on behalf of safe
interpreters. The basic idea is to carefully check the arguments, and then do the
after in the parent interpreter. As an additional feature, the number of outstanding
after events is limited. The master keeps a record of each after event scheduled.
Two IDs are associated with each event: one chosen by the master (i.e., myid), and
the other chosen by the after command (i.e., id). The master keeps a map from
myid to id. The map serves two purposes: The number of map entries counts the
number of outstanding events. The map also hides the real after ID from the slave,
which prevents a slave from attempting mischief by specifying invalid after IDs to
after cancel. The SafeAfterCallback is the procedure scheduled. It maintains
state and then invokes the original callback in the slave.

Example 19-11 A safe after command

SafeAfter_PolicyInit creates a child with
a safe after command

proc SafeAfter_PolicyInit {slave max} {
 # max limits the number of outstanding after events
 global after
 interp alias $slave after {} SafeAfterAlias $slave $max
 interp alias $slave exit {} SafeAfterExitAlias $slave
 # This is used to generate after IDs for the slave.
 set after(id,$slave) 0
}

SafeAfterAlias is an alias for after. It disallows after
with only a time argument and no command.

proc SafeAfterAlias {slave max args} {
 global after
 set argc [llength $args]
 if {$argc == 0} {
 error "Usage: after option args"
 }
 switch -- [lindex $args 0] {
 cancel {
 # A naive implementation would just
 # eval after cancel $args
 # but something dangerous could be hiding in args.

 set myid [lindex $args 1]
 if {[info exists after(id,$slave,$myid)]} {
 set id $after(id,$slave,$myid)
 unset after(id,$slave,$myid)
 after cancel $id
 }
 return ""
 }
 default {
 if {$argc == 1} {
 error "Usage: after time command args..."
 }
 if {[llength [array names after id,$slave,*]]\
 >= $max} {
 error "Too many after events"
 }
 # Maintain concat semantics
 set command [concat [lrange $args 1 end]]
 # Compute our own id to pass the callback.
 set myid after#[incr after(id,$slave)]
 set id [after [lindex $args 0] \
 [list SafeAfterCallback $slave $myid $command]]
 set after(id,$slave,$myid) $id
 return $myid
 }
 }
}

SafeAfterCallback is the after callback in the master.
It evaluates its command in the safe interpreter.

proc SafeAfterCallback {slave myid cmd} {
 global after
 unset after(id,$slave,$myid)
 if [catch {
 interp eval $slave $cmd
 } err] {
 catch {interp eval $slave bgerror $error}
 }
}

SafeAfterExitAlias is an alias for exit that does cleanup.

proc SafeAfterExitAlias {slave} {
 global after
 foreach id [array names after id,$slave,*] {
 after cancel $after($id)
 unset after($id)
 }
 interp delete $slave
}

Chapter 20. Safe-Tk and the Browser Plugin
This chapter describes Safe-Tk that lets untrusted scripts display and manipulate
graphical user interfaces. The main application of Safe-Tk is the Tcl/Tk plugin for
Web browsers like Netscape Navigator and Internet Explorer.

Safe-Tk supports network applets that display user interfaces. The main vehicle for
Safe-Tk is a plugin for Netscape Navigator, Mozilla and Internet Explorer. The plugin
supports Tcl applets, or Tclets, that are downloaded from the Web server and
execute inside a window in a Web browser. For the most part, Tcl/Tk applications
can run unchanged in the plugin. However, security policies place some restrictions
on Tclets. The plugin supports multiple security policies, so Tclets can do a variety of
interesting things in a safe manner.

You can configure the plugin to use an existing wish application to host the Tcl
applets if you require a newer version of Tk, or the plugin can load the Tcl/Tk shared
libraries and everything runs in the browser process. You can use a custom wish
that has extensions built in or dynamically loaded. This gives intranet applications of
the plugin the ability to access databases and other services that are not provided
by the Tcl/Tk core. With the security policy mechanism you can still provide
mediated access to these resources. This chapter describes how to set up the
plugin.

Jeff Hobbs recently updated the plugin to use Tcl/Tk 8.4. Compiled versions of the
plugin are available as part of the Tcl Dev Kit from ActiveState. The source code of
the plugin is freely available. You can recompile the plugin against newer versions of
Tcl/Tk, or build custom plugins that have your own Tcl extensions built in. You can
find its sources at:

http://tclplugin.sourceforge.net/

http://tclplugin.sourceforge.net/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Tk in Child Interpreters

A child interpreter starts out with just the core Tcl commands. It does not include Tk
or any other extensions that might be available to the parent interpreter. This is true
whether or not the child interpreter is declared safe. You add extensions to child
interpreters by using a form of the load command that specifies an interpreter:

load {} Tk child

Normally, load takes the name of the library file that contains the extension. In this
case, the Tk package is a static package that is already linked into the program
(e.g., wish or the plugin), so the file name is the empty string. The load command
calls the Tk initialization procedure to register all the Tcl commands provided by Tk.

Embedding Tk Windows

By default, a slave interpreter that loads Tk gets a new top-level window. Wish
supports a -use command line option that directs Tk to use an existing window as
dot. You can use this to embed an application within another. For example, the
following commands run a copy of Wish that uses the .embed toplevel as its main
window:

toplevel .embed
exec wish -use [winfo id .embed] somescript.tcl &

More often, embedding is used with child interpreters. If the interpreter is not safe,
you can set the argv and argc variables in the slave before loading Tk:

interp create trustedTk
interp eval trustedTk \
 [list set argv [list -use [winfo id .embed]]]
interp eval trustedTk [list set argc 2]
load {} Tk trustedTk

If the child interpreter is safe, then you cannot set argv and argc directly. The
easiest way to pass -use to a safe interpreter is with the safe::loadTk command:

safe::interpCreate safeTk
safe::loadTk safeTk -use [winfo id .embed]

When Tk is loaded into a safe interpreter, it calls back into the master interpreter
and evaluates the safe::TkInit procedure. The job of this procedure is to return
the appropriate argv value for the slave. The safe::loadTk procedure stores its
additional arguments in the safe::tkInit variable, and this value is retrieved by
the safe::TkInit procedure and returned to the slave. This protocol is used so that
a safe interpreter cannot attempt to hijack the windows of its master by
constructing its own argv variable!

Safe-Tk Restrictions

When Tk is loaded into a safe interpreter, it hides several Tk commands. Primarily
these are hidden to prevent denial of service attacks against the main process. For
example, if a child interpreter did a global grab and never released it, all input
would be forever directed to the child. Table 20-1 lists the Tk commands hidden by
default from a safe interpreter. The Tcl commands that are hidden in safe
interpreters are listed on page 295.

Table 20-1. Tk commands omitted from safe interpreters

bell Rings the terminal bell.

clipboard Accesses the CLIPBOARD selection.

grab Directs input to a specified widget.

menu Creates and manipulates menus, because menus need grab.

selection Manipulates the selection.

send Executes a command in another Tk application.

tk appname Sets the application name.

tk_chooseColor Color choice dialog.

tk_chooseDirectory Directory chooser dialog.

tk_getOpenFile File open dialog.

tk_getSaveFile File save dialog.

tk_messageBox Simple dialog boxes.

toplevel Creates a detached window.

wm Controls the window manager.

If you find these restrictions limiting, you can restore commands to safe interpreters
with the interp expose command. For example, to get menus and toplevels
working, you could do:

interp create -safe safeTk
foreach cmd {grab menu menubutton toplevel wm} {
 interp expose safeTk $cmd
}

Instead of exposing the command directly, you can also construct aliases that
provide a subset of the features. For example, you could disable the -global option
to grab. Aliases are described in detail in Chapter 19.

The Browser plugin defines a more elaborate configuration system to control what
commands are available to slave interpreters. You can have lots of control, but you
need to distribute the security policies that define what Tclets can do in the plugin.
Configuring security policies for the plugin is described later.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Browser Plugin

The HTML EMBED tag is used to put various objects into a Web page, including a Tcl
program. Example 20-1 shows the EMBED tag used to insert a Tclet:

Example 20-1 Using EMBED to insert a Tclet

<EMBED
 TYPE="application/x-tcl"
 PLUGINSPAGE="http://www.tcl.tk/plugin/"
 WIDTH="400"
 HEIGHT="300"
 SRC="eval.tcl"
</EMBED>

The width and height are interpreted by the plugin as the size of the embedded
window. The src specifies the URL of the program. These parameter names (e.g.,
width) are case sensitive and should be lowercase. In the above example, eval.tcl
is a relative URL, so it should be in the same directory as the HTML file that has the
EMBED tag. The window size is fixed in the browser, which is different from normal
toplevels in Tk. The plugin turns off geometry propagation on your main window so
that your Tclet stays the size allocated.

There are also "full window" Tclets that do not use an EMBED tag at all. Instead, you
just specify the .tcl file directly in the URL. In this case, the plugin occupies the
whole browser window and will resize as you resize the browser window.

The embed_args and plugin Variables

The parameters in the EMBED tag are available to the Tcl program in the embed_args
variable, which is an array with the parameter names as the index values. For
example, the string for a ticker-tape Tclet can be passed in the EMBED tag as the
string parameter, and the Tclet will use $embed_args(string) as the value to
display:

<EMBED src=ticker.tcl width=400 height=50 string="Hello World">

Note that HTML tag parameters are case sensitive. Your Tclet may want to map all
the parameter names to lowercase for convenience:

foreach {name value} [array get embed_args] {
 set embed_args([string tolower $name]) $value
}

The plugin array has version, patchLevel, and release elements that identify the
version and release date of the plugin implementation.

Example Plugins

The plugin home page is a great place to find Tclet examples. There are several
plugins done by the Tcl/Tk team at Sunlabs, plus links to a wide variety of Tclets
done on the Net.

http://www.tcl.tk/plugin/

My first plugin was calculator for the effective wheel diameter of multigear bicycles.
Brian Lewis, who built the Tcl 8.0 byte-code compiler, explained to me the concept
and how important this information is to bicycle enthusiasts. The Tclet that displays
the gear combinations on a Tk canvas and lets you change the number of gears and
their size. You can find the result at:

http://www.beedub.com/plugin/bike.html

Setting Up the plugin

There are plugin versions for UNIX, Windows, and Macintosh. The installation details
vary somewhat between platforms and between releases of the plugin. The following
components make up the plugin installation:

The plugin shared libraries (i.e., DLLs). The Web browser dynamically loads
the plugin implementation when it needs to execute a Tclet embedded in a
Web page. There is a standard directory that the browser scans for the
libraries that implement plugins.

The Tcl/Tk script libraries. The plugin needs the standard script libraries that
come with Tcl and Tk, plus it has its own scripts that complete its
implementation. Each platform has a plugin script directory with these
subdirectories: tcl, tk, plugin, config, safetcl, and utils. The plugin
implementation is in the plugin directory.

The security policies. These are kept in a safetcl directory that is a peer of
the Tcl script library.

The trust configuration. This defines what Tclets can use which security
policies. This is in a config directory that is a peer of the Tcl script library.

Local hooks. Local customization is supported by two hooks, siteInit and
siteSafeInit. The siteInit procedure is called from the plugin when it first
loads, and siteSafeInit is called when each applet is initialized. It is called
with the name of the slave interpreter and the list of arguments from the
<EMBED> tag. You can provide these as scripts that get loaded from the
auto_path of the master interpreter. Chapter 12 describes how to manage

http://www.tcl.tk/plugin/default.htm
http://www.beedub.com/plugin/bike.html

script libraries found in the auto_path. The plugin also sources a personal
start up script in which you can define siteInit and siteSafeInit. This
script is ~/.pluginrc on UNIX and plugin/tclplugin.rc on Windows and
Macintosh.

Security Policies and Browser Plugin

Tclets run in a safe interpreter that is set up with the safe base facilities described
on page 300. This limits a Tclet to a display-only application. To do something more
interesting, you must grant the Tclet more privilege. The extra functions are bundled
together into a security policy, which is implemented as a set of command aliases.
Unlike a Java applet, a Tclet can choose from different security policies. A few
standard security policies are distributed with the plugin, and these are described
below. You can also create custom security policies to support intranet applications.
You can even choose to grant certain Tclets the full power of Tcl/Tk. The policy
command is used to request a security policy:

policy name

The policies that are part of the standard plugin distribution are described below.
The home, inside, and outside policies all provide limited network access. They
differ in what set of hosts are accessible. The default trust configuration lets any
Tclet request the home, inside, or outside policy.

home. This provides a socket and fconfigure commands that are limited to
connecting to the host from which the Tclet was downloaded. You can specify
an empty string for the host argument to socket to connect back to the home
host. This policy also supports open and file delete that are similar to the
Tempfile policy shown in Example 19-9 on page 304. This provides limited
local storage that is inside a directory that is, by default, private to the Tclet.
Files in the private directory persist after the Tclet exits, so it can maintain
long term state. Tclets from the same server can share the directory by
putting the same prefix=partialurl argument in their EMBED tag. The
partialurl must be a prefix of the Tclet's URL. Finally, the home policy
automatically provides a browser package that is described later.

inside. This is just like the home policy, except that the site administrator
controls a table of hosts and ports to which untrusted slaves can connect with
socket. A similar set of tables control what URLs can be accessed with the
browser package. This is similar to the Safesock policy shown in Example 19-
8 on page 302. The set of hosts is supposed to be inside the firewall. The local
file storage used by this policy is distinct from that used by the home and
outside policies. This is true even if Tclets try to share by using the
prefix=partialurl parameter.

outside. This is just like the home and inside policies, except that the set of
hosts is configured to be outside the firewall. The local file storage used by this
policy is distinct from that used by the home and inside policies.

trusted. This policy restores all features of Tcl and Tk. This policy lets you
launch all your Tcl and Tk applications from the Web browser. The default trust

map settings do not allow this for any Tclet. The trust map configuration is
described later.

javascript. This policy provides a superset of the browser package that lets
you invoke arbitrary Javascript and to write HTML directly to frames. This does
not have the limited socket or temporary file access that the home, inside,
and outside policies have. However, the javascript policy places no
restrictions on the URLs you can fetch, plus it lets Tclets execute Java-script,
which may have its own security risks. The default trust map settings do not
allow this for any Tclet.

The Browser Package

The browser package is bundled with several of the security policies. It makes many
features of the Web browser accessible to Tclets. They can fetch URLs and display
HTML in frames. However, the browser package has some risks associated with it.
HTTP requests can be used to transmit information, so a Tclet using the policy could
leak sensitive information if it can fetch a URL outside the firewall. To avoid
information leakage, the inside, outside, and home policies restrict the URL that
can be fetched with browser::getURL. Table 20-2 lists the aliases defined by the
browser package.

Table 20-2. Aliases defined by the browser package

browser::status string Displays string in the browser status window.

browser::getURL url ?
timeout? ?newcallback?
?writecallback? ?
endcallback?

Fetches url, if allowed by the security policy. The
callbacks occur before, during, and after the url
data is returned.

browser::displayURL url
frame

Causes the browser to display url in frame.

browser::getForm url
data ?raw? ?timeout? ?
newcallback? ?
writecallback? ?
endcallback?

Posts data to url. The callbacks are the same as for
browser::getURL. If raw is 0, then data is a name
value list that gets encoded automatically. Otherwise,
it is assumed to be encoded already.

browser::displayForm
url frame data ?raw?

Posts data to url and displays the result in frame.
The raw argument is the same as in
browser::getForm.

The browser::getURL function uses the browser's built-in functions, so it
understands proxies and supports ftp:, http:, and file: urls. Unfortunately, the
browser::getURL interface is different from the http::geturl interface. It uses a
more complex callback scheme that is due to the nature of the browser's built-in
functions. If you do not specify any callbacks, then the call blocks until all the data
is received, and then that data is returned. The callback functions are described in
Table 20-3.

Table 20-3. The browser::getURL callbacks

newcallback
name stream url
mimetype
datemodified
size

This is called when data starts to arrive from url. The name
identifies the requesting Tclet, and the stream identifies the
connection. The mimetype, datemodified, and size parameters
are attributes of the returned data.

writecallback
name stream
size data

This is called when size bytes of data arrive for Tcllet name over
stream.

endcallback
name stream
reason data

This is called when the request has completed, although there
may be some final bytes in data. The reason is one of: EOF,
NETWOR_ERROR, USER_BREAK, or TIMEOUT.

Configuring Security Policies

There are three aspects to the plugin security policy mechanism: policies, features,
and trust maps. A policy is an umbrella for a set of features that are allowed for
certain Tclets based on the trust map. A feature is a set of commands and aliases
that are defined for a safe interpreter that requests a policy. The trust map is a filter
based on the URL of the Tclet. In the future, trust may bet determined by digital
signatures instead of URLs. The trust map determines whether a Tclet can request a
given policy.

Security Policies are configured for each client.

Remember that the configuration files affect the client machine, which is the
workstation that runs the Web browser. If you create Tclets that require custom
security policies, you have the burden of distributing the configuration files to clients
that will use your Tclets. You also have the burden of convincing them that your
security policy is safe!

The config/plugin.cfg File

The main configuration file is the config/plugin.cfg file in the plugin distribution.
This file lists what features are supported by the plugin, and it defines the URL
filters for the trust map.

The configuration file is defined into sections with a section command. The policies
section defines which Tclets can use which security policies. For example, the default
configuration file contains these lines in the policies section:

section policies
 allow home
 disallow intercom
 disallow inside
 disallow outside
 disallow trusted
 allow javascript ifallowed trustedJavaScriptURLS \
 $originURL

This configuration grants all Tclets the right to use the home policy, disallows all
Tclets from using the intercom, inside, outside, and trusted policies, and grants
limited access to the javascript policy. If you are curious, the configuration files
are almost Tcl, but not quite. I lost an argument about that one, so these are

stylized configuration files that follow their own rules. For example, the originURL
variable is not defined in the configuration file but is a value that is tested later
when the Tclet is loaded. I'll just give examples here and you can peer under the
covers if you want to learn how they are parsed.

The ifallowed clause depends on another section to describe the trust mapping for
that policy. For the javascript policy, the config/plugin.cfg file contains:

section trustedJavascriptURLs
 allow http://sunscript.sun.com:80/plugin/javascript/*

Unfortunately, this server isn't running anymore, so you may want to add the
Scriptics Web server to your own configuration:

allow http://www.tcl.tk:80/plugin/javascript/*

You can use a combination of allow and disallow rules in a section. The arguments
to allow and disallow are URL string match patterns, and they are processed in
order. For example, you could put a liberal allow rule followed by disallow rules
that restrict access, or vice versa. It is probably safest to explicitly list each server
that you trust.

Policy Configuration Files

Each security policy has a configuration file associated with it. For example, the
outside policy uses the file outside.cfg file in the config directory. This file
specifies what hosts and ports are accessible to Tclets using the outside policy. For
the inside and outside policies, the configuration files are similar in spirit to the
safesock array used to configure the Safesock security policy shown on page 302.
There are a set of allowed hosts and ports, and a set of excluded hosts. The
excluded hosts are an exception list. If a host matches the included set but also
matches the excluded set, it is not accessible. There is an included and excluded set
for URLs that affect browser::geturl. The settings from the Tempfile policy shown
on page 304 are also part of the home, inside, and outside configuration files. The
configuration files are well commented, and you should read through them to learn
about the configuration options for each security policy.

Security Policy Features

The aliases that make up a security policy are organized into sets called features.
The features are listed in the main config/plugin.cfg configuration file:

variable featuresList {url stream network persist unsafe}

In turn, each security policy configuration file lists what features are part of the
policy. For example, the config/home.cfg file lists these features:

section features
 allow url
 allow network
 allow persist unless {[string match {UNKNOWN *} \
 [getattr originURL]]}

Each feature is implemented in a file in the safetcl directory of the distribution. For
example, the url feature is implemented in safetcl/url.tcl. The code in these
files follows some conventions in order to work with the configuration mechanism.
Each one is implemented inside a namespace that is a child of the safefeature
namespace (e.g., safefeature::url). It must implement an install procedure
that is called to initialize the feature for a new Tclet. It is inside this procedure that
the various allow/disallow rules are checked. The cfg::allowed command supports
the rule language used in the .cfg files.

Creating New Security Policies

This book does not describe the details of the configuration language or the steps
necessary to create a new security policy. There are several manual pages
distributed with the plugin that explain these details. They can be found on the Web
at:

http://www.tcl.tk/plugin/man/

If you are serious about tuning the existing security policies or creating new ones,
you should read the existing feature implementations in detail. As usual, modifying
a working example is the best way to proceed! I think it is a very nice property of
the plugin that its security policies are implemented in Tcl source code that is clearly
factored out from the rest of the Tcl/Tk and plugin implementation. With a relatively
small amount of code, you can create custom security policies that grant interesting
abilities to Tclets.

http://www.tcl.tk/plugin/man/default.htm

Chapter 21. Multi-Threaded Tcl Scripts
This chapter describes the Thread extension for creating multi-threaded Tcl scripts.

Thread support, a key feature of many languages, is a recent addition to Tcl. That's
because the Tcl event loop supports features implemented by threads in most other
languages, such as graphical user interface management, multi-client servers,
asynchronous communication, and scheduling and timing operations. However,
although Tcl's event loop can replace the need for threads in many circumstances,
there are still some instances where threads can be a better solution:

Long-running calculations or other processing, which can "starve" the event
loop

Interaction with external libraries or processes that don't support
asynchronous communication

Parallel processing that doesn't adapt well to an event-driven model

Embedding Tcl into an existing multi-threaded application

What are Threads?

Traditionally, processes have been limited in that they can do only one thing at a
time. If your application needed to perform multiple tasks in parallel, you designed
the application to create multiple processes. However, this approach has its
drawbacks. One is that processes are relatively "heavy" in terms of the resources
they consume and the time it takes to create them. For applications that frequently
create new processes ÿ for example, servers that create a new process to handle
each client connection ÿ this can lead to decreased response time. And widely
parallel applications that create many processes can consume so many system
resources as to slow down the entire system. Another drawback is that passing
information between processes can be slow because most interprocess
communication mechanisms ÿ such as files, pipes, and sockets ÿ involve
intermediaries such as the file system or operating system, as well as requiring a
context switch from one running process to another.

Threads were designed as a light-weight alternative. Threads are multiple flows of
execution within the same process. All threads within a process share the same
memory and other resources. As a result, creating a thread requires far fewer
resources than creating a separate process. Furthermore, sharing information
between threads is much faster and easier than sharing information between
processes.

The operating system handles the details of thread creation and coordination. On a
single-processor system, the operating system allocates processor time to each of
an application's threads, so a single thread doesn't block the rest of the application.
On multi-processor systems, the operating system can even run threads on
separate processors, so that threads truly can run simultaneously.

The drawback to traditional multi-threaded programming is that it can be difficult to
design a thread-safe application ÿ that is, an application in which one thread
doesn't corrupt the resources being used by another thread. Because all resources
are shared in a multi-threaded application, you need to use various locking and
scheduling mechanisms to guard against multiple threads modifying resources
concurrently.

Thread Support in Tcl

Tcl added support for multi-threaded programming in version 8.1. The Tcl core was
made thread-safe. Furthermore, new C functions exposed "platform-neutral" thread
functionality. However, no official support was provided for multi-threaded scripting.
Since then, the Thread extension ÿ originally written by Brent Welch and currently
maintained by Zoran Vasiljevic ÿ has become the accepted mechanism for creating
multi-threaded Tcl scripts. The most recent version of the Thread extension as this
was being written was 2.5. In general, this version requires Tcl 8.3 or later, and
several of the commands provided require Tcl 8.4 or later.

At the C programming level, Tcl's threading model requires that a Tcl interpreter be
managed by only one thread. However, each thread can create as many Tcl
interpreters as needed running under its control. As is the case in even a single-
threaded application, each Tcl interpreter has its own set of variables and
procedures. A thread can execute commands in another thread's Tcl interpreter only
by sending special messages to that interpreter's event queue. Those messages are
handled in the order received along with all other types of events.

Obtaining a Thread-Enabled Tcl Interpreter

Most binary distributions of Tcl are not thread-enabled, because the default options
for building the Tcl interpreters and libraries do not enable thread support. Thread
safety adds overhead, slowing down single-threaded Tcl applications, which
constitute the vast majority of Tcl applications. Also, many Tcl extensions aren't
thread safe, and naively trying to use them in a multi-threaded application can
cause errors or crashes.

Unless you can obtain a thread-enabled binary distribution of Tcl, you must compile
your own from the Tcl source distribution. This requires running the configure
command with the --enable-threads option during the build process. (See Chapter
48, "Compiling Tcl and Extensions" for more information.)

You can test whether a particular Tcl interpreter is thread-enabled by checking for
the existence of the tcl_platform(threaded) element. This element exists and
contains a Boolean true value in thread-enabled interpreters, whereas it doesn't
exist in interpreters without thread support.

Using Extensions in Multi-Threaded Scripts

Because each interpreter has its own set of variables and procedures, you must
explicitly load an extension into each thread that wants to use it. Only the Thread
extension itself is automatically loaded into each interpreter.

You must be careful when using extensions in multi-threaded scripts. Many Tcl
extensions aren't thread-safe. Attempting to use them in multi-threaded scripts

often results in crashes or corrupted data.

Tcl-only extensions are generally thread-safe. Of course, they must make no use of
other commands or extensions that aren't thread-safe. But otherwise, multi-
threaded operation doesn't add any new issues that don't already affect single-
threaded scripts.

You should always assume that a binary extension is not thread-safe unless its
documentation explicitly says that it is. And even thread-safe binary extensions
must be compiled with thread support enabled for you to use them in multi-
threaded applications. (The default compilation options for most binary extensions
don't include thread support.)

Tk isn't truly thread-safe.

Most underlying display libraries (such as X Windows) aren't thread safe ÿ or at
least aren't typically compiled with thread-safety enabled. However, significant work
has gone into making the Tk core thread-safe. The result is that you can safely use
Tk in a multi-threaded Tcl application as long as only one thread uses Tk commands
to manage the interface. Any other thread that needs to update the interface should
send messages to the thread controlling the interface.

Getting Started with the Thread Extension

You start a thread-enabled tclsh or wish the same as you would a non-threaded
tclsh or wish. When started, there is only one thread executing, often referred to
as the main thread, which contains a single Tcl interpreter. If you don't create any
more threads, your application runs like any other single-threaded application.

Make sure that the main thread is the last one to terminate.

The main thread has a unique position in a multi-threaded Tcl script. If it exits, then
the entire application terminates. Also, if the main thread terminates while other
threads still exist, Tcl can sometimes crash rather than exiting cleanly. Therefore,
you should always design your multi-threaded applications so that your main thread
waits for all other threads to terminate before it exits.

Before accessing any threading features from your application, you must load the
Thread extension:

package require Thread

The Thread extension automatically loads itself into any new threads your
application creates with thread::create. All other extensions must be loaded
explicitly into each thread that needs to use them. The Thread extension creates
commands in three separate namespaces:

The thread namespace contains all of the commands for creating and
managing threads, including inter-thread messaging, mutexes, and condition
variables.

The tsv namespace contains all of the commands for creating and managing
thread shared variables.

The tpool namespace contains all of the commands for creating and
managing thread pools.

Creating Threads

The thread::create command creates a new thread containing a new Tcl
interpreter. Any thread can create another thread at will; you aren't limited to
starting threads from only the main thread. The thread::create command returns

immediately, and its return value is the ID of the thread created. The ID is a unique
token that you use to interact with and manipulate the thread, in much the same
way as you use a channel identifier returned by open to interact with and
manipulate that channel. There are several commands available for introspection on
thread IDs: thread::id returns the ID of the current thread; thread::names
returns a list of threads currently in existence; and thread::exists tests for the
existence of a given thread.

The thread::create command accepts a Tcl script as an argument. If you provide a
script, the interpreter in the newly created thread executes it and then terminates
the thread. Example 21-1 demonstrates this by creating a thread to perform a
recursive search for files in a directory. For a large directory structure, this could
take considerable time. By performing the search in a separate thread, the main
thread is free to perform other operations in parallel. Also note how the "worker"
thread loads an extension and opens a file, completely independent of any
extensions loaded or files opened in other threads.

Example 21-1 Creating a separate thread to perform a lengthy
operation

package require Thread

Create a separate thread to search the current directory
and all its subdirectories, recursively, for all files
ending in the extension ".tcl". Store the results in the
file "files.txt".

thread::create {
 # Load the Tcllib fileutil package to use its
 # findByPattern procedure.

 package require fileutil

 set files [fileutil::findByPattern [pwd] *.tcl]

 set fid [open files.txt w]
 puts $fid [join $files \n]
 close $fid
}

The main thread can perform other tasks in parallel...

If you don't provide a script argument to thread::create, the thread's interpreter
enters its event loop. You then can use the thread::send command, described on
page 328, to send it scripts to evaluate. Often though, you'd like to perform some
initialization of the thread before having it enter its event loop. To do so, use the
thread::wait command to explicitly enter the event loop after performing any
desired initialization, as shown in Example 21-2. You should always use
thread::wait to cause a thread to enter its event loop, rather than vwait or
tkwait, for reasons discussed in "Preserving and Releasing Threads" on page 330.

Example 21-2 Initializing a thread before entering its event loop

set httpThread [thread::create {
 package require http
 thread::wait
}]

After creating a thread, never assume that it has started
executing.

There is a distinction between creating a thread and starting execution of a thread.
When you create a thread, the operating system allocates resources for the thread
and prepares it to run. But after creation, the thread might not start execution
immediately. It all depends on when the operating system allocates execution time
to the thread. Be aware that the thread::create command returns when the
thread is created, not necessarily when it has started. If your application has any
inter-thread timing dependencies, always use one of the thread synchronization
techniques discussed in this chapter.

Creating Joinable Threads

Remember that the main thread must be the last to terminate. Therefore you often
need some mechanism for determining when it's safe for the main thread to exit.
Example 21-3 shows one possible approach: periodically checking thread::names to
see if the main thread is the only remaining thread.

Example 21-3 Creating several threads in an application

package require Thread

puts "*** I'm thread [thread::id]"

Create 3 threads

for {set thread 1} {$thread <= 3} {incr thread} {
 set id [thread::create {

 # Print a hello message 3 times, waiting
 # a random amount of time between messages

 for {set i 1} {$i <= 3} {incr i} {
 after [expr { int(500*rand()) }]

 puts "Thread [thread::id] says hello"
 }

 }] ;# thread::create

 puts "*** Started thread $id"
} ;# for

puts "*** Existing threads: [thread::names]"

Wait until all other threads are finished

while {[llength [thread::names]] > 1} {
 after 500
}

puts "*** That's all, folks!"

A better approach in this situation is to use joinable threads, which are supported in
Tcl 8.4 or later. A joinable thread allows another thread to wait upon its termination
with the thread::join command. You can use thread::join only with joinable
threads, which are created by including the thread::create -joinable option.
Attempting to join a thread not created with -joinable results in an error. Failing to
join a joinable thread causes memory and other resource leaks in your application.
Example 21-4 revises the program from Example 21-3 to use joinable threads.

Example 21-4 Using joinable threads to detect thread termination

package require Thread

puts "*** I'm thread [thread::id]"

Create 3 threads

for {set thread 1} {$thread <= 3} {incr thread} {
 set id [thread::create -joinable {

 # Print a hello message 3 times, waiting
 # a random amount of time between messages

 for {set i 1} {$i <= 3} {incr i} {
 after [expr { int(500*rand()) }]
 puts "Thread [thread::id] says hello"
 }

 }] ;# thread::create

 puts "*** Started thread $id"

 lappend threadIds $id

} ;# for

puts "*** Existing threads: [thread::names]"

Wait until all other threads are finished

foreach id $threadIds {
 thread::join $id
}

puts "*** That's all, folks!"

The thread::join command blocks.

Be aware that thread::join blocks. While the thread is waiting for thread::join
to return, it can't perform any other operations, including servicing its event loop.
Therefore, make sure that you don't use thread::join in situations where a thread
must be responsive to incoming events.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Sending Messages to Threads

The thread::send command sends a script to another thread to execute. The target
thread's main interpreter receives the script as a special type of event added to the
end of its event queue. A thread evaluates its messages in the order received along
with all other types of events. Obviously, a thread must be in its event loop for it to
detect and respond to messages. As discussed on page 324, a thread enters its
event loop if you don't provide a script argument to thread::create, or if you
include the thread::wait command in the thread's initialization script.

Synchronous Message Sending

By default, thread::send blocks until the target thread finishes executing the
script. The return value of thread::send is the return value of the last command
executed in the script. If an error occurs while evaluating the script, the error
condition is "reflected" into the sending thread; thread::send generates the same
error code, and the target thread's stack trace is included in the value of the
errorInfo variable of the sending thread:

Example 21-5 Examples of synchronous message sending

set t [thread::create] ;# Create a thread
=> 1572
set myX 42 ;# Create a variable in the main thread
=> 42
Copy the value to a variable in the worker thread
thread::send $t [list set yourX $myX]
=> 42
Perform a calculation in the worker thread
thread::send $t {expr { $yourX / 2 } }
=> 21
thread::send $t {expr { $yourX / 0 } }
=> divide by zero
catch {thread::send $t {expr { $yourX / 0 } } } ret
=> 1
puts $ret
=> divide by zero
puts $errorInfo
=> divide by zero
 while executing
 "expr { $yourX / 0 } "
 invoked from within
 "thread::send $t {expr { $yourX / 0 } } "

If you also provide the name of a variable to a synchronous thread::send, then it
behaves analogously to a catch command; thread::send returns the return code
of the script, and the return value of the last command executed in the script ÿ or

the error message ÿ is stored in the variable. Tcl stores the target thread's stack
trace in the sending thread's errorInfo variable.

Example 21-6 Using a return variable with synchronous message
sending

thread::send $t {incr yourX 2} myY
=> 0
puts $myY
=> 44
thread::send $t {expr { acos($yourX) } } ret
=> 1
puts $ret
=> domain error: argument not in valid range
puts $errorInfo
=> domain error: argument not in valid range
 while executing
 "expr { acos($yourX) } "

While the sending thread is waiting for a synchronous thread::send to return, it
can't perform any other operations, including servicing its event loop. Therefore,
synchronous sending is appropriate only in cases where:

you want a simple way of getting a value back from another thread;

you don't mind blocking your thread if the other thread takes a while to
respond; or

you need a response from the other thread before proceeding.

Watch out for deadlock conditions with synchronous message
sending.

If Thread A performs a synchronous thread::send to Thread B, and while
evaluating the script Thread B performs a synchronous thread::send to Thread A,
then your application is deadlocked. Because Thread A is blocked in its
thread::send, it is not servicing its event loop, and so can't detect Thread B's
message.

This situation arises most often when the script you send calls procedures in the
target thread, and those procedures contain thread::send commands. Under these
circumstances, it might not be obvious that the script sent will trigger a deadlock
condition. For this reason, you should be cautious about using synchronous

thread::send commands for complex actions. Sending in asynchronous mode,
described in the next section, avoids potential deadlock situations like this.

Asynchronous Message Sending

With the -async option, thread::send sends the script to the target thread in
asynchronous mode. In this case, thread::send returns immediately.

By default, an asynchronous thread::send discards any return value of the script.
However, if you provide the name of a variable as an additional argument to
thread::send, the return value of the last command executed in the script is stored
as the value of the variable. You can then either vwait on the variable or create a
write trace on the variable to detect when the target thread responds. For example:

thread::send -async $t [list ProcessValues $vals] result
vwait result

In this example, the thread::send command returns immediately; the sending
thread could then continue with any other operations it needed to perform. In this
case, it executes a vwait on the return variable to wait until the target thread
finishes executing the script. However, while waiting for the response, it can detect
and process incoming events. In contrast, the following synchronous thread::send
blocks, preventing the sending thread from processing events until it receives a
response from the target thread:

thread::send $t [list ProcessValues $vals] result

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Preserving and Releasing Threads

A thread created with a script not containing a thread::wait command terminates
as soon as the script finishes executing. But if a thread enters its event loop, it
continues to run until its event loop terminates. So how do you terminate a thread's
event loop?

Each thread maintains an internal reference count. The reference count is set
initially to 0, or to 1 if you create the thread with the thread::create -preserved
option. Any thread can increment the reference count afterwards by executing
thread::preserve, and decrement the reference count by executing
thread::release. These commands affect the reference count of the current thread
unless you specify the ID of another thread. If a call to thread::release results in
a reference count of 0 or less, the thread is marked for termination.

The use of thread reference counts allows multiple threads to preserve the existence
of a worker thread until all of the threads release the worker thread. But the
majority of multi-threaded Tcl applications don't require that degree of thread
management. In most cases, you can simply create a thread and then later use
thread::release to terminate it:

set worker [thread::create]
thread::send -async $worker $script
Later in the program, terminate the worker thread
thread::release $worker

A thread marked for termination accepts no further messages and discards any
pending events. It finishes processing any message it might be executing currently,
then exits its event loop. If the thread entered its event loop through a call to
thread::wait, any other commands following thread::wait are executed before
thread termination, as shown in Example 21-7. This can be useful for performing
"clean up" tasks before terminating a thread.

Example 21-7 Executing commands after thread::wait returns

set t [thread::create {
 puts "Starting worker thread"
 thread::wait
 # This is executed after the thread is released
 puts "Exiting worker thread"
}]

Note that if a thread is executing a message script when thread::release is called
(either by itself or another thread), the thread finishes executing its message script
before terminating. So, if a thread is stuck in an endless loop, calling
thread::release has no effect on the thread. In fact, there is no way to kill such a
"runaway thread."

Always use thread::wait to enter a thread's event loop.

This system for preserving and releasing threads works only if you use the
thread::wait command to enter the thread's event loop (or if you did not provide a
creation script when creating the thread). If you use vwait or tkwait to enter the
event loop, thread::release cannot terminate the thread.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Error Handling

If an error occurs while a thread is executing its creation script (provided by
thread::create), the thread dies. In contrast, if an error occurs while processing a
message script (provided by thread::send), the default behavior is for the thread
to stop execution of the message script, but to return to its event loop and continue
running. To cause a thread to die when it encounters an uncaught error, use the
thread::configure command to set the thread's -unwindonerror option to true:

thread::configure $t -unwindonerror 1

Error handling is determined by the thread creating the thread or sending the
message. If an error occurs in a script sent by a synchronous thread::send, then
the error condition is "reflected" to the sending thread, as described in
"Synchronous Message Sending" on page 328. If an error occurs during thread
creation or an asynchronous thread::send, the default behavior is for Tcl to send a
stack trace to the standard error channel. Alternatively, you can specify the name of
your own custom error handling procedure with thread::errorproc. Tcl
automatically calls your procedure whenever an "asynchronous" error occurs,
passing it two arguments: the ID of the thread generating the error, and the stack
trace. (This is similar to defining your own bgerror procedure, as described in "The
bgerror Command" on page 202.) For example, the following code logs all uncaught
errors to the file errors.txt:

Example 21-8 Creating a custom thread error handler

set errorFile [open errors.txt a]

proc logError {id error} {
 global errorFile
 puts $errorFile "Error in thread $id"
 puts $errorFile $error
 puts $errorFile ""
}
thread::errorproc logError

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Shared Resources

The present working directory is a resource shared by all interpreters in all threads.
If one thread changes the present working directory, then that change affects all
interpreters and all threads. This can pose a significant problem, as some library
routines temporarily change the present working directory during execution, and
then restore it before returning. But in a multi-threaded application, another thread
could attempt to access the present working directory during this period and get
incorrect results. Therefore, the safest approach if your application needs to access
the present working directory is to store this value in a global or thread-shared
variable before creating any other threads. The following example uses tsv::set to
store the current directory in the pwd element of the application shared variable:

package require Thread
Save the pwd in a thread-shared variable
tsv::set application pwd [pwd]
set t [thread::create {#...}]

Environment variables are another shared resource. If one thread makes a change
to an environment variable, then that change affects all threads in your application.
This might make it tempting to use the global env array as a method for sharing
information between threads. However, you should not do so, because it is far less
efficient than thread-shared variables, and there are subtle differences in the way
environment variables are handled on different platforms. If you need to share
information between threads, you should instead use thread-shared variables, as
discussed in "Shared Variables" on page 337.

The exit command kills the entire application.

Although technically not a shared resource, it's important to recognize that the exit
command kills the entire application, no matter which thread executes it. Therefore,
you should never call exit from a thread when your intention is to terminate only
that thread.

Managing I/O Channels

Channels are shared resources in most programming languages. But in Tcl, channels
are implemented as a per-interpreter resource. Only the standard I/O channels
(stdin, stdout, and stderr) are shared.

Be careful with standard I/O channel on Windows and Macintosh.

When running wish on Windows and Macintosh prior to OS X, you don't have real
standard I/O channels, but simulated stdout and stderr channels direct output to
the special console window. As of Thread 2.5, these simulated channels appear in
the main thread's channel list, but not in any other thread's channel list. Therefore,
you'll cause an error if you attempt to access these channels from any thread other
than the main thread.

Accessing Files from Multiple Threads

In a multi-threaded application, avoid having the same file open in multiple threads.
Having the same file open for read access in multiple threads is safe, but it is more
efficient to have only one thread read the file and then share the information with
other threads as needed. Opening the same file in multiple threads for write or
append access is likely to fail. Operating systems typically buffer information written
to a disk on a per-channel basis. With multiple channels open to the same file, it's
likely that one thread will end up overwriting data written by another thread. If you
need multiple threads to have write access to a single file, it's far safer to have one
thread responsible for all file access, and let other threads send messages to the
thread to write the data. Example 21-9 shows the skeleton implementation of a
logging thread. Once the log file is open, other threads can call the logger's AddLog
procedure to write to the log file.

Example 21-9 A basic implementation of a logging thread

set logger [thread::create {
 proc OpenLog {file} {
 global fid
 set fid [open $file a]
 }
 proc CloseLog {} {
 global fid
 close $fid
 }
 proc AddLog {msg} {

 global fid
 puts $fid $msg
 }
 thread::wait
}]

Transferring Channels between Threads

As long as you're working with Tcl 8.4 or later, the Thread extension gives you the
ability to transfer a channel from one thread to another with the thread::transfer
command. After the transfer, the initial thread has no further access to the channel.
The symbolic channel ID remains the same in the target thread, but you need some
method of informing the target thread of the ID, such as a thread-shared variable.
The thread::transfer command blocks until the target thread has incorporated
the channel. The following shows an example of transferring a channel, and simply
duplicating the value of the channel ID in the target thread rather than using a
thread-shared variable:

set fid [open myfile.txt r]
...
set t [thread::create]
thread::transfer $t $fid
Duplicate the channel ID in the target thread
thread::send $t [list set fid $fid]

Another option for transferring channels introduced in Thread 2.5 is
thread::detach, which detaches a channel from a thread, and thread::attach,
which attaches a previously detached channel to a thread. The advantage to this
approach is that the thread relinquishing the channel doesn't need to know which
thread will be acquiring it. This is useful when your application uses thread pools,
which are described on page 342.

The ability to transfer channels between threads is a key feature in implementing a
multi-thread server, in which a separate thread is created to service each client
connected. One thread services the listening socket. When it receives a client
connection, it creates a new thread to service the client, then transfers the client's
communication socket to that thread.

Transferring socket channels requires special handling.

A complication arises in that you can't perform the transfer of the communication
socket directly from the connection handler, like this:

socket -server ClientConnect 9001
proc ClientConnect {sock host port} {
 set t [thread::create { ... }]
 # The following command fails
 thread::transfer $t $sock
}

The reason is that Tcl maintains an internal reference to the communication socket
during the connection callback. The thread::transfer command (and the
thread::detach command) cannot transfer the channel while this additional
reference is in place. Therefore, we must use the after command to defer the
transfer until after the connection callback returns, as shown in Example 21-10.

Example 21-10 Deferring socket transfer until after the connection
callback

proc _ClientConnect {sock host port} {
 after 0 [list ClientConnect $sock $host $port]
}

proc ClientConnect {sock host port} {
 # Create the client thread and transfer the channel
}

One issue in early versions of Tcl 8.4 was a bug that failed to initialize Tcl's socket
support when a socket channel was transferred into a thread. The work-around for
this bug is to explicitly create a socket in the thread (which can then be immediately
closed) to initialize the socket support, and then transfer the desired socket. This
bug has been fixed, but Example 21-11 illustrates how you can perform extra
initialization in a newly created thread before it enters its event loop:

Example 21-11 Working around Tcl's socket transfer bug by
initializing socket support

set t [thread::create {
 # Initialize socket support by opening and closing
 # a server socket.

 close [socket -server {} 0]

 # Now sockets can be transferred safely into this thread.

 thread::wait
}]

Example 21-12 integrates all of these techniques to create a simple multi-threaded
echo server. Note that the server still uses event-driven interaction in each client
thread. Technically, this isn't necessary for such a simple server, because once a
client thread starts it doesn't expect to receive messages from any other thread. If a

thread needs to respond to messages from other threads, it must be in its event
loop to detect and service such messages. Because this requirement is common,
this application demonstrates the event-driven approach.

Example 21-12 A multi-threaded echo server

package require Tcl 8.4
package require Thread 2.5

if {$argc > 0} {
 set port [lindex $argv 0]
} else {
 set port 9001
}
socket -server _ClientConnect $port

proc _ClientConnect {sock host port} {

 # Tcl holds a reference to the client socket during
 # this callback, so we can't transfer the channel to our
 # worker thread immediately. Instead, we'll schedule an
 # after event to create the worker thread and transfer
 # the channel once we've re-entered the event loop.

 after 0 [list ClientConnect $sock $host $port]
}

proc ClientConnect {sock host port} {

 # Create a separate thread to manage this client. The
 # thread initialization script defines all of the client
 # communication procedures and puts the thread in its
 # event loop.

 set thread [thread::create {
 proc ReadLine {sock} {
 if {[catch {gets $sock line} len] || [eof $sock]} {
 catch {close $sock}
 thread::release
 } elseif {$len >= 0} {
 EchoLine $sock $line
 }
 }

 proc EchoLine {sock line} {
 if {[string equal -nocase $line quit]} {
 SendMessage $sock \
 "Closing connection to Echo server"
 catch {close $sock}
 thread::release
 } else {
 SendMessage $sock $line

 }
 }

 proc SendMessage {sock msg} {
 if {[catch {puts $sock $msg} error]} {
 puts stderr "Error writing to socket: $error"
 catch {close $sock}
 thread::release
 }
 }

 # Enter the event loop

 thread::wait

 }]

 # Release the channel from the main thread. We use
 # thread::detach/thread::attach in this case to prevent
 # blocking thread::transfer and synchronous thread::send
 # commands from blocking our listening socket thread.

 thread::detach $sock

 # Copy the value of the socket ID into the
 # client's thread

 thread::send -async $thread [list set sock $sock]

 # Attach the communication socket to the client-servicing
 # thread, and finish the socket setup.

 thread::send -async $thread {
 thread::attach $sock
 fconfigure $sock -buffering line -blocking 0
 fileevent $sock readable [list ReadLine $sock]
 SendMessage $sock "Connected to Echo server"
 }
}

vwait forever

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Shared Variables

Standard Tcl variables are a per-interpreter resource; an interpreter has no access
to variables in another interpreter. For the simple exchange of information between
threads, you can substitute the values of variables into a script that you send to
another thread, and obtain the return value of a script evaluated by another thread.
But this technique is inadequate for sharing information among multiple threads,
and inefficient when transferring large amounts of information.

The Thread extension supports the creation of thread-shared variables, which are
accessible by all threads in an application. Thread-shared variables are stored
independent of any interpreter, so if the thread that originally created a shared
variable terminates, the shared variable continues to exist. Shared variables are
stored in collections called arrays. The term is somewhat unfortunate, because while
shared variable arrays are similar to standard Tcl arrays, they do not use the same
syntax. Your application can contain as many shared variable arrays as you like.

Because of the special nature of shared variables, you cannot use the standard Tcl
commands to create or manipulate shared variables, or use standard variable
substitution syntax to retrieve their values. (This also means that you cannot use
shared variables as a widget's -textvariable or -listvariable, with vwait or
tkwait, or with variable traces.) All commands for interacting with shared variables
are provided by the Thread extension in the tsv namespace. Most of the tsv
commands are analogous to Tcl commands for creating and manipulating standard
Tcl variables. Table 21-3 on page 346 describes all of the tsv commands.

You create a shared variable with tsv::set, specifying the array name, the variable
name (sometimes also referred to as the shared array element), and the value to
assign to it. For example:

tsv::set application timeout 10

To retrieve the value of a shared variable, either use tsv::set without a value or
call tsv::get. The two commands shown below are equivalent:

tsv::set application timeout
tsv::get application timeout

All shared variable commands are guaranteed to be atomic. A thread locks the
variable during the entire command. No other thread can access the variable until
the command is complete; if a thread attempts to do so, it blocks until the variable
is unlocked. This simplifies the use of shared variables in comparison to most other
languages, which require explicit locking and unlocking of variables to prevent
possible corruption from concurrent access by multiple threads.

This locking feature is particularly useful in the class of tsv commands that
manipulate lists. Standard Tcl commands like linsert and lreplace take a list
value as input, and then return a new list as output. Modifying the value of a list
stored in a standard Tcl variable requires a sequence like this:

set states [linsert $states 1 California Nevada]

Doing the same with shared variables is problematic:

tsv::set common cities \
 [linsert [tsv::get common cities] 1 Yreka Winnemucca]

After reading the shared variable with tsv::get, another thread could modify the
value of the variable before the tsv::set command executes, resulting in data
corruption. For this reason, the tsv commands that manipulate list values actually
modify the value of the shared variable. Data corruption by another thread won't
occur because the shared variable is locked during the entire execution of the
command:

tsv::linsert common cities 1 Yreka Winnemucca

Mutexes and Condition Variables

Mutexes and condition variables are thread synchronization mechanisms. Although
they are used frequently in other languages, they aren't needed as often in Tcl
because of Tcl's threading model and the atomic nature of all shared variable
commands. All mutex and condition variable commands are provided by the Thread
extension in the thread namespace.

Mutexes

A mutex, which is short for mutual exclusion, is a locking mechanism. You use a
mutex to protect shared resources ÿ such as shared variables, serial ports,
databases, etc. ÿ from concurrent access by multiple threads. Before accessing the
shared resource, the thread attempts to lock the mutex. If no other thread currently
holds the mutex, the thread successfully locks the mutex and can access the
resource. If another thread already holds the mutex, then the attempt to lock the
mutex blocks until the other thread releases the mutex.

This sequence is illustrated in Example 21-13. The first step is creating a mutex with
the thread::mutex create operation, which returns a unique token representing
the mutex. The same token is used in all threads, and so you must make this token
available (for example, through a shared variable) to all threads that access the
shared resource.

Example 21-13 Using a mutex to protect a shared resource

Create the mutex, storing the mutex token in a shared
variable for other threads to access.

tsv::set db mutex [thread::mutex create]

...

Lock the mutex before accessing the shared resource.

thread::mutex lock [tsv::get db mutex]

Use the shared resource, and then unlock the mutex.

thread::mutex unlock [tsv::get db mutex]

Lather, rinse, repeat as needed...

thread::mutex destroy [tsv::get db mutex]

Mutexes rely on threads being "good citizens."

Mutexes work only if all threads in an application use them properly. A "rogue"
thread can ignore using a mutex and access the shared resource directly. Therefore,
you should be very careful to use your mutexes consistently when designing and
implementing your application.

Condition Variables

A condition variable is a synchronization mechanism that allows one or more
threads to sleep until they receive notification from another thread. A condition
variable is associated with a mutex and a boolean condition known as a predicate. A
thread uses the condition variable to wait until the boolean predicate is true. A
different thread changes the state of the predicate to true, and then notifies the
condition variable. The mutex synchronizes thread access to the data used to
compute the predicate value. The general usage pattern for the signalling thread is:

Lock the mutex

Change the state so the predicate is true

Notify the condition variable

Unlock the mutex

The pattern for a waiting thread is:

Lock the mutex

Check the predicate

If the predicate is false, wait on the condition variable until notified

Do the work

Unlock the mutex

In practice, a waiting thread should always check the predicate inside a while loop,
because multiple threads might be waiting on the same condition variable. A waiting
thread automatically releases the mutex when it waits on the condition variable.

When the signalling thread notifies the condition variable, all threads waiting on that
condition variable compete for a lock on the mutex. Then when the signalling thread
releases the mutex, one of the waiting threads gets the lock. It is quite possible for
that thread then to change the state so that the predicate is no longer true when it
releases the lock. For example, several worker threads forming a thread pool might
wait until there is some type of job to process. Upon notification, the first worker
thread takes the job, leaving nothing for the other worker threads to process.

This sequence for using a condition variable sounds complex, but is relatively easy
to code. Example 21-14 shows the sequence for the signalling thread. The first step
is creating a condition variable with the thread::cond create operation, which
returns a unique token representing the condition variable. As with mutexes, the
same token is used in all threads, and so you must make this token available (for
example, through a shared variable) to all threads that access the condition
variable. When the thread is ready to update the predicate, it first locks the
associated mutex. Then it notifies the condition variable with thread::cond notify
and finally unlocks the mutex.

Example 21-14 Standard condition variable use for a signalling
thread

Create the condition variable and accompanying mutex.
Use shared variables to share these tokens with all other
threads that need to access them.

set cond [tsv::set tasks cond [thread::cond create]]
set mutex [tsv::set tasks mutex [thread::mutex create]]

When we're ready to update the state of the predicate, we
must first obtain the mutex protecting it.

thread::mutex lock $mutex

Now update the predicate. In this example, we'll just set a
shared variable to true. In practice, the predicate can be
more complex, such as the length of a list stored in a
shared variable being greater than 0.

tsv::set tasks predicate 1

Notify the condition variable, waking all waiting threads.
Each thread will block until it can lock the mutex.

thread::cond notify $cond

Unlock the mutex.

thread::mutex unlock $mutex

Example 21-15 shows the sequence for a waiting thread. When a thread is ready to
test the predicate, it must first lock the mutex protecting it. If the predicate is true,

the thread can continue processing, unlocking the mutex when appropriate. If the
predicate is false, the thread executes thread::cond wait to wait for notification.
The thread::cond wait command atomically unlocks the mutex and puts the
thread into a wait state. Upon notification, the thread atomically locks the mutex
(blocking until it can obtain it) and returns from the thread::cond wait command.
It then tests the predicate, and repeats the process until the predicate is true.

Example 21-15 Standard condition variable use for a waiting
thread

set mutex [tsv::get tasks mutex]
set cond [tsv::get tasks cond]

Lock the mutex before testing the predicate.

thread::mutex lock $mutex

Test the predicate, if necessary waiting until it is true.
while {![tsv::get tasks predicate]} {
 # Wait for notification on the condition variable.
 # thread::cond wait internally unlocks the mutex,
 # blocks until it receives notification, then locks
 # the mutex again before returning.

 thread::cond wait $cond $mutex
}

We now hold the mutex and know the predicate is true. Do
whatever processing is desired, and unlock the mutex when
it is no longer needed.

thread::mutex unlock $mutex

Tcl's threading model greatly reduces the need for condition variables. It's usually
much simpler to place a thread in its event loop with thread::wait, and then send
it messages with thread::send. And for applications where you want a thread pool
to handle jobs on demand, the Thread extension's built-in thread pool
implementation is far easier than creating your own with condition variables.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Thread Pools

A thread pool is a common multi-threaded design pattern. A thread pool consists of
several worker threads that wait for jobs to perform. When a job is sent to the
thread pool, one of the available worker threads processes it. If all worker threads
are busy, either additional worker threads are created to handle the incoming jobs,
or the jobs are queued until worker threads are available.

The tpool namespace of the Thread extension provides several commands for
creating and managing thread pools. Using these commands is much easier than
trying to build your own thread pools from scratch using mutexes, condition
variables, etc. Thread pool support was added to the Thread extension in version
2.5.

The tpool::create command creates a thread pool, returning the ID of the new
thread pool. There are several options to tpool::create that allow you to configure
the behavior of the thread pool. The -minthreads option specifies the minimum
number of threads in the pool. This number of threads is created when the thread
pool is created, and as worker threads in the pool terminate, new worker threads
are created to bring the number up to this minimum. The -maxthreads option
specifies the maximum number of worker threads allowed. If a job is posted to the
thread pool and there are no idle worker threads available, a new worker thread is
created to handle the job only if the number of worker threads won't exceed the
maximum number. If the maximum has been reached, the job is queued until a
worker thread is available. The -idletime option specifies the number of seconds
that a worker thread waits for a new job before terminating itself to preserve
system resources. And the -initcmd and -exitcmd options provide scripts to
respectively initialize newly created worker threads and clean up exiting worker
threads.

Once you have created a thread pool, you send jobs to it with the tpool::post
command. A job consists of an arbitrary Tcl script to execute. The job is executed by
the first available worker thread in the pool. If there are no idle worker threads, a
new worker thread is created, as long as the number of worker threads doesn't
exceed the thread pool maximum. If a new worker thread can't be created, the
tpool::post command blocks until a worker thread can handle the job, but while
blocked the posting thread still services its event loop.

The return value of tpool::post is a job ID. To receive notification that a job is
complete, your thread must call tpool::wait. The tpool::wait command blocks,
but continues to service the thread's event loop while blocked. Additionally, the
tpool::wait command can wait for several jobs simultaneously, returning when
any of the jobs are complete. The return value of tpool::wait is a list of completed
job IDs.

After tpool::wait reports that a job is complete, you can call tpool::get to
retrieve the result of the job, which is the return value of the last command
executed in the job script. If the job execution resulted in an error, the error is

"reflected" to the posting thread: tpool::get raises an error and the values of
errorInfo and errorCode are updated accordingly.

Finally, a thread pool can be preserved and released in much the same way as an
individual thread. Each thread pool maintains an internal reference count, which is
initially set to 0 upon creation. Any thread can increment the reference count
afterwards by executing tpool::preserve, and decrement the reference count by
executing tpool::release. If a call to tpool::release results in a reference count
of 0 or less, the thread pool is marked for termination. Any further reference to a
thread pool once it is marked for termination results in an error.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Thread Package Commands

The commands of the Thread extension are grouped into three separate
namespaces, based on their functionality. This section summarizes the commands
found in each namespace.

The thread Namespace

The thread namespace contains all of the commands for creating and managing
threads, including inter-thread messaging, mutexes, and condition variables. Table
21-1 describes all of the commands contained in the thread namespace.

Table 21-1. The commands of the thread namespace

thread::attach
channel

Attaches the previously detached channel into current
interpreter of the current thread.

thread::cond
create

Returns a token for a newly created condition variable.

thread::cond
destroy cond

Destroys the specified condition variable.

thread::cond
notify cond

Wakes up all threads waiting on the specified condition
variable.

thread::cond wait
cond mutex ?ms?

Blocks until the specified condition variable is signaled by
another thread with thread::cond notify, or until the
optional timeout in milliseconds specified by ms expires. The
mutex must be locked by the calling thread before calling
thread::cond wait. While waiting on the cond, the command
releases mutex. Before returning to the calling thread, the
command re-acquires mutex again.

thread::configure
id ?option?value?
?option value...?

Queries or sets thread configuration options, as described in
Table 21-2.

thread::create ?-
joinable? ?-
preserved? ?
script?

Creates a thread, returning the thread's ID. The -joinable
flag allows another thread to wait for termination of this
thread with thread::join. The -preserved flag sets the
thread's initial reference count to 1, rather than the default of
0. (See thread::preserve and thread::release.) If
provided, the thread executes the script, then exits;
otherwise, it enters an events loop to wait for messages.

thread::detach
channel

Detaches the specified channel from the current thread so
that it no longer has access to it. Any single thread can then
thread::attach the channel to gain access to it.

thread::errorproc
?proc?

Registers a procedure to handle errors that occur when
performing asynchronous thread::send commands. When
called, proc receives two argument: the ID of the thread that
generated the error, and the value of that thread's errorInfo
variable.

thread::eval ?-
lock mutex? arg ?
arg...?

Concatenates the arguments and evaluates the resulting script
under the mutex protection. If no mutex is specified, an
internal static one is used for the duration of the evaluation.

thread::exists id Returns boolean indicating whether or not the specified thread
exists.

thread::id Returns the current thread's ID.

thread::join id Blocks until the target thread terminates. (Available only with
Tcl 8.4 or later.)

thread::mutex
create

Returns a token for a newly created mutex.

thread::mutex
destroy mutex

Destroys the mutex.

thread::mutex
lock mutex

Locks the mutex, blocking until it can gain exclusive access.

thread::mutex
unlock mutex

Unlocks the mutex.

thread::names Returns a list of the IDs of all running threads.

thread::preserve
?id?

Increments the reference count of the indicated thread, or the
current thread if no id is given.

thread::release ?
-wait? ?id?

Decrements the reference count of the indicated thread, or the
current thread if no id is given. If the reference count is 0 or
less, mark the thread for termination. If -wait is specified, the
command blocks until the target thread terminates.

thread::send ?-
async? id script
?varname?

Sends the script, to thread id. If -async is specified, do not
wait for script to complete. Stores the result of script in
varname, if provided.

thread::transfer
id channel

Transfers the open channel from the current thread to the
main interpreter of the target thread. This command blocks
until the target thread incorporates the channel. (Available
only with Tcl 8.4 or later.)

thread::unwind Terminates a prior thread::wait to cause a thread to exit.
Deprecated in favor of thread::release.

thread::wait Enters the event loop.

The thread::configure command allows an application to query and set thread
configuration options, in much the same way as the fconfigure command
configures channels. Table 21-2 lists the available thread configuration options.

Table 21-2. Thread configuration options

-eventmark
int

Specifies the maximum number of pending scripts sent with
thread::send that the thread accepts. Once the maximum is
reached, subsequent thread::send messages to this script block
until the number of pending scripts drops below the maximum. A
value of 0 (default) allows an unlimited number of pending scripts.

-
unwindonerror
boolean

If true, the thread "unwinds" (terminates its event loop) on
uncaught errors. Default is false.

The tsv Namespace

The tsv namespace contains all of the commands for creating and managing thread
shared variables. Table 21-3 describes all of the commands contained in the tsv
namespace.

Table 21-3. The commands of the tsv namespace

tsv::append
array element
value ?value ...?

Appends to the shared variable like append.

tsv::exists
array ?element?

Returns boolean indicating whether the given element exists,
or if no element is given, whether the shared array exists.

tsv::get array
element ?varname?

Returns the value of the shared variable. If varname is
provided, the value is stored in the variable, and the command
returns 1 if the element existed, 0 otherwise.

tsv::incr array
element ?
increment?

Increments the shared variable like incr.

tsv::lappend
array element
value ?value ...?

Appends elements to the shared variable like lappend.

tsv::lindex
array element
index

Returns the indicated element from the shared variable, similar
to lindex.

tsv::linsert
array element
index value ?
value ...?

Atomically inserts elements into the shared variable, similar to
linsert, but actually modifying the variable.

tsv::llength
array element

Returns the number of elements in the shared variable, similar
to llength.

tsv::lock array
arg ?arg ...?

Concatenates the args and evaluates the resulting script.
During script execution, the command locks the specified
shared array with an internal mutex.

tsv::lpop array
element ?index?

Atomically deletes the value at the index list position from the
shared variable and returns the value deleted. The default
index is 0.

tsv::lpush array
element value ?
index?

Atomically inserts the value at the index list position in the
shared variable. The default index is 0.

tsv::lrange
array element
first last

Returns the indicated range of elements from the shared
variable, similar to lrange.

tsv::lreplace
array element
value ?value ...?

Atomically replaces elements in the shared variable, similar to
lreplace, but actually modifying the variable.

tsv::lsearch
array element ?
mode? pattern

Returns the index of the first element in the shared variable
matching the pattern, similar to lsearch. Supported modes
are: -exact, -glob (default), and -regexp.

tsv::move array
old new

Atomically renames the shared variable from old to new.

tsv::names ?
pattern?

Returns a list of all shared variable arrays, or those whose
names match the optional glob pattern.

tsv::object
array element

Creates and returns the name of an accessor command for the
shared variable. Other tsv commands are available as
subcommands of the accessor to manipulate the shared
variable.

tsv::pop array
element

Atomically returns the value of the shared variable and deletes
the element.

tsv::set array
element ?value?

Sets the value of the shared variable, creating it if necessary.
If value is omitted, the current value is returned.

tsv::unset array
?element?

Deletes the shared variable, or the entire array if no element
is specified.

The tpool Namespace

The tpool namespace contains all of the commands for creating and managing
thread pools. Table 21-4 describes all of the commands contained in the tpool
namespace.

Table 21-4. The commands of the tpool namespace

tpool::create ?
options?

Creates a thread pool, returning the thread pool's ID. Table 21-5
describes supported configuration options.

tpool::post
tpoolId script

Sends a Tcl script to the specified thread pool for execution,
returning the ID of the posted job. This command blocks
(entering the event loop to service events) until a worker thread
can service the job

tpool::wait
tpoolId jobList
?varName?

Blocks (entering the event loop to service events) until one or
more of the jobs whose IDs are given by the jobList argument
are completed. Returns a list of completed jobs from jobList. If
provided, varName is set to a list of jobs from jobList that are
still pending.

tpool::get
tpoolId jobId

Returns the result of the specified jobId. tpool::wait must
have reported previously that the job is complete. If no error
occurred in the job, the result is the return value of the last
command executed in the job script. Any error encountered in
job execution is in turn thrown by tpool::get, with the
errorCode and errorInfo variables set appropriately.

tpool::names Returns a list of existing thread pool IDs.

tpool::preserve
tpoolId

Increments the reference count of the indicated thread pool.

tpool::release
tpoolId

Decrements the reference count of the indicated thread pool. If
the reference count is 0 or less, mark the thread pool for
termination.

The tpool::create command supports several options for configuring thread pools.
Table 21-5 lists the available thread pool configuration options.

Table 21-5. Thread pool configuration options

-
minthreads
number

The minimum number of threads. If the number of live threads in the
thread pool is less than this number (including when the thread pool is
created initially), new threads are created to bring the number up to
the minimum. Default is 0.

-
maxthreads
number

The maximum number of threads.When a job is posted to the thread
pool, if there are no idle threads and the number of existing worker
threads is at the maximum, the thread posting the job blocks (in its
event loop) until a worker thread is free to handle the job. Default is 4.

-idletime
seconds

The maximum idle time, in seconds, before a worker thread exits (as
long as the number of threads doesn't drop below the -minthreads
limit). Default value is 0, meaning idle threads wait forever.

-initcmd
script

A script that newly created worker threads execute.

-exitcmd
script

A script that worker threads execute before exiting.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 22. Tclkit and Starkits
Tclkit is a version of the Tcl/Tk interpreter that is designed to make packaging and
deployment of Tcl applications easy. Tclkit includes Tcl/Tk, [incr Tcl], the Metakit
database, and TclVFS. A Starkit is a special file that contains all the scripts and
supporting files you need for your Tcl application. This chapter describes how to
package and deploy your application as a Starkit.

Tclkit was created by Jean-Claude Wippler as a way to make deploying Tcl
applications easier. Tclkit is an extended Tcl interpreter that includes the Metakit
database, the [incr Tcl] object-oriented system, and a Virtual File System (VFS). The
database is cleverly stored as part of the Tclkit application itself, and the VFS
interface is used to make the database look like a private filesystem. Tclkit puts all
the scripts normally associated with Tcl and its extensions into this database. The
result is a self-contained, single file distribution of Tcl that includes extensions for
your GUI, object-oriented programming, a database, and a few other goodies.

Metakit is a fast, transactional database with a simple programming API. Like Tcl,
Metakit is a compact, efficient library designed to be embedded into applications.
The Tcl interface to Metakit gives you a simple, easy way to manipulate persistent
data. Although you do not have to program Metakit directly when using Starkits,
this Chapter does provide a short introduction to using Metakit to store data for your
application.

A Starkit is a Metakit database file that stores your application. The VFS interface
makes this transparent. Tclkit processes the Starkit just like tclsh or wish, and your
application doesn't even have to know it is packaged inside a Starkit.

The original Tclkit used an early version of VFS created by Matt Newman. TclVFS was
ported to the Tcl core in version 8.4.1 by Vince Darley. Today you can build Tclkit
using unmodified Tcl sources. The ActiveTcl distribution includes Metakit, TclVFS and
tools to create Starkits, too.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Getting Started with Tclkit

Using Tclkit is easy. Just copy the version for your platform (e.g., Linux, Windows or
Solaris) into a convenient location under the name tclkit (or tclkit.exe on Windows.)
The CD-ROM has builds for lots of platforms, and you can find more at the Tclkit
home page:

http://www.equi4.com/tclkit

You can use the tclkit application just like tclsh. Run with no arguments, it prints a
prompt and you can type Tcl commands interactively. If you pass a file argument,
then it sources that file just as tclsh would. To use tclkit like wish, you must add this
to your scripts:

package require Tk

Although you can use tclkit to source .tcl files, tclkit is normally used to interpret
Starkits, which have a .kit suffix. On UNIX, Starkits use the #! header to associate
themselves with tclkit. Make sure that tclkit is in a directory named in your PATH
environment variable. On Windows, you can associate tclkit.exe with the .kit
extension. Mac OS X behaves like UNIX (yay!). On Mac Classic systems you can use
the File Source menu to source .kit files. Creating Starkits is described on page
352.

Inside a Starkit

Tclkit uses the Virtual Filesystem extension to make records in a Metakit database
look like files and directories to your application. Through a simple packaging step
described shortly, you can easily put all of the Tcl scripts and other supporting files
that make up your application into a single database file. The Virtual Filesystem
(VFS) extension lets you transparently access these files through the regular file
system interface (e.g., open, gets, source, even cd.)

A Starkit is a Metakit database that stores an application. The great thing about a
Starkit is that it is a single file so it is easy to manage. There is no need to unpack
files or run an installer to set things up. Instead, you can distribute your application
as two files: the Tclkit interpreter and the Starkit file. Both of these embed a virtual
file system that include all the bits and pieces needed for Tcl/Tk and your
application. The Tclkit file is platform-specific because it contains Tcl and all the
other extensions in a compiled form. There are pre-compiled Tclkits for Windows,
Macintosh, and many flavors of Unix. The Starkit file is platform-independent. You
can use it with the appropriate Tclkit interpreter on different platforms.

Deploying Applications as Starkits

http://www.equi4.com/tclkit

The key benefit of Tclkit and Starkits is easy deployment. Users just copy tclkit and
your Starkits onto their system; there is no special installation step. You can even
have different versions of tclkit and they don't interfere with each other. If users get
tired of your application, they just remove the files.

Creating Starkits is made easy with the sdx application, which was created by Steve
Landers and Jean-Claude Wippler. You organize your collection of application scripts,
data files, binary graphics, and online documentation into a file system directory
structure. Then you use sdx to wrap that into a Starkit. Creating your own Starkits
is described on page 352.

You can include binary extensions in a Starkit and dynamically load them. The load
command automatically copies the shared library out of the VFS to a temporary
location, and loads the library from that location. The temporary file is necessary
because the host OS cannot find the library inside the Starkit. Binary extensions
make the Starkit platform-specific, but it is possible to put libraries for different
platforms into the Starkit. For example, the kitten.kit Starkit includes extensions
for Windows, Linux, and Solaris.

You can combine Tclkit and a Starkit into a Starpack. The advantage of this is that it
reduces deployment to a single file. The main drawback is that the Starpack file is
relatively large, and it is platform-specific. Use sdx to create Starpacks as described
later.

The Starkit archive contains a growing collection of Starkits that include
applications, games, development tools, a Wiki, tutorials and documentation
bundles. There is a copy of the archive on the CD-ROM, and its home page is:

http://mini.net/sdarchive/

http://mini.net/sdarchive/default.htm

Virtual File Systems

The key concept in Tclkit and Starkits is the virtual file system (VFS). You may be
familiar with the file system interface inside a Unix operating system that makes
everything look the same (files, tape drives, network sockets, pipes). The nice thing
about Unix is that a system programmer can use the same APIs to access all of
these things. The goal of the Tcl VFS interface is similar in spirit: use the regular Tcl
file system interface to make things like embedded databases, FTP servers, and zip
files available to the Tcl programmer. The VFS layer in Tcl 8.4 is implemented below
the Tcl C APIs for file system access (e.g., Tcl_CreateChannel,
Tcl_FSDeleteFile). The result is that scripting commands (e.g., open, file, glob)
and any C extensions that use these APIs automatically access any Virtual File
Systems that are part of the Starkit.

The virtual file system is mounted on a regular file; by default it is mounted on the
Starkit. For example, if the Starkit is named foo.kit, and its virtual file system
contains a file named main.tcl, then it is visible to the Tcl application as
foo.kit/main.tcl. The VFS can contain a whole directory structure (e.g.,
foo.kit/lib/httpd.tcl or foo.kit/htdocs/help/index.html.)

The next section explores some simple Starkits and their file system structure. The
main idea is that the Starkit file itself is the root of the virtual file system hierarchy,
and everything in the virtual file system is visible to Tcl via the regular scripting
commands. If the VFS supports it, you can create and write files as well as read
them.

Tclkit includes the TclVFS extension that exposes the ability to implement new file
systems in Tcl. Ordinarily you do not need to use the vfs API directly when using a
Starkit. However, the TclVFS project has created a number of VFS implementations
that let you access web sites, FTP sites, zip files, tar files, and more through the
filesystem interface. Tclkit does not include all of these, but you can get them as
part of the TclVFS extension. Its home page is

http://sourceforge.net/projects/tclvfs

Accessing a Zip File Through a VFS

Tclkit includes a zipvfs package that lets you mount a compressed ZIP file archive
and read its contents. This is currently limited to read-only access. Example 22-1
uses the vfs::zip::Mount command to set up the VFS access. If you use other VFS
types supplied by the TclVFS extension, you will find that each supplies its own
vfs::vfs_type::Mount API:

Example 22-1 Accessing a Zip file through a VFS

http://sourceforge.net/projects/tclvfs

package require vfs::zip
=> 1.0
Mount the zip file on "xyz"
vfs::zip::Mount c:/downloads/tclhttpd343.zip xyz
=> filecb15a8
Examine the contents
glob xyz/*
=> xyz/tclhttpd3.4.3
Open and read file inside the zip archive
set in [open xyz/tclhttpd3.4.3/README]
=> rechan16
gets $in
This HTTPD is written in Tcl and Tk.

Using sdx to Bundle Applications

Sdx, which stands for Starkit Developer eXtension, is an application that you run
from the Unix, Windows, or MacOS command line to create and manipulate Starkits.
It is itself a Starkit, of course. The sdx application is on the CD-ROM, and you can
find a link to it from the Starkit home page:

http://www.equi4.com/starkit/

Creating a Simple Starkit

Creating a Starkit amounts to creating a directory structure that contains the files
you need, and then wrapping them up with sdx. Create files under kitname.vfs,
and wrap them into the kitname.kit Starkit with:

sdx wrap kitname.kit

In simple cases, sdx will create the directory structure for you. For example, if you
have a self-contained Tcl script called hello.tcl, then you can turn it into a Starkit
like this:

sdx qwrap hello.tcl

The qwrap operation (i.e., "quick wrap") creates a new Starkit, hello.kit, that
includes the original hello.tcl script organized into a virtual file system hierarchy
with some additional support files. You run the Starkit like this:

tclkit hello.kit

On Unix systems you can also execute the Starkit directly. The file uses the #!
syntax to specify that tclkit should run the file. On Windows, you can achieve the
same effect by associating tclkit.exe with files that end in .kit.

Examining a Starkit

There are two ways to look at a Starkit. You can get a listing of the files with the sdx
lsk operation, or you can use sdx unwrap to extract the files from the Starkit into a
kitname.vfs directory. Example 22-2 shows the lsk output for hello.kit. The
dates are in YY/MM/DD format:

Example 22-2 The output of sdx lsk hello.kit

hello.kit:
 dir lib/
 67 02/11/08 12:07 main.tcl

http://www.equi4.com/starkit/default.htm

hello.kit/lib:
 dir app-hello/
hello.kit/lib/app-hello:
 43 02/11/08 12:10 hello.tcl
 72 02/11/08 12:07 pkgIndex.tcl

Standard Package Organization

The qwrap operation turns the hello.tcl script into the app-hello package. If
necessary, sdx adds a package provide app-hello 1.0 command to the
hello.tcl script. It also creates a short main.tcl script that initializes the Starkit
system and invokes hello.tcl by doing a package require. Example 22-3 shows
main.tcl:

Example 22-3 The main program of a Starkit

package require starkit
starkit::startup
package require app-hello

When you run the Starkit, its Metakit database is mounted into a Virtual File System
that is visible to the Tcl application. Tclkit sources the main.tcl script it finds in the
VFS. The starkit::startup procedure updates the auto_path to contain the
Starkit's lib directory, so any packages stored there are available to the package
mechanism. By convention, the application is put into a package with the name
app-kitname. Example 22-4 shows the pkgIndex.tcl, which causes the package
require app-hello command to source hello.tcl.

Example 22-4 The pkgIndex.tcl in a Starkit

package ifneeded app-hello 1.0 \
 [list source [file join $dir hello.tcl]]

The dir variable is set by the package mechanism to be the directory containing the
pkgIndex.tcl file. That the lib directory happens to be inside the virtual file
system is completely transparent to the package mechanism. The package
mechanism is described in more detail in Chapter 12.

Creating a Starpack

A Starpack contains a copy of Tclkit and your Starkit. Use sdx to create Starpacks.
The -runtime flag specifies which Tclkit application you want to merge with your
Starkit. For example, to build a Windows Starpack out of our hello.tcl application:

sdx wrap hello.kit -runtime tclkit-win32.exe

To build a Starkit for Linux, use the appropriate runtime:

sdx wrap hello.kit -runtime tclkit-linux-x86

There are 4 variations of the Windows Tclkit. One option uses zlib to automatically
compress Tclkit and the Metakit database. These have .upx in their name. The other
creates a console-mode application that does not include Tk. These have -sh in their
name. The smallest Tclkit, tclkit-win32-sh.upx.exe, is only 450 K. Even tclkit-
win32.upx.exe is only 907 K, so you really can create complete applications that fit
easily onto a floppy disk!

The auto-compress variation is also available on the Linux x86 builds as the tclkit-
linux-x86.upx.bin runtime file. Check the Tclkit home page for the latest set of
Tclkit builds:

http://www.equi4.com/tclkit

http://www.equi4.com/tclkit
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Exploring the Virtual File System in a Starkit

Example 22-2 introduces the standard, recommended VFS structure for a Starkit
that makes everything into a package, even the main application. However, in this
section we are going to show a Starkit without packages in order to get a feel for
how the VFS works. For example, instead of doing the package require hello, the
main.tcl script of Example 22-3 could source the hello.tcl file directly:

source hello.kit/lib/app-hello/hello.tcl

However, this only works if you are in the directory containing the hello.kit file.

Use starkit::topdir to find things in the Starkit Virtual File
System.

The starkit::topdir variable is set by starkit::startup to be the file name of
the Starkit, which is also the root of the Virtual File System inside the Starkit. The
value of starkit::topdir is an absolute pathname, so it is always valid. Example
22-5 shows a Starkit that manipulates its virtual file system.

Example 22-5 A Starkit that examines its Virtual File System

package require starkit
starkit::startup

puts "Contents of VFS before"
foreach f [glob [file join $starkit::topdir *]] {
 puts "[file size $f] $f"
}
puts "Reading data file"
set in [open [file join starkit::topdir data]]
set X [read $in]
puts $X
close $in
set out [open [file join $starkit::topdir data.new w]]
puts $out $X
close $out
puts "Contents of VFS after"
foreach f [glob [file join $starkit::topdir *]] {
 puts "[file size $f] $f"
}

Create the Starkit by putting the code in Example 22-5 into a file named main.tcl
in the write.vfs directory. Then use sdx as shown in Example 22-6:

Example 22-6 Creating a simple Starkit

These are UNIX shell commands
mkdir write.vfs
cp 22_5.tcl write.vfs/main.tcl
sdx wrap write.kit
tclkit write.kit

If you run the write.kit file more than once you will notice that the
write.kit/data.new file does not persist between runs. This is because, by default,
the Metakit database is modified in main memory and it is not written out to the
Starkit file. If you want to store files long term, use the -writable flag to sdx:

sdx wrap write.kit -writable

Creating tclhttpd.kit

The Tcl Web Server, TclHttpd, has its source tree organized so you can run the
server without any installation steps. This makes it very easy to put into a Starkit.
For our first version, which we will refine later, all we need is a copy of the TclHttpd
source code and a copy of the Standard Tcl Library, tcllib. I used the tcllib1.3
directory that was installed in the main lib directory of my desktop Tcl environment,
and the tclhttpd3.4.3 source distribution. Example 22-7 shows the contents of the
tclhttpd.vfs directory:

Example 22-7 The contents of the tclhttpd.vfs directory, version 1

main.tcl
tclhttpd3.4.3/bin/httpd.tcl
tclhttpd3.4.3/bin/httpdthread.tcl
tclhttpd3.4.3/bin/tclhttpd.rc
tclhttpd3.4.3/lib/ (lots of files)
tclhttpd3.4.3/htdocs/ (lots of files)
tcllib1.3 (copy of /usr/local/lib/tclib1.3)

Example 22-8 shows the short main.tcl script used to start up the Starkit. The first
two lines are common to all Starkits. The starkit::autoextend command is used
to add the tcllib1.3 directory to the auto_path so the Standard Tcl Library
packages are available. The last line uses starkit::topdir to find the TclHttpd
startup script, bin/httpd.tcl.

Example 22-8 The main program for the TclHttpd Starkit, version 1

package require starkit
starkit::startup
starkit::autoextend [file join $starkit::topdir tcllib1.3]
source [file join $starkit::topdir tclhttpd3.4.3/bin/httpd.tcl]

The Starkit is created and used as shown below, assuming tclhttpd.vfs is in the
current directory. Note that command line options are passed through, so you can
also use this Starkit to host an htdocs directory outside the Starkit. If you don't
specify one, the htdocs tree inside the Starkit is used:

sdx wrap tclhttpd.kit
tclkit tclhttpd.kit -port 8080 -docRoot /my/htdocs

The standard structure introduced in Example 22-2 organizes packages under a lib
directory. By convention, the version numbers are dropped from the package
directory names. Because everything is self contained, there really isn't any need to
have explicit version numbers in the directory names. The file system for the second
version of tclhttpd.kit is shown in Example 22-9.

Example 22-9 Contents of the tclhttpd.vfs directory, version 2

main.tcl
bin/httpd.tcl
bin/httpdthread.tcl
bin/tclhttpd.rc
lib/tclhttpd/pkgIndex.tcl
lib/tclhttpd/*.tcl (lots of files)
lib/tcllib/pkgIndex.tcl
lib/tcllib/* (lots of subdirectories)

The main.tcl file is shown in Example 22-10. There is no need to adjust the
auto_path because starkit::startup ensures that the lib directory is on it.

Example 22-10 The main program for the TclHttpd Starkit, version
2

package require starkit
starkit::startup
source [file join $starkit::topdir bin/httpd.tcl]

One of the first things I noticed about the tclhttpd.vfs was that tcllib took up far
more space than the rest of TclHttpd. TclHttpd only uses a few of the many modules
in tcllib. I ended up only adding the modules I needed in order to keep the Starkit
smaller. Another way to solve this problem is to use the tcllib.kit Starkit that can
be shared among applications. Creating shared Starkits is the topic of the next
section.

Creating a Shared Starkit

Starkits can be used to create modules that are shared by other applications. For
example, the kitten.kit Starkit contains about 50 popular extensions, and several
of them are binary extensions. It is over 4 MB in size, and so it is a great candidate
for sharing. You can find kitten.kit on the CD-ROM or in the Starkit archive. By
organizing each shared module into a Starkit with the appropriate structure, it is a
simple matter to share them.

Whenever a Starkit is sourced, Tclkit mounts its VFS and looks for its main.tcl file.
This is true for shared Starkits as well as the main Starkit of an application. If
main.tcl calls starkit::startup, then the lib directory in the VFS is
automatically added to the auto_path. Any libraries organized under lib will be
automatically accessible to the application that sourced the Starkit.

You can add a little logic to make your package behave differently if it is run as the
main Starkit or sourced into another application. For example, this is done in the
tcllib Starkit, which starts a stand-alone Wiki that describes the Standard Tcl Library
APIs if run as its own Starkit. Otherwise it just sets up tcllib to be shared by the
main application. Example 22-11 shows the main.tcl of tcllib.kit. It has to
explicitly add the tcllib directory to the auto_path because it has both a lib and
tcllib directory in its VFS:

Example 22-11 The Standard Tcl Library Starkit main.tcl file

package require starkit
if {[starkit::startup] eq "starkit"} {
 # Do application startup
 package require app-tcllib
} else {
 # Set up to be used as a library
 set vfsroot [file dirname [file normalize [info script]]]
 lappend auto_path [file join $vfsroot tcllib]
}

Another side effect of starkit::startup is to set starkit::topdir. However, this
variable is only set once. If you source other Starkits that call starkit::startup,
then the starkit::topdir value is not disturbed.

This behavior changed in Tclkit 8.4.2. In earlier versions, starkit::topdir was set
by each Starkit, so you had to worry about saving its value if you loaded other
Starkits. If you source tcllib.kit and cannot package require its packages,
check its main.tcl. If it uses starkit::topdir in the non-Starkit case, then it is an
older version. Simply unwrap it, make its main.tcl look like Example 22-11, and
wrap it back up to fix the problem.

The starkit::startup procedure determines the environment of the application by
making a series of tests against the script environment. Its return value helps your

main.tcl script distinguish between starting out as the main Starkit, or being
loaded into another Starkit as a library. Table 22-1 lists the return values of the
starkit::startup procedure in the order they are checked:

Table 22-1. Return values of the starkit::startup procedure

starpack The Starkit was bundled with tclkit to make a Starpack.

starkit The Starkit was run by itself.

unwrapped The Starkit was run out of its unpacked vfs directory.

tclhttpd The Starkit was sourced into TclHttpd.

plugin The Starkit was sourced in the browser plugin.

service The Starkit was run in an NT service.

sourced The Starkit was sourced by another Starkit.

The easiest way to organize your shared Starkits is to put them into the same
directory. Example 22-12 shows how the TclHttpd Starkit is modified to load the
tcllib Starkit from the same directory.

Example 22-12 The main program for TclHttpd Starkit, version 3

package require starkit
starkit::startup
set dir [file dirname $starkit::topdir]
if {![file exists [file join $dir tcllib.kit]]} {
 puts stderr "Please install tcllib.kit in $dir"
 exit 1
}
source [file join $dir tcllib.kit]
source [file join $starkit::topdir tclhttpd/bin/httpd.tcl]

Metakit

This section provides a short overview of the Metakit database that is used by
Starkits to store their data. You do not need to program Metakit directly to use
Starkits because of the transparent VFS interface. However, Metakit is an easy-to-
use database that provides more power than storing data in flat files, but not as
much power (or overhead) as a full SQL database engine. Metakit has a simple,
flexible programming API and an efficient implementation. By storing your
application data in a Metakit table, you can have persistent data that lives with your
application. You can store the data in a file separate from your application, or right
inside the application Starkit itself.

This Chapter gives a few introductory examples and explains some of the other
features that are available. This Chapter does not provide a complete reference. The
following URLs are excellent guides to the Tcl interface for Metakit. The first URL is
also on the CD as sdarchive/doc/mk4dok.kit.

http://www.equi4.com/metakit/tcl.html

http://www.equi4.com/metakit/wiki.cgi/mk4tcl

http://www.markroseman.com/tcl/mktcl.html

Metakit Data Model

The Metakit data model is table-oriented. A view is like a table with rows of values.
Each row in a view has an index, which is an integer that counts from 0. The
elements (i.e., columns or fields) of a row are called properties. A property might
itself be a view, which leads to nested views (i.e., nested tables). All the rows in a
view have the same properties, and the properties of a view can be changed
dynamically. You can directly relate (view, row, property) to (table, row, field) when
thinking about Metakit views.

A Metakit data file has one or more views within it. When you open a Metakit file,
you specify a tag. Views are specified as tag.view. Row N of a view is specified as
tag.view!N. Such a position within a view is called a cursor, and there are operations
to create cursor variables and move them through a view. If a property is a nested
view, then you can specify a row in the nested view with tag.view!N.subview!M.

Examining a Metakit Database

Our first exercise is to open up a Starkit and look at the Metakit database views
inside. The mk::file command implements several operations. The open operation
opens a database and associates it with a tag. The views operation lists the views in
the database identified by the tag. The close operation commits any outstanding

http://www.equi4.com/metakit/tcl.html
http://www.equi4.com/metakit/wiki.cgi/mk4tcl
http://www.markroseman.com/tcl/mktcl.html

modifications to the database. The other mk::file operations are used to control
the commit behavior and to save or restore the database to an external file.
Example 22-13 illustrates how to open a Metakit database and examine the views it
contains:

Example 22-13 Examining the views in a Metakit database

package require Mk4tcl
=> 2.4.8
mk::file open tclhttpd tclhttpd.kit
=> tclhttpd
mk::file views tclhttpd
=> dirs

The mk::view command has several operations to inspect and manipulate views.
The layout operation queries or sets the properties of a view. Given only a view,
the layout operation returns the properties defined for the view. Each property has
a type, and nested views are represented as a nested list of the property name and
its list of properties. Given a set of properties, the layout operation defines new
properties for a view. This may involve adding or deleting properties from any
existing rows in the table. Example 22-14 shows the layout of the dirs view in a
Starkit. The files property is a nested view, which provides a natural way to
represent a hierarchical filesystem. The example gets the name property of
tclhttpd.dirs!0.files!0, which is the first file in the first directory in the view:

Example 22-14 Examining data in a Metakit view

mk::view layout tclhttpd.dirs
=> name parent:I {files {name size:I date:I contents:B}}
mk::view size tclhttpd.dirs
=> 48
mk::get tclhttpd.dirs!0
=> name <root> parent -1
mk::get tclhttpd.dirs!1
=> name tcllib1.3 parent 0
mk::get tclhttpd.dirs!1 name
=> tcllib1.3
mk::get tclhttpd.dirs!0.files!0 name
=> main.tcl

Of course, real applications will want to query views for values that have certain
properties. The mk::select command returns the row numbers for rows that match
given criteria, or all the row numbers if no matching criteria are given. You can
match on multiple properties, and there are flags that control how the match is
done. For example, you can do numeric comparisons, regular expression or glob
matches, and min/max comparisons.

Example 22-15 shows two forms of mk::select. The KitWalk procedure
enumerates the files in a given directory, which is the view $tag.dirs!$dir.files.

Then it queries the row indices for the $tag.dirs view whose parent property
equals $dir, and calls itself recursively to process the child directories. KitWalk
provides a similar function to sdx lsk:

Example 22-15 Selecting data with mk::select

proc KitWalk {tag dir {indent 0}} {
 set prefix [string repeat " " $indent]
 puts "$prefix[mk::get $tag.dirs!$dir name]/"
 incr indent 2

 # List the plain files in the directory, if any

 foreach j [mk::select $tag.dirs!$dir.files] {
 puts "$prefix [mk::get $tag.dirs!$dir.files!$j name]"
 }

 # Recursively process directories where $dir is the parent

 foreach i [mk::select $tag.dirs parent $dir] {
 KitWalk $tag $i $indent
 }
}
proc KitInit {starkit} {
 mk::file open starkit $starkit
 if {[mk::file views starkit] != "dirs"} {
 mk::file close $starkit
 error "This database is not a starkit"
 }
 return starkit ;# db tag
}
proc KitTest {} {
 set tag [KitInit tclhttpd.kit]
 KitWalk $tag 0
}

Creating a Metakit View

Creating a new view is simple. Example 22-16 opens a database file mydb.tkd and
creates a view test with three properties: name, blob, and i. If the file does not
exist, then it gets created automatically. If the test view doesn't exist, it gets
created. If it already exists, it is reformatted to have the new properties. The name
property has the default type, which is a null-terminated string. The blob property
is a binary value (B) which can store anything, including null characters. The i
property is a 32-bit integer (I). Other types include 64-bit integer (L), 32-bit
floating point (F), 64-bit double-precision floating point (D), and null-terminated
string (S), which is the default and needn't be specified.

Example 22-16 Creating a new view

mk::file open mydb mydb.tkd
=> mydb
mk::view layout mydb.test {name blob:B i:I}
=> mydb.test
mk::file close mydb

The mk::set command sets property values, and the mk::row command modifies
rows. Example 22-17 adds a few values to the test view. Note that you can insert
into rows beyond the end of the view and it is automatically extended. If you only
define some properties for a row, the other properties get default values. Other
mk::row operations include insert, replace, and delete.

Example 22-17 Adding data to a view

mk::set mydb.test!0 name hello
=> mydb.test!0
mk::get mydb.test!0
=> hello {} 0
mk::row append mydb.test "line two" 0x0 65
=> mydb.test!1
mk::view size mydb.test
=> 2
mk::set mydb.test!100 i 1234
=> mydb.test!100
mk::view size mydb.test
=> 101

Storing Application Data in a Starkit

Your application can create new views in a Starkit to store persistent data.
Remember to wrap your application with the -writable flag. You can determine the
name of the Starkit from $starkit::topdir, and then define a new view within it.
Of course, remember that Starkits use dirs view to store files, but you can create
any number of other views within your Starkits. This is illustrated in Example 22-18,
which records each time the application was run in a simple audit view.

Example 22-18 is careful to find the existing Metakit handle that is already opened
by Tclkit. The vfs::filesystem info command returns an alternating list of VFS
names and their Metakit database handle. The example extracts the handle and
saves it in the $db variable. This is important because opening the same Metakit file
twice (for writing) can cause corruption:

Example 22-18 Storing data in a Starkit

package require starkit
starkit::startup
set db [lindex [vfs::filesystem info [$starkit::topdir]] 1]
mk::view layout $db.audit {action timestamp:I}
mk::row append $db.audit "Run as pid [pid]" [clock seconds]
puts "$argv0 has been run [mk::view size $db.audit] times"

To test this, put this example into the main.tcl of a trivial Starkit. When you create
the Starkit, remember the -writable option with sdx:

mkdir bundle.vfs
cp 22_18.tcl bundle.vfs/main.tcl
sdx wrap bundle.kit -writable-

Wikit and the Tcler's Wiki

The alternative to storing data in the Starkit file is to have a separate Metakit data
file. This is the approach taken by Wikit. The wikit.kit file is the Wikit application,
and the wikit.tkd file is a Metakit database file that stores all the pages in the
Wiki. (Creating a new Wiki is simple, just specify a different .tkd file name.) The
advantage of having a separate Metakit file is that you can easily maintain your
application by unwrapping and wrapping your application Starkit. Otherwise, if you
put the application data directly into the Starkit you have to extract it and restore it
as an additional maintenance step. In that case, you must use the mk::file save
and load operations to save and restore your Metakit views to a file.

A Wiki is a web site that users can easily edit using a simplified markup syntax.
Wikit is a Wiki implementation in Tcl using Metakit to store pages. It can run as a
stand-alone Tk application, a GGI script, as its own little web server, or embedded
into another application as a documentation bundle. There is a copy of wikit.tkd
on the CD-ROM. For example, you run a stand alone copy of the Tcler's Wiki as:

tclkit wikit.kit wikit.tkd

The live Wiki is at wiki.tcl.tk[*], and you can find out more about Wikit at:

[*] http://wiki.tcl.tk is an alias for http://mini.net/tcl.

http://wiki.tcl.tk/wikit

http://wiki.tcl.tk/default.htm
http://mini.net/tcl
http://wiki.tcl.tk/wikit

More Ideas

This Chapter has provided a brief introduction to Tclkit, Starkits, and Metakit. This
should be enough to help you get started creating your own Starkits and using
Metakit for persistent storage. You should consult the documentation on the Web for
more detailed reference material.

Document Bundles

The Starkit archive includes a number of documentation bundles. For example,
mk4dok.kit is a Starkit that contains all the MetaKit documentation. These
document bundles are all based on Wikit. It is very easy to create Wiki-style
documentation for your application and then bundle it up as a Metakit file. You can
load wikit.kit and your .tkd document bundle into your application and use the
"local" Wikit interface to display your documentation. For example, the critcl Starkit
displays its help with this simple command:

Wikit::init [file join $::starkit::topdir doc critcl.tkd]

Self-Updating Applications

The client in a client-server application is an ideal candidate for a self-updating
application. The front-end client is a Starkit with some simple startup logic that
connects to a server via HTTP and displays a pretty splash screen. The server, which
is often based on TclHttpd, delivers code updates to the client. The client caches the
code in the VFS inside the Starkit. The application is maintained on the server, and
clients automatically get updated as they are used.

This scenario has the same deployment advantage as browser-based applications:
you deploy a "thin-client" to desktops that rarely, if ever, changes and you update
the application code on the server. In addition, this application structure lets you
create a nice client front-end that uses Tcl/Tk instead of HTML, yet still have the
benefit of an easy to manage server-side installation of the application code. This
design pattern is being used for a number of large-scale commercial application
deployments with considerable success.

A similar system is used with the Starkit archive. If you do:

sdx update tclhttpd.kit

The sdx application contacts the web server running the archive and checks for any
updates available for the Starkit. Only the differences are transmitted, so updates
are quick, and they are automatically applied to your copy of the Starkit. This
should work for all the Starkits in the snapshot of the archive on the CD-ROM.

Simple Installers

In some cases you simply must install a collection of files as part of your application.
It is very easy to include those files in the VFS, and then extract them into the local
file system the first time your application runs. Or, you can create a traditional
"installer" that unpacks the entire application from the Starkit (or Starpack).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Part III: Tk Basics
Part III introduces Tk, the toolkit for building graphical user interfaces. The Tcl
command interface to Tk makes it quick and easy to build powerful user
interfaces. Tk is portable and your user interface code can work unchanged on
UNIX, Windows, and the Macintosh.

Chapter 23 describes the basic concepts of Tk and provides an overview of its
facilities.

Chapter 24 illustrates Tk with three example programs including a browser for
the examples from this book. These examples use facilities that are described
in more detail in later chapters.

Geometry managers implement the layout of a user interface. Chapters
Chapter 25, Chapter 26, and Chapter 27 describe the pack, grid, and place
geometry managers. The packer and gridder are general-purpose managers
that use constraints to create flexible layouts with a small amount of code. The
placer is a special purpose geometry manager that can be used for special
effects. Chapter 28 describes the panedwindow widget, which is also a
geometry manager.

Chapter 29 describes event bindings that associate Tcl commands with events
like keystrokes and mouse motion.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Chapter 23. Tk Fundamentals
This chapter introduces the basic concepts used in the Tk graphical user interface
toolkit. Tk adds about 45 Tcl commands that let you create and manipulate widgets
in a graphical user interface. Tk works with the X window system, Windows, and
Macintosh. The same script can run unchanged on all of these major platforms.

Tk is a toolkit for programming graphical user interfaces. It was designed for the X
window system used on UNIX systems, and it was ported later to the Macintosh and
Windows environments. Tk shares many concepts with other windowing toolkits, but
you do not need to know much about graphical user interfaces to get started with
Tk.

Tk provides a set of Tcl commands that create and manipulate widgets. A widget is a
window in a graphical user interface that has a particular appearance and behavior.
The terms widget and window are often used interchangeably. Widget types include
buttons, scrollbars, menus, and text windows. Tk also has a general-purpose
drawing widget called a canvas that lets you create lighter-weight items such as
lines, boxes, and bitmaps. The canvas is extremely powerful, yet very easy to use.
The Tcl commands added by Tk are summarized at the end of this chapter.

Tk widgets are organized in a hierarchy. To an application, the window hierarchy
means that there is a primary window, and inside that window there can be a
number of children windows. The children windows can contain more windows, and
so on. Just as a hierarchical file system has directories (i.e., folders) that are
containers for files and directories, a hierarchical window system uses windows as
containers for other windows. The hierarchy affects the naming scheme used for Tk
widgets as described later, and it is used to help arrange widgets on the screen.

Widgets are under the control of a geometry manager that controls their size and
location on the screen. Until a geometry manager learns about a widget, it will not
be mapped onto the screen and you will not see it. Tk has powerful geometry
managers that make it very easy to create nice screen layouts. The main trick with
any geometry manager is that you use frame widgets as containers for other
widgets. One or more widgets are created and then arranged in a frame by a
geometry manager. By putting frames within frames you can create complex
layouts. There are three different geometry managers you can use in Tk: grid,
pack, and place, and one widget, the panedwindow, that also acts as a geometry
manager. The Tk geometry managers are discussed in detail in Chapters 25, 26, and
27; the panedwindow is discussed in Chapter 28.

A Tk-based application has an event-driven control flow, like most window system
toolkits. The Tk widgets handle most events automatically, so programming your
application remains simple. For specialized behaviors, you use the bind command to
register a Tcl command that runs when an event occurs. There are lots of events,
including mouse motion, keystrokes, window resize, and window destruction. You
can also define virtual events, like Cut and Paste, that are caused by different
events on different platforms. Bindings are discussed in detail in Chapter 29.

Chapter 16 describes I/O events and the Tcl event loop, while Chapter 50 describes
C programming and the event loop.

Event bindings are grouped into classes, which are called bindtags. The bindtags
command associates a widget with an ordered set of bindtags. The level of
indirection between the event bindings and the widgets creates a flexible and
powerful system for managing events. You can create your own bindtags and
dynamically change the bindtags for a widget to support mode changes in your
application.

A concept related to binding is focus. At any given time, one of the widgets has the
input focus, and keyboard events are directed to it. There are two general
approaches to focusing: give focus to the widget under the mouse, or explicitly set
the focus to a particular widget. Tk provides commands to change focus so you can
implement either style of focus management. To support modal dialog boxes, you
can forcibly grab the focus away from other widgets. Chapter 39 describes focus,
grabs, and dialogs.

The basic structure of a Tk script begins by creating widgets and arranging them
with a geometry manager, and then binding actions to the widgets. After the
interpreter processes the commands that initialize the user interface, the event loop
is entered and your application begins running.

If you use wish interactively, it creates and displays an empty main window and
gives you a command-line prompt. With this interface, your keyboard commands
are handled by the event loop, so you can build your Tk interface gradually. As we
will see, you will be able to change virtually all aspects of your application
interactively.

Hello, World! in Tk

Our first Tk script is very simple. It creates a button that prints "Hello, World!" to
standard output when you press it. Above the button widget is a title bar that is
provided by the window manager, which in this case is twm under X windows:

Example 23-1 "Hello, World!" Tk program

#!/usr/local/bin/wish
button .hello -text Hello \
 -command {puts stdout "Hello, World!"}
pack .hello -padx 20 -pady 10

The first line identifies the interpreter for the script:

#!/usr/local/bin/wish

This special line is necessary if the script is in a file that will be used like other UNIX
command files. Chapter 2 describes how to set up scripts on different platforms.

There are two Tcl commands in the script: one to create the button, and one to
make it visible on the display. The button command creates an instance of a
button:

button .hello -text Hello \
 -command {puts stdout "Hello, World!"}
=> .hello

The name of the button is .hello. The label on the button is Hello, and the
command associated with the button is:

puts stdout "Hello, World!"

The pack command maps the button onto the screen. Some padding parameters are
supplied, so there is space around the button:

pack .hello -padx 20 -pady 10

If you type these two commands into wish, you will not see anything happen when
the button command is given. After the pack command, though, you will see the
empty main window shrink to be just big enough to contain the button and its
padding. The behavior of the packer will be discussed further in Chapters 24 and 25.

Tk uses an object-based system for creating and naming widgets. Associated with
each class of widget (e.g., Button) is a command that creates instances of that
class of widget. As the widget is created, a new Tcl command is defined that
operates on that instance of the widget. Example 23-1 creates a button named
.hello, and we can operate on the button using its name as a Tcl command. For
example, we can cause the button to highlight a few times:

.hello flash

Or we can run the command associated with the button:

.hello invoke
=> Hello, World!

Tk has widget classes and instances, but it is not fully object oriented. It is not
possible to subclass a widget class and use inheritance. Instead, Tk provides very
flexible widgets that can be configured in many different ways to tune their
appearance. The resource database can store configuration information that is
shared by many widgets, and new classes can be introduced to group resources.
Widget behavior is shared by using binding tags that group bindings. Instead of
building class hierarchies, Tk uses composition to assemble widgets with shared
behavior and attributes.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Naming Tk Widgets

The period in the name of the button instance, .hello, is required. Tk uses a
naming system for the widgets that reflects their position in a hierarchy of widgets.
The root of the hierarchy is the main window of the application, and its name is
simply a dot (i.e., .). This is similar to the naming convention for directories in UNIX
where the root directory is named /, and then / is used to separate components of
a file name. Tk uses a dot in the same way. Each widget that is a child of the main
window is named something like .foo. A child widget of .foo would be .foo.bar,
and so on. Just as file systems have directories that are containers for files and
other directories, the Tk window hierarchy uses frame widgets that are containers
for widgets and other frames.

Each component of a Tk pathname must start with a lowercase letter or a number.
Obviously, a component cannot include a period, either. The lower case restriction
avoids a conflict with resource class names that begin with an upper case letter. A
resource name can include Tk pathname components and Tk widget classes, and
case is used to distinguish them. Chapter 31 describes resources in detail.

Store widget names in variables.

There is one drawback to the Tk widget naming system. If your interface changes
enough it can result in some widgets changing their position in the widget hierarchy.
In that case they may need to change their name. You can insulate yourself from
this programming nuisance by using variables to hold the names of important
widgets. Use a variable reference instead of widget pathnames in case you need to
change things, or if you want to reuse your code in a different interface. The widget
creating commands return the name of the widget:

set b [button .hello -text "Hello" -command {puts "Hello!"}]

You use $b as a command to operate on the button:

$b configure -background green

Configuring Tk Widgets

Example 23-1 illustrates a style of named parameter passing that is prevalent in the
Tk commands. Pairs of arguments specify the attributes of a widget. The attribute
names begin with -, such as -text, and the next argument is the value of that
attribute. Even the simplest Tk widget can have a dozen or more attributes that can
be specified this way, and complex widgets can have 30 or more attributes.
However, the beauty of Tk is that you need to specify only the attributes for which
the default value is not good enough. This is illustrated by the simplicity of the
Hello, World example.

Finally, each widget instance supports a configure operation, which can be
abbreviated to config, that can query and change these attributes. The syntax for
config uses the same named argument pairs used when you create the widget. For
example, we can change the background color of the button to red even after it has
been created and mapped onto the screen:

.hello config -background red

Widget attributes can be redefined any time, even the text and command that were
set when the button was created. The following command changes .hello into a
goodbye button:

.hello config -text Goodbye! -command exit

Widgets have a cget operation to query the current value of an attribute:

.hello cget -background
=> red

You can find out more details about a widget attribute by using configure without a
value:

.hello config -background
=> -background background Background #ffe4c4 red

The returned information includes the command-line switch, the resource name, the
class name, the default value, and the current value, which is last. The class and
resource name have to do with the resource mechanism described in Chapter 31. If
you only specify configure and no attribute, then a list of the configuration
information for all widget attributes is returned. Example 23-2 uses this to print out
all the information about a widget:

Example 23-2 Looking at all widget attributes

proc Widget_Attributes {w {out stdout}} {
 puts $out [format "%-20s %-10s %s" Attribute Default Value]
 foreach item [$w configure] {
 puts $out [format "%-20s %-10s %s" \

 [lindex $item 0] [lindex $item 3] \
 [lindex $item 4]]
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Tk Widget Attributes and the Resource Database

A widget attribute can be named three different ways: by its command-line option,
by its resource name, and by its resource class. The command-line option is the
format you use in Tcl scripts. This form is always all lowercase and prefixed with a
hyphen (e.g., -offvalue). The resource name for the attribute has no leading
hyphen, and it has uppercase letters at internal word boundaries (e.g., offValue).
The resource class begins with an uppercase letter and has uppercase letters at
internal word boundaries. (e.g., OffValue).

The tables in this book list widget attributes by their resource
name.

You need to know these naming conventions if you specify widget attributes via the
resource mechanism. The command-line option can be derived from the resource
name by mapping it to all lowercase. The primary advantage of using resources to
specify attributes is that you do not have to litter your code with attribute
specifications. With just a few resource database entries you can specify attributes
for all your widgets. In addition, if attributes are specified with resources, users can
provide alternate resource specifications in order to override the values supplied by
the application. For attributes like colors and fonts, this feature can be important to
users. Resource specifications are described in detail in Chapter 31.

The Tk Manual Pages

This book provides summaries for all the Tk commands, the widget attributes, and
the default bindings. However, for the absolute truth, you may need to read the on-
line manual pages that come with Tk. They provide a complete reference source for
the Tk commands. You should be able to use the UNIX man program to read them:

% man button

The tkman program provides a very nice graphical user interface to the UNIX
manual pages. On the Macintosh platform, the manual pages are formatted into
HTML documents that you can find in the HTML Docs folder of the Tcl/Tk distribution.
On Windows, the manual pages are formatted into Help documents. You can find the
manual pages on the web at:

http://www.tcl.tk/man/

http://www.tcl.tk/man/default.htm

There are a large number of attributes that are common across most of the Tk
widgets. These are described in a separate man page under the name options.
Each man page begins with a STANDARD OPTIONS section that lists which of these
standard attributes apply, but you have to look at the options man page for the
description. In contrast, the tables in this book always list all widget attributes.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Summary of the Tk Commands

The following tables list the Tcl commands added by Tk. The page number in the
table is the primary reference for the command, and there are other references in
the index.

Widget Commands

Table 23-1 lists commands that create widgets. There are 18 different widgets in Tk,
although 4 of them are variations on a button, and 5 are devoted to different flavors
of text display.

Table 23-1. Tk widget-creation commands

Command Pg. Description

button 454Create a command button.

canvas 557Create a canvas, which supports lines, boxes, bitmaps, images,
arcs, text, polygons, and embedded widgets.

checkbutton 458Create a toggle button that is linked to a Tcl variable.

entry 507Create a one-line text entry widget.

frame 485Create a container widget used with geometry managers.

label 490Create a read-only, multiline text label.

labelframe 485Create a container widget used with geometry managers that has
extra label attributes. (Tk 8.4)

listbox 519Create a line-oriented, scrolling text widget.

menu 462Create a menu.

Command Pg. Description

menubutton 462Create a button that posts a menu.

message 493Create a read-only, multiline text message.

panedwindow 429Create a container widget that controls other widgets in a paned
fashion. (Tk 8.4)

radiobutton 458Create one of a set of radio buttons linked to one variable.

scale 495Create a scale widget that adjusts the value of a variable.

scrollbar 499Create a scrollbar that can be linked to another widget.

spinbox 511Create a spinbox widget that is a composite entry widget with
button controls for adjusting the value. (Tk 8.4)

text 531Create a general-purpose, editable text widget.

toplevel 485Create a frame that is a new top level window.

Widget Manipulation Commands

Table 23-2 lists commands that manipulate widgets and provide associated functions
like input focus, event binding, and geometry management.

Table 23-2. Tk widget-manipulation commands

Command Pg. Description

bell 497Ring the terminal bell device.

bind 435Bind a Tcl command to an event.

Command Pg. Description

bindtags 437Create binding classes and control binding inheritance.

clipboard 594Manipulate the clipboard.

destroy 605Delete a widget.

event 446Define and generate virtual events.

focus 603Control the input focus.

font 641Set and query font attributes and measurements.

grab 604Steal the input focus from other widgets.

grid 419Arrange widgets into a grid with constraints.

image 626Create and manipulate images.

lower 409Lower a window in the stacking order.

option 477Set and query the resources database.

pack 409Pack a widget in the display with constraints.

place 427Place a widget in the display with positions.

raise 409Raise a window in the stacking order.

selection 593Manipulate the selection.

send 648Send a Tcl command to another Tk application.

tk 669Query or set the application name or global caret.

Command Pg. Description

tkerror 202Handler for background errors.

tkwait 605Wait for an event.

update 608Update the display by going through the event loop.

winfo 663Query window state.

wm 657Interact with the window manager.

Support Procedures

Table 23-3 lists several support procedures that implement standard dialogs, option
menus, and other facilities.

Table 23-3. Tk support procedures

Command Pg. Description

tk_bisque 621Install bisque family of colors.

tk_chooseColor 602Dialog to select a color. (Tk 4.2)

tk_chooseDirectory 600Dialog to select a directory. (Tk 8.2)

tk_dialog 599Create simple dialogs.

tk_focusFollowsMouse 603Install mouse-tracking focus model.

tk_focusNext 604Focus on next widget in tab order.

tk_focusPrev 604Focus on previous widget in tab order.

Command Pg. Description

tk_getOpenFile 600Dialog to open an existing file. (Tk 4.2)

tk_getSaveFile 600Dialog to open a new file. (Tk 4.2)

tk_messageBox 600Message dialog. (Tk 4.2)

tk_optionMenu 465Create an option menu.

tk_popup 465Create a pop-up menu.

tk_setPalette 621Set the standard color palette. (Tk 4.2)

Other Widget Sets

This book describes the set of widgets provided by core Tk distribution. There are
number of other widget sets for Tk. Some are implemented as Tcl procedures that
compose the basic widgets into useful combinations (e.g., BWidgets). Others are C-
based toolkits (e.g., Tix and BLT). A few of the more popular widget sets are listed
here:

BLT

George Howlett created BLT. It includes a great graph widget that efficiently
supports large datasets. It also includes a tabbed notebook and tree view widget.
Its busy widget covers your application with a transparent widget that just displays
a watch cursor, which is handy when the application is busy doing something and
you don't want to accept mouse clicks. This is a C-based toolkit.

http://www.sourceforge.net/projects/blt/

Tix

Tix was created by Ioi Lam, and is now supported by a team of volunteers. It
includes several widgets and an infrastructure for creating new widgets in Tcl.
Notable features include balloon help, tabbed windows, paned window, and a
hierarchy browser. This is a C-based toolkit, although it includes a number of
compound widgets created in Tcl.

http://tix.sourceforge.net/

[incr Tk] and [incr Widgets]

[incr Tk] is a C-based framework for creating compound widgets using the [incr Tcl]
object system. [incr Widgets] is the widget set created using that framework. It
includes loads of widgets, from simple labeled-entry widgets up through HTML
display widgets. These tools are described in Chad Smith's book, [incr Tcl] from the
Ground Up (Osborne-McGraw Hill, 1999).

http://incrtcl.sourceforge.net

BWidgets

BWidgets is a set of Tcl-based widgets. It includes a variety of compound widgets,
including a tabbed notebook, combobox, and hierarchy browser. It is hosted at the

http://www.sourceforge.net/projects/blt/default.htm
http://tix.sourceforge.net/default.htm
http://incrtcl.sourceforge.net/default.htm

Standard Tcl Lib (tcllib) web site:

http://www.sourceforge.net/projects/tcllib

TkTable

TkTable is combination of a gridding geometry manager and several text-oriented
widgets. It makes it easy to lay out tabular data like spreadsheets, and it also
provides a large amount of control over the formatting of cells and their data.

http://www.sourceforge.net/projects/tktable

http://www.sourceforge.net/projects/tcllib
http://www.sourceforge.net/projects/tktable
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 24. Tk by Example
This chapter introduces Tk through a series of short examples. The ExecLog runs a
program in the background and displays its output. The Example Browser displays
the Tcl examples from the book. The Tcl Shell lets you type Tcl commands and
execute them in a slave interpreter.

Tk provides a quick and fun way to generate user interfaces. In this chapter we will
go through a series of short example programs to give you a feel for what you can
do. Some details are glossed over in this chapter and considered in more detail
later. In particular, the pack geometry manager is covered in Chapter 25 and event
bindings are discussed in Chapter 29. The Tk widgets are discussed in more detail in
later chapters.

ExecLog

Our first example provides a simple user interface to running another program with
the exec command. The interface consists of two buttons, Run it and Quit, an
entry widget in which to enter a command, and a text widget in which to log the
results of running the program. The script runs the program in a pipeline and uses
the fileevent command to wait for output. This structure lets the user interface
remain responsive while the program executes. You could use this to run make, for
example, and it would save the results in the log. The complete example is given
first, and then its commands are discussed in more detail.

Example 24-1 Logging the output of a program run with exec

#!/usr/local/bin/wish
execlog - run a program with exec and log the output
Set window title
wm title . ExecLog

Create a frame for buttons and entry.

frame .top -borderwidth 10
pack .top -side top -fill x

Create the command buttons.

button .top.quit -text Quit -command exit
set but [button .top.run -text "Run it" -command Run]
pack .top.quit .top.run -side right

Create a labeled entry for the command

label .top.l -text Command: -padx 0
entry .top.cmd -width 20 -relief sunken \
 -textvariable command
pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Set up key binding equivalents to the buttons

bind .top.cmd <Return> Run
bind .top.cmd <Control-c> Stop
focus .top.cmd

Create a text widget to log the output

frame .t
set log [text .t.log -width 80 -height 10 \
 -borderwidth 2 -relief raised -setgrid true \
 -yscrollcommand {.t.scroll set}]
scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill y
pack .t.log -side left -fill both -expand true
pack .t -side top -fill both -expand true

Run the program and arrange to read its input

proc Run {} {
 global command input log but
 if [catch {open "|$command |& cat"} input] {
 $log insert end $input\n
 } else {
 fileevent $input readable Log
 $log insert end $command\n
 $but config -text Stop -command Stop
 }
}

Read and log output from the program

proc Log {} {
 global input log
 if [eof $input] {
 Stop
 } else {
 gets $input line
 $log insert end $line\n
 $log see end
 }
}

Stop the program and fix up the button

proc Stop {} {
 global input but
 catch {close $input}
 $but config -text "Run it" -command Run
}

Window Title

The first command sets the title that appears in the title bar implemented by the
window manager. Recall that dot (i.e., .) is the name of the main window:

wm title . ExecLog

The wm command communicates with the window manager. The window manager is
the program that lets you open, close, and resize windows. It implements the title
bar for the window and probably some small buttons to close or resize the window.
Different window managers have a distinctive look; the figure shows a title bar from
twm, a window manager for X.

A Frame for Buttons

A frame is created to hold the widgets that appear along the top of the interface.
The frame has a border to provide some space around the widgets:

frame .top -borderwidth 10

The frame is positioned in the main window. The default packing side is the top, so -
side top is redundant here, but it is used for clarity. The -fill x packing option
makes the frame fill out to the whole width of the main window:

pack .top -side top -fill x

Command Buttons

Two buttons are created: one to run the command, the other to quit the program.
Their names, .top.quit and .top.run, imply that they are children of the .top
frame. This affects the pack command, which positions widgets inside their parent
by default:

button .top.quit -text Quit -command exit
set but [button .top.run -text "Run it" \
 -command Run]
pack .top.quit .top.run -side right

A Label and an Entry

The label and entry are also created as children of the .top frame. The label is
created with no padding in the X direction so that it can be positioned right next to
the entry. The size of the entry is specified in terms of characters. The relief
attribute gives the entry some looks to set it apart visually on the display. The
contents of the entry widget are linked to the Tcl variable command:

label .top.l -text Command: -padx 0
entry .top.cmd -width 20 -relief sunken \
 -textvariable command

The label and entry are positioned to the left inside the .top frame. The additional
packing parameters to the entry allow it to expand its packing space and fill up that
extra area with its display. The difference between packing space and display space
is discussed in Chapter 25 on page 399:

pack .top.l -side left
pack .top.cmd -side left -fill x -expand true

Key Bindings and Focus

Key bindings on the entry widget provide an additional way to invoke the functions
of the application. The bind command associates a Tcl command with an event in a
particular widget. The <Return> event is generated when the user presses the
Return key on the keyboard. The <Control-c> event is generated when the letter c
is typed while the Control key is already held down. For the events to go to the
entry widget, .top.cmd, input focus must be given to the widget. By default, an
entry widget gets the focus when you click the left mouse button in it. The explicit
focus command is helpful for users with the focus-follows-mouse model. As soon as
the mouse is over the main window the user can type into the entry:

bind .top.cmd <Return> Run
bind .top.cmd <Control-c> Stop
focus .top.cmd

A Resizable Text and Scrollbar

A text widget is created and packed into a frame with a scrollbar. The width and
height of the text widget are specified in characters and lines, respectively. The
setgrid attribute of the text widget is turned on. This restricts the resize so that
only a whole number of lines and average-sized characters can be displayed.

The scrollbar is a separate widget in Tk, and it can be connected to different widgets
using the same setup as is used here. The text's yscrollcommand updates the
display of the scrollbar when the text widget is modified, and the scrollbar's command
scrolls the associated widget when the user manipulates the scrollbar:

frame .t
set log [text .t.log -width 80 -height 10 \
 -borderwidth 2 -relief raised -setgrid true\
 -yscrollcommand {.t.scroll set}]
scrollbar .t.scroll -command {.t.log yview}
pack .t.scroll -side right -fill y
pack .t.log -side left -fill both -expand true
pack .t -side top -fill both -expand true

A side effect of creating a Tk widget is the creation of a new Tcl command that
operates on that widget. The name of the Tcl command is the same as the Tk
pathname of the widget. In this script, the text widget command, .t.log, is needed
in several places. However, it is a good idea to put the Tk pathname of an important
widget into a variable because that pathname can change if you reorganize your
user interface. The disadvantage of this is that you must declare the variable with
global inside procedures. The variable log is used for this purpose in this example
to demonstrate this style.

The Run Procedure

The Run procedure starts the program specified in the command entry. That value is
available in the global command variable because of the textvariable attribute of
the entry. The command is run in a pipeline so that it executes in the background.
The leading | in the argument to open indicates that a pipeline is being created. The
catch command guards against bogus commands. The variable input is set to an
error message, or to the normal open return that is a file descriptor. The program is
started like this:

if [catch {open "|$command |& cat"} input] {

Trapping errors from pipelines.

The pipeline diverts error output from the command through the cat program. If you
do not use cat like this, then the error output from the pipeline, if any, shows up as
an error message when the pipeline is closed. In this example it turns out to be
awkward to distinguish between errors generated from the program and errors
generated because of the way the Stop procedure is implemented. Furthermore,
some programs interleave output and error output, and you might want to see the
error output in order instead of all at the end.

If the pipeline is opened successfully, then a callback is set up using the fileevent
command. Whenever the pipeline generates output, then the script can read data
from it. The Log procedure is registered to be called whenever the pipeline is
readable:

fileevent $input readable Log

The command (or the error message) is inserted into the log. This is done using the
name of the text widget, which is stored in the log variable, as a Tcl command. The
value of the command is appended to the log, and a newline is added so that its
output will appear on the next line.

$log insert end $command\n

The text widget's insert function takes two parameters: a mark and a string to
insert at that mark. The symbolic mark end represents the end of the contents of
the text widget.

The run button is changed into a stop button after the program begins. This avoids a
cluttered interface and demonstrates the dynamic nature of a Tk interface. Again,
because this button is used in a few different places in the script, its pathname has
been stored in the variable but:

$but config -text Stop -command Stop

The Log Procedure

The Log procedure is invoked whenever data can be read from the pipeline, and
when end of file has been reached. This condition is checked first, and the Stop
procedure is called to clean things up. Otherwise, one line of data is read and
inserted into the log. The text widget's see operation is used to position the view on
the text so that the new line is visible to the user:

if [eof $input] {
 Stop
} else {
 gets $input line
 $log insert end $line\n
 $log see end
}

The Stop Procedure

The Stop procedure terminates the program by closing the pipeline. The close is
wrapped up with a catch. This suppresses the errors that can occur when the
pipeline is closed prematurely on the process. Finally, the button is restored to its
run state so that the user can run another command:

catch {close $input}
$but config -text "Run it" -command Run

In most cases, closing the pipeline is adequate to kill the job. On UNIX, this results
in a signal, SIGPIPE, being delivered to the program the next time it does a write to
its standard output. There is no built-in way to kill a process, but you can exec the
UNIX kill program. The pid command returns the process IDs from the pipeline:

foreach pid [pid $input] {
 catch {exec kill $pid}
}

If you need more sophisticated control over another process, you should check out
the expect Tcl extension, which is described in the book Exploring Expect (Don
Libes, O'Reilly & Associates, Inc., 1995). Expect provides powerful control over
interactive programs. You can write Tcl scripts that send input to interactive
programs and pattern match on their output. Expect is designed to automate the
use of programs that were designed for interactive use.

Cross-Platform Issues

This script will run on UNIX and Windows, but not on Macintosh because there is no
exec command. One other problem is the binding for <Control-c> to cancel the
job. This is UNIX-like, while Windows users expect <Escape> to cancel a job, and
Macintosh users expect <Command-period>. Platform_CancelEvent defines a
virtual event, <<Cancel>>, and Stop is bound to it:

Example 24-2 A platform-specific cancel event

proc Platform_CancelEvent {} {
 global tcl_platform
 switch $tcl_platform(platform) {
 unix {
 event add <<Cancel>> <Control-c>
 }
 windows {
 event add <<Cancel>> <Escape>
 }
 macintosh {
 event add <<Cancel>> <Command-period>
 }
 }
}
bind .top.entry <<Cancel>> Stop

There are other virtual events already defined by Tk. The event command and
virtual events are described on page 446.

The Example Browser

Example 24-3 is a browser for the code examples that appear in this book. The
basic idea is to provide a menu that selects the examples, and a text window to
display the examples. Before you can use this sample program, you need to edit it
to set the proper location of the exsource directory that contains all the example
sources from the book. Example 24-4 on page 389 extends the browser with a shell
that is used to test the examples.

Example 24-3 A browser for the code examples in the book

#!/usr/local/bin/wish
Browser for the Tcl and Tk examples in the book.

browse(dir) is the directory containing all the tcl files
Please edit to match your system configuration.

switch $tcl_platform(platform) {
 "unix" {set browse(dir) /cdrom/tclbook2/exsource}
 "windows" {set browse(dir) D:/exsource}
 "macintosh" {set browse(dir) /tclbook2/exsource}
}

wm minsize . 30 5
wm title . "Tcl Example Browser"

Create a row of buttons along the top

set f [frame .menubar]
pack $f -fill x
button $f.quit -text Quit -command exit
button $f.next -text Next -command Next
button $f.prev -text Previous -command Previous

The Run and Reset buttons use EvalEcho that
is defined by the Tcl shell in Example 24ÿ4 on page 389

button $f.load -text Run -command Run
button $f.reset -text Reset -command Reset
pack $f.quit $f.reset $f.load $f.next $f.prev -side right

A label identifies the current example

label $f.label -textvariable browse(current)
pack $f.label -side right -fill x -expand true

Create the menubutton and menu
menubutton $f.ex -text Examples -menu $f.ex.m
pack $f.ex -side left

set m [menu $f.ex.m]

Create the text to display the example
Scrolled_Text is defined in Example 33ÿ1 on page 500

set browse(text) [Scrolled_Text .body \
 -width 80 -height 10\
 -setgrid true]
pack .body -fill both -expand true

Look through the example files for their ID number.

foreach f [lsort -dictionary [glob [file join $browse(dir) *]]] {
 if [catch {open $f} in] {
 puts stderr "Cannot open $f: $in"
 continue
 }
 while {[gets $in line] >= 0} {
 if [regexp {^# Example ([0-9]+)-([0-9]+)} $line \
 x chap ex] {
 lappend examples($chap) $ex
 lappend browse(list) $f
 # Read example title
 gets $in line
 set title($chap-$ex) [string trim $line "# "]
 set file($chap-$ex) $f
 close $in
 break
 }
 }
}

Create two levels of cascaded menus.
The first level divides up the chapters into chunks.
The second level has an entry for each example.

option add *Menu.tearOff 0
set limit 8
set c 0; set i 0
foreach chap [lsort -integer [array names examples]] {
 if {$i == 0} {
 $m add cascade -label "Chapter $chap..." \
 -menu $m.$c
 set sub1 [menu $m.$c]
 incr c
 }
 set i [expr ($i +1) % $limit]
 $sub1 add cascade -label "Chapter $chap" -menu $sub1.sub$i
 set sub2 [menu $sub1.sub$i]
 foreach ex [lsort -integer $examples($chap)] {
 $sub2 add command -label "$chap-$ex $title($chap-$ex)" \
 -command [list Browse $file($chap-$ex)]
 }

}

Display a specified file. The label is updated to
reflect what is displayed, and the text is left
in a read-only mode after the example is inserted.

proc Browse { file } {
 global browse
 set browse(current) [file tail $file]
 set browse(curix) [lsearch $browse(list) $file]
 set t $browse(text)
 $t config -state normal
 $t delete 1.0 end
 if [catch {open $file} in] {
 $t insert end $in
 } else {
 $t insert end [read $in]
 close $in
 }
 $t config -state disabled
}

Browse the next and previous files in the list

set browse(curix) -1
proc Next {} {
 global browse
 if {$browse(curix) < [llength $browse(list)] - 1} {
 incr browse(curix)
 }
 Browse [lindex $browse(list) $browse(curix)]
}
proc Previous {} {
 global browse
 if {$browse(curix) > 0} {
 incr browse(curix) -1
 }
 Browse [lindex $browse(list) $browse(curix)]
}

Run the example in the shell

proc Run {} {
 global browse
 EvalEcho [list source \
 [file join $browse(dir) $browse(current)]]
}

Reset the slave in the eval server

proc Reset {} {
 EvalEcho reset
}

More about Resizing Windows

This example uses the wm minsize command to put a constraint on the minimum
size of the window. The arguments specify the minimum width and height. These
values can be interpreted in two ways. By default they are pixel values. However, if
an internal widget has enabled geometry gridding, then the dimensions are in grid
units of that widget. In this case the text widget enables gridding with its setgrid
attribute, so the minimum size of the window is set so that the text window is at
least 30 characters wide by five lines high:

wm minsize . 30 5

In older versions of Tk, Tk 3.6, gridding also enabled interactive resizing of the
window. Interactive resizing is enabled by default in Tk 4.0 and later.

Managing Global State

The example uses the browse array to collect its global variables. This makes it
simpler to reference the state from inside procedures because only the array needs
to be declared global. As the application grows over time and new features are
added, that global command won't have to be adjusted. This style also serves to
emphasize what variables are important. The browse array holds the name of the
example directory (dir), the Tk pathname of the text display (text), and the name
of the current file (current). The list and curix elements are used to implement
the Next and Previous procedures.

Searching through Files

The browser searches the file system to determine what it can display. The
tcl_platform(platform) variable is used to select a different example directory on
different platforms. You may need to edit the on-line example to match your
system. The example uses glob to find all the files in the exsource directory. The
file join command is used to create the file name pattern in a platform-
independent way. The result of glob is sorted explicitly so the menu entries are in
the right order. Each file is read one line at a time with gets, and then regexp is
used to scan for keywords. The loop is repeated here for reference:

foreach f [lsort -dictionary [glob -directory $browse(dir) *]] {
 if {[catch {open $f} in]} {
 puts stderr "Cannot open $f: $in"
 continue
 }
 while {[gets $in line] >= 0} {
 if {[regexp {^# Example ([0-9]+)-([0-9]+)} $line \
 x chap ex]} {
 lappend examples($chap) $ex
 lappend browse(list) $f

 # Read example title
 gets $in line
 set title($chap-$ex) [string trim $line "# "]
 set file($chap-$ex) $f
 close $in
 break
 }
 }
}

The example files contain lines like this:

Example 1-1
The Hello, World! program

The regexp picks out the example numbers with the ([0-9]+)-([0-9]+) part of the
pattern, and these are assigned to the chap and ex variables. The x variable is
assigned the value of the whole match, which is more than we are interested in.
Once the example number is found, the next line is read to get the description of
the example. At the end of the foreach loop the examples array has an element
defined for each chapter, and the value of each element is a list of the examples for
that chapter.

Cascaded Menus

The values in the examples array are used to build up a cascaded menu structure.
First a menubutton is created that will post the main menu. It is associated with the
main menu with its menu attribute. The menu must be a child of the menubutton for
its display to work properly:

menubutton $f.ex -text Examples -menu $f.ex.m
set m [menu $f.ex.m]

There are too many chapters to put them all into one menu. The main menu has a
cascade entry for each group of eight chapters. Each of these submenus has a
cascade entry for each chapter in the group, and each chapter has a menu of all its
examples. Once again, the submenus are defined as a child of their parent menu.
Note the inconsistency between menu entries and buttons. Their text is defined with
the -label option, not -text. Other than this they are much like buttons. Chapter
30 describes menus in more detail. The code is repeated here:

set limit 8 ; set c 0 ; set i 0
foreach key [lsort -integer [array names examples]] {
 if {$i == 0} {
 $m add cascade -label "Chapter $key..." \
 -menu $m.$c
 set sub1 [menu $m.$c]
 incr c
 }
 set i [expr {($i +1) % $limit}]
 $sub1 add cascade -label "Chapter $key" -menu $sub1.sub$i

 set sub2 [menu $sub1.sub$i]
 foreach ex [lsort -integer $examples($key)] {
 $sub2 add command -label "$key-$ex $title($key-$ex)" \
 -command [list Browse $file($key-$ex)]
 }
}

A Read-Only Text Widget

The Browse procedure is fairly simple. It sets browse(current) to be the name of
the file. This changes the main label because of its textvariable attribute that links
it to this variable. The state attribute of the text widget is manipulated so that the
text is read-only after the text is inserted. You have to set the state to normal
before inserting the text; otherwise, the insert has no effect. Here are a few
commands from the body of Browse:

global browse
set browse(current) [file tail $file]
$t config -state normal
$t insert end [read $in]
$t config -state disabled

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

A Tcl Shell

This section demonstrates the text widget with a simple Tcl shell application. It uses
a text widget to prompt for commands and display their results. It uses a second Tcl
interpreter to evaluate the commands you type. This dual interpreter structure is
used by the console built into the Windows and Macintosh versions of wish. The
TkCon application written by Jeff Hobbs is an even more elaborate console that has
many features to support interactive Tcl use:

http://tkcon.sourceforge.net/

Example 24-4 is written to be used with the browser from Example 24-3 in the
same application. The browser's Run button runs the current example in the shell.
An alternative is to have the shell run as a separate process and use the send
command to communicate Tcl commands between separate applications. That
alternative is shown in Example 43-2 on page 651.

Example 24-4 A Tcl shell in a text widget

#!/usr/local/bin/wish
Simple evaluator. It executes Tcl in a slave interpreter

set t [Scrolled_Text .eval -width 80 -height 10]
pack .eval -fill both -expand true

Text tags give script output, command errors, command
results, and the prompt a different appearance

$t tag configure prompt -underline true
$t tag configure result -foreground purple
$t tag configure error -foreground red
$t tag configure output -foreground blue

Insert the prompt and initialize the limit mark

set eval(prompt) "tcl> "
$t insert insert $eval(prompt) prompt
$t mark set limit insert
$t mark gravity limit left
focus $t
set eval(text) $t

Key bindings that limit input and eval things. The break in
the bindings skips the default Text binding for the event.

bind $t <Return> {EvalTypein ; break}
bind $t <BackSpace> {
 if {[%W tag nextrange sel 1.0 end] != ""} {

http://tkcon.sourceforge.net/default.htm

 %W delete sel.first sel.last
 } elseif {[%W compare insert > limit]} {
 %W delete insert-1c
 %W see insert
 }
 break
}
bind $t <Key> {
 if [%W compare insert < limit] {
 %W mark set insert end
 }
}

Evaluate everything between limit and end as a Tcl command

proc EvalTypein {} {
 global eval
 $eval(text) insert insert \n
 set command [$eval(text) get limit end]
 if [info complete $command] {
 $eval(text) mark set limit insert
 Eval $command
 }
}

Echo the command and evaluate it

proc EvalEcho {command} {
 global eval
 $eval(text) mark set insert end
 $eval(text) insert insert $command\n
 Eval $command
}

Evaluate a command and display its result

proc Eval {command} {
 global eval
 $eval(text) mark set insert end
 if [catch {$eval(slave) eval $command} result] {
 $eval(text) insert insert $result error
 } else {
 $eval(text) insert insert $result result
 }
 if {[$eval(text) compare insert != "insert linestart"]} {
 $eval(text) insert insert \n
 }
 $eval(text) insert insert $eval(prompt) prompt
 $eval(text) see insert
 $eval(text) mark set limit insert
 return
}
Create and initialize the slave interpreter

proc SlaveInit {slave} {
 interp create $slave
 load {} Tk $slave
 interp alias $slave reset {} ResetAlias $slave
 interp alias $slave puts {} PutsAlias $slave
 return $slave
}

The reset alias deletes the slave and starts a new one

proc ResetAlias {slave} {
 interp delete $slave
 SlaveInit $slave
}

The puts alias puts stdout and stderr into the text widget

proc PutsAlias {slave args} {
 if {[llength $args] > 3} {
 error "invalid arguments"
 }
 set newline "\n"
 if {[string match "-nonewline" [lindex $args 0]]} {
 set newline ""
 set args [lreplace $args 0 0]
 }
 if {[llength $args] == 1} {
 set chan stdout
 set string [lindex $args 0]$newline
 } else {
 set chan [lindex $args 0]
 set string [lindex $args 1]$newline
 }
 if [regexp (stdout|stderr) $chan] {
 global eval
 $eval(text) mark gravity limit right
 $eval(text) insert limit $string output
 $eval(text) see limit
 $eval(text) mark gravity limit left
 } else {
 puts -nonewline $chan $string
 }
}
set eval(slave) [SlaveInit shell]

Text Marks, Tags, and Bindings

The shell uses a text mark and some extra bindings to ensure that users only type
new text into the end of the text widget. A mark represents a position in the text
that is updated as characters are inserted and deleted. The limit mark keeps track
of the boundary between the read-only area and the editable area. The insert

mark is where the cursor is displayed. The end mark is always the end of the text.
The EvalTypein procedure looks at all the text between limit and end to see if it is
a complete Tcl command. If it is, it evaluates the command in the slave interpreter.

The <Key> binding checks to see where the insert mark is and bounces it to the
end if the user tries to input text before the limit mark. The puts alias sets right
gravity on limit, so the mark is pushed along when program output is inserted
right at limit. Otherwise, the left gravity on limit means that the mark does not
move when the user inserts right at limit.

Text tags are used to give different regions of text difference appearances. A tag
applies to a range of text. The tags are configured at the beginning of the script and
they are applied when text is inserted.

Chapter 36 describes the text widget in more detail.

Multiple Interpreters

The SlaveInit procedure creates another interpreter to evaluate the commands.
This prevents conflicts with the procedures and variables used to implement the
shell. Initially, the slave interpreter only has access to Tcl commands. The load
command installs the Tk commands, and it creates a new top-level window that is
"." for the slave interpreter. Chapter 20 describes how you can embed the window of
the slave within other frames.

The shell interpreter is not created with the -safe flag, so it can do anything. For
example, if you type exit, it will exit the whole application. The SlaveInit
procedure installs an alias, reset, that just deletes the slave interpreter and creates
a new one. You can use this to clean up after working in the shell for a while.
Chapter 19 describes the interp command in detail.

Native Look and Feel

When you run a Tk script on different platforms, it uses native buttons, menus, and
scrollbars. The text and entry widgets are tuned to give the application the native
look and feel. The following screen shots show the combined browser and shell as it
looks on Macintosh, Windows, and UNIX.

Example 24-5. Macintosh look and feel.

Example 24-6. Windows look and feel.

Example 24-7. UNIX look and feel.

Chapter 25. The Pack Geometry Manager
This chapter explores the pack geometry manager that positions widgets on the
screen.

Geometry managers arrange widgets on the screen. This chapter describes the pack
geometry manager, which is a constraint-based system. The next two chapters
describe the grid and place geometry managers. The pack and grid geometry
managers are quite general, while place is used for special-purpose applications.
This book uses pack a lot because it was the original geometry manager for Tk. The
grid geometry manager was added in Tk 4.1.

A geometry manager uses one widget as a parent, and it arranges multiple children
(also called slaves) inside the parent. The parent is almost always a frame, but this
is not strictly necessary. A widget can only be managed by one geometry manager
at a time, but you can use different managers to control different widgets in your
user interface. If a widget is not managed, then it doesn't appear on your display at
all.

Don't pack and grid into the same manager widget.

For each individual manager widget ÿ such as a frame, a labelframe, or a toplevel
ÿ you have the choice of using either pack or grid to manage all of its immediate
children. Attempting to use both in the same manager results in an endless loop as
both geometry managers try to control the window layout. This restriction applies
only to the immediate children of a manager widget; you can use a different
geometry manager for "descendents" that aren't immediate children. For example,
you can choose to pack all of the immediate children of the . toplevel. Then, if one
of the children of . is a frame, you can choose to use either pack or grid to manage
the children of that frame.

The packer is a powerful constraint-based geometry manager. Instead of specifying
in detail the placement of each window, the programmer defines some constraints
about how windows should be positioned, and the packer works out the details. It is
important to understand the algorithm the packer uses; otherwise, the constraint-
based results may not be what you expect.

This chapter explores the packer through a series of examples. The background of
the main window is set to black, and the other frames are given different colors so
you can identify frames and observe the effect of the different packing parameters.
When consecutive examples differ by a small amount, the added command or option
is printed in bold courier to highlight the addition.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Packing toward a Side

The following example creates two frames and packs them toward the top side of
the main window. The upper frame, .one, is not as big and the main window shows
through on either side. The children are packed toward the specified side in order,
so .one is on top. The four possible sides are: top, right, bottom, and left. The
top side is the default.

Example 25-1 Two frames packed inside the main frame

Make the main window black
. config -bg black
Create and pack two frames
frame .one -width 40 -height 40 -bg white
frame .two -width 100 -height 50 -bg grey50
pack .one .two -side top

Shrinking Frames and pack propagate

In the previous example, the main window shrank down to be just large enough to
hold its two children. In most cases this is the desired behavior. If not, you can turn
it off with the pack propagate command. Apply this to the parent frame, and it will
not adjust its size to fit its children:

Example 25-2 Turning off geometry propagation

frame .one -width 40 -height 40 -bg white
frame .two -width 100 -height 50 -bg grey50
pack propagate . false
pack .one .two -side top

Horizontal and Vertical Stacking

In general, you use either horizontal or vertical stacking within a frame. If you mix
sides such as left and top, the effect might not be what you expect. Instead, you
should introduce more frames to pack a set of widgets into a stack of a different
orientation. For example, suppose we want to put a row of buttons inside the upper
frame in the examples we have given so far:

Example 25-3 A horizontal stack inside a vertical stack

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {alpha beta gamma} {
 button .one.$b -text $b
 pack .one.$b -side left
}
pack .one .two -side top

Example 25-4 Even more nesting of horizontal and vertical stacks

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
foreach b {alpha beta} {
 button .one.$b -text $b
 pack .one.$b -side left
}
Create a frame for two more buttons
frame .one.right
foreach b {delta epsilon} {
 button .one.right.$b -text $b

 pack .one.right.$b -side bottom
}
pack .one.right -side right
pack .one .two -side top

You can build more complex arrangements by introducing nested frames and
switching between horizontal and vertical stacking as you go. Within each frame
pack all the children with either a combination of -side left and -side right, or
-side top and -side bottom.

Example 25-4 replaces the .one.gamma button with a vertical stack of two buttons,
.one.right.delta and .one.right.epsilon. These are packed toward the bottom
of .one.right, so the first one packed is on the bottom.

The frame .one.right was packed to the right, and in the previous example, the
button .one.gamma was packed to the left. Despite the difference, they ended up in
the same position relative to the other two widgets packed inside the .one frame.
The next section explains why.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Cavity Model

The packing algorithm is based on a cavity
model for the available space inside a frame.
For example, when the main wish window is
created, the main frame is empty and there is
an obvious space, or cavity, in which to place
widgets. The primary rule about the packing
cavity is a widget occupies one whole side of
the cavity. To demonstrate this, pack three
widgets into the main frame. Put the first two
on the bottom, and the third one on the right:

Example 25-5 Mixing bottom and right packing sides

pack two frames on the bottom.
frame .one -width 100 -height 50 -bg grey50
frame .two -width 40 -height 40 -bg white
pack .one .two -side bottom
pack another frame to the right
frame .three -width 20 -height 20 -bg grey75
pack .three -side right

When we pack a third frame into the main window with -side left or -side
right, the new frame is positioned inside the cavity, which is above the two frames
already packed toward the bottom side. The frame does not appear to the right of
the existing frames as you might have expected. This is because the .two frame
occupies the whole bottom side of the packing cavity, even though its display does
not fill up that side.

Can you tell where the packing cavity is after this example? It is to the left of the
frame .three, which is the last frame packed toward the right, and it is above the

frame .two, which is the last frame packed toward the bottom. This explains why
there was no difference between the previous two examples when .one.gamma was
packed to the left, but .one.right was packed to the right. At that point, packing to
the left or right of the cavity had the same effect. However, it will affect what
happens if another widget is packed into those two configurations. Try out the
following commands after running Example 25-3 and Example 25-4 and compare
the difference.[*]

[*] Answer: After Example 25-3 the new button is to the right of all buttons. After Example 25-4 the new button is between

.one.beta and .one.right.

button .one.omega -text omega
pack .one.omega -side right

Each packing parent has its own cavity, which is why introducing nested frames can
help. If you use a horizontal or vertical arrangement inside any given frame, you
can more easily simulate the packer's behavior in your head!

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Packing Space and Display Space

The packer distinguishes between packing space and display space when it arranges
the widgets. The display space is the area requested by a widget for the purposes of
painting itself. The packing space is the area the packer allows for the placement of
the widget. Because of geometry constraints, a widget may be allocated more (or
less) packing space than it needs to display itself. The extra space, if any, is along
the side of the cavity against which the widget was packed.

The -fill Option

The -fill packing option causes a widget to fill up the allocated packing space with
its display. A widget can fill in the X or Y direction, or both. The default is not to fill,
which is why the black background of the main window has shown through in the
examples so far:

Example 25-6 Filling the display into extra packing space

frame .one -width 100 -height 50 -bg grey50
frame .two -width 40 -height 40 -bg white
Pack with fill enabled
pack .one .two -side bottom -fill x
frame .three -width 20 -height 20 -bg red
pack .three -side right -fill x
This is just like Example 25-5, except that -fill x has been specified for all the
frames. The .two frame fills, but the .three frame does not. This is because the fill
does not expand into the packing cavity. In fact, after this example, the packing
cavity is the part that shows through in black. Another way to look at this is that the
.two frame was allocated the whole bottom side of the packing cavity, so its fill can
expand the frame to occupy that space. The .three frame has only been allocated
the right side, so a fill in the X direction will not have any effect.

Another use of fill is for a menu bar that has buttons at either end and some empty
space between them. The frame that holds the buttons is packed toward the top.
The buttons are packed into the left and right sides of the menu bar frame. Without
fill, the menu bar shrinks to be just large enough to hold all the buttons, and the

buttons are squeezed together. When fill is enabled in the X direction, the menu bar
fills out the top edge of the display:

Example 25-7 Using horizontal fill in a menu bar

frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b
}
pack .menubar.alpha -side left
pack .menubar.beta -side right
Let the menu bar fill along the top
pack .menubar -side top -fill x
pack .body

Internal Padding with -ipadx and -ipady

Another way to get more fill space is with the -ipadx and -ipady packing options
that request more display space in the X and Y directions, respectively. Due to other
constraints the request might not be offered, but in general you can use this to give
a widget more display space. The next example is just like the previous one except
that some internal padding has been added:

Example 25-8 The effects of internal padding (-ipady)

Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b

}
pack .menubar.alpha -side left -ipady 10
pack .menubar.beta -side right -ipadx 10
Let the menu bar fill along the top
pack .menubar -side top -fill x -ipady 5
pack .body

The alpha button is taller and the beta button is wider because of the internal
padding. The frame has internal padding, which reduces the space available for the
packing cavity, so the .menubar frame shows through above and below the buttons.

Some widgets have attributes that result in more display space. For example, it
would be hard to distinguish a frame with width 50 and no internal padding from a
frame with width 40 and a -ipadx 5 packing option. The packer would give the
frame 5 more pixels of display space on either side for a total width of 50.

Buttons have their own -padx and -pady options that give them more display space,
too. This padding provided by the button is used to keep its text away from the
edge of the button. The following example illustrates the difference. The -anchor e
button option positions the text as far to the right as possible. Example 40-5 on
page 617 provides another comparison of these options:

Example 25-9 Button padding vs. packer padding

Foo has internal padding from the packer
button .foo -text Foo -anchor e -padx 0 -pady 0
pack .foo -side right -ipadx 10 -ipady 10
Bar has its own padding
button .bar -text Bar -anchor e -pady 10 -padx 10
pack .bar -side right -ipadx 0 -ipady 0

In all cases, you can specify the amount of padding using any type of screen
distance recognized by Tk. A simple numeric value is interpreted as pixels. You can
also follow a number with one of i, m, c, or p, which is interpreted as inches,
millimeters, centimeters, or typographic points, respectively.

External Padding with -padx and -pady

The packer can provide external padding that allocates packing space that cannot be
filled. The space is outside of the border that widgets use to implement their 3D
reliefs. Example 40-2 on page 614 shows the different reliefs. The look of a default
button is achieved with an extra frame and some padding:

Example 25-10 The look of a default button

. config -borderwidth 10
OK is the default button
frame .ok -borderwidth 2 -relief sunken
button .ok.b -text OK
pack .ok.b -padx 5 -pady 5
Cancel is not
button .cancel -text Cancel
pack .ok .cancel -side left -padx 5 -pady 5

The .ok.b button looks the same even if it is packed with -fill both. The child
widgets do not fill the external padding provided by the packer.

Example 25-10 handcrafts the look of a default button. Tk 8.0 added a -default
attribute for buttons that gives them the right appearance for the default button on
the current platform. It looks somewhat like this on UNIX, but the appearance is
different on Macintosh and Windows.

Tk 8.4 added the ability to specify asymmetric padding as a list of two screen
distances. For example, the following adds 5 pixels of padding to the left and right
of the widgets, 3 pixels above them, and 6 pixels below them:

pack .ok .cancel -side left -padx 5 -pady {3 6}

Resizing and -expand

The -expand true packing option lets a widget expand its packing space into
unclaimed space in the packing cavity. Example 25-6 could use this on the small
frame on top to get it to expand across the top of the display, even though it is
packed to the right side. The more common case occurs when you have a resizable
window. When the user makes the window larger, the widgets have to be told to
take advantage of the extra space. Suppose you have a main widget like a text,
listbox, or canvas that is in a frame with a scrollbar. That frame has to be told to
expand into the extra space in its parent (e.g., the main window) and then the main
widget (e.g., the canvas) has to be told to expand into its parent frame. Example
24-1 on page 378 does this.

In nearly all cases the -fill both option is used along with -expand true so that
the widget actually uses its extra packing space for its own display. The converse is
not true. There are many cases where a widget should fill extra space but not
attempt to expand into the packing cavity. The examples below show the difference.

Now we can investigate what happens when the window is made larger. The next
example starts like Example 25-7 on page 400, but the size of the main window is
increased:

Example 25-11 Resizing without the expand option

Make the main window black
. config -bg black
Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b
}
pack .menubar.alpha -side left
pack .menubar.beta -side right
Let the menu bar fill along the top
pack .menubar -side top -fill x
pack .body
Resize the main window to be bigger
wm geometry . 200x100

Allow interactive resizing
wm minsize . 100 50
The only widget that claims any of the new space is .menubar because of its -fill
x packing option. The .body frame needs to be packed properly:

Example 25-12 Resizing with expand turned on

Use all of Example 25ÿ11 then repack .body
pack .body -expand true -fill both
If more than one widget inside the same parent is allowed to expand, then the
packer shares the extra space between them proportionally. This is probably not the
effect you want in the examples we have built so far. The .menubar, for example, is
not a good candidate for expansion.

Example 25-13 More than one expanding widget

Use all of Example 25ÿ11 then repack .menubar and .body
pack .menubar -expand true -fill x
pack .body -expand true -fill both

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Anchoring

If a widget is left with more packing space than display space, you can position it
within its packing space using the -anchor packing option. The default anchor
position is center. The other options correspond to points on a compass: n, ne, e,
se, s, sw, w, and nw:

Example 25-14 Setup for anchor experiments

Make the main window black
. config -bg black
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom
Float a label and the prop in the cavity
label .foo -text Foo
pack .prop .foo -side right -expand true

The .base frame is packed on the bottom. Then the .prop frame and the .foo label
are packed to the right with expand set but no fill. Instead of being pressed up
against the right side, the expand gives each of these widgets half of the extra
space in the X direction. Their default anchor of center results in the positions
shown. The next example shows some different anchor positions:

Example 25-15 The effects of noncenter anchors

. config -bg black
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50

pack .base -side bottom
Float the label and prop
Change their position with anchors
label .foo -text Foo
pack .prop -side right -expand true -anchor sw
pack .foo -side right -expand true -anchor ne
The label has room on all sides, so each of the different anchors will position it
differently. The .prop frame only has room in the X direction, so it can only be
moved into three different positions: left, center, and right. Any of the anchors w,
nw, and sw result in the left position. The anchors center, n, and s result in the
center position. The anchors e, se, and ne result in the right position.

If you want to see all the variations, type in the following commands to animate the
different packing anchors. The update idletasks forces any pending display
operations. The after 500 causes the script to wait for 500 milliseconds:

Example 25-16 Animating the packing anchors

foreach anchor {center n ne e se s sw w nw center} {
 pack .foo .prop -anchor $anchor
 # Update the display
 update idletasks
 # Wait half a second
 after 500
}

Packing Order

The packer maintains an order among the children that are packed into a frame. By
default, each new child is appended to the end of the packing order. The most
obvious effect of the order is that the children first in the packing order are closest
to the side they are packed against. You can control the packing order with the -
before and -after packing options, and you can reorganize widgets after they have
already been packed:

Example 25-17 Controlling the packing order

Create five labels in order
foreach label {one two three four five} {
 label .$label -text $label
 pack .$label -side left -padx 5
}
ShuffleUp moves a widget to the beginning of the order
proc ShuffleUp { parent child } {
 set first [lindex [pack slaves $parent] 0]
 pack $child -in $parent -before $first
}
ShuffleDown moves a widget to the end of the order
proc ShuffleDown { parent child } {
 pack $child -in $parent
}
ShuffleUp . .five
ShuffleDown . .three

Introspection

The pack slaves command returns the list of children in their packing order. The
ShuffleUp procedure uses this to find out the first child so that it can insert another
child before it. The ShuffleDown procedure is simpler because the default is to
append the child to the end of the packing order.

When a widget is repacked, then it retains all its packing parameters that have
already been set. If you need to examine the current packing parameters for a
widget, use the pack info command.

pack info .five
=> -in . -anchor center -expand 0 -fill none -ipadx 0 \
 -ipady 0 -padx 0 -pady 0 -side left

Pack the Scrollbar First

The packing order also determines what
happens when the window is made too small.
If the window is made small enough the
packer will clip children that come later in the
packing order. This is why, when you pack a
scrollbar and a text widget into a frame, you
should pack the scrollbar first. Otherwise,
when the window is made smaller the text
widget takes up all the space and the scrollbar
is clipped.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Choosing the Parent for Packing

In nearly all of the examples in this chapter, a widget is packed into its parent
frame. In general, it is possible to pack a widget into any descendent of its parent.
For example, the .a.b widget could be packed into .a, .a.c or .a.d.e.f. The -in
packing option lets you specify an alternate packing parent. One motivation for this
is that the frames introduced to get the arrangement right can cause cluttered
names for important widgets. In Example 25-4 on page 398, the buttons have
names like .one.alpha and .one.right.delta, which is not consistent. Here is an
alternate implementation of the same example that simplifies the button names and
gives the same result:

Example 25-18 Packing into other relatives

Create and pack two frames
frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {alpha beta} {
 button .$b -text $b
 pack .$b -in .one -side left
}
Create a frame for two more buttons
frame .one.right
foreach b {delta epsilon} {
 button .$b -text $b
 pack .$b -in .one.right -side bottom
}
pack .one.right -side right
pack .one .two -side top

When you do this, remember that the order in which you create widgets is
important. Create the frames first, then create the widgets. The stacking order for
windows will cause the later windows to obscure the windows created first. The
following is a common mistake because the frame obscures the button:

button .a -text hello
frame .b
pack .a -in .b

If you cannot avoid this problem scenario, then you can use the raise command to
fix things up. Stacking order is also discussed on page 409.

raise .a

Unpacking a Widget

The pack forget command removes a widget from the packing order. The widget
gets unmapped, so it is not visible. If you unpack a parent frame, the packing
structure inside it is maintained, but all the widgets inside the frame get unmapped.
Unpacking a widget is useful if you want to suppress extra features of your
interface. You can create all the parts of the interface, and just delay packing them
in until the user requests to see them. Then you can pack and unpack them
dynamically.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Packer Summary

Keep these rules in mind about the packer:

Pack vertically (-side top and -side bottom) or horizontally (-side left
and -side right) within a frame. Only rarely will a different mixture of
packing directions work out the way you want. Add frames to build more
complex structures.

By default, the packer puts widgets into their parent frame, and the parent
frame must be created before the children that are packed into it.

If you put widgets into other relatives, remember to create the frames first so
the frames stay underneath the widgets packed into them.

By default, the packer ignores -width and -height attributes of frames that
have widgets packed inside them. It shrinks frames to be just big enough to
allow for its border width and to hold the widgets inside them. Use pack
propagate to turn off the shrink-wrap behavior.

The packer distinguishes between packing space and display space. A widget's
display might not take up all the packing space allocated to it.

The -fill option causes the display to fill up the packing space in the X or Y
directions, or both.

The -expand true option causes the packing space to expand into any room
in the packing cavity that is otherwise unclaimed. If more than one widget in
the same frame wants to expand, then they share the extra space.

The -ipadx and -ipady options allocate more display space inside the border,
if possible.

The -padx and -pady options allocate more packing space outside the border,
if possible. The widget never fills this space. These values may be specified as
a list of two values to get asymmetric padding (Tk 8.4.)

The pack Command

Table 25-1 summarizes the pack command. Table 25-2 summarizes the packing
options for a widget. These are set with the pack configure command, and the
current settings are returned by the pack info command.

Table 25-1. The pack command

pack win ?win ..? ?
options?

This is just like pack configure.

pack configure win ?win
...? ?options?

Packs one or more widgets according to the options,
which are given in Table 25-2.

pack forget win ?
win...?

Unpacks the specified windows.

pack info win Returns the packing parameters of win.

pack propagate win ?
bool?

Queries or sets the geometry propagation of win, which
has other widgets packed inside it.

pack slaves win Returns the list of widgets managed by win.

Table 25-2. Packing options

-after
win

Packs after win in the packing order.

-anchor
anchor

Anchors: center, n, ne, e, se, s, sw, w, or nw.

-before
win

Packs before win in the packing order.

-expand
boolean

Controls expansion into the unclaimed packing cavity.

-fill
style

Controls fill of packing space. Style: x, y, both, or none.

-in win Packs inside win.

-ipadx
amount

Horizontal internal padding, in screen units.

-ipady
amount

Vertical internal padding, in screen units.

-padx
amount

Horizontal external padding, in screen units. May be a list of two screen
units for asymmetric padding (Tk 8.4).

-pady
amount

Vertical external padding, in screen units. May be a list of two screen
units for asymmetric padding (Tk 8.4).

-side
side

Sides: top, right, bottom, or left.

Window Stacking Order

The raise and lower commands control the window stacking order. The stacking
order controls the display of windows. Windows higher in the stacking order obscure
windows lower in the stacking order. By default, new windows are created at the top
of the stacking order so they obscure older windows. Consider this sequence of
commands:

button .one
frame .two
pack .one -in .two

If you do this, you do not see the button. The problem is that the frame is higher in
the stacking order so it obscures the button.

You can change the stacking order with the raise command:

raise .one .two

This puts .one just above .two in the stacking order. If .two was not specified, then
.one would be put at the top of the stacking order.

The lower command has a similar form. With one argument, it puts that window at
the bottom of the stacking order. Otherwise, it puts it just below another window in
the stacking order.

You can use raise and lower on top-level windows to control their stacking order
among all other top-level windows. For example, if a user requests a dialog that is
already displayed, use raise to make it pop to the foreground of their cluttered
desktop. To determine the stacking order of toplevel windows, use the wm
stackorder command. (See "Toplevel Size, Placement, and Decoration" on page
658.)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 26. The Grid Geometry Manager
This chapter explores the grid geometry manager that positions widgets on a grid
that automatically adjusts its size. Grid was added in Tk 4.1.

The grid geometry manager arranges widgets on a grid with variable-sized rows
and columns. You specify the rows and columns occupied by each widget, and the
grid is adjusted to accommodate all the widgets it contains. This is ideal for creating
table-like layouts. The manager also has sophisticated facilities for controlling row
and column sizes and the dynamic resize behavior. By introducing subframes with
grids of their own, you can create arbitrary layouts.

Don't pack and grid into the same manager widget.

As discussed on page 395, you can use a combination of pack and grid to create
your display. But for each individual manager widget, you must use only one of pack
or grid to manage all of its immediate children.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

A Basic Grid

Example 26-1 uses grid to lay out a set of labels and frames in two parallel
columns. It takes advantage of the relative placement feature of grid. Instead of
specifying rows and columns, the order of grid commands and their arguments
implies the layout. Each grid command starts a new row, and the order of the
widgets in the grid command determines the column. In the example, there are
two columns, and each iteration of the loop adds a new row. grid makes each
column just wide enough to hold the biggest widget. Widgets that are smaller are
centered in their cell. That's why the labels appear centered in their column:

Example 26-1 A basic grid

foreach color {red orange yellow green blue purple} {
 label .l$color -text $color -bg white
 frame .f$color -background $color -width 100 -height 2
 grid .l$color .f$color
}

The -sticky Setting

If a grid cell is larger than the widget inside it, you can control the size and position
of the widget with the -sticky option. The -sticky option combines the functions
of -fill and -anchor used with the pack geometry manager. You specify to which
sides of its cell a widget sticks. You can specify any combination of n, e, w, and s to
stick a widget to the top, right, left, and bottom sides of its cell. You can
concatenate these letters together (e.g., news) or uses spaces or commas to
separate them (e.g., n,e,w,s). Example 26-2 uses -sticky w to left justify the
labels, and -sticky ns to stretch the color frames to the full height of their row:

Example 26-2 A grid with sticky settings

foreach color {red orange yellow green blue purple} {
 label .l$color -text $color -bg white
 frame .f$color -background $color -width 100 -height 2
 grid .l$color .f$color
 grid .l$color -sticky w
 grid .f$color -sticky ns
}

Example 26-2 uses grid in two ways. The first grid in the loop fixes the positions of
the widgets because it is the first time they are assigned to the master. The next
grid commands modify the existing parameters; they just adjust the -sticky
setting because their row and column positions are already known.

You can specify row and column positions explicitly with the -row and -column
attributes. This is generally more work than using the relative placement, but it is
necessary if you need to dynamically move a widget into a different cell. Example
26-3 keeps track of rows and columns explicitly and achieves the same layout as
Example 26-2:

Example 26-3 A grid with row and column specifications

set row 0
foreach color {red orange yellow green blue purple} {
 label .l$color -text $color -bg white
 frame .f$color -background $color -width 100
 grid .l$color -row $row -column 0 -sticky w
 grid .f$color -row $row -column 1 -sticky ns
 incr row
}

External Padding with -padx and -pady

You can keep a widget away from the edge of its cell with the -padx and -pady
settings. Example 26-4 uses external padding to shift the labels away from the left
edge, and to keep some blank space between the color bars:

Example 26-4 A grid with external padding

foreach color {red orange yellow green blue purple} {
 label .l$color -text $color -bg white
 frame .f$color -background $color -width 100 -height 2
 grid .l$color .f$color
 grid .l$color -sticky w -padx 3
 grid .f$color -sticky ns -pady 1
}

Tk 8.4 added the ability to specify asymmetric padding as a list of two screen
distances. For example, -padx {0.125i 0.25i} adds 1/8 inch of padding to the left
and 1/4 inch padding to the right of a widget.

Internal Padding with -ipadx and -ipady

You can give a widget more display space than it normally needs with internal
padding. The internal padding increases the size of the grid. In contrast, a -sticky
setting might stretch a widget, but it will not change the size of the grid. Example
26-5 makes the labels taller with -ipady:

Example 26-5 A grid with internal padding

foreach color {red orange yellow green blue purple} {
 label .l$color -text $color -bg white

 frame .f$color -background $color -width 100 -height 2
 grid .l$color .f$color
 grid .l$color -sticky w -padx 3 -ipady 5
 grid .f$color -sticky ns -pady 1
}

Multiple Widgets in a Cell

Example 26-6 shows all possible -sticky settings. It uses the ability to put more
than one widget into a grid cell. A large square frame is put in each cell, and then a
label is put into the same cell with a different -sticky setting. It is important to
create the frame first so it is below the label. Window stacking is discussed on page
409. External padding is used to keep the labels away from the edge so that they do
not hide the -ridge relief of the frames.

Example 26-6 All combinations of -sticky settings

set index 0
foreach x {news ns ew " " new sew wsn esn nw ne sw se n s w e} {
 frame .f$x -borderwidth 2 -relief ridge -width 40 -height 40
 grid .f$x -sticky news \
 -row [expr {$index/4}] -column [expr {$index%4}]
 label .l$x -text $x -background white
 grid .l$x -sticky $x -padx 2 -pady 2 \
 -row [expr {$index/4}] -column [expr {$index%4}]
 incr index
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Spanning Rows and Columns

A widget can occupy more than one cell. The -rowspan and -columnspan attributes
indicate how many rows and columns are occupied by a widget. Example 26-7 uses
explicit row, column, rowspan, and columnspan specifications:

Example 26-7 Explicit row and column span

. config -bg white
foreach color {888 999 aaa bbb ccc fff} {
 frame .$color -bg #$color -width 40 -height 40
}
grid .888 -row 0 -column 0 -columnspan 3 -sticky news
grid .999 -row 1 -column 0 -rowspan 2 -sticky news
grid .aaa -row 1 -column 1 -columnspan 2 -sticky news
grid .bbb -row 2 -column 2 -rowspan 2 -sticky news
grid .ccc -row 3 -column 0 -columnspan 2 -sticky news
grid .fff -row 2 -column 1 -sticky news

You can also use special syntax in grid commands that imply row and column
placement. Special characters represent a cell that is spanned or skipped:

- represents a spanned column.

^ represents a spanned row.

x represents a skipped cell.

A nice feature of the implicit row and column assignments is that it is easy to make
minor changes to your layout. Example 26-8 achieves the same layout:

Example 26-8 Grid syntax row and column span

. config -bg white
foreach color {888 999 aaa bbb ccc ddd fff} {
 frame .$color -bg #$color -width 40 -height 40
}
grid .888 - - -sticky news
grid .999 .aaa - -sticky news
grid ^ .fff .bbb -sticky news
grid .ccc - ^ -sticky news

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Row and Column Constraints

The grid manager supports attributes on whole rows and columns that affect their
size and resize behavior. The grid command has a rowconfigure and
columnconfigure operation to set and query these attributes:

grid columnconfigure master col ?attributes?
grid rowconfigure master row ?attributes?

With no attributes, the current settings are returned. The row and col
specifications can be lists instead of simple indices, so you can configure several
rows or columns at once.

Row and Column Padding

The -pad attribute increases a row or column size. The initial size of a row or
column is determined by the largest widget, and -pad adds to this size. This
padding can be filled by the widget by using the -sticky attribute. Row and column
padding works like internal padding because it is extra space that can be occupied
by the widget's display. In contrast, the -padx and -pady attributes on an individual
widget act like a spacer that keeps the widget away from the edge of the cell.
Example 26-9 shows the difference. The row padding increases the height of the
row, but the padding on .f1 keeps it away from the edge of the cell:

Example 26-9 Row padding compared to cell padding

. config -bg black
label .f1 -text left -bg #ccc
label .f2 -text right -bg #aaa
grid .f1 .f2 -sticky news ;# no padding
grid .f1 -padx 10 -pady 10 ;# cell padding
grid rowconfigure . 0 -pad 20 ;# row padding

Minimum Size

The -minsize attribute restricts a column or row to be a minimum size. The row or
column can grow bigger if its widget requests it, but they will not get smaller than
the minimum. One useful application of -minsize is to create empty rows or
columns, which is more efficient than creating an extra frame.

Managing Resize Behavior

If the master frame is bigger than the required size of the grid, it shrinks to be just
large enough to contain the grid. You can turn off the shrink-wrap behavior with
grid propagate. If geometry propagation is off, then the grid is centered inside the
master. If the master frame is too small to fit the grid, then the grid is anchored to
the upper-left corner of the master and clipped on the bottom-right.

By default, rows and columns do not resize when you grow the master frame. You
enable resizing by specifying a -weight for a row or column that is an integer value
greater than zero. Example 26-10 grids a text widget and two scrollbars. The
protocol between the scrollbar and the text widget is described on page 501. The
text widget is in row 0, column 0, and both of these can expand. The vertical
scrollbar is in row 0, column 1, so it only grows in the Y direction. The horizontal
scrollbar is in row 1, column 0, so it only grows in the X direction:

Example 26-10 Gridding a text widget and scrollbar

text .text -yscrollcommand ".yscroll set" \
 -xscrollcommand ".xscroll set"-width 40 -height 10
scrollbar .yscroll -command ".text yview" -orient vertical
scrollbar .xscroll -command ".text xview" -orient horizontal
grid .text .yscroll -sticky news
grid .xscroll -sticky ew
grid rowconfigure . 0 -weight 1
grid columnconfigure . 0 -weight 1

You can use different weights to let different rows and columns grow at different
rates. However, there are some tricky issues because the resize behavior applies to
extra space, not total space. For example, suppose there are four columns that have
widths 10, 20, 30, and 40 pixels, for a total of 100. If the master frame is grown to
140 pixels wide, then there are 40 extra pixels. If each column has weight 1, then
each column gets an equal share of the extra space, or 10 more pixels. Now

suppose column 0 has weight 0, columns 1 and 2 have weight 1, and column 3 has
weight 2. Column 0 will not grow, columns 1 and 2 will get 10 more pixels, and
column 3 will get 20 more pixels. In most cases, weights of 0 or 1 make the most
sense.

Weight works in reverse when shrinking.

If a row or column has to shrink, the weights are applied in reverse. A row or
column with a higher weight will shrink more. For example, put two equal sized
frames in columns with different weights. When the user makes the window bigger,
the frame in the column with more weight gets larger more quickly. When the
window is made smaller, that frame gets smaller more quickly.

Uniform Columns

The -uniform attribute makes it easy to create columns (or rows) that are the same
width (or height). Use the -uniform attribute to create a group of columns (or
rows). The value of the attribute can by anything (e.g., xyz). All columns (or rows)
with the same -uniform attribute are in the same group. If they all have the same -
weight value, then they are all the same size. If one column (or row) in a group has
a -weight that is twice what the other columns (or rows) have, then it is twice as
big. This is illustrated in Example 26-11.

Example 26-11 Uniform column width

foreach x {alpha beta gamma x y z} {
 label .$x -text $x
}
.beta config -bg white
.y config -bg white
grid .alpha .beta .gamma -sticky news
grid .x .y .z -sticky news
grid columnconfigure . "0 1 2" -uniform group1 -weight 1
grid columnconfigure . 1 -weight 2

The grid Command

Table 26-1 summarizes the usage of the grid command. Table 26-2 summarizes the
options for a widget set with the grid configure command.

Table 26-1. The grid command

grid bbox master ?c1
r1? ?c2 r2?

Returns the bounding box, of the whole grid, the cell at
c1, r1, or the cells from c1, r1 to c2, r2.

grid columnconfigure
master col ?options?

Sets or queries the configuration of col. Options are -
minsize, -weight, -pad, and -uniform.

grid configure win ?win
...? ?options?

Grids one or more widgets according to the options,
which are given in Table 26-2.

grid forget win ?
win...?

Unmaps the specified windows.

grid info win Returns the grid options of win.

grid location master x
y

Returns the cell column and row under the point x, y in
master.

grid propagate master ?
boolean?

Enables or disables shrink-wrapping of master.

grid rowconfigure
master row ?options?

Sets or queries the configuration of row. Options are -
minsize, -weight, -pad, and -uniform.

grid remove slave Unmaps slave, but remember its configuration.

grid size master Returns the number of columns and rows.

grid slaves win ?-row
r? ?-column c?

Returns the list of widgets managed by win, or just
those in the specified row or column.

Table 26-2. Grid widget options

-in win Places inside win.

-column
col

Column position. Columns count from zero.

-
columnspan
n

Spans n columns.

-ipadx
pixels

Internal widget padding in the X direction, in screen units.

-ipady
pixels

Internal widget padding in the Y direction, in screen units.

-padx
pixels

External widget padding in the X direction, in screen units. May be a
list of two screen units for asymmetric padding (Tk 8.4).

-pady
pixels

External widget padding in the Y direction, in screen units. May be a
list of two screen units for asymmetric padding (Tk 8.4).

-row row Row position. Rows count from zero.

-rowspan n Spans n rows.

-sticky
how

Positions widget next to any combination of north (n), south (s), east
(e), and west (w) sides of the cell. Use {} for center.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 27. The Place Geometry Manager
This chapter explores the place geometry manager that positions widgets on the
screen.

The place geometry manager is much simpler than pack and grid. You specify the
exact position and size of a window, or you specify the relative position and relative
size of a widget. This is useful in a few situations, but it rapidly becomes tedious if
you have to position lots of windows. The best application of place is to create
special-purpose geometry managers using its relative constraints. A standard
application of place is to adjust the boundary between two adjacent windows.

place Basics

The place command lets you specify the width and height of a window, and the X
and Y locations of the window's anchor point. The size and location can be specified
in absolute or relative terms. Relative specifications are more powerful. Example 27-
1 uses place to center a window in its parent. You can use this command to position
dialogs that you do not want to be detached top-level windows:

Example 27-1 Centering a window with place

place $w -in $parent -relx 0.5 -rely 0.5 -anchor center

The -relx and -rely specify the relative X and Y positions of the anchor point of
the widget $w in $parent. A relative X (or Y) value of zero corresponds to the left
(or top) edge of $parent. A value of one corresponds to the right (or bottom) edge
of $parent. A value of 0.5 specifies the middle. The anchor point determines what
point in $w is positioned according to the specifications. In Example 27-1 the center
anchor point is used so that the center of $w is centered in $parent.

The relative height and width settings are used to base a widget's size on another
widget. Example 27-2 completely covers one window with another window. It uses
the default anchor point for windows, which is their upper-left hand corner (nw):

Example 27-2 Covering a window with place

place $w -in $parent -relwidth 1 -relheight 1 -x 0 -y 0

The absolute and relative size and position parameters are additive (e.g., -width
and -relwidth). You can make a window slightly larger or smaller than the parent
by specifying both parameters. In Example 27-3, a negative width and height are
used to make a window smaller than another one:

Example 27-3 Combining relative and absolute sizes

place $w -in $parent -relwidth 1 -relheight 1 -x 0 -y 0 \
 -width -4 -height -4

It is not necessary for $parent to actually be the parent widget of $w. The
requirement is that $parent be the parent, or a descendant of the parent, of $w. It
also has to be in the same top-level window. This guarantees that $w is visible
whenever $parent is visible. These are the same restrictions imposed by the pack
geometry manager.

It is not necessary to position a widget inside another widget, either. Example 27-4
positions a window five pixels above a sibling widget. If $sibling is repositioned,

then $w moves with it. This approach is useful when you decorate a resizable
window by placing other widgets at its corners or edges. When the window is
resized, the decorations automatically move into place:

Example 27-4 Positioning a window above a sibling with place

place $w -in $sibling -relx 0.5 -y -5 -anchor s \
 -bordermode outside

The -bordermode outside option is specified so that any decorative border in
$sibling is ignored when positioning $w. In this case the position is relative to the
outside edge of $sibling. By default, the border is taken into account to make it
easy to position widgets inside their parent's border.

The parent widget does not have to be a frame. Example 27-1 can be used to place
a dialog in the middle of a text widget. In Example 27-4, $sibling and $w can both
be label widgets.

The Pane Manager

The relative size and placement parameters of the place command can be used to
create custom geometry managers. Example 27-5 shows a paned layout manager.
Two frames, or panes, are placed inside another frame. A small third frame
represents a grip that is used to adjust the boundary between the two panes.

Note that Tk 8.4 added a panedwindow widget,
which can manage an arbitrary number of
horizontal or vertical panes. See Chapter 28
for information on how to use the
panedwindow widget.

Example 27-5 Pane_Create sets up vertical or horizontal panes

proc Pane_Create {f1 f2 args} {

 # Map optional arguments into array values
 set t(-orient) vertical
 set t(-percent) 0.5
 set t(-in) [winfo parent $f1]
 array set t $args

 # Keep state in an array associated with the master frame
 set master $t(-in)
 upvar #0 Pane$master pane
 array set pane [array get t]

 # Create the grip and set placement attributes that
 # will not change. A thin divider line is achieved by
 # making the two frames one pixel smaller in the
 # adjustable dimension and making the main frame black.

 set pane(1) $f1
 set pane(2) $f2
 set pane(grip) [frame $master.grip -background gray50 \
 -width 10 -height 10 -bd 1 -relief raised \
 -cursor crosshair]
 if {[string match vert* $pane(-orient)]} {
 set pane(D) Y;# Adjust boundary in Y direction
 place $pane(1) -in $master -x 0 -rely 0.0 -anchor nw \
 -relwidth 1.0 -height -1
 place $pane(2) -in $master -x 0 -rely 1.0 -anchor sw \
 -relwidth 1.0 -height -1
 place $pane(grip) -in $master -anchor c -relx 0.8
 } else {
 set pane(D) X ;# Adjust boundary in X direction
 place $pane(1) -in $master -relx 0.0 -y 0 -anchor nw \
 -relheight 1.0 -width -1
 place $pane(2) -in $master -relx 1.0 -y 0 -anchor ne \
 -relheight 1.0 -width -1
 place $pane(grip) -in $master -anchor c -rely 0.8
 }
 $master configure -background black

 # Set up bindings for resize, <Configure>, and
 # for dragging the grip.

 bind $master <Configure> [list PaneGeometry $master]
 bind $pane(grip) <ButtonPress-1> \
 [list PaneDrag $master %$pane(D)]
 bind $pane(grip) <B1-Motion> \
 [list PaneDrag $master %$pane(D)]
 bind $pane(grip) <ButtonRelease-1> \
 [list PaneStop $master]

 # Do the initial layout

 PaneGeometry $master
}

Parsing Arguments and Maintaining State

The Pane_Create procedure is given two widgets to manage, and an optional set of
parameters. The general syntax of Pane_Create is:

Pane_Create f1 f2 ?-orient xy? ?-percent p? ?-in master?

All the optional arguments are available in $args. Its attribute-value structure is
used to initialize a temporary array t. Default values are set before the assignment
from $args. The following code is compact but doesn't check errors in the optional
arguments.

set t(-orient) vertical
set t(-percent) 0.5
set t(-in) [winfo parent $f1]
array set t $args

Global state about the layout is kept in an array whose name is based on the master
frame. The name of the master frame isn't known until after arguments are parsed,
which is why t is used. After the upvar the argument values are copied from the
temporary array into the global state array:

set master $t(-in)
upvar #0 Pane$master pane
array set pane [array get t]

Sticky Geometry Settings

Example 27-5 sets several place parameters on the frames when they are created.
These are remembered, and other parameters are adjusted later to dynamically
adjust the boundary between the frames. All Tk geometry managers retain settings
like this. The initial settings for the vertical layout is shown here:

place $pane(1) -in $parent -x 0 -rely 0.0 -anchor nw \
 -relwidth 1.0 -height -1
place $pane(2) -in $parent -x 0 -rely 1.0 -anchor sw \
 -relwidth 1.0 -height -1
place $pane(grip) -in $parent -anchor c -relx 0.8

The position of the upper and lower frames is specified with an absolute X and a
relative Y position, and the anchor setting is chosen to keep the frame visible inside
the main frame. For example, the lower frame is positioned at the bottom-left
corner of the container with -x 0 and -rely 1.0. The -anchor sw attaches the
lower-left corner of the frame to this position.

The size of the contained frames is also a combination of absolute and relative
values. The width is set to the full width of the container with -relwidth 1.0. The
height is set to minus one with -height -1. This value gets added to a relative
height that is determined later. It will leave a little space between the two contained
frames.

The resize grip is just a small frame positioned at the boundary. Initially it is just
placed over toward one size with -relx 0.8. It gets positioned on the boundary
with a -rely setting later. It has a different cursor to indicate it is active.

Event Bindings

The example uses some event bindings that are described in more detail in Chapter
29. The <Configure> event occurs when the containing frame is resized by the user.
When the user presses the mouse button over the grip and drags it, there is a

<ButtonPress-1> event, one or more <B1-Motion> events, and finally a
<ButtonRelease-1> event. Tcl commands are bound to these events:

bind $parent <Configure> [list PaneGeometry $parent]
bind $pane(grip) <ButtonPress-1> \
 [list PaneDrag $parent %$pane(D)]
bind $pane(grip) <B1-Motion> \
 [list PaneDrag $parent %$pane(D)]
bind $pane(grip) <ButtonRelease-1> [list PaneStop $parent]

Managing the Layout

The code is set up to work with either horizontal or vertical layouts. The pane(D)
variable is either X, for a horizontal layout, or Y, for a vertical layout. This value is
used in the bindings to get %X or %Y, which are replaced with the X and Y screen
positions of the mouse when the bindings fire. This value is passed to PaneDrag as
the parameter D. The PaneDrag procedure remembers the previous position in
pane(lastD) and uses that to update the percentage split between the two
contained panes:

Example 27-6 PaneDrag adjusts the percentage

proc PaneDrag {master D} {
 upvar #0 Pane$master pane
 if [info exists pane(lastD)] {
 set delta [expr double($pane(lastD) - $D) \
 / $pane(size)]
 set pane(-percent) [expr $pane(-percent) - $delta]
 if {$pane(-percent) < 0.0} {
 set pane(-percent) 0.0
 } elseif {$pane(-percent) > 1.0} {
 set pane(-percent) 1.0
 }
 PaneGeometry $master
 }
 set pane(lastD) $D
}
proc PaneStop {master} {
 upvar #0 Pane$master pane
 catch {unset pane(lastD)}
}

The PaneGeometry procedure adjusts the positions of the frames. It is called when
the main window is resized, so it updates pane(size). It is also called as the user
drags the grip. For a vertical layout, the grip is moved by setting its relative Y
position. The size of the two contained frames is set with a relative height.
Remember that this is combined with the fixed height of -1 to get some space
between the two frames:

Example 27-7 PaneGeometry updates the layout

proc PaneGeometry {master} {
 upvar #0 Pane$master pane
 if {$pane(D) == "X"} {
 place $pane(1) -relwidth $pane(-percent)
 place $pane(2) -relwidth [expr 1.0 - $pane(-percent)]
 place $pane(grip) -relx $pane(-percent)
 set pane(size) [winfo width $master]
 } else {
 place $pane(1) -relheight $pane(-percent)
 place $pane(2) -relheight [expr 1.0 - $pane(-percent)]
 place $pane(grip) -rely $pane(-percent)
 set pane(size) [winfo height $master]
 }
}
proc PaneTest {{p .p} {orient vert}} {
 catch {destroy $p}
 frame $p -width 200 -height 200
 label $p.1 -bg blue -text foo
 label $p.2 -bg green -text bar
 pack $p -expand true -fill both
 pack propagate $p off
 Pane_Create $p.1 $p.2 -in $p -orient $orient -percent 0.3
}

The place Command

Table 27-1 summarizes the usage of the place command.

Table 27-1. The place command

place win ?win ..? ?
options?

This is just like place configure.

place configure win ?win
...? ?options?

Places one or more widgets according to the
options, which are given Table 27-2.

place forget win ?win...? Unmaps the specified windows.

place info win Returns the placement parameters of win.

place slaves win Returns the list of widgets managed by win.

Table 27-2 summarizes the placement options for a widget, which you set with the
place configure command and retrieve with the place info command.

Table 27-2. Placement options

-in win Places inside (or relative to) win.

-anchor
where

Anchors: center, n, ne, e, se, s, sw, w, or nw. Default: nw.

-x coord X position, in screen units, of the anchor point.

-relx
offset

Relative X position. 0.0 is the left edge. 1.0 is the right edge.

-y coord Y position, in screen units, of the anchor point.

-rely
offset

Relative Y position. 0.0 is the top edge. 1.0 is the bottom edge.

-width
size

Width of the window, in screen units.

-relwidth
size

Width relative to parent's width. 1.0 is full width.

-height
size

Height of the window, in screen units.

-relheight
size

Height relative to the parent's height. 1.0 is full height.

-
bordermode
mode

If mode is inside, then size and position are inside the parent's
border. If mode is outside, then size and position are relative to the
outer edge of the parent. The default is inside.

Chapter 28. The Panedwindow Widget
The panedwindow widget, introduced in Tk 8.4, displays widgets in resizable
horizontal or vertical panes.

A panedwindow contains any number of panes, arranged horizontally or vertically.
Each pane contains one widget, and each pair of panes is separated by a moveable
sash, which causes the widgets on either side of the sash to be resized. When a
panedwindow is resized externally ÿ for example, if the user resizes the toplevel
containing the panedwindow ÿ space is added or subtracted from the last pane
(right-most or bottom-most pane) in the widget.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Using the Panedwindow

The panedwindow is a relatively simple widget, requiring little configuration or
programming in most applications. The most frequently used configuration attribute
is orient, which determines whether the widget has a horizontal or vertical
arrangement of panes. The other frequently used configuration attribute is
showHandle. The handle is a small square drawn on the sashes, giving users
another visual cue that the sashes are interactive. The default value of showHandle
is False on Windows to match its native look and feel. Most other configuration
attributes control the size, positioning, and appearance of the handles, the sashes,
and the widget in general.

Manipulating the Pane Contents

Once you've created the panedwindow, you add widgets to it with the add operation.
You can add multiple widgets with a single add operation. The panedwindow displays
each widget added in its own pane, separated by sashes. By default, the widgets are
arranged in the order added. However, you can override this behavior with the -
after and -before options to insert widgets after or before currently managed
widgets. You can add horizontal and vertical padding to the widgets in the panes
with -padx and -pady options, just like with other geometry managers. The -
minsize attribute allows you to specify a minimum size for managed widgets (in any
screen units supported by Tk.) You can also control the position of a widget within
its pane with the -sticky attribute, which operates similarly to grid's -sticky
attribute. The panedwindow's default -sticky setting is nsew, causing the managed
widget to resize to completely fill its pane in both directions.

Don't pack, grid, or place the widgets in a panedwindow.

A panedwindow widget is not only a container for other widgets, but it is also a
geometry manager. It controls the size and position of the widgets that it manages.
Therefore, don't use the pack, grid, or place commands to control the widgets that
you add to a panedwindow.

Of course, for more complex interfaces, you can add frames as the managed
widgets of a panedwindow, and then pack, grid, or place other widgets within
those frames. As an example, consider a layout with two text widgets. We'd like
each text widget to have horizontal and vertical scrollbars, which is a natural
application of grid. But then we want the entire layout managed by a 2-pane
vertical panedwindow. In this case, we'll use a labelframe widget to contain each

gridded text-and-scrollbar assembly, and then add each labelframe as a managed
widget of our panedwindow. The result is shown in Example 28-1.

Example 28-1 A panedwindow with complex managed widgets

Create the panedwindow to manage the entire display

panedwindow .p -orient vertical -showhandle 1
pack .p -expand yes -fill both

Create 2 labelframe widgets, each containing a
gridded text and scrollbar assembly.

foreach {w label} {code "Code:" notes "Notes:"} {
 set f [labelframe .p.$w -text $label]
 text $f.t -height 10 -width 40 \
 -wrap none -font {courier 12} \
 -xscrollcommand [list $f.xbar set] \
 -yscrollcommand [list $f.ybar set]
 scrollbar $f.xbar -orient horizontal \
 -command [list $f.t xview]
 scrollbar $f.ybar -orient vertical \
 -command [list $f.t yview]

 grid $f.t -row 0 -column 0 -sticky news -padx 2 -pady 2
 grid $f.ybar -row 0 -column 1 -sticky ns -padx 2 -pady 2
 grid $f.xbar -row 1 -column 0 -sticky ew -padx 2 -pady 2
 grid columnconfigure $f 0 -weight 1
 grid rowconfigure $f 0 -weight 1

 # Add the frame assembly to the panedwindow

 .p add $f -minsize 1i -padx 4 -pady 6
}

The forget operation removes widgets from a panedwindow. The widgets aren't
destroyed, but they are no longer managed by the paned window, and the pane
they formerly occupied is removed from the panedwindow. You can also get a list of
the widgets currently managed by a panedwindow (in the order in which they
appear) with the panes operation.

Create the managed widgets as children of the panedwindow.

For best results, create the widgets managed by a panedwindow as children of that
panedwindow. Tk then automatically handles the stacking order for windows so that
the child appears on top of the panedwindow. If you don't create the managed
widget as a child of the panedwindow, you either need to create the managed
widget after the panedwindow, or else use the raise command to raise the
managed widget above the panedwindow, as discussed in "Window Stacking Order"
on page 409.

Programming Panedwindow Widgets

Table 28-1 summarizes the operations for programming a panedwindow. In the
table, $w is a panedwindow widget and win is a widget managed by the
panedwindow.

Table 28-1. Panedwindow operations

$w add win ?win...? ?
option value...?

Adds one or more widgets to the panedwindow, each in
a separate pane, with options as described in Table 28-
2.

$w cget option Returns the value of the configuration option as
described in Table 28-3.

$w configure ?option
value...?

Queries or modifies the panedwindow configuration,
with options as described in Table 28-3.

$w forget win ?win...? Removes the pane(s) containing widget(s) from the
panedwindow.

$w identify x y Identifies the panedwindow component underneath the
specified point.

$w panecget win option Returns the value of the widget's configuration option
as described in Table 28-2.

$w paneconfigure index
?option? ?value? ?...?

Queries or modifies the widget's configuration options
as described in Table 28-2.

$w panes Returns an ordered list of the widgets managed by the
panedwindow.

$w proxy coord Returns the current x and y coordinate pair for the sash
proxy, used for rubberband-style pane resizing.

$w proxy forget Removes the sash proxy from the display.

$w proxy place x y Places the sash proxy at the given coordinates.

$w sash coord index Returns the current x and y coordinate pair for the sash
indicated by index.

$w sash dragto index x
y

Moves the sash from the previous mark position.

$w sash mark index x y Starts a sash movement operation. index is the sash to
move, and x and y are widget-relative screen
coordinates.

$w sash place index x
y

Places the indicated sash at the given coordinates.

Table 28-2 summarizes the panedwindow options for managed widgets. These are
set when adding a widget to the paned window with the add operation or afterwards
with paneconfigure operation. The current settings are returned by the panecget
operation.

Table 28-2. Panedwindow managed widget options

-after
win

Inserts the widget after the specified win.

-before
win

Inserts the widget before the specified win.

-height
size

Height of the widget, including its border, in screen units. The actual
widget height may vary based on -sticky settings, panedwindow resizing,
and sash movement.

-
minsize
size

Minimum widget size of the widget in the paned dimension, specified in
screen units.

-padx
size

External widget padding in the X direction, in screen units.

-pady
size

External widget padding in the Y direction, in screen units.

-sticky
how

Positions the widget next to any combination of north (n), south (s), east
(w), and west (e) sides of the pane. Use {} for center. If opposing
directions are specified (e.g., ns), the widget stretches to fill in those
directions. Default: nsew.

-width
size

Width of the widget, including its border, in screen units. The actual widget
width may vary based on -sticky settings, panedwindow resizing, and
sash movement.

Panedwindow Attributes

Table 28-3 lists the panedwindow widget attributes. The table uses the resource
name for the attribute, which has capitals at internal word boundaries. In Tcl
commands these options are specified with a dash and all lowercase.

Table 28-3. Panedwindow attributes

background Background color (also bg).

borderWidth Extra space around the edge of the widget, in screen units.

cursor Cursor to display when mouse is over the widget.

handlePad When sash handles are drawn, the distance in screen units from the
top or left end of the sash (depending on the orientation) at which to
draw the handle.

handleSize The size of a sash handle, in screen units. Handles are always drawn
as squares.

height Height of the widget in screen units.

opaqueResize Boolean. True indicates the panes should resize as a sash is moved.
False (default) indicates resizing is deferred until the sash is placed.

orient horizontal or vertical

relief flat, sunken, raised, groove, solid, or ridge.

sashCursor Cursor to display over a sash. Defaults to a double-sided arrow.

sashPad Padding on both sides of a sash.

sashRelief Relief style for sashes. flat, sunken, raised (default), groove,
solid, or ridge.

sashWidth Width of each sash, in screen units.

showHandle Boolean, whether or not to show the sash handles. Defaults to False
on Windows, and True on other platforms.

width Width of the widget in screen units.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 29. Binding Commands to Events
This chapter introduces the event binding mechanism in Tk. Bindings associate a Tcl
command with an event like a mouse click or a key stroke. There are also facilities
to define virtual events like <<Cut>> and <<Paste>> that are associated with
different keystrokes on different platforms. Tcl commands discussed are: bind,
bindtags, and event.

Bindings associate a Tcl command with a sequence of events from the window
system. Events include key press, key release, button press, button release, mouse
entering a window, mouse leaving, window changing size, window open, window
close, focus in, focus out, and widget destroyed. The bindings are defined on binding
tags, and each widget is associated with an ordered set of binding tags. The binding
tags provide a level of indirection between bindings and widgets that creates a
flexible and powerful system.

Virtual events are used to support a different look and feel on different platforms. A
virtual event is a higher-level name, like <<Copy>>, for a lower-level event name like
<Control-c> or <Key-F6>. A virtual event hides the different keystrokes used on
different platforms for the same logical operation. Tk defines a few virtual events,
and applications can define their own.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The bind Command

The bind command creates event bindings, and it returns information about current
bindings. The general form of the command is:

bind bindingTag ?eventSequence? ?command?

If all arguments are present, a binding from eventSequence to command is defined
for bindingTag. The bindingTag is typically a widget class name (e.g., Button) or a
widget instance name (e.g., .buttons.foo). Binding tags are described in more
detail later. Called with a single argument, a binding tag, bind returns the events for
which there are command bindings:

bind Menubutton
=> <Key-Return> <Key-space> <ButtonRelease-1>
 <B1-Motion> <Motion> <Button-1> <Leave> <Enter>

The events in this example are keystroke and mouse events. <Button-1> is the
event generated when the user presses the first, or left-hand, mouse button. <B1-
Motion> is generated when the user moves the mouse while holding down the first
mouse button. The <Key-space> event occurs when the user presses the space bar.
The surrounding angle brackets delimit a single event, and you can define bindings
for a sequence of events. The event syntax is described on page 439, and event
sequences are described on page 445.

If bind is given a binding tag and an event sequence, it returns the Tcl command
bound to that event sequence:

bind Menubutton <B1-Motion>
=> tk::MbMotion %W down %X %Y

The Tcl commands in event bindings support an additional syntax for event
keywords. These keywords begin with a percent sign and have one more character
that identifies some attribute of the event. The keywords are substituted with event-
specific data before the Tcl command is evaluated. For example, %W is replaced with
the widget's pathname. The %X and %Y keywords are replaced with the coordinates
of the event relative to the screen. The %x and %y keywords are replaced with the
coordinates of the event relative to the widget. The event keywords are summarized
on page 448.

The % substitutions are performed throughout the entire command bound to an
event, without regard to other quoting schemes. You must use %% to obtain a single
percent sign. For this reason you should make your binding commands short, adding
a new procedure if necessary (e.g., tk::MbMotion), instead of littering percent signs
throughout your code.

A new binding is created by specifying a binding tag, an event sequence, and a
command:

bind Menubutton <B1-Motion> {tk::MbMotion %W down %X %Y}

If the first character of the binding command is +, the command (without the +) is
added to the commands, if any, for that event and binding tag:

bind bindingTag event {+ command args}

To delete a binding for an event, bind the event to the null string:

bind bindingTag event {}

Bindings execute in the global scope.

When a binding is triggered, the command is evaluated at the global scope. A very
common mistake is to confuse the scope that is active when the bind command
creates a binding, and the scope that is active when the binding is triggered. The
same problem crops up with the commands associated with buttons, and it is
discussed in more detail at the beginning of Chapter 30.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The bindtags Command

A binding tag groups related bindings, and each widget is associated with an
ordered set of binding tags. The level of indirection between widgets and bindings
lets you group functionality on binding tags and compose widget behavior from
different binding tags.

For example, the all binding tag has bindings on <Tab> that change focus among
widgets. The Text binding tag has bindings on keystrokes that insert and edit text.
Only text widgets use the Text binding tag, but all widgets share the all binding
tag. You can introduce new binding tags and change the association of widgets to
binding tags dynamically. The result is a powerful and flexible way to manage
bindings.

The bindtags command sets or queries the binding tags for a widget. The general
form of the bindtags command is:

bindtags widget ?tagList?

The following command returns the binding tags for text widget .t:

bindtags .t
=> .t Text . all

You can change the binding tags and their order. The tagList argument to
bindtags must be a proper Tcl list. The following command reorders the binding
tags for .t and eliminates the . binding tag:

bindtags .t [list all Text .t]

By default, all the Tk widgets, except a toplevel, have four binding tags in the
following order:

The widget's Tk pathname (e.g., .t). Use this binding tag to provide special
behavior to a particular widget. There are no bindings on this bindtag by
default.

The widget's class (e.g., Text). The class for a widget is derived from the
name of the command that creates it. A button widget has the class Button, a
text has the class Text, and so on. The Tk widgets define their default
behavior with bindings on their class.

The Tk pathname of the widget's toplevel window (e.g., .). This is redundant in
the case of a toplevel widget, so it is not used twice. There are no bindings on
this bindtag by default. The bindings on a toplevel window can be used in
dialog boxes to handle keyboard accelerators.

The global binding tag all. The default bindings on all are used to change
focus among widgets. They are described on page 604.

When there is more than one binding tag on a widget, then one binding from each
binding tag can match an event. The bindings are processed in the order of the
binding tags. By default, the most specific binding tag comes first, and the most
general binding tag comes last.

Example 29-1 has two frame widgets that have the following behavior. When the
mouse enters them, they turn red. They turn white when the mouse leaves. When
the user types <Control-c>, the frame under the mouse is destroyed. One of the
frames, .two, reports the coordinates of mouse clicks.

Example 29-1 Bindings on different binding tags

frame .one -width 30 -height 30
frame .two -width 30 -height 30
bind Frame <Enter> {%W config -bg red}
bind Frame <Leave> {%W config -bg white}
bind .two <Button> {puts "Button %b at %x %y"}
pack .one .two -side left
bind all <Control-c> {destroy %W}
bind all <Enter> {focus %W}

The Frame class has a binding on <Enter> and <Leave> that changes a frame's
background color when the mouse moves in and out of the window. This binding is
shared by all the frames. There is also a binding on all for <Enter> that sets the
keyboard focus. Both bindings will trigger when the mouse enters a frame.

Focus and Key Events

The binding on <Control-c> is shared by all widgets. The binding destroys the
target widget. Because this is a keystroke, it is important to get the keyboard focus
directed at the proper widget. By default, focus is on the main window, and
destroying it terminates the entire application. The global binding for <Enter> gives
focus to a widget when you move the mouse over the widget. In this example,
moving the mouse into a widget and then typing <Control-c> destroys the widget.
Bind the focus command to <Button> instead of <Enter> if you prefer a click-to-
type focus model. Focus is described in Chapter 39.

Using break and continue in Bindings

The break and continue commands control the progression through the set of
binding tags. The break command stops the current binding and suppresses the
bindings from any remaining tags in the binding set order. The continue command

in a binding stops the current binding and continues with the command from the
next binding tag.

For example, the Entry binding tag has bindings that insert and edit text in a one-
line entry widget. You can put a binding on <Return> that executes a Tcl command
using the value of the widget. The following example runs Some Command before the
\r character is added to the entry widget. The binding is on the name of the widget,
which is first in the set of binding tags, so the break suppresses the Entry binding
that inserts the character:

bind .entry <Return> {Some Command ; break}

Note that you cannot use the break or continue commands inside a procedure that
is called by the binding. This is because the procedure mechanism will not
propagate the break or continue signal. Instead, you could use the -code option to
return, which is described on page 86:

return -code break

Defining New Binding Tags

You introduce new binding tags just by using them in a bind or bindtags command.
Binding tags are useful for grouping bindings into different sets, such as specialized
bindings for different modes of an editor. One way to emulate the vi editor, for
example, is to use two bind tags, one for insert mode and one for command mode.
The user types i to enter insert mode, and they type <Escape> to enter command
mode:

bindtags $t [list ViInsert Text $t all]
bind ViInsert <Escape> {bindtags %W {ViCmd %W all}}
bind ViCmd <Key-i> {bindtags %W {ViInsert Text %W all}}

The Text class bindings are used in insert mode. The command to put the widget
into command mode is put on a new binding tag, ViInsert, instead of changing the
default Text bindings. The bindtag command changes the mode by changing the
set of binding tags for the widget. The %W is replaced with the name of the widget,
which is the same as $t in this example. Of course, you need to define many more
bindings to fully implement all the vi commands.

Event Syntax

The bind command uses the following syntax to describe events:

<modifier-modifier-type-detail>
<<Event>>

The first form is for physical events like keystrokes and mouse motion. The second
form is for virtual events like Cut and Paste, which correspond to different physical
events on different platforms. Physical events are described in this section. Virtual
events are described in more detail on page 446.

The primary part of the description is the type, (e.g., Button or Motion). The
detail is used in some events to identify keys or buttons, (.e.g., Key-a or Button-
1). A modifier is another key or button that is already pressed when the event
occurs, (e.g., Control-Key-a or B2-Motion). There can be multiple modifiers (e.g.,
Control-Shift-x). The < and > delimit a single event.

Table 29-1 lists all physical event types. When two event types are listed together
(e.g., ButtonPress and Button) they are equivalent.

Table 29-1. Event types

Activate The application has been activated. (Macintosh)

ButtonPress,
Button

A button is pressed (down).

ButtonRelease A button is released (up).

Circulate The stacking order of the window changed.

CirculateRequest An application request to change its window stacking order.
(Used by window managers.)

Colormap The color map has changed.

Configure The window changed size, position, border, or stacking order.

ConfigureRequest An application request to change its window configuration.
(Used by window managers.)

Create An application request to create a window. (Used by window
managers.)

Deactivate The application has been deactivated. (Macintosh)

Destroy The window has been destroyed.

Enter The mouse has entered the window.

Expose The window has been exposed.

FocusIn The window has received focus.

FocusOut The window has lost focus.

Gravity The window has moved because of a change in size of its parent
window.

KeyPress, Key A key is pressed (down).

KeyRelease A key is released (up).

Leave The mouse is leaving the window.

Map The window has been mapped (opened).

MapRequest An application request to map a window. (Used by window
managers.)

Motion The mouse is moving in the window.

MouseWheel The scrolling mouse wheel has moved.

Property A property on the window has been changed or deleted.

Reparent A window has been reparented.

ResizeRequest An application request to resize window. (Used by window
managers.)

Unmap The window has been unmapped (iconified).

Visibility The window has changed visibility.

Keyboard Events

The KeyPress type is distinguished from KeyRelease so that you can have different
bindings for each of these events. KeyPress can be abbreviated Key, and Key can be
left off altogether if a detail is given to indicate what key. Finally, as a special case
for KeyPress events, the angle brackets can also be left out. The following are all
equivalent event specifications:

<KeyPress-a>
<Key-a>
<a>
a

The detail for a key is also known as the keysym, which refers to the graphic printed
on the key of the keyboard. For punctuation and non-printing characters, special
keysyms are defined. Case is significant in keysyms, but unfortunately there is no
consistent scheme. In particular BackSpace has a capital B and a capital S.
Commonly encountered keysyms include: Return, Escape, BackSpace, Tab, Up,
Down, Left, Right, comma, period, dollar, asciicircum, numbersign,
exclam. Starting in Tk 8.3.2, the online documentation includes a new keysym
reference page that documents all standard keysyms.

Finding out what keysyms are generated by your keyboard.

There are times when you do not know what keysym is generated by a special key
on your keyboard. The keysyms are defined by the window system implementation,
and on UNIX systems they are affected by a dynamic keyboard map, the X

modmap. You may find the next binding useful to determine just what the keysym
for a particular key is on your system:

bind $w <KeyPress> {puts stdout {%%K=%K %%A=%A}}

The %K keyword is replaced with the keysym from the event. The %A is replaced with
the printing character that results from the event and any modifiers like Shift. The
%% is replaced with a single percent sign. Note that these substitutions occur in spite
of the curly braces used for grouping. If the user types a capital Q, there are two
KeyPress events, one for the Shift key, and one for the q key. The output is:

%K=Shift_R %A={}
%K=Q %A=Q

The Shift_R keysym indicates the right-hand shift key was pressed. The %A
keyword is replaced with {} when modifier keys are pressed. You can check for this
in <KeyPress> bindings to avoid doing anything if only a modifier key is pressed. On
Macintosh, there is no event at all when the modifier keys are pressed. The
following can be used with a text widget. The double quotes are necessary to force a
string comparison:

bind $w <KeyPress> {
 if {"%A" != "{}"} {%W insert insert %A}
}

Mouse Events

Button events also distinguish between ButtonPress, (or Button), and
ButtonRelease. Button can be left off if a detail specifies a button by number. The
following are equivalent:

<ButtonPress-1>
<Button-1>
<1>

Note: The event <1> implies a ButtonPress event, while the event 1 implies a
KeyPress event. To avoid confusion, always specify the Key or Button type.

The mouse is tracked by binding to the Enter, Leave, and Motion events. Enter
and Leave are triggered when the mouse comes into and exits out of the widget,
respectively. A Motion event is generated when the mouse moves within a widget.

The coordinates of the mouse event are represented by the %x and %y keywords in
the binding command. The coordinates are widget-relative, with the origin at the
upper-left hand corner of a widget's window. The keywords %X and %Y represent the
coordinates relative to the screen:

bind $w <Enter> {puts stdout "Entered %W at %x %y"}
bind $w <Leave> {puts stdout "Left %W at %x %y"}
bind $w <Motion> {puts stdout "%W %x %y"}

A mouse drag event is a Motion event that occurs when the user holds down a
mouse button. In this case the mouse button is a modifier, which is discussed in
more detail on page 443. The binding looks like this:

bind $w <B1-Motion> {puts stdout "%W %x %y"}

Other Events

The <Map> and <Unmap> events are generated when a window is opened and closed,
or when a widget is packed or unpacked by its geometry manager.

The <Activate> and <Deactivate> events are generated when an application is
activated by the operating system. This applies to Macintosh systems, and it occurs
when the user clicks in the application window.

The <Configure> event is generated when the window changes size. A canvas that
computes its display based on its size can bind a redisplay procedure to the
<Configure> event, for example. The <Configure> event can be caused by
interactive resizing. It can also be caused by a configure widget command that
changes the size of the widget. You should not reconfigure a widget's size while
processing a <Configure> event to avoid an indefinite sequence of these events.

The <Destroy> event is generated when a widget is destroyed. You can intercept
requests to delete windows, too. See also the description of the wm command on
page 657.

The <MouseWheel> event is generated on Windows by the small scrolling wheel built
into the Microsoft Mouse. It reports a delta value using the %D keyword. Currently
the delta is an integer multiple of 120, where positive values indicate a scroll up,
and negative values indicate a scroll down. Note that most Unix systems don't
report <MouseWheel> events, but some do report mousewheel movement via
<ButtonPress-4> and <ButtonPress-5> events.

Chapter 39 presents some examples that use the <FocusIn> and <FocusOut>
events. The remaining events in Table 29-1 have to do with dark corners of the X
protocol, and they are seldom used. More information can be found on these events
in the Event Reference section of the Xlib Reference Manual (Adrian Nye, O'Reilly &
Associates, Inc., 1992).

Bindings on Top-level Windows

Bindings on toplevels are shared by widgets they contain.

Be careful when binding events to toplevel windows because their name is used as a
binding tag on all the widgets contained in them. For example, the following binding
fires when the user destroys the main window, which means the application is about
to exit:

bind . <Destroy> {puts "goodbye"}

Unfortunately, all widgets inside the main window are destroyed as a side effect,
and they all share the name of their toplevel widget as a binding tag. So this binding
fires when every widget inside the main window is destroyed. Typically you only
want to do something one time. The following binding checks the identity of the
widget before doing anything:

bind . <Destroy> {if {"%W" == "."} {puts "goodbye"}}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Modifiers

A modifier indicates that another key or button is being held down at the time of the
event. Typical modifiers are the Shift and Control keys. The mouse buttons can
also be used as modifiers. If an event does not specify any modifiers, the presence
of a modifier key is ignored by the event dispatcher. However, if there are two
possible matching events, the more accurate match will be used. For example,
consider these three bindings:

bind $w <KeyPress> {puts "key=%A"}
bind $w <Key-c> {puts "just a c"}
bind $w <Control-Key-c> {exit}

The last event is more specific than the others. Its binding will be triggered when
the user types c with the Control key held down. If the user types c with the Meta
key held down, the second binding will be triggered. The Meta key is ignored
because it does not match any binding. If the user types something other than a c,
the first binding is triggered. If the user presses the Shift key, then the keysym
that is generated is C, not c, so the last two events do not match.

There are eight possible modifier keys. The Control, Shift, and Lock modifiers are
found on nearly all keyboards. The Meta and Alt modifiers tend to vary from system
to system, and they may not be defined at all. They are commonly mapped to be
the same as Mod1 or Mod2, and Tk will try to determine how the mappings are set.
The Macintosh has a Command modifier that corresponds to the clover-leaf or apple
key. The remaining modifiers, Mod3 through Mod5, are sometimes mapped to other
special keys. In OpenLook environments, for example, the Paste function key is
also mapped to the Mod5 modifier.

The button modifiers, B1 through B5, are most commonly used with the Motion
event to distinguish different mouse dragging operations. For example, <B1-Motion>
is the event generated when the user drags the mouse with the first mouse button
held down.

Double-click warning.

The Double, Triple, and Quadruple events match on repetitions of an event within
a short period of time. These are commonly used with mouse events. Be careful:
The binding for the regular press event will match on the first press of the Double.
Then the command bound to the Double event will match on the second press.
Similarly, a Double event will match on the first two presses of a Triple event, and
so on. Verify this by trying out the following bindings:

bind . <1> {puts stdout 1}
bind . <Double-1> {puts stdout 2}
bind . <Triple-1> {puts stdout 3}

If you click the first mouse button several times quickly, you will see a 1, 2, and
then a few 3's output. Your bindings must take into consideration that more than
one binding might match a Double, Triple, or Quadruple event. This effect is
compatible with an interface that selects an object with the first click, and then
operates on the selected object with a Double event. In an editor, character, word,
line, and paragraph selection on a single, double, triple, and quadruple click,
respectively, is a good example.[*]

[*] If you really want to disable this, you can experiment with using after to postpone processing of one event. The time constant

in the bind implementation of <Double> is 500 milliseconds. At the single-click event, schedule its action to occur after 600

milliseconds, and verify at that time that the <Double> event has not occurred.

Table 29-2 summarizes the modifiers.

Table 29-2. Event modifiers

Control The control key.

Shift The shift key.

Lock The caps-lock key.

Command The command key. (Macintosh)

Meta, M Defined to be what ever modifier (M1 through M5) is mapped to the
Meta_L and Meta_R keysyms.

Alt Defined to be the modifier mapped to Alt_L and Alt_R.

Mod1, M1 The first modifier.

Mod2, M2,
Alt

The second modifier.

Mod3, M3 Another modifier.

Mod4, M4 Another modifier.

Mod5, M5 Another modifier.

Button1,
B1

The first mouse button (left).

Button2,
B2

The second mouse button (middle).

Button3,
B3

The third mouse button (right).

Button4,
B4

The fourth mouse button.

Button5,
B5

The fifth mouse button.

Double Matches double-press event.

Triple Matches triple-press event.

Quadruple Matches quadruple-press event.

Any Matches any combination of modifiers. (Before Tk 4.0)

The UNIX xmodmap program returns the current mappings from keys to these
modifiers. The first column of its output lists the modifier. The rest of each line
identifies the keysym(s) and low-level keycodes that are mapped to each modifier.
The xmodmap program can also be used to change mappings. The following
example shows the mappings on my system. Your setup may be different.

Example 29-2 Output from the UNIX xmodmap program

xmodmap: up to 3 keys per modifier,
 (keycodes in parentheses):
shift Shift_L (0x6a), Shift_R (0x75)
lock Caps_Lock (0x7e)

control Control_L (0x53)
mod1 Meta_L (0x7f), Meta_R (0x81)
mod2 Mode_switch (0x14)
mod3 Num_Lock (0x69)
mod4 Alt_L (0x1a)
mod5 F13 (0x20), F18 (0x50), F20 (0x68)

Event Sequences

The bind command accepts a sequence of events in a specification, and most
commonly this is a sequence of key events. In the following examples, the Key
events are abbreviated to just the character detail, and so abc is a sequence of
three Key events:

bind . a {puts stdout A}
bind . abc {puts stdout C}

With these bindings in effect, both bindings are executed when the user types abc.
The binding for a is executed when a is pressed, even though this event is also part
of a longer sequence. This is similar to the behavior with Double and Triple event
modifiers. For this reason you must be careful when binding sequences. You can use
break in the binding for the prefix to ensure that it does not do anything:

bindtags $w [list $w Text [winfo toplevel $w] all]
bind $w <Control-x> break
bind $w <Control-x><Control-s> {Save ; break}
bind $w <Control-x><Control-c> {Quit ; break}

The break ensures that the default Text binding that inserts characters does not
trigger. This trick is embodied by BindSequence in the next example. If a sequence
is detected, then a break binding is added for the prefix. The procedure also
supports the emacs convention that <Meta-x> is equivalent to <Escape>x. This
convention arose because Meta is not that standard across keyboards. There is no
meta key at all on Windows and Macintosh keyboards. The regexp command is used
to pick out the detail from the <Meta> event.

Example 29-3 Emacs-like binding convention for Meta and Escape

proc BindSequence { w seq cmd } {
 bind $w $seq $cmd
 # Double-bind Meta-key and Escape-key
 if [regexp {<Meta-(.*)>} $seq match letter] {
 bind $w <Escape><$letter> $cmd
 }
 # Make leading keystroke harmless
 if [regexp {(<.+>)<.+>} $seq match prefix] {
 bind $w $prefix break
 }
}

The use of break and continue in bindings is not supported in Tk 3.6 and earlier.
This is because only a single binding tag can match an event. To make a prefix of a
sequence harmless in Tk 3.6, bind a space to it:

bind $w $prefix { }

This installs a binding for the widget, which suppresses the class binding in Tk 3.6.
The space is different than a null string, {}. Binding to a null string deletes the
current binding instead of replacing it with a harmless one.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Virtual Events

A virtual event corresponds to one or more event sequences. When any of the event
sequences occurs, then the virtual event occurs. Example 29-4 shows the cut, copy,
and paste virtual events for each platform:

Example 29-4 Virtual events for cut, copy, and paste

switch $tcl_platform(platform) {
 "unix" {
 event add <<Cut>> <Control-Key-x> <Key-F20>
 event add <<Copy>> <Control-Key-c> <Key-F16>
 event add <<Paste>> <Control-Key-v> <Key-F18>
 }
 "windows" {
 event add <<Cut>> <Control-Key-x> <Shift-Key-Delete>
 event add <<Copy>> <Control-Key-c> <Control-Key-Insert>
 event add <<Paste>> <Control-Key-v> <Shift-Key-Insert>
 }
 "macintosh" {
 event add <<Cut>> <Control-Key-x> <Key-F2>
 event add <<Copy>> <Control-Key-c> <Key-F3>
 event add <<Paste>> <Control-Key-v> <Key-F4>
 }
}

You can define more than one physical event that maps to the same virtual event:

event add <<Cancel>> <Control-c> <Escape> <Command-period>

With this definition any of the physical events will trigger a <<Cancel>>. This would
be convenient if the same user commonly used your application on different
platforms. However, it is also possible that the physical bindings on different
platforms overlap in conflicting ways.

By default, virtual event definitions add to existing definitions for the same virtual
event. The previous command could be replaced with these three:

event add <<Cancel>> <Control-c>
event add <<Cancel>> <Escape>
event add <<Cancel>> <Command-period>

Several widgets use virtual events as a notification mechanism. They generate
virtual events in response to various conditions so that you can create bindings to
respond to those conditions. For example, the listbox widget generates a
<<ListboxSelect>> virtual event whenever the listbox selection changes. The
easiest way to respond to changes to the listbox selection is to bind to this virtual
event, for example:

bind .lbox <<ListboxSelect>> {ListboxChanged %W}

Generating Events

Your application can use the event generate command to programmatically
generate events, in essence emulating user interaction. You can generate either
standard windowing events or virtual events. However, you can generate events
only for the current application; you can't send events to other applications running
on your system. (In other words, you can't use the event generate command to
have your application control another application.)

The first argument to event generate is the target widget for the event. You may
provide either the path name of the widget, or the window identifier (such as
returned by winfo id) as long as it is for a window in the current application.

The second argument is an event specification, using the same syntax as for
creating event bindings. (See "Event Syntax" on page 439.) However, you can't
generate an event sequence (such as <KeyPress-Escape><KeyPress-a>), only
single events.

As an example, the following command delivers a ButtonPress-3 event to a widget:

event generate .b <ButtonPress-3>

A widget must have focus to receive key events.

Remember that a widget must have keyboard focus to receive KeyPress or
KeyRelease events. You can use the focus command to assign keyboard focus to a
widget:

focus .e1
event generate .e1 <KeyPress-a>

The event generate command also accepts options to specify additional attributes
of the event, such as the x and y mouse position. Table 29-4 lists the event
generate options. Of note is the -warp option, added in Tk 8.3. If you provide a -
warp value of True, then the mouse pointer moves to the x and y coordinates of the
generated event; otherwise, the mouse pointer remains at its current location. For
example, the following commands moves the mouse pointer to the point 10,20
relative to the top-left corner of the main window:

event generate . <Motion> -x 10 -y 20 -warp 1

Event Summary

Event Command Syntax

The event command is summarized in Table 29-3.

Table 29-3. The event command

event add virt phys1 phy2
...

Adds a mapping from one or more physical events
to virtual event virt.

event delete virt Deletes virtual event virt.

event info Returns the defined virtual events.

event info virt Returns the physical events that map to virt.

event generate win event ?
opt val? ...

Generates event for window win. The options are
listed in Table 29-4.

Event Keywords

Table 29-4 lists the percent keywords and the corresponding option to the event
generate command. Remember that keyword substitutions occur throughout the
command, regardless of other Tcl quoting conventions. Keep your binding
commands short, introducing procedures if needed. For the details about various
event fields, consult the Xlib Reference Manual (O'Reilly & Associates, Inc.). The
string values for the keyword substitutions are listed after a short description of the
keyword. If no string values are listed, the keyword has an integer value like a
coordinate or a window ID.

Table 29-4. A summary of the event keywords

%%
Use this to get a single percent sign. All events.

%# -serial num The serial number for the event. All events.

%a -above win The above field from the event. Configure event.

%b -button num Button number. Events: ButtonPress and ButtonRelease.

%c -count num The count field. Events: Expose and Map.

%d -detail
value

The detail field. Values: NotifyAncestor,
NotifyNonlinearVirtual, NotifyDetailNone, NotifyPointer,
NotifyInferior, NotifyPointerRoot, NotifyNonlinear, or
NotifyVirtual.

Events: Enter, Leave, FocusIn, and FocusOut.

%f -focus
boolean

The focus field (0 or 1). Events: Enter and Leave.

%h -height num The height field. Events: Configure and Expose.

%i
The window field from the event, represented as a hexadecimal
integer. All events.

%k -keycode
num

The keycode field. Events: KeyPress and KeyRelease.

%m -mode value The mode field. Values: NotifyNormal, NotifyGrab,
NotifyUngrab, or NotifyWhileGrabbed. Events: Enter, Leave,
FocusIn, and FocusOut.

%o -override
boolean

The override_redirect field. Events: Map, Reparent, and
Configure.

%p -place
value

The place field. Values: PlaceOnTop, PlaceOnBottom. Circulate
event.

%s -state
value

The state field. A decimal string for events: ButtonPress,
ButtonRelease, Enter, Leave, KeyPress, KeyRelease, and
Motion.

Values for the Visibility event: VisibilityUnobscured,
VisibilityPartiallyObscured, or VisibilityFullyObscured.

%t -time num The time field. All events.

%v
The value_mask field. Configure event.

%w -width num The width field. Events: Configure and Expose.

%x -x pixel The X coordinate, widget relative. Mouse events.

%y -y pixel The Y coordinate, widget relative. Mouse events.

%A
The printing character from the event, or {}.

Events: KeyPress and KeyRelease.

%B -
borderwidth
num

The border width. Configure event.

%D -delta
value

The delta value. MouseWheel event.

%E -sendevent
bool

The send_event field. All events.

%K -keysym
symbol

The keysym from the event. Events: KeyPress and KeyRelease.

%N
The keysym as a decimal number. Events: KeyPress and
KeyRelease.

%P
The atom name for the property being changed or deleted.
Property event.

%R -root win The root window ID. All events.

%S -subwindow
win

The subwindow ID. All events.

%T
The type field. All events.

%W
The Tk pathname of the widget receiving the event. All events.

%X -rootx
pixel

The x_root field. Relative to the (virtual) root window. Events:
ButtonPress, ButtonRelease, KeyPress, KeyRelease, and
Motion.

%Y -rooty
pixel

The y_root field. Relative to the (virtual) root window. Events:
ButtonPress, ButtonRelease, KeyPress, KeyRelease, and
Motion.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Part IV: Tk Widgets
Part IV describes the Tk widgets. These are the components you use to build
up your graphical user interface. Tk widgets are simple to use, so you can
rapidly develop your interface. At the same time, they have sophisticated
features that you can use to fine-tune your interface in response to user
feedback.

Chapter 30 describes buttons and menus. Tk 8.0 adds native look and feel to
these widgets, so a single script will look different depending on the platform it
is running on.

Associated with the widgets is a resource database that stores settings like
colors and fonts. Chapter 31 describes the resource database and generalizes
it to store button and menu configurations.

Chapter 32 describes a few simple widgets. The frame, labelframe, and
toplevel are containers for other widgets. The label displays a text string. The
message formats a long text string onto multiple lines. The scale represents a
numeric value. The bell command rings the terminal bell.

Chapter 33 describes scrollbars, which can be attached in a general way to
other widgets.

Chapter 34 describes entry widgets, which provide one line of editable text
and spinboxes, which allow users to select from multiple values by "spinning"
through selections.

Chapter 35 describes the listbox widget that displays several lines of text. The
lines are manipulated as units.

Chapter 36 describes the general-purpose text widget. It can display multiple
fonts and have binding tags on ranges of text.

Chapter 37 describes the canvas widget. The canvas manages objects like
lines, boxes, images, arcs, and text labels. You can have binding tags on these
objects and classes of objects.

Chapter 30. Buttons and Menus
Buttons and menus are the primary way that applications expose functions to users.
This chapter describes how to create and manipulate buttons and menus.

A button widget is associated with a Tcl command that invokes an action in the
application. The checkbutton and radiobutton widgets affect an application indirectly
by controlling a Tcl variable. A menu elaborates on this concept by organizing
button-like items into related sets, including cascaded menus. The menubutton
widget is a special kind of button that displays a menu when you click on it.

Tk 8.0 provides a cross-platform menu bar facility. The menu bar is really just a
menu that is displayed horizontally along the top of your application's main window.
On the Macintosh, the menu bar appears at the top of the screen. You define the
menu bar the same on all platforms. Tk 8.0 also uses native button and menu
widgets on the Windows and Macintosh platforms. This contributes to a native look
and feel for your application. In earlier versions, Tk displayed the widgets identically
on all platforms.

Associating a command to a button is usually quite simple, as illustrated by the Tk
"Hello, World!" example:

button .hello -command {puts stdout "Hello, World!"}

This chapter describes a few useful techniques for setting up the commands in more
general cases. If you use variables inside button commands, you have to
understand the scoping rules that apply. This is the first topic of the chapter. Once
you get scoping figured out, then the other aspects of buttons and menus are quite
straightforward.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Button Commands and Scope Issues

Perhaps the trickiest issue with button commands has to do with variable scoping. A
button command is executed at the global scope, which is outside of any procedure.
If you create a button while inside a procedure, then the button command executes
in a different scope later. The commands used in event bindings also execute later
at the global scope.

I think of this as the "now" (i.e., button definition) and "later" (i.e., button use)
scope problem. For example, you may want to use the values of some variables
when you define a button command but use the value of other variables when the
button command is used. When these two contexts are mixed, it can be confusing.
The next example illustrates the problem. The button's command involves two
variables: x and val. The global variable x is needed later, when the button's
command executes. The local variable val is needed now, in order to define the
command. Example 30-1 shows this awkward mixture of scopes:

Example 30-1 A troublesome button command

proc Trouble {args} {
 set b 0
 # Display the value of x, a global variable
 label .label -textvariable x
 set f [frame .buttons -borderwidth 10]
 # Create buttons that multiply x by their value
 foreach val $args {
 button $f.$b -text $val \
 -command "set x \[expr \$x * $val\]"
 pack $f.$b -side left
 incr b
 }
 pack .label $f
}
set x 1
Trouble -1 4 7 36

The example uses a label widget to display the current value of x. The
textvariable attribute is used so that the label displays the current value of the
variable, which is always a global variable. It is not necessary to have a global
command inside Trouble because the value of x is not used there. The button's
command is executed later at the global scope.

The definition of the button's command is ugly, though. The value of the loop
variable val is needed when the button is defined, but the rest of the substitutions
need to be deferred until later. The variable substitution of $x and the command
substitution of expr are suppressed by quoting with backslashes:

set x \[expr \$x * $val\]

In contrast, the following command assigns a constant expression to x each time
the button is clicked, and it depends on the current value of x, which is not defined
the first time through the loop. Clearly, this is incorrect:

button $f.$b -text $val \
 -command "set x [expr $x * $val]"

Another incorrect approach is to quote the whole command with braces. This defers
too much, preventing the value of val from being used at the correct time.

Use procedures for button commands.

The general technique for dealing with these sorts of scoping problems is to
introduce Tcl procedures for use as the button commands. Example 30-2 introduces
a little procedure to encapsulate the expression:

Example 30-2 Fixing the troublesome situation

proc LessTrouble { args } {
 set b 0
 label .label -textvariable x
 set f [frame .buttons -borderwidth 10]
 foreach val $args {
 button $f.$b -text $val \
 -command "UpdateX $val"
 pack $f.$b -side left
 incr b
 }
 pack .label $f
}
proc UpdateX { val } {
 global x
 set x [expr $x * $val]
}
set x 1
LessTrouble -1 4 7 36

It may seem just like extra work to introduce the helper procedure, UpdateX.
However, it makes the code clearer in two ways. First, you do not have to struggle
with backslashes to get the button command defined correctly. Second, the code is
much clearer about the function of the button. Its job is to update the global
variable x.

You can generalize UpdateX to work on any variable by passing the name of the
variable to update. Now it becomes much like the incr command:

button $f.$b -text $val -command "Update x $val"

The definition of Update uses upvar, which is explained on page 91, to manipulate
the named variable in the global scope:

proc Update {varname val} {
 upvar #0 $varname x
 set x [expr $x * $val]
}

Double quotes are used in the button command to allow $val to be substituted.
Whenever you use quotes like this, you have to be aware of the possible values for
the substitutions. If you are not careful, the command you create may not be
parsed correctly. The safest way to generate the command is with list:

button $f.$b -text $val -command [list UpdateX $val]

Using list ensures that the command is a list of two elements, UpdateX and the
value of val. This is important because UpdateX takes only a single argument. If
val contained white space, then the resulting command would be parsed into more
words than you expected. Of course, in this case we plan to always call
LessTrouble with an integer value, which does not contain white space.

Example 30-3 provides a more straightforward application of procedures for button
commands. In this case the advantage of the procedure MaxLineLength is that it
creates a scope for the local variables used during the button action. This ensures
that the local variables do not accidentally conflict with global variables used
elsewhere in the program. There is also the standard advantage of a procedure,
which is that you may find another use for the action in another part of your
program.

Example 30-3 A button associated with a Tcl procedure

proc MaxLineLength { file } {
 set max 0
 if [catch {open $file} in] {
 return $in
}
 foreach line [split [read $in] \n] {
 set len [string length $line]
 if {$len > $max} {
 set max $len
 }
 }
 return "Longest line is $max characters"
}
Create an entry to accept the file name,
a label to display the result
and a button to invoke the action
. config -borderwidth 10
entry .e -width 30 -bg white -relief sunken
button .doit -text "Max Line Length" \
 -command {.label config -text [MaxLineLength [.e get]]}
label .label -text "Enter file name"
pack .e .doit .label -side top -pady 5

The example is centered around the MaxLineLength procedure. This opens a file
and loops over the lines finding the longest one. The file open is protected with
catch in case the user enters a bogus file name. In that case, the procedure returns
the error message from open. Otherwise, the procedure returns a message about
the longest line in the file. The local variables in, max, and len are hidden inside the
scope of the procedure.

The user interface has three widgets: an entry for user input, the button, and a
label to display the result. These are packed into a vertical stack, and the main
window is given a border. Obviously, this simple interface can be improved in several
ways. There is no Quit button, for example.

All the action happens in the button command:

.label config -text [MaxLineLength [.e get]]

Braces are used when defining the button command so that the command
substitutions all happen when the button is clicked. The value of the entry widget is
obtained with .e get. This value is passed into MaxLineLength, and the result is
configured as the text for the label. This command is still a little complex for a
button command. For example, suppose you wanted to invoke the same command
when the user pressed <Return> in the entry. You would end up repeating this
command in the entry binding. It might be better to introduce a one-line procedure
to capture this action so that it is easy to bind the action to more than one user
action. Here is how that might look:

proc Doit {} {
 .label config -text [MaxLineLength [.e get]]
}

button .doit -text "Max Line Length" -command Doit
bind .e <Return> Doit

Chapter 29 describes the bind command in detail, Chapter 32 describes the label
widget, and Chapter 35 describes the entry widget.

Buttons Associated with Tcl Variables

The checkbutton and radiobutton widgets are associated with a global Tcl variable.
When one of these buttons is clicked, a value is assigned to the Tcl variable. In
addition, if the variable is assigned a value elsewhere in the program, the
appearance of the checkbutton or radiobutton is updated to reflect the new value. A
set of radiobuttons all share the same global variable. The set represents a choice
among mutually exclusive options. In contrast, each checkbutton has its own global
variable.

The ShowChoices example uses a set of radiobuttons to display a set of mutually
exclusive choices in a user interface. The ShowBooleans example uses checkbutton
widgets:

Example 30-4 Radiobuttons and checkbuttons

proc ShowChoices { parent varname args } {
 set f [frame $parent.choices -borderwidth 5]
 set b 0
 foreach item $args {
 radiobutton $f.$b -variable $varname \
 -text $item -value $item
 pack $f.$b -side left
 incr b
 }
 pack $f -side top
}
proc ShowBooleans { parent args } {
 set f [frame $parent.booleans -borderwidth 5]
 set b 0
 foreach item $args {
 checkbutton $f.$b -text $item -variable $item
 pack $f.$b -side left
 incr b
 }
 pack $f -side top
}
set choice kiwi
ShowChoices {} choice apple orange peach kiwi strawberry
set Bold 1 ; set Italic 1
ShowBooleans {} Bold Italic Underline

The ShowChoices procedure takes as arguments the parent frame, the name of a
variable, and a set of possible values for that variable. If the parent frame is null,
{}, then the interface is packed into the main window. ShowChoices creates a
radiobutton for each value, and it puts the value into the text of the button. It also
has to specify the value to assign to the variable when the button is clicked because
the default value associated with a radiobutton is the empty string.

The ShowBooleans procedure is similar to ShowChoices. It takes a set of variable
names as arguments, and it creates a checkbutton for each variable. The default
values for the variable associated with a checkbutton are zero and one, which is fine
for this example. If you need particular values, you can specify them with the -
onvalue and -offvalue options.

Radiobuttons and checkbuttons can have commands associated with them, just like
ordinary buttons. The command is invoked after the associated Tcl variable has been
updated. Remember that the Tcl variable associated with the button is defined in the
global scope. For example, you could log the changes to variables as shown in the
next example.

Example 30-5 A command on a radiobutton or checkbutton

proc PrintByName { varname } {
 upvar #0 $varname var
 puts stdout "$varname = $var"
}
checkbutton $f.$b -text $item -variable $item \
 -command [list PrintByName $item]
radiobutton $f.$b -variable $varname \
 -text $item -value $item \
 -command [list PrintByName $varname]

Button Attributes

Table 30-1 lists the attributes for the button, checkbutton, menubutton, and
radiobutton widgets. Unless otherwise indicated, the attributes apply to all of these
widget types. Chapters 40, 41, and 42 discuss many of these attributes in more
detail. Some attributes are ignored on the Windows and Macintosh platforms
because they are not supported by the native button widgets.

The table uses the resource name for the attributes, which has capitals at internal
word boundaries. In Tcl commands, the attributes are specified with a dash and they
are all lowercase. Compare:

option add *Menubutton.activeBackground: red
.mb configure -activebackground red

The first command defines a resource database entry that covers all menubuttons
and gives them a red active background. This only affects menubuttons created
after the database entry is added. The second command changes an existing
menubutton (.mb) to have a red active background. Note the difference in
capitalization of background in the two commands. The resource database is
introduced on page 372, and Chapter 31 explains how to use the resource database
in more detail.

Table 30-1. Resource names of attributes for all button widgets

activeBackground Background color when the mouse is over the button.

activeForeground Text color when the mouse is over the button.

anchor Anchor point for positioning the text.

background The normal background color.

bitmap A bitmap to display instead of text.

borderWidth Width of the border around the button.

command Tcl command to invoke when button is clicked.

compound Where the image or bitmap should be placed relative to the
text: bottom, center, left, right, top or none (default).
(Tk 8.4)

cursor Cursor to display when mouse is over the widget.

default active displays as a default button. normal and disabled
display as normal button. See page 809 (Tk 8.0).

direction up, down, left, right, active. Offset direction for posting
menus. menubutton. (Tk 8.0).

disabledForeground Foreground (text) color when button is disabled.

font Font for the text.

foreground Foreground (text) color. (Also fg).

height Height, in lines for text, or screen units for images.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Width of highlight border.

image Image to display instead of text or bitmap.

indicatorOn Boolean that controls if the indicator is displayed.

checkbutton, menubutton, and radiobutton.

justify Text justification: center, left, or right.

menu Menu posted when menubutton is clicked.

offRelief Alternate relief style when the widget is deselected.
checkbutton and radiobutton. (Tk 8.4)

offValue Value for Tcl variable when checkbutton is not selected.

onValue Value for Tcl variable when checkbutton is selected.

overRelief Alternate relief style when mouse is over the widget.
button, checkbutton, and radiobutton. (Tk 8.4)

padX Extra space to the left and right of the button text.

padY Extra space above and below the button text.

relief flat, sunken, raised, groove, solid or ridge.

repeatDelay The number of milliseconds a button or key must be held
down before it begins to auto-repeat. For button only. (Tk
8.4)

repeatInterval The number of milliseconds between auto-repeats. For
button only. (Tk 8.4)

selectColor Color for selector. checkbutton or radiobutton.

selectImage Alternate graphic image for selector: checkbutton or
radiobutton.

state normal (enabled), disabled (deactivated), or active (when
the mouse pointer is over the button).

takeFocus Control focus changes from keyboard traversal.

text Text to display in the button.

textVariable Tcl variable that has the value of the text.

underline Index of text character to underline.

value Value for Tcl variable when radiobutton is selected.

variable Tcl variable associated with the button: checkbutton or
radiobutton.

width Width in characters for text, or screen units for image. As of
Tk 8.4, on Windows only, a negative value is treated as a
minimum width for button widgets only.

wrapLength Maximum character length before text is wrapped, in screen
units.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Button Operations

Table 30-2 summarizes the operations on button widgets. In the table, $w is a
button, checkbutton, radiobutton, or menubutton, except when noted. For the most
part, these operations are used by the script libraries that implement the bindings
for buttons. The cget and configure operations are the most commonly used by
applications.

Table 30-2. Button operations

$w cget option Returns the value of the specified attribute.

$w configure ?
option? ?value?
...

Queries or manipulates the configuration information for the
widget.

$w deselect Deselects the radiobutton or checkbutton. Set the
radiobutton variable to the null string. Set the checkbutton
variable to the off value.

$w flash Redisplays the button several times in alternate colors.

$w invoke Invokes the command associated with the button.

$w select Selects the radiobutton or checkbutton, setting the associated
variable appropriately.

$w toggle Toggles the state of the checkbutton, setting the associated
variable appropriately.

Menus and Menubuttons

A menu presents a set of button-like menu entries to users. A menu entry is not a
full fledged Tk widget. Instead, you create a menu widget and then add entries to
the menu as shown in the following examples. There are several kinds of menu
entries:

Command entries are like buttons.

Check entries are like checkbuttons.

Radio entries are like radiobuttons.

Separator entries are used to visually set apart entries.

Cascade entries are used to post submenus.

Tear-off entries are used to detach a menu from its menu button so that it
becomes a new top-level window.

A menubutton is a special kind of button that posts (i.e., displays) a menu when you
press it. If you click on a menubutton, then the menu is posted and remains posted
until you click on a menu entry to select it, or click outside the menu to dismiss it. If
you press and hold the menubutton, then the menu is unposted when you release
the mouse. If you release the mouse over the menu, it selects the menu entry that
was under the mouse.

You can have a command associated with a menubutton, too. The command is
invoked before the menu is posted, which means you can compute the menu
contents when the user presses the menubutton.

Our first menu example creates a sampler of the different entry types:

Example 30-6 A menu sampler

menubutton .mb -text Sampler -menu .mb.menu
pack .mb -padx 10 -pady 10
set m [menu .mb.menu -tearoff 1]
$m add command -label Hello! -command {puts "Hello, World!"}
$m add check -label Boolean -variable foo \
 -command {puts "foo = $foo"}
$m add separator
$m add cascade -label Fruit -menu $m.sub1
set m2 [menu $m.sub1 -tearoff 0]
$m2 add radio -label apple -variable fruit -value apple
$m2 add radio -label orange -variable fruit -value orange
$m2 add radio -label kiwi -variable fruit -value kiwi

The example creates a menubutton and two menus. The main menu .mb.menu is a
child of the menubutton .mb. This relationship is necessary so that the menu
displays correctly when the menubutton is selected. Similarly, the cascaded
submenu .mb.menu.sub1 is a child of the main menu. The first menu entry is
represented by the dashed line. This is a tear-off entry that, when selected, makes a
copy of the menu in a new top-level window. This is useful if the menu operations
are invoked frequently. The -tearoff 0 argument is used when creating the
submenu to eliminate its tear-off entry.

The command, radio, and check entries are similar to the corresponding button
types. The configuration options for menu entries are similar to those for buttons.
The main difference is that the text string in the menu entry is defined with the -
label option, not -text. Table 30-6 gives the complete set of options for menu
entries.

The cascade menu entry is associated with another menu. It is distinguished by the
small right arrow in the entry. When you select the entry, the submenu is posted. It
is possible to have several levels of cascaded menus. There is no limit to the
number of levels, except that your users will complain if you nest too many menus.

A Menu Bar

You can create a menu bar manually by packing several menubuttons into a frame.
The default bindings on menubuttons are such that you can drag your mouse over

the menu bar and the different menus will display as you drag over their
menubutton.

Tk 8.0 lets you create a menu bar as a horizontal menu that is associated with a
top-level window. On Windows and UNIX the menu is displayed along the top of the
window. On Macintosh this menu replaces the main menu along the top of the
screen when the window is activated. The menu bar menu should have all cascade
entries so that when you select an entry, another menu is displayed. This is
illustrated in Example 30-7. It defines variables that store the names of the menu
widgets:

set $m [menu .menubar.m$m]

This creates a variable named File, Edit, and Help that store the names of the
menu widgets. This trick is generalized on page 470 in a package that hides the
menu widget names.

Example 30-7 A menu bar in Tk 8.0

menu .menubar
attach it to the main window
. config -menu .menubar
Create more cascade menus
foreach m {File Edit Help} {
 set $m [menu .menubar.m$m]
 .menubar add cascade -label $m -menu .menubar.m$m
}
$File add command -label Quit -command exit
add more menu items...

System Menus

The Tk 8.0 menu bar implementation can add entries to the Windows system menu,
the Macintosh Apple menu, and the Help menu on all platforms. This works by
recognizing special names. For example, if the menu bar is .menubar, then the
special names are .menubar.system, .menubar.apple, and .menubar.help. The
Help menu is right justified on all platforms. The Apple menu is normally used by
applications for their About... entry. The entries you add to the Apple menu are
added to the top of the menu. The System menu appears in the Windows title bar
and has entries such as Close and Minimize.

Pop-Up Menus

A pop-up menu is not associated with a menubutton. Instead, it is posted in
response to a keystroke or other event in the application. The tk_popup command
posts a pop-up menu:

tk_popup menu x y ?entry?

The last argument specifies the entry to activate when the menu is posted. It is an
optional parameter that defaults to 1, which avoids the tear-off entry in position
zero. The menu is posted at the specified X and Y coordinates in its parent widget.

Option Menus

An option menu represents a choice with a set of radio entries, and it displays the
current choice in the text of the menubutton. The tk_optionMenu command creates
a menubutton and a menu full of radio entries:

tk_optionMenu w varname firstValue ?value value ...?

The first argument is the pathname of the menubutton to create. The second is the
variable name. The third is the initial value for the variable, and the rest are the
other choices for the value. The menubutton displays the current choice and a small
symbol, the indicator, to indicate it is an option menu.

Multicolumn Palette Menus

Tk 8.0 adds a -columnbreak menu entry attribute that puts the entry at the top of a
new column. This is most useful when the menu consists of several images that are
arranged as a palette. Set the entry's image with the -image attribute. You can
create checkbutton and radiobutton entries that have images and no indicator by
using the -hidemargin attribute. In this case, a selected entry is indicated by
drawing a solid rectangle around it.

Menu Bindings and Events

Keyboard Traversal

The default bindings for menus allow for keyboard selection of menu entries. The
selection process is started by pressing <Alt-x>, where x is the distinguishing letter
for a menubutton or a menu bar's cascade entry. The underline attribute is used to
highlight the appropriate letter. The underline value is a number that specifies a
character position, and the count starts at zero. For example, a File menu with a
highlighted F is created for a menubutton like this:

menubutton .menubar.file -text File -underline 0 \
 -menu .menubar.file.m

If the File menu is implemented as a menu bar cascade, you create the traversal
highlight like this:

menu .mbar
. configure -menu .mbar
.mbar add cascade -label File -underline 0 \
 -menu .mbar.file

When the user types <Alt-f> over the main window, the menu is posted. The case
of the highlighted letter is not important.

After a menu is posted, the arrow keys change the selected entry. The <Up> and
<Down> keys move within a menu, and the <Left> and <Right> keys move between
adjacent menus. The bindings assume that you create your menus from left to right.

If any of the menu entries have a letter highlighted with the -underline option,
typing that letter invokes that menu entry. For example, an Export entry that is
invoked by typing x can be created like this:

.menubar.file.m add command -label Export -underline 1 \
 -command File_Export

The <space> and <Return> keys invoke the menu entry that is currently selected.
The <Escape> key aborts the menu selection and removes the menu.

Menu Virtual Events

As of Tk 8.0, a menu widget generates a <<MenuSelect>> virtual event whenever
the menu's active entry changes. The event is fired after the menu selection has
changed, so the binding action can access the new selection. The easiest way to be
aware of changes to the menu selection is to bind to this virtual event, as shown in

Example 30-8. Notification like this is useful for features such as context-sensitive
help.

Example 30-8 Using the <<MenuSelect>> virtual event

proc MenuChanged {w} {
 puts "Menu $w selection: [$w entrycget active -label]"
}
bind .mbar.file <<MenuSelect>> {MenuChanged %W}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Manipulating Menus and Menu Entries

There are a number of operations that apply to menu entries. We have already
introduced the add operation. The entryconfigure operation is similar to the
configure operation for widgets. It accepts the same attribute-value pairs used
when the menu entry was added. The delete operation removes a range of menu
entries. The rest of the operations are used by the library scripts that implement the
standard bindings for menus.

A menu entry is referred to by an index. The
index can be numerical, counting from zero,
or symbolic. Table 30-3 summarizes the index
formats. One of the most useful indices is a
pattern that matches the label in the menu
entry. The pattern matching is done with the
rules of string match. Using a pattern
eliminates the need to keep track of the
numerical indices.

Table 30-3. Menu entry index keywords

index A numerical index counting from zero.

active The activated entry, either because it is under the mouse or has been
activated by keyboard traversal.

end The last menu entry.

last The same as end.

none No entry at all.

@ycoord The entry under the given Y coordinate. Use @%y in bindings.

pattern A string match pattern to match the label of a menu entry.

Table 30-4 summarizes the complete set of menu operations. In the table, $w is a
menu widget.

Table 30-4. Menu operations

$w activate index Highlights the specified entry.

$w add type ?option
value? ...

Adds a new menu entry of the specified type with
the given values for various attributes.

$w cget option Returns the value for the configuration option.

$w clone Makes a linked copy of the menu. This is used to
implement tear-offs and menu bars.

$w configure ?option? ?
value? ...

Returns the configuration information for the menu.

$w delete i1 ?i2? Deletes the menu entries from index i1 to i2.

$w entrycget index option Returns the value of option for the specified entry.

$w entryconfigure index ?
option? ?value? ...

Queries or modifies the configuration information for
the specified menu entry.

$w index index Returns the numerical value of index.

$w insert type index ?
option value? ...

Like add, but inserts the new entry after the
specified index.

$w invoke index Invokes the command associated with the entry.

$w post x y Displays the menu at the specified coordinates.

$w postcascade index Displays the cascade menu from entry index.

$w type index Returns the type of the entry at index.

$w unpost Unmaps the menu.

$w yposition index Returns the Y coordinate of the top of the entry.

Menu Attributes

A menu has a few global attributes, and then each menu entry has many button-like
attributes that describe its appearance and behavior. Table 30-5 specifies the
attributes that apply globally to the menu, unless overridden by a per-entry
attribute. The table uses the X resource names, which may have a capital at interior
word boundaries. In Tcl commands, use all lowercase and a leading dash.

Table 30-5. Menu attribute resource names

activeBackground Background color when the mouse is over a menu entry.

activeBorderWidth Width of the raised border around active entries.

activeForeground Text color when the mouse is over a menu entry.

background The normal background color for menu entries.

borderWidth Width of the border around the menu (except on systems
where native menus are used, such as Windows).

cursor Cursor to display when mouse is over the menu.

disabledForeground Foreground (text) color when menu entries are disabled.

font Default font for the text.

foreground Foreground color. (Also fg).

postCommand Tcl command to run just before the menu is posted.

relief The relief style of the menu (except on systems where native
menus are used such, as Windows).

selectColor Color for selector in check and radio type entries.

takeFocus Control focus changes from keyboard traversal.

tearOff True if menu should contain a tear-off entry.

tearOffCommand Command to execute when menu is torn off. Two arguments
are added: the original menu and the new tear-off.

title Title for the window created when the menu is torn off. If this
is an empty string (default), the title is the text of the
menubutton or cascade item from which this menu was torn
off. (Tk 8.0)

type (Read-only) normal, menubar, or tearoff. (Tk 8.0).

Table 30-6 describes the attributes for menu entries, as you would use them in a Tcl
command (i.e., all lowercase with a leading dash.) The attributes for menu entries
are not supported directly by the resource database. However, Example 31-6 on
page 481 describes how you can use the resource database for menu entries.

Table 30-6. Attributes for menu entries

-
activebackground

Background color when the mouse is over the entry.

-
activeforeground

Foreground (text) color with mouse is over the entry.

-accelerator Text to display as a reminder about keystroke binding.

-background The normal background color.

-bitmap A bitmap to display instead of text.

-columnbreak Puts the entry at the start of a new column. (Tk 8.0).

-command Tcl command to invoke when entry is invoked.

-compound Where the image or bitmap should be placed relative to the
text: bottom, center, left, right, top or none (default). (Tk
8.4)

-font Default font for the text.

-foreground Foreground color. (Also fg).

-hidemargin Suppresses the margin reserved for button indicators. (Tk 8.0).

-image Image to display instead of text or bitmap.

-indicatoron Boolean that controls if the indicator is displayed: check and
radio entries.

-label Text to display in the menu entry.

-menu Menu posted when cascade entry is invoked.

-offvalue Variable value when check entry is not selected.

-onvalue Value for Tcl variable when check entry is selected.

-selectcolor Color for selector: check and radio entries.

-selectimage Alternate image to use when entry is selected: check and
radio entries.

-state The state: normal, active, or disabled

-underline Index of text character to underline.

-value Value for Tcl variable when radiobutton entry is selected.

-variable Tcl variable associated with the check or radio entry.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

A Menu by Name Package

If your application supports extensible or user-defined menus, it can be tedious to
expose all the details of the Tk menus. The examples in this section create a little
package that lets users refer to menus and entries by name. In addition, the
package keeps keystroke accelerators for menus consistent with bindings.

The Menu_Setup procedure initializes the package. It creates a frame to hold the set
of menu buttons, and it initializes some state variables: the frame for the
menubuttons and a counter used to generate widget pathnames. All the global state
for the package is kept in the array called menu.

The Menu procedure creates a menubutton and a menu. It records the association
between the text label of the menubutton and the menu that was created for it. This
mapping is used throughout the rest of the package so that the client of the
package can refer to the menu by its label (e.g., File) as opposed to the internal Tk
pathname, (e.g., .top.menubar.file.menu).

Example 30-9 A simple menu by name package

proc Menu_Setup { menubar } {
 global menu
 frame $menubar
 pack $menubar -side top -fill x
 set menu(menubar) $menubar
 set menu(uid) 0
}
proc Menu { label } {
 global menu
 if [info exists menu(menu,$label)] {
 error "Menu $label already defined"
 }
 # Create the menubutton and its menu
 set name $menu(menubar).mb$menu(uid)
 set menuName $name.menu
 incr menu(uid)
 set mb [menubutton $name -text $label -menu $menuName]
 pack $mb -side left
 menu $menuName -tearoff 1
 # Remember the name to menu mapping
 set menu(menu,$label) $menuName
}

These procedures are repeated in Example 30-10, except that they use the Tk 8.0
menu bar mechanism. The rest of the procedures in the package are the same with
either version of menu bars.

Example 30-10 Using the Tk 8.0 menu bar facility

proc Menu_Setup { menubar } {
 global menu
 menu $menubar
 # Associated menu with its main window
 set top [winfo parent $menubar]
 $top config -menu $menubar
 set menu(menubar) $menubar
 set menu(uid) 0
}
proc Menu { label } {
 global menu
 if [info exists menu(menu,$label)] {
 error "Menu $label already defined"
 }
 # Create the cascade menu
 set menuName $menu(menubar).mb$menu(uid)
 incr menu(uid)
 menu $menuName -tearoff 1
 $menu(menubar) add cascade -label $label -menu $menuName
 # Remember the name to menu mapping
 set menu(menu,$label) $menuName
}

Once the menu is set up, the menu array is used to map from a menu name, like
File, to the Tk widget name such as .menubar.mb3. Even though this can be done
with a couple of lines of Tcl code, the mapping is put inside the MenuGet procedure
to hide the implementation. MenuGet uses return -code error if the menu name is
unknown, which changes the error reporting slightly as shown in Example 6-19 on
page 86. If the user specifies a bogus menu name, the undefined variable error is
caught and a more informative error is raised instead. MenuGet is private to the
package, so it does not have an underscore in its name.

Example 30-11 MenuGet maps from name to menu

proc MenuGet {menuName} {
 global menu
 if [catch {set menu(menu,$menuName)} m] {
 return -code error "No such menu: $menuName"
 }
 return $m
}

The procedures Menu_Command, Menu_Check, Menu_Radio, and Menu_Separator are
simple wrappers around the basic menu commands. They use MenuGet to map from
the menu label to the Tk widget name.

Example 30-12 Adding menu entries

proc Menu_Command { menuName label command } {
 set m [MenuGet $menuName]

 $m add command -label $label -command $command
}

proc Menu_Check { menuName label var { command {} } }
{
 set m [MenuGet $menuName]
 $m add check -label $label -command $command \
 -variable $var
}

proc Menu_Radio { menuName label var {val {}} {command {}} } {
 set m [MenuGet $menuName]
 if {[string length $val] == 0} {
 set val $label
 }
 $m add radio -label $label -command $command \
 -value $val -variable $var
}

proc Menu_Separator { menuName } {
 [MenuGet $menuName] add separator
}

Creating a cascaded menu also requires saving the mapping between the label in
the cascade entry and the Tk pathname for the submenu. This package imposes a
restriction that different menus, including submenus, cannot have the same label.

Example 30-13 A wrapper for cascade entries

proc Menu_Cascade { menuName label } {
 global menu
 set m [MenuGet $menuName]
 if [info exists menu(menu,$label)] {
 error "Menu $label already defined"
 }
 set sub $m.sub$menu(uid)
 incr menu(uid)
 menu $sub -tearoff 0
 $m add cascade -label $label -menu $sub
 set menu(menu,$label) $sub
}

Creating the sampler menu with this package looks like this:

Example 30-14 Using the menu by name package

Menu_Setup .menubar
Menu Sampler
Menu_Command Sampler Hello! {puts "Hello, World!"}
Menu_Check Sampler Boolean foo {puts "foo = $foo"}

Menu_Separator Sampler
Menu_Cascade Sampler Fruit
Menu_Radio Fruit apple fruit
Menu_Radio Fruit orange fruit
Menu_Radio Fruit kiwi fruit

Menu Accelerators

The final touch on the menu package is to
support accelerators in a consistent way. A
menu entry can display another column of
information that is assumed to be a keystroke
identifier to remind users of a binding that
also invokes the menu entry. However, there
is no guarantee that this string is correct, or
that if the user changes the binding that the
menu will be updated. Example 30-15 shows
the Menu_Bind procedure that takes care of
this.

Example 30-15 Keeping the accelerator display up to date

proc Menu_Bind { what sequence accText menuName label } {
 variable menu
 set m [MenuGet $menuName]
 if {[catch {$m index $label} index]} {
 error "$label not in menu $menuName"
 }
 bind $what $sequence [list MenuInvoke $m $index]
 $m entryconfigure $index -accelerator $accText
}
proc MenuInvoke {m index} {
 set state [$m entrycget $index -state]
 if {[string equal $state normal]} {
 $m invoke $index
 }
}

The Menu_Bind command uses the index operation to find out what menu entry has
the given label. It sets up a binding for the key sequence that will invoke the menu
operation, and it updates the display of the accelerator using the entryconfigure

operation. This approach has the advantage of keeping the keystroke command
consistent with the menu command, as well as updating the display.

The MenuInvoke procedure is used for the binding. We could use entrycget to fetch
the command, and then bind directly to that. However, that wouldn't honor the state
of the menu entry, which could be temporarily disabled. In addition, the invoke
operation on the menu handles any special cases such as updating radiobutton
variables associated with the entry.

To try Menu_Bind, add an empty frame to the sampler example, and bind a
keystroke to it and one of the menu commands, like this:

frame .body -width 100 -height 50
pack .body ; focus .body
Menu_Bind .body <Control-q> Ctrl-Q Sampler Hello!

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 31. The Resource Database
This chapter describes the use of the resource database, and how users can define
buttons and menus via resource specifications. This chapter describes the option
command.

Tk supports a resource database that holds specifications of widget attributes such
as fonts and colors. You can control all attributes of the Tk widgets through the
resource database. It can also be used as a more general database of application-
specific parameter settings.

Because a Tk application can use Tcl for customization, it might not seem necessary
to use the resource database. The resource database is, however, a useful tool for
your Tk application. A developer can make global changes with just a few database
entries. In addition, it lets users and site administrators customize applications
without modifying the code.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

An Introduction to Resources

When a Tk widget is created, its attributes are set by one of three sources. It is
important to note that Tcl command specifications have priority over resource
database specifications:

The most evident source of attributes are the options in Tcl commands, such
as the -text quit attribute specification for a button.

If an attribute is not specified on the command line, then the resource
database is queried as described later.

If there is nothing in the resource database, then a hard-coded value from the
widget implementation is used.

The resource database consists of a set of keys and values. Unlike many other
databases, however, the keys are patterns that are matched against the names of
widgets and attributes. This makes it possible to specify attribute values for a large
number of widgets with just a few database entries. In addition, the resource
database can be shared by many applications, so users and administrators can
define common attributes for their whole set of applications.

The resource database is maintained in main memory by the Tk toolkit. On UNIX the
database is initialized from the RESOURCE_MANAGER property on the root window, or
the .Xdefaults file in your home directory. On Windows and Macintosh, there are a
few resources added by the tk.tcl library file. Additional files can be explicitly
loaded with the option readfile command, and individual database entries are
added with the option add Tcl command.

The initialization of the database is different from the Xt toolkit, which loads
specifications from as many as five different files to allow per-user, per-site, per-
application, per-machine, and per-user-per-application specifications. You can
achieve the same effect in Tk, but you must do it yourself. Example 45-1 on page
672 gives a partial solution.

Resource Patterns

The pattern language for the keys is related to the naming convention for Tk
widgets. Recall that a widget name reflects its position in the hierarchy of windows.
You can think of the resource names as extending the hierarchy one more level at
the bottom to account for all the attributes of each individual widget. There is also a
new level of the hierarchy at the top to specify the application by name. For
example, the database could contain an entry like the following in order to define a
font for the quit button in a frame called .buttons:

Exmh.buttons.quit.font: fixed

The leading Exmh. matches the class name for the Tcl/Tk application. The class
name of the application is set from the name of the script file, with the first
character capitalized. For example, if the script is /usr/local/bin/foobar, then the
class is set to Foobar. You could also specify an asterisk to match any application:

*buttons.quit.font: fixed

Resource keys can also specify classes of widgets and attributes as opposed to
individual instances. The quit button, for example, is an instance of the Button
class. Class names for widgets are the same as the Tcl command used to create
them, except for a leading capital letter. A class-oriented specification that would set
the font for all buttons in the .buttons frame would be:

Exmh.buttons.Button.font: fixed

Don't use widget names for script names.

The application class name becomes the class name for the main toplevel window.
For example, if you use a script name like button.tcl, the class for . becomes
Button. This causes it to inherit all the standard Button bindings and attribute
values, which can cause problems in your application.

Patterns let you replace one or more components of the resource name with an
asterisk (*). For example, to set the font for all the widgets packed into the
.buttons frame, you can use the resource name *buttons*font, or you can specify
the font for all buttons with the pattern *Button.font. In these examples, we have
replaced the leading Tk. with an asterisk as well. It is the ability to collapse several
layers of the hierarchical name with a single asterisk that makes it easy to specify
attributes for many widgets with just a few database entries.

The tables in this book list attributes by their resource name. The resource names
use a capital letter at the internal word boundaries. For example, if the command
line switch is -offvalue, then the corresponding resource name is offValue. There
are also class names for attributes, which are distinguished with a leading capital
(e.g., OffValue).

Warning: Order is Important!

The matching between a widget name and the patterns in the database can be
ambiguous, with multiple patterns matching the same widget. The order of database
entries determines which pattern is used, with later entries taking precedence. (This
is different from the Xt toolkit, in which longer matching patterns have precedence,
and instance specifications have priority over class specifications.) Suppose the
database contained just two entries, in this order:

*Text*foreground: blue
*foreground: red

Despite the more specific *Text*foreground entry, all widgets will have a red
foreground, even text widgets. For this reason you should list your most general
patterns early in your resource files and give the more specific patterns later.

Tk also supports different priorities among resources, as described in the next
section. The ordering precedence described here applies to all resources with the
same priority.

Loading Option Database Files

The option command manipulates the resource database. The first form of the
command loads a file containing database entries:

option readfile filename ?priority?

The priority distinguishes different sources of resource information and gives
them different priorities. Priority levels are numeric, from 0 to 100. However,
symbolic names are defined for standard priorities. From lowest to highest, the
standard priorities are widgetDefault (20), startupFile (40), userDefault (60),
and interactive (80). These names can be abbreviated. The default priority is
interactive.

Example 31-1 Reading an option database file

if [file exists $appdefaults] {
 if [catch {option readfile $appdefaults startup} err] {
 puts stderr "error in $appdefaults: $err"
 }
}

The format of the entries in the file is:

key: value

The key has the pattern format previously described. The value can be anything,
and there is no need to group multiword values with any quoting characters. In fact,
quotes will be picked up as part of the value.

Comment lines are introduced by the exclamation mark (!).

Example 31-2 A file containing resource specifications

!
! Grey color set
! These values match those used by the Tk widgets on UNIX
!
*background: #d9d9d9
*foreground: black
*activeBackground: #ececec
*activeForeground: black
*selectColor: #b03060
*selectBackground: #c3c3c3
*troughColor: #c3c3c3
*disabledforeground:#a3a3a3

The example resource file specifies the color scheme for the Tk widget set on UNIX
that is based on a family of gray levels. Color highlighting shows up well against this
backdrop. These colors are applied generically to all the widgets. The hexadecimal
values for the colors specify two digits (eight bits) each for red, green, and blue.
Chapter 41 describes the use of color in detail.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Adding Individual Database Entries

You can enter individual database entries with the option add Tcl command. This is
appropriate to handle special cases, or if you do not want to manage a separate per
application resource specification file. The command syntax is:

option add pattern value ?priority?

The priority is the same as that used with option readfile. The pattern and
value are the same as in the file entries, except that the key does not have a
trailing colon when specified in an option add command. If value contains spaces
or special characters, you will need to group it like any other argument to a Tcl
command. Some of the specifications from the last example could be added as
follows:

option add *foreground black
option add *selectBackground #bfdfff

You can clear the option database:

option clear

However, on UNIX the database will be initialized from your ~/.Xdefaults file, or
the RESOURCE_MANAGER property on the root window, the next time the database is
accessed.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Accessing the Database

Often, it is sufficient just to set up the database and let the widget implementations
use the values. However, it is also possible to record application-specific information
in the database. To fetch a resource value, use option get:

option get window name class

The window is a Tk widget pathname. The name is a resource name. In this case, it
is not a pattern or a full name. Instead, it is the resource name as specified in the
tables in this book. Similarly, the class is a simple class name. It is possible to
specify a null name or class. If there is no matching database entry, option get
returns the empty string.

It is not possible to enumerate the database, nor can you detect the difference
between a value that is the empty string and the absence of a value. You can work
around this by introducing well-known resource names that list other resources.
This trick is used in the next section.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

User-Defined Buttons

Suppose you want users to be able to define a set of their own buttons for
frequently executed commands. Or perhaps users can augment the application with
their own Tcl code. The following scheme, which is based on an idea from John
LoVerso, lets them define buttons to invoke their own code or their favorite
commands.

The application creates a special frame to hold the user-defined buttons and places
it appropriately. Assume the frame is created like this:

frame .user -class User

The class specification for the frame means that we can name resources for the
widgets inside the frame relative to *User. Users specify the buttons that go in the
frame via a personal file containing resource specifications.

The first problem is that there is no means to enumerate the database, so we must
create a resource that lists the names of the user-defined buttons. We use the name
buttonlist and make an entry for *User.buttonlist that specifies which buttons
are being defined. It is possible to use artificial resource names (e.g., buttonlist),
but they must be relative to an existing Tk widget.

Example 31-3 Using resources to specify user-defined buttons

*User.buttonlist: save search justify quit
*User.save.text: Save
*User.save.command: File_Save
*User.search.text: Search
*User.search.command: Edit_Search
*User.justify.text: Justify
*User.justify.command: Edit_Justify
*user.quit.text: Quit
*User.quit.command: File_Quit
*User.quit.background: red

In Example 31-3, we have listed four buttons and specified some of the attributes
for each, most importantly the text and command attributes. We are assuming, of
course, that the application manual publishes a set of commands that users can
invoke safely. In this simple example, the commands are all one word, but there is
no problem with multiword commands. There is no interpretation done of the value,
so it can include references to Tcl variables and nested command calls. Example 31-
4 uses these resource specifications to define the buttons:

Example 31-4 Resource_ButtonFrame defines buttons based on
resources

proc Resource_ButtonFrame { f class } {
 frame $f -class $class -borderwidth 2
 pack $f -side top -fill x
 foreach b [option get $f buttonlist {}] {
 if [catch {button $f.$b}] {
 button $f.$b -font fixed
 }
 pack $f.$b -side right
 }
}

The catch phrase is introduced to handle a common problem with fonts and widget
creation. If the user's resources specify a bogus or missing font, then the widget
creation command will fail. The catch phrase guards against this case by falling
back to the fixed font, which is guaranteed to exist. This problem is fixed in Tk 8.0
because the font mechanism will search for alternate fonts.

Example 31-5 assumes that the resource specifications from Example 31-2 are in
the file button.resources. It creates the user-defined buttons in the .users frame.

Example 31-5 Using Resource_ButtonFrame

option readfile button.resources
Resource_ButtonFrame .user User

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

User-Defined Menus

User-defined menus can be set up with a similar scheme. However, it is more
complex because there are no resources for specific menu entries. We must use
more artificial resources to emulate this. We use menulist to name the set of
menus. Then, for each of these, we define an entrylist resource. Finally, for each
entry we define a few more resources. The name of the entry has to be combined
with some type information, which leads to the following convention:

l_entry is the label for the entry.

t_entry is the type of the entry.

c_entry is the command associated with the entry.

v_entry is the variable associated with the entry.

m_entry is the menu associated with the entry.

Example 31-6 Specifying menu entries via resources

*User.menulist: stuff
*User.stuff.text: My stuff
*User.stuff.m.entrylist: keep insert find
*User.stuff.m.l_keep: Keep on send
*User.stuff.m.t_keep: check
*User.stuff.m.v_keep: checkvar
*User.stuff.m.l_insert: Insert File...
*User.stuff.m.c_insert: InsertFileDialog
*User.stuff.m.l_find: Find
*User.stuff.m.t_find: cascade
*User.stuff.m.m_find: find
*User.stuff.m.find.entrylist: next prev
*User.stuff.m.find.tearoff: 0
*User.stuff.m.find.l_next: Next
*User.stuff.m.find.c_next: Find_Next

*User.stuff.m.find.l_prev: Previous
*User.stuff.m.find.c_prev: Find_Previous

In Example 31-6, .user.stuff is a Tk menubutton. It has a menu as its child,
.user.stuff.m, where the menu .m is set by convention. You will see this later in
the code for Resource_Menubar. The entrylist for the menu is similar in spirit to
the buttonlist resource. For each entry, however, we have to be a little creative
with the next level of resource names. The following does not work:

*User.stuff.m.keep.label: Keep on send

The problem is that Tk does not directly support resources for menu entries, so it
assumes .stuff.m.keep is a widget pathname, but it is not. You can add the
resource, but you cannot retrieve it with option get. Instead, we must combine the
attribute information (i.e., label) with the name of the entry:

*User.stuff.m.l_keep: Keep on send

You must do something similar if you want to define resources for items on a
canvas, too, because that is not supported directly by Tk. The code to support menu
definition by resources is shown in the next example:

Example 31-7 Defining menus from resource specifications

proc Resource_Menubar { f class } {
 set f [frame $f -class $class]
 pack $f -side top
 foreach b [option get $f menulist {}] {
 set cmd [list menubutton $f.$b -menu $f.$b.m \
 -relief raised]
 if [catch $cmd t] {
 eval $cmd {-font fixed}
 }
 if [catch {menu $f.$b.m}] {
 menu $f.$b.m -font fixed
 }
 pack $f.$b -side left
 ResourceMenu $f.$b.m
 }
}
proc ResourceMenu { menu } {
 foreach e [option get $menu entrylist {}] {
 set l [option get $menu l_$e {}]
 set c [option get $menu c_$e {}]
 set v [option get $menu v_$e {}]
 switch -- [option get $menu t_$e {}] {
 check {
 $menu add checkbutton -label $l -command $c \
 -variable $v
 }
 radio {

 $menu add radiobutton -label $l -command $c \
 -variable $v -value $l
 }
 separator {
 $menu add separator
 }
 cascade {
 set sub [option get $menu m_$e {}]
 if {[string length $sub] != 0} {
 set submenu [menu $menu.$sub]
 $menu add cascade -label $l -command $c \
 -menu $submenu
 ResourceMenu $submenu
 }
 }
 default {
 $menu add command -label $l -command $c
 }
 }
 }
}

Application and User Resources

The examples presented here are a subset of a package I use in some large
applications, exmh and webtk. The applications define nearly every button and
menu via resources, so users and site administrators can redefine them. The
buttonlist, menulist, and entrylist resources are generalized into user, site,
and application lists. The application uses the application lists for the initial
configuration. The site and user lists can add and remove widgets. For example:

buttonlist ÿ the application list of buttons

l-buttonlist ÿ the site-specific list of buttons to remove

lbuttonlist ÿ the site-specific list of buttons to add

u-buttonlist ÿ the per-user list of buttons to remove

ubuttonlist ÿ the per-user list of buttons to add

This idea and the initial implementation was contributed to exmh by Achim Bonet.
The Resource_GetFamily procedure merges five sets of resources shown above. It
can replace the option get commands for the buttonlist, menulist, and
entrylist resources in Examples 31-4 and 31-7:

Example 31-8 Resource_GetFamily merges user and application
resources

proc Resource_GetFamily { w resname } {
 set res [option get $w $resname {}]
 set lres [option get $w l$resname {}]
 set ures [option get $w u$resname {}]
 set l-res [option get $w l-$resname {}]
 set u-res [option get $w u-$resname {}]
 # Site-local deletions from application resources
 set list [lsubtract $res ${l-res}]
 # Site-local additions
 set list [concat $list $lres]
 # Per-user deletions
 set list [lsubtract $list ${u-res}]
 # Per-user additions
 return [concat $list $ures]
}
proc lsubtract { orig nuke } {
 # Remove elements in $nuke from $orig
 foreach x $nuke {
 set ix [lsearch $orig $x]
 if {$ix >= 0} {
 set orig [lreplace $orig $ix $ix]
 }
 }
 return $orig
}

Expanding Variables

If the command resource contains substitution syntax like $ and [], then these are
evaluated later when the command is invoked by the button or menu. This is
because there is no interpretation of the command value when the widgets are
created. However, it may be that you want variables substituted when the buttons
and menus are defined. You can use the subst command to do this:

set cmd [$button cget -command]
$button config -command [subst $cmd]

Choosing the scope for the subst can be tricky. The previous command does the
subst in the current scope. If this is the Resource_ButtonFrame procedure, then
there are no interesting application-specific variables defined. The next command
uses uplevel to do the subst in the scope of the caller of Resource_ButtonFrame.
The list is necessary so that uplevel preserves the structure of the original subst
command.

$button config -command [uplevel [list subst $cmd]]

If you do a subst in ResourceMenu, then you need to keep track of the recursion
level to get back to the scope of the caller of Resource_Menubar. The next few lines
show what changes in ResourceMenu:

proc ResourceMenu { menu {level 1} } {
 foreach e [option get $menu entrylist {}] {
 # code omitted
 set c [option get $menu c_$e {}]
 set c [uplevel $level [list subst $c]]
 # And the recursive call is
 ResourceMenu $submenu [expr $level+1]
 # more code omitted
 }
}

If you want the subst to occur in the global scope, use this:

$button config -command [uplevel #0 [list subst $cmd]]

However, the global scope may not be much different when you define the button
than when the button is invoked. In practice, I have used subst to capture variables
defined in the procedure that calls Resource_Menubar.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 32. Simple Tk Widgets
This chapter describes several simple Tk widgets: the frame, label, labelframe,
message, scale, and toplevel. In general, these widgets require minimal setup to
be useful in your application. The bell command rings the terminal bell.

This chapter describes six simple widgets and the bell command.

The frame is a building block for widget layout.

A labelframe is an enhanced frame that also supports the display of a label
along its border.

A toplevel is a frame that is detached from the main window.

The label displays read-only text or an image.

The message provides a read-only block of text that gets formatted onto
several lines.

The scale is a slider-like widget used to set a numeric value.

The bell command rings the terminal bell.

Chapters 40, 41, and 42 go into more detail about some of the generic widget
attributes shared by the widgets presented in this chapter. The examples in this
chapter use the default widget attributes in most cases.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Frames, Labelframes, and Toplevel Windows

Frames have been introduced before for use with the geometry managers. There is
not much to a frame, except for its background color and border. You can also
specify a colormap and visual type for a frame. Chapter 41 describes visual types
and colormaps on page 624.

The labelframe widget, introduced in Tk 8.4, is a frame that can also display a
widget along its border. The labelframe widget can create its own internal label, if
needed, or it can automatically position a label widget that you create separately.

A toplevel widget is like a frame, except that it is created as a new main window.
That is, it is not positioned inside the main window of the application. This is useful
for dialog boxes, for example. A toplevel has the same attributes as a frame, plus
screen and menu attributes. The menu attribute is used to create menubars along
the top edge of a toplevel. This feature was added in Tk 8.0, and it is described on
page 464. On UNIX, the screen option lets you put the toplevel on any X display.
The value of the screen option has the following format:

host:display.screenNum

For example, I have one X server on my workstation sage that controls two screens.
My two screens are named sage:0.0 and sage:0.1. If the screenNum specifier is
left off, it defaults to 0.

Attributes for Frames, Labelframes, and Toplevels

Table 32-1 lists the attributes for the frame, labelframe, and toplevel widgets. The
attributes are named according to their resource name, which includes a capital
letter at internal word boundaries. When you specify an attribute in a Tcl command
when creating or reconfiguring a widget, however, you specify the attribute with a
dash and all lowercase letters. Chapter 31 explains how to use resource
specifications for attributes. Chapters 40, 41, and 42 discuss many of these
attributes in more detail.

Table 32-1. Attributes for frame, labelframe, and toplevel widgets

background Background color (also bg).

borderWidth Extra space around the edge of the frame.

class Resource class and binding class name.

colormap The value is new or the name of a window.

container If true, frame embeds another application.

cursor Cursor to display when mouse is over the frame.

font The font to use for the label. Labelframe only.

foreground The text color for the label. Labelframe only.

height Height, in screen units.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

labelAnchor Position of the embedded label; clockwise: nw (default), n,
ne, en, e, es, se, s, sw, ws, w, wn. Labelframe only.

labelWidget Pathname of a widget to use as a label, overriding any -
text option. The label must already exist. Labelframe only.

menu The menu to use for the menubar. Toplevel only.

padX Extra internal space to the left and right.

padY Extra internal space above and below.

relief flat, sunken, raised, groove, solid or ridge.

screen An X display specification. (Toplevel only, and this cannot be
specified in the resource database).

takeFocus Controls focus changes from keyboard traversal.

text The text of the embedded label. Labelframe only.

use A window ID from winfo id. This embeds the frame or
toplevel into the specified window.

visual Type: staticgrey, greyscale, staticcolor,
pseudocolor, directcolor, or truecolor.

width Width, in screen units.

You cannot change the class, colormap, visual, or screen attributes after the
frame, labelframe, or toplevel has been created. These settings are so fundamental
that you need to destroy the frame and start over if you must change them.

Using Labelframe Widgets

Labelframe widgets, which were added in Tk 8.4, function identically to simple frame
widgets in most respects. However, they also have the ability to display a label
along its border ÿ either one that you create separately or an internal one created
automatically by the labelframe. Another minor difference is that a labelframe has a
default borderWidth of 2 and relief of groove, in comparison with the simple
frame's default borderWidth of 0 and relief of flat. The rationale for this
difference is that labelframes are used typically to set off distinct areas of a user
interface, whereas frames are often used solely to group together other widgets for
layout.

In many cases, you can simply set the text attribute of the labelframe to display a
textual label in the upper-left hand corner of the frame. Example 32-1 shows a
labelframe around a group of radio buttons:

Example 32-1 Labelframe example

labelframe .s -text Sizes
radiobutton .s.small -text Small -variable size -value small
radiobutton .s.med -text Medium -variable size -value medium
radiobutton .s.large -text Large -variable size -value large
.s.large select
pack .s.small .s.med .s.large -anchor w -padx 2 -pady 1
pack .s

You can change the appearance of the label's text by setting the font and
foreground attributes as desired. The labelAnchor attribute accepts a map
direction which controls the position of the label along the frame's border. The
default, nw, places the label on the north (top) border on the west (left) side. In
contrast, setting the labelAnchor to wn places the label on the west (left) border
towards the north (top) side, as shown in Example 32-2:

Example 32-2 Using the labelAnchor option to position a
labelframe's anchor

-labelanchor wn -labelanchor s -labelanchor ne

You also have the option of creating a separate label widget, configuring it in any
way that you like, and then associating it with a labelframe through the
labelWidget attribute. The labelWidget attribute overrides any text value already
set for the labelframe. Example 32-3 shows a label with a bitmap as the frame
decoration:

Example 32-3 Associating an existing label widget with a
labelframe

label .l -bitmap question
.s configure -labelwidget .l -labelanchor wn

Embedding Other Applications

The container and use attributes support application embedding. Embedding puts
another application's window into a Tk frame or puts a Tk frame into another
application. The use attribute specifies the ID of a window that will contain a Tk
frame. Wish supports a -use command line argument that is used for the same
purpose. Set the container attribute if you want to embed another window. For
example, here is how to run another wish application and embed its window in one
of your frames:

frame .embed -container 1 -bd 4 -bg red
exec wish somescript.tcl -use [winfo id .embed] &

Toplevel Window Styles

On Windows and Macintosh there are several styles of toplevel windows. They differ
in their appearance and their behavior. On UNIX, toplevel windows are usually
decorated by the window manager, which is a separate application. Chapter 44
describes how to interact with the window manager.

On Macintosh, Tk has an unsupported1 command that you can use to set the
window style:

unsupported1 style window style

The possible values for style include documentProc, dBoxProc, plainDBox,
altDBoxProc, movableDBoxProc, zoomDocProc, rDocProc, floatProc,
floatZoomProc, floatSideProc, or floatSideZoomProc. The dBoxProc,
plainDBox, and altDBoxProc styles have no title bar, so there is no close box on
them. The other styles have different title bars, a close box, and possibly a full-sized
zoom box. The default style is documentProc. I used the following code to see what
each looked like:

Example 32-4 Macintosh window styles

set x {documentProc dBoxProc plainDBox altDBoxProc \
 movableDBoxProc zoomDocProc rDocProc floatProc \

 floatZoomProc floatSideProc floatSideZoomProc}
foreach y $x {
 toplevel .$y
 label .$y.l -text $y
 pack .$y.l -padx 40 -pady 20
 if [catch {unsupported1 style .$y $y} err] {
 puts "$y: $err"
 }
}

This feature may appear as part of the wm command in future releases of Tk. On
Windows you can get a couple different styles by using transient and
overrideredirect windows, as well as with options to the wm attributes
command, all of which are described starting on page 663.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Label Widget

The label widget provides a read-only text label, and it has attributes that let you
control the position of the label within the display space. Most commonly, however,
you just need to specify the text for the label:

label .version -text "MyApp v1.0"

The text can be specified indirectly by using a Tcl variable to hold the text. In this
case the label is updated whenever the value of the Tcl variable changes. The
variable is used from the global scope, even if there happens to be a local variable
by the same name when you create the widget inside a procedure:

set version "MyApp v1.0"
label .version -textvariable version

You can change the appearance of a label
dynamically by using the configure widget
operation. If you change the text or font of a
label, you are liable to change the size of the
widget, and this causes the packer to shuffle
window positions. You can avoid this by
specifying a width for the label that is large
enough to hold all the strings you plan to
display in it. The width is specified in
characters, not screen coordinates:

Example 32-5 A label that displays different strings

proc FixedWidthLabel { name values } {
 # name is a widget name to be created
 # values is a list of strings
 set maxWidth 0
 foreach value $values {
 if {[string length $value] > $maxWidth} {
 set maxWidth [string length $value]
 }
 }
 # Use -anchor w to left-justify short strings
 label $name -width $maxWidth -anchor w \
 -text [lindex $values 0]

 return $name
}

The FixedWidthLabel example is used to create a label with a width big enough to
hold a set of different strings. It uses the -anchor w attribute to left-justify strings
that are shorter than the maximum. You can change the text for the label later by
using the configure widget operation, which can be abbreviated to config:

FixedWidthLabel .status {OK Busy Error}
.status config -text Busy

A label can display a bitmap or image instead of a text string, which is described in
Chapter 41 and the section on Bitmaps and Images.

This example could use the font metrics facilities of Tk 8.0 to get more accurate
sizes of the text for different strings. It is possible, for example, that a three-
character string like OOO is wider than a four-character string like llll in a variable-
width font. The font metrics command is described on page 640.

Label Width and Wrap Length

When a label is displaying text, its width attribute is interpreted as a number of
characters. The label is made wide enough to hold this number of averaged width
characters in the label's font. However, if the label is holding a bitmap or an image,
then the width is in pixels or another screen unit.

The wrapLength attribute determines when a label's text is wrapped onto multiple
lines. The wrap length is always screen units. If you need to compute a wrapLength
based on the font metrics, then you can use the font metrics command. If you
use Tk 4.2 or earlier, then you have to measure text using a text widget with the
same font. Chapter 36 describes the text widget operations that return size
information for characters.

You can force line breaks by including newlines (\n) in the label's text. This lets you
create labels that have multiple lines of text.

Label Attributes

Table 32-2 lists the widget attributes for the label widget. The attributes are named
according to their resource name, which includes a capital letter at internal word
boundaries. When you specify an attribute as an option in a Tcl command when
creating or reconfiguring a widget, however, you specify the attribute with a dash
and all lowercase letters. Chapter 31 explains how to use resource specifications for
attributes. Chapters 40, 41, and 42 discuss many of these attributes in more detail.

Table 32-2. Label Attributes

activeBackground Background color when the label is in the active state. (Tk
8.3.2)

activeForeground Text color when the label is in the active state. (Tk 8.3.2)

anchor Relative position of the label within its packing space.

background Background color (also bg).

bitmap Name of a bitmap to display instead of a text string.

borderWidth Extra space around the edge of the label.

compound Where the image or bitmap should be placed relative to the
text: bottom, center, left, none (default), right and top.
(Tk 8.4)

cursor Cursor to display when mouse is over the label.

disabledForeground Foreground (text) color when the label is disabled. (Tk
8.3.1)

font Font for the label's text.

foreground Foreground color (also fg).

height In screen units for bitmaps, in lines for text.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

image Specifies image to display instead of bitmap or text.

justify Text justification: left, right, or center.

padX Extra space to the left and right of the label.

padY Extra space above and below the label.

relief flat, sunken, raised, groove, solid or ridge.

state normal (enabled), disabled (deactivated), or active. (Tk
8.3.1)

takeFocus Controls focus changes from keyboard traversal.

text Text to display.

textVariable Name of Tcl variable. Its value is displayed.

underline Index of character to underline.

width Width. In characters for text labels.

wrapLength Length at which text is wrapped in screen units.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Message Widget

The message widget displays a long text string by formatting it onto several lines. It
is designed for use in dialog boxes. It can format the text into a box of a given
width, in screen units, or a given aspect ratio. The aspect ratio is defined to be
the ratio of the width to the height, times 100. The default is 150, which means that
the text will be one and a half times as wide as it is high.

Example 32-6 creates a message widget with one long line of text. Backslashes are
used to continue the text string without embedding any newlines. (You can also just
type a long line into your script.) Note that backslash-newline collapses white space
after the newline into a single space.

Example 32-6 The message widget formats long lines of text

message .msg -justify center -text "This is a very long text\
 line that will be broken into many lines by the\
 message widget"
pack .msg

A newline in the string forces a line break in the message display. You can retain
exact control over the formatting by putting newlines into your string and specifying
a very large aspect ratio. In Example 32-7, grouping with double quotes is used to
continue the string over more than one line. The newline character between the
quotes is included in the string, and it causes a line break:

Example 32-7 Controlling the text layout in a message widget

message .msg -aspect 1000 -justify left -text \
"This is the first long line of text,

and this is the second line."
pack .msg

One disadvantage of a message widget is that, by default, you cannot select the
text it displays. Chapter 38 describes how to define custom selection handlers, so
you could define one that returned the message string. The message widget
predates the text widget, which has many more features and can emulate the
message widget. If selections, multiple fonts, and other formatting are important,
use a text widget instead of a message widget. Text widgets are described in
Chapter 36.

Message Attributes

Table 32-3 lists the attributes for the message widget. The table lists the resource
name, which has capitals at internal word boundaries. In Tcl commands these
options are specified with a dash and all lowercase:

Table 32-3. Message Attributes

anchor Relative position of the text within its packing space.

aspect 100 * width / height. Default 150.

background Background color (also bg).

borderWidth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

font Font for the message's text.

foreground Foreground color (also fg).

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

justify Justification: left, center, or right.

padX Extra space to the left and right of the text.

padY Extra space above and below the text.

relief flat, sunken, raised, groove, solid or ridge.

takeFocus Controls focus changes from keyboard traversal.

text Text to display.

textVariable Name of Tcl variable. Its value is displayed.

width Width, in screen units.

Arranging Labels and Messages

Both the label and message widgets have attributes that control the position of their
text in much the same way that the packer controls the position of widgets within a
frame. These attributes are padX, padY, anchor, and borderWidth. The anchor
takes effect when the size of the widget is larger than the space needed to display
its text. This happens when you specify the -width attribute or if you pack the
widget with fill enabled and there is extra room. See Chapter 40 and the section on
Padding and Anchors for more details.

The Scale Widget

The scale widget displays a slider in a trough. The trough represents a range of
numeric values, and the slider position represents the current value. The scale can
have an associated label, and it can display its current value next to the slider. The
value of the scale can be used in three different ways:

Explicitly get and set the value with widget commands.

Associate the scale with a Tcl variable. The variable is kept in sync with the
value of the scale, and changing the variable affects the scale.

Register a Tcl command to be executed after the scale value changes. You
specify the initial part of the Tcl command, and the scale implementation adds
the current value as another argument to the command.

Example 32-8 A scale widget

scale .scale -from -10 -to 20 -length 200 -variable x \
 -orient horizontal -label "The value of X" \
 -tickinterval 5 -showvalue true
pack .scale

Example 32-8 shows a scale for a variable that ranges in value from -10 to +20.
The variable x is defined at the global scope. The tickinterval option results in the
labels across the bottom, and the showvalue option causes the current value to be
displayed. The length of the scale is in screen units (i.e., pixels).

Scale Bindings

Table 32-4 lists the bindings for scale widgets. You must direct focus to a scale
explicitly for the key bindings like <Up> and <Down> to take effect.

Table 32-4. Bindings for scale widgets

<Button-1> Clicking on the trough moves the slider by one unit of resolution
toward the mouse click.

<Control-
Button-1>

Clicking on the trough moves the slider all the way to the end of the
trough toward the mouse click.

<Left> <Up> Moves the slider toward the left (top) by one unit.

<Control-
Left>

<Control-Up>

Moves the slider toward the left (top) by the value of the
bigIncrement attribute.

<Right>
<Down>

Moves the slider toward the right (bottom) one unit.

<Control-
Right>

<Control-
Down>

Moves the slider toward the right (bottom) by the value of the
bigIncrement attribute.

<Home> Moves the slider all the way to the left (top).

<End> Moves the slider all the way to the right (bottom).

Scale Attributes

Table 32-5 lists the scale widget attributes. The table uses the resource name, which
has capitals at internal word boundaries. In Tcl commands the attributes are
specified with a dash and all lowercase.

Table 32-5. Attributes for scale widgets

activeBackground Background color when the mouse is over the slider.

background The background color (also bg in commands).

bigIncrement Coarse grain slider adjustment value.

borderWidth Extra space around the edge of the widget.

command Command to invoke when the value changes. The current
value is appended as another argument

cursor Cursor to display when mouse is over the widget.

digits Number of significant digits in scale value.

from Minimum value. The left or top end of the scale.

font Font for the label.

foreground Foreground color (also fg).

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

label A string to display with the scale.

length The length, in screen units, of the long axis of the scale.

orient horizontal or vertical.

relief flat, sunken, raised, groove, solid or ridge.

repeatDelay Delay before keyboard auto-repeat starts. Auto-repeat is
used when pressing <Button-1> on the trough.

repeatInterval Time period between auto-repeat events.

resolution The value is rounded to a multiple of this value.

showValue If true, value is displayed next to the slider.

sliderLength The length, in screen units, of the slider.

sliderRelief The relief of the slider.

state normal, active, or disabled.

takeFocus Controls focus changes from keyboard traversal.

tickInterval Spacing between tick marks. Zero means no marks.

to Maximum value. Right or bottom end of the scale.

troughColor The color of the bar on which the slider sits.

variable Name of Tcl variable. Changes to the scale widget are
reflected in the Tcl variable value, and changes in the Tcl
variable are reflected in the scale display.

width Width of the trough, or slider bar.

Programming Scales

The scale operations are primarily used by the default bindings and you do not need
to program the scale directly. Table 32-6 lists the operations supported by the scale.
In the table, $w is a scale widget.

Table 32-6. Operations on the scale widget

$w cget
option

Returns the value of the configuration option.

$w
configure
...

Queries or modifies the widget configuration.

$w coords ?
value?

Returns the coordinates of the point in the trough that corresponds
to value, or the scale's value.

$w get ?x
y?

Returns the value of the scale, or the value that corresponds to the
position given by x and y.

$w identify
x y

Returns trough1, slider, or trough2 to indicate what is under the
position given by x and y.

$w set
value

Sets the value of the scale.

The bell Command

The bell command rings the terminal bell. The bell is associated with the display;
even if you are executing your program on a remote machine, the bell is heard by
the user. If your application has windows on multiple displays, you can direct the
bell to the display of a particular window with the -displayof option. The syntax for
the bell command is given below:

bell ?-displayof window? ?-nice?

UNIX has an xset program that controls the bell's duration, pitch, and volume. The
volume is in percent of a maximum, for example, 50. In practice, many keyboard
bells only support a variable duration; the pitch and volume are fixed. The
arguments of xset that control the bell are shown below.

exec xset b ?volume? ?hertz? ?milliseconds?

The b argument by itself resets the bell to the default parameters. You can turn the
bell off with -b, or you can use the on or off arguments.

exec xset -b
exec xset b ?on? ?off?

The bell command has the side effect on most systems of resetting the screen
saver for the screen, which usually makes the screen visible again. In Tk 8.4, a -
nice option was added to prevent the bell command from resetting the screen
saver.

Chapter 33. Scrollbars
This chapter describes the Tk scrollbar. Scrollbars have a general protocol that is
used to attach them to one or more other widgets.

Scrollbars control other widgets through a standard protocol based around Tcl
commands. A scrollbar uses a Tcl command to ask a widget to display part of its
contents. The scrollable widget uses a Tcl command to tell the scrollbar what part of
its contents are visible. The Tk widgets designed to work with scrollbars are: entry,
listbox, text, and canvas. The scrollbar protocol is general enough to use with new
widgets, or collections of widgets. This chapter explains the protocol between
scrollbars and the widgets they control, but you don't need to know the details to
use a scrollbar. All you need to know is how to set things up, and then these widgets
take care of themselves.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Using Scrollbars

The following commands create a text widget and two scrollbars that scroll it
horizontally and vertically:

scrollbar .yscroll -command {.text yview} -orient vertical
scrollbar .xscroll -command {.text xview} -orient horizontal
text .text -yscrollcommand {.yscroll set} \
 -xscrollcommand {.xscroll set}

The scrollbar's set operation is designed to be called from other widgets when their
display changes. The scrollable widget's xview and yview operations are designed to
be called by the scrollbar when the user manipulates them. Additional parameters
are passed to these operations as described later. In most cases you can ignore the
details of the protocol and just set up the connection between the scrollbar and the
widget.

Example 33-1 A text widget and two scrollbars

proc Scrolled_Text { f args } {
 frame $f
 eval {text $f.text -wrap none \
 -xscrollcommand [list $f.xscroll set] \
 -yscrollcommand [list $f.yscroll set]} $args
 scrollbar $f.xscroll -orient horizontal \
 -command [list $f.text xview]
 scrollbar $f.yscroll -orient vertical \
 -command [list $f.text yview]
 grid $f.text $f.yscroll -sticky news
 grid $f.xscroll -sticky news
 grid rowconfigure $f 0 -weight 1
 grid columnconfigure $f 0 -weight 1
 return $f.text
}
set t [Scrolled_Text .f -width 40 -height 8 \
 -font {courier 12}]
pack .f -side top -fill both -expand true
set in [open [file join $tk_library demos colors.tcl]]

$t insert end [read $in]
close $in

Example 33-1 defines Scrolled_Text that creates a text widget with two scrollbars.
It reads and inserts one of the Tk demo files into the text widget. There is not
enough room to display all the text, and the scrollbars indicate how much text is
visible. Chapter 36 describes the text widget in more detail.

The list command constructs the -command and -xscrollcommand values. Even
though one could use double quotes here, you should make a habit of using list
when constructing values that are used later as Tcl commands. Example 33-1 uses
args to pass through extra options to the text widget. The use of eval and args is
explained in Example 10-3 on page 136. The scrollbars and the text widget are lined
up with the grid geometry manager as explained in Example 26-10 on page 417.

The Scrollbar Protocol

When the user manipulates the scrollbar, it calls its registered command with some
additional parameters that indicate what the user said to do. The associated widget
responds to this command (e.g., its xview operation) by changing its display. After
the widget changes its display, it calls the scrollbar by using its registered
xscrollcommand or yscrollcommand (e.g., the set operation) with some
parameters that indicate the new relative size and position of the display. The
scrollbar updates its appearance to reflect this information.

The protocol supports widgets that change their display by themselves, such as
when more information is added to the widget. Scrollable widgets also support a
binding to <B2-Motion> (i.e., "middle drag") that scrolls the widget. When anything
happens to change the view on a widget, the scrollable widgets use their scroll
commands to update the scrollbar.

The Scrollbar set Operation

The scrollbar set operation takes two floating point values between zero and one,
first and last, that indicate the relative position of the top and bottom (or left and
right) of the widget's display. The scrollable widget adds these values when they use
their yscrollcommand or xscrollcommand. For example, the text widget would issue
the following command to indicate that the first quarter of the widget is displayed:

.yscroll set 0.0 0.25

If the two values are 0.0 and 1.0, it means that the widget's contents are fully
visible, and a scrollbar is not necessary. You can monitor the protocol by using a Tcl
wrapper, Scroll_Set, instead of the set operation directly. Scroll_Set waits for
the scrollbar to be necessary before mapping it with a geometry manager
command. It is not safe to unmap the scrollbar because that can change the size of
the widget and create the need for a scrollbar. That leads to an infinite loop.

Example 33-2 Scroll_Set manages optional scrollbars

proc Scroll_Set {scrollbar geoCmd offset size} {
 if {$offset != 0.0 || $size != 1.0} {
 eval $geoCmd ;# Make sure it is visible
 }
 $scrollbar set $offset $size
}

Scroll_Set takes a geometry management command as an argument, which it
uses to make the scrollbar visible. Example 33-3 uses Scroll_Set with a listbox.
Note that it does not grid the scrollbars directly. Instead, it lets Scroll_Set do the
geometry command the first time it is necessary.

Example 33-3 Listbox with optional scrollbars

proc Scrolled_Listbox { f args } {
 frame $f
 listbox $f.list \
 -xscrollcommand [list Scroll_Set $f.xscroll \
 [list grid $f.xscroll -row 1 -column 0 -sticky we]] \
 -yscrollcommand [list Scroll_Set $f.yscroll \
 [list grid $f.yscroll -row 0 -column 1 -sticky ns]]
 eval {$f.list configure} $args
 scrollbar $f.xscroll -orient horizontal \
 -command [list $f.list xview]
 scrollbar $f.yscroll -orient vertical \
 -command [list $f.list yview]
 grid $f.list -sticky news
 grid rowconfigure $f 0 -weight 1
 grid columnconfigure $f 0 -weight 1
 return $f.list
}

set l [Scrolled_Listbox .f -listvariable fonts]
pack .f -expand yes -fill both
set fonts [lsort -dictionary [font families]]

Scrolled_Listbox takes optional parameters for the listbox. It uses eval to
configure the listbox with these arguments. The style of using eval shown here is
explained in Example 10-3 on page 136. Example 46-4 on page 686 associates two
listboxes with one scrollbar.

The xview and yview Operations

The xview and yview operations are designed to be called from scrollbars, and they
work the same for all scrollable widgets. You can use them to scroll the widgets for
any reason, not just when the scrollbar is used. The following examples use a text
widget named .text for illustration.

The xview and yview operations return the current first and last values that
would be passed to a scrollbar set command:

.text yview
=> 0.2 0.55

When the user clicks on the arrows at either end of the scrollbar, the scrollbar adds
scroll num units to its command, where num is positive to scroll down, and
negative to scroll up. Scrolling up one line is indicated with this command:

.text yview scroll -1 units

When the user clicks above or below the elevator of the scrollbar, the scrollbar adds
scroll num pages to its command. Scrolling down one page is indicated with this
command:

.text yview scroll 1 pages

You can position a widget so that the top (or left) edge is at a particular offset from
the beginning of the widget's contents. The offset is expressed as a floating point
value between zero and one. To view the beginning of the contents:

.text yview moveto 0.0

If the offset is 1.0, the last part of the widget content's is displayed. The Tk widgets
always keep the end of the widget contents at the bottom (or right) edge of the
widget, unless the widget is larger than necessary to display all the contents. You
can exploit this with the one-line entry widget to view the end of long strings:

.entry xview moveto 1.0

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Scrollbar Widget

Tk 8.0 uses native scrollbar widgets on Macintosh and Windows. While the use of
scrollbars with other widgets is identical on all platforms, the interpretation of the
attributes and the details of the bindings vary across platforms. This section
describes the Tk scrollbar on UNIX. The default bindings and attributes are fine on
all platforms, so the differences should not be important.

The scrollbar is made up of five components: arrow1, trough1, slider, trough2,
and arrow2. The arrows are on either end, with arrow1 being the arrow to the left
for horizontal scrollbars, or the arrow on top for vertical scrollbars. The slider
represents the relative position of the information displayed in the associated
widget, and the size of the slider represents the relative amount of the information
displayed. The two trough regions are the areas between the slider and the arrows.
If the slider covers all of the trough area, you can see all the information in the
associated widget.

Scrollbar Bindings

Table 33-1 lists the default bindings for scrollbars on UNIX. Button 1 and button 2 of
the mouse have the same bindings. You must direct focus to a scrollbar explicitly for
the key bindings like <Up> and <Down> to take effect.

Table 33-1. Bindings for the scrollbar widget

<Button-1>
<Button-2>

Clicking on the arrows scrolls by one unit. Clicking on the
trough moves by one screenful.

<B1-Motion> <B2-
Motion>

Dragging the slider scrolls dynamically.

<Control-Button-
1>

<Control-Button-
2>

Clicking on the trough or arrow scrolls all the way to the
beginning (end) of the widget.

<Up> <Down> Scrolls up (down) by one unit.

<Control-Up>

<Control-Down>

Scrolls up (down) by one screenful.

<Left> <Right> Scrolls left (right) by one unit.

<Control-Left>

<Control-Right>

Scrolls left (right) by one screenful.

<Prior> <Next> Scrolls back (forward) by one screenful.

<Home> Scrolls all the way to the left (top).

<End> Scrolls all the way to the right (bottom).

Scrollbar Attributes

Table 33-2 lists the scrollbar attributes. The table uses the resource name for the
attribute, which has capitals at internal word boundaries. In Tcl commands, the
attributes are specified with a dash and all lowercase.

There is no length attribute for a scrollbar. Instead, a scrollbar is designed to be
packed next to another widget with a fill option that lets the scrollbar display grow
to the right size. Only the relief of the active element can be set. The background
color is used for the slider, the arrows, and the border. The slider and arrows are
displayed in the activeBackground color when the mouse is over them. The trough
is always displayed in the troughColor.

Table 33-2. Attributes for the scrollbar widget

activeBackground Color when the mouse is over the slider or arrows.

activeRelief Relief of slider and arrows when mouse is over them.

background The background color (also bg in commands).

borderWidth Extra space around the edge of the scrollbar.

command Prefix of the command to invoke when the scrollbar
changes. Typically this is a xview or yview operation.

cursor Cursor to display when mouse is over the widget.

elementBorderWidth Border width of arrow and slider elements.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

elementBorderWidth Width of 3D border on arrows and slider.

jump If true, dragging the elevator does not scroll dynamically.
Instead, the display jumps to the new position.

orient Orientation: horizontal or vertical.

repeatDelay Milliseconds before auto-repeat starts. Auto-repeat is used
when pressing <Button-1> on the trough or arrows.

repeatInterval Milliseconds between auto-repeat events.

troughColor The color of the bar on which the slider sits.

width Width of the narrow dimension of the scrollbar.

Programming Scrollbars

The scrollbar operations are primarily used by the default bindings. Table 33-3 lists
the operations supported by the scrollbar. In the table, $w is a scrollbar widget.

Table 33-3. Operations on the scrollbar widget

$w
activate
?element?

Queries or sets the active element, which can be arrow1, arrow2, or
slider.

$w cget
option

Returns the value of the configuration option.

$w
configure
...

Queries or modifies the widget configuration.

$w delta
dx dy

Returns the change in the first argument to set required to move the
scrollbar slider by dx or dy.

$w
fraction
x y

Returns a number between 0 and 1 that indicates the relative location
of the point in the trough.

$s get Returns first and last from the set operation.

$w
identify
x y

Returns arrow1, trough1, slider, trough2, or arrow2, to indicate
what is under the point.

$w set
first
last

Sets the scrollbar parameters. first is the relative position of the top
(left) of the display. last is the relative position of the bottom (right) of
the display.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 34. The Entry and Spinbox Widgets
The entry widget provides a single line of text for use as a data entry field. The
string in the entry can be linked to a Tcl variable. A spinbox is an extended entry
that also allows the user to move, or "spin," through a fixed set of values.

Entry widgets are specialized text widgets that display a single line of editable text.
They have a subset of the functionality of the general-purpose text widget described
in Chapter 36. The entry is commonly used in dialog boxes when values need to be
filled in, or as a simple command entry widget. A very useful feature of the entry is
the ability to link it to a Tcl variable. The entry displays that variable's value, and
editing the contents of the entry changes the Tcl variable.

Spinbox widgets, introduced in Tk 8.4, are entry widgets that include up and down
arrows, allowing the user to "spin" through a fixed set of values such as dates or
times. A spinbox normally allows a user to type any arbitrary text into the text area,
but you can also configure a spinbox so that users can only spin through the valid
choices.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Using Entry Widgets

The entry widget supports editing, scrolling, and selections, which make it more
complex than label or message widgets. Fortunately, the default settings for an
entry widget make it usable right away. You click with the left button to set the
insert point and then type in text. Text is selected by dragging out a selection with
the left button. The entry can be scrolled horizontally by dragging with the middle
mouse button.

One common use of an entry widget is to associate a label with it, and a command
to execute when <Return> is pressed in the entry. The grid geometry manager is
ideal for lining up several entries and their labels. This is implemented in the
following example:

Example 34-1 Associating entry widgets with variables and
commands

foreach {field label} {name Name address1 Address
 address2 {} phone Phone} {
 label .l$field -text $label -anchor w
 entry .e$field -textvariable address($field) -relief sunken
 grid .l$field .e$field -sticky news
 bind .e$field <Return> UpdateAddress
}

Example 34-1 creates four entries that are linked to variables with the
textvariable attribute. The variables are elements of the address array. The -
relief sunken for the entry widget sets them apart visually. Widget relief is
described in more detail on page 614. The Tcl command UpdateAddress is bound to
the <Return> keystroke. The UpdateAddress procedure, which is not shown, can
get the current values of the entry widgets through the global array address.

Validating Entry Contents

As of Tk 8.3, entry widgets gained several new options that make it easy to prevent
users from entering invalid text into an entry.

The validate attribute determines when validation should take place. A value of
none (the default) disables validation. Other supported values are: focusin

(receiving keyboard focus), focusout (losing focus), focus (gaining or losing focus),
key (any keypress), and all.

For validation to take effect, you must also provide a value for the validateCommand
(or -vcmd) attribute. This is a Tcl script to execute whenever validation takes place.
If the script returns a Boolean True, the proposed change to the widget is accepted;
if the script returns a Boolean False, the proposed change is rejected and the
widget's text remains the same.

Optionally, you can also assign a Tcl script to the invalidCommand attribute. This
script executes if the validation script returns False.

The validateCommand validation script can contain "percent substitutions," just like
in an event binding. These substitutions occur before executing the script, whenever
validation is triggered. Table 34-1 lists the validation substitutions:

Table 34-1. Entry and spinbox validation substitutions

%d The type of action that triggered validation: 1 for insert; 0 for delete; -1 for
focus, forced or textvariable validation.

%i Index of the character string to be inserted or deleted, if any; otherwise -1.

%P The value of the widget should the change occur.

%s The current value before the proposed change.

%v The type of validation currently set (that is, the current value of the validate
attribute).

%V The type of validation that triggered the callback: key, focusin, focusout,
forced.

%W The name of the widget that triggered the validation.

Example 34-2 demonstrates using validation to allow a user to enter only integer
values into an entry.

Example 34-2 Restricting entry text to integer values

proc ValidInt {val} {
 return [expr {[string is integer $val]
 || [string match {[-+]} $val]}]
}

entry .e -validate all -vcmd {ValidInt %P}
pack .e

Validation errors turn off validation.

If an uncaught error occurs during the validation callback, then the validate
attribute is set to none, preventing further validation from taking place. Additionally,
if the return value of the validation callback is anything other than a Boolean value,
validation is also disabled. Therefore, you should take care not to raise errors or
return non-Boolean values from your validation callback.

Be careful with textvariables and validation.

Using textvariables for read-only purposes never causes a problem. However, you
can run into trouble if you try to change the value of an entry using its textvariable.
If you set the textvariable to a value that wouldn't be accepted by the validation
script (that is, it would return False), then Tk allows the change to occur, but
disables further validation by setting validate to none. So in general, you should
use textvariables only to read an entry's value if you also have validation enabled.

Changing a widget's value during validation disables future
validation.

The other caveat to validation is that if you change the value of the widget while
evaluating either the validation script or the invalidCommand script, validate is set
to none, disabling further validations. The intent is to prevent the change from
triggering yet another validation check, which could attempt to change the widget
and trigger another validation, and so on in an endless cycle.

For most validation applications, this is not a major restriction. In most cases, you
simply want to prevent an invalid change from taking place, which you accomplish
simply by returning Boolean False from your validation script.

But some sophisticated validation schemes might require edits to the widget's text.
If you need to change the value of the entry from either the validateCommand or
invalidCommand script, the script should also schedule an idle task to reset the
validate attribute back to its previous value. Example demonstrates this with a
validation command that ensures all letters inserted into an entry are upper case,
by converting all characters to upper case as they are inserted. As this example
modifies the value of the widget directly, it must reestablish validation in an idle
task.

Example 34-3 Reestablishing validation using an idle task

proc Upper {w validation action new} {
 if {$action == 1} {
 $w insert insert [string toupper $new]
 after idle [list $w configure -validate $validation]
 }
 return 1
}

entry .e -validate all -vcmd {Upper %W %v %d %S}
pack .e

Tips for Using Entry Widgets

If you are displaying long strings in an entry,
you can use the following command to keep
the end of the string in view. The command
requests that all the string be off screen to the
left, but the widget implementation fills up the
display; the scrolling is limited so that the tail
of the string is visible:

$entry xview moveto 1.0

The show attribute is useful for entries that accept passwords or other sensitive
information. If show is not empty, it is used as the character to display instead of
the real value:

$entry config -show *

The state attribute determines if the contents of an entry can be modified. Set the
state to disabled to prevent modification and set it to normal to allow
modification.

$entry config -state disabled ;# read-only
$entry config -state normal ;# editable

Tcl 8.4 added a new state, readonly, in which the contents of the widget can't be
edited, just like disabled. However, the readonly state allows the user to select
and copy the widget contents. If the widget is a spinbox, the user can also use the
up and down spinbuttons to change the value displayed while the widget is in
readonly state (but not if it is in the disabled state).

The middle mouse button (<Button-2>) is overloaded with two functions. If you
click and release the middle button, the selection is inserted at the insert cursor. The
location of the middle click does not matter. If you press and hold the middle button,
you can scroll the contents of the entry by dragging the mouse to the left or right.

Using Spinbox Widgets

The spinbox widget is based on the entry widget, and therefore all of the options
and operations available for an entry are also available for a spinbox. Additional
options and operations give access to the spinbox's enhanced functionality.

In addition to the text entry field, a spin box has up and down arrow buttons,
allowing the user to "spin" through a fixed set of values such as dates or times. A
spinbox normally allows a user to type any arbitrary text into the text area, but you
can also configure a spinbox so that users can only spin through the valid choices.

There are two ways to set the range of values for a spinbox. The first is to set
numerical minimum, maximum, and increment values with the from, to, and
increment attributes, respectively. Each time the user clicks the up or down arrow,
the spinbox adjusts the displayed value by the increment. For example, the spinbox
in Example 34-4 has a range of -10 to 10, and uses the default increment of 1.

Example 34-4 A simple spinbox with calculated values

spinbox .s1 -from -10 -to 10
pack .s1

Particularly if you start using floating-point values and increments, you might need
to specify the format for displaying the value. You do so by setting a value for the
format attribute in the form %<pad>.<pad>f, as used with the format command.
(Note that no other format-like conversion specifiers are supported by the spinbox.)
Example 34-5 demonstrates using the format attribute.

Example 34-5 Formatting numeric values in a spinbox

spinbox .s2 -from -10 -to 10 -increment .25 -format %4.2f
pack .s2

Another option for specifying values for a spinbox is to enumerate them. Simply
provide the spinbox's values attribute a list of values. If you set a spinbox's values
attribute, it ignores its from, to, and increment attributes.

Additionally, if you set the wrap attribute of a spinbox to True, then the spinbox
wraps around from the last value to the first (or vice versa) while spinning through

the values. With the default wrap setting of False, the spinbox stops spinning values
once it reaches the beginning or end. You can use the wrap feature with either
enumerated values (values) or value ranges (from and to).

Example 34-6 demonstrates both using enumerated values and wrapping in a
spinbox.

Example 34-6 Enumerating spinbox values and wrapping

set states [list Arizona California Nevada "New Mexico"]
spinbox .s3 -values $states -wrap 1
pack .s3

In all of the spinbox examples shown so far, the user is free to type any arbitrary
text into the entry portion, rather than selecting one of the spinbox values. In some
applications this is acceptable, and you could use standard validation features to
ensure reasonable values. (See "Validating Entry Contents" on page 508.) However,
sometimes you want to allow a user to select only one of the preset spinbox values.
The easiest way to accomplish this is to set the spinbox state attribute to
readonly. Unlike the disabled state, which makes the widget insensitive to user
actions and prevents programmatic changes to the widget's contents, the readonly
state allows a user to spin through the values. You can also programmatically
change the contents of the spinbox with the set operation, and even change the
values while the spinbox is in the readonly state.

Example 34-7 shows an example of using the readonly state for several spinboxes,
allowing the user to select a date. The spinboxes are linked by textvariables to
elements in a global array, so that after the user selects the date, you can easily
retrieve the values from the array.

Example 34-7 Using the spinbox readonly state

set months {Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec}

spinbox .month -values $months -textvariable date(month) \
 -state readonly -width 8
spinbox .date -from 1 -to 31 -textvariable date(date) \
 -state readonly -width 8
spinbox .year -from 2003 -to 2010 -textvariable date(year) \

 -state readonly -width 8

label .l_month -text "Month:"
label .l_date -text "Date:"
label .l_year -text "Year:"

grid .l_month .month
grid .l_date .date
grid .l_year .year
grid .l_month .l_date .l_year -padx 2 -sticky e
grid .month .date .year -sticky ew

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Entry and Spinbox Bindings

Table 34-2 gives the bindings for entry and spinbox widgets. When the table lists
two sequences, they are equivalent.

Table 34-2. Entry and spinbox bindings

<Button-1> Sets the insert point and starts a selection.

<B1-Motion> Drags out a selection.

<Double-Button-1> Selects a word.

<Triple-Button-1> Selects all text in the widget.

<Shift-B1-Motion> Adjusts the ends of the selection.

<Control-Button-1> Sets insert point, leaving selection as is.

<Button-2> Pastes selection at the insert cursor.

<B2-Motion> Scrolls horizontally.

<Up> "Spins" up to the next value. Spinbox only.

<Down> "Spins" down to the previous value. Spinbox only.

<Left> <Control-b> Moves insert cursor one character left and starts the
selection.

<Shift-Left> Moves cursor left and extends the selection.

<Control-Left>
<Meta-b>

Moves cursor left one word and starts the selection.

<Control-Shift-Left> Moves cursor left one word and extends the selection.

<Right> <Control-f> Moves right one character and starts the selection.

<Shift-Right> Moves cursor right and extends the selection.

<Control-Right>
<Meta-f>

Moves right one word and starts the selection.

<Control-Shift-
Right>

Moves cursor right one word and extends the selection.

<Home> <Control-a> Moves cursor to beginning of widget.

<Shift-Home> Moves cursor to beginning and extends the selection.

<End> <Control-e> Moves cursor to end of widget.

<Shift-End> Moves cursor to end and extends the selection.

<Select> <Control-
Space>

Anchors the selection at the insert cursor.

<Shift-Select>

<Control-Shift-
Space>

Adjusts the selection to the insert cursor.

<Control-slash> Selects all the text in the entry.

<Control-backslash> Clears the selection in the entry.

<Delete> Deletes the selection or deletes next character.

<Backspace>
<Control-h>

Deletes the selection or deletes previous character.

<Control-d> Deletes next character.

<Meta-d> Deletes next word.

<Control-k> Deletes to the end of the entry.

<Control-t> Transposes characters.

<<Cut>> <Control-x> Deletes the section, if it exists.

<<Copy>> <Control-c> Copies the selection to the clipboard.

<<Paste>> <Control-
v>

Inserts the clipboard contents at the position of the
insertion cursor.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Entry and Spinbox Attributes

Table 34-3 lists the entry and spinbox widget attributes. The table lists the resource
name, which has capitals at internal word boundaries. In Tcl commands these
options are specified with a dash and are all lowercase.

Table 34-3. Entry and spinbox attribute resource names

activeBackground Background color for active elements. Spinbox only. (Tk 8.4)

background Background color (also bg).

borderWidth Extra space around the edge of the text (also bd).

buttonBackground Background color for up and down buttons. Spinbox only.
(Tk 8.4)

command Tcl script to invoke whenever a spinbutton is invoked. The
script can include the percent substitutions as described in
Table 34-1. Spinbox only. (Tk 8.4)

cursor Cursor to display when mouse is over the widget.

disabledBackground Background color when the widget is disabled. (Tk 8.4)

disabledForeground Foreground color when the widget is disabled. (Tk 8.4)

exportSelection If true, selected text is exported via the X selection
mechanism.

font Font for the text.

foreground Foreground color (also fg).

format Alternate format for spinbox numeric values, used only
when -from and -to are specified. Must be of the form %
<pad>.<pad>f, as used with the format command. Spinbox
only. (Tk 8.4)

from Floating-point value corresponding to the lowest value for a
spinbox, used in conjunction with -to and -increment.
Spinbox only. (Tk 8.4)

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

increment Floating-point value specifying the increment. When used
with -from and -to, the value in the widget will be adjusted
by -increment when a spin button is pressed. Spinbox only.
(Tk 8.4)

insertBackground Background for area covered by insert cursor.

insertBorderWidth Width of cursor border. Non-zero for 3D effect.

insertOffTime Time, in milliseconds the insert cursor blinks off.

insertOnTime Time, in milliseconds the insert cursor blinks on.

insertWidth Width of insert cursor. Default is 2.

invalidCommand Tcl script to execute when the -validatecommand script
returns 0.

justify Text justification: left, right, center.

readonlyBackground Background color when the widget is read-only. (Tk 8.4)

relief flat, sunken, raised, groove, solid or ridge.

repeatDelay The number of milliseconds a spin button must be held
down before it begins to auto-repeat. Spinbox only. (Tk 8.4)

repeatInterval The number of milliseconds between auto-repeats. Spinbox
only. (Tk 8.4)

selectBackground Background color of selection.

selectForeground Foreground color of selection.

selectBorderWidth Width of selection border. Nonzero for 3D effect.

show A character (e.g., *) to display instead of contents. Entry
only.

state State: normal, disabled (value unchangeable and non-
responsive to user interaction) or readonly (value
unchangeable, but the user can select and copy widget
contents).

takeFocus Controls focus changes from keyboard traversal.

textVariable Name of Tcl variable whose value will be synchronized with
the widget.

to Floating-point value corresponding to the highest value for a
spinbox, used in conjunction with -from and -increment.
Spinbox only. (Tk 8.4)

validate When validation should occur: none (default), focus,
focusin, focusout, key, or all. (Tk 8.3)

validateCommand Tcl script to execute to validate widget contents. Must return
1 if new widget value is valid or 0 if new widget value is
invalid, in which case the widget contents don't change. (Tk
8.3)

values List of spinbox values. Overrides any -from and -to
settings. (Tk 8.4)

width Width, in characters.

wrap Boolean value. True causes the spinbox to wrap values of
data in the widget. Default is False. Spinbox only. (Tk 8.4)

xScrollCommand Connects entry to a scrollbar.

Programming Entry and Spinbox Widgets

The default bindings for entry and spinbox widgets are fairly good. However, you
can completely control the entry with a set of widget operations for inserting,
deleting, selecting, and scrolling. The operations involve addressing character
positions called indices. The indices count from zero. The entry defines some
symbolic indices such as end. The index corresponding to an X coordinate is
specified with @xcoord, such as @26. Table 34-4 lists the formats for indices.

Table 34-4. Entry and spinbox indices

0 Index of the first character.

anchor The index of the anchor point of the selection.

end Index just after the last character.

number Index a character, counting from zero.

insert The character right after the insertion cursor.

sel.first The first character in the selection.

sel.last The character just after the last character in the selection.

@xcoord The character under the specified X coordinate.

Table 34-5 summarizes the operations on entry and spinbox widgets. In the table,
$w is an entry or spinbox widget.

Table 34-5. Entry and spinbox operations

$w bbox index Returns a list of 4 numbers describing the bounding box of the
character given by index.

$w cget option Returns the value of the configuration option.

$w configure
...

Queries or modifies the widget configuration.

$w delete
first ?last?

Deletes the characters from first to last, not including the
character at last. The character at first is deleted if last is not
specified.

$w get Returns the string in the entry.

$w icursor
index

Moves the insert cursor.

$w identify x
y

Identifies the spinbox element at the given x/y coordinate: none,
buttondown, buttonup, entry. Spinbox only. (Tk 8.4)

$w index index Returns the numerical index corresponding to index.

$w insert
index string

Inserts the string at the given index.

$w invoke
element

Invokes the spinbox element, either buttondown or buttonup,
triggering the action associated with it. Spinbox only. (Tk 8.4)

$w scan mark x Starts a scroll operation. x is a screen coordinate.

$w scan dragto
x

Scrolls from previous mark position.

$w selection
adjust index

Moves the boundary of an existing selection.

$w selection
clear

Clears the selection.

$w selection
element ?
element?

Sets or gets the currently selected spinbox element. Spinbox
only. (Tk 8.4)

$w selection
from index

Sets the anchor position for the selection.

$w selection
present

Returns 1 if there is a selection in the entry.

$w selection
range start
end

Selects the characters from start to the one just before end.

$w select to
index

Extends the selection.

$w set ?value? Gets or sets the value of the spinbox, triggering validation if it is
on. Spinbox only. (Tk 8.4)

$w validate Force an evaluation of the -validatecommand script, returning 0
or 1. (Tk 8.3)

$w xview Returns the offset and span of visible contents. These are both
real numbers between 0 and 1.0.

$w xview index Shifts the display so the character at index is at the left edge of
the display.

$w xview
moveto
fraction

Shifts the display so that fraction of the contents are off the left
edge of the display.

$w xview
scroll num
what

Scrolls the contents by the specified number of what, which can
be units or pages.

For example, the binding for <Button-1> includes the following commands:

%W icursor @%x
%W select from @%x

if {[%W cget -state] == "normal"} {focus %W}

Recall that the % triggers substitutions in binding commands, and that %W is replaced
with the widget pathname and %x is replaced with the X coordinate of the mouse
event. Chapter 29 describes bindings and these substitutions in detail. These
commands set the insert point to the point of the mouse click by using the @%x
index, which will be turned into something like @17 when the binding is invoked. The
binding also starts a selection. If the entry is not in the disabled state, then
keyboard focus is given to the entry so that it gets KeyPress events.

Chapter 35. The Listbox Widget
The listbox provides a scrollable list of text lines. The listbox supports selections of
one or more lines.

Listbox widgets display a set of text lines in a scrollable display. The basic text unit
is a line. There are operations to insert, select, and delete lines, but there are no
operations to modify the characters in a line. As such, the listbox is suitable for
displaying a set of choices, such as in a file selection dialog. By default a user can
select one item from a listbox, but you can select multiple items by setting the
selection mode attribute.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Using Listboxes

Manipulating Listbox Contents

The lines in a listbox are indexed from zero. The keyword index end addresses the
last line. Other indices are described on page 520. The most common programming
task for a listbox is to insert text. If your data is in a list, you can loop through the
list and insert each element at the end:

foreach item $list {
 $listbox insert end $item
}

You can insert several items at once. The next command uses eval to concatenate
the list onto a single insert command:

eval {$listbox insert end} $list

The delete operation deletes items from a listbox. You can delete either a single
item or a range of items:

$listbox delete 0 ;# Delete the first item
$listbox delete 3 5 ;# Delete items 3-5, inclusive

The listbox widget gained a listvariable option in Tk 8.3, which works
analogously to textvariable attributes in other widgets. You give listvariable
the name of a variable that contains a list value. Tk then keeps the value of the
variable and the listbox contents synchronized, so that each element in the
variable's value is a line in the listbox. Example 35-1 shows a simple example of
modifying a listbox through its linked listvariable.

Example 35-1 Using -listvariable to link a listbox and variable

listbox .choices -height 5 -width 20 -listvariable states
pack .choices
lappend states Arizona
lappend states California "New Mexico"

Programming Listboxes

It is also common to react to mouse clicks on a listbox, although the default
bindings handle most of the details of selecting items. The nearest operation finds
the listbox entry that is closest to a mouse event. If the mouse is clicked beyond the
last element, the index of the last element is returned:

set index [$list nearest $y]

Example 35-2 displays two listboxes. The Scrolled_Listbox procedure on page
502 is used to put scrollbars on the listboxes. When the user clicks on an item in the
first listbox, it is copied into the second listbox. When an item in the second listbox
is selected, it is removed. This example shows how to manipulate items selected
from a listbox:

Example 35-2 Choosing items from a listbox

proc List_Select { parent values } {
 # Create two lists side by side
 frame $parent
 set choices [Scrolled_Listbox $parent.choices \
 -width 20 -height 5]
 set picked [Scrolled_Listbox $parent.picked \
 -width 20 -height 5]
 pack $parent.choices $parent.picked -side left \
 -expand true -fill both

 # Selecting in choices moves items into picked
 bind $choices <ButtonRelease-1> \
 [list ListTransferSel %W $picked]

 # Selecting in picked deletes items
 bind $picked <ButtonRelease-1> \
 {ListDeleteSel %W %y}

 # Insert all the choices
 foreach x $values {
 $choices insert end $x
 }
}
proc ListTransferSel {src dst} {
 foreach i [$src curselection] {
 $dst insert end [$src get $i]
 }
}

proc ListDeleteSel {w y} {
 foreach i [lsort -integer -decreasing [$w curselection]] {
 $w delete $i
 }
}
proc List_SelectValues {parent} {
 set picked $parent.picked.list
 set result {}
 foreach i [$w curselection] {
 lappend result [$w get $i]
 }
}
List_Select .f {apples oranges bananas \
 grapes mangos peaches pears}
pack .f -expand true -fill both

Bindings are created to move items from $choices to $picked, and to delete items
from $picked. Most of the work of selecting things in the listbox is done by the
built-in bindings on the Listbox binding tag. The different selection models are
described on page 525. Those bindings are on <ButtonPress-1> and <B1-Motion>.
The selection is complete by the time the <ButtonRelease-1> event occurs.
Consider the <ButtonRelease-1> binding for $choices:

bind $choices <ButtonRelease-1> \
 [list ListTransferSel %W $picked]

The list command is used to construct the Tcl command because we need to
expand the value of $picked at the time the binding is created. The command will
be evaluated later at the global scope, and picked will not be defined after the
List_Select procedure returns. Or, worse yet, an existing global variable named
picked will be used, which is unlikely to be correct!

Short procedures are used to implement the binding commands. This style has two
advantages. First, it confines the % substitutions done by bind to a single command.
Second, if there are any temporary variables, such as the loop counter i, they are
hidden within the scope of the procedure.

The ListTransferSel gets the list of all the selected items and loops over this list
to insert them into the other list. The ListDeleteSel procedure is similar. However,
it sorts the selection indices in reverse order. It deletes items from the bottom up so
the indices remain valid throughout the process.

The Listbox Widget

The listbox operations use indices to reference lines in the listbox. The lines are
numbered starting at zero. Keyword indices are also used for some special lines. The
listbox keeps track of an active element, which is displayed with underlined text.
There is also a selection anchor that is used when adjusting selections. Table 35-1
summarizes the keywords used for indices.

Table 35-1. Listbox indices

0 Index of the first line.

active The index of the activated line.

anchor The index of the anchor point of the selection.

end Index of the last line.

number Index a line, counting from zero.

@x,y The line closest to the specified X and Y coordinates.

Table 35-2 presents the operations for programming a listbox. In the table, $w is a
listbox widget. Most of the operations have to do with the selection, and these
operations are already programmed by the default bindings for the Listbox widget
class:

Table 35-2. Listbox operations

$w activate index Activates the specified line.

$w bbox index Returns the bounding box of the text in the specified
line in the form: xoff yoff width height.

$w cget option Returns the value of the configuration option.

$w configure ... Queries or modifies the widget configuration.

$w curselection Returns a list of indices of the selected lines.

$w delete first ?last? Deletes the lines from first to last, including the line
at last. The line at first is deleted if last is not
given.

$w get first ?last? Returns the lines from first to last as a list.

$w index index Returns the numerical index corresponding to index.

$w insert index ?
string string string
...?

Inserts the string items before the line at index. If
index is end, then append the items.

$w itemcget index
option

Returns the current value of the item's configuration
option. (Tk 8.3)

$w itemconfigure index
?option? ?value? ?...?

Queries or modifies the item's configuration options. (Tk
8.3)

$w nearest y Returns the index of the line closest to the widget-
relative Y coordinate.

$w scan mark x y Starts a scroll operation. x and y are widget-relative
screen coordinates.

$w scan dragto x y Scrolls from previous mark position.

$w see index Adjusts the display so the line at index is visible.

$w selection anchor
index

Anchors the selection at the specified line.

$w selection clear
start ?end?

Clears the selection.

$w selection includes
index

Returns 1 if the line at index is in the selection.

$w selection set start
?end?

Selects the lines from start to end.

$w size Returns the number of items in the listbox.

$w xview Returns the offset and span of visible contents. These
are both real numbers between 0 and 1.

$w xview index Shifts the display so the character at index is at the left
edge of the display.

$w xview moveto
fraction

Shifts the display so that fraction of the contents are
off the left edge of the display.

$w xview scroll num
what

Scrolls the contents horizontally by the specified
number of what, which can be units or pages.

$w yview Returns the offset and span of visible contents. These
are both real numbers between 0 and 1.

$w yview index Shifts the display so the line at index is at the top edge
of the display.

$w yview moveto
fraction

Shifts the display so that fraction of the contents are
off the top of the display.

$w yview scroll num
what

Scrolls the contents vertically by the specified number
of what, which can be units or pages.

As of Tk 8.3, the itemcget and itemconfigure operations allow you to control the
appearance of individual items in the listbox, overriding the listbox's defaults. Table
35-3 lists the configuration options supported for individual items. Note that there is

no direct support for setting these values through the option resource database; you
can set them only through the listbox's itemconfigure operation.

Table 35-3. Listbox item configuration options

-background color Background color for the item.

-foreground color Foreground color for the item.

-selectbackground color Background color for the item when it's selected.

-selectforeground color Foreground color for the item when it's selected.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Listbox Bindings and Events

A listbox has an active element and it may have one or more selected elements. The
active element is highlighted according to the -activestyle options (by default,
with an underline), and the selected elements are highlighted with a different color.
There are a large number of key bindings for listboxes. You must set the input focus
to the listbox for the key bindings to work. Chapter 39 describes focus. There are
four selection modes for a listbox, and the bindings vary depending what mode the
listbox is in. Table 35-4 lists the four possible selectMode settings:

Table 35-4. The values for the selectMode of a listbox

single A single element can be selected.

browse A single element can be selected, and the selection can be dragged with
the mouse. This is the default.

multiple More than one element can be selected by toggling the selection state of
items, but you only select or deselect one line at a time.

extended More than one element can be selected by dragging out a selection with
the shift or control keys.

Browse Select Mode

In browse selection mode, <Button-1> selects the item under the mouse and
dragging with the mouse moves the selection, too. Table 35-5 gives the bindings for
browse mode.

Table 35-5. Bindings for browse selection mode

<Button-1> Selects the item under the mouse. This becomes the
active element, too.

<B1-Motion> Same as <Button-1>, the selection moves with the
mouse.

<Shift-Button-1> Activates the item under the mouse. The selection is
not changed.

<Key-Up> <Key-Down> Moves the active item up (down) one line, and selects
it.

<Control-Home> Activates and select the first element of the listbox.

<Control-End> Activates and select the last element of the listbox.

<space> <Select>
<Control-slash>

Selects the active element.

Single Select Mode

In single selection mode, <Button-1> selects the item under the mouse, but
dragging the mouse does not change the selection. When you release the mouse,
the item under that point is activated. Table 35-6 specifies the bindings for single
mode:

Table 35-6. Bindings for single selection mode

<ButtonPress-1> Selects the item under the mouse.

<ButtonRelease-1> Activates the item under the mouse.

<Shift-Button-1> Activates the item under the mouse. The selection is
not changed.

<Key-Up> <Key-Down> Moves the active item up (down) one line. The
selection is not changed.

<Control-Home> Activates and selects the first element of the listbox.

<Control-End> Activates and selects the last element of the listbox.

<space> <Select>
<Control-slash>

Selects the active element.

<Control-backslash> Clears the selection.

Extended Select Mode

In extended selection mode, multiple items are selected by dragging out a selection
with the first mouse button. Hold down the Shift key to adjust the ends of the
selection. Use the Control key to make a disjoint selection. The Control key works
in a toggle fashion, changing the selection state of the item under the mouse. If this
starts a new part of the selection, then dragging the mouse extends the new part of
the selection. If the toggle action cleared the selected item, then dragging the
mouse continues to clear the selection. The extended mode is quite intuitive once
you try it. Table 35-7 specifies the complete set of bindings for extended mode:

Table 35-7. Bindings for extended selection mode

<Button-1> Selects the item under the mouse. This becomes the anchor
point for adjusting the selection.

<B1-Motion> Sweeps out a selection from the anchor point.

<ButtonRelease-
1>

Activates the item under the mouse.

<Shift-Button-
1>

Adjusts the selection from the anchor item to the item under the
mouse.

<Shift-B1-
Motion>

Continues to adjust the selection from the anchor.

<Control-
Button-1>

Toggles the selection state of the item under the mouse, and
makes this the anchor point.

<Control-B1-
Motion>

Sets the selection state of the items from the anchor point to the
item under the mouse to be the same as the selection state of
the anchor point.

<Key-Up> <Key-
Down>

Moves the active item up (down) one line, and starts a new
selection with this item as the anchor point.

<Shift-Up>
<Shift-Down>

Moves the active element up (down) and extends the selection to
include this element.

<Control-Home> Activates and selects the first element of the listbox.

<Control-Shift-
Home>

Extends the selection to the first element.

<Control-End> Activates and selects the last element of the listbox.

<Control-Shift-
End>

Extends the selection to the last element.

<space>
<Select>

Selects the active element.

<Escape> Cancels the previous selection action.

<Control-slash> Selects everything in the listbox.

<Control-
backslash>

Clears the selection.

Multiple Select Mode

In multiple selection mode you can select more than one item, but you can add or
remove only one item at a time. Dragging the mouse does not sweep out a

selection. If you click on a selected item it is deselected. Table 35-8 specifies the
complete set of bindings for multiple selection mode.

Table 35-8. Bindings for multiple selection mode

<Button-1> Selects the item under the mouse.

<ButtonRelease-
1>

Activates the item under the mouse.

<Key-Up> <Key-
Down>

Moves the active item up (down) one line, and starts a new
selection with this item as the anchor point.

<Shift-Up>
<Shift-Down>

Moves the active element up (down).

<Control-Home> Activates and selects the first element of the listbox.

<Control-Shift-
Home>

Activates the first element of the listbox.

<Control-End> Activates and selects the last element of the listbox.

<Control-Shift-
End>

Activates the last element of the listbox.

<space>
<Select>

Selects the active element.

<Control-slash> Selects everything in the listbox.

<Control-
backslash>

Clears the selection.

Scroll Bindings

There are several bindings that scroll the display of the listbox. In addition to the
standard middle-drag scrolling, there are some additional key bindings for scrolling.
Table 35-9 summarizes the scroll-related bindings:

Table 35-9. Listbox scroll bindings

<Button-2> Marks the start of a scroll operation.

<B2-Motion> Scrolls vertically and horizontally.

<MouseWheel> Scrolls vertically.

<Button-4> Mousewheel support on Unix only; scrolls up. (Tk
8.3)

<Button-5> Mousewheel support on Unix only; scrolls down.
(Tk 8.3)

<Left> <Right> Scrolls horizontally by one character.

<Control-Left> <Control-
Right>

<Control-Prior> <Control-
Next>

Scrolls horizontally by one screen width.

<Prior> <Next> Scrolls vertically by one screen height.

<Home> <End> Scrolls to left and right edges of the screen,
respectively.

Listbox Virtual Events

As of Tk 8.1, the listbox widget generates a <<ListboxSelect>> virtual event
whenever the listbox selection changes. The event fires after the selection has
changed, so the binding action can access the new selection. The easiest way to be
aware of changes to the listbox selection is to bind to this virtual event, as shown in
Example 35-3:

Example 35-3 Using the <<ListboxSelect>> virtual event

proc ListboxChanged {w} {
 puts -nonewline "Listbox $w selection is now: "
 foreach index [$w curselection] {
 puts -nonewline "[$w get $index] "
 }
 puts ""
}
bind .lbox <<ListboxSelect>> {ListboxChanged %W}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Listbox Attributes

Table 35-10 lists the listbox widget attributes. The table uses the resource name for
the attribute, which has capitals at internal word boundaries. In Tcl commands these
options are specified with a dash and all lowercase.

Table 35-10. Listbox attribute resource names

activeStyle Display style of the active element: dotbox, underline
(default), or none. (Tk 8.4)

background Background color (also bg).

borderWidth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

disabledForeground Foreground color when the widget is disabled. (Tk 8.4)

exportSelection If true, then the selected text is exported via the X
selection mechanism.

font Font for the text.

foreground Foreground color (also fg).

height Number of lines in the listbox.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Focus highlight color when widget has focus.

highlightThickness Thickness of focus highlight rectangle.

listVariable Name of Tcl variable containing a list whose value is
synchronized with the widget, where each list element is a
line of the listbox. (Tk 8.3)

relief flat, sunken, raised, groove, solid, or ridge.

selectBackground Background color of selection.

selectForeground Foreground color of selection.

selectBorderWidth Width of selection border. Nonzero for 3D effect.

selectMode Mode: browse, single, extended, or multiple.

setGrid Boolean. Set gridding attribute.

state Widget state: normal or disabled. (Tk 8.4)

takeFocus Controls focus changes from keyboard traversal.

width Width, in average character sizes.

xScrollCommand Connects listbox to a horizontal scrollbar.

yScrollCommand Connects listbox to a vertical scrollbar.

Geometry Gridding

The setGrid attribute affects interactive resizing of the window containing the
listbox. By default, a window can be resized to any size. If gridding is turned on, the
size is restricted so that a whole number of lines and a whole number of average-
width characters is displayed. Gridding affects the user feedback during an
interactive resize. Without gridding the size is reported in pixel dimensions. When
gridding is turned on, then the size is reported in gridded units.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 36. The Text Widget
Tk text widget is a general-purpose editable text widget with features for line
spacing, justification, tags, marks, and embedded windows.

The Tk text widget is versatile, simple to use for basic text display and
manipulation, and has many advanced features to support sophisticated
applications. The line spacing and justification can be controlled on a line-by-line
basis. Fonts, sizes, and colors are controlled with tags that apply to ranges of text.
Edit operations use positional marks that keep track of locations in text, even as
text is inserted and deleted.

Tags are the most important feature of the text widget. You can define attributes
like font and justification for a tag. When that tag is applied to a range of text, the
text uses those attributes. Text can pick up attributes from any number of tags, so
you can compose different tags for justification, font, line spacing, and more. You
can also define bindings for tags so that ranges of text can respond to the mouse.
Any interesting application of the text widget uses tags extensively.

Text Indices

The characters in a text widget are addressed by their line number and the
character position within the line. Lines are numbered starting at one, while
characters are numbered starting at zero. The numbering for lines was chosen to be
compatible with other programs that number lines starting at one, like compilers
that generate line-oriented error messages. Here are some examples of text
indices:

1.0 The first character.

1.1 The second character on the first line.

2.end The newline character on the second line.

There are also symbolic indices. The insert index is the position at which new
characters are normally inserted when the user types in characters. You can define
new indices called marks, too, as described later. Table 36-1 summarizes the various
forms for a text index.

Table 36-1. Text indices

line.char Lines count from 1. Characters count from 0.

@x,y The character under the specified screen position.

current The character currently under the mouse.

end Just after the very last character.

image The position of the embedded image.

insert The position right after the insert cursor.

mark Just after the named mark.

tag.first The first character in the range tagged with tag.

tag.last Just after the last character tagged with tag.

window The position of the embedded window.

Inserting and Deleting Text

You add text with the insert operation ($t is a text widget):

$t insert index string ?tagList? ?string tagList? ...

The index can be any of the forms listed in the table, or it can be an index
expression as described in a moment. The tags, if any, are added to the newly
inserted text. Otherwise, string picks up any tags present on both sides of index.
Tags are described on page 536. Multiple strings with different tags can be inserted
with one command.

The most common index at which to insert text is the insert index, which is where
the insert cursor is displayed. The default bindings insert text at insert when you
type. You must include a newline character explicitly to force a line break:

$t insert insert "Hello, World\n"

The delete operation deletes text. If only one index is given, the character at that
position is deleted. If there are two indices, all the characters up to the second
index are deleted. The character at the second index is not deleted. For example,
you can delete the first line with this command:

$t delete 1.0 2.0

As of Tk 8.4, you can delete multiple ranges of text with a single delete operation.
For example, to delete the first, fourth, and eighth lines:

$t delete 1.0 2.0 4.0 5.0 8.0 9.0

Index Arithmetic

The text widget supports a simple sort of arithmetic on indices. You can specify "the
end of the line with this index" and "three characters before this index," and so on.
This is done by grouping a modifying expression with the index. For example, the
insert index can be modified like this:

"insert lineend"
"insert -3 chars"

The interpretation of indices and their modifiers is designed to operate well with the
delete and tag add operations of the text widget. These operations apply to a
range of text defined by two indices. The second index refers to the character just
after the end of the range. For example, the following command deletes the word
containing the insert cursor:

$t delete "insert wordstart" "insert wordend"

If you want to delete a whole line, including the trailing newline, you need to use a
"lineend +1 char" modifier. Otherwise, the newline remains and you are left with a
blank line. If you supply several modifiers to an index, they are applied in left to
right order:

$t delete "insert linestart" "insert lineend +1 char"

Table 36-2 summarizes the set of index modifiers.

Table 36-2. Index modifiers for text widgets

+ count chars count characters past the index.

- count chars count characters before the index.

+ count lines count lines past the index, retaining character position.

- count lines count lines before the index, retaining character position.

linestart The beginning of the line.

lineend The end of the line (i.e., the newline character).

wordstart The first character of a word.

wordend Just after the last character of a word.

Comparing Indices

The compare operation compares two text indices and index expressions. You must
use compare for reliable comparisons because, for example, index 1.3 is less than

index 1.13. If you try to compare indices as numbers, you get the wrong answer.
The general form of the compare operation is:

$t compare ix1 op ix2

The comparison operator can be one of <, <=, ==, >=, >, or !=. The indices can be
simple indices in the forms listed in Table 36-1, and they can be index expressions.
Example 36-6 on page 548 uses the compare operation.

Text Marks

A mark is a symbolic name for a position between two characters. Marks have the
property that when text is inserted or deleted they retain their logical position, not
their numerical index position. Marks are persistent: If you delete the text
surrounding a mark, it remains intact. Marks are created with the mark set
operation and must be explicitly deleted with the mark unset operation. Once
defined, a mark can be used in operations that require indices. The following
commands define a mark at the beginning of the word containing the insert cursor
and delete from there up to the end of the line:

$t mark set foobar "insert wordstart"
$t delete foobar "foobar lineend"
$t mark unset foobar

When a mark is defined, it is set to be just before the character specified by the
index expression. In the previous example, this is just before the first character of
the word where the insert cursor is. When a mark is used in an operation that
requires an index, it refers to the character just after the mark. So, in many ways
the mark seems associated with the character right after it, except that the mark
remains even if that character is deleted.

You can use almost any string for the name of a mark. However, do not use pure
numbers and do not include spaces, plus (+) or minus (-). These characters are
used in index arithmetic and may cause problems if you put them into mark names.
The mark names operation returns a list of all defined marks.

The insert mark defines where the insert cursor is displayed. The insert mark is
treated specially: you cannot remove it with the mark unset operation. Attempting
to do so does not raise an error, though, so the following is a quick way to unset all
marks. The eval is necessary to join the list of mark names into the mark unset
command:

eval {$t mark unset} [$t mark names]

Mark Gravity

Each mark has a gravity that determines what
happens when characters are inserted at the
mark. The default gravity is right, which
means that the mark sticks to the character
that is to its right. Inserting text at a mark
with right gravity causes the mark to be

pushed along so it is always after the inserted
text. With left gravity the mark stays with
the character to its left, so inserted text goes
after the mark and the mark does not move.
In versions of Tk before 4.0, marks had only
right gravity, which made some uses of marks
awkward. The mark gravity operation is used
to query and modify the gravity of a mark:

$t mark gravity foobar
=> right
$t mark gravity foobar left

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Text Tags

A tag is a symbolic name that is associated with one or more ranges of characters. A tag has attributes
that affect the display of text that is tagged with it. These attributes include fonts, colors, tab stops, line
spacing and justification. A tag can have event bindings so you can create hypertext. A tag can also be
used to represent application-specific information. The tag names and tag ranges operations described
later tell you what tags are defined and where they are applied.

You can use almost any string for the name of a tag. However, do not use pure numbers, and do not
include spaces, plus (+) or minus (-). These characters are used in index arithmetic and may cause
problems if you use them in tag names.

A tag is added to a range with the tag add operation. The following command applies the tag
everywhere to all the text in the widget:

$t tag add everywhere 1.0 end

You can add one or more tags when text is inserted, too:

$t insert insert "new text" {someTag someOtherTag}

If you do not specify tags when text is inserted, then the text picks up any tags that are present on the
characters on both sides of the insertion point. (Before Tk 4.0, tags from the left-hand character were
picked up.) If you specify tags in the insert operation, only those tags are applied to the text.

A tag is removed from a range of text with the tag remove operation. However, even if there is no text
labeled with a tag, its attribute settings are remembered. All information about a tag can be removed
with the tag delete operation:

$t tag remove everywhere 3.0 6.end
$t tag delete everywhere

Tag Attributes

The attributes for a tag are defined with the tag configure operation. For example, a tag for blue text
is defined with the following command:

$t tag configure blue -foreground blue

Table 36-3 specifies the set of attributes for tags. Some attributes can only be applied with tags; there
is no global attribute for -bgstipple, -elide, -fgstipple, -justify, -lmargin1, -lmargin2, -offset,
-overstrike, -rmargin, and -underline. Table 36-10 on page 557 lists the attributes for the text
widget as a whole.

The -relief and -borderwidth attributes go together. If you only specify a relief, there is no visible
effect. The default relief is flat, too, so if you specify a border width without a relief you won't see any
effect either.

The stipple attributes require a bitmap argument. Bitmaps and colors are explained in more detail in
Chapter 41. For example, to "grey out" text you could use a foreground stipple of gray50:

$t tag configure disabled -fgstipple gray50

The -elide attribute, added in Tk 8.3, controls whether or not the text is displayed. It can be quite
useful to set the -elide attribute to True to hide embedded information, such as HTML or XML tags or
URLs for hotlinks.

Table 36-3. Attributes for text tags

-background color The background color for text.

-bgstipple bitmap A stipple pattern for the background color.

-borderwidth pixels The width for 3D border effects.

-elide boolean If True, then the text is not displayed. (Tk 8.3)

-fgstipple bitmap A stipple pattern for the foreground color.

-font font The font for the text.

-foreground color The foreground color for text.

-justify how Justification: left, right, or center.

-lmargin1 pixels Normal left indent for a line.

-lmargin2 pixels Indent for the part of a line that gets wrapped.

-offset pixels Baseline offset. Positive for superscripts.

-overstrike boolean Draw text with a horizontal line through it.

-relief what flat, sunken, raised, groove, solid or ridge.

-rmargin pixels Right-hand margin.

-spacing1 pixels Additional space above a line.

-spacing2 pixels Additional space above wrapped part of line.

-spacing3 pixels Additional space below a line.

-tabs tabstops Specifies tab stops.

-underline boolean If true, the text is underlined.

-wrap mode Line wrap: none, char, or word.

Configure tags early.

You can set up the appearance (and bindings) for tags once in your application, even before you have
labeled any text with the tags. The attributes are retained until you explicitly delete the tag. If you are
going to use the same appearance over and over again, then it is more efficient to do the setup once so
that Tk can retain the graphics context.

On the other hand, if you change the configuration of a tag, any text with that tag will be redrawn with
the new attributes. Similarly, if you change a binding on a tag, all tagged characters are affected
immediately.

Example 36-1 defines a few tags for character styles you might see in an editor. The example uses the
font naming system added in Tk 8.0, which is described on page 636.

Example 36-1 Tag configurations for basic character styles

proc TextStyles { t } {
 $t tag configure bold -font {times 12 bold}
 $t tag configure italic -font {times 12 italic}
 $t tag configure fixed -font {courier 12}
 $t tag configure underline -underline true
 $t tag configure super -offset 6 -font {helvetica 8}
 $t tag configure sub -offset -6 -font {helvetica 8}
}

Mixing Attributes from Different Tags

A character can be labeled with more than one tag. For example, one tag could determine the font,
another could determine the background color, and so on. If different tags try to supply the same
attribute, a priority ordering is taken into account. The latest tag added to a range of text has the
highest priority. The ordering of tags can be controlled explicitly with the tag raise and tag lower
commands.

You can achieve interesting effects by composing attributes from different tags. In a mail reader, for
example, the listing of messages in a mail folder can use one color to indicate messages that are
marked for delete, and it can use another color for messages that are marked to be moved into another
folder. The tags might be defined like this:

$t tag configure deleted -background grey75
$t tag configure moved -background yellow

These tags conflict, but they are never used on the same message. However, a selection could be
indicated with an underline, for example:

$t tag configure select -underline true

You can add and remove the select tag to indicate what messages have been selected, and the
underline is independent of the background color determined by the moved or deleted tag. If you look
at the exmh implementation, the ftocColor.tcl file defines several text tags that are composed like
this.

Line Spacing and Justification

The spacing and justification for text have several attributes. These settings are complicated by wrapped
text lines. The text widget distinguishes between the first display line and the remaining display lines for
a given text line. For example, if a line in the text widget has 80 characters but the window is only wide
enough for 30, then the line may be wrapped onto three display lines. See Table 36-10 on page 557 for
a description of the text widget's wrap attribute that controls this behavior.

Spacing is controlled with three attributes, and there are global spacing attributes as well as per-tag
spacing attributes. The -spacing1 attribute adds space above the first display line, while -spacing2
adds space above the subsequent display lines that exist because of wrapping. The -spacing3 attribute
adds space below the last display line, which could be the same as the first display line if the line is not
wrapped.

The margin settings also distinguish between the first and remaining display lines. The -lmargin1
attribute specifies the indent for the first display line, while the -lmargin2 attribute specifies the indent
for the rest of the display lines, if any. There is only a single attribute, -rmargin, for the right indent.
These margin attributes are only tag attributes. The closest thing for the text widget as a whole is the -
padx attribute, but this adds an equal amount of spacing on both sides:

Example 36-2 Line spacing and justification in the text widget

[View full width]

proc TextExample { f } {
 frame $f
 pack $f -side top -fill both -expand true
 set t [text $f.t -setgrid true -wrap word \
 -width 42 -height 14 \
 -yscrollcommand "$f.sy set"]
 scrollbar $f.sy -orient vert -command "$f.t yview"
 pack $f.sy -side right -fill y
 pack $f.t -side left -fill both -expand true

 $t tag configure para -spacing1 0.25i -spacing2 0.1i \
 -lmargin1 0.5i -lmargin2 0.1i -rmargin 0.5i
 $t tag configure hang -lmargin1 0.1i -lmargin2 0.5i

 $t insert end "Here is a line with no special settings\n"
 $t insert end "Now is the time for all good women and men to come to the aid of their
 country. In this great time of need, no one can avoid their responsibility.\n"

 $t insert end "The quick brown fox jumps over the lazy dog."

 $t tag add para 2.0 2.end
 $t tag add hang 3.0 3.end
}

The example defines two tags, para and hang, that have different spacing and margins. The -spacing1
setting for para causes the white space before the second line. The -spacing2 setting causes the white
space between the wrapped portions of the second paragraph. The hang tag has no spacing attributes,

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/&r=noccc&xmlid=0-13-038560-3/ch36lev1sec3#PLID8

so the last paragraph starts right below the previous paragraph. You can also see the difference
between the -lmargin1 and -lmargin2 settings.

The newline characters are inserted explicitly. Each newline character defines a new line for the
purposes of indexing, but not necessarily for display, as this example shows. In the third line there is no
newline. This means that if more text is inserted at the end mark, it will be on line three.

The values for the spacing and margin parameters are in screen units. Because different fonts are
different sizes, you may need to compute the spacings as a function of the character sizes. The bbox
operation returns the bounding box (x, y, width, height) for a given character:

$t insert 1.0 "ABCDE"
$t bbox 1.0
=> 4 4 8 12

The Tk 8.0 font metrics command, which is described on page 640, also gives detailed measurements:

font metrics {times 12}
-ascent 9 -descent 3 -linespace 12 -fixed 0

Text justification is limited to three styles: left, right, or center. There is no setting that causes the
text to line up on both margins, which would have to be achieved by introducing variable spacing
between words.

Tab Stops

Text widgets have adjustable tab stops. The tabs attribute is a list of tab stops, which are specified with
a screen unit and optionally a keyword that indicates justification. The tab justification keywords are
left, right, center, and numeric, and these can be abbreviated. The default is left. The following
resource specification defines tab stops at 2-centimeter intervals with different justification:

*Text.tabs: 2c left 4c right 6c center 8c numeric

The tabs attribute applies to the whole text widget or to a tag. The last tab stop is extrapolated as
needed. The following command defines a tag that has left justified tab stops every half inch:

$t tag configure foo -tabs ".5i left"

The Selection

The selection is implemented with a predefined tag named sel. If the application
tags characters with sel, those characters are added to the selection. This is done
as part of the default bindings on the text widget.

The exportSelection attribute of a text widget controls whether or not selected
text is exported by the selection mechanism to other applications. By default the
selection is exported. In this case, when another widget or application asserts
ownership of the selection then the sel tag is removed from any characters that are
tagged with it. Chapter 38 describes the selection mechanism in more detail.

You cannot delete the sel tag with the tag delete operation. However, it is not an
error to do so. You can delete all the tags on the text widget with the following
command. The eval command is used to join the list of tag names into the tag
delete command:

eval {$t tag delete} [$t tag names]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Tag Bindings

You can associate a tag with bindings so that when the user clicks on different areas
of the text display, different things happen. The syntax for the tag bind command
is similar to that of the main Tk bind command. You can both query and set the
bindings for a tag. Chapter 29 describes the bind command and the syntax for
events in detail.

The only events supported by the tag bind command are Enter, Leave,
ButtonPress, ButtonRelease, Motion, KeyPress, and KeyRelease. ButtonPress
and KeyPress can be shorted to Button and Key as in the regular bind command.
The Enter and Leave events are triggered when the mouse moves in and out of
characters with a tag, which is different from when the mouse moves in and out of
the window.

If a character has multiple tags, then the bindings associated with all the tags will
be invoked, in the order from lowest priority tag to highest priority tag. After all the
tag bindings have run, the binding associated with the main widget is run, if any.
The continue and break commands work inside tag bindings in a similar fashion as
they work with regular command bindings. See Chapter 29 for the details.

Example 36-3 defines a text button that has a highlighted relief and an action
associated with it. The example generates a new tag name so that each text button
is unique. The relief and background are set for the tag to set it apart visually. The
winfo visual command is used to find out if the display supports color before
adding a colored background to the tag. On a black and white display, the button is
displayed in reverse video (i.e., white on black.) The command is bound to
<Button-1>, which is the same as <ButtonPress-1>.

The cursor is changed when the mouse is over the tagged area by binding to the
<Enter> and <Leave> events. Upon leaving the tagged area, the cursor is restored.
Another tag is used to remember the previous setting for the cursor. You could also
use a global variable, but it is often useful to decorate the text with tags for your
own purposes.

Example 36-3 An active text button

proc TextButton { t start end command } {
 global textbutton
 if ![info exists textbutton(uid)] {
 set textbutton(uid) 0
 } else {
 incr textbutton(uid)
 }
 set tag button$textbutton(uid)
 $t tag configure $tag -relief raised -borderwidth 2
 if {[regexp color [winfo visual $t]]} {
 $t tag configure $tag -background thistle

 } else {
 $t tag configure $tag -background [$t cget -fg]
 $t tag configure $tag -foreground [$t cget -bg]
 }
 # Bind the command to the tag
 $t tag bind $tag <Button-1> $command
 $t tag add $tag $start $end
 # use another tag to remember the cursor
 $t tag bind $tag <Enter> \
 [list TextButtonChangeCursor %W $start $end tcross]
 $t tag bind $tag <Leave> {TextButtonRestoreCursor %W}
}
proc TextButtonChangeCursor {t start end cursor} {
 $t tag add cursor=[$t cget -cursor] $start $end
 $t config -cursor $cursor
}
proc TextButtonRestoreCursor {t} {
 regexp {cursor=([^]*)} [$t tag names] x cursor
 $t config -cursor $cursor
}

To behave even more like a button, the action should trigger upon <ButtonRelease-
1>, and the appearance should change upon <ButtonPress-1>. If this is important
to you, you can always embed a real Tk button. Embedding widgets is described
later.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Searching Text

The search operation scans the text widget for a string that matches a pattern. The
index of the text that matches the pattern is returned. The search starts at an index
and covers all the text widget unless a stop index is supplied. You can use end as
the stop index to prevent the search from wrapping back to the beginning of the
document. The general form of the search operation is this:

$t search ?options? pattern index ?stopIndex?

Table 36-4 summarizes the options to the search operation:

Table 36-4. Options to the search operation

-forward Searches forward from index. This is the default.

-backward Searches backward from index.

-exact Matches pattern exactly. This is the default.

-regexp Uses regular expression pattern matching.

-nocase Lowercase letters in pattern can match upper case letters.

-count
varName

Returns in varName the number of characters that matched
pattern.

-- Ends the options. Necessary if pattern begins with -.

If you use a regular expression to match a pattern, you may be interested in how
much text matched so you can highlight the match. The -count option specifies a
variable that gets the number of matching characters:

set start [$t search -count cnt -regexp -- $pattern 1.0 end]
$t tag add sel $start "$start +$cnt chars"

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Embedded Widgets

The text widget can display embedded widgets as well as text. You can include a
picture, for example, by constructing it in a canvas and then inserting the canvas
into the text widget. An embedded widget takes up one character in terms of
indices. You can address the widget by its index position or by the Tk pathname of
the widget.

For example, suppose $t names a text widget. The following commands create a
button and insert it into the text widget. The button behaves normally, and in this
case it invokes the Help command when the user clicks on it:

button $t.help -bitmap questhead -command Help
$t window create end -window $t.help

By default an embedded widget is centered vertically on its text line. You can adjust
this with the -align option to the window create command. This setting only takes
effect if the window is smaller than the text in the line. I find that windows are
usually larger than the text line, and in that case the -align setting has no effect.
This setting is also used with images, however, where it is more common to have
small images (e.g., for special bullets). Table 36-5 describes the window and image
alignment settings:

Table 36-5. Window and image alignment options

top Top lines up with top of text line.

center Center lines up with center of text line.

baseline Bottom lines up with text baseline.

bottom Bottom lines up with bottom of text line.

You can postpone the creation of the embedded widget by specifying a Tcl command
that creates the window, instead of specifying the -window option. The delayed
creation is useful if you have lots of widgets embedded in your text. In this case the
Tcl command is evaluated just before the text widget needs to display the widget. In
other words, when the user scrolls the text so the widget will appear, the Tcl
command is run to create the widget:

Example 36-4 Delayed creation of embedded widgets

$t window create end -create [list MakeGoBack $t]
proc MakeGoBack { t } {
 button $t.goback -text "Go to Line 1" \
 -command [list $t see 1.0]
}

The MakeGoBack procedure is introduced to eliminate potential quoting problems. If
you need to execute more than one Tcl command to create the widget or if the
embedded button has a complex command, the quoting can quickly get out of hand.

Table 36-6 gives the complete set of options for creating embedded widgets. You
can change these later with the window configure operation. For example:

$t window configure $t.goback -padx 2

Table 36-6. Options to the window create operation

-align where Alignment: top, center, bottom, or baseline.

-create
command

Tcl command to create the widget.

-padx pixels Padding on either side of the widget.

-pady pixels Padding above and below the widget.

-stretch
boolean

If true, the widget is stretched vertically to match the spacing of
the text line.

-window
pathname

Tk pathname of the widget to embed.

You can specify the window to reconfigure by its pathname or the index where the
window is located. In practice, naming the widget by its pathname is much more
useful. Note that end is not useful for identifying an embedded window because the
text widget treats end specially. You can insert a window at end, but end is always
updated to be after the last item in the widget. Thus end will never name the
position of an existing window.

Embedded Images

Tk 8.0 added embedded images that are much like embedded windows. They
provide a more efficient way to add images than creating a canvas or label widget to
hold the image. You can also put the same image into a text widget many times.
Example 36-5 uses an image for the bullets in a bulleted list:

Example 36-5 Using embedded images for a bulleted list

proc BList_Setup { t imagefile } {
 global blist
 set blist(image) [image create photo -file $imagefile]
 $t tag configure bulletlist -tabs ".5c center 1c left" \
 -lmargin1 0 -lmargin2 1c
}
proc BList_Item { t text {mark insert}} {
 global blist
 # Assume we are at the beginning of the line
 $t insert $mark \t bulletlist
 $t image create $mark -image $blist(image)
 $t insert $mark \t$text bulletlist
}

In Example 36-5, tabs are used to line up the bullet and the left edges of the text.
The first tab centers the bullet over a point 0.5 centimeters from left margin. The
second tab stop is the same as the -lmargin2 setting so the text on the first line
lines up with the text that wraps onto more lines.

If you update the image dynamically, all the instances of that image in the text
widget are updated, too. This follows from the image model used in Tk, which is
described in Chapter 41 on page 625.

The options for embedded images are mostly the same as those for embedded
windows. One difference is that images have a -name option so you can reference an
image without remembering its position in the text widget. You cannot use the
image name directly because the same image can be embedded many times in the
text widget. If you do not choose a name, the text widget assigns a name for you.
The image create operation returns this name:

$t image create 1.0 -image image1
=> image1
$t image create end -image image1
=> image1#1

Table 36-7 gives the complete set of options for creating embedded images. You can
change these later with the image configure operation.

Table 36-7. Options to the image create operation

-align
where

Alignment: top, center, bottom, or baseline. Only has effect if image is
shorter than the line height. See Table 36-5.

-image
image

The Tk image to add to the text widget.

-name
name

A name for this instance of the image. A #num may be appended to
generate a unique name.

-padx
pixels

Padding on either side of the image.

-pady
pixels

Padding above and below the image.

Looking inside the Text Widget

The text widget has several operations that let you examine its contents. The
simplest is get, which returns of text from the widget. If only one index is given, the
character at that position is returned. If there are two indices, all the characters up
to but not including the second index are returned. For example, you can get all the
text with this command:

$t get 1.0 end

As of Tk 8.4, you can get multiple ranges of text with a single get operation; the
result in this case is a list of the range contents. For example, to retrieve the first
and third lines, without the trailing newlines, as a two-element list:

$t get 1.0 1.end 3.0 3.end

Looking at Tags

The tag names command returns all the tag names, or the names of the tags at a
specified index:

$t tag names ?index?

A text tag can be applied to many different ranges of text. The tag ranges
operation returns a list of indices that alternate between the start and end of tag
ranges. The foreach command with two loop variables makes it easy to iterate
through all the ranges:

foreach {start end} [$t tag ranges $tag] {
 # start is the beginning of a range
 # end is the end of a range
}

The tag nextrange and tag prevrange operations return two indices that delimit
the next and previous range of a tag. They take a starting index and an optional
ending index. The tag nextrange operation skips to the next range if the tag is
present at the starting index, unless the starting index is right at the start of a
range. The tag prevrange operation is complementary. It does not skip the current
range, unless the starting index is at the beginning of the range. These rules are
used in Example 36-6 that defines a procedure to return the current range:

Example 36-6 Finding the current range of a text tag

proc Text_CurrentRange { t tag mark } {
 set range [$t tag prevrange $tag $mark]
 set end [lindex $range 1]
 if {[llength $range] == 0 || [$t compare $end < $mark]} {

 # This occurs when the mark is at the
 # very beginning of the node
 set range [$t tag nextrange $tag $mark]
 if {[llength $range] == 0 ||
 [$t compare $mark < [lindex $range 0]]} {
 return {}
 }
 }
 return $range
}

Looking at Marks

The mark names operation returns the names of all the marks. Unlike tag names,
you cannot supply an index to find out if there are marks there. You must use the
dump operation described later. The mark next and mark previous operations
search from a given index for a mark. The mark next operation will find a mark if it
is at the starting index.

Dumping the Contents

The dump operation provides the most general way to examine the contents of the
text widget. The general form of the command is:

$t dump ?options? ix1 ?ix2?

The dump operation returns information for the elements from ix1 to ix2, or just for
the elements at ix1 if ix2 is not specified. You can limit what information is
returned with options that indicate what to return: -text, -mark, -tag, -image, -
window, or -all.

Three pieces of information are returned for each element of the text widget: the
type, the value, and the index. The possible types are text, tagon, tagoff, mark,
image, and window. The information reflects the way the text widget represents its
contents. Tags are represented as tagon and tagoff elements. Text is stored in
segments that do not include any marks, tag elements, windows, or images. In
addition, a newline ends a text segment.

Example 36-7 prints out the contents of the text widget:

Example 36-7 Dumping the text widget

proc Text_Dump {t {start 1.0} {end end}} {
 foreach {key value index} [$t dump $start $end] {
 if {$key == "text"} {
 puts "$index \"$value\""
 } else {

 puts "$index $key $value"
 }
 }
}

Instead of having dump return all the information, you can have it call a Tcl
command to process each element. The command gets passed three pieces of
information for each element: the type, the value, and the index. Example 36-8
shows another way to print out the text widget contents:

Example 36-8 Dumping the text widget with a command callback

proc Text_Dump {t {start 1.0} {end end}} {
 $t dump -command TextDump $start $end
}
proc TextDump {key value index} {
 if {$key == "text"} {
 puts "$index \"$value\""
 } else {
 puts "$index $key $value"
 }
}

The Undo Mechanism

Beginning in Tk 8.4, the text widget supports an unlimited undo and redo
mechanism. You enable the undo mechanism by setting the text widget's undo
attribute to True. The undo attribute has a default value of False for backward
compatibility.

When enabled, each insert and delete action, whether performed by the user or
programmatically, is recorded on an undo stack. You can programmatically undo an
edit with the edit undo operation. The undone changes are then moved to the redo
stack, so that an undone edit can be redone again with the with the edit redo
operation. The redo stack is cleared whenever new edit actions are recorded on the
undo stack. (Both the edit undo and edit redo operations generate error
conditions if the undo or redo stack is empty, respectively.) The text widget also has
default undo and redo bindings; by default, undo is <Control-z> and redo is
<Control-y> on Windows, <Control-Z> on all other platforms. (See "Text Bindings"
on page 551.)

Each edit undo operation undoes the last action, which is defined as all of the
insert and delete commands that are recorded on the undo stack in between two
separators. When the autoSeparators attribute is True (the default), a separator is
automatically placed on the stack whenever:

the mode changes from insertion to deletion, or vice versa

the user moves the insert mark using the keyboard or the mouse

the user presses the <Return> key

If you set the autoSeparators attribute to False, you are responsible for
programmatically placing separators on the stack with the edit separator
operation. By turning the autoseparators off and inserting them at the desired
points, you can define compound actions, such as search and replace. The default
paste binding is an example of such an action, such that overwriting selected text by
pasting from the clipboard is considered an atomic action.

As of Tk 8.4, only insert and delete operations are handled by the undo
mechanism. In particular, tag operations, such as applying a tag to text, are not
actions captured by the undo mechanism, even if the tag was applied as part of an
insert operation. As an example, consider the following insertion:

$t insert end "Let's insert some " {} \
 "special" blue " text." {}

If this operation were undone and then redone, the text would be re-inserted, but
without applying the blue tag on the word "special".

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Text Bindings and Events

Text Bindings

There is an extensive set of default bindings for text widgets. In general, the
commands that move the insertion cursor also clear the selection. Often you can
hold the Shift key down to extend the selection, or hold the Control key down to
move the insertion cursor without affecting the selection. Table 36-8 lists the default
bindings for the text widget:

Table 36-8. Bindings for the text widget

<Any-Key> Inserts normal printing characters.

<Button-1> Sets the insert point, clears the selection, sets focus.

<Control-
Button-1>

Sets the insert point without affecting the selection.

<B1-Motion> Sweeps out a selection from the insert point.

<Double-Button-
1>

Selects the word under the mouse.

<Triple-Button-
1>

Selects the line under the mouse.

<Shift-Button-
1>

Adjusts the end of selection closest to the mouse.

<Shift-B1-
Motion>

Continues to adjust the selection.

<Button-2> Pastes the selection, or sets the scrolling anchor.

<B2-Motion> Scrolls the window.

<MouseWheel> Scrolls vertically.

<Button-4> Mousewheel support on Unix only; scrolls up. (Tk 8.3)

<Button-5> Mousewheel support on Unix only; scrolls down. (Tk 8.3)

<Key-Left>
<Control-b>

Moves the cursor left one character and clears the selection.

<Shift-Left> Moves the cursor and extends the selection.

<Control-Left> Moves the cursor by words. Clears the selection.

<Control-Shift-
Left>

Moves the cursor by words. Extends selection.

<Key-Right>
<Control-f>

Right bindings are analogous to Left bindings.

<Meta-b> <Meta-
f>

Same as <Control-Left>, <Control-Right>.

<Key-Up>
<Control-p>

Moves the cursor up one line. Clears the selection.

<Shift-Up> Moves the cursor up one line. Extends the selection.

<Control-Up> Moves the cursor up by paragraphs, which are a group of lines
separated by a blank line.

<Control-Shift-
Up>

Moves the cursor up by paragraph. Extends the selection.

<Key-Down>
<Control-n>

All Down bindings are analogous to Up bindings.

<Next> <Prior> Moves the cursor by one screen. Clears the selection.

<Shift-Next>

<Shift-Prior>
Moves the cursor by one screen. Extends the selection.

<Home>
<Control-a>

Moves the cursor to line start. Clears the selection.

<Shift-Home> Moves the cursor to line start. Extends the selection.

<End> <Control-
e>

Moves the cursor to line end. Clears the selection.

<Shift-End> Moves the cursor to line end. Extends the selection.

<Control-Home>

<Meta-less>
Moves the cursor to the beginning of text. Clears the selection.

<Control-End>

<Meta-greater>
Moves the cursor to the end of text. Clears the selection.

<Select>

<Control-space>
Sets the selection anchor to the position of the cursor.

<Shift-Select>

<Control-Shift-
space>

Adjusts the selection to the position of the cursor.

<Control-slash> Selects everything in the text widget.

<Control-
backslash>

Clears the selection.

<Delete> Deletes the selection, if any. Otherwise, deletes the character to
the right of the cursor.

<BackSpace>
<Control-h>

Deletes the selection, if any. Otherwise, deletes the character to
the left of the cursor.

<Control-d> Deletes character to the right of the cursor.

<Meta-d> Deletes word to the right of the cursor.

<Control-k> Deletes from cursor to end of the line. If you are at the end of
line, deletes the newline character.

<Control-o> Inserts a newline but does not advance the cursor.

<Meta-Delete>

<Meta-
BackSpace>

Deletes the word to the left of the cursor.

<Control-t> Transposes the characters on either side of the cursor.

<<Cut>>
<Control-x>

Copies the selection to the clipboard.

<<Copy>>
<Control-c>

Cuts the selection and saves it on the clipboard.

<<Paste>>
<Control-v>

Pastes from the clipboard.

<<Undo>>
<Control-z>

Undoes the last edit action if the undo attribute is true. (Tk 8.4)

<<Redo>>

<Control-Z>
(Unix & Mac)

<Control-y>
(Windows)

Reapplies the last undone edit action if the undo attribute is
true. (Tk 8.4)

Text Virtual Events

As of Tk 8.4, a text widget generates a <<Modified>> virtual event whenever text is
inserted into or deleted from the text widget. The event is fired after the text widget
has changed, so the binding action can access the new text values. The easiest way
to be aware of changes to the menu selection is to bind to this virtual event, for
example:

bind .t <<Modified>> {ContentsChanged %W}

Also added in Tk 8.4 is the <<Selection>> virtual event, which is generated
whenever the text widget's selection changes. The event is fired after the selection
has changed, so the binding action can access the new selection.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Text Operations

Table 36-9 describes the text widget operations, including some that are not
discussed in this chapter. In the table, $t is a text widget:

Table 36-9. Operations for the text widget

$t bbox index Returns the bounding box of the character at index. Four
numbers are returned: x y width height.

$t cget option Returns the value of the configuration option.

$t compare i1 op
i2

Performs index comparison. i1 and i2 are indexes. op is one
of < <= == >= > !=

$t configure ... Queries or sets configuration options.

$t debug boolean Enables consistency checking for B-tree code.

$t delete i1 ?i2?
?...?

Deletes from i1 up to, but not including i2. Just deletes the
character at i1 if i2 is not specified. Deletes multiple ranges
if specified.

$t dlineinfo
index

Returns the bounding box, in pixels, of the display for the line
containing index. Five numbers are returned: x y width
height baseline.

$t dump ?options?
i1 ?i2?

Returns the marks, tags, windows, images, and text
contained in the widget. Options are -all, -command
command, -image, -mark, -tag, -text, and -window.

$t edit modified
?boolean?

Queries or sets the widget's modified flag. (Tk 8.4)

$t edit redo Reapplies the last undone edit action if the undo attribute is
true. (Tk 8.4)

$t edit reset Clears the undo and redo stacks. (Tk 8.4)

$t edit separator Inserts a separator on the undo stack if the undo attribute is
true. (Tk 8.4)

$t edit undo Undoes the last edit action if the undo attribute is true. (Tk
8.4)

$t get i1 ?i2?
?...?

Returns the text from i1 to i2, or just the character at i1 if
i2 is not specified. Returns multiple ranges as a list, if
specified.

$t image cget
option

Returns the value of the image option.

$t image
configure ?
options?

Queries or sets the configuration of an embedded image.

$t image create
option value ...

Creates an embedded image. Options are described in Table
36-7 on page 547.

$t image names Returns the names of all embedded images.

$t index index Returns the numerical value of index.

$t insert index
chars ?tags? ?
chars tags? ...

Inserts chars at the specified index. If tags are specified,
they are added to the new characters.

$t mark gravity
name ?direction?

Queries or assigns a gravity direction to the mark name.
direction, if specified, is left or right.

$t mark names Returns a list of defined marks.

$t mark next
index

Returns the mark after index.

$t mark previous
index

Returns the mark before index.

$t mark set name
index

Defines a mark name at the given index.

$t mark unset
name1 ?name2 ...?

Deletes the named mark, or marks.

$t scan mark x y Anchors a scrolling operation.

$t scan dragto x
y

Scrolls based on a new position.

$t search ?
switches? pattern
index ?stopIndex?

Searches for pattern starting at index. The index of the start
of the match is returned. Switches are described in Table 36-
4 on page 544.

$t see index Positions the display to view index.

$t tag add name
i1 ?i2?

?i1 i2? ?i1 i2?
...

Adds the tag to i1 through, but not including i2, or just the
character at i1 if i2 is not given.

$t tag bind name
?sequence? ?
script?

Queries or defines bindings for the tag name.

$t tag cget name
option

Returns the value of option for tag name.

$t tag configure
name ...

Sets or queries the configuration of tag name.

$t tag delete
tag1 ?tag2

...?

Deletes information for the named tags.

$t tag lower tag ?
below?

Lowers the priority of tag to the lowest priority or to just
below tag below.

$t tag names ?
index?

Returns the names of the tags at the specified index, or in
the whole widget, sorted from lowest to highest priority.

$t tag nextrange
tag i1 ?i2?

Returns a list of two indices that are the next range of text
with tag that starts at or after i1 and before index i2, or the
end.

$t tag prevrange
tag i1

?i2?

Returns a list of two indices that are the previous range of
text with tag that ends at or before i1 and at or after index
i2, or 1.0.

$t tag raise tag ?
above?

Raises the priority of tag to the highest priority, or to just
above the priority of tag above.

$t tag ranges tag Returns a list describing all the ranges of tag.

$t tag remove tag
i1 ?i2?

?i1 i2? ?i1 i2?
...

Removes tag from the range i1 up to, but not including i2,
or just at i1 if i2 is not specified.

$t window cget
win option

Returns the value of option for win.

$t window config
win ...

Queries or modifies the configuration of the embedded
window. win is a Tk pathname or an index.

$t window create
ix args

Creates an embedded window at ix.

$t window names Returns a list of windows embedded in $t.

$t xview Returns two fractions between zero and one that describe the
amount of text off-screen to the left and the amount of text
displayed.

$t xview moveto
fraction

Positions the text so fraction of the text is off screen to the
left.

$t xview scroll
num what

Scrolls num of what, which is units or pages.

$t yview Returns two fractions between zero and one that describe the
amount of text off-screen toward the beginning and the
amount of text displayed.

$t yview moveto
fraction

Positions the text so fraction of the text is off-screen toward
the beginning.

$t yview scroll
num what

Scrolls num of what, which is units or pages.

$t yview ?-
pickplace? ix

Obsolete. Use the see operation, which is similar.

$t yview num Obsolete. Position line num at the top of screen.

Text Attributes

Table 36-10 lists the attributes for the text widget. The table uses the resource
name, which has capitals at internal word boundaries. In Tcl commands, the
attributes are specified with a dash and all lowercase:

Table 36-10. Text attribute resource names

autoSeparators Boolean: True (default) automatically insert undo separators
after each insert or delete operation; False requires the
use of the undo separator operation to insert separators.
(Tk 8.4)

background Background color (also bg).

borderWidth Extra space around the edge of the text.

cursor Cursor to display when mouse is over the widget.

exportSelection If true, selected text is exported to the selection.

font Default font for the text.

foreground Foreground color (also fg).

height Height, in text lines.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Color for input focus highlight border.

highlightThickness Width of highlight border.

insertBackground Color for the insert cursor.

insertBorderWidth Size of 3D border for insert cursor.

insertOffTime Milliseconds insert cursor blinks off.

insertOnTime Milliseconds insert cursor blinks on.

insertWidth Width of the insert cursor.

maxUndo The maximum number of undo actions on the undo stack. A
zero or a negative value implies an unlimited undo stack.
(Tk 8.4)

padX Extra space to the left and right of the text.

padY Extra space above and below the text.

relief flat, sunken, raised, groove, ridge, or solid.

selectBackground Background color of selected text.

selectForeground Foreground color of selected text.

selectBorderWidth Size of 3D border for selection highlight.

setGrid Enable/disable geometry gridding.

spacing1 Extra space above each unwrapped line.

spacing2 Space between parts of a line that have wrapped.

spacing3 Extra space below an unwrapped line.

state Editable (normal) or read-only (disabled).

tabs Tab stops.

takeFocus Control focus changes from keyboard traversal.

undo Boolean: True enables and False (default) disables the undo
mechanism. (Tk 8.4)

width Width, in characters, of the text display.

wrap Line wrap mode: none, char, or word.

xScrollCommand Tcl command prefix for horizontal scrolling.

yScrollCommand Tcl command prefix for vertical scrolling.

Chapter 37. The Canvas Widget
The canvas widget is a general-purpose widget that you can program to display a
variety of objects including arcs, images, lines, ovals, polygons, rectangles, text,
and embedded windows.

Canvas widgets display objects such as lines and images, and each object can have
bindings that respond to user input, or be animated under program control. The
objects can be labeled with tags, and the tags can be configured with display
attributes and event bindings. This chapter describes all the predefined canvas
object types. Chapter 50 outlines the C programming interface for creating new
canvas objects.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Canvas Coordinates

The coordinate space of the canvas has 0, 0 at the top left corner. Larger X
coordinates are to the right, and larger Y coordinates are downward. The position
and possibly the size of a canvas object is determined by a set of coordinates.
Different objects are characterized by different numbers of coordinates. For
example, text objects have two coordinates, x1 y1, that specify their anchor point.
A line can have many pairs of coordinates that specify the end points of its
segments. The coordinates are set when the object is created, and they can be
updated later with the coords operation. By default, coordinates are in pixels.
Append a coordinate with one of the following letters to change the units:

c centimeters
i inches
m millimeters
p printer points (1/72 inches)

The tk scale command, which is described on page 669, changes the mapping
from pixels to other screen measures. Use it before creating the canvas.

The width and height attributes of the canvas determine the size of the viewable
area. The scrollRegion attribute of the canvas determines the boundaries of the
canvas. Its value is four numbers that specify the upper-left and lower-right
coordinates of the canvas. If you do not specify a scroll region, it defaults to the size
of the viewable area. Example 37-1 creates a canvas that has a 1000 by 400
scrolling region, and a 300 by 200 viewing area. The canvas is connected to two
scrollbars to provide horizontal and vertical scrolling:

Example 37-1 A large scrolling canvas

proc Scrolled_Canvas { c args } {
 frame $c
 eval {canvas $c.canvas \
 -xscrollcommand [list $c.xscroll set] \
 -yscrollcommand [list $c.yscroll set] \
 -highlightthickness 0 \
 -borderwidth 0} $args
 scrollbar $c.xscroll -orient horizontal \
 -command [list $c.canvas xview]
 scrollbar $c.yscroll -orient vertical \
 -command [list $c.canvas yview]
 grid $c.canvas $c.yscroll -sticky news
 grid $c.xscroll -sticky ew
 grid rowconfigure $c 0 -weight 1
 grid columnconfigure $c 0 -weight 1
 return $c.canvas
}
Scrolled_Canvas .c -width 300 -height 200 \
 -scrollregion {0 0 1000 400}

=> .c.canvas
pack .c -fill both -expand true

Borders are drawn in the canvas.

The highlight thickness and border width are set to 0 in Example 37-1. Otherwise,
these features occupy some of the canvas viewable area. If you want a raised
border for your canvas, either use another frame, or remember to offset your
positions to avoid having objects clipped by the borders.

Hello, World!

Example 37-2 creates an object that you can drag around with the mouse. It
introduces the use of tags to classify objects. In this case the movable tag gets
bindings that let you drag the item, so any item with the movable tag shares this
behavior. The example uses Scrolled_Canvas from Example 37-1. When you use a
scrolled canvas, you must map from the view coordinates reported by bindings to
the canvas coordinates used to locate objects:

Example 37-2 The canvas "Hello, World!" example

proc CanvasHello {} {
 set can [Scrolled_Canvas .c -width 400 -height 100 \
 -scrollregion {0 0 800 400}]
 pack .c -fill both -expand true
 # Create a text object on the canvas
 $can create text 50 50 -text "Hello, World!" -tag movable
 # Bind actions to objects with the movable tag
 $can bind movable <Button-1> {CanvasMark %x %y %W}
 $can bind movable <B1-Motion> {CanvasDrag %x %y %W}
}
proc CanvasMark { x y can} {
 global canvas
 # Map from view coordinates to canvas coordinates
 set x [$can canvasx $x]
 set y [$can canvasy $y]
 # Remember the object and its location
 set canvas($can,obj) [$can find closest $x $y]
 set canvas($can,x) $x
 set canvas($can,y) $y
}
proc CanvasDrag { x y can} {
 global canvas
 # Map from view coordinates to canvas coordinates
 set x [$can canvasx $x]
 set y [$can canvasy $y]
 # Move the current object
 set dx [expr $x - $canvas($can,x)]
 set dy [expr $y - $canvas($can,y)]
 $can move $canvas($can,obj) $dx $dy
 set canvas($can,x) $x
 set canvas($can,y) $y
}

Example 37-2 creates a text object and gives it a tag named movable:

.c create text 50 50 -text "Hello, World!" -tag movable

The first argument after create specifies the type, and the remaining arguments
depend on the type of object being created. Each canvas object requires some
coordinates, optionally followed by attribute value pairs. The coordinates can be
provided as separate arguments or, beginning in Tk 8.3, as a single-argument list.
The complete set of attributes for canvas objects are presented later in this chapter.
A text object needs two coordinates for its location.

Canvas Tags

The create operation returns an ID for the object being created, which would have
been 1 in this case. However, the code manipulates the canvas objects by specifying
a tag instead of an object ID. A tag is a more general handle on canvas objects.
Many objects can have the same tag, and an object can have more than one tag.
You can define bindings on tags, and you can define attributes for tags that will be
picked up by objects with those tags.

A tag name can be almost any string, but you should avoid spaces that can cause
parsing problems and pure numbers that get confused with object IDs. There are
two predefined tags: current and all. The current tag applies to whatever object
is under the mouse. The all tag applies to all the objects on the canvas.

Many of the canvas operations take an argument that identifies objects. The value
can be a tag name, or it can be the numerical object identifier returned by the
create operation. Also, beginning in Tk 8.3, you can specify (as a single argument)
a logical combination of tags using the operators && (and), || (or), ^ (exclusive or),
! (not), and parenthesized subexpressions. For example, to change the fill color to
red on all objects with a tag of highlight or warning, you could execute the
following:

$can itemconfigure {highlight || warning} -fill red

To move all the objects with the tag plot1 or plot2, but that don't also include the
tag fixed:

$can move {(plot1 || plot2) && !fixed} 50 0

Example 37-2 on page 559 defines behavior for objects with the movable tag.
Pressing button 1 starts a drag, and dragging with the mouse button down moves
the object. The pathname of the canvas (%W) is passed to CanvasMark and
CanvasDrag so these procedures can be used on different canvases. The %x and %y
keywords get substituted with the X and Y coordinate of the event:

$can bind movable <Button-1> {CanvasMark %x %y %W}
$can bind movable <B1-Motion> {CanvasDrag %x %y %W}

The CanvasMark and CanvasDrag procedures let you drag the object around the
canvas. Because CanvasMark is applied to any object with the movable tag, it must
first find the object that was clicked on. First, the view coordinates are mapped into
the canvas coordinates with the canvasx and canvasy operations:

set x [$can canvasx x]
set y [$can canvasy y]

Once you do this, you can use the find operation:

set canvas($can,obj) [$can find closest $x $y]

The actual moving is done in CanvasDrag with the move operation:

$can move $canvas($can,obj) $dx $dy

Try creating a few other object types and dragging them around, too:

$can create rect 10 10 30 30 -fill red -tag movable
$can create line 1 1 40 40 90 60 -width 2 -tag movable
$can create poly 1 1 40 40 90 60 -fill blue -tag movable

The CanvasMark and CanvasDrag procedures can be used with any canvas. They use
the global array canvas to keep their state, and they parameterize the indices with
the canvas pathname to avoid conflict if there is more that one canvas in the
application. If you get into this coding habit early, then you will find it easy to write
reusable code.

Canvas tags are not persistent.

Canvas tags do not work exactly like tags in the text widget. In the text widget, a
tag is completely independent of the text. You can configure a text tag before it is
applied to text, and the tag configuration is remembered even if you remove it from
the text. A canvas tag, in contrast, must be applied to an object before you can
configure it. If you configure a canvas tag that is not applied to any objects, those
settings are forgotten. If you remove all the objects that share a tag, any settings
associated with those tags are forgotten.

The Min Max Scale Example

This section presents Example 37-3, which constructs a scale-like object with two
sliders. The sliders represent the minimum and maximum values for some
parameter. Clearly, the minimum cannot be greater than the maximum, and vice
versa. The example creates three rectangles on the canvas. One rectangle forms the
long axis of the slider that represents the range of possible values. The other two
rectangles are markers that represent the values. Two text objects float below the
markers to give the current values of the minimum and maximum.

The example introduces four canvas operations: bbox, coords, scale, and move.
The bbox operation returns the bounding box of an object or of all objects with a
given tag. The coords operation sets or queries the coordinates of an object. The
scale operation stretches an object, and the move operation translates the position
of an object.

Use tags instead of object IDs.

The thoughtful selection of tag names help to
create "self-documenting code." And tags give
you more flexibility to change an
implementation later on. Example 37-3 does
not use object IDs. Instead, it gives each
object a symbolic identifier with a tag, plus it
introduces more tags to represent classes of
objects. The example uses the all tag to
move all the items and to find out the
bounding box of the image. The left box and
the left hanging text both have the left tag.
They can be moved together, and they share
the same bindings. Similarly, the right tag is
shared by the right box and the right hanging
text. Each item has its own unique tag, so it
can be manipulated individually, too. Those
tags are slider, lbox, lnum, rbox, and rnum:

Example 37-3 A min max scale canvas example

proc Scale2 {w min max {width {}} } {
 global scale2
 if {$width == {}} {
 # Set the long dimension, in pixels
 set width [expr $max - $min]
 }
 # Save parameters
 set scale2($w,scale) [expr ($max-$min)/$width.0]
 set scale2($w,min) $min;# Current minimum
 set scale2($w,max) $max
 set scale2($w,Min) $min;# Lower bound to the scale
 set scale2($w,Max) $max
 set scale2($w,L) 10
 set scale2($w,R) [expr $width+10]

 # Build from 0 to 100, then scale and move it later.
 # Distance between left edges of boxes is 100.
 # The box is 10 wide, therefore the slider is 110 long.
 # The left box sticks up, and the right one hangs down.

 canvas $w
 $w create rect 0 0 110 10 -fill grey -tag slider
 $w create rect 0 -4 10 10 -fill black -tag {left lbox}
 $w create rect 100 0 110 14 -fill red -tag {right rbox}
 $w create text 5 16 -anchor n -text $min -tag {left lnum}
 $w create text 105 16 -anchor n -text $max \
 -tag {right rnum} -fill red

 # Stretch/shrink the slider to the right length
 set scale [expr ($width+10) / 110.0]
 $w scale slider 0 0 $scale 1.0

 # move the right box and text to match new length
 set nx [lindex [$w coords slider] 2]
 $w move right [expr $nx-110] 0
 # Move everything into view
 $w move all 10 10

 # Make the canvas fit comfortably around the image
 set bbox [$w bbox all]
 set height [expr [lindex $bbox 3]+4]
 $w config -height $height -width [expr $width+30]

 # Bind drag actions
 $w bind left <Button-1> {Scale2Mark %W %x lbox}
 $w bind right <Button-1> {Scale2Mark %W %x rbox}
 $w bind left <B1-Motion> {Scale2Drag %W %x lbox}
 $w bind right <B1-Motion> {Scale2Drag %W %x rbox}
}

The slider is constructed with absolute coordinates, and then it is scaled to the
desired width. The alternative is to compute the coordinates based on the desired
width. I have found it clearer to use numbers when creating the initial layout as
opposed to using expr or introducing more variables. The scale operation stretches
the slider bar to the correct length. The scale operation takes a reference point,
which in our case is (0, 0), and independent scale factors for the X and Y
dimensions. The scale factor is computed from the width parameter, taking into
account the extra length added (10) so that the distance between the left edge of
the slider boxes is $width:

set scale [expr ($width+10) / 110.0]
$w scale slider 0 0 $scale 1.0

The move operation repositions the right box and right hanging text. If the marker
boxes are scaled, their shape gets distorted. The coords operation returns a list of
four numbers: x1 y1 x2 y2. The distance to move is just the difference between
the new right coordinate and the value used when constructing the slider initially.
The box and text share the same tag, right, so they are both moved with a single
move operation:

set nx [lindex [$w coords slider] 2]
$w move right [expr $nx-110] 0

After the slider is constructed, it is shifted away from (0, 0), which is the upper-left
corner of the canvas. The bbox operation returns four coordinates: x1 y1 x2 y2,
that define the bounding box of the items with the given tag. In the example, y1 is
zero, so y2 gives us the height of the image. The information returned by bbox can
be off by a few pixels, and the example needs a few more pixels of height to avoid
clipping the text. The width is computed based on the extra length added for the
marker box, the 10 pixels the whole image was shifted, and 10 more for the same
amount of space on the right side:

set bbox [$w bbox all]
set height [expr [lindex $bbox 3]+4]
$w config -height $height -width [expr $width+30]

Bindings are defined for the box and hanging text. The general tags left and right
are used for the bindings. This means that you can drag either the box or the text to
move the slider. The pathname of the canvas is passed into these procedures so that
you could have more than one double slider in your interface:

$w bind left <Button-1> {Scale2Mark %W %x lbox}
$w bind right <Button-1> {Scale2Mark %W %x rbox}
$w bind left <B1-Motion> {Scale2Drag %W %x lbox}
$w bind right <B1-Motion> {Scale2Drag %W %x rbox}

Example 37-4 Moving the markers for the min max scale

proc Scale2Mark { w x what } {
 global scale2
 # Remember the anchor point for the drag
 set scale2($w,$what) $x
}
proc Scale2Drag { w x what } {
 global scale2

 # Compute delta and update anchor point
 set x1 $scale2($w,$what)
 set scale2($w,$what) $x
 set dx [expr $x - $x1]

 # Find out where the boxes are currently
 set rx [lindex [$w coords rbox] 0]
 set lx [lindex [$w coords lbox] 0]

 if {$what == "lbox"} {
 # Constrain the movement to be between the
 # left edge and the right marker.
 if {$lx + $dx > $rx} {
 set dx [expr $rx - $lx]
 set scale2($w,$what) $rx
 } elseif {$lx + $dx < $scale2($w,L)} {
 set dx [expr $scale2($w,L) - $lx]
 set scale2($w,$what) $scale2($w,L)
 }
 $w move left $dx 0

 # Update the minimum value and the hanging text
 set lx [lindex [$w coords lbox] 0]
 set scale2($w,min) [expr int($scale2($w,Min) + \
 ($lx-$scale2($w,L)) * $scale2($w,scale))]
 $w itemconfigure lnum -text $scale2($w,min)
 } else {
 # Constrain the movement to be between the
 # right edge and the left marker
 if {$rx + $dx < $lx} {
 set dx [expr $lx - $rx]
 set scale2($w,$what) $lx
 } elseif {$rx + $dx > $scale2($w,R)} {
 set dx [expr $scale2($w,R) - $rx]
 set scale2($w,$what) $scale2($w,R)
 }
 $w move right $dx 0

 # Update the maximum value and the hanging text
 set rx [lindex [$w coords right] 0]
 set scale2($w,max) [expr int($scale2($w,Min) + \
 ($rx-$scale2($w,L)) * $scale2($w,scale))]
 $w itemconfigure rnum -text $scale2($w,max)

 }
}
proc Scale2Value {w} {
 global scale2
 # Return the current values of the double slider
 return [list $scale2($w,min) $scale2($w,max)]
}

The Scale2Mark procedure initializes an anchor position, scale2($w,$what), and
Scale2Drag uses this to detect how far the mouse has moved. The change in
position, dx, is constrained so that the markers cannot move outside their bounds.
The anchor is updated if a constraint was used, and this means that the marker will
not move until the mouse is moved back over the marker. (Try commenting out the
assignments to scale2($w,$what) inside the if statement.) After the marker and
hanging text are moved, the value of the associated parameter is computed based
on the parameters of the scale. The Scale2Value procedure queries the current
values of the double slider.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Canvas Objects

The next several sections describe the built-in object types for the canvas: arc,
bitmap, image, line, oval, polygon, rectangle, text, and window. Each object
has its own set of attributes, and some attributes are found on most or all object
types. Table 37-1 lists the common item attributes found on all or most objects. All
-active and -disabled attributes were added in Tk 8.3, as were the -state
attribute, the -offset attribute, and those attributes related to dashes.

Table 37-1. Common canvas item attributes

-dash pattern
-activedash pattern
-disableddash pattern

The dash pattern of the line or outline when in
the normal, active (the mouse over the
object), and disabled states. (Tk 8.3)

-dashoffset offset The starting offset distance into the pattern
provided by the -dash option. (Tk 8.3)

-fill color
-activefill color
-disabledfill color

The color of the interior of the object when in
the normal, active (the mouse over the
object), and disabled states. (Tk 8.3, except -
fill)

-stipple bitmap
-activestipple bitmap
-disabledstipple bitmap

The stipple pattern for the fill when in the
normal, active (the mouse over the object),
and disabled states. (Tk 8.3, except -
stipple)

-offset offset The stipple offset in the form x,y or side. side
can be n, ne, e, se, s, sw, w, nw, or center. x,y
is a distance relative to the canvas origin;
putting # in front of the coordinate pair
indicates using the toplevel origin instead. (Tk
8.3)

-outline color
-activeoutline color
-disabledoutline color

The color of the outline when in the normal,
active (the mouse over the object), and
disabled states. (Tk 8.3, except -outline)

-outlinestipple bitmap
-activeoutlinestipple bitmap
-disabledoutlinestipple bitmap

The stipple pattern for the outline when in the
normal, active (the mouse over the object),
and disabled states. (Tk 8.3, except -
outlinestipple)

-width num
-activewidth num
-disabledwidth num

Width, in canvas coordinates, of the line or
outline when in the normal, active (the mouse
over the object), and disabled states. (Tk 8.3,
except -width)

-state state normal, disabled, or hidden. This overrides
the canvas widget's state attribute. (Tk 8.3)

-tags tagList List of tags for the object.

Every object has a -tags attribute used to label the object with a list of symbolic
names. Most objects, even text objects, specify their color with the -fill attribute;
only the bitmap object uses -foreground and -background. If the object has a
border, the color of the border is specified with -outline, and the thickness of the
outline is specified with -width. Starting in Tk 8.3, lines and objects with borders
have a variety of -dash attributes for drawing dashed lines and borders.

Canvas Widget and Canvas Object State Options

Tk 8.3 added the -state attribute to the canvas widget and all canvas objects. The
canvas state attribute can be set to normal (the default) or disabled, which
provides a default state for all objects on the canvas. If an individual canvas object's
-state attribute is the empty string (the default), then it inherits the canvas state.
However, you can override the "global" canvas state for an individual object by
setting its -state attribute to normal, disabled, or hidden.

An object in the normal state is visible and any bindings defined for it are fully
functional. Additionally, if the mouse is over a normal object, it is activated and any
-active* attributes defined for the object take effect. As you would expect, an
object in the hidden state is not visible, and its bindings are inactive. An object in
the disabled state is visible, but its bindings are inactive and it does not activate
when the mouse is over it; additionally, any -disabled* attributes defined for the
object take effect.

Dashed Lines

Tk 8.3 introduced the ability to draw lines and object outlines using dashed lines.
The primary object attribute for controlling the dash pattern is -dash, although -
activedash and -disableddash attributes are available for controlling the dash
pattern in different object states.

Each of these attributes accepts a dash pattern as a value. One dash pattern format
is a list of integers. Each element represents the number of pixels of a line segment.
Only the odd segments are drawn using the -outline color. The other segments are
drawn transparent. For example the following command draws a line with 6-pixel
dashes separated by 2-pixel spaces:

$c create line -dash {6 2}

The other dash pattern format is a string containing any combination of the
characters shown in Table 37-2.

Table 37-2. Canvas dash pattern characters

. Dash 1/2 of the length of the following space

, Dash equal to the length of the following space

- Dash 1 1/2 times the length of the following space

_ Dash double the length of the following space

space Doubles the length of the space

For example, the dash pattern {_. ,} is roughly equivalent to {8 4 2 8 4 4}

The main difference of the string-based syntax versus the list-based syntax is that it
the string-based syntax is shape-conserving. This means that all values in the dash
list are multiplied by the line width before display. This assures that "." is always
displayed as a dot and "-" as a dash regardless of the line width.

Finally, the -dashoffset attribute specifies the starting offset (in pixels) into the
pattern provided by -dash.

Not all dash patterns are supported on all platforms.

On systems that support only a limited set of dash patterns, the dash pattern is
displayed as the closest dash pattern that is available. For example, on Windows the
dash patterns {.} and {,} and {. } and {, } are displayed identically.

Arc Items

An arc is a section of an oval. The dimensions of the oval are determined by four
coordinates that are its bounding box. The arc is then determined by two angles,
the start angle and the extent. The region of the oval can be filled or unfilled, and
there are three different ways to define the fill region. The pieslice style connects
the arc with the center point of the oval. The chord style connects the two end
points of the arc. The arc style just draws the arc itself and there is no fill. Example
37-5 shows three arcs with the same bounding box but different styles and angles:

Example 37-5 Canvas arc items

$c is a canvas
$c create arc 10 10 100 100 -start 45 -extent -90 \
 -style pieslice -fill orange -outline black
$c create arc 10 10 100 100 -start 135 -extent 90 \
 -style chord -fill blue -outline white -width 4
$c create arc 10 10 100 100 -start 255 -extent 45 \
 -style arc -outline black -width 3

An arc object support all of the object attributes listed in Table 37-1. Table 37-3
lists the additional attributes supported by arc objects.

Table 37-3. Arc attributes

-extent degrees The length of the arc in the counter-clockwise direction.

-start degrees The starting angle of the arc.

-style style pieslice, chord, arc.

Bitmap Items

A bitmap is a simple graphic with a foreground and background color. One bit per
pixel is used to choose between the foreground and the background. If you do not
specify a background color, the background bits are clear and the canvas
background shows through. A canvas bitmap item is positioned with two
coordinates and an anchor position. Its size is determined by the bitmap data. The
bitmap itself is specified with a symbolic name or by the name of a file that contains
its definition. If the name begins with an @, it indicates a file name. The bitmaps
built into Tk are shown in the example below. Chapter 50 outlines the C interface for
registering bitmaps under a name.

Example 37-6 Canvas bitmap items

set o [$c create bitmap 10 10 -bitmap @candle.xbm -anchor nw\
 -background white -foreground blue]
set x [lindex [$c bbox $o] 2] ;# Right edge of bitmap
foreach builtin {error gray12 gray50 hourglass \
 info questhead question warning} {
 incr x 20
 set o [$c create bitmap $x 30 -bitmap $builtin -anchor c]
 set x [lindex [$c bbox $o] 2]
}

A bitmap object supports only the -state and -tags attributes listed in Table 37-1.
Table 37-4 lists the additional attributes supported by bitmap objects.

Table 37-4. Bitmap attributes

-anchor position Anchor: c (default), n, ne, e, se, s, sw, w, or nw.

-background color
-activebackground color
-disabledbackground color

The background color (for zero bits) when in the
normal, active (the mouse over the object), and
disabled states. (Tk 8.3, except -background)

-bitmap name
-activebitmap name
-disabledbitmap name

The bitmap to display when in the normal, active
(the mouse over the object), and disabled states.
(Tk 8.3, except -bitmap)

-foreground color
-activeforeground color
-disabledforeground color

The foreground color (for one bits) when in the
normal, active (the mouse over the object), and
disabled states. (Tk 8.3, except -foreground)

Image Items

The canvas image objects use the general image mechanism of Tk. You must first
define an image using the image command, which is described in Chapter 41 in the
section Bitmaps and Images. Once you have defined an image, all you need to
specify for the canvas is its position, anchor point, and any tags. The size and color
information is set when the image is defined. If an image is redefined, anything
displaying that image automatically gets updated. Example 37-7 creates one image
and puts six instances of it on a canvas:

Example 37-7 Canvas image items

image create bitmap hourglass2 \
 -file hourglass.bitmap -maskfile hourglass.mask \
 -background white -foreground blue
for {set x 20} {$x < 300} {incr x 20} {
 $c create image $x 10 -image hourglass2 -anchor nw
 incr x [image width hourglass2]
}

An image object supports only the -state and -tags attributes listed in Table 37-1.
Table 37-5 lists the additional attributes supported by image objects.

Table 37-5. Image attributes

-anchor position Anchor: c (default), n, ne, e, se, s, sw, w, or nw.

-image name
-activeimage name
-disabledimage name

The name of an image to use when in the normal, active
(the mouse over the object), and disabled states. (Tk 8.3,
except -image)

Line Items

A line has two or more sets of coordinates, where each set of coordinates defines an
end point of a line segment. The segments can be joined in several different styles,
and the whole line can be drawn with a spline fit as opposed to straight-line
segments. The next example draws a line in two steps. In the first pass, single-
segment lines are drawn. When the stroke completes, these are replaced with a
single line segment that is drawn with a spline curve.

Example 37-8 A canvas stroke drawing example

proc StrokeInit {} {
 canvas .c ; pack .c
 bind .c <Button-1> {StrokeBegin %W %x %y}
 bind .c <B1-Motion> {Stroke %W %x %y}
 bind .c <ButtonRelease-1> {StrokeEnd %W %x %y}
}
proc StrokeBegin { w x y } {
 global stroke
 catch {unset stroke}
 set stroke(N) 0
 set stroke(0) [list $x $y]
}
proc Stroke { w x y } {
 global stroke
 set coords $stroke($stroke(N))
 lappend coords $x $y
 incr stroke(N)
 set stroke($stroke(N)) [list $x $y]

 # eval gets the coordinates into individual arguments
 eval {$w create line} $coords {-tag segments}
}
proc StrokeEnd { w x y } {
 global stroke
 set coords {}
 for {set i 0} {$i <= $stroke(N)} {incr i} {
 append coords $stroke($i) " "
 }
 $w delete segments
 eval {$w create line} $coords \
 {-tag line -joinstyle round -smooth true -arrow last}
}

Example 37-8 uses the stroke array to hold
the points of the line as it builds up the
stroke. At the end of the stroke it assembles
the points into a list. The eval command
concatenates this list of points onto the
create line command. Recall that eval uses
concat if it gets multiple arguments. The
other parts of the create line command are
protected by braces so they get evaluated
only once. Chapter 10 describes this trick in
more detail on page 134. Note that as of Tk
8.3 this would not be necessary as the create
line command can now accept a list of
coordinates as a single argument.

The arrow attribute adds an arrow head to the end of the stroke. If you try this
example you will notice that the arrow is not always aimed as you expect. This is
because there are often many points generated close together as you release the
mouse button. In fact, the X and Y coordinates seen by StrokeEnd are always the
same as those seen by the last Stroke call. If you add this duplicate point to the
end of the list of points, no arrowhead is drawn at all. In practice you might want to
make Stroke filter out points that are too close together.

A line object supports all of the attributes listed in Table 37-1 except for -offset,
the -outline family of attributes, and the -outlinestipple family of attributes.
Remember that the -fill attribute controls the color in which the line is drawn (not
the -outline attribute, as is common for other canvas items). Table 37-6 lists the
additional attributes supported by line objects. The capstyle affects the way the

ends of the line are drawn. The joinstyle affects the way line segments are joined
together. The capstyle and joinstyle attributes are from the X window system
and may not be implemented on the Macintosh and Windows platforms.

Table 37-6. Line attributes

-arrow
where

Arrow location: none, first, last, or both.

-arrowshape
{a b c}

Three parameters that describe the shape of the arrow. c is the width
and b is the overall length. a is the length of the part that touches the
line (e.g., 8 10 3).

-capstyle
what

Line ends: butt, projecting, or round.

-joinstyle
what

Line joints: bevel, miter, or round.

-smooth
boolean

If true, a spline curve is drawn.

-
splinesteps
num

Number of line segments that approximate the spline.

Oval Items

An oval is defined by two sets of coordinates that define its bounding box. If the
box is square, a circle is drawn. You can set the color of the interior of the oval as
well as the outline of the oval. A sampler of ovals is shown in Example 37-9.

Example 37-9 Canvas oval items

$c create oval 10 10 80 80 -fill red -width 4
$c create oval 100 10 150 80 -fill blue -width 0
$c create oval 170 10 250 40 -fill black -stipple gray12

An oval object support all of the object attributes listed in Table 37-1. There are no
additional attributes supported by oval objects.

Polygon Items

A polygon is a closed shape specified by sets of points, one for each vertex of the
polygon. The vertices can be connected with smooth or straight lines. Example 37-
10 creates a stop sign. The picture is centered at (0, 0) and then moved fully onto
the canvas:

Example 37-10 Canvas polygon items

$c create poly 20 -40 40 -20 40 20 20 40 -20 40 \
 -40 20 -40 -20 -20 -40 -fill red \
 -outline white -width 5
$c create text 0 0 -text STOP -fill white \
 -font {helvetica 18 bold}
$c move all 50 50

A polygon object support all of the object attributes listed in Table 37-1. Table 37-7
lists the additional attributes supported by polygon objects

Table 37-7. Polygon attributes

-joinstyle what Line joints: bevel, miter, or round.

-smooth boolean If true, a spline curve is drawn around the points.

-splinesteps num Number of line segments that approximate the spline.

Rectangle Items

A rectangle is specified with two coordinates that are its opposite corners. A
rectangle can have a fill color and an outline color. If you do not specify a fill, then
the background of the canvas (or other objects) shows through. If you stipple the
fill, the background also shows through the clear bits of the stipple pattern. You
must use a second rectangle if you want the stippled fill to completely hide what is
behind it. Example 37-11 drags out a box as the user drags the mouse. All it
requires is remembering the last rectangle drawn so that it can be deleted when the
next box is drawn:

Example 37-11 Dragging out a box

proc BoxInit {} {
 canvas .c -bg white ; pack .c
 bind .c <Button-1> {BoxBegin %W %x %y}
 bind .c <B1-Motion> {BoxDrag %W %x %y}
}
proc BoxBegin { w x y } {
 global box
 set box($w,anchor) [list $x $y]
 catch {unset box($w,last)}
}
proc BoxDrag { w x y } {
 global box
 catch {$w delete $box($w,last)}
 set box($w,last) [eval {$w create rect} $box($w,anchor) \
 {$x $y -tag box}]
}

The example uses box($w,anchor) to record the start of the box. This is a list with
the X and Y coordinates. The eval command is used so that this list can be spliced
into the create rect command. Note that as of Tk 8.3 this would not be necessary
as the create rect command can now accept a list of coordinates as a single
argument.

A rectangle object support all of the object attributes listed in Table 37-1. There
are no additional attributes supported by rectangle objects.

Text Items

The canvas text item provides yet another way to display and edit text. It supports
selection, editing, and it can extend onto multiple lines. The position of a text item
is specified by one set of coordinates and an anchor position. The size of the text is
determined by the number of lines and the length of each line. A new line is started
if there is a newline in the text string. If a width is specified, in screen units, then
any line that is longer than this is wrapped onto multiple lines. The wrap occurs
before a space character.

The editing and selection operations for text items use indices to specify positions
within a given text item. These are very similar to those used in the entry widget.
Table 37-8 summarizes the indices for canvas text items.

Table 37-8. Indices for canvas text items

0 Index of the first character.

end Index just past the last character.

number Index a character, where number counts from zero.

insert Index of the character right after the insertion cursor.

sel.first Index of the first character in the selection.

sel.last Index of the last character in the selection.

@x,y Index of the character under the specified X and Y coordinate.

There are several canvas operations that manipulate text items. These are similar to
some of the operations of the entry widget. The dchars and select to operations
treat the second index differently than the corresponding operations in the entry
and text widget. The character at the second index is included in the operation (e.g.,
deleted), while in the entry and text widget it is not.

The canvas text operations are parameterized by the tag or ID of the canvas object
being manipulated. If the tag refers to more than one object, then the operations
apply to the first object in the display list that supports an insert cursor. The display

list is described on page 581. Table 37-9 summarizes the operations on text items.
In the table $t is a text item or tag and $c is a canvas.

Table 37-9. Canvas operations that apply to text items

$c dchars $t
first ?last?

Deletes the characters from first through last, or just the
character at first.

$c focus ?$t? Sets input focus to the specified item, or returns the ID of the
item with the focus if it is not given.

$c icursor $t
index

Sets the insert cursor to just before index.

$c index $t
index

Returns the numerical value of index.

$c insert $t
index string

Inserts the string just before index.

$c select adjust
$t index

Moves the boundary of an existing selection.

$c select clear Clears the selection.

$c select from
$t index

Starts a selection.

$c select item Returns the ID of the selected item, if any.

$c select to $t
index

Extends the selection to the specified index.

There are no default bindings for canvas text items. Example 37-12 sets up some
basic bindings for canvas text items. The <Button-1> and <Button-2> bindings are
on the canvas as a whole. The rest of the bindings are on items with the text tag.
You must add the text tag to text items that should share the editable text

behavior. Small procedures are introduced for each binding to hide the details and
any local variables needed in the operations.

Canvas find overlapping vs. find closest.

The CanvasFocus procedure uses the canvas find overlapping operation to see if
a text object has been clicked. This must be used because find closest finds an
object no matter how far away it is. It also uses the type operation to make sure
only text objects are given the focus. If you want other object types to respond to
key events, you should change that.

The CanvasPaste procedure does one of two things. It pastes the selection into the
canvas item that has the focus. If no item has the focus, then a new text item is
created with the selection as its value:

Example 37-12 Simple edit bindings for canvas text items

proc Canvas_EditBind { c } {
 bind $c <Button-1> \
 {CanvasFocus %W [%W canvasx %x] [%W canvasy %y]}
 bind $c <Button-2> \
 {CanvasPaste %W [%W canvasx %x] [%W canvasy %y]}
 bind $c <<Cut>> {CanvasTextCopy %W; CanvasDelete %W}
 bind $c <<Copy>> {CanvasTextCopy %W}
 bind $c <<Paste>> {CanvasPaste %W}
 $c bind text <Button-1> \
 {CanvasTextHit %W [%W canvasx %x] [%W canvasy %y]}
 $c bind text <B1-Motion> \
 {CanvasTextDrag %W [%W canvasx %x] [%W canvasy %y]}
 $c bind text <Delete> {CanvasDelete %W}
 $c bind text <Control-d> {CanvasDelChar %W}
 $c bind text <Control-h> {CanvasBackSpace %W}
 $c bind text <BackSpace> {CanvasBackSpace %W}
 $c bind text <Control-Delete> {CanvasErase %W}
 $c bind text <Return> {CanvasNewline %W}
 $c bind text <Any-Key> {CanvasInsert %W %A}
 $c bind text <Key-Right> {CanvasMoveRight %W}
 $c bind text <Control-f> {CanvasMoveRight %W}
 $c bind text <Key-Left> {CanvasMoveLeft %W}
 $c bind text <Control-b> {CanvasMoveLeft %W}
}
proc CanvasFocus {c x y} {
 focus $c
 set id [$c find overlapping [expr $x-2] [expr $y-2] \

 [expr $x+2] [expr $y+2]]
 if {($id == {}) || ([$c type $id] != "text")} {
 set t [$c create text $x $y -text "" \
 -tags text -anchor nw]
 $c focus $t
 $c select clear
 $c icursor $t 0
 }
}
proc CanvasTextHit {c x y {select 1}} {
 $c focus current
 $c icursor current @$x,$y
 $c select clear
 $c select from current @$x,$y
}
proc CanvasTextDrag {c x y} {
 $c select to current @$x,$y
}
proc CanvasDelete {c} {
 if {[$c select item] != {}} {
 $c dchars [$c select item] sel.first sel.last
 } elseif {[$c focus] != {}} {
 $c dchars [$c focus] insert
 }
}
proc CanvasTextCopy {c} {
 if {[$c select item] != {}} {
 clipboard clear
 set t [$c select item]
 set text [$c itemcget $t -text]
 set start [$c index $t sel.first]
 set end [$c index $t sel.last]
 clipboard append [string range $text $start $end]
 } elseif {[$c focus] != {}} {
 clipboard clear
 set t [$c focus]
 set text [$c itemcget $t -text]
 clipboard append $text
 }
}
proc CanvasDelChar {c} {
 if {[$c focus] != {}} {
 $c dchars [$c focus] insert
 }
}
proc CanvasBackSpace {c} {
 if {[$c select item] != {}} {
 $c dchars [$c select item] sel.first sel.last
 } elseif {[$c focus] != {}} {
 set _t [$c focus]
 $c icursor $_t [expr [$c index $_t insert]-1]
 $c dchars $_t insert
 }
}

proc CanvasErase {c} {
 $c delete [$c focus]
}
proc CanvasNewline {c} {
 $c insert [$c focus] insert \n
}
proc CanvasInsert {c char} {
 $c insert [$c focus] insert $char
}
proc CanvasPaste {c {x {}} {y {}}} {
 if {[catch {selection get} _s] &&
 [catch {selection get -selection CLIPBOARD} _s]} {
 return ;# No selection
 }
 set id [$c focus]
 if {[string length $id] == 0 } {
 set id [$c find withtag current]
 }
 if {[string length $id] == 0 } {
 # No object under the mouse
 if {[string length $x] == 0} {
 # Keyboard paste
 set x [expr [winfo pointerx $c] - [winfo rootx $c]]
 set y [expr [winfo pointery $c] - [winfo rooty $c]]
 }
 CanvasFocus $c $x $y
 } else {
 $c focus $id
 }
 $c insert [$c focus] insert $_s
}

proc CanvasMoveRight {c} {
 $c icursor [$c focus] [expr [$c index current insert]+1]
}
proc CanvasMoveLeft {c} {
 $c icursor [$c focus] [expr [$c index current insert]-1]
}

Of the attributes listed in Table 37-1, text objects support only the -fill family of
attributes, the -stipple family of attributes, and the -state and -tags attributes.
Table 37-10 specifies the additional attributes for text items. Note that there are no
foreground and background attributes. Instead, the fill color specifies the color for
the text. It is possible to stipple the text as well. Additionally, the -width attribute is
treated differently than for other canvas objects.

Table 37-10. Text attributes

-anchor position Anchor: c (default), n, ne, e, se, s, sw, w, or nw.

-font font The font for the text.

-justify how Justification: left, right, or center.

-text string The string to display.

-width width The width, in screen units, before text is wrapped

Window Items

A window item lets you position other Tk
widgets on a canvas. The position is specified
by one set of coordinates and an anchor
position. You can also specify the width and
height, or you can let the widget determine its
own size. The following example uses a
canvas to provide a scrolling surface for a
large set of labeled entries. A frame is created
and a set of labeled entry widgets are packed
into it. This main frame is put onto the canvas
as a single window item. This way we let grid
take care of arranging all the labeled entries.
The size of the canvas is set up so that a
whole number of labeled entries are displayed.
The scroll region and scroll increment are set
up so that clicking on the scrollbar arrows
brings one new labeled entry completely into
view.

Example 37-13 Using a canvas to scroll a set of widgets

proc Example37ÿ13 { top title labels } {
 # Create a resizable toplevel window
 toplevel $top
 wm minsize $top 200 100
 wm title $top $title

 # Create a frame for buttons,
 # Only Dismiss does anything useful
 set f [frame $top.buttons -bd 4]
 button $f.quit -text Dismiss -command "destroy $top"
 button $f.save -text Save
 button $f.reset -text Reset
 pack $f.quit $f.save $f.reset -side right
 pack $f -side top -fill x

 # Create a scrolling canvas
 frame $top.c
 canvas $top.c.canvas -width 10 -height 10 \
 -yscrollcommand [list $top.c.yscroll set]
 scrollbar $top.c.yscroll -orient vertical \
 -command [list $top.c.canvas yview]
 pack $top.c.yscroll -side right -fill y
 pack $top.c.canvas -side left -fill both -expand true
 pack $top.c -side top -fill both -expand true

 Scrolled_EntrySet $top.c.canvas $labels
}
proc Scrolled_EntrySet { canvas labels } {
 # Create one frame to hold everything
 # and position it on the canvas
 set f [frame $canvas.f -bd 0]
 $canvas create window 0 0 -anchor nw -window $f

 # Create and grid the labeled entries
 set i 0
 foreach label $labels {
 label $f.label$i -text $label
 entry $f.entry$i
 grid $f.label$i $f.entry$i
 grid $f.label$i -sticky w
 grid $f.entry$i -sticky we
 incr i
 }
 set child $f.entry0

 # Wait for the window to become visible and then
 # set up the scroll region based on
 # the requested size of the frame, and set
 # the scroll increment based on the
 # requested height of the widgets

 tkwait visibility $child
 set bbox [grid bbox $f 0 0]

 set incr [lindex $bbox 3]
 set width [winfo reqwidth $f]
 set height [winfo reqheight $f]
 $canvas config -scrollregion "0 0 $width $height"
 $canvas config -yscrollincrement $incr
 set max [llength $labels]
 if {$max > 10} {
 set max 10
 }
 set height [expr $incr * $max]
 $canvas config -width $width -height $height
}
Example37ÿ13 .ex "An example" {
 alpha beta gamma delta epsilon zeta eta theta iota kappa
 lambda mu nu xi omicron pi rho sigma tau upsilon
 phi chi psi omega}

The tkwait visibility command is
important to the example. It causes the script
to suspend execution until the top-level
window, $top, is displayed on the screen. The
tkwait is necessary so the right information
gets returned by the grid bbox commands.
By waiting for a subframe of the main frame,
$child, we ensure that grid has gone through
all its processing to position the interior
widgets. The canvas's scroll region is set to be
just large enough to hold the complete frame.
The scroll increment is set to the height of one
of the grid cells. Each click on the scrollbar
arrows brings one new grid row completely
into view.

A window object supports only the -state and -tags attributes listed in Table 37-1.
Table 37-11 lists the additional attributes supported by window objects. Note that
the -width attribute is treated differently than for other canvas objects.

Table 37-11. Window attributes

-anchor
position

Anchor: c (default), n, ne, e, se, s, sw, w, or nw.

-height
height

The height, in screen units, for the widget. If the value is an empty string
(default), then the window is given whatever height it requests internally.

-width
width

The width, in screen units, for the widget. If the value is an empty string
(default), then the window is given whatever width it requests internally.

-window
name

The name of the widget to display within the canvas.

Canvas Operations

Table 37-12 summarizes the operations on canvas widgets. In the table, $c is a
canvas. $t represents a numerical object ID, a canvas tag or ÿ in Tk 8.3 or later ÿ
a logical combination of tags using the operators && (and), || (or), ^ (exclusive or),
! (not), and parenthesized subexpressions, grouped as a single argument (for
example, {(plot1 || plot2) && !fixed}). In some cases, an operation only
applies to a single object. In these cases, if a tag or tag expression identifies several
objects, the first object in the display list is operated on.

The canvas display list refers to the global order among canvas objects. New objects
are put at the end of the display list. Objects later in the display list obscure objects
earlier in the list. The term above refers to objects later in the display list.

Table 37-9 describes several of the canvas operations that only apply to text
objects. They are dchars, focus, index, icursor, insert, and select. Table 37-12
does not repeat those operations.

Table 37-12. Operations on a canvas widget

$c addtag tag
above $t

Adds tag to the item just above $t in the display list.

$c addtag tag
all

Adds tag to all objects in the canvas.

$c addtag tag
below $t

Adds tag to the item just below $t in the display list.

$c addtag tag
closest x y ?
halo? ?start?

Adds tag to the item closest to the x y position. If more than one
object is the same distance away, or if more than one object is
within halo pixels, then the last one in the display list (uppermost)
is returned. If start is specified, the closest object after start in
the display list is returned.

$c addtag tag
enclosed x1
y1 x2 y2

Adds tag to the items completely enclosed in the specified region.
x1 <= x2, y1 <= y2.

$c addtag tag
overlapping
x1 y1 x2 y2

Adds tag to the items that overlap the specified region. x1 <= x2,
y1 <= y2.

$c addtag tag
withtag $t

Adds tag to the items identified by $t.

$c bbox $t ?
tag tag ...?

Returns the bounding box of the items identified by the tag(s) in
the form x1 y1 x2 y2

$c bind $t ?
sequence? ?
command?

Sets or queries the bindings of canvas items.

$c canvasx
screenx ?
grid?

Maps from the X screen coordinate screenx to the X coordinate in
canvas space, rounded to multiples of grid if specified.

$c canvasy
screeny ?
grid?

Maps from screen Y to canvas Y.

$c cget
option

Returns the value of option for the canvas.

$c configure
...

Queries or updates the attributes of the canvas.

$c coords $t
?x1 y1 ...?

Queries or modifies the coordinates of the item. As of Tk 8.3, a list
of coordinates can be provided as a single argument.

$c create
type x y ?x2
y2 ...? ?opt
value ...?

Creates a canvas object of the specified type at the specified
coordinates. As of Tk 8.3, a list of coordinates can be provided as a
single argument.

$c delete $t
?tag ...?

Deletes the item(s) specified by the tag(s) or ID(s).

$c dtag $t ?
deltag?

Removes the specified tags from the items identified by $t. If
deltag is omitted, it defaults to $t.

$c find
addtagSearch
...

Returns the IDs of the tags that match the addtag search
specification: above, all, below, closest, enclosed, overlapping
and withtag.

$c gettags $t Returns the tags associated with the first item identified by $t.

$c itemcget
$t option

Returns the value of option for item $t.

$c
itemconfigure
$t ...

Queries or reconfigures item $t.

$c lower $t ?
belowThis?

Moves the items identified by $t to the beginning of the display
list, or just before belowThis.

$c move $t dx
dy

Moves $t by the specified amount.

$c postscript
...

Generates Postscript. Table 37-13 lists options.

$c raise $t ?
aboveThis?

Moves the items identified by $t to the end of the display list, or
just after aboveThis.

$c scale $t
x0 y0 xS yS

Scales the coordinates of the items identified by $t. The distance
between x0 and a given X coordinate changes by a factor of xS.
Similarly for Y.

$c scan mark
x y

Sets a mark for a scrolling operation.

$c scan
dragto x y

Scrolls the canvas from the previous mark.

$c type $t Returns the type of the first item identified by $t.

$t xview Returns two fractions between zero and one that describes the
amount of the canvas off-screen to the left and the amount of the
canvas displayed.

$t xview
moveto
fraction

Positions the canvas so that fraction of the scroll region is off
screen to the left.

$t xview
scroll num
what

Scrolls num of what, which is units or pages.

$t yview Returns two fractions between zero and one that describes the
amount of the canvas off screen to the top and the amount of the
canvas displayed.

$t yview
moveto
fraction

Positions the text so that fraction of the canvas scroll region is off
screen toward the top.

$t yview
scroll num
what

Scrolls num of what, which is units or pages.

Generating Postscript

The postscript operation generates Postscript based on the contents of a canvas.
One limitation in earlier versions of Tk is that images and embedded windows are
not captured in the Postscript output. As of Tk 8.3, images are included in the
generated Postscript. Also, as of Tk 8.3 for Unix and Tk 8.4.1 for Windows,
embedded windows are included in the generated Postscript if they are currently
displayed on the screen (that is, displayed within the canvas's viewport and not
obscured by other windows).

Table 37-13 summarizes all the options for generating Postscript.

Table 37-13. Canvas postscript options

-channel
fid

The channel identifier of a channel already opened for writing. The
Postscript is written to that channel, and the channel is left open for
further writing at the end of the operation. If -channel or -file are
not specified, the Postscript is returned as the result of the command.

-colormap
varName

The index of varName is a named color, and the contents of each
element is the Postscript code to generate the RGB values for that
color.

-colormode
mode

mode is one of color, grey, or mono.

-file name The file in which to write the Postscript. If -file or -channel are not
specified, the Postscript is returned as the result of the command.

-fontmap
varName

The index of varName is an X font name. Each element contains a list
of two items: a Postscript font name and a point size.

-height
size

Height of the area to print.

-
pageanchor
anchor

Anchor: c, n, ne, e, se, s, sw, w, or nw.

-
pageheight
size

Height of image on the output. A floating point number followed by c
(centimeters), i (inches), m (millimeters), or p (printer points).

-pagewidth
size

Width of image on the output.

-pagex
position

The output X coordinate of the anchor point.

-pagey
position

The output Y coordinate of the anchor point.

-rotate
boolean

If true, rotates so that X axis is the long direction of the page
(landscape orientation).

-width
size

Width of the area to print.

-x
position

Canvas X coordinate of left edge of the image.

-y
position

Canvas Y coordinate of top edge of the image.

You control what region of the canvas is printed with the -width, -height, -x, and
-y options. You control the size and location of this in the output with the -
pageanchor, -pagex, -pagey, -pagewidth, and -pageheight options. The Postscript
is written to the file named by the -file option, to a channel already opened for
writing whose channel identifier is provided by the -channel option, or it is returned
as the value of the postscript canvas operation.

You control fonts with a mapping from X screen fonts to Postscript fonts. Define an
array where the index is the name of the X font and the contents are the name and
pointsize of a Postscript font.

Example 37-14 positions a number of text objects with different fonts onto a
canvas. For each different X font used, it records a mapping to a Postscript font. The
example has a fairly simple font mapping, and in fact the canvas would probably
have guessed the same font mapping itself. If you use more exotic screen fonts, you
may need to help the canvas widget with an explicit font map.

The example positions the output at the upper-left corner of the printed page by
using the -pagex, -pagey, and -pageanchor options. Recall that Postscript has its
origin at the lower-left corner of the page.

Example 37-14 Generating Postscript from a canvas

proc Setup {} {
 global fontMap
 canvas .c
 pack .c -fill both -expand true
 set x 10
 set y 10
 set last [.c create text $x $y -text "Font sampler" \
 -font fixed -anchor nw]

 # Create several strings in different fonts and sizes

 foreach family {times courier helvetica} {
 set weight bold
 switch -- $family {
 times { set fill blue; set psfont Times}
 courier { set fill green; set psfont Courier }
 helvetica { set fill red; set psfont Helvetica }
 }
 foreach size {10 14 24} {
 set y [expr 4+[lindex [.c bbox $last] 3]]

 # Guard against missing fonts
 if {[catch {.c create text $x $y \
 -text $family-$weight-$size \
 -anchor nw -fill $fill \
 -font -*-$family-$weight-*-*-*-$size-*} \
 it] == 0} {
 set fontMap(-*-$family-$weight-*-*-*-$size-*)\
 [list $psfont $size]
 set last $it
 }
 }
 }
 set fontMap(fixed) [list Courier 12]
}
proc Postscript { c file } {
 global fontMap
 # Tweak the output color
 set colorMap(blue) {0.1 0.1 0.9 setrgbcolor}
 set colorMap(green) {0.0 0.9 0.1 setrgbcolor}
 # Position the text at the upper-left corner of
 # an 8.5 by 11 inch sheet of paper
 $c postscript -fontmap fontMap -colormap colorMap \
 -file $file \
 -pagex 0.i -pagey 11.i -pageanchor nw
}

Canvas Attributes

Table 37-14 lists the attributes for the canvas widget. The table uses the resource
name, which has capitals at internal word boundaries. In Tcl commands, the
attributes are specified with a dash and are all lowercase.

Table 37-14. Canvas attribute resource names

background The normal background color.

borderWidth The width of the border around the canvas.

closeEnough Distance from mouse to an overlapping object.

confine Boolean. True constrains the view to the scroll region.

cursor Cursor to display when mouse is over the widget.

height Height, in screen units, of canvas display.

highlightBackground Focus highlight color when widget does not have focus.

highlightColor Color for input focus highlight border.

highlightThickness Width of highlight border.

insertBackground Background for area covered by insert cursor.

insertBorderwidth Width of cursor border. Nonzero for 3D effect.

insertOffTime Time, in milliseconds the insert cursor blinks off.

insertOnTime Time, in milliseconds the insert cursor blinks on.

insertWidth Width of insert cursor. Default is 2.

relief flat, sunken, raised, groove, solid, or ridge.

scrollRegion Left, top, right, and bottom coordinates of the canvas.

selectBackground Background color of selection.

selectForeground Foreground color of selection.

selectBorderWidth Width of selection border. Nonzero for 3D effect.

state The default state for canvas objects: normal or disabled.
(Tk 8.3)

takeFocus Controls focus changes from keyboard traversal.

width Width in screen units for viewable area.

xScrollCommand Tcl command prefix for horizontal scrolling.

xScrollIncrement Distance for one scrolling unit in the X direction.

yScrollCommand Tcl command prefix for vertical scrolling.

yScrollIncrement Distance for one scrolling unit in the Y direction.

The scroll region of a canvas defines the boundaries of the canvas coordinate space.
It is specified as four coordinates, x1 y1 x2 y2 where (x1, y1) is the top-left
corner and (x2, y2) is the lower-right corner. If the confine attribute is true, then
the canvas cannot be scrolled outside this region. It is OK to position canvas objects
partially or totally off the scroll region; they just may not be visible. The scroll
increment attributes determine how much the canvas is scrolled when the user
clicks on the arrows in the scrollbar.

The closeEnough attribute indicates how far away a position can be from an object
and still be considered to overlap it. This applies to the overlapping search criteria.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Hints

Screen Coordinates vs. Canvas Coordinates

The canvasx and canvasy operations map
from a screen coordinate to a canvas
coordinate. If the scroll region is larger than
the display area, then you need to use these
operations to map from the X and Y in an
event (i.e., %x and %y) and the canvas
coordinates. The typical use is:

set id [$c find closest [$c canvasx %x] [$c canvasy %y]]

Large Coordinate Spaces

Coordinates for canvas items are stored internally as floating point numbers, so the
values returned by the coords operation will be floating point numbers. If you have
a very large canvas, you may need to adjust the precision with which you see
coordinates by setting the tcl_precision variable. This is an issue if you query
coordinates, perform a computation on them, and then update the coordinates. (Tcl
8.0 changed the default tcl_precision from 6 to 12.)

Scaling and Rotation

The scale operation scales the coordinates of one or more canvas items. It is not
possible to scale the whole coordinate space. The main problem with this is that you
can lose precision when scaling and unscaling objects because their internal
coordinates are actually changed by the scale operation. For simple cases this is not
a problem, but in extreme cases it can show up.

The canvas does not support rotation.

Resources

There is no resource database support built into the canvas and its items. You can,
however, define resources and query them yourself. For example, you could define:

*Canvas.foreground: blue

This would have no effect by default. However, your code could look for this
resource with option get, and specify this color directly for the -fill attribute of
your objects:

set fg [option get $c foreground {}]
$c create rect 0 0 10 10 -fill $fg

The main reason to take this approach is to let your users customize the appearance
of canvas objects without changing your code.

Objects with Many Points

The canvas implementation seems well optimized to handle lots of canvas objects.
However, if an object like a line or a polygon has many points that define it, the
implementation ends up scanning through these points linearly. This can adversely
affect the time it takes to process mouse events in the area of the canvas containing
such an item. Apparently any object in the vicinity of a mouse click is scanned to
see if the mouse has hit it so that any bindings can be fired.

Selecting Canvas Items

Example 38-5 on page 596 implements cut and paste of canvas objects. The
example exchanges the logical description of canvas objects with the selection
mechanism.

Part V: Tk Details
Part V describes the rest of the Tk toolkit.

Chapter 38 describes the selection mechanism that is used for cut and paste
between applications. It includes an example that implements cut and paste of
graphical objects on a canvas.

Chapter 39 describes dialogs. Tk has several built-in dialogs that use the
native platform look and feel. The chapter also describes how to build your
own dialogs.

Chapter 40 is the first of three chapters that explain widget attributes in more
detail. It describes size and layout attributes. Chapter 41 describes colors,
images, and cursors. It explains how to use the bitmap and color photo image
types. The chapter includes a complete map of the cursor font. Chapter 42
describes fonts and other text-related attributes. The extended example is a
font selection application.

Chapter 43 describes the Tk send command that lets you send commands
among Tk applications. It also presents a socket-based alternative that can be
used among applications on different hosts and with the Safe-Tcl mechanism
to limit the power of remotely invoked commands.

Chapter 44 explains how to interact with the window manager using the wm
command. The chapter describes all the information available through the
winfo command.

Chapter 45 builds upon Chapter 31 to create a user preferences package and
an associated user interface. The preference package links a Tcl variable used
in your application to a resource specification.

Chapter 46 presents a user interface to the binding mechanism. You can
browse and edit bindings for widgets and classes with the interface.

Chapter 38. Selections and the Clipboard>
Cut and paste allows information exchange between applications, and it is built upon
a general purpose selection mechanism. The CLIPBOARD selection is used to
implement cut and paste on all platforms. X Windows applications may also use the
PRIMARY selection. This chapter describes the selection and clipboard commands.

Copy and paste is a basic way to transfer data between just about any two
applications. In Tk, copy and paste is based on a general selection mechanism
where the selection has a name, type, format, and value. For the most part you can
ignore these details because they are handled by the Tk widgets. However, you can
also control the selection explicitly. This chapter describes the selection model and
the selection and clipboard commands. The last section of this chapter presents
an example that implements copy and paste of graphical objects in a canvas.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Selection Model

The Windows and Macintosh selection model is simpler than the selection model
used in X windows. In the Macintosh and Windows there is one selection, although
that selection may store different types of data like text or images. Users copy data
from an application into a clipboard, and later they paste it into another application.

In X windows the selection model is generalized to support more than one selection,
and they are identified by names like PRIMARY and CLIPBOARD. The CLIPBOARD
selection is used for copy and paste as in Macintosh and Windows. The PRIMARY
selection is described later. You could use other selection names, like SECONDARY or
FOOBAR, but that only works if the other applications know about that selection
name. The selection data has both a type and a format. These are described briefly
later.

Data is not copied into a selection. Instead, an application asserts ownership of a
selection, and other applications request the value of the selection from that owner.
This model is used on all platforms. The window system keeps track of ownership,
and applications are informed when some other application takes away ownership.
Several of the Tk widgets implement selections and take care of asserting ownership
and returning its value.

The X PRIMARY selection is used in a way that eliminates the explicit copy step in
copy and paste user actions. Whenever you select an object in your application,
your application automatically puts that value into the PRIMARY selection. The Tk
entry, listbox, and text widgets do this with their text selections, although you can
turn this off with the exportSelection widget attribute. Users typically insert the
value of the PRIMARY selection by clicking with the middle mouse button. There is
only one instance of the PRIMARY selection across all widgets and all applications. If
the user makes a new selection it automatically overwrites the previous value of the
PRIMARY selection.

The CLIPBOARD is cross-platform.

If you want a mechanism that works on all platforms, use the CLIPBOARD selection.
The PRIMARY selection is implemented by Tk on all platforms, and you can use it
within an application, but on Windows and Macintosh the non-Tk applications do not
know about the PRIMARY selection. The main goal of copy and paste is to provide
general interoperability among all applications, so stick with the CLIPBOARD.

Tk 3.6 and earlier only supported the PRIMARY selection. When Tk 4.0 added support
for the CLIPBOARD, I tried to merge the two selections to "simplify" things for my

users. Example 38-1 implements a Paste function that inserts either the PRIMARY or
CLIPBOARD selection into a text widget. The selection get command is used to
retrieve the selection value:

Example 38-1 Paste the PRIMARY or CLIPBOARD selection

proc Paste { text } {
 if [catch {selection get} sel] {
 if [catch {selection get -selection CLIPBOARD} sel] {
 # no selection or clipboard data
 return
 }
 }
 $text insert insert $sel
}

This Paste function can be convenient, but it turns out that users still need to keep
track of the difference between the two selections. If a user only understands the
CLIPBOARD, then the use of PRIMARY is only surprising. I learned that it is best to
have a separate paste user action for the two selections. The convention is that
<ButtonRelease-2> sets the insert point and inserts the PRIMARY selection. (This
convention is awkward with the one- and two-button mice on Macintosh and
Windows.) The <<Paste>> event (e.g., the Paste key) simply inserts the CLIPBOARD
selection at the current insert point. This convention is shown in Example 38-2,
although these bindings are defined automatically for the text and entry widgets:

Example 38-2 Separate paste actions

bind Text <<Paste>> {
 catch {%W insert insert \
 [selection get -selection CLIPBOARD]
 }
}
bind Text <ButtonRelease-2> {
 %W mark set insert @%x,%y
 catch {%W insert insert \
 [selection get -selection PRIMARY]
 }
}

The selection Command

There are two Tcl commands that deal with selections. The selection command is a
general-purpose command that can set and get different selections. By default it
manipulates the PRIMARY selection. The clipboard command is a convenience
command for manipulating the CLIPBOARD selection.

The selection command exposes the fully general selection model of different
selections, types, and formats. You can define selection handlers that return
selection values, and you can assert ownership of a selection and find out when you
lose ownership to another application. Example 38-5 on page 596 shows a selection
handler for a canvas.

A selection can have a type. The default is STRING. The type is different than the
name of the selection (e.g., PRIMARY or CLIPBOARD). Each type can have a format,
and the default format is STRING. Ordinarily these defaults are fine. If you are
dealing with non-Tk applications, however, you may need to ask for their selections
by the right type (e.g., FILE_NAME). Formats include UTF8_STRING, STRING, ATOM,
and INTEGER. An ATOM is a name that is registered with the X server and identified
by number. "Atoms and IDs" on page 667 describes Tk commands for manipulating
atoms. It is probably not a good idea to use non-STRING types and formats because
it limits what other applications can use the information. The details about X
selection types and formats are specified in the Inter-Client Communication
Conventions Manual (David Rosenthal, Stuart Marks, X Consortium Standard). This
is distributed with the X11 sources and can be found on the web at
http://tronche.com/gui/x/icccm/.

All of the selection operations take a -selection option that specifies the name of
the selection being manipulated. This defaults to PRIMARY. Some of the operations
take a -displayof option that specifies what display the selection is on. The value
for this option is a Tk pathname of a window, and the selection on that window's
display is manipulated. This is useful in X where applications can have their windows
on remote displays. The default is to manipulate the selection on the display of the
main window. Table 38-1 summarizes the selection command:

Table 38-1. The selection command

selection clear ?-displayof
win? ?-selection sel?

Clears the specified selection.

selection get ?-displayof
win? ?-selection sel? ?-type
type?

Returns the specified selection. The type
defaults to STRING.

http://tronche.com/gui/x/icccm/default.htm

selection handle ?-selection
sel? ?-type type? ?-format
format? window command

Defines command to be the handler for selection
requests when window owns the selection.

selection own ?-displayof
window? ?-selection sel?

Returns the Tk pathname of the window that
owns the selection, if it is in this application.

selection own ?-command
command? ?-selection sel?
window

Asserts that window owns the sel selection. The
command is called when ownership of the
selection is taken away from window.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The clipboard Command

The clipboard command manipulates values in the CLIPBOARD selection. The
CLIPBOARD is meant for values that have been recently or temporarily deleted. It is
use for the copy and paste model of selections. Prior to Tk 8.4, you had to use the
selection command to retrieve values from the CLIPBOARD selection:

selection get -selection CLIPBOARD

However, Tk 8.4 introduced a clipboard get operation as a convenience for
retrieving the clipboard value.

Table 38-2 summarizes the clipboard command:

Table 38-2. The clipboard command

clipboard append ?-displayof
win? ?-format format? ?-type
type? ?--? data

Appends data to the CLIPBOARD with the
specified type and format, which both
default to STRING.

clipboard clear ?-displayof win? Clears the CLIPBOARD selection.

clipboard get ?-displayof win? ?
-type type?

Returns the CLIPBOARD selection. The type
defaults to STRING.

Selection Handlers

The selection handle command registers a Tcl command to handle selection
requests. The command is called to return the value of the selection to a requesting
application. If the selection value is large, the command might be called several
times to return the selection in pieces. The command gets two parameters that
indicate the offset within the selection to start returning data, and the maximum
number of bytes to return. If the command returns fewer than that many bytes, the
selection request is assumed to be completed. Otherwise, the command is called
again to get the rest of the data, and the offset parameter is adjusted accordingly.

You can also get a callback when you lose ownership of the selection. At that time it
is appropriate to unhighlight the selected object in your interface. The selection
own command sets ownership and registers a callback for when you lose ownership.

A Canvas Selection Handler

Example 38-3 through Example 38-7 implement cut and paste for a canvas. The
CanvasSelect_Demo procedure creates a canvas and sets up some bindings for cut
and paste:

Example 38-3 Bindings for canvas selection

proc CanvasSelect_Demo { c } {
 canvas $c
 pack $c
 $c create rect 10 10 50 50 -fill red -tag object
 $c create poly 100 100 100 30 140 50 -fill orange \
 -tag object
 # Set up cut and paste bindings
 $c bind object <Button-1> [list CanvasSelect $c %x %y]
 bind $c <Key-Delete> [list CanvasDelete $c]
 bind $c <<Cut>> [list CanvasCut $c]
 bind $c <<Copy>> [list CanvasCopy $c]
 bind $c <<Paste>> [list CanvasPaste $c]
 bind $c <Button-2> [list CanvasPaste $c %x %y]
 # Register the handler for selection requests
 selection handle $c [list CanvasSelectHandle $c]
}

The CanvasSelect procedure selects an object. It uses the find closest canvas
operation to find out what object is under the mouse, which works because the
binding is on canvas items with the object tag. If the binding were on the canvas as
a whole, you would use the find overlapping operation to limit selection to
objects near the mouse click. The CanvasHighlight procedure is used to highlight
the selected object. It displays small boxes at the corners of the object's bounding

box. Finally, the CanvasSelectLose procedure is registered to be called when
another application asserts ownership of the PRIMARY selection.

Example 38-4 Selecting objects

proc CanvasSelect { w x y } {
 # Select an item on the canvas.
 global canvas
 set id [$w find closest $x $y]
 set canvas(select,$w) $id
 CanvasHighlight $w $id
 # Claim ownership of the PRIMARY selection
 selection own -command [list CanvasSelectLose $w] $w
 focus $w
}
proc CanvasHighlight {w id {clear clear}} {
 if {$clear == "clear"} {
 $w delete highlight
 }
 foreach {x1 y1 x2 y2} [$w bbox $id] { # lassign }
 foreach x [list $x1 $x2] {
 foreach y [list $y1 $y2] {
 $w create rectangle [expr $x-2] [expr $y-2] \
 [expr $x+2] [expr $y+2] -fill black \
 -tag highlight
 }
 }
}
proc CanvasSelectLose { w } {
 # Some other app has claimed the selection
 global canvas
 $w delete highlight
 unset canvas(select,$w)
}

Once you claim ownership, Tk calls back to the CanvasSelectHandle procedure
when another application, even yours, requests the selection. This uses
CanvasDescription to compute a description of the canvas object. It uses canvas
operations to query the object's configuration and store that as a command that will
create the object:

Example 38-5 A canvas selection handler

proc CanvasSelectHandle { w offset maxbytes } {
 # Handle a selection request
 global canvas
 if ![info exists canvas(select,$w)] {
 error "No selected item"
 }
 set id $canvas(select,$w)

 # Return the requested chunk of data.
 return [string range [CanvasDescription $w $id] \
 $offset [expr $offset+$maxbytes]]
}
proc CanvasDescription { w id } {
 # Generate a description of the object that can
 # be used to recreate it later.
 set type [$w type $id]
 set coords [$w coords $id]
 set config {}
 # Bundle up non-default configuration settings
 foreach conf [$w itemconfigure $id] {
 # itemconfigure returns a list like
 # -fill {} {} {} red
 set default [lindex $conf 3]
 set value [lindex $conf 4]
 if {[string compare $default $value] != 0} {
 lappend config [lindex $conf 0] $value
 }
 }
 return [concat CanvasObject $type $coords $config]
}

The CanvasCopy procedure puts the description of the selected item onto the
clipboard with the clipboard append command. The CanvasDelete deletes an
object and the highlighting, and CanvasCut is built from CanvasCopy and
CanvasDelete:

Example 38-6 The copy and cut operations

proc CanvasCopy { w } {
 global canvas
 if [info exists canvas(select,$w)] {
 set id $canvas(select,$w)
 clipboard clear
 clipboard append [CanvasDescription $w $id]
 }
}
proc CanvasDelete {w} {
 global canvas
 catch {
 $w delete highlight
 $w delete $canvas(select,$w)
 unset canvas(select,$w)
 }
}
proc CanvasCut { w } {
 CanvasCopy $w
 CanvasDelete $w
}

The CanvasPaste operation gets the value from the CLIPBOARD selection. The
selection value has all the parameters needed for a canvas create operation. It gets
the position of the new object from the <Button-2> event, or from the current
mouse position if the <<Paste>> event is generated. If the mouse is out of the
window, then the object is just put into the middle of the canvas. The original
position and the new position are used to compute values for a canvas move:

Example 38-7 Pasting onto the canvas

proc CanvasPaste { w {x {}} {y {}}} {
 # Paste the selection from the CLIPBOARD
 if [catch {selection get -selection CLIPBOARD} sel] {
 # no clipboard data
 return
 }
 if {[string length $x] == 0} {
 # <<Paste>>, get the current mouse coordinates
 set x [expr [winfo pointerx $w] - [winfo rootx $w]]
 set y [expr [winfo pointery $w] - [winfo rooty $w]]
 if {$x < 0 || $y < 0 ||
 $x > [winfo width $w] ||
 $y > [winfo height $w]} {
 # Mouse outside the window - center object
 set x [expr [winfo width $w]/2]
 set y [expr [winfo height $w]/2]
 }
 }
 if [regexp {^CanvasObject} $sel] {
 if [catch {eval {$w create} [lrange $sel 1 end]} id] {
 return;
 }
 # look at the first coordinate to see where to
 # move the object. Element 1 is the type, the
 # next two are the first coordinate
 set x1 [lindex $sel 2]
 set y1 [lindex $sel 3]
 $w move $id [expr $x-$x1] [expr $y-$y1]
 }
}

There is more you can do for a drawing program, of course. You'd like to be able to
select multiple objects, create new ones, and more. The ImPress application by
Christopher Cox is a full-featured page layout application based on the Tk canvas.
You can find it on the Web at:

http://www.ntlug.org/~ccox/impress/

http://www.ntlug.org/~ccox/impress/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 39. Focus, Grabs, and Dialogs
Dialog boxes are a standard part of any user interface. Several dialog boxes are
built into Tk. This chapter also describes how to build dialogs from scratch, which
involves keyboard focus and grabs. Input focus directs keyboard events to different
widgets. The grab mechanism lets a widget capture the input focus. This chapter
describes the focus, grab, tk_dialog, and tkwait commands. Tk 4.2 adds
tk_getOpenFile, tk_getSaveFile, tk_chooseColor, and tk_messageBox. Tk 8.3
adds tk_chooseDirectory.

Dialog boxes are a common feature in a user interface. The application needs some
user response before it can continue. A dialog box displays some information and
some controls, and the user must interact with it before the application can
continue. To implement this, the application grabs the input focus so that the user
can only interact with the dialog box. Tk has several built-in dialog boxes, including
standard dialogs for finding files and selecting colors. A standard dialog has the
same Tcl interface on all platforms, but it is implemented with platform-specific
library routines to provide native look and feel. This chapter describes the dialogs
built into Tk and then goes into the details of focus and grabs.

Standard Dialogs

The tk_dialog command presents a choice of buttons and returns a number
indicating which one was clicked by the user. The general form of the command is:

tk_dialog win title text bitmap default ?label? ?label? ...

The title appears in the title bar, and the text appears in the dialog. The bitmap
appears to the left of the text. Specify {} for the bitmap if you do not want one. The
set of built-in bitmaps is given on page 627. The label arguments give labels that
appear on buttons along the bottom of the dialog. The default argument gives the
index of the default button, counting from zero. If there is no default, specify {} or
-1.

Message Box

The tk_messageBox dialog is a limited form of tk_dialog that has native
implementations on the different platforms. Like tk_dialog, it allows for a message,
bitmap, and a set of buttons. However, the button sets are predefined, and the
bitmaps are limited. The yesno button set, for example, displays a Yes and a No
button. The abortretryignore button set displays Abort, Retry, and Ignore
buttons. The tk_messageBox command returns the symbolic name of the selected
button (e.g., yes or retry.) The yesnocancel message box could be used when
trying to quit with unsaved changes:

set choice [tk_messageBox -type yesnocancel -default yes \
 -message "Save changes before quitting?" \
 -icon question]

The complete set of options to tk_messageBox is listed in Table 39-1:

Table 39-1. Options to tk_messageBox

-default
name

Default button name (e.g., yes)

-icon name Name: error, info, question, or warning.

-message
string

Message to display.

-parent
window

Embeds dialog in window.

-title title Dialog title (UNIX and Windows)

-type type Type: abortretrycancel, ok, okcancel, retrycancel, yesno, or
yesnocancel

File and Directory Dialogs

There are two standard file dialogs, tk_getOpenFile and tk_getSaveFile, and one
standard directory dialog, tk_chooseDirectory. The tk_getOpenFile dialog is used
to find an existing file, while tk_getSaveFile can be used to find a new file. The
tk_chooseDirectory dialog, added in Tk 8.3, allows the user to select a directory,
rather than a file. These procedures return the selected file or directory name, or
the empty string if the user cancels the operation. These procedures take several
options that are listed in Table 39-2:

Table 39-2. Options to the standard file and directory dialogs

-
defaultextension
ext

Appends ext if an extension is not specified. tk_getOpenFile
and tk_getSaveFile only.

-filetypes
typelist

typelist defines a set of file types that the user can select to
limit the files displayed in the dialog. tk_getOpenFile and
tk_getSaveFile only.

-initialdir dir Lists contents of dir in the initial display. If not provided, then
the current working directory is displayed.

-initialfile
file

Default file, for tk_getSaveFile only.

-message string A message to include in the client area of the dialog.
(Macintosh, only when Navigation Services are installed.)
tk_getOpenFile and tk_getSaveFile only. (Tk 8.3.1)

-multiple Allows the user to select multiple files, returned as a list.
tk_getOpenFile only. (Tk 8.4)

-mustexist
boolean

If False (default), the user may specify non-existent directories.
tk_chooseDirectory only.

-parent window Creates the dialog as a child of window. The dialog is displayed
on top of its parent window.

-title string Displays string in the title (UNIX and Windows).

The file dialogs can include a listbox that lists different file types. The file types are
used to limit the directory listing to match only those types. The typelist option
specifies a set of file extensions and Macintosh file types that correspond to a
named file type. If you do not specify a typelist, users just see all the files in a
directory. Each item in typelist is itself a list of three values:

name extensions ?mactypes?

The name is displayed in the list of file types. The extensions is a list of file
extensions corresponding to that type. The empty extension "" matches files without
an extension, and the extension * matches all files. The mactypes is an optional list
of four-character Macintosh file types, which are ignored on other platforms. On the
Macintosh, if you give both extensions and mactypes, the files must match both. If
the extensions is an empty list, only the mactypes are considered. However, you
can repeat name in the typelist and give extensions in one set and mactypes in
another set. If you do this, then files that match either the extensions or mactypes
are listed.

The following typelist matches Framemaker Interchange Files that have both a
.mif extension and a MIF type:

set typelist {
 {"Maker Interchange Files" {".mif"} {"MIF "}}
}

The following typelist matches GIF image files that have either a .gif extension or
the GIFF file type. Note that the mactypes are optional:

set typelist {
 {"GIF Image" {".gif"}}
 {"GIF Image" {} {"GIFF"}}}
}

The following typelist puts all these together, along with an entry for all files. The
entry that comes first is displayed first:

set typelist {
 {"All Files" {*}}
 {"GIF Image" {".gif"}}
 {"GIF Image" {} {"GIFF"}}
 {"Maker Interchange Files" {".mif"} {"MIF "}}
}

Color Dialog

The tk_chooseColor dialog displays a color selection dialog. It returns a color, or
the empty string if the user cancels the operation. The options to tk_chooseColor
are listed in Table 39-3:

Table 39-3. Options to tk_chooseColor

-initialcolor color Initial color to display.

-parent window Creates the dialog as an embedded child of window.

-title string Displays string in the title (UNIX and Windows).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Custom Dialogs

When you create your own dialogs, you need to understand keyboard focus, focus
grabs, and how to wait for the user to finish with a dialog. Here is the general
structure of your code when creating a dialog:

Create widgets, then
focus $toplevel
grab $toplevel
tkwait window $toplevel

This sequence of commands directs keyboard focus to the toplevel containing your
dialog. The grab forces the user to interact with the dialog before using other
windows in your application. The tkwait command returns when the toplevel
window is destroyed, and this automatically releases the grab. This assumes that
the button commands in the dialog destroy the toplevel. The following sections
explain these steps in more detail, and Example 39-1 on page 606 illustrates a more
robust sequence.

Input Focus

The window system directs keyboard events to the toplevel window that currently
has the input focus. The application, in turn, directs the keyboard events to one of
the widgets within that toplevel window. The focus command sets focus to a
particular widget, and it is used by the default bindings for Tk widgets. Tk
remembers what widget has focus within a toplevel window and automatically gives
focus to that widget when the system gives focus to a toplevel window.

On Windows and Macintosh, the focus is given to an application when you click in its
window. On UNIX, the window manager application gives focus to different windows,
and window managers allow different conventions to shift focus. The click-to-type
model is similar to Windows and Macintosh. There is also focus-follows-mouse,
which gives focus to the window under the mouse. One thing to note about click-to-
type is that the application does not see the mouse click that gives the window
focus.

Once the application has focus, you can manage the focus changes among your
widgets any way you like. By default, Tk uses a click-to-type model. Text and entry
widgets set focus to themselves when you click on them with the left mouse button.
You can get the focus-follows-mouse model within your widgets by calling the
tk_focusFollowsMouse procedure. However, in many cases you will find that an
explicit focus model is actually more convenient for users. Carefully positioning the
mouse over a small widget can be tedious.

The focus Command

Table 39-4 summarizes the focus command. The focus implementation supports
multiple displays with a separate focus window on each display. This is useful on
UNIX where X supports multiple displays. The -displayof option can be used to
query the focus on a particular display. The -lastfor option finds out what widget
last had the focus within the same toplevel as another window. Tk will restore focus
to that window if the widget that has the focus is destroyed. The toplevel widget
gets the focus if no widget claims it.

Table 39-4. The focus command

focus Returns the widget that currently has the focus on the display of
the application's main window.

focus ?-force?
window

Sets the focus to window. The -force option ignores the window
manger, so use it sparingly.

focus -
displayof win

Returns the focus widget on the same display as win.

focus -lastfor
win

Returns the name of the last widget to have the focus in the same
toplevel as win.

Keyboard Focus Traversal

Users can change focus among widgets with <Tab> and <Shift-Tab>. The creation
order of widgets determines a traversal order for focus that is used by the
tk_focusNext and tk_focusPrev procedures. There are global bindings for <Tab>
and <Shift-Tab> that call these procedures:

bind all <Tab> {tk_focusNext %W}
bind all <Shift-Tab> {tk_focusPrev %W}

The Tk widgets highlight themselves when they have the focus. The highlight size is
controlled with the highlightThickness attribute, and the color of the highlight is
set with the highlightColor attribute. The Tk widgets, even buttons and scrollbars,
have bindings that support keyboard interaction. A <space> invokes the command
associated with a button, if the button has the input focus.

All widgets have a takeFocus attribute that the tk_focusNext and tk_focusPrev
procedures use to determine if a widget will take the focus during keyboard
traversal. There are four possible values to the attribute:

0 indicates the widget should not take focus.

1 indicates the widget should always take focus.

An empty string means the traversal procedures tk_focusNext and
tk_focusPrev should decide based on the widget's state and bindings.

Otherwise the value is a Tcl command prefix. The command is called with the
widget name as an argument, and it should return either 0, 1, or the empty
string.

Grabbing the Focus

An input grab overrides the normal focus mechanism. For example, a dialog box can
grab the focus so that the user cannot interact with other windows in the
application. The typical scenario is that the application is performing some task but
it needs user input. The grab restricts the user's actions so it cannot drive the
application into an inconsistent state. In most cases you only need to use the grab
and grab release commands. Note that the grab set command is equivalent to
the grab command. Table 39-5 summarizes the grab command.

Table 39-5. The grab command

grab ?-global?
window

Sets a grab to a particular window.

grab current ?
window?

Queries the grabs on the display of window, or on all displays if
window is omitted.

grab release
window

Releases a grab on window.

grab set ?-
global? win

Sets a grab to a particular window.

grab status
window

Returns none, local, or global.

A global grab prevents the user from interacting with other applications, too, even
the window manager. Tk menus use a global grab, for example, which is how they

unpost themselves no matter where you click the mouse. When an application
prompts for a password, a global grab is also a good idea. This prevents the user
from accidentally typing their password into a random window. The next section
includes examples that use the grab command.

The tkwait Command

You wait for the user to interact with the dialog by using the tkwait command. The
tkwait waits for something to happen, and while waiting it allows events to be
processed. Like vwait, you can use tkwait to wait for a Tcl variable to change
value. You can also wait for a window to become visible, or wait for a window to be
destroyed. Table 39-6 summarizes the tkwait command.

Table 39-6. The tkwait command

tkwait variable varname Waits for the global variable varname to be set.

This is just like the vwait command.

tkwait visibility win Waits for the window win to become visible.

tkwait window win Waits for the window win to be destroyed.

Use tkwait with global variables.

The variable specified in the tkwait variable command must be a global variable.
Remember this if you use procedures to modify the variable. They must declare it
global or the tkwait command will not notice the assignments.

The tkwait visibility waits for the visibility state of the window to change. Most
commonly this is used to wait for a newly created window to become visible. For
example, if you have any sort of animation in a complex dialog, you could wait until
the dialog is displayed before starting the animation.

Destroying Widgets

The destroy command deletes one or more widgets. If the widget has children, all
the children are destroyed, too. Chapter 44 describes a protocol on page 661 to
handle destroy events that come from the window manager. You wait for a window
to be deleted with the tkwait window command.

The focus, grab, tkwait sequence

In practice, I use a slightly more complex command sequence than just focus,
grab, and tkwait. You can remember what widget used to have the focus and then
restore it after the dialog completes. When you do this, it is more reliable to restore
focus before destroying the dialog. This prevents a tug of war between your
application and the window manager. This sequence looks like:

set old [focus]
focus $toplevel
grab $toplevel
tkwait variable doneVar
grab release $toplevel
focus $old
destroy $toplevel

This sequence supports another trick I use, which is to unmap dialogs instead of
destroying them. This way the dialogs appear more quickly the next time they are
used. This makes creating the dialogs a little more complex because you need to
see if the toplevel already exists. Chapter 44 describes the window manager
commands used to map and unmap windows on page 661. Example 39-1 shows
Dialog_Create, Dialog_Wait, and Dialog_Dismiss that capture all of these tricks:

Example 39-1 Procedures to help build dialogs

proc Dialog_Create {top title args} {
 global dialog
 if [winfo exists $top] {
 switch -- [wm state $top] {
 normal {
 # Raise a buried window
 raise $top
 }
 withdrawn -
 iconic {
 # Open and restore geometry
 wm deiconify $top
 catch {wm geometry $top $dialog(geo,$top)}
 }
 }
 return 0
 } else {
 eval {toplevel $top} $args
 wm title $top $title

 return 1
 }
}
proc Dialog_Wait {top varName {focus {}}} {
 upvar $varName var

 # Poke the variable if the user nukes the window
 bind $top <Destroy> [list set $varName cancel]

 # Grab focus for the dialog
 if {[string length $focus] == 0} {
 set focus $top
 }
 set old [focus -displayof $top]
 focus $focus
 catch {tkwait visibility $top}
 catch {grab $top}

 # Wait for the dialog to complete
 tkwait variable $varName
 catch {grab release $top}
 focus $old
}
proc Dialog_Dismiss {top} {
 global dialog
 # Save current size and position
 catch {
 # window may have been deleted
 set dialog(geo,$top) [wm geometry $top]
 wm withdraw $top
 }
}

The Dialog_Wait procedure allows a different focus widget than the toplevel. The
idea is that you can start the focus out in the appropriate widget within the dialog,
such as the first entry widget. Otherwise, the user has to click in the dialog first.

Grab can fail.

The catch statements in Dialog_Wait come from my experiences on different
platforms. The tkwait visibility is sometimes required because grab can fail if
the dialog is not yet visible. However, on other systems, the tkwait visi bility
itself can fail in some circumstances. Tk reflects these errors, but in this case all
that can go wrong is no grab. The user can still interact with the dialog without a
grab, so I just ignore these errors.

Prompter Dialog

Example 39-2 A simple dialog

proc Dialog_Prompt { string } {
 global prompt
 set f .prompt
 if [Dialog_Create $f "Prompt" -borderwidth 10] {
 message $f.msg -text $string -aspect 1000
 entry $f.entry -textvariable prompt(result)
 set b [frame $f.buttons]
 pack $f.msg $f.entry $f.buttons -side top -fill x
 pack $f.entry -pady 5
 button $b.ok -text OK -command {set prompt(ok) 1}
 button $b.cancel -text Cancel \
 -command {set prompt(ok) 0}
 pack $b.ok -side left
 pack $b.cancel -side right
 bind $f.entry <Return> {set prompt(ok) 1 ; break}
 bind $f.entry <Control-c> {set prompt(ok) 0 ; break}
 }
 set prompt(ok) 0
 Dialog_Wait $f prompt(ok) $f.entry
 Dialog_Dismiss $f
 if {$prompt(ok)} {
 return $prompt(result)
 } else {
 return {}
 }
}
Dialog_Prompt "Please enter a name"

Example 39-2 shows Dialog_Prompt, which gets a value from the user, returning
the value entered, or the empty string if the user cancels the operation.
Dialog_Prompt uses the Tcl variable prompt(ok) to indicate the dialog is complete.
The variable is set if the user presses the OK or Cancel buttons, or if the user
presses <Return> or <Control-c> in the entry widget. The Dialog_Wait procedure
waits on prompt(ok), and it grabs and restores focus. If the Dialog_Create
procedure returns 1, then the dialog is built: otherwise, it already existed.

Keyboard Shortcuts and Focus

Focus is set on the entry widget in the dialog with Dialog_Wait, and it is convenient
if users can use special key bindings to complete the dialog. Otherwise, they need to
take their hands off the keyboard and use the mouse. The example defines bindings
for <Return> and <Control-c> that invoke the OK and Cancel buttons, respectively.
The bindings override all other bindings by including a break command. Otherwise,
the Entry class bindings insert the short-cut keystroke into the entry widget.

Animation with the update Command

Suppose you want to entertain your user while your application is busy. By default,
the user interface hangs until your processing completes. Even if you change a label
or entry widget in the middle of processing, the updates to that widget are deferred
until an idle moment. The user does not see your feedback, and the window is not
refreshed if it gets obscured and uncovered. The solution is to use the update
command that forces Tk to go through its event loop and update the display.

The next example shows a Feedback procedure that displays status messages. A
read-only entry widget displays the messages, and the update command ensures
that the user sees each new message. An entry widget is used because it won't
change size based on the message length, and it can be scrolled by dragging with
the middle mouse button. Entry widgets also work better with update idletasks as
described later:

Example 39-3 A feedback procedure

proc Feedback { message } {
 global feedback
 set e $feedback(entry)
 $e config -state normal
 $e delete 0 end
 $e insert 0 $message
 # Leave the entry in a read-only state
 $e config -state disabled
 # Force a display update
 update idletasks
}

The Tk widgets update their display at idle moments, which basically means after
everything else is taken care of. This lets them collapse updates into one interaction
with the window system. On UNIX, this improves the batching effects that are part
of the X protocol. A call to update idletasks causes any pending display updates
to be processed. Chapter 16 describes the Tk event loop in more detail.

Use update idletasks if possible.

The safest way to use update is with its idletasks option. If you use the update
command with no options, then all events are processed. In particular, user input
events are processed. If you are not careful, it can have unexpected effects because
another thread of execution is launched into your Tcl interpreter. The current thread

is suspended and any callbacks that result from input events are executed. It is
usually better to use the tkwait command if you need to process input because it
pauses the main application at a well-defined point.

One drawback of update idletasks is that in some cases a widget's redisplay is
triggered by window system events. In particular, when you change the text of a
label, it can cause the size of the label to change. The widget is too clever for us in
this case. Instead of scheduling a redisplay at idle time, it requests a different size
and then waits for the <Configure> event from the window system. The
<Configure> event indicates a size has been chosen by the geometry manager, and
it is at that point that the label schedules its redisplay. So, changing the label's text
and doing update idletasks does not work as expected.

Chapter 40. Tk Widget Attributes
Each Tk widget has a number of attributes that affect its appearance and behavior.
This chapter describes attributes in general, and covers some of the size and
appearance-related attributes. The next two chapters cover the attributes associated
with colors, images, and text.

This chapter describes some of the attributes that are in common among many Tk
widgets. A widget always provides a default value for its attributes, so you can avoid
specifying most of them. If you want to fine-tune things, however, you'll need to
know about all the widget attributes.

The native widgets implemented in Tk 8.0 ignore some of the original Tk attributes.
This is because there is no support for them in the system widgets. For example,
the buttons on Macintosh do not honor the borderWidth attribute, and they do not
display a highlight focus. The native scrollbars on Windows and Macintosh have
similar limitations. This chapter notes these limitations in the discussion of each
attribute.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Configuring Attributes

You specify attributes for Tk widgets when you create them. You can also change
them dynamically at any time after that. In both cases the syntax uses pairs of
arguments. The first item in the pair identifies the attribute, the second provides the
value. For example, a button can be created like this:

button .doit -text Doit -command DoSomething

The name of the button is .doit, and two attributes are specified: the text and the
command. You can change the .doit button later with the configure widget
operation:

.doit configure -text Stop -command StopIt

The current configuration of a widget can be queried with another form of the
configure operation. If you just supply an attribute, the settings associated with
that attribute are returned:

.doit configure -text
=> -text text Text { } Stop

This command returns several pieces of information: the command line switch, the
resource name, the resource class, the default value, and the current value. If you
don't give any options to configure, then the configuration information for all the
attributes is returned. The following loop formats the information:

foreach item [$w configure] {
 puts "[lindex $item 0] [lindex $item 4]"
}

If you just want the current value, use the cget operation:

.doit cget -text
=> Stop

You can also configure widget attributes indirectly by using the resource database.
An advantage of using the resource database is that users can reconfigure your
application without touching the code. Otherwise, if you specify attribute values
explicitly in the code, they cannot be overridden by resource settings. This is
especially important for attributes like fonts and colors.

The tables in this chapter list the attributes by their resource name, which may have
a capital letter at an internal word boundary (e.g., activeBackground). When you
specify attributes in a Tcl command, use all lowercase instead, plus a leading dash.
Compare:

option add *Button.activeBackground red
$button configure -activebackground red

The first command defines a resource that affects all buttons created after that
point, and the second command changes an existing button. Command-line settings
override resource database specifications. Chapter 31 describes the use of resources
in detail.

Size

Most widgets have a width and height attribute that specifies their desired size,
although there are some special cases. For most widgets, if an explicit size isn't
specified, or the size provided is 0 or less, then the widget automatically sizes itself
to be just large enough to display its contents. As of Tk 8.4, on Windows, the width
attribute for simple button widgets (not checkbuttons, radiobuttons, or
menubuttons) accepts a negative value to specify a minimum width, enabling better
compliance with native Windows look-and-feel. In all cases, the geometry manager
for a widget might modify the size to some degree. The winfo operations described
on page 659 return the current size of a widget.

Most of the text-related widgets interpret their sizes in units of characters for width
and lines for height. All other widgets, including the message widget, interpret their
dimensions in screen units, which are pixels by default. The tk scale command,
which is described on page 669, controls the scale between pixels and the other
measures. You can suffix the dimension with a unit specifier to get a particular
measurement unit:

c centimeters
i inch
m millimeters
p printer points (1/72 inches)

Scales and scrollbars can have two orientations as specified by the orient attribute,
so width and height are somewhat ambiguous. These widgets do not support a
height attribute, and they interpret their width attribute to mean the size of their
narrow dimension. The scale has a length attribute that determines its long
dimension. Scrollbars do not even have a length. Instead, a scrollbar is assumed
to be packed next to the widget it controls, and the fill packing attribute is used
to extend the scrollbar to match the length of its adjacent widget. Example 33-1 on
page 500 shows how to arrange scrollbars with another widget.

The message widget displays a fixed string on multiple lines, and it uses one of two
attributes to constrain its size: its aspect or its width. The aspect ratio is defined to
be 100*width/height, and it formats its text to honor this constraint. However, if a
width is specified, it just uses that and uses as many lines (i.e., as much height) as
needed. Example 32-6 on page 493 shows how message widgets display text. Table
40-1 summarizes the attributes used to specify the size for widgets:

Table 40-1. Size attribute resource names

aspect The aspect ratio of a message widget, which is 100 times the ratio of width
divided by height.

height Height, in text lines or screen units. Widgets: button, canvas,
checkbutton, frame, label, labelframe, listbox, menubutton,
panedwindow, radiobutton, text, and toplevel.

length The long dimension of a scale.

orient Orientation for long and narrow widgets, or arrangement of panes in a
panedwindow: horizontal or vertical. Widgets: panedwindow, scale,
and scrollbar.

width Width, in characters or screen units. Widgets: button, canvas,
checkbutton, entry, frame, label, labelframe, listbox, menubutton,
message, panedwindow, radiobutton, scale, scrollbar, spinbox, text,
and toplevel.

It is somewhat unfortunate that text-oriented widgets only take character- and line-
oriented dimensions. These sizes change with the font used, and if you want a
precise size you might be frustrated. Both pack and grid let the widgets decide how
big to be. One trick is to put each widget, such as a label, in its own frame. Specify
the size you want for the frame, and then pack the label and turn off size
propagation. For example:

Example 40-1 Equal-sized labels

proc EqualSizedLabels { parent width height strings args } {
 set l 0
 foreach s $strings {
 frame $parent.$l -width $width -height $height
 pack propagate $parent.$l false
 pack $parent.$l -side left
 eval {label $parent.$l.l -text $s} $args
 pack $parent.$l.l -fill both -expand true
 incr l
 }
}
frame .f ; pack .f
EqualSizedLabels .f 1i 1c {apple orange strawberry kiwi} \
 -relief raised

The frames $parent.$l are all created with the same size. The pack propagate
command prevents these frames from changing size when the labels are packed into

them later. The labels are packed with fill and expand turned on so that they fill
up the fixed-sized frames around them.

Another way to get equal sized widgets is with the -uniform column configuration
that was added to grid in Tk 8.4. This is described on page 418.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Borders and Relief

Example 40-2 illustrates the different relief options, which control the way the
border around a widget is drawn:

Example 40-2 3D relief sampler

frame .f -borderwidth 10
pack .f
foreach relief {raised sunken flat ridge groove solid} {
 label .f.$relief -text $relief -relief $relief \
 -bd 2 -padx 3
 pack .f.$relief -side left -padx 4
}

The three-dimensional appearance of widgets is determined by two attributes:
borderWidth and relief. The borderWidth adds extra space around the edge of a
widget's display, and this area can be displayed in a number of ways according to
the relief attribute. The solid relief was added in Tk 8.0 to support the Macintosh
look for entry widget, and it works well against white backgrounds. Macintosh
buttons do not support different reliefs or honor border width.

The activeBorderWidth attribute defines the border width for the menu entries.
The relief of a menu is not configurable. It probably is not worth adjusting the menu
border width attributes because the default looks OK. The native menus on Windows
and Macintosh do not honor this attribute.

The activeRelief attribute applies to the elements of a scrollbar (the elevator and
two arrows) when the mouse is over them. The elementBorderWidth sets the size
of the relief on these elements. Changing the activeRelief does not look good.
The native scrollbars on Macintosh and Windows do not honor this attribute.

The offRelief and overRelief attributes describe a relief style to use when a
widget is in the "off state" and its indicator is not drawn, or the mouse cursor is over
the widget. They were added in Tk 8.4 to provide better support for creating
toolbars. The overRelief attribute applies to buttons, checkbuttons, and
radiobuttons. The offRelief attribute applies only to checkbuttons and
radiobuttons. Table 40-2 lists the attributes for borders and relief.

Table 40-2. Border and relief attribute resource names

activeBorderWidth The border width for menu entries. UNIX only.

activeRelief The relief for active scrollbar elements. UNIX only.

borderWidth The width of the border around a widget, in screen units. All
widgets

bd Short for borderwidth. Tcl commands only.

elementBorderWidth The width of the border on scrollbar and scale elements.

offRelief Alternate relief style when the widget is deselected. Widgets:
checkbutton and radiobutton. (Tk 8.4)

overRelief Alternate relief style when mouse is over the widget.
Widgets: button, checkbutton, and radiobutton. (Tk 8.4)

relief The appearance of the border: flat, raised, sunken, ridge,
groove, or solid. All widgets.

The Focus Highlight

Each widget can have a focus highlight indicating which widget currently has the
input focus. This is a thin rectangle around each widget that is displayed in the
highlight background color by default. When the widget gets the input focus, the
highlight rectangle is displayed in an alternate color. The addition of the highlight
adds a small amount of space outside the border described in the previous section.
The attributes in Table 40-3 control the width and color of this rectangle. If the
width is zero, no highlight is displayed.

By default, only the widgets that normally expect input focus have a nonzero width
highlight border. This includes the text, entry, and listbox widgets. It also
includes the button and menu widgets because there is a set of keyboard traversal
bindings that focus input on these widgets, too. You can define nonzero highlight
thicknesses for all widgets except Macintosh buttons.

Table 40-3. Highlight attribute resource names

highlightColor The color of the highlight when the widget has focus.

highlightBackground The highlight color when the widget does not have focus.

highlightThickness The width of the highlight border.

Padding and Anchors

Table 40-4 lists padding and anchor attributes that are similar in spirit to some
packing attributes described in Chapter 25. However, they are distinct from the
packing attributes, and this section explains how they work together with the
packer.

Table 40-4. Layout attribute resource names

anchor The anchor position of the widget.

Values: n, ne, e, se, s, sw, w, nw, or center.

Widgets: button, checkbutton, label, menubutton, message, or
radiobutton.

padX,
padY

Padding space in the X or Y direction, in screen units.

Widgets: button, checkbutton, frame, label, labelframe, menubutton,
message, radiobutton, text, or toplevel.

The padding attributes for a widget define space that is never occupied by the
display of the widget's contents. For example, if you create a label with the
following attributes and pack it into a frame by itself, you will see the text is still
centered, despite the anchor attribute.

Example 40-3 Padding provided by labels and buttons

label .foo -text Foo -padx 20 -anchor e
pack .foo

The anchor attribute only affects the display if there is extra room for another
reason. One way to get extra room is to specify a width attribute that is longer than
the text. The following label has right-justified text. You can see the default padX
value for labels, which is one pixel:

Example 40-4 Anchoring text in a label or button

label .foo -text Foo -width 10 -anchor e
pack .foo

Another way to get extra display space is with the -ipadx and -ipady packing
parameters. The example in the next section illustrates this effect. Chapter 25 has
several more examples of the packing parameters.

Putting It All Together

Example 40-5 Borders and padding

frame .f -bg white
label .f.one -text One -relief raised -bd 2 -padx 3m -pady 2m
pack .f.one -side top
label .f.two -text Two \
 -highlightthickness 4 -highlightcolor red \
 -borderwidth 5 -relief raised \
 -padx 0 -pady 0 \
 -width 10 -anchor nw
pack .f.two -side top -pady 10 -ipady 10 -fill both
focus .f.two
pack .f

The number of different attributes that
contribute to the size and appearance can be
confusing. Example 40-5 uses a label to
demonstrate the difference among size,
borders, padding, and the highlight. Padding
can come from the geometry manager, and it
can come from widget attributes.

The first label uses a raised relief, so you can see the two-pixel border. There is no
highlight on a label by default. There is internal padding so that the text is spaced
away from the edge of the label. The second label adds a highlight rectangle by
specifying a nonzero thickness. Widgets like buttons, entries, listboxes, and text
have a highlight rectangle by default.

The second label's padding attributes are reduced to zero. The anchor positions the
text right next to the border in the upper-left (nw) corner. Note the effect of the
padding provided by the packer. There is both external and internal padding in the Y
direction. The external padding (from pack -pady) results in unfilled space. The
internal packing (pack -ipady) is used by the label for its display. This is different
from the label's own -pady attribute, which keeps the text away from the top edge
of the widget.

Chapter 41. Color, Images, and Cursors
This chapter describes the color attributes shared by the Tk widgets. Images and
bitmaps can be displayed instead of text by several widgets. This chapter describes
commands that create and manipulate images. The cursor attribute controls the
shape and color of the mouse cursor when it is over a particular widget. This
chapter includes a figure that shows all the cursors available in Tk.

Color is one of the most fun things to play with in a user interface. However, this
chapter makes no attempt to improve your taste in color choices; it just describes
the attributes that affect color. The tradition of having users change application
colors is stronger in UNIX than on the other platforms. This is because all the X
toolkits support color tuning via the resource database. Tk carries this tradition to
Windows and Macintosh. However, if native look and feel is important, you should
not change the default widget colors. On the other hand, tuning colors can provide a
flair to your applications, and knowledge of colors is useful for canvas applications.

This chapter describes images, too. The image facility in Tk lets you create an image
and then have other Tk widgets display it. The same image can be displayed by
many different widgets, multiple times on a canvas, and multiple times within the
text widget. If you redefine an image, its display is updated in whatever widgets are
displaying it.

The last topic of the chapter is cursors. All widgets can control what the mouse
cursor looks like when it is over them. In addition, the widgets that support text
input define another cursor, the insert cursor. Its appearance is controlled with a few
related attributes.

Colors

Table 41-1 lists the resource names for color attributes. The table indicates what
widgets use the different color attributes. Remember to use all lowercase and a
leading dash when specifying attributes in a Tcl command.

Table 41-1. Color attribute resource names

background The normal background color. All widgets.

bg Short for background. Command line only.

foreground The normal foreground color. Widgets: button,
checkbutton, entry, label, listbox, menu, menubutton,
message, radiobutton, scale, spinbox, and text.

fg Short for foreground. Command line only.

activeBackground The background when a mouse button will take an action.
Widgets: button, checkbutton, label, menu, menubutton,
radiobutton, scale, scrollbar, and spinbox.

activeForeground The foreground when the mouse is over an active widget.
Widgets: button, checkbutton, entry, label, menu,
menubutton, and radiobutton.

disabledBackground The background when a widget is disabled. Widgets:

entry and spinbox.

disabledForeground The foreground when a widget is disabled. Widgets:

button, checkbutton, menu, menubutton, and
radiobutton.

highlightBackground The highlight color when widget does not have focus.

All widgets.

highlightColor The highlight color when the widget has focus. All widgets.

insertBackground The color of the insert cursor. Widgets: canvas, entry,
spinbox, and text.

readonlyBackground The background when a widget is in the readonly state.
Widgets: entry and spinbox.

selectBackground The background of selected text. Widgets: canvas, entry,
listbox, spinbox, and text.

selectColor The color of the selector indicator. Widgets: checkbutton,
menu, and radiobutton.

selectForeground The foreground of selected text. Widgets: canvas, entry,
listbox, spinbox, and text.

troughColor The trough part of scales and scrollbars.

The foreground color is used to draw an element, while the background color is
used for the blank area behind the element. Text, for example, is painted with the
foreground color. There are several variations on foreground and background that
reflect different states for widgets or items they are displaying.

Each attribute also has a resource class. This is most useful for the variations on
foreground and background colors. For example, Tk does not have a reverse video
mode. However, with a couple of resource specifications you can convert a
monochrome display into reverse video. The definitions are given in Example 41-1.
The Foreground and Background resource class names are used, and the various
foreground and background colors (e.g., activeBackground) have the correct
resource class so these settings work. You have to set these resources before you
create any widgets:

Example 41-1 Resources for reverse video

proc ReverseVideo {} {
 option add *Foreground white
 option add *Background black
}

Color Palettes

The tk_setPalette command changes colors of existing widgets and installs
resource values so new widgets have matching colors. If you give it a single
argument, it treats this as the background and then computes new values for the
other color resources. For example, if you do not like the standard Tk grey, you can
lighten your spirits with a cool blue background:

tk_setPalette #0088cc

If you liked the light brown color scheme of Tk 3.6, you can restore that palette with
the tk_bisque command:

tk_bisque

The tk_setPalette command can be used to change any of the color attributes.
You can specify a set of name-value pairs, where the names are color resource
names and the values are new color values:

tk_setPalette activeBackground red activeForeground white

Color Values

Color values are specified in two ways: symbolically (e.g., red), or by hexadecimal
numbers (e.g., #ff0000). The leading # distinguishes the hexadecimal
representation from the symbolic one. The number is divided into three equal-sized
fields that give the red, green, and blue values, respectively. The fields can specify
4, 8, 12, or 16 bits of a color:

#RGB 4 bits per color
#RRGGBB 8 bits per color
#RRRGGGBBB 12 bits per color
#RRRRGGGGBBBB 16 bits per color

If you specify more resolution than is supported by the display, the low-order bits of
each field are discarded. The different display types supported by Tk are described
in the next section. Each field ranges from 0, which means no color, to a maximum,
which is all ones in binary, or all f in hex, that means full color saturation. For
example, pure red can be specified four ways:

#f00 #ff0000 #fff000000 #ffff00000000

There is a large collection of symbolic color names like "red," "blue," "green,"
"thistle," "medium sea green," and "yellow4." These names originate from X and
UNIX, and Tk supports these colors on all platforms. As of Tk 8.3.2, these color
names are documented in the colors online reference page. Prior to that, you could
find the list in the Tk sources in the xlib/xcolor.c file. Or, run the xcolors program
that comes with the standard X distribution.

The Windows and Macintosh platforms have a small set of colors that are
guaranteed to exist, and Tk defines names for these. The advantage of using these
colors is that they are shared by all applications, so the system can manage colors

efficiently. Table 41-2 lists the system colors on Windows. Several of these colors
map to the same RGB value. Table 41-3 lists the system colors on Macintosh.

Table 41-2. Windows system colors

system3dDarkShadow Dark part of button 3D-relief.

system3dLight Light part of button 3D-relief.

systemActiveBorder Window border when activated.

systemActiveCaption Caption (i.e., title bar) when activated.

systemAppWorkspace Background for MDI workspaces.

systemBackground Widget background.

systemButtonFace Button background.

systemButtonHighlight Lightest part of button 3D-relief.

systemButtonShadow Darkest part of button 3D-relief.

systemButtonText Button foreground.

systemCaptionText Caption (i.e., title bar) text.

systemDisabledText Text when disabled.

systemGrayText Grey text color.

systemHighlight Selection background.

systemHighlightText Selection foreground.

systemInactiveBorder Window border when not activated.

systemInactiveCaption Caption background when not activated.

systemInactiveCaptionText Caption text when not activated.

systemInfoBackground Help pop-up background.

systemInfoText Help pop-up text.

systemMenu Menu background.

systemMenuText Menu foreground.

systemScrollbar Scrollbar background.

systemWindow Text window background.

systemWindowFrame Text window frame.

systemWindowText Text window text color.

Table 41-3. Macintosh system colors

systemHighlight Selection background.

systemHighlightText Selection foreground.

systemButtonFace Button background.

systemButtonFrame Button frame.

systemButtonText Button foreground.

systemWindowBody Widget background.

systemMenuActive Selected menu item background.

systemMenuActiveText Selected menu item foreground.

systemMenu Menu background.

systemMenuDisabled Disabled menu item background.

systemMenuText Menu foreground.

Getting RGB values.

The winfo rgb command maps from a color name (or value) to three numbers that
are its red, green, and blue values. You can use this to compute variations on a
color. The ColorDarken procedure shown below uses the winfo rgb command to
get the red, green, and blue components of the input color. It reduces these
amounts by 5 percent, and reconstructs the color specification using the format
command.

Example 41-2 Computing a darker color

proc ColorDarken { win color } {
 set rgb [winfo rgb $win $color]
 return [format "#%03x%03x%03x" \
 [expr round([lindex $rgb 0] * 0.95)] \
 [expr round([lindex $rgb 1] * 0.95)] \
 [expr round([lindex $rgb 2] * 0.95)]]
}

Colormaps and Visuals

Computer screens can display only a fixed number of different colors at one time.
The best monitors can display 24 million colors, but it is common to find 256 color
displays. Really old VGA displays only display 16 colors. If you run several
applications at once, it is possible that more colors are requested than can be
displayed. The Windows and Macintosh platforms manage this scenario
automatically. X provides lower-level facilities that Tk uses on UNIX to do the
management. So, for the most part you don't have to worry. However, if you need
more control, especially under X, then you need to understand colormaps and the
different visual types.

Each pixel on the screen is represented by one or more bits of memory. There are a
number of ways to map from a value stored at a pixel to the color that appears on
the screen at that pixel. The mapping is a function of the number of bits at each
pixel, which is called the depth of the display, and the style of interpretation, or
visual class. The six visual classes defined by X are listed in the following table.
Some of the visuals use a colormap that maps from the value stored at a pixel to a
value used by the hardware to generate a color. A colormap enables a compact
encoding for a much richer color. For example, a 256-entry colormap can be indexed
with 8 bits, but it may contain 24 bits of color information. The UNIX xdpyinfo
program reports the different visual classes supported by your display. Table 41-4
lists the visual classes:

Table 41-4. Visual classes for displays

staticgrey Greyscale with a fixed colormap defined by the system.

greyscale Greyscale with a writable colormap.

staticcolor Color with a fixed colormap defined by the system.

pseudocolor Color values determined by single writable colormap.

truecolor Color values determined by three colormaps defined by the system:
one each for red, green, and blue.

directcolor Color values determined by three writable colormaps: one each for
red, green, and blue.

best Use the best visual for a given depth.

The frame and toplevel widgets support a colormap and visual attribute. You can
query these attributes on all platforms. On Windows and Macintosh there is only one
visual type at a time, and users may be able to change it for their whole system.
On UNIX, the X server typically supports more than one visual class on the same
display, and you can create frames and toplevels that use a particular visual class.
The value of the visual attribute has two parts, a visual type and the desired depth
of the display. The following example requests a greyscale visual with a depth of 4
bits per pixel:

toplevel .grey -visual "greyscale 4"

You can start wish with a -visual command line argument:

wish -visual "truecolor 24"

A visual is associated with a colormap. Windows and Macintosh have a single
colormap that is shared by all applications. UNIX allows for private colormaps, which
can be useful if you absolutely must have lots of colors. However, the drawback of a
private colormap is that the display flashes as the mouse enters windows with their
own colormap. This is because the monitor hardware really only has one colormap,
so the X server must swap colormaps. Macintosh and Windows manage their
colormap more gracefully, although if you use too many colors some flashing can
occur. Tk can simulate private colormaps on Windows, but it is probably better to let
the system manage the colormap. Tk on the Macintosh always uses a 24-bit
truecolor visual, which is basically unlimited colors, and lets the operating system
dither colors if necessary.

By default a widget inherits the colormap and visual from its parent widget. The
value of the colormap attribute can be the keyword new, in which case the frame or
toplevel gets a new private colormap, or it can be the name of another widget, in
which case the frame or toplevel shares the colormap of that widget. When sharing
colormaps, the other widget must be on the same screen and using the same visual
class.

Bitmaps and Images

The label and all the button widgets have an image attribute that specifies a graphic
image to display. Using an image takes two steps. In the first step the image is
created via the image create command. This command returns an identifier for the
image, and it is this identifier that is passed to widgets as the value of their image
attribute.

Example 41-3 Specifying an image for a widget

set im [image create bitmap \
 -file glyph.bitmap -maskfile glyph.mask \
 -background white -foreground blue]
button .foo -image $im

There are three things that can be displayed by labels and all the buttons: text,
bitmaps, and images. If more than one of these attributes are specified, then the
image has priority over the bitmap, and the bitmap has priority over the text. You
can remove the image or bitmap attribute by specifying a null string for its value:

.foo config -image {}

Tk 8.4 introduced the compound attribute for labels, menu entries, and the various
button widgets, which specifies whether the widgets should display both an image
(or bitmap) and text, and if so, where the image should be placed relative to the
text. For example, the following command would cause a label to display a bitmap
on the left, and text to the right:

label .warn -text Warning -bitmap warning -compound left

The image Command

Table 41-5 summarizes the image command.

Table 41-5. Summary of the image command

image create
type ?name? ?
options?

Creates an image of the specified type. If name is not specified,
one is made up. The remaining arguments depend on the type of
image being created.

image delete
name

Deletes the named image.

image height
name

Returns the height of the image, in pixels.

image inuse
name

Returns a boolean value indicating whether or not the image
given by name is in use by any widgets.

image names Returns the list of defined images.

image type
name

Returns the type of the named image.

image types Returns the list of possible image types.

image width
name

Returns the width of the image, in pixels.

The exact set of options for image create depend on the image type. There are two
built-in image types: bitmap and photo. Chapter 48 describes the C interface for
defining new image types.

Bitmap Images

A bitmap image has a main image and an optional mask image. The main image is
drawn in the foreground color. The mask image is drawn in the background color,
unless the corresponding bit is set in the main image. The remaining bits are "clear"
and the widget's normal background color shows through. Table 41-6 lists the
options supported by the bitmap image type:

Table 41-6. Bitmap image options

-background color The background color (no -bg equivalent).

-data string The contents of the bitmap as a string.

-file name The name of the file containing a bitmap definition.

-foreground color The foreground color (no -fg equivalent).

-maskdata string The contents of the mask as a string.

-maskfile name The name of the file containing the mask data.

The bitmap definition files are stylized C structure definitions that the Tk library
parses. The files usually have a .xbm file name extension. These are generated by
bitmap editors such as bitmap program, which comes with the standard X
distribution. The -file and -maskfile options name a file that contains such a
definition. The -data and -maskdata options specify a string in the same format as
the contents of one of those files.

The bitmap Attribute

The label and all the button widgets also support a bitmap attribute, which is a
special case of an image. This attribute is a little more convenient than the image
attribute because the extra step of creating an image is not required. However,
there are some power and flexibility with the image command, such as the ability to
reconfigure a named image (e.g., for animation) that is not possible with a bitmap.

Example 41-4 Specifying a bitmap for a widget

button .foo -bitmap @glyph.xbm -fg blue

The @ syntax for the bitmap attribute signals that a file containing the bitmap is
being specified. It is also possible to name built-in bitmaps. The predefined bitmaps
are shown in the next figure along with their symbolic name. Chapter 48 describes
the C interface for defining built in bitmaps.

Example 41-5 The built-in bitmaps

frame .f -bd 4; frame .g -bd 4 ; pack .f .g -side left
set parent .f ; set next .g
foreach name {error gray12 gray50 hourglass \
 info questhead question warning} {
 frame $parent.$name
 label $parent.$name.l -text $name -width 9 -anchor w
 label $parent.$name.b -bitmap $name
 pack $parent.$name.l -side right
 pack $parent.$name.b -side top
 pack $parent.$name -side top -expand true -fill x
 set tmp $parent ; set parent $next ; set next $tmp
}

Photo Images

The photo image type was contributed to Tk by Paul Mackerras. It displays full color
images and can do dithering and gamma correction. Table 41-7 lists the attributes
for photo images. These are specified in the image create photo command.

Table 41-7. Photo image attributes

-data
string

The contents of the photo as a base64 encoded or binary string.

-file
name

The name of the file containing a photo definition.

-format
format

Specifies the data format for the file or data string.

-gamma
value

A gamma correction factor, which must be greater than zero. A value
greater than one brightens an image.

-height
value

The height, in screen units.

-palette
spec

The number of shades of gray or color for the image.

-width
value

The width of the image, in screen units.

The format indicates what format the data are in. The photo image supports
different image formats. Tk has built-in support for the PPM, PGM, and GIF formats.
There is a C interface to define new photo formats. The CD-ROM has a "plus-patch"
version of Tk that supports pixmaps and JPEG files. Normally you do not need to
specify the format because the photo implementation will try all format handlers
until it find one that accepts the data. An explicit format limits what handlers are
tried. The format name is treated as a prefix that is compared against the names of
handlers. Case is not significant in the format name.

The palette setting determines how many colors or graylevels are used when
rendering an image. If a single number is specified, the image is rendered in
greyscale with that many shades of gray. For full color, three numbers separated by
slashes specify the number of shades of red, green, and blue, respectively. The
more shades you specify the more room you take up in your colormap. The photo
widget will switch to a private colormap if necessary. Multiply the number of red,
green, and blue shades to determine how many different colors you use. If you have
an 8-bit display, there are only 256 colors available. Reasonable palette settings that
do not hog the colormap include 5/5/4 and 6/6/5. You can use fewer shades of blue
because the human eye is less sensitive to blue.

After you create an image you can operate on it. Table 41-8 lists the image instance
operations. In the table, $p is a photo image handle returned by the image create
photo command.

Table 41-8. Photo image operations

$p blank Clears the image. It becomes transparent.

$p cget option Returns the configuration attribute option.

$p configure
...

Reconfigures the photo image attributes.

$p copy source
?options?

Copies another image. Table 41-9 lists the copy options.

$p data ?
options?

Returns image data in the form of a list of rows, where each row
is a list of colors in #rrggbb format. Table 41-11 lists the data
options.

$p get x y Returns the pixel value at position x y.

$p put data ?-
to x1 y1 x2
y2?

Inserts data into the image. data is a list of rows, where each
row is a list of colors in #rrggbb format.

$p read file
options

Loads an image from a file. Table 41-10 lists the read options.

$p redither Reapplies the dithering algorithm to the image.

$p tranparency
get x y

Returns a boolean indicating if the specified pixel is transparent

$p tranparency
set x y
boolean

Makes the specified pixel transparent if boolean is true, or
opaque otherwise.

$p write file
?options?

Saves the image to file according to options. Table 41-11 lists
the write options.

Table 41-9 lists the options available when you copy data from one image to
another. The regions involved in the copy are specified by the upper-left and lower-
right corners. If the lower-right corner of the source is not specified, then it defaults
to the lower-right corner of the image. If the lower-right corner of the destination is
not specified, then the size is determined by the area of the source. Otherwise, the
source image may be cropped or replicated to fill the destination.

Table 41-9. Copy options for photo images

-
compositingrule
rule

Specifies how transparent pixels in the source image are
combined with the destination image. When rule is overlay
(default), the old contents of the destination image remain
visible. When rule is set, the old contents of the destination
image are discarded and the source image is used as-is.

-from x1 y1 ?x2
y2?

Specifies the location and area in the source image. If x2 and y2
are not given, they are set to the bottom-right corner.

-to x1 y1 ?x2
y2?

Specifies the location and area in the destination. If x2 and y2
are not given, the size is determined by the source. The source
may be cropped or tiled to fill the destination.

-shrink Shrinks the destination so that its bottom right corner matches
the bottom right corner of the data copied in. This has no effect
if the width and height have been set for the image.

-zoom x ?y? Magnifies the source so each source pixel becomes a block of x
by y pixels. y defaults to x if it is not specified.

-subsample x ?
y?

Reduces the source by taking every xth pixel in the X direction
and every yth pixel in the Y direction. y defaults to x.

Table 41-10 lists the read options. If not specified, the format is determined
automatically. If there are multiple image types that can read the same data, you
may specify a read format

Table 41-10. Read options for photo images

-format
format

Specifies the format of the data. By default, the format is determined
automatically.

-from
x1 y1 ?
x2 y2?

Specifies a subregion of the source data. If x2 and y2 are not given, the
size is determined by the data.

-to x1
y1

Specifies the top-left corner of the new data.

-shrink Shrinks the destination so that its bottom-right corner matches the
bottom-right corner of the data read in. This has no effect if the width and
height have been set for the image.

Table 41-11 lists the options used for write and data. When writing to files, the -
format option is important because if you don't specify it, the first format found is
used. On the other hand, you shouldn't use the -format option with data operation,

as data returns the image date as a list of rows, where each row is a list of colors in
#rrggbb format (suitable as input to the put command).

Table 41-11. Write options for photo images

-background
color

If specified, all transparent pixels are replaced by the specified
color.

-format
format

Specifies the format of the data.

-from x1 y1
?x2 y2?

Specifies a subregion of the data to save. If x2 and y2 are not given,
they are set to the lower-right corner.

-grayscale If specified, the data is transformed into grayscale.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Text Insert Cursor

The text, entry, and canvas widgets have a second cursor to mark the text insertion
point. The text insert cursor is described by a set of attributes. These attributes can
make the insert cursor vary from a thin vertical line to a large rectangle with its own
relief. Table 41-12 lists these attributes. The default insert cursor is a two-pixel-wide
vertical line. You may not like the look of a wide insert cursor. The cursor is centered
between two characters, so a wide one does not look the same as the block cursors
found in many terminal emulators. Instead of occupying the space of a single
character, it partially overlaps the two characters on either side:

Table 41-12. Cursor attribute resource names

cursor The mouse cursor. See text for sample formats.

All widgets.

insertBackground Color for the text insert cursor.

Widgets: canvas, entry, and text.

insertBorderWidth Width for three dimensional appearance.

Widgets: canvas, entry, and text.

insertOffTime Milliseconds the cursor blinks off. (Zero disables blinking.)

Widgets: canvas, entry, and text.

insertOnTime Milliseconds the cursor blinks on.

Widgets: canvas, entry, and text.

insertWidth Width of the text insert cursor, in screen units.

Widgets: canvas, entry, and text.

The Mouse Cursor

The cursor attribute defines the mouse
cursor. Example 41-6 on page 599 shows the
cursors that come built into Tk.

On Unix systems, a foreground and background color for the cursor can be
specified. Here are some example cursor specifications:

$w config -cursor watch ;# stop-watch cursor
$w config -cursor {gumby blue} ;# blue gumby
$w config -cursor {X_cursor red white} ;# red X on white

The other form for the cursor attribute specifies a file that contains the definition of
the cursor bitmap. If two file names are specified, then the second specifies the
cursor mask that determines what bits of the background get covered up. Bitmap
editing programs like idraw and iconedit can be used to generate these files. Here
are some example cursor specification using files. You need to specify a foreground
color, and if you specify a mask file, then you also need to specify a background
color:

$w config -cursor "@timer.xbm black"
$w config -cursor "@timer.xbm timer.mask black red"

The cursors shown in Example 41-6 are available on all platforms. However, on
Windows and Macintosh some of the cursors are mapped to native cursors and
appear differently. On Windows the following cursors are mapped to native cursors:
arrow, ibeam, icon, crosshair, fleur, sb_v_double_arrow, sb_h_double_arrow,
center_ptr, watch, and xterm. These additional cursors are defined on Windows:
starting, size, size_ne_sw, size_ns, size_nw_se, size_we, uparrow, and wait.
On Windows, use the no cursor to eliminate the cursor. On Macintosh, the following
cursors are mapped to native cursors: ibeam, xterm, cross, crosshair, plus,
watch, arrow. These additional cursors are defined on Macintosh: text and cross-
hair.

As of Tk 8.3, when running on Windows you can also use Windows system cursors
by specifying the name of the appropriate .ani or .cur file. For example:

$w config -cursor @C:/WINNT/Cursors/globe.ani

Example 41-6. The Tk cursors

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 42. Fonts and Text Attributes
This chapter describes the naming conventions for fonts. Tk has a font object that
you can dynamically configure and associate with widgets. This chapter also
describes other text-related attributes such as justification, anchoring, and
geometry gridding.

Fonts describe how characters look on the screen. Tk widgets like buttons, labels,
and listboxes have a font attribute that determines which font they use to display
their text. The text widget has font attributes on tags that are applied to different
regions of text. Tk has a platform-independent way to name fonts (e.g., times 12
bold), plus it gracefully handles missing fonts. You can define named font objects
and then associate those with widgets and text tags. When the font objects are
reconfigured, the widgets using them update their display automatically. You can
use the resource database to define the fonts used in your interface.

X font names (e.g., -*-times-bold-r-normal-*-12-*) were used in versions of Tk
before 8.0, and the widgets would raise errors if a font could not be found. The X
names have a pattern matching scheme that helps avoid some missing font errors.
You can still use X font names in current versions of Tk. However, the Tk font
system does not do font substitutions if you use X font names; if you use them, you
must be prepared for errors. In general, you should use the platform-independent
font names.

After describing fonts, the chapter explains a few of the widget attributes that relate
to fonts. This includes justification, anchors, and geometry gridding.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Naming a Font

There are two basic ways to name a font. You can use predefined font names (e.g.,
system), or you can specify a set of font attributes with a platform-independent
name:

label .foo -text "Hello" -font {times 12 bold}

In this form, the font is specified with a three element list. The first element is the
font family, the second is the size, in points, and the third is a list of style
parameters. The family determines the basic look, such as courier or helvetica.

The complete set of style parameters are normal, bold, roman, italic, underline,
and overstrike. For example, to specify both bold and italic:

label .foo -text "Hello" -font {times 12 {bold italic}}

The font size is points, which are 1/72 inch. Tk maintains a scale factor that maps
from points to pixels. The default scale is derived from the screen resolution, and
you can change it with the tk scaling command, which is described on page 669.
You can specify pixel-based sizes with negative numbers. The advantage of points
over pixels is that text appears about the same size regardless of the screen
resolution. (This works better on Windows and Macintosh than on Unix.) However,
sometimes you want to control font size relative to other widget geometry, in which
case pixel-based sizes are better.

An alternate way to name font attributes uses name-value pairs. These are
summarized in Table 42-1. The format is less compact, but it is useful for changing
part of a font configuration because you do not need to specify everything. The
same specification can be made like this:

label .foo -text "Hello" -font \
 {-family times -size 12 -weight bold -slant italic}

Table 42-1. Font attributes

-family
name

The name can be times, courier, helvetica, and others returned by
the font families command.

-size
points

The font size is given in points, which are 1/72 inch.

-weight
value

The value is bold or normal.

-slant
value

The value is roman or italic.

-underline
bool

If bool is true, an underline is drawn.

-overstrike
bool

If bool is true, an overstrike line is drawn.

Tk matches a font specification with the fonts available on your system. It will use
the best possible font, but it may have to substitute some font parameters. Tk
guarantees that the Times, Courier, and Helvetica families exist. It also
understands the synonyms of Courier New for Courier, and Arial or Geneva for
Helvetica.The font actual command returns the parameters chosen to match a
font specification:

font actual {times 13 bold}
-family Times -size 13 -weight bold -slant roman
 -underline 0 -overstrike 0

The Macintosh and Windows platforms have a system-defined default size. You can
get this size by specifying a size of 0 in your specification. The system font uses
this:

font actual system
-family Chicago -size 0 -weight normal -slant roman
 -underline 0 -overstrike 0

Named Fonts

You can define your own names for fonts with the font create command. Creating
a named font provides a level of indirection between the font parameters and the
widgets that use the fonts. If you reconfigure a named font, the widgets using it will
update their display automatically. This makes it easy to support a user preference
for font size. For example, we can define a font name default on all platforms:

font create default -family times -size 12

The default font can be made larger at any time with font configure. Widgets
using the fonts will update automatically:

font configure default -size 14

System Fonts

The Windows and Macintosh platforms have system-defined fonts that are used by
most applications. When you query the configuration of the Tk widgets, you will see
the system font names. The parameters for the system fonts can be tuned by the
user via the system control panel. You can find out the attributes of the system font
with font actual. These are the system fonts for each platform:

The Windows platform supports system, systemfixed, ansi, ansifixed,
device, oemfixed. The fixed suffix refers to a font where each character is
the same size.

The Macintosh platform has system and application.

The UNIX platform has fixed. This is the only X font name that is guaranteed
to exist. X font names are described in the next section.

Unicode Fonts

Tk does character-by-character font substitution when it displays Unicode
characters. This supports mixed display of ASCII and Kanji characters, for example.
The great thing about this is that you do not have to worry too much about choosing
fonts in the simple case. The problem with font substitution is that it can be slow. In
the worst case, Tk will query every font installed in your system to find out whether
it can display a particular character. If you know you will be displaying characters in
a particular character set, you can optimize your interface by specifying a font that
matches what you expect to display.

X Font Names

Fonts can be specified with X font names on all platforms, and you must use X font
names in versions of Tk before Tk 8.0. The name fixed is an example of a short X
font name. Other short names might include 6x12, 9x15, or times12. However,
these aliases are site-dependent. In fact, all X font names are site dependent
because different fonts may be installed on different systems. The only font
guaranteed to exist on the UNIX platform is named fixed.

The more general form of an X font name has several components that describe the
font parameters. Each component is separated by a dash, and the asterisk (*) is
used for unspecified components. Short font names are system-defined aliases for
these more complete specifications. Here is an example:

-*-times-medium-r-normal-*-18-*-*-*-*-*-iso8859-1

The components of X font names are listed in Table 42-2 in the order in which they
occur in the font specification. The table gives the possible values for the
components. If there is an ellipsis (...), then there are more possibilities, too.

Table 42-2. X Font specification components

Component Possible values

foundry adobe xerox linotype misc ...

family times helvetica lucida courier symbol ...

weight bold medium demibold demi normal book light

slant i r o

swidth normal sans narrow semicondensed

adstyle sans

pixels 8 10 12 14 18 24 36 48 72 144 ...

points 0 80 100 120 140 180 240 360 480 720 ...

Component Possible values

resx 0 72 75 100

resy 0 72 75 100

space p m c

avgWidth 73 94 124 ...

registry iso8859 xerox dec adobe jisx0208.1983 ...

encoding 1 fontspecific dectech symbol dingbats

The most common attributes chosen for a font are its family, weight, slant, and size.
The weight is usually bold or medium. The slant component is a bit cryptic, but i
means italic, r means roman (i.e., normal), and o means oblique. A given font
family might have an italic version, or an oblique version, but not both. Similarly,
not all weights are offered by all font families. Size can be specified in pixels (i.e.,
screen pixels) or points. Points are meant to be independent of the screen
resolution. On a 75dpi font, there are about 10 points per pixel. Note: These
"points" are different than the printer points Tk uses in screen measurements. When
you use X font names, the size of the font is not affected by the Tk scaling factor
described on page 669.

It is generally a good idea to specify just a few key components and use * for the
remaining components. The X server attempts to match the font specification with
its set of installed fonts, but it fails if there is a specific component that it cannot
match. If the first or last character of the font name is an asterisk, then that can
match multiple components. The following selects a 12-pixel times font:

times-medium-r--*-12*

Two useful UNIX programs that deal with X fonts are xlsfonts and xfontsel. These
are part of the standard X11 distribution. xlsfonts simply lists the available fonts
that match a given font name. It uses the same pattern matching that the server
does. Because asterisk is special to most UNIX shells, you need to quote the font
name argument if you run xlsfonts from your shell. xfontsel has a graphical user
interface and displays the font that matches a given font name.

Font Failures before Tk 8.0

Unfortunately, if a font is missing, versions of Tk before 8.0 do not attempt to
substitute another font, not even fixed. Current versions of Tk do substitutions only
if you use platform-independent font names. Otherwise, the widget creation or
reconfiguration command raises an error if the font does not exist. Example 42-1
shows one way to deal with missing fonts, which is to create a wrapper, the
FontWidget procedure, around the Tk widget creation routines:

Example 42-1 The FontWidget procedure handles missing fonts

proc FontWidget { args } {
 # args is a Tcl command
 if {[catch $args w]} {
 # Delete the font specified in args, if any
 set ix [lsearch $args -font]
 if {$ix >= 0} {
 set args [lreplace $args $ix [expr $ix+1]]
 }
 # This font overrides the resource database
 # The "fixed" font is UNIX-specific
 set w [eval $args {-font fixed}]
 }
 return $w
}

You call FontWidget like this:

FontWidget button .foo -text Foo -font garbage

The FontWidget procedure reverts to a default font if the widget creation command
fails. It is careful to eliminate the font specified in args, if it exists. The explicit font
overrides any setting from the resource database or the Tk defaults. Of course,
widget creation might fail for some more legitimate reason, but that is allowed to
happen in the backup case. Again, the missing font problem disappears when you
use platform-independent font names, so you only need to resort to using
FontWidget in early versions of Tk.

Font Metrics

The font metrics command returns measurement information for fonts. It returns
general information about all the characters in the font:

font metrics {times 10}
-ascent 9 -descent 2 -linespace 11 -fixed 0

The fixed setting is true for fonts where each character fits into the same-sized
bounding box. The linespace is the distance between the baselines of successive
lines. The ascent and descent are illustrated in Example 42-2:

Example 42-2. Font metrics

The font measure command returns the width of a string that will be displayed in a
given font. The width does not account for heavily slanted letters that overhang
their bounding box, nor does it do anything special with tabs or newlines in the
string.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The font Command

Table 42-3 summarizes the font command. In the table, font is either a description
of font parameters, a logical font name, a system font name, or an X font name.
The -displayof option applies to X where you can have windows on different
displays that can support different fonts. Note that when you delete a logical font
name with font delete, the font is not really deleted if there are widgets that use
that font.

Table 42-3. The font command

font actual font ?-displayof
window? ?option?

Returns the actual parameters of font.

font configure fontname ?option? ?
value option value?

Sets or queries the parameters for
fontname.

font create ?fontname? ?option
value ...?

Defines fontname with the specified
parameters.

font delete fontname ?name2 ...? Removes the definition for the named
fonts.

font families ?-displayof win? Returns the list of font families supported
on the display of win.

font measure font ?-displayof win?
text

Returns the width of text displayed in
win with font.

font metrics font ?-displayof win?
?option?

The option can be -ascent, -descent, -
linespace, or -fixed.

font names Returns the names of defined fonts.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Text Attributes

Layout

Table 42-4 summarizes two simple text layout attributes: justify and wrapLength.
The text widget has several more layout-related attributes, and Chapter 36
describes those in detail. The two attributes described in this section apply to the
various button widgets, the label, entry, and message widgets. Those widgets are
described in Chapters 30, 32, and 34. The justify attribute causes text to be
centered, left-justified, or right-justified. The default justification is center for all
the widgets in the table, except for the entry widget, which is left-justified by
default.

The wrapLength attribute specifies how long a line of text is before it is wrapped
onto another line. It is used to create multiline buttons and labels. This attribute is
specified in screen units, however, not string length. It is probably easier to achieve
the desired line breaks by inserting newlines into the text for the button or label and
specifying a wrapLength of 0, which is the default.

Table 42-4. Layout attribute resource names

justify Text line justification. Values: left, center, or right.

Widgets: button, checkbutton, entry, label, menubutton,
message, and radiobutton.

wrapLength Maximum line length for text, in screen units. Widgets: button,
checkbutton, label, menubutton, and radiobutton.

Selection Attributes

Table 42-5 lists the selection-related attributes. The exportSelection attribute
controls if the selection is exported for cut and paste to other widgets. The colors for
selected text are set with selectForeground and selectBackground. The selection
is drawn in a raised relief, and the selectBorderWidth attribute affects the 3D
appearance. Choose a border width of zero to get a flat relief.

Table 42-5. Selection attribute resource names

exportSelection Share selection. Widgets: entry, canvas, listbox, and
text.

selectForeground Foreground of selected text.

selectBackground Background of selected text.

selectBorderWidth Width of 3D raised border for selection highlight.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Gridding, Resizing, and Geometry

The text, listbox, and canvas widgets support geometry gridding. This is an
alternate interpretation of the main window geometry that is in terms of grid units,
typically characters, as opposed to pixels. The setGrid attribute is a boolean that
indicates if gridding should be turned on. The listbox and text widgets define a grid
size that matches their character size. Example 44-1 on page 658 sets up gridding
for a canvas.

When a widget is gridded, its size is constrained to have a whole number of grid
units displayed. The height will be constrained to show a whole number of text lines,
and the width will be constrained to show a whole number of average width
characters. This affects interactive resizing by users, as well as the various window
manger commands (wm) that relate to geometry. When gridding is turned on, the
geometry argument (e.g., 24x80) is interpreted as grid units; otherwise, it is
interpreted as pixels. The window manager geometry commands are summarized in
Table 44-1 on page 659.

The following example creates a listbox with gridded geometry enabled. Try resizing
the window in the following example with and without the -setgrid flag, and with
and without the wm minsize command, which sets the minimum size of the window.
The Scrolled_Listbox procedure is defined in Example 33-3 on page 502.

Example 42-3 A gridded, resizable listbox

wm minsize . 5 3
button .quit -text Quit -command exit
pack .quit -side top -anchor e
Scrolled_Listbox .f -width 10 -height 5 -setgrid true
pack .f -side top -fill both -expand true

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

A Font Selection Application

This chapter concludes with an example that lets you select fonts. It is written as a
dialog that you can add to your application. The menus are tied to elements of the
font array that are used in font configure commands. The actual settings of the
font are shown above a sampler of what the font looks like. When the user clicks the
OK button, the font configuration is returned:

Example 42-4 Font selection dialog

proc Font_Select {{top .fontsel}} {
 global font

 # Create File, Font, Size, and Format menus

 toplevel $top -class Fontsel -bd 10
 set menubar [menu $top.menubar]
 $top config -menu $menubar
 foreach x {File Font Size Format} {
 set menu [menu $menubar.[string tolower $x]]
 $menubar add cascade -menu $menu -label $x
 }
 $menubar.file add command -label Reset -command FontReset
 $menubar.file add command -label OK \
 -command {set font(ok) ok}
 $menubar.file add command -label Cancel \
 -command {set font(ok) cancel}

 # The Fonts menu lists the available Font families.

 set allfonts [font families]
 set numfonts [llength $allfonts]
 set limit 20
 if {$numfonts < $limit} {

 # Display the fonts in a single menu

 foreach family $allfonts {
 $menubar.font add radio -label $family \
 -variable font(-family) \
 -value $family \
 -command FontUpdate
 }
 } else {

 # Too many fonts. Create a set of cascaded menus to
 # display all the font possibilities

 set c 0 ; set l 0
 foreach family $allfonts {
 if {$l == 0} {
 $menubar.font add cascade -label $family... \
 -menu $menubar.font.$c
 set m [menu $menubar.font.$c]
 incr c
 }
 $m add radio -label $family \
 -variable font(-family) \
 -value $family \
 -command FontUpdate
 set l [expr ($l +1) % $limit]
 }
 }

 # Complete the other menus

 foreach size {7 8 10 12 14 18 24 36 72} {
 $menubar.size add radio -label $size \
 -variable font(-size) \
 -value $size \
 -command FontUpdate
 }
 $menubar.size add command -label Other... \
 -command [list FontSetSize $top]
 $menubar.format add check -label Bold \
 -variable font(-weight) \
 -onvalue bold -offvalue normal \
 -command FontUpdate
 $menubar.format add check -label Italic \
 -variable font(-slant) \
 -onvalue italic -offvalue roman \
 -command FontUpdate
 $menubar.format add check -label underline \
 -variable font(-underline) \
 -command FontUpdate
 $menubar.format add check -label overstrike \
 -variable font(-overstrike) \
 -command FontUpdate

 # FontReset initializes the font array, which causes
 # the radio menu entries to get highlighted.

 FontReset

 # This label displays the current font

 label $top.font -textvar font(name) -bd 5
 # This message displays a sampler of the font.

 message $top.msg -aspect 1000 \
 -borderwidth 10 -font fontsel \
 -text "
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
!@#$%^&*()_+-=[]{};:\"''~,.<>/?\\|
"

 # Lay out the dialog

 pack $top.font $top.msg -side top
 set f [frame $top.buttons]
 button $f.ok -text Ok -command {set font(ok) 1}
 button $f.cancel -text Cancel -command {set font(ok) 0}
 pack $f.ok $f.cancel -padx 10 -side left
 pack $f -side top

 # Dialog_Wait is defined in Example 39ÿ1 on page 606

 set font(ok) cancel
 Dialog_Wait $top font(ok)
 destroy $top
 if {$font(ok) == "ok"} {
 return [array get font -*]
 } else {
 return {}
 }
}

FontReset recreates a default font

proc FontReset {} {
 catch {font delete fontsel}
 font create fontsel
 FontSet
}

FontSet initializes the font array with the settings
returned by the font actual command

proc FontSet {} {
 global font

 # The name is the font configuration information

 # with a line break so it looks nicer

 set font(name) [font actual fontsel]
 regsub -- "-slant" $font(name) "\n-slant" font(name)

 # Save the actual parameters after any font substitutions

 array set font [font actual fontsel]
}

FontSetSize adds an entry widget to the dialog so you
can enter a specific font size.

proc FontSetSize {top} {
 set f [frame $top.size -borderwidth 10]
 pack $f -side top -fill x
 label $f.msg -text "Size:"
 entry $f.entry -textvariable font(-size)
 bind $f.entry <Return> FontUpdate
 pack $f.msg -side left
 pack $f.entry -side top -fill x
}

FontUpdate is called when any of the font settings
are changed, either from the menu or FontSetSize

proc FontUpdate { } {
 global font

 # The elements of font that have a leading - are
 # used directly in the font configuration command.

 eval {font configure fontsel} [array get font -*]
 FontSet
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 43. Send
This chapter describes the send command that invokes Tcl commands in other
applications. This chapter also presents an alternative to send that uses network
sockets.

The send command lets Tk applications on the same display send each other Tcl
commands and cooperate in very flexible ways. A large application can be
structured as a set of smaller tools that cooperate instead of one large monolith.
This encourages reuse, and it exploits your workstation's multiprogramming
capabilities.

The send facility provides a name space for Tk applications. The winfo interps
command returns the names of all the Tk applications reachable with send. The
send communication mechanism is limited to applications running on one display.
Multiple screens on one workstation still count as the same display on X. In UNIX,
send uses properties on the X display for communication and to record the
application names. As of Tk 8.0, send is not yet implemented on Macintosh or
Windows. There is an extension for Windows that uses DDE to emulate send.

This chapter also describes an alternative to send that uses network sockets. The
facility is not limited to a single display, and can be used in conjunction with safe
interpreters to limit the capabilities of remote operations. A number of Tcl
extensions provide similar functionality, including GroupKit and Tcl-DP. Of particular
note is the comm package, which is a part of the Standard Tcl Library. The comm
package was designed as a sockets-based replacement for send that would work on
any platform. You can find more information about comm from the tcllib project page
on SourceForge:

http://tcllib.sourceforge.net.

http://tcllib.sourceforge.net/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The send Command

The send command invokes a Tcl command in another application. The general form
of the command is:

send options interp arg ?arg...?

The send command behaves like eval; if you give it extra arguments, it
concatenates them to form a single command. If your argument structure is
important, use list to build the command. Table 43-1 lists the options to send:

Table 43-1. Options to the send command

-async Does not wait for the remote command to complete.

-displayof
window

Sends to the application on the same display as window.

-- Delimits options from the interp argument. Useful if the interp
begins with a dash.

The interp argument is the name of the other application. An application defines its
own name when it creates its main window. The wish shell uses as its name the last
component of the file name of the script. For example, when wish interprets
/usr/local/bin/exmh, it sets its application name to exmh. However, if another
instance of the exmh application is already running, wish chooses the name exmh #2,
and so on. If wish is not executing from a file, its name is just wish. You may have
noticed wish #2 or wish #3 in your window title bars, and this reflects the fact that
multiple wish applications are running on your display.

A script can find out its own name, so you can pass names around or put them into
files in order to set up communications. The tk appname command queries or
changes the application name:

set myname [tk appname]
tk appname aNewName

Send and X Authority

The send command relies on the X authority mechanism for authorization. A
command is rejected by the target interpreter if you do not have X authority set up.

There are two ways around this problem. First, you can disable the access check by
compiling the tkSend.c file with the -DTK_NO_SECURITY compile flag. If you must
worry about malicious programs that send your programs commands, then you
should not do this.

The second option is to start your X server with its -auth flag, which initializes the X
authority mechanism. The details vary depending on your X server, and most
modern X servers do this automatically. The general picture is that you generate a
pseudo-random string and store it into a file, which is usually named
~/.Xauthority and must be readable only by your account. The -auth flag specifies
the name of this file to the X server. Each X application reads this file and sends the
contents to the X server when opening the connection to the server. If the contents
match what the server read when it started, then the connection is allowed. The
system is slightly more complicated than described here. The file actually contains a
sequence of records to support multiple displays and client hosts. Consult your local
X guru or the documentation for the details particular to your system.

Your xhost list must be clear.

Tk also requires that the xhost list be empty. The xhost mechanism is the old, not-
so-secure authentication mechanism in X. With xhost you allow all programs on a
list of hosts to connect to your display. The problem with this is that multiuser
workstations allow remote login, so essentially anybody could log in to a workstation
on the xhost list and gain access to your display. The Xauthority mechanism is much
stronger because it restricts access to your account, or to accounts that you
explicitly give a secret token to. The problem is that even if Xauthority is set up, the
user or a program can turn on xhosts and open up access to your display.

If you run the xhost program with no argument, it reports the status and what hosts
are on the list. The following output is generated when access control is restricted,
but programs running on sage are allowed to connect to the display:

exec xhost
=> Access control enabled: all hosts being restricted
sage

This is not good enough for Tk send. It will fail because sage is on the list. I work in
an environment where old scripts and programs are constantly adding things to my
xhost list for reasons that are no longer valid. I developed a version of send that
checks for errors and then does the following to clean out the xhost list. You have to
enable access control and then explicitly remove any hosts on the list. These are
reported after an initial line that says whether or not hosts are restricted:

xhost - ;# enable access control in general
foreach host [lrange [split [exec xhost] \n] 1 end] {

 exec xhost -$host ;# clear out exceptions
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Sender Script

The following example is a general-purpose script that reads input and then sends it
to another application. You can put this at the end of a pipeline to get a loopback
effect to the main application, although you can also use fileevent for similar
effects. One advantage of send over fileevent is that the sender and receiver can
be more independent. A logging application, for example, can come and go
independently of the applications that log error messages:

Example 43-1 The sender application

#!/usr/local/bin/wish
sender takes up to four arguments:
1) the name of the application to send to.
2) a command prefix.
3) the name of another application to notify
after the end of the data.
4) the command to use in the notification.

Hide the unneeded window
wm withdraw .
Process command line arguments
if {$argc == 0} {
 puts stderr "Usage: send name ?cmd? ?uiName? ?uiCmd?"
 exit 1
} else {
 set app [lindex $argv 0]
}
if {$argc > 1} {
 set cmd [lindex $argv 1]
} else {
 set cmd Send_Insert
}
if {$argc > 2} {
 set ui [lindex $argv 2]
 set uiCmd Send_Done
}
if {$argc > 3} {
 set uiCmd [lindex $argv 3]
}
Read input and send it to the logger
while {[gets stdin input] >= 0} {
 # Ignore errors with the logger
 catch {send $app [concat $cmd [list $input\n]]}
}
Notify the controller, if any
if [info exists ui] {
 if [catch {send $ui $uiCmd} msg] {
 puts stderr "send.tcl could not notify $ui\n$msg"

 }
}
This is necessary to force wish to exit.
exit

The sender application supports communication with two processes. It sends all its
input to a primary "logging" application. When the input finishes, it can send a
notification message to another "controller" application. The logger and the
controller could be the same application.

Use list to quote arguments to send.

Consider the send command used in the example:

send $app [concat $cmd [list $input\n]]

The combination of concat and list is tricky. The list command quotes the value
of the input line. This quoted value is then appended to the command, so it appears
as a single extra argument. Without the quoting by list, the value of the input line
will affect the way the remote interpreter parses the command. Consider these
alternatives:

send $app [list $cmd $input]

This form is safe, except that it limits $cmd to a single word. If cmd contains a value
like the ones given below, the remote interpreter will not parse it correctly. It will
treat the whole multiword value as the name of a command:

.log insert end

.log see end ; .log insert end

This is the most common wrong answer:

send $app $cmd $input

The send command concatenates $cmd and $input together, and the result will be
parsed again by the remote interpreter. The success or failure of the remote
command depends on the value of the input data. If the input included Tcl syntax
like $ or [], errors or other unexpected behavior would result.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Communicating Processes

Chapter 24 presented two examples: a browser for the examples in this book, and a
simple shell in which to try out Tcl commands. In that chapter they are put into the
same application. The two examples shown below hook these two applications
together using the send command. Example 43-2 changes the Run and Reset
procedures of the browser to send EvalEcho commands to the shell.

Example 43-2 Hooking the browser to an eval server

Replace the Run and Reset procedures of the browser in
Example 24ÿ3 on page 384 with these procedures

Start up the evalsrv.tcl script.
proc StartEvalServer {} {
 global browse
 # Start the shell and pass it our name.
 exec evalsrv.tcl [tk appname] &
 # Wait for evalsrv.tcl to send us its name
 tkwait variable browse(evalInterp)
}
proc Run {} {
 global browse
 set apps [winfo interps]
 set ix [lsearch -glob $apps evalsrv.tcl*]
 if {$ix < 0} {
 # No evalsrv.tcl application running
 StartEvalServer
 }
 if {![info exists browse(evalInterp)]} {
 # Hook up to already running eval server
 set browse(evalInterp) [lindex $apps $ix]
 }
 if [catch {send $browse(evalInterp) {info vars}} err] {
 # It probably died - restart it.
 StartEvalServer
 }
 # Send the command asynchronously. The two
 # list commands foil the concat done by send and
 # the uplevel in EvalEcho
 send -async $browse(evalInterp) \
 [list EvalEcho [list source $browse(current)]]
}
Reset the shell interpreter in the eval server
proc Reset {} {
 global browse
 send $browse(evalInterp) {EvalEcho reset}
}

The number of lists created before the send command may seem excessive, but
they are all necessary. The send command concatenates its arguments, so instead
of letting it do that, we pass it a single list. Similarly, EvalEcho expects a single
argument that is a valid command, so list is used to construct that.

The StartEvalServer procedure starts up the shell. Command-line arguments are
used to pass the application name of the browser to the shell. The shell completes
the connection by sending its own application name back to the browser. The
browser stores the name of the shell application in browser(evalInterp). The code
that the shell uses is shown in Example 43-3:

Example 43-3 Making the shell into an eval server

Add this to the shell application shown
in Example 24ÿ4 on page 389
if {$argc > 0} {
 # Send our application name to the browser
 send [lindex $argv 0] \
 [list set browse(evalInterp) [tk appname]]
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Remote eval through Sockets

Network sockets provide another communication mechanism you can use to
evaluate Tcl commands in another application. The "name" of the application is just
the host and port for the socket connection. There are a variety of schemes you can
use to manage names. A crude, but effective way to manage host and ports for your
servers is to record them in a file in your network file system. These examples
ignore this problem. The server chooses a port and the client is expected to know
what it is.

Example 43-4 implements Eval_Server that lets other applications connect and
evaluate Tcl commands. The interp argument specifies the interpreter in which to
evaluate the Tcl commands. If the caller of Eval_Server specifies {} for the
interpreter, then the commands are evaluated in the current interpreter. The
openCmd is called when the connection is made. It can do whatever setup or
authentication is required. If it doesn't like the connection, it can close the socket:

Example 43-4 Remote eval using sockets

proc Eval_Server {port {interp {}} {openCmd EvalOpenProc}} {
 socket -server [list EvalAccept $interp $openCmd] $port
}
proc EvalAccept {interp openCmd newsock addr port} {
 global eval
 set eval(cmdbuf,$newsock) {}
 fileevent $newsock readable [list EvalRead $newsock $interp]
 if [catch {
 interp eval $interp $openCmd $newsock $addr $port
 }] {
 close $newsock
 }
}
proc EvalOpenProc {sock addr port} {
 # do authentication here
 # close $sock to deny the connection
}

Example 43-5 shows EvalRead that reads commands and evaluates them in an
interpreter. If the interp is {}, it causes the commands to execute in the current
interpreter. In this case an uplevel #0 is necessary to ensure the command is
executed in the global scope. If you use interp eval to execute something in
yourself, it executes in the current scope:

Example 43-5 Reading commands from a socket

proc EvalRead {sock interp} {
 global eval errorInfo errorCode

 if [eof $sock] {
 close $sock
 } else {
 gets $sock line
 append eval(cmdbuf,$sock) $line\n
 if {[string length $eval(cmdbuf,$sock)] && \
 [info complete $eval(cmdbuf,$sock)]} {
 set code [catch {
 if {[string length $interp] == 0} {
 uplevel #0 $eval(cmdbuf,$sock)
 } else {
 interp eval $interp $eval(cmdbuf,$sock)
 }
 } result]
 set reply [list $code $result $errorInfo \
 $errorCode]\n
 # Use regsub to count newlines
 set lines [regsub -all \n $reply {} junk]
 # The reply is a line count followed
 # by a Tcl list that occupies that number of lines
 puts $sock $lines
 puts -nonewline $sock $reply
 flush $sock
 set eval(cmdbuf,$sock) {}
 }
 }
}

Example 43-6 presents Eval_Open and Eval_Remote that implement the client side
of the eval connection. Eval_Open connects to the server and returns a token, which
is just the socket. The main task of Eval_Remote is to preserve the information
generated when the remote command raises an error

The network protocol is line-oriented. The Eval_Remote command writes the
command on the socket. The EvalRead procedure uses info complete to detect the
end of the command. The reply is more arbitrary, so server sends a line count and
that number of lines. The regsub command counts up all the newlines because it
returns the number of matches it finds. The reply is a list of error codes, results,
and trace information. These details of the return command are described on page
86.

Example 43-6 The client side of remote evaluation

proc Eval_Open {server port} {
 global eval
 set sock [socket $server $port]
 # Save this info for error reporting
 set eval(server,$sock) $server:$port
 return $sock
}
proc Eval_Remote {sock args} {

 global eval
 # Preserve the concat semantics of eval
 if {[llength $args] > 1} {
 set cmd [concat $args]
 } else {
 set cmd [lindex $args 0]
 }
 puts $sock $cmd
 flush $sock
 # Read return line count and the result.
 gets $sock lines
 set result {}
 while {$lines > 0} {
 gets $sock x
 append result $x\n
 incr lines -1
 }
 set code [lindex $result 0]
 set x [lindex $result 1]
 # Cleanup the end of the stack
 regsub "\[^\n]+$" [lindex $result 2] \
 "*Remote Server $eval(server,$sock)*" stack
 set ec [lindex $result 3]
 return -code $code -errorinfo $stack -errorcode $ec $x
}
proc Eval_Close {sock} {
 close $sock
}

If an error occurs in the remote command, then a stack trace is returned. This
includes the command used inside EvalRead to invoke the command, which is either
the uplevel or interp eval command. This is the very last line in the stack that is
returned, and regsub is used to replace this with an indication of where control
transferred to the remote server:

catch [Eval_Remote sock6 set xx]
=> 1
set errorInfo
=> can't read "xx": no such variable
 while executing
"set xx
"
 ("uplevel" body line 1)
 invoked from within
Remote Server sage:4000
 invoked from within
"catch [Eval_Remote sock6 set xx]"

Chapter 44. Window Managers and Window
Information
The window manager controls the size and location of other applications' windows.
The window manager is built into Windows and Macintosh, while it is a separate
application on UNIX. The wm command provides an interface to the window manager.
The winfo command returns information about windows. The tk command provides
miscellaneous information about Tk and the windowing system.

Management of top-level windows is done by the window manager. The Macintosh
and Windows platforms have the window manager built in to the operating system,
but in UNIX the window manager is just another application. The window manager
controls the position of top-level windows, provides a way to resize windows, open
and close them, and implements a border and decorative title for windows. The wm
command interacts with the window manager so that the application can control its
size, position, and iconified state.

If you need to fine-tune your display, you may need some detailed information
about widgets. The winfo command returns all sorts of information about windows,
including interior widgets, not just top-level windows.

The wm Command

The wm command has about 20 operations that interact with the window manager.
The general form of the command is:

wm operation win ?args?

In all cases the win argument must be a toplevel. Otherwise, an error is raised. In
many cases, the operation either sets or queries a value. If a new value is not
specified, then the current settings are returned. For example, this command
returns the current window geometry:

wm geometry .
=> 300x200+327+20

This command defines a new geometry:

wm geometry . 400x200+0+0

There are lots of wm operations, and this reflects the complex protocol with UNIX
window managers. The summary below lists the subset of operations that I find
useful. The operations can be grouped into four main categories:

Size, placement and decoration of windows. Use the geometry and title
operations to position windows and set the title bar.

Icons. Use the iconify, deiconify, and withdraw operations to open and
close windows. On UNIX, closed windows are represented by an icon.

Long-term session state. Use the protocol operation to get a callback when
users destroy windows.

Miscellaneous. Use the transient and overrideredirect operation to get
specialized windows. There are platform-specific commands to select different
styles of top-level windows.

Toplevel Size, Placement, and Decoration

Each window has a title that appears in the title bar that the window manager
places above the window. In a wish script, the default title of the main window is the
last component of the file name of the script. Use the wm title command to change
the title of the window. The title can also appear in the icon for your window, unless
you specify another name with wm iconname.

wm title . "My Application"

Use the wm geometry command to adjust the position or size of your main windows.
A geometry specification has the general form WxH+X+Y, where W is the width, H is
the height, and X and Y specify the location of the upper-left corner of the window.
The location +0+0 is the upper-left corner of the display. You can specify a negative
X or Y to position the bottom (right) side of the window relative to the bottom
(right) side of the display. For example, +0-0 is the lower-left corner, and -100-100
is offset from the lower-right corner by 100 pixels in the X and Y direction. If you do
not specify a geometry, then the current geometry is returned.

Example 44-1 Gridded geometry for a canvas

canvas .c -width 300 -height 150
pack .c -fill both -expand true
wm geometry .
=> 300x200+678+477
wm grid . 30 15 10 10
wm geometry .
=> 30x20+678+477

Example 44-1 sets up gridded geometry for a canvas, which means that the
geometry is in terms of some unit other than pixels. With the canvas, use the wm
grid command to define the size of the grid. The text and listbox widgets set a grid
based on the size of the characters they display. They have a setgrid attribute that
turns on gridding, which is described on page 642.

The wm resizable command controls whether a user can resize a window. The
following command allows a resize in the X direction, but not in the Y direction:

wm resizable . 1 0

You can constrain the minimum size, maximum size, and the aspect ratio of a
toplevel. The aspect ratio is the width divided by the height. The constraint is
applied when the user resizes the window interactively. The minsize, maxsize, and
aspect operations apply these constraints.

Some window managers insist on having the user position windows. The sizefrom
and positionfrom operations let you pretend that the user specified the size and
position in order to work around this restriction.

Table 44-1 summarizes the wm commands that deal with size, decorations,
placement:

Table 44-1. Size, placement and decoration window manager
operations

wm aspect win ?a
b c d?

Constrains win's ratio of width to height to be between (a/b
and c/d).

wm geometry win ?
geometry?

Queries or sets the geometry of win.

wm grid win ?w h
dx dy?

Queries or sets the grid size. w and h are the base size, in grid
units. dx and dy are the size, in pixels, of a grid unit.

wm maxsize win ?
width height?

Constrains the maximum size of win.

wm minsize win ?
width height?

Constrains the minimum size of win.

wm positionfrom
win ?who?

Queries or sets who to be program or user.

wm resizable win
?xok yok?

Queries or sets ability to resize interactively.

wm sizefrom win ?
who?

Queries or sets who to be program or user.

wm stackorder
win

Returns a list of toplevel windows in stacking order, from
lowest to highest. (Tk 8.4)

wm stackorder
win ?
isabove|isbelow
win?

Returns a boolean result indicating whether or not the first
window is currently above or below the second window in the
stacking order. (Tk 8.4)

wm title win ?
string?

Queries or sets the window title to string.

The stackorder operation, introduced in Tk 8.4, returns information about the
stacking order of the application's toplevel windows. Given the name of a toplevel, it
returns a list of toplevel children windows in stacking order, from lowest to highest.
Only those toplevels that are currently mapped to the screen are returned. The
following command returns all mapped toplevels in their stacking order:

wm stackorder .

The stackorder operation can also be used to determine if one toplevel is
positioned above or below a second toplevel. When two window arguments
separated by either isabove or isbelow are passed, a boolean result indicates
whether or not the first window is currently above or below the second window in
the stacking order. For example:

wm stackorder . isabove .dialog

Icons

UNIX window managers let you close a window and replace it with an icon. The
window still exists in your application, and users can open the window later. You can
open and close a window yourself with the deiconify and iconify operations,
respectively. Use the withdraw operation to unmap the window without replacing it
with an icon. The state operation returns the current state, which is one of normal,
iconified, or withdrawn. If you withdraw a window, you can restore it to the
normal state with deiconify.

Windows and Macintosh do not implement icons for program windows. Instead,
icons represent files and applications in the desktop environment. When you
iconify under Windows, the window gets minimized and users can open it by
clicking on the taskbar at the bottom of the screen. When you iconify under
Macintosh, the window simply gets withdrawn from the screen.

As of Tk 8.3, Windows applications have an additional state, zoomed, which is a full-
screen (or "maximized") display mode. Future versions of Tk may support this state
for other operating systems

You can set the attributes of UNIX icons with the iconname, iconposition,
iconbitmap, and iconmask operations. The icon's mask is used to get irregularly
shaped icons. Chapter 41 describes how masks and bitmaps are defined. In the case
of an icon, it is most likely that you have the definition in a file, so your command
will look like this:

wm iconbitmap . @myfilename

Starting with Tk 8.3.3, on Windows systems, you can provide the path of a valid
Windows icon file (usually .ico or .icr files) when setting the window's icon with
the wm iconbitmap command. And if you use the optional -default option,
introduced in Tk 8.4, the specified bitmap is used as the default icon for all
windows. However, when setting the icon bitmap under windows, remember that
the argument you provide must be a filename without a leading "@". For example:

wm iconbitmap . -default [file join $lib myapp.ico]

Table 44-2 summarizes the wm operations that have to do with icons:

Table 44-2. Window manager commands for icons

wm deiconify
win

Opens the window win.

wm iconbitmap
win ?bitmap?

Queries or defines the bitmap for the icon. UNIX.

wm iconbitmap
win ?-default?
file

Sets the icon's bitmap using the specified file. The -default
option sets the bitmap as the default for all windows of the
application. Windows. (Tk 8.3.3)

wm iconify
win

Closes the window win.

wm iconmask
win ?mask?

Queries or defines the mask for the icon. UNIX.

wm iconname
win ?name?

Queries or sets the name on the icon. UNIX.

wm
iconposition
win ?x y?

Queries or sets the location of the icon. UNIX.

wm iconwindow
win ?window?

Queries or specifies an alternate window to display when in the
iconified state. UNIX.

wm state win
?state?

Returns normal, iconic, withdrawn or (Windows only) zoomed. If
specified, the window is set to the new state.

wm withdraw
win

Unmaps the window. No icon is displayed.

Application Session State

The window manager lets users delete windows with a close operation. When the
main Tk window gets deleted, wish normally quits. If you have any special
processing that must take place when the user deletes a window, you need to

intercept the close action. Use the wm protocol operation to register a command
that handles the WM_DELETE_WINDOW message from the window manager. This works
on all platforms even though "delete" is a UNIX term and "close" is the Windows and
Macintosh term:

wm protocol . WM_DELETE_WINDOW Quit

If you intercept close on the main Tk window (i.e., dot), you must eventually call
exit to actually stop your application. However, you can also take the time to
prompt the user about unsaved changes, or even let the user change their mind
about quitting.

Other window manager messages that you can intercept are WM_SAVE_YOURSELF and
WM_TAKE_FOCUS. The first is called periodically by some UNIX session managers,
which are described below. The latter is used in the active focus model. Tk (and this
book) assumes a passive focus model where the window manager assigns focus to a
top-level window.

Saving session state.

Some UNIX window managers support the notion of a session that lasts between
runs of the window system. A session is implemented by saving state about the
applications that are running, and using this information to restart the applications
when the window system is restarted.

An easy way to participate in the session protocol is to save the command used to
start your application. The wm command operation does this. The wish shell saves this
information, so it is just a matter of registering it with the window manager. argv0
is the command, and argv is the command-line arguments:

wm command . [linsert $argv 0 $argv0]

If your application is typically run on a different host than the one with the display
(like in an Xterminal environment), then you also need to record what host to run
the application on. Use the wm client operation for this. You might need to use
hostname instead of uname on your system:

wm client . [exec uname -n]

Table 44-3 describes the session-related window manager operations.

Table 44-3. Session-related window manager operations

wm client win ?
name?

Records the hostname in the WM_CLIENT_MACHINE property.
UNIX.

wm command win
?command?

Records the start-up command in the WM_COMMAND property.
UNIX.

wm protocol win
?name? ?
command?

Registers a command to handle the protocol request name, which
can be WM_DELETE_WINDOW, WM_SAVE_YOURSELF, or
WM_TAKE_FOCUS.

Miscellaneous Window Manager Operations

The UNIX window managers work by reparenting an application's window so that it
is a child of the window that forms the border and decorative title bar. The wm frame
operation returns the window ID of the new parent, or the ID of the window itself if
it has not been reparented. The wm overrideredirect operation can set a bit that
overrides the reparenting. This means that no title or border will be drawn around
the window, and you cannot control the window through the window manager.

The wm group operation defines groups of windows so that the window manager can
open and close them together. One window, typically the main window, is chosen as
the leader. The other members of the group are iconified when it is iconified. This is
not implemented on Windows and Macintosh, and not all UNIX window managers
implement this, either.

The wm transient operation informs the window manager that this is a temporary
window and there is no need to decorate it with the border and decorative title bar.
This is used, for example, on pop-up menus. On Windows, a transient window is a
toolbar window that does not appear in the task bar. On Macintosh, the
tk::unsupported::MacWindowStyle command, which is described on page 489,
lets you create different styles of top-level windows.

The wm attributes command, added in Tk 8.4, allows you to set or query platform-
specific attributes associated with a specific window. The following Windows
attributes are supported: -disabled gets or sets whether the window is in a
disabled state; -toolwindow gets or sets the style of the window to toolwindow (as
defined in the MSDN); and -topmost gets or sets whether this window is displayed
above all other windows.

Table 44-4 lists the remaining window manager operations:

Table 44-4. Miscellaneous window manager operations

wm attributes win
?...?

Sets or queries platform-specific window attributes. (Tk 8.4)

wm colormapwindows
win ?windowList?

Sets or queries the WM_COLORMAP_WINDOWS property that
orders windows with different colormaps.

wm focusmodel win ?
what?

Sets or queries the focus model: active or passive. (Tk
assumes the passive model.)

wm frame win Returns the ID of the parent of win if it has been
reparented; otherwise, returns the ID of win.

wm group win ?
leader?

Queries or sets the group leader (a toplevel) for win. The
window manager may unmap all the group at once.

wm overrideredirect
win ?boolean?

Sets or queries the override redirect bit that suppresses
reparenting by the window manager.

wm transient win ?
leader?

Queries or marks a window as a transient window working
for leader, another widget.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The winfo Command

The winfo command has about 50 operations that return information about a
widget or the display. The operations fall into the following categories:

Sending commands between applications.

Family relationships.

Size.

Location.

Virtual root coordinates.

Atoms and IDs.

Colormaps and visuals.

Sending Commands between Applications

Each Tk application has a name that is used when sending commands between
applications using the send command, which is described in Chapter 43. The list of
Tk applications is returned by the interps operation. The tk appname command is
used to get the name of the application, and that command can also be used to set
the application name.

Example 44-2 shows how your application might connect up with several existing
applications. It contacts each registered Tk interpreter and sends a short command
that contains the application's own name as a parameter. The other application can
use that name to communicate back.

Example 44-2 Telling other applications what your name is

foreach app [winfo interps] {
 catch {send $app [list Iam [tk appname]]}
}

Table 44-5 summarizes these commands:

Table 44-5. send command information

tk appname ?newname? Queries or sets the name used with send.

winfo name . Also returns the name used for send, for backward
compatibility with Tk 3.6 and earlier.

winfo name pathname Returns the last component of pathname.

winfo ?-displayof
win? interps

Returns the list of registered Tk applications on the same
display as win.

Widget Family Relationships

The Tk widgets are arranged in a hierarchy, and you can use the winfo command to
find out about the structure of the hierarchy. The winfo children operation returns
the children of a window, and the winfo parent operation returns the parent. The
parent of the main window is null (i.e., an empty string).

A widget is also a member of a class, which is used for bindings and as a key into
the resource database. The winfo class operation returns this information. You can
test for the existence of a window with winfo exists, and whether or not a window
is mapped onto the screen with winfo viewable. Note that winfo ismapped is true
for a widget that is managed by a geometry manager, but if the widget's top-level
window is not mapped, then the widget is not viewable.

The winfo manager operation tells you what geometry manager is controlling the
placement of the window. This returns the name of the geometry manager
command. Examples include pack, place, grid, canvas, and text. The last two
indicate the widget is embedded into a canvas or text widget.

Table 44-6 summarizes these winfo operations:

Table 44-6. Window hierarchy information

winfo children win Returns the list of children widgets of win.

winfo class win Returns the resource class of win.

winfo exists win Returns 1 if win exists.

winfo ismapped win Returns 1 if win is mapped onto the screen.

winfo manager win Geometry manager: pack, place, grid, canvas, or text.

winfo parent win Returns the parent widget of win.

winfo viewable win Returns 1 if win and all its parent windows are mapped.

Widget Size

The winfo width and winfo height operations return the width and height of a
window, respectively. Alternatively, you can ask for the requested width and height
of a window. Use winfo reqwidth and winfo reqheight for this information. The
requested size may not be accurate, however, because the geometry manager may
allocate more or less space, and the user may resize the window.

Size is not valid until a window is mapped.

A window's size is not set until a geometry manager maps a window onto the
display. Initially, a window starts out with a width and height of 1. You can use
tkwait visibility to wait for a window to be mapped before asking its width or
height, or you can use update to give Tk a chance to update the display. There are
some potential problems with update that are discussed on page 608. Dialog_Wait
in Example 39-1 on page 606 uses tkwait visibility.

The winfo geometry operation returns the size and position of the window in the
standard geometry format: WxH+X+Y. In this case the X and Y offsets are relative to
the parent widget, or relative to the root window in the case of the main window.

You can find out how big the display is, too. The winfo screenwidth and winfo
screenheight operations return this information in pixels. The winfo
screenmmwidth and winfo screenmmheight return this information in millimeters.

You can convert between pixels and screen distances with the winfo pixels and
winfo fpixels operations. Given a number of screen units such as 10m, 3c, or 72p,
these return the corresponding number of pixels. The first form rounds to a whole
number, while the second form returns a floating point number. The correspondence
between pixels and sizes may not be accurate because users can adjust the pixel

size on their monitors, and Tk has no way of knowing about that. Chapter 40
explains screen units on page 612. For example:

set pixelsToInch [winfo pixels . 2.54c]

Table 44-7 summarizes these operations:

Table 44-7. Window size information

winfo fpixels win
num

Converts num, in screen units, to pixels. Returns a floating
point number.

winfo geometry
win

Returns the geometry of win, in pixels and relative to the
parent in the form WxH+X+Y

winfo height win Returns the height of win, in pixels.

winfo pixels win
num

Converts num to a whole number of pixels.

winfo reqheight
win

Returns the requested height of win, in pixels.

winfo reqwidth
win

Returns the requested width of win, in pixels.

winfo
screenheight win

Returns the height of the screen, in pixels.

winfo
screenmmheight
win

Returns the height of the screen, in millimeters.

winfo
screenmmwidth win

Returns the width of the screen, in millimeters.

winfo screenwidth
win

Returns the width of the screen, in pixels.

winfo width win Returns the width of win, in pixels.

Widget Location

Table 44-8. Window location information

winfo containing ?-displayof win?
win x y

Returns the pathname of the window at x
and y.

winfo pointerx win Returns the X screen coordinate of the
mouse.

winfo pointery win Returns the Y screen coordinate of the
mouse.

winfo pointerxy win Returns the X and Y coordinates of the
mouse.

winfo rootx win Returns the X screen position of win.

winfo rooty win Returns the Y screen position of win.

winfo screen win Returns the display identifier of win's
screen.

winfo server win Returns the version string of the display
server.

winfo toplevel win Returns pathname of toplevel that
contains win.

winfo x win Returns the X position of win in its
parent.

winfo y win Returns the Y position of win in its
parent.

The winfo x and winfo y operations return the position of the upper-left corner of
a window relative to its parent widget. In the case of the main window, this is its
location on the screen. The winfo rootx and winfo rooty return the screen
location of the upper-left corner of a widget, even if it is not a toplevel.

The winfo containing operation returns the pathname of the window that contains
a point on the screen. This is useful in implementing menus and drag-and-drop
applications.

The winfo toplevel operation returns the pathname of the toplevel that contains a
widget. If the window is itself a toplevel, then this operation returns its own
pathname.

The winfo screen operation returns the display identifier for the screen of the
window.

Virtual Root Window

Some window managers use a virtual root window to give the user a larger virtual
screen. At any given time, only a portion of the virtual screen is visible, and the user
can change the view on the virtual screen to bring different applications into view.
In this case, the winfo x and winfo y operations return the coordinates of a main
window in the virtual root window (i.e., not the screen).

The winfo vrootheight and winfo vrootwidth operations return the size of the
virtual root window. If there is no virtual root window, then these just return the
size of the screen.

Correcting virtual root window coordinates.

The winfo vrootx and winfo vrooty are used to map from the coordinates in the
virtual root window to screen-relative coordinates. These operations return 0 if there
is no virtual root window. Otherwise, they return a negative number. If you add this
number to the value returned by winfo x or winfo y, it gives the screen-relative
coordinate of the window:

set screenx [expr [winfo x $win] + [winfo vrootx $win]]

Table 44-9 summarizes these operations:

Table 44-9. Virtual root window information

winfo vrootheight win Returns the height of the virtual root window for win.

winfo vrootwidth win Returns the width of the virtual root window for win.

winfo vrootx win Returns the X position of win in the virtual root.

winfo vrooty win Returns the Y position of win in the virtual root.

Atoms and IDs

An atom is an X technical term for an identifier that is registered with the X server.
Applications map names into atoms, and the X server assigns each atom a 32-bit
identifier that can be passed between applications. One of the few places this is
used in Tk is when the selection mechanism is used to interface with different
toolkits. In some cases the selection is returned as atoms, which appear as 32-bit
integers. The winfo atomname operation converts that number into an atom (i.e., a
string), and the winfo atom registers a string with the X server and returns the 32-
bit identifier as a hexadecimal string

Each widget has an ID assigned by the window system. The winfo id command
returns this identifier. The winfo pathname operation returns the Tk pathname of
the widget that has a given ID, but only if the window is part of the same
application.

Embedding applications.

The id operation is useful if you need to embed another application into your
window hierarchy. Wish takes a -use id command-line argument that causes it to
use an existing window for its main window. Other toolkits provide similar
functionality. For example, to embed another Tk app in a frame:

frame .embed -container true
exec wish -use [winfo id .embed] otherscript.tcl

Table 44-10 summarizes these operations:

Table 44-10. Atom and window ID information

winfo atom ?-displayof win?
name

Returns the 32-bit identifier for the atom name.

winfo atomname ?-displayof
win? id

Returns the atom that corresponds to the 32-bit
ID.

winfo id win Returns the window ID of win.

winfo pathname ?-displayof
win? id

Returns the Tk pathname of the window with
id, or null.

Colormaps and Visuals

The winfo depth returns the number of bits used to represent the color in each
pixel. The winfo cells command returns the number of colormap entries used by
the visual class of a window. These two values are generally related. A window with
8 bits per pixel usually has 256 colormap cells. The winfo screendepth and winfo
screencells return this information for the default visual class.

The winfo visualsavailable command returns a list of the visual classes and
screen depths that are available. For example, a display with 8 bits per pixel might
report the following visual classes are available:

winfo visualsavailable .
=> {staticgray 8} {grayscale 8} {staticcolor 8} \
 {pseudocolor 8}

The winfo visual operation returns the visual class of a window, and the winfo
screenvisual returns the default visual class of the screen.

The winfo rgb operation converts from a color name or value to the red, green,
and blue components of that color. Three decimal values are returned. Example 41-
2 on page 624 uses this command to compute a slightly darker version of the same
color.

Table 44-11 summarizes operations that return information about colormaps and
visual classes, which are described in Chapter 41:

Table 44-11. Colormap and visual class information

winfo cells win Returns the number of colormap cells in win's visual.

winfo
colormapfull win

Returns 1 if the last color allocation failed.

winfo depth win Returns the number of bits per pixel for win.

winfo rgb win
color

Returns the red, green, and blue values for color.

winfo
screencells win

Returns the number of colormap cells in the default visual.

winfo
screendepth win

Returns the number of bits per pixel in the screen's default
visual.

winfo
screenvisual win

Returns the default visual of the screen.

winfo visual win Returns the visual class of win.

winfo
visualsavailable
win

Returns a list of pairs that specify the visual type and bits per
pixel of the available visual classes.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The tk Command

The tk command provides a few miscellaneous entry points into the Tk library.

The appname operation is used to set or query the application name used with the
Tk send command. If you define a new name and it is already in use by another
application, (perhaps another instance of yourself), then a number is appended to
the name (e.g., #2, #3, and so on). This is the syntax of the command:

tk appname ?name?

Fonts, canvas items, and widget sizes use screen units that are pixels, points,
centimeters, millimeters, or inches. There are 72 points per inch. The tk scaling
command, which was added in Tk 8.0, is used to set or query the mapping between
pixels and points. A scale of 1.0 results in 72 pixels per inch. A scale of 1.25 results
in 90 pixels per inch. This gives accurate sizes on a 90 dpi screen or it makes
everything 25% larger on a 72 dpi screen. Changing the scale only affects widgets
created after the change. This is the syntax of the command:

tk scaling ?num?

Determining the windowing system.

The tk windowingsystem command, added in Tk 8.4, returns one of x11 (X11-
based), win32 (MS Windows), classic (Mac OS Classic), or aqua (Mac OS X Aqua).
Traditionally, Tk applications that included platform-dependent code could simply
switch on the value of the global tcl_platform(platform) element, which is set to
macintosh, unix, or windows. But the introduction of Apple's OS X and the Aqua
interface complicated matters. Mac OS X reports unix in the
tcl_platform(platform) element. But its windowing system is not a native X
Windows system, so you must use tk windowingsystem.

The caret operation, introduced in Tk 8.4, sets and queries the caret location for
the display of the specified Tk window. The caret is the per-display cursor location
used for indicating global focus (for example, to comply with Microsoft Accessibility
guidelines), as well as for location of the over-the-spot XIM (X Input Methods) or
Windows IME windows.

The useinputmethods operation changes the behavior of Tk on X with X Input
Methods (XIM). Before Tk 8.3, XIM was recognized and used without question. As of
Tk 8.3, they are recognized and initialized, but not used unless XIM is turned on
with the useinputmethods operation:

tk useinputmethods 1

Table 44-12 summarizes the tk command operations:

Table 44-12. The tk command operations

tk appname ?
name?

Queries or sets the application name, used by the Tk send
command.

tk caret window
?-x x? ?-y y? ?
-height height?

Queries or sets the caret location for the display of the specified
Tk window. x and y represent window-relative coordinates.
height is the height of the current cursor location, or the height
of the specified window. Values are returned in option-value pair
format. (Tk 8.4)

tk scaling ?-
displayof
window? ?
number?

Queries or sets the current scaling factor used by Tk to convert
between physical units and pixels. number is a floating point
value that specifies the number of pixels per point on window's
display. If window is omitted, it defaults to the main window. If
number is omitted, the current value of the scaling factor is
returned.

tk
useinputmethods
?-displayof
window? ?
boolean?

Queries or sets the state of whether Tk should use XIM (X Input
Methods) for filtering events. The resulting state is returned. If
XIM support is not available, this will always return 0. If window
is omitted, it defaults to the main window. If boolean is omitted,
the current state is returned. (Tk 8.3)

tk
windowingsystem

Returns the current windowing system: x11 (X11-based), win32
(MS Windows), classic (Mac OS Classic), or aqua (Mac OS X
Aqua). (Tk 8.4)

Chapter 45. Managing User Preferences
This chapter describes a user preferences package. The resource database stores
preference settings. Applications specify Tcl variables that are initialized from the
database entries. A user interface lets the user browse and change their settings.

User customization is an important part of any complex application. There are
always design decisions that could go either way. A typical approach is to choose a
reasonable default, but then let users change the default setting through a
preferences user interface. This chapter describes a preference package that works
by tying together a Tcl variable, which the application uses, and a resource
specification, which the user sets. In addition, a user interface is provided so that
the user need not edit the resource database directly.

App-Defaults Files

We will assume that it is sufficient to have two sources of application defaults: a
per-application database and a per-user database. In addition, we will allow for
some resources to be specific to color and monochrome displays. The following
example initializes the preference package by reading in the per-application and
per-user resource specification files. There is also an initialization of the global array
pref that will be used to hold state information about the preferences package. The
Pref_Init procedure is called like this:

Pref_Init $library/foo-defaults ~/.foo-defaults

We assume $library is the directory holding support files for the foo application,
and that per-user defaults will be kept in ~/.foo-defaults. These are UNIX-
oriented file names. When you write cross-platform Tk applications, you will find
that some file names are inherently platform-specific. The platform-independent
operations described in Chapter 9 are great, but they do not change the fact that
user preferences may be stored in c:/webtk/userpref.txt on Windows, Hard
Disk:System:Preferences:WebTk Prefs on Macintosh, and ~/.webtk on UNIX. I
find it useful to have a small amount of platform-specific startup code that defines
these pathnames. The preference package uses resource files that work on all
platforms:

Example 45-1 Preferences initialization

proc Pref_Init { userDefaults appDefaults } {
 global pref

 set pref(uid) 0 ;# for a unique identifier for widgets
 set pref(userDefaults) $userDefaults
 set pref(appDefaults) $appDefaults
 PrefReadFile $appDefaults startup
 if [file exists $userDefaults] {
 PrefReadFile $userDefaults user
 }
}
proc PrefReadFile { basename level } {
 if [catch {option readfile $basename $level} err] {
 Status "Error in $basename: $err"
 }
 if {[string match *color* [winfo visual .]]} {
 if [file exists $basename-color] {
 if [catch {option readfile \
 $basename-color $level} err] {
 Status "Error in $basename-color: $err"
 }
 }
 } else {
 if [file exists $basename-mono] {

 if [catch {option readfile $basename-mono \
 $level} err] {
 Status "Error in $basename-mono: $err"
 }
 }
 }
}

The PrefReadFile procedure reads a resource file and then looks for another file
with the suffix -color or -mono depending on the characteristics of the display. With
this scheme, a UNIX user puts generic settings in ~/.foo-defaults. They put color
specifications in ~/.foo-defaults-color. They put specifications for black and
white displays in ~/.foo-defaults-mono. You could extend PrefReadFile to allow
for per-host files as well.

Throughout this chapter we assume that the Status procedure displays messages
to the user. It could be as simple as:

proc Status { s } { puts stderr $s }

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Defining Preferences

This section describes the Pref_Add procedure that an application uses to define
preference items. A preference item defines a relationship between a Tcl variable
and a resource name. If the Tcl variable is undefined at the time Pref_Add is called,
then it is set from the value for the resource. If the resource is not defined, then the
variable is set to the default value.

Hide simple data structures with Tcl procedures.

A default value, a label, and a more extensive help string are associated with each
item, which is represented by a Tcl list of five elements. A few short routines hide
the layout of the item lists and make the rest of the code read better:

Example 45-2 Adding preference items

proc PrefVar { item } { lindex $item 0 }
proc PrefRes { item } { lindex $item 1 }
proc PrefDefault { item } { lindex $item 2 }
proc PrefComment { item } { lindex $item 3 }
proc PrefHelp { item } { lindex $item 4 }

proc Pref_Add { prefs } {
 global pref
 append pref(items) $prefs " "
 foreach item $prefs {
 set varName [PrefVar $item]
 set resName [PrefRes $item]
 set value [PrefValue $varName $resName]
 if {$value == {}} {
 # Set variables that are still not set
 set default [PrefDefault $item]
 switch -regexp -- $default {
 ^CHOICE {
 PrefValueSet $varName [lindex $default 1]
 }
 ^OFF {
 PrefValueSet $varName 0
 }
 ^ON {
 PrefValueSet $varName 1
 }

 default {
 # This is a string or numeric
 PrefValueSet $varName $default
 }
 }
 }
 }
}

The procedures PrefValue and PrefValueSet are used to query and set the value
of the named variable, which can be an array element or a simple variable. The
upvar #0 command sets the variable in the global scope.

Example 45-3 Setting preference variables

PrefValue returns the value of the variable if it exists,
otherwise it returns the resource database value
proc PrefValue { varName res } {
 upvar #0 $varName var
 if [info exists var] {
 return $var
 }
 set var [option get . $res {}]
}
PrefValueSet defines a variable in the global scope.
proc PrefValueSet { varName value } {
 upvar #0 $varName var
 set var $value
}

An important side effect of the Pref_Add call is that the variables in the preference
item are defined at the global scope. It is also worth noting that PrefValue will
honor any existing value for a variable, so if the variable is already set at the global
scope, then neither the resource value nor the default value will be used. It is easy
to change PrefValue to always set the variable if this is not the behavior you want.
Here is a sample call to Pref_Add:

Example 45-4 Using the preferences package

Pref_Add {
 {win(scrollside) scrollbarSide {CHOICE left right}
 "Scrollbar placement"
"Scrollbars can be positioned on either the left or
right side of the text and canvas widgets."}
 {win(typeinkills) typeinKills OFF
 "Type-in kills selection"
"This setting determines whether or not the selection
is deleted when new text is typed in."}
 {win(scrollspeed) scrollSpeed 15 "Scrolling speed"
"This parameter affects the scrolling rate when a selection

is dragged off the edge of the window. Smaller numbers
scroll faster, but can consume more CPU."}
}

Any number of preference items can be specified in a call to Pref_Add. The list-of-
lists structure is created by proper placement of the curly braces, and it is preserved
when the argument is appended to pref(items), which is the master list of
preferences. In this example, Pref_Add gets passed a single argument that is a Tcl
list with three elements. The Tcl variables are array elements, presumably related to
the Win module of the application. The resource names are associated with the main
application as opposed to any particular widget. They are specified in the database
like this:

*scrollbarSide: left
*typeinKills: 0
*scrollSpeed: 15

The Preferences User Interface

The figure shows the interface for the items added with the Pref_Add command
given in the previous section. The pop-up window with the extended help text
appears after you click on "Scrollbar placement." The user interface to the
preference settings is table-driven. As a result of all the Pref_Add calls, a single list
of all the preference items is built. The interface is constructed by looping through
this list and creating a user interface item for each:

Example 45-5 A user interface to the preference items

proc Pref_Dialog {} {
 global pref
 if [catch {toplevel .pref}] {
 raise .pref
 } else {
 wm title .pref "Preferences"
 set buttons [frame .pref.but -bd 5]
 pack .pref.but -side top -fill x
 button $buttons.quit -text Dismiss \
 -command {PrefDismiss}
 button $buttons.save -text Save \
 -command {PrefSave}
 button $buttons.reset -text Reset \
 -command {PrefReset ; PrefDismiss}
 label $buttons.label \
 -text "Click labels for info on each item"
 pack $buttons.label -side left -fill x
 pack $buttons.quit $buttons.save $buttons.reset \
 -side right -padx 4

 frame .pref.b -borderwidth 2 -relief raised
 pack .pref.b -fill both
 set body [frame .pref.b.b -bd 10]
 pack .pref.b.b -fill both

 set maxWidth 0
 foreach item $pref(items) {
 set len [string length [PrefComment $item]]
 if {$len > $maxWidth} {
 set maxWidth $len

 }
 }
 set pref(uid) 0
 foreach item $pref(items) {
 PrefDialogItem $body $item $maxWidth
 }
 }
}

The interface supports three different types of preference items: boolean, choice,
and general value. A boolean is implemented with a checkbutton that is tied to the
Tcl variable, which will get a value of either 0 or 1. A boolean is identified by a
default value that is either ON or OFF. A choice item is implemented as a set of
radiobuttons, one for each choice. A choice item is identified by a default value that
is a list with the first element equal to CHOICE. The remaining list items are the
choices, with the first one being the default choice. A regexp is used to check for
CHOICE instead of using list operations. This is because Tcl 8.0 will complain if the
value is not a proper list, which could happen with arbitrary values. If neither of
these cases, boolean or choice, are detected, then an entry widget is created to hold
the general value of the preference item:

Example 45-6 Interface objects for different preference types

proc PrefDialogItem { frame item width } {
 global pref
 incr pref(uid)
 set f [frame $frame.p$pref(uid) -borderwidth 2]
 pack $f -fill x
 label $f.label -text [PrefComment $item] -width $width
 bind $f.label <1> \
 [list PrefItemHelp %X %Y [PrefHelp $item]]
 pack $f.label -side left
 set default [PrefDefault $item]
 if {[regexp "^CHOICE " $default]} {
 foreach choice [lreplace $default 0 0] {
 incr pref(uid)
 radiobutton $f.c$pref(uid) -text $choice \
 -variable [PrefVar $item] -value $choice
 pack $f.c$pref(uid) -side left
 }
 } else {
 if {$default == "OFF" || $default == "ON"} {
 # This is a boolean
 set varName [PrefVar $item]
 checkbutton $f.check -variable $varName \
 -command [list PrefFixupBoolean $f.check $varName]
 PrefFixupBoolean $f.check $varName
 pack $f.check -side left
 } else {
 # This is a string or numeric
 entry $f.entry -width 10 -relief sunken

 pack $f.entry -side left -fill x -expand true
 set pref(entry,[PrefVar $item]) $f.entry
 set varName [PrefVar $item]
 $f.entry insert 0 [uplevel #0 [list set $varName]]
 bind $f.entry <Return> "PrefEntrySet %W $varName"
 }
 }
}
proc PrefFixupBoolean {check varname} {
 upvar #0 $varname var
 # Update the checkbutton text each time it changes
 if {$var} {
 $check config -text On
 } else {
 $check config -text Off
 }
}
proc PrefEntrySet { entry varName } {
 PrefValueSet $varName [$entry get]
}

In this interface, when the user clicks a
radiobutton or a checkbutton, the Tcl variable
is set immediately. To obtain a similar effect
with the general preference item, the
<Return> key is bound to a procedure that
sets the associated Tcl variable to the value
from the entry widget. PrefEntrySet is a
one-line procedure that saves us from using
the more awkward binding shown below.
Grouping with double quotes allows
substitution of $varName, but then we must
quote the square brackets to postpone
command substitution:

bind $f.entry <Return> "PrefValueSet $varName \[%W get\]"

The binding on <Return> is done as opposed to using the -textvariable option
because it interacts with traces on the variable a bit better. With trace you can
arrange for a Tcl command to be executed when a variable is changed, as in
Example 45-10 on page 680. For a general preference item it is better to wait until
the complete value is entered before responding to its new value.

The other aspect of the user interface is the display of additional help information
for each item. If there are lots of preference items, then there isn't enough room to
display this information directly. Instead, clicking on the short description for each
item brings up a toplevel with the help text for that item. The toplevel is marked
transient so that the window manager does not decorate it:

Example 45-7 Displaying the help text for an item

proc PrefItemHelp { x y text } {
 catch {destroy .prefitemhelp}
 if {$text == {}} {
 return
 }
 set self [toplevel .prefitemhelp -class Itemhelp]
 wm title $self "Item help"
 wm geometry $self +[expr $x+10]+[expr $y+10]
 wm transient $self .pref
 message $self.msg -text $text -aspect 1500
 pack $self.msg
 bind $self.msg <1> {PrefNukeItemHelp .prefitemhelp}
 .pref.but.label configure -text \
 "Click on pop-up or another label"
}
proc PrefNukeItemHelp { t } {
 .pref.but.label configure -text \
 "Click labels for info on each item"
 destroy $t
}

Managing the Preferences File

The preference settings are saved in the per-user file. The file is divided into two
parts. The tail is automatically rewritten by the preferences package. Users can
manually add resource specifications to the beginning of the file and they will be
preserved:

Example 45-8 Saving preferences settings to a file

PrefSave writes the resource specifications to the
end of the per-user resource file,
proc PrefSave {} {
 global pref
 if [catch {
 set old [open $pref(userDefaults) r]
 set oldValues [split [read $old] \n]
 close $old
 }] {
 set oldValues {}
 }
 if [catch {open $pref(userDefaults).new w} out] {
 .pref.but.label configure -text \
 "Cannot save in $pref(userDefaults).new: $out"
 return
 }
 foreach line $oldValues {
 if {$line == \
 "!!! Lines below here automatically added"} {
 break
 } else {
 puts $out $line
 }
 }
 puts $out "!!! Lines below here automatically added"
 puts $out "!!! [exec date]"
 puts $out "!!! Do not edit below here"
 foreach item $preferences {
 set varName [PrefVar $item]
 set resName [PrefRes $item]
 if [info exists pref(entry,$varName)] {
 PrefEntrySet $pref(entry,$varName) $varName
 }
 set value [PrefValue $varName $resName]
 puts $out [format "%s\t%s" *${resName}: $value]
 }
 close $out
 set new [glob $pref(userDefaults).new]
 set old [file root $new]
 if [catch {file rename -force $new $old} err] {
 Status "Cannot install $new: $err"

 return
 }
 PrefDismiss
}

There is one fine point in PrefSave. The value from the entry widget for general-
purpose items is obtained explicitly in case the user has not already pressed
<Return> to update the Tcl variable.

The interface is rounded out with the PrefReset and PrefDismiss procedures. A
reset is achieved by clearing the option database and reloading it, and then
temporarily clearing the preference items and their associated variables and then
redefining them with Pref_Add.

Example 45-9 Read settings from the preferences file

proc PrefReset {} {
 global pref
 # Re-read user defaults
 option clear
 PrefReadFile $pref(appDefaults) startup
 PrefReadFile $pref(userDefaults) user
 # Clear variables
 set items $pref(items)
 set pref(items) {}
 foreach item $items {
 uplevel #0 [list unset [PrefVar $item]]
 }
 # Restore values
 Pref_Add $items
}
proc PrefDismiss {} {
 destroy .pref
 catch {destroy .prefitemhelp}
}

Tracing Changes to Preference Variables

Suppose, for example, we want to repack the scrollbars when the user changes their
scrollside setting from left to right. This is done by setting a trace on the
win(scrollside) variable. When the user changes that via the user interface, the
trace routine is called. The trace command and its associated procedure are shown
in the next example. The variable must be declared global before setting up the
trace, which is not otherwise required if Pref_Add is the only command using the
variable.

Example 45-10 Tracing a Tcl variable in a preference item

Pref_Add {
 {win(scrollside) scrollbarSide {CHOICE left right}
 "Scrollbar placement"
"Scrollbars can be positioned on either the left or
right side of the text and canvas widgets."}
}
global win
set win(lastscrollside) $win(scrollside)
trace variable win(scrollside) w ScrollFixup
Assume win(scrollbar) identifies the scrollbar widget
proc ScrollFixup { name1 name2 op } {
 global win
 if {$win(scrollside) != $win(lastscrollside)} {
 set parent [lindex [pack info $win(scrollbar)] 1]
 pack forget $win(scrollbar)
 set firstchild [lindex [pack slaves $parent] 0]
 pack $win(scrollbar) -in $parent -before $firstchild \
 -side $win(scrollside) -fill y
 set win(lastscrollside) $win(scrollside)
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Improving the Package

One small improvement can be made to Pref_Add. If a user specifies a boolean
resource manually, he or she might use "true" instead of one and "false" instead of
zero. Pref_Add should check for those cases and set the boolean variable to one or
zero to avoid errors when the variables are used in expressions.

The interface lets you dismiss it without saving your preference settings. This is
either a feature that lets users try out settings without committing to them, or it is a
bug. Fixing this requires introducing a parallel set of variables to shadow the real
variables until the user hits Save, which is tedious to implement. You can also use a
grab as described in Chapter 39 to prevent the user from doing anything but setting
preferences.

This preference package is a slightly simplified version of one I developed for exmh,
which has so many preference items that a two-level scheme is necessary. The first
level is a menu of preference sections, and each section is created with a single call
to Pref_Add. This requires additional arguments to Pref_Add to provide a title for
the section and some overall information about the preference section. The display
code changes a small amount. The code for the exmh is on the CD-ROM.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 46. A User Interface to Bindings
This chapter presents a user interface to view and edit bindings.

A good way to learn about how a widget works is to examine the bindings that are
defined for it. This chapter presents a user interface that lets you browse and
change bindings for a widget or a class of widgets.

The interface uses a pair of listboxes to display the events and their associated
commands. An entry widget is used to enter the name of a widget or a class. There
are a few command buttons that let the user add a new binding, edit an existing
binding, save the bindings to a file, and dismiss the dialog. Here is what the display
looks like:

Example 46-1 A user interface to widget bindings

proc Bind_Interface { w } {
 # Our state
 global bind
 set bind(class) $w

 # Set a class used for resource specifications
 set frame [toplevel .bindui -class Bindui]
 # Default relief
 option add *Bindui*Entry.relief sunken startup
 option add *Bindui*Listbox.relief raised startup
 # Default Listbox sizes
 option add *Bindui*key.width 18 startup
 option add *Bindui*cmd.width 25 startup
 option add *Bindui*Listbox.height 5 startup

 # A labeled entry at the top to hold the current
 # widget name or class.
 set t [frame $frame.top -bd 2]
 label $t.l -text "Bindings for" -width 11
 entry $t.e -textvariable bind(class)
 pack $t.l -side left
 pack $t.e -side left -fill x -expand true
 pack $t -side top -fill x
 bind $t.e <Return> [list Bind_Display $frame]

 # Command buttons
 button $t.quit -text Dismiss \
 -command [list destroy $frame]
 button $t.save -text Save \
 -command [list Bind_Save $frame]
 button $t.edit -text Edit \
 -command [list Bind_Edit $frame]
 button $t.new -text New \
 -command [list Bind_New $frame]
 pack $t.quit $t.save $t.edit $t.new -side right

 # A pair of listboxes and a scrollbar
 scrollbar $frame.s -orient vertical \
 -command [list BindYview \
 [list $frame.key $frame.cmd]]
 listbox $frame.key \
 -yscrollcommand [list $frame.s set] \
 -exportselection false
 listbox $frame.cmd \
 -yscrollcommand [list $frame.s set]
 pack $frame.s -side left -fill y
 pack $frame.key $frame.cmd -side left \
 -fill both -expand true

 foreach l [list $frame.key $frame.cmd] {
 bind $l <B2-Motion>\
 [list BindDragto %x %y $frame.key $frame.cmd]
 bind $l <Button-2> \
 [list BindMark %x %y $frame.key $frame.cmd]
 bind $l <Button-1> \
 [list BindSelect %y $frame.key $frame.cmd]
 bind $l <B1-Motion> \
 [list BindSelect %y $frame.key $frame.cmd]
 bind $l <Shift-B1-Motion> {}
 bind $l <Shift-Button-1> {}
 }
 # Initialize the display
 Bind_Display $frame
}

The Bind_Interface command takes a widget name or class as a parameter. It
creates a toplevel and gives it the Bindui class so that resources can be set to
control widget attributes. The option add command is used to set up the default
listbox sizes. The lowest priority, startup, is given to these resources so that clients
of the package can override the size with their own resource specifications.

At the top of the interface is a labeled entry widget. The entry holds the name of the
class or widget for which the bindings are displayed. The textvariable option of
the entry widget is used so that the entry's contents are available in a variable,
bind(class). Pressing <Return> in the entry invokes Bind_Display that fills in the
display.

Example 46-2 Bind_Display presents the bindings for a widget or
class

proc Bind_Display { frame } {
 global bind
 $frame.key delete 0 end
 $frame.cmd delete 0 end
 foreach seq [bind $bind(class)] {
 $frame.key insert end $seq
 $frame.cmd insert end [bind $bind(class) $seq]
 }
}

The Bind_Display procedure fills in the display with the binding information. The
bind command returns the events that have bindings, and what the command
associated with each event is. Bind_Display loops through this information and fills
in the listboxes.

A Pair of Listboxes Working Together

The two listboxes in the interface, $frame.key and $frame.cmd, are set up to work
as a unit. A selection in one causes a parallel selection in the other. Only one listbox
exports its selection as the PRIMARY selection. Otherwise, the last listbox to assert
the selection steals the selection rights from the other widget. The following
example shows the bind commands from Bind_Interface and the BindSelect
routine that selects an item in both listboxes:

Example 46-3 Related listboxes are configured to select items
together

foreach l [list $frame.key $frame.cmd] {
 bind $l <Button-1> \
 [list BindSelect %y $frame.key $frame.cmd]
 bind $l <B1-Motion> \
 [list BindSelect %y $frame.key $frame.cmd]
}
proc BindSelect { y args } {
 foreach w $args {
 $w select clear 0 end
 $w select anchor [$w nearest $y]
 $w select set anchor [$w nearest $y]
 }
}

A scrollbar for two listboxes.

A single scrollbar scrolls both listboxes. The next example shows the scrollbar
command from Bind_Interface and the BindYview procedure that scrolls the
listboxes:

Example 46-4 Controlling a pair of listboxes with one scrollbar

scrollbar $frame.s -orient vertical \
 -command [list BindYview [list $frame.key $frame.cmd]]

proc BindYview { lists args } {
 foreach l $lists {
 eval {$l yview} $args

 }
}

The BindYview command is used to change the display of the listboxes associated
with the scrollbar. The first argument to BindYview is a list of widgets to scroll, and
the remaining arguments are added by the scrollbar to specify how to position the
display. The details are essentially private between the scrollbar and the listbox. See
page 501 for the details. The args keyword is used to represent these extra
arguments, and eval is used to pass them through BindYview. The reasoning for
using eval like this is explained in Chapter 10 on page 136.

The Listbox class bindings for <Button-2> and <B2-Motion> cause the listbox to
scroll as the user drags the widget with the middle mouse button. These bindings
are adjusted so that both listboxes move together. The following example shows the
bind commands from the Bind_Interface procedure and the BindMark and
BindDrag procedures that scroll the listboxes:

Example 46-5 Drag-scrolling a pair of listboxes together

bind $l <B2-Motion>\
 [list BindDragto %x %y $frame.key $frame.cmd]
bind $l <Button-2> \
 [list BindMark %x %y $frame.key $frame.cmd]

proc BindDragto { x y args } {
 foreach w $args {
 $w scan dragto $x $y
 }
}
proc BindMark { x y args } {
 foreach w $args {
 $w scan mark $x $y
 }
}

The BindMark procedure does a scan mark that defines an origin, and BindDragto
does a scan dragto that scrolls the widget based on the distance from that origin.
All Tk widgets that scroll support yview, scan mark, and scan dragto. Thus the
BindYview, BindMark, and BindDragto procedures are general enough to be used
with any set of widgets that scroll together.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Editing Interface

Editing and defining a new binding are done in a pair of entry widgets. These
widgets are created and packed into the display dynamically when the user presses
the New or Edit button:

Example 46-6 An interface to define bindings

proc Bind_New { frame } {
 if [catch {frame $frame.edit} f] {
 # Frame already created
 set f $frame.edit
 } else {
 foreach x {key cmd} {
 set f2 [frame $f.$x]
 pack $f2 -fill x -padx 2
 label $f2.l -width 11 -anchor e
 pack $f2.l -side left
 entry $f2.e
 pack $f2.e -side left -fill x -expand true
 bind $f2.e <Return> [list BindDefine $f]
 }
 $f.key.l config -text Event:
 $f.cmd.l config -text Command:
 }
 pack $frame.edit -after $frame.top -fill x
}
proc Bind_Edit { frame } {
 Bind_New $frame
 set line [$frame.key curselection]
 if {$line == {}} {
 return
 }
 $frame.edit.key.e delete 0 end
 $frame.edit.key.e insert 0 [$frame.key get $line]
 $frame.edit.cmd.e delete 0 end

 $frame.edit.cmd.e insert 0 [$frame.cmd get $line]
}

The -width 11 and -anchor e attributes for the label widgets are specified so that
the Event: and Command: labels will line up with the Bindings for label at the top.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Saving and Loading Bindings

All that remains is the actual change or definition of a binding and some way to
remember the bindings the next time the application is run. The BindDefine
procedure attempts a bind command that uses the contents of the entries. If it
succeeds, then the edit window is removed by unpacking it.

The bindings are saved by Bind_Save as a series of Tcl commands that define the
bindings. It is crucial that the list command be used to construct the commands
properly.

Bind_Read uses the source command to read the saved commands. The application
must call Bind_Read as part of its initialization to get the customized bindings for
the widget or class. It also must provide a way to invoke Bind_Interface, such as a
button, menu entry, or key binding.

Example 46-7 Defining and saving bindings

proc BindDefine { f } {
 if [catch {
 bind [$f.top.e get] [$f.edit.key.e get] \
 [$f.edit.cmd.e get]
 } err] {
 Status $err
 } else {
 # Remove the edit window
 pack forget $f.edit
 }
}
proc Bind_Save { dotfile args } {
 set out [open $dotfile.new w]
 foreach w $args {
 foreach seq [bind $w] {
 # Output a Tcl command
 puts $out [list bind $w $seq [bind $w $seq]]
 }
 }
 close $out
 file rename -force $dotfile.new $dotfile
}
proc Bind_Read { dotfile } {
 if [catch {
 if [file exists $dotfile] {
 # Read the saved Tcl commands
 source $dotfile
 }
 } err] {
 Status "Bind_Read $dotfile failed: $err"

 }
}

Part VI: C Programming
Part VI describes C programming and Tcl. The goal of this section is to get you
started in the right direction. For serious C programming, you will need to
consult the on-line reference material for detailed descriptions of the C APIs.

Chapter 47 provides an introduction to using Tcl at the C programming level. It
gets you started with integrating Tcl and Tk into an existing application, and
with creating a Tcl extension you can dynamically load into tclsh or wish.
Chapter 48 describes the build environment for Tcl so you can compile Tcl/Tk
from the sources, and compile your own extensions. Chapter 49 presents a
sample digital clock Tk widget implementation in C. This section ends with
Chapter 50, which provides a survey of the facilities in the Tcl and Tk C
libraries.

Chapter 47. C Programming and Tcl
This chapter explains how to extend a Tcl application with new built-in commands.
Tcl 8.0 replaces the original string-based command interface with a more efficient
dual-ported object interface. This chapter describes both interfaces.

Tcl is implemented in a C library that is easy to integrate into an existing
application. By adding the Tcl interpreter to your application, you can configure and
control it with Tcl scripts, and with Tk you can provide a nice graphical interface to
it. This was the original model for Tcl. Applications would be largely application-
specific C code and include a small amount of Tcl for configuration and the graphical
interface. However, the basic Tcl shells proved so useful by themselves that
relatively few Tcl programmers need to worry about programming in C or C++.

Tcl is designed to be easily extensible by writing new command implementations in
C. A command implemented in C is more efficient than an equivalent Tcl procedure.
A more pressing reason to write C code is that it may not be possible to provide the
same functionality purely in Tcl. Suppose you have a new device, perhaps a color
scanner or a unique input device. The programming interface to that device is
through a set of C procedures that initialize and manipulate the state of the device.
Without some work on your part, that interface is not accessible to your Tcl scripts.
You are in the same situation if you have a C or C++ library that implements some
specialized function such as a database. Fortunately, it is rather straightforward to
provide a Tcl interface that corresponds to the C or C++ interface.

Note: Where this chapter says "C", you can always think "C or C++". There is also a
package called TclBlend that lets you extend Tcl by writing Java instead of C, and to
evaluate Tcl scripts from Java. Find out more about TclBlend at:

http://www.tcl.tk/java/

http://www.tcl.tk/java/default.htm

Basic Concepts

This chapter assumes that you know some C or C++. You do not have to be an
expert programmer to use the Tcl APIs. Indeed, one of Tcl's strengths is the ease
with which you can extend it by writing C code. This chapter provides a few working
examples that explain how to initialize your application and create Tcl commands. It
describes how to organize your code into packages. It concludes with notes about
compiling Tcl under UNIX, Windows, and Macintosh.

Getting Started

There are two ways to get started writing C code for Tcl applications. The easiest
way is to write an extension that just adds some new commands to a standard Tcl
shell like tclsh or wish. With this approach the Tcl shell creates a basic framework
for you, and your C code just extends this framework with new commands. Tcl
supports dynamic loading, so you can compile your extension as a shared library
(i.e., DLL) and load it into a running Tcl shell. This is the easiest approach because
the Tcl shell handles the details of startup and shutdown, and it provides an
interactive console to enter Tcl commands. In the case of wish, it also provides the
framework for a graphical user interface. Finally, a loadable extension can be shared
easily with other Tcl users.

The second way to use the Tcl library is to add it to an existing application. If your
application is very simple, it may make sense to turn it into an extension for a
standard Tcl shell, which brings you back to the first, simpler approach. However, if
your application already has a complex framework (e.g., it is a long-running server
process), then you can just add Tcl to it and export the functionality of your
application as one or more Tcl commands. Once you do this, you will find that you
can extend your application with all the features provided by Tcl.

C Command Procedures and Data Objects

The C or C++ code that implements a Tcl command is called a command procedure.
The interface to a command procedure is much like the interface to a main program.
The inputs are an array of values that correspond exactly to the arguments in the
Tcl script command. The result of the command procedure becomes the result of the
Tcl command.

There are two kinds of command procedures: string-based and "object-based." I've
quoted "object" here because we are really talking about the data representation of
the arguments and results. We are not talking about methods and inheritance and
other things associated with object oriented programming. However, the Tcl C APIs
use a structure called a Tcl_Obj, which is called a dual ported object in the
reference material. I prefer the term "Tcl_Obj value".

The string interface is quite simple. A command procedure gets an array of strings
as arguments, and it computes a string as the result. Tcl 8.0 generalized strings into
the Tcl_Obj type, which can have two representations: both a string and another
native representation like an integer, floating point number, list, or bytecodes. An
object-based command takes an array of Tcl_Obj pointers as arguments, and it
computes a Tcl_Obj as its result. The goal of the Tcl_Obj type is to reduce the
number of conversions between strings and native representations. Object-based
commands will be more efficient than the equivalent string-based commands, but
the APIs are a little more complex. For simple tasks, and for learning, you can use
just the simpler string-based command interface.

SWIG

David Beasley created a nice tool called SWIG (Simple Wrapper Interface Generator)
that generates the C code that implements command procedures that expose a C or
C++ API as Tcl commands. This can be a great time saver if you need to export
many calls to Tcl. The only drawback is that a C interface may not feel that
comfortable to the script writer. Handcrafted Tcl interfaces can be much nicer, but
automatically-generated interfaces are just fine for rapid prototyping and for
software testing environments. You can learn more about SWIG at its web site:

http://www.swig.org/

Tcl Initialization

Before you can use your command procedures from Tcl scripts, you need to register
them with Tcl. In some cases, you may also need to create the Tcl interpreter,
although this is done for you by the standard Tcl shells.

If you are writing an extension, then you must provide an initialization procedure.
The job of this procedure is to register Tcl commands with Tcl_CreateCommand or
Tcl_CreateObjCommand. This is shown in Example 47-1 on page 698. The name of
this procedure must end with _Init, as in Expect_Init, Blt_Init, or Foo_Init, if
you plan to create your extension as a shared library. This procedure is called
automatically when the Tcl script loads your library with the load command, which is
described on page 697.

If you are embedding Tcl into an existing application, then you should initialize Tcl
with Tcl_FindExecutable and Tcl_CreateInterp. The first call helps the Tcl
runtime initialize itself, and determines the return value for info
nameofexecutable. Tcl_CreateInterp creates an interpreter that includes the
standard commands listed in Table 1-4 on page 22. You still have to initialize all
your custom commands (e.g., by calling Foo_Init) and arrange to run a script using
Tcl_Eval or Tcl_EvalFile. However, there are a lot of details to get right, and Tcl
provides a higher level interface in Tcl_Main and Tcl_AppInit. Tcl_Main creates
the interpreter for you, processes command line arguments to get an initial script to
run, and even provides an interactive command loop. It calls out to Tcl_AppInit,

http://www.swig.org/default.htm

which you provide, to complete the initialization of the interpreter. The use of
Tcl_Main is shown in Example 47-13 on page 720. There are even more details to
get right with a Tk application because of the window system and the event loop.
These details are hidden behind Tk_Main, which makes a similar call out to
Tk_AppInit that you provide to complete initialization.

Calling Out to Tcl Scripts

An application can call out to the script layer at any point, even inside command
procedures. Tcl_Eval is the basic API for this, and there are several variations
depending on how you pass arguments to the script. When you look up Tcl_Eval in
the reference material, you will get a description of the whole family of Tcl_Eval
procedures.

You can also set and query Tcl variables from C using the Tcl_SetVar and
Tcl_GetVar procedures. Again, there are several variations on these procedures
that account for different types, like strings or Tcl_Obj values, and scalar or array
variables. The Tcl_LinkVar procedure causes a Tcl variable to mirror a C variable.
Modifications to the Tcl variable are reflected in the C variable, and reading the Tcl
variable always returns the C variable's value. Tcl_LinkVar is built on a more
general variable tracing facility, which is exposed to Tcl as the trace command, and
available as the Tcl_TraceVar C API.

A well-behaved extension should provide both a C and Tcl API, but most of the core
Tcl and Tk commands do not provide an exported C API. This forces you to eval Tcl
scripts to get at their functionality. Example 47-15 on page 725 shows the
Tcl_Invoke procedure that can help you work around this limitation. Tcl_Invoke is
used to invoke a Tcl command without the parsing and substitution overhead of
Tcl_Eval.

Using the Tcl C Library

Over the years the Tcl C Library has grown from a simple language interpreter into a
full featured library. An important property of the Tcl API is that it is cross platform:
its works equally well on UNIX, Windows, and Macintosh. One can argue that it is
easier to write cross-platform applications in Tcl than in Java! Some of the useful
features that you might not expect from a language interpreter include:

A general hash table package that automatically adjusts itself as the hash
table grows. It allows various types of keys, including strings and integers.

A dynamic string (i.e., DString) package that provides an efficient way to
construct strings.

An I/O channel package that replaces the old "standard I/O library" found on
UNIX with something that is cross-platform, does buffering, allows nonblocking

I/O, and does character set translations. You can create new I/O channel
types.

Network sockets for TCP/IP communication.

Character set translations between Unicode, UTF-8, and other encodings.

An event loop manager that interfaces with network connections and window
system events. You can create new "event sources" that work with the event
loop manager.

Multithreading support in the form of mutexes, condition variables, and
thread-local storage.

A registration system for exit handlers that are called when Tcl is shutting
down.

This Chapter focuses just on the Tcl C API related to the Tcl interpreter. Chapter 50
gives a high-level overview of all the procedures in the Tcl and Tk C library, but this
book does not provide a complete reference. Refer to the on-line manual pages for
the specific details about each procedure; they are an excellent source of
information. The manual pages should be part of every Tcl distribution. They are on
the book's CD, and they can be found web at:

http://www.tcl.tk/man/

The Tcl source code is worth reading.

Finally, it is worth emphasizing that the source code of the Tcl C library is a great
source of information. The code is well written and well commented. If you want to
see how something really works, reading the code is worthwhile.

http://www.tcl.tk/man/default.htm

Creating a Loadable Package

You can organize your C code into a loadable package that can be dynamically
linked into tclsh, wish, or your own Tcl application. The details about compiling the
code into the shared library that contains the package are presented in Chapter 48.
This section describes a package that implements the random Tcl command that
returns random numbers.

The load Command

The Tcl load command is used to dynamically link in a compiled package:

load library package ?interp?

The library is the file name of the shared library file (i.e., the DLL), and package is
the name of the package implemented by the library. This name corresponds to the
package_Init procedure called to initialize the package (e.g., Random_Init) The
optional interp argument lets you load the library into a slave interpreter. If the
library is in /usr/local/lib/random.so, then a Tcl script can load the package like
this:

load /usr/local/lib/random.so Random

On most UNIX systems, you can set the LD_LIBRARY_PATH environment variable to
a colon-separated list of directories that contain shared libraries. If you do that,
then you can use relative names for the libraries:

load librandom.so Random

On Macintosh, the load command looks for libraries in the same folder as the Tcl/Tk
application (i.e., Wish) and in the System:Extensions:Tool Command Language
folder:

load random.shlib Random

On Windows, load looks in the same directory as the Tcl/Tk application, the current
directory, the C:\Windows\System directory (or C:\Windows\System32 on Windows
NT), the C:\Windows directory, and then the directories listed in the PATH
environment variable.

load random.dll Random

Fortunately, you usually do not have to worry about these details because the Tcl
package facility can manage your libraries for you. Instead of invoking load directly,
your scripts can use package require instead. The package facility keeps track of
where your libraries are and knows how to call load for your platform. It is
described in Chapter 12.

The Package Initialization Procedure

When a package is loaded, Tcl calls a C procedure named package_Init, where
package is the name of your package. Example 47-1 defines Random_Init. It
registers a command procedure, RandomCmd, that implements a new Tcl command,
random. When the Tcl script uses the random command, the RandomCmd procedure
will be invoked by the Tcl interpreter. Two styles of command registrations are made
for comparison: the original Tcl_CreateCommand and the Tcl_CreateObjCommand
added in Tcl 8.0. The command procedures are described in the next section:

Example 47-1 The initialization procedure for a loadable package

/*
 * random.c
 */
#include <tcl.h>
/*
 * Declarations for application-specific command procedures
 */

int RandomCmd(ClientData clientData,
 Tcl_Interp *interp,
 int argc, CONST char *argv[]);
int RandomObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);

/*
 * Random_Init is called when the package is loaded.
 */

int Random_Init(Tcl_Interp *interp) {
 /*
 * Initialize the stub table interface, which is
 * described in Chapter 48.
 */

 if (Tcl_InitStubs(interp, "8.1", 0) == NULL) {
 return TCL_ERROR;
 }
 /*
 * Register two variations of random.
 * The orandom command uses the object interface.
 */

 Tcl_CreateCommand(interp, "random", RandomCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 Tcl_CreateObjCommand(interp, "orandom", RandomObjCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);

 /*
 * Declare that we implement the random package
 * so scripts that do "package require random"
 * can load the library automatically.
 */
 Tcl_PkgProvide(interp, "random", "1.1");
 return TCL_OK;
}

Using Tcl_PkgProvide

Random_Init uses Tcl_PkgProvide to declare what package is provided by the C
code. This call helps the pkg_mkIndex procedure learn what libraries provide which
packages. pkg_mkIndex saves this information in a package database, which is a file
named pkgIndex.tcl. The package require command looks for the package
database files along your auto_path and automatically loads your package. The
general process is:

Create your shared library and put it into a directory listed on your auto_path
variable, or a subdirectory of one of the directories on your auto_path.

Run the pkg_mkIndex procedure in that directory, giving it the names of all the
script files and shared libraries it should index. Now your shared library is
ready for use by other scripts.

A script uses package require to request a package. The correct load
command for your system will be used the first time a command from your
package is used. The package command is the same on all platforms:

package require random
=> 1.1

This process is explained in more detail on page 175.

A C Command Procedure

Tcl 8.0 introduced a new interface for Tcl commands that is designed to work
efficiently with its internal on-the-fly byte code compiler. The original interface to
commands was string oriented. This resulted in a lot of conversions between strings
and internal formats such as integers, double-precision floating point numbers, and
lists. The new interface is based on the Tcl_Obj type that can store different types
of values. Conversions between strings and other types are done in a lazy fashion,
and the saved conversions help your scripts run more efficiently.

This section shows how to build a random number command using both interfaces.
The string-based interface is simpler, and we start with that to illustrate the basic
concepts. You can use it for your first experiments with command procedures. Once
you gain some experience, you can start using the interfaces that use Tcl_Obj
values instead of simple strings. If you have old command procedures from before
Tcl 8.0, you need to update them only if you want extra efficiency. The string and
Tcl_Obj interfaces are very similar, so you should find updating your command
procedures straightforward.

The String Command Interface

The string-based interface to a C command procedure is much like the interface to
the main program. You register the command procedure like this:

Tcl_CreateCommand(interp, "cmd", CmdProc, data, DeleteProc);

When the script invokes cmd, Tcl calls CmdProc like this:

CmdProc(data, interp, argc, argv);

The interp is type Tcl_Interp *, and it is a general handle on the state of the
interpreter. Most Tcl C APIs take this parameter. The data is type ClientData, which
is an opaque pointer. You can use this to associate state with your command. You
register this state along with your command procedure, and then Tcl passes it back
to you when the command is invoked. This is especially useful with Tk widgets,
which are explained in more detail in Chapter 49. Our simple RandomCmd command
procedure does not use this feature, so it passes NULL into Tcl_CreateCommand. The
DeleteProc is called when the command is destroyed, which is typically when the
whole Tcl interpreter is being deleted. If your state needs to be cleaned up, you can
do it then. RandomCmd does not use this feature, either.

The arguments from the Tcl command are available as an array of strings defined by
an argv parameter and counted by an argc parameter. This is the same interface
that a main program has to its command line arguments. Example 47-2 shows the
RandomCmd command procedure:

Example 47-2 The RandomCmd C command procedure

/*
 * RandomCmd --
 * This implements the random Tcl command. With no arguments
 * the command returns a random integer.
 * With an integer valued argument "range",
 * it returns a random integer between 0 and range.
 */
int
RandomCmd(ClientData clientData, Tcl_Interp *interp,
 int argc, CONST char *argv[])
{
 int rand, error;
 int range = 0;
 char buffer[20];
 if (argc > 2) {
 interp->result = "Usage: random ?range?";
 return TCL_ERROR;
 }
 if (argc == 2) {
 if (Tcl_GetInt(interp, argv[1], &range) != TCL_OK) {
 return TCL_ERROR;
 }
 }
 rand = random();
 if (range != 0) {
 rand = rand % range;
 }
 sprintf(buf, "%d", rand);
 Tcl_SetResult(interp, buf, TCL_VOLATILE);
 return TCL_OK;
}

The return value of a Tcl command is really two things: a result string and a status
code. The result is a string that is either the return value of the command as seen
by the Tcl script, or an error message that is reported upon error. For example, if
extra arguments are passed to the command procedure, it raises a Tcl error by
doing this:

Tcl_SetResult(interp, "Usage: random ?range?", TCL_STATIC);
return TCL_ERROR;

The random implementation accepts an optional argument that is a range over which
the random numbers should be returned. The argc parameter is tested to see if this
argument has been given in the Tcl command. argc counts the command name as
well as the arguments, so in our case argc == 2 indicates that the command has
been invoked something like:

random 25

The procedure Tcl_GetInt converts the string-valued argument to an integer. It
does error checking and sets the interpreter's result in the case of error, so we can
just return if it fails to return TCL_OK.

if (Tcl_GetInt(interp, argv[1], &range) != TCL_OK) {
 return TCL_ERROR;
}

Finally, the real work of calling random is done. The result is formatted into a string
in a temporary buffer, and the result is set with Tcl_SetResult. A normal return
looks like this:

sprintf(buffer, "%d", rand);
Tcl_SetResult(interp, buffer, TCL_VOLATILE);
return TCL_OK;

Result Codes from Command Procedures

The command procedure returns a status code that is either TCL_OK or TCL_ERROR
to indicate success or failure. If the command procedure returns TCL_ERROR, then a
Tcl error is raised, and the result value is used as the error message. The procedure
can also return TCL_BREAK, TCL_CONTINUE, TCL_RETURN, which affects control
structure commands like foreach and proc. You can even return an application-
specific code (e.g., 5 or higher), which might be useful if you are implementing new
kinds of control structures. The status code returned by the command procedure is
the value returned by the Tcl_Eval family of C APIs, which are described on page
724 and by the catch command, which is discussed in more detail on page 83.

Managing the String Result

There is a simple protocol that manages the storage for a command procedure's
result string. It involves interp->result, which holds the value, and interp-
>freeProc, which determines how the storage is cleaned up. When a command is
called, the interpreter initializes interp->result to a static buffer of
TCL_RESULT_SIZE, which is 200 bytes. The default cleanup action is to do nothing.

In earlier versions of Tcl it was safe to access interp->result directly. With the
addition of the Tcl_Obj interfaces, which are described next, this is no longer always
safe. The following procedures should be used to manage the result and freeProc
fields. These procedures automatically manage storage for the result:

Tcl_SetResult(interp, string, freeProc)
Tcl_AppendResult(interp, str1, str2, str3, (char *)NULL)
Tcl_AppendElement(interp, string)

Tcl_SetResult sets the return value to be string. The freeProc argument
describes how the result should be disposed of: TCL_STATIC is used in the case
where the result is a constant string allocated by the compiler, TCL_DYNAMIC is used

if the result is allocated with Tcl_Alloc, which is a platform- and compiler-
independent version of malloc, and TCL_VOLATILE is used if the result is in a stack
variable. In the TCL_VOLATILE case, the Tcl interpreter makes a copy of the result
before calling any other command procedures. Finally, if you have your own memory
allocator, pass in the address of the procedure that should free the result.

Tcl_AppendResult copies its arguments into the result buffer, reallocating the
buffer if necessary. The arguments are concatenated onto the end of the existing
result, if any. Tcl_AppendResult can be called several times to build a result. The
result buffer is overallocated, so several appends are efficient.

Tcl_AppendElement adds the string to the result as a proper Tcl list element. It
might add braces or backslashes to get the proper structure.

Tcl_ResetResult is called before each command procedure. However, If you have
built up a result and want to throw it away (e.g., an error occurs), then you can use
Tcl_ResetResult to restore the result to its initial state.

The Tcl_Obj Command Interface

The Tcl_Obj command interface replaces strings with dual-ported values. The
arguments to a command are an array of pointers to Tcl_Obj structures, and the
result of a command is also of type Tcl_Obj. The replacement of strings by Tcl_Obj
values extends throughout Tcl. The value of a Tcl variable is kept in a Tcl_Obj, and
Tcl scripts are stored in a Tcl_Obj, too. You can continue to use the old string-based
API, which converts strings to Tcl_Obj values, but this conversion adds overhead.

The Tcl_Obj structure stores both a string representation and a native
representation. The native representation depends on the type of the value. Tcl lists
are stored as an array of pointers to strings. Integers are stored as 32-bit integers.
Floating point values are stored in double-precision. Tcl scripts are stored as
sequences of byte codes. Conversion between the native representation and a string
are done upon demand. There are APIs for accessing Tcl_Obj values, so you do not
have to worry about type conversions unless you implement a new type. Example
47-3 shows the random command procedure using the Tcl_Obj interfaces:

Example 47-3 The RandomObjCmd C command procedure

/*
 * RandomObjCmd --
 * This implements the random Tcl command from
 * Example 47ÿ2 using the object interface.
 */
int
RandomObjCmd(ClientData clientData, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 Tcl_Obj *resultPtr;

 int rand, error;
 int range = 0;
 if (objc > 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "?range?");
 return TCL_ERROR;
 }
 if (objc == 2) {
 if (Tcl_GetIntFromObj(interp, objv[1], &range) !=
 TCL_OK) {
 return TCL_ERROR;
 }
 }
 rand = random();
 if (range != 0) {
 rand = rand % range;
 }
 resultPtr = Tcl_GetObjResult(interp);
 Tcl_SetIntObj(resultPtr, rand);
 return TCL_OK;
}

Compare Example 47-2 with Example 47-3. You can see that the two versions of the
C command procedures are similar. The Tcl_GetInt call is replaced with
Tcl_GetIntFromObj call. This receives an integer value from the command
argument. This call can avoid conversion from string to integer if the Tcl_Obj value
is already an integer.

The result is set by getting a handle on the result object and setting its value. This
is done instead of accessing the interp->result field directly:

resultPtr = Tcl_GetObjResult(interp);
Tcl_SetIntObj(resultPtr, rand);

The Tcl_WrongNumArgs procedure is a convenience procedure that formats an error
message. You pass in objv, the number of arguments to use from it, and additional
string. The example creates this message:

wrong # args: should be "random ?range?"

Example 47-3 does not do anything obvious about storage management. Tcl
initializes the result object before calling your command procedure and takes care of
cleaning it up later. It is sufficient to set a value and return TCL_OK or TCL_ERROR. In
more complex cases, however, you have to worry about reference counts to
Tcl_Obj values. This is described in more detail later.

If your command procedure returns a string, then you will use Tcl_SetStringObj.
This command makes a copy of the string you pass it. The new Tcl interfaces that
take strings also take length arguments so you can pass binary data in strings. If
the length is minus 1, then the string is terminated by a NULL byte. A command
that always returned "boring" would do this:

resultPtr = Tcl_GetObjResult(interp);
Tcl_SetStringObj(resultPtr, "boring", -1);

This is a bit too boring. In practice you may need to build up the result piecemeal.
With the string-based API, you use Tcl_AppendResult. With the Tcl_Obj API you
get a pointer to the result and use Tcl_AppendToObj or Tcl_AppendStringsToObj:

resultPtr = Tcl_GetObjResult(interp);
Tcl_AppendStringsToObj(resultPtr, "hello ", username, NULL);

Managing Tcl_Obj Reference Counts

The string-based interfaces copy strings when passing arguments and returning
results, but the Tcl_Obj interfaces manipulate reference counts to avoid these copy
operations. References come from Tcl variables, from the interpreter's result, and
from sharing caused when a value is passed into a Tcl procedure. Constants are also
shared. When a C command procedure is called, Tcl does not automatically
increment the reference count on the arguments. However, each Tcl_Obj
referenced by objv will have at least one reference, and it is quite common to have
two or more references.

The C type definition for Tcl_Obj is shown below. There are APIs to access all
aspects of an object, so you should refrain from manipulating a Tcl_Obj directly
unless you are implementing a new type:

Example 47-4 The Tcl_Obj structure

typedef struct Tcl_Obj {
 int refCount; /* Counts number of shared references */
 char *bytes; /* String representation */
 int length; /* Number of bytes in the string */
 Tcl_ObjType *typePtr;/* Type implementation */
 union {
 long longValue; /* Type data */
 double doubleValue;
 VOID *otherValuePtr;
 struct {
 VOID *ptr1;
 VOID *ptr2;
 } twoPtrValue;
 } internalRep;
} Tcl_Obj;

Each type implementation provides a few procedures like this:

Tcl_GetTypeFromObj(interp, objPtr, valuePtr);
Tcl_SetTypeObj(resultPtr, value);
objPtr = Tcl_NewTypeObj(value);

The initial reference count is zero.

The Tcl_NewTypeObj allocates storage for a Tcl_Obj and sets its reference count to
zero. Tcl_IncrRefCount and Tcl_DecrRefCount increment and decrement the
reference count on an object. Tcl_DecrRefCount frees the storage for Tcl_Obj
when it goes to zero. The initial reference count of zero was chosen because
functions like Tcl_SetObjResult automatically increment the reference count on an
object.

The Tcl_GetTypeFromObj and Tcl_SetTypeObj procedures just get and set the
value; the reference count does not change. Type conversions are automatic. You
can set a Tcl_Obj value to an integer and get back a string or double precision
number later. The type implementations automatically take care of the storage for
the Tcl_Obj value as it changes. Of course, if a Tcl_Obj stays the same type, then
no string conversions are necessary and accesses are more efficient.

Modifying Tcl_Obj Values

It is not safe to modify a shared Tcl_Obj. The sharing is only for efficiency:
Logically, each reference is a copy, and you must honor this model when creating
and modifying Tcl_Obj values. Tcl_IsShared returns 1 if there is more than one
reference to an object. If a command procedure modifies a shared object, it must
make a private copy with Tcl_DuplicateObj. The new copy starts with a reference
count of zero. You either pass this to Tcl_SetResultObj, which adds a reference, or
you have to explicitly add a reference to the copy with Tcl_IncrRefCount.

Example 47-5 implements a plus1 command that adds one to its argument. If the
argument is not shared, then plus1 can be implemented efficiently by modifying the
native representation of the integer. Otherwise, it has to make a copy of the object
before modifying it:

Example 47-5 The Plus1ObjCmd procedure

/*
 * Plus1ObjCmd --
 * This adds one to its input argument.
 */
int
Plus1ObjCmd(ClientData clientData, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 Tcl_Obj *objPtr;

 int i;
 if (objc != 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "value");
 return TCL_ERROR;
 }
 objPtr = objv[1];
 if (Tcl_GetIntFromObj(interp, objPtr, &i) != TCL_OK) {
 return TCL_ERROR;
 }
 if (Tcl_IsShared(objPtr)) {
 objPtr = Tcl_DuplicateObj(objPtr); /* refCount 0 */
 Tcl_IncrRefCount(objPtr); /* refCount 1*/
 }
 /*
 * Assert objPtr has a refCount of one here.
 * OK to set the unshared value to something new.
 * Tcl_SetIntObj overwrites the old value.
 */
 Tcl_SetIntObj(objPtr, i+1);
 /*
 * Setting the result object adds a new reference,
 * so we decrement because we no longer care about
 * the integer object we modified.
 */
 Tcl_SetObjResult(interp, objPtr); /* refCount 2*/
 Tcl_DecrRefCount(objPtr); /* refCount 1*/
 /*
 * Now only the interpreter result has a reference to objPtr.
 */
 return TCL_OK;
}

Pitfalls of Shared Tcl_Obj Values

You have to be careful when using the values from a Tcl_Obj structure. The Tcl C
library provides many procedures like Tcl_GetStringFromObj, Tcl_GetIntFromObj,
Tcl_GetListFromObj, and so on. These all operate efficiently by returning a pointer
to the native representation of the object. They will convert the object to the
requested type, if necessary. The problem is that shared values can undergo type
conversions that may invalidate your reference to a particular type of the value.

Value references are only safe until the next Tcl_Get*FromObj
call.

Consider a command procedure that takes two arguments, an integer and a list. The
command procedure has a sequence of code like this:

Tcl_ListObjGetElements(interp, objv[1], &objc, &listPtr);
/* Manipulate list */
Tcl_GetIntFromObj(interp, objv[2], &int);
/* list may be invalid here */

If, by chance, both arguments have the same value, (e.g., 1 and 1), which is
possible for a Tcl list and an integer, then Tcl will automatically arrange to share
these values between both arguments. The pointers in objv[1] and objv[2] will be
the same, and the reference count on the Tcl_Obj they reference will be at least 2.
The first Tcl_ListObjGetElements call ensures the value is of type list, and it
returns a direct pointer to the native list representation. However,
Tcl_GetIntFromObj then helpfully converts the Tcl_Obj value to an integer. This
deallocates the memory for the list representation, and now listPtr is a dangling
pointer! This particular example can be made safe by reversing the calls because
Tcl_GetIntFromObj copies the integer value:

Tcl_GetIntFromObj(interp, objv[2], &int);
Tcl_ListObjGetElements(interp, objv[1], &objc, &listPtr);
/* int is still a good copy of the value */

By the way, you should always test your Tcl_Get* calls in case the format of the
value is incompatible with the requested type. If the object is not a valid list, the
following command returns an error:

if (Tcl_ListObjGetElements(interp, obj[1], &objc, &listPtr)
 != TCL_OK) {
 return TCL_ERROR;
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The blob Command Example

This section illustrates some standard coding practices with a bigger example. The
example is still artificial in that it doesn't actually do very much. However, it
illustrates a few more common idioms you should know about when creating Tcl
commands.

The blob command creates and manipulates blobs. Each blob has a name and some
associated properties. The blob command uses a hash table to keep track of blobs
by their name. The hash table is an example of state associated with a command
that needs to be cleaned up when the Tcl interpreter is destroyed. The Tcl hash table
implementation is nice and general, too, so you may find it helpful in a variety of
situations.

You can associate a Tcl script with a blob. When you poke the blob, it invokes the
script. This shows how easy it is to associate behaviors with your C extensions.
Example 47-6 shows the data structures used to implement blobs.

Example 47-6 The Blob and BlobState data structures

/*
 * The Blob structure is created for each blob.
 */
typedef struct Blob {
 int N; /* Integer-valued property */
 Tcl_Obj *objPtr; /* General property */
 Tcl_Obj *cmdPtr; /* Callback script */
} Blob;
/*
 * The BlobState structure is created once for each interp.
 */
typedef struct BlobState {
 Tcl_HashTable hash; /* List blobs by name */
 int uid; /* Used to generate names */
} BlobState;

Creating and Destroying Hash Tables

Example 47-7 shows the Blob_Init and BlobCleanup procedures. Blob_Init
creates the command and initializes the hash table. It registers a delete procedure,
BlobCleanup, that will clean up the hash table.

The Blob_Init procedure allocates and initializes a hash table as part of the
BlobState structure. This structure is passed into Tcl_CreateObjCommand as the
ClientData, and gets passed back to BlobCmd later. You might be tempted to have
a single static hash table structure instead of allocating one. However, it is quite

possible that a process has many Tcl interpreters, and each needs its own hash
table to record its own blobs.

When the hash table is initialized, you specify what the keys are. In this case, the
name of the blob is a key, so TCL_STRING_KEYS is used. If you use an integer key, or
the address of a data structure, use TCL_ONE_WORD_KEYS. You can also have an
array of integers (i.e., a chunk of data) for the key. In this case, pass in an integer
larger than 1 that represents the size of the integer array used as the key.

The BlobCleanup command cleans up the hash table. It iterates through all the
elements of the hash table and gets the value associated with each key. This value
is cast into a pointer to a Blob data structure. This iteration is a special case
because each entry is deleted as we go by the BlobDelete procedure. If you do not
modify the hash table, you continue the search with Tcl_NextHashEntry instead of
calling Tcl_FirstHashEntry repeatedly.

Example 47-7 The Blob_Init and BlobCleanup procedures

/*
 * Forward references.
 */

int BlobCmd(ClientData data, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);
int BlobCreate(Tcl_Interp *interp, BlobState *statePtr);
void BlobCleanup(ClientData data);

/*
 * Blob_Init --
 *
 * Initialize the blob module.
 *
 * Side Effects:
 * This allocates the hash table used to keep track
 * of blobs. It creates the blob command.
 */
int
Blob_Init(Tcl_Interp *interp)
{
 BlobState *statePtr;
 /*
 * Allocate and initialize the hash table. Associate the
 * BlobState with the command by using the ClientData.
 */
 statePtr = (BlobState *)ckalloc(sizeof(BlobState));
 Tcl_InitHashTable(&statePtr->hash, TCL_STRING_KEYS);
 statePtr->uid = 0;
 Tcl_CreateObjCommand(interp, "blob", BlobCmd,
 (ClientData)statePtr, BlobCleanup);
 return TCL_OK;
}

/*
 * BlobCleanup --
 * This is called when the blob command is destroyed.
 *
 * Side Effects:
 * This walks the hash table and deletes the blobs it
* contains. Then it deallocates the hash table.
 */

void
BlobCleanup(ClientData data)
{
 BlobState *statePtr = (BlobState *)data;
 Blob *blobPtr;
 Tcl_HashEntry *entryPtr;
 Tcl_HashSearch search;

 entryPtr = Tcl_FirstHashEntry(&statePtr->hash, &search);
 while (entryPtr != NULL) {
 blobPtr = Tcl_GetHashValue(entryPtr);
 BlobDelete(blobPtr, entryPtr);
 /*
 * Get the first entry again, not the "next" one,
 * because we just modified the hash table.
 */
 entryPtr = Tcl_FirstHashEntry(&statePtr->hash, &search);
 }
 ckfree((char *)statePtr);
}

Tcl_Alloc, ckalloc, and malloc

Tcl provides its own memory allocator, Tcl_Alloc and Tcl_Free, which can be used
to replace poor malloc implementations that some systems have. Tcl 8.4 has a new
allocator that supports threaded applications well. The memory allocator also
supports memory debugging if you compile with -DTCL_MEM_DEBUG. A Tcl memory
command is added that reports on memory use and can help you track down
memory problems.

To support optional memory debugging, tcl.h defines ckalloc and ckfree macros
that call different allocation routines depending on compile-time options. Because of
this, your code should not use malloc and free directly, nor should it call
Tcl_Alloc and Tcl_Free directly. Use the ckalloc and ckfree macros everywhere.
In general, it is not safe to allocate memory with Tcl_Alloc or ckalloc and free it
with free, or allocate memory with malloc and free it with Tcl_Free or ckfree.
Also, if you compile some code with -DTCL_MEM_DEBUG, and some code without that
option, you get an immediate crash.

Parsing Arguments and Tcl_GetIndexFromObj

Example 47-8 shows the BlobCmd command procedure. This illustrates a basic
framework for parsing command arguments. The Tcl_GetIndexFromObj procedure
is used to map from the first argument (e.g., "names") to an index (e.g., NamesIx).
This does error checking and formats an error message if the first argument doesn't
match. All of the subcommands except "create" and "names" use the second
argument as the name of a blob. This name is looked up in the hash table with
Tcl_FindHashEntry, and the corresponding Blob structure is fetched using
Tcl_GetHashValue. After the argument checking is complete, BlobCmd dispatches to
the helper procedures to do the actual work:

Example 47-8 The BlobCmd command procedure

/*
 * BlobCmd --
 *
 * This implements the blob command, which has these
 * subcommands:
 * create
 * command name ?script?
 * data name ?value?
 * N name ?value?
 * names ?pattern?
 * poke name
 * delete name
 *
 * Results:
 * A standard Tcl command result.
 */
int
BlobCmd(ClientData data, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 BlobState *statePtr = (BlobState *)data;
 Blob *blobPtr;
 Tcl_HashEntry *entryPtr;
 Tcl_Obj *valueObjPtr;

 /*
 * The subCmds array defines the allowed values for the
 * first argument. These are mapped to values in the
 * BlobIx enumeration by Tcl_GetIndexFromObj.
 */

 char *subCmds[] = {
 "create", "command", "data", "delete", "N", "names",
 "poke", NULL
 };
 enum BlobIx {

 CreateIx, CommandIx, DataIx, DeleteIx, NIx, NamesIx,
 PokeIx
 };
 int result, index;

 if (objc == 1 || objc > 4) {
 Tcl_WrongNumArgs(interp, 1, objv, "option ?arg ...?");
 return TCL_ERROR;
 }
 if (Tcl_GetIndexFromObj(interp, objv[1], subCmds,
 "option", 0, &index) != TCL_OK) {
 return TCL_ERROR;
 }
 if (((index == NamesIx || index == CreateIx) &&
 (objc > 2)) ||
 ((index == PokeIx || index == DeleteIx) &&
 (objc == 4))) {
 Tcl_WrongNumArgs(interp, 1, objv, "option ?arg ...?");
 return TCL_ERROR;
 }
 if (index == CreateIx) {
 return BlobCreate(interp, statePtr);
 }
 if (index == NamesIx) {
 return BlobNames(interp, statePtr);
 }
 if (objc < 3) {
 Tcl_WrongNumArgs(interp, 1, objv,
 "option blob ?arg ...?");
 return TCL_ERROR;
 } else if (objc == 3) {
 valueObjPtr = NULL;
 } else {
 valueObjPtr = objv[3];
 }
 /*
 * The rest of the commands take a blob name as the third
 * argument. Hash from the name to the Blob structure.
 */
 entryPtr = Tcl_FindHashEntry(&statePtr->hash,
 Tcl_GetString(objv[2]));
 if (entryPtr == NULL) {
 Tcl_AppendResult(interp, "Unknown blob: ",
 Tcl_GetString(objv[2]), NULL);
 return TCL_ERROR;
 }
 blobPtr = (Blob *)Tcl_GetHashValue(entryPtr);
 switch (index) {
 case CommandIx: {
 return BlobCommand(interp, blobPtr, valueObjPtr);
 }
 case DataIx: {
 return BlobData(interp, blobPtr, valueObjPtr);
 }

 case NIx: {
 return BlobN(interp, blobPtr, valueObjPtr);
 }
 case PokeIx: {
 return BlobPoke(interp, blobPtr);
 }
 case DeleteIx: {
 return BlobDelete(blobPtr, entryPtr);
 }
 }
}

Creating and Removing Elements from a Hash Table

The real work of BlobCmd is done by several helper procedures. These form the
basis of a C API to operate on blobs as well. Example 47-9 shows the BlobCreate
and BlobDelete procedures. These procedures manage the hash table entry, and
they allocate and free storage associated with the blob.

Example 47-9 BlobCreate and BlobDelete

int
BlobCreate(Tcl_Interp *interp, BlobState *statePtr)
{
 Tcl_HashEntry *entryPtr;
 Blob *blobPtr;
 int new;
 char name[20];
 /*
 * Generate a blob name and put it in the hash table
 */
 statePtr->uid++;
 sprintf(name, "blob%d", statePtr->uid);
 entryPtr = Tcl_CreateHashEntry(&statePtr->hash, name, &new);
 /*
 * Assert new == 1
 */
 blobPtr = (Blob *)ckalloc(sizeof(Blob));
 blobPtr->N = 0;
 blobPtr->objPtr = NULL;
 blobPtr->cmdPtr = NULL;
 Tcl_SetHashValue(entryPtr, (ClientData)blobPtr);
 /*
 * Copy the name into the interpreter result.
 */
 Tcl_SetStringObj(Tcl_GetObjResult(interp), name, -1);
 return TCL_OK;
}
int
BlobDelete(Blob *blobPtr, Tcl_HashEntry *entryPtr)

{
 Tcl_DeleteHashEntry(entryPtr);
 if (blobPtr->cmdPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->cmdPtr);
 }
 if (blobPtr->objPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->objPtr);
 }
 /*
 * Use Tcl_EventuallyFree because of the Tcl_Preserve
 * done in BlobPoke. See page 716.
 */
 Tcl_EventuallyFree((char *)blobPtr, Tcl_Free);
 return TCL_OK;
}

Building a List

The BlobNames procedure iterates through the elements of the hash table using
Tcl_FirstHashEntry and Tcl_NextHashEntry. It builds up a list of the names as it
goes along. Note that the object reference counts are managed for us. The
Tcl_NewStringObj returns a Tcl_Obj with reference count of zero. When that
object is added to the list, the Tcl_ListObjAppendElement procedure increments
the reference count. Similarly, the Tcl_NewListObj returns a Tcl_Obj with
reference count zero, and its reference count is incremented by Tcl_SetObjResult:

Example 47-10 The BlobNames procedure

int
BlobNames(Tcl_Interp *interp, BlobState *statePtr)
{
 Tcl_HashEntry *entryPtr;
 Tcl_HashSearch search;
 Tcl_Obj *listPtr;
 Tcl_Obj *objPtr;
 char *name;
 /*
 * Walk the hash table and build a list of names.
 */
 listPtr = Tcl_NewListObj(0, NULL);
 entryPtr = Tcl_FirstHashEntry(&statePtr->hash, &search);
 while (entryPtr != NULL) {
 name = Tcl_GetHashKey(&statePtr->hash, entryPtr);
 if (Tcl_ListObjAppendElement(interp, listPtr,
 Tcl_NewStringObj(name, -1)) != TCL_OK) {
 return TCL_ERROR;
 }
 entryPtr = Tcl_NextHashEntry(&search);
 }

 Tcl_SetObjResult(interp, listPtr);
 return TCL_OK;
}

Keeping References to Tcl_Obj Values

A blob has two simple properties: an integer N and a general Tcl_Obj value. You
can query and set these properties with the BlobN and BlobData procedures. The
BlobData procedure keeps a pointer to its Tcl_Obj argument, so it must increment
the reference count on it:

Example 47-11 The BlobN and BlobData procedures

int
BlobN(Tcl_Interp *interp, Blob *blobPtr, Tcl_Obj *objPtr)
{
 int N;
 if (objPtr != NULL) {
 if (Tcl_GetIntFromObj(interp, objPtr, &N) != TCL_OK) {
 return TCL_ERROR;
 }
 blobPtr->N = N;
 } else {
 N = blobPtr->N;
 }
 Tcl_SetObjResult(interp, Tcl_NewIntObj(N));
 return TCL_OK;
}
int
BlobData(Tcl_Interp *interp, Blob *blobPtr, Tcl_Obj *objPtr)
{
 if (objPtr != NULL) {
 if (blobPtr->objPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->objPtr);
 }
 Tcl_IncrRefCount(objPtr);
 blobPtr->objPtr = objPtr;
 }
 if (blobPtr->objPtr != NULL) {
 Tcl_SetObjResult(interp, blobPtr->objPtr);
 }
 return TCL_OK;
}

Using Tcl_Preserve and Tcl_Release to Guard Data

The BlobCommand and BlobPoke operations let you register a Tcl command with a
blob and invoke the command later. Whenever you evaluate a Tcl command like this,

you must be prepared for the worst. It is quite possible for the command to turn
around and delete the blob it is associated with! The Tcl_Preserve, Tcl_Release,
and Tcl_EventuallyFree procedures are used to handle this situation. BlobPoke
calls Tcl_Preserve on the blob before calling Tcl_Eval. BlobDelete calls
Tcl_EventuallyFree instead of Tcl_Free. If the Tcl_Release call has not yet been
made, then Tcl_EventuallyFree just marks the memory for deletion, but does not
free it immediately. The memory is freed later by Tcl_Release. Otherwise,
Tcl_EventuallyFree frees the memory directly and Tcl_Release does nothing.
Example 47-12 shows BlobCommand and BlobPoke:

Example 47-12 The BlobCommand and BlobPoke procedures

int
BlobCommand(Tcl_Interp *interp, Blob *blobPtr,
 Tcl_Obj *objPtr)
{
 if (objPtr != NULL) {
 if (blobPtr->cmdPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->cmdPtr);
 }
 Tcl_IncrRefCount(objPtr);
 blobPtr->cmdPtr = objPtr;
 }
 if (blobPtr->cmdPtr != NULL) {
 Tcl_SetObjResult(interp, blobPtr->cmdPtr);
 }
 return TCL_OK;
}
int
BlobPoke(Tcl_Interp *interp, Blob *blobPtr)
{
 int result = TCL_OK;
 if (blobPtr->cmdPtr != NULL) {
 Tcl_Preserve(blobPtr);
 result = Tcl_EvalObj(interp, blobPtr->cmdPtr);
 /*
 * Safe to use blobPtr here
 */
 Tcl_Release(blobPtr);
 /*
 * blobPtr may not be valid here
 */
 }
 return result;
}

It turns out that BlobCmd does not actually use the blobPtr after calling
Tcl_EvalObj, so it could get away without using Tcl_Preserve and Tcl_Release.
These procedures do add some overhead: They put the pointer onto a list of
preserved pointers and have to take it off again. If you are careful, you can omit

these calls. However, it is worth noting the potential problems caused by evaluating
arbitrary Tcl scripts!

CONST in the Tcl 8.4 APIs

The const keyword in C is used to create a read-only variable. Once it is set, it
cannot be modified. A common use of CONST is in parameter declarations to imply
that the parameter cannot be modified by a procedure. The Tcl API definitions use a
CONST macro instead of const to allow for older compilers that do not support
const.

Several of the Tcl APIs were changed in Tcl 8.4 to include CONST where they
previously did not. The most significant change is in the signature of string-based
command procedures like RandomCmd in this chapter. Changes to tcl.h are generally
backward compatible, so this change met with some debate. Most liked the addition
of CONST because it allows better error checking, but the changes cause compiler
warning messages if you compile old code with the 8.4 tcl.h. In some
organizations, even compiler warnings are not allowed in code, so you may be
compelled to clean up your code.

There are two reasons you may not be able to change older code. First, you may
need to compile the same code against older and newer versions of Tcl. Second, you
may not have the time to clean up the code. CONST definitions have a tendency to
percolate throughout your code. To support these scenarios, 8.4 adds compile-time
defines that change the effect of the CONST additions. Table 47-1 describes these
definitions:

Table 47-1. Defines to control the meaning of CONST in the Tcl APIs

NO_CONST This defines CONST to nothing so no const keywords are used at
all. This define has existed for some time.

USE_NON_CONST Do not use any of the new CONST keywords added in Tcl 8.4.

USE_COMPAT_CONST Only use the CONST keywords added for the return values of the
Tcl 8.4 APIs. Almost all APIs return CONST values now.

Strings and Internationalization

There are two important topics related to string handling: creating strings
dynamically and translating strings between character set encodings. These issues
do not show up in the simple examples we have seen so far, but they will arise in
more serious applications.

The DString Interface

It is often the case that you have to build up a string from pieces. The Tcl_DString
data type and a related API are designed to make this efficient. The DString
interface hides the memory management issues, and the Tcl_DString data type
starts out with a small static buffer, so you can often avoid allocating memory if you
put a Tcl_String type on the stack (i.e., as a local variable). The standard code
sequence goes something like this:

Tcl_DString ds;
Tcl_DStringInit(&ds);
Tcl_DStringAppend(&ds, "some value", -1);
Tcl_DStringAppend(&ds, "something else", -1);
Tcl_DStringResult(interp, &ds);

The Tcl_DStringInit call initializes a string pointer inside the structure to point to
a static buffer that is also inside the structure. The Tcl_DStringAppend call grows
the string. If it would exceed the static buffer, then a new buffer is allocated
dynamically and the string is copied into it. The last argument to
Tcl_DStringAppend is a length, which can be minus 1 if you want to copy until the
trailing NULL byte in your string. You can use the string value as the result of your
Tcl command with Tcl_DStringResult. This passes ownership of the string to the
interpreter and automatically cleans up the Tcl_DString structure.

If you do not use the string as the interpreter result, then you must call
Tcl_DStringFree to ensure that any dynamically allocated memory is released:

Tcl_DStringFree(&ds);

You can get a direct pointer to the string you have created with Tcl_DStringValue:

name = Tcl_DStringValue(&ds);

There are a handful of additional procedures in the DString API that you can read
about in the reference material. There are some that create lists, but this is better
done with the Tcl_Obj interface (e.g., Tcl_NewListObj and friends).

To some degree, a Tcl_Obj can replace the use of a Tcl_DString. For example, the
Tcl_NewStringObj and Tcl_AppendToObj allocate a Tcl_Obj and append strings to
it. However, there are a number of Tcl API procedures that take Tcl_DString types

as arguments instead of the Tcl_Obj type. Also, for small strings, the DString
interface is still more efficient because it can do less dynamic memory allocation.

Character Set Conversions

As described in Chapter 15, Tcl uses UTF-8 strings internally. UTF-8 is a
representation of Unicode that does not contain NULL bytes. It also represents 7-bit
ASCII characters in one byte, so if you have old C code that only manipulates ASCII
strings, it can coexist with Tcl without modification.

However, in more general cases, you may need to convert between UTF-8 strings
you get from Tcl_Obj values to strings of a particular encoding. For example, when
you pass strings to the operating system, it expects them in its native encoding,
which might be 16-bit Unicode, ISO-Latin-1 (i.e., iso-8859-1), or something else.

Tcl provides an encoding API that does translations for you. The simplest calls use a
Tcl_DString to store the results because it is not possible to predict the size of the
result in advance. For example, to convert from a UTF-8 string to a Tcl_DString
in the system encoding, you use this call:

Tcl_UtfToExternalDString(NULL, string, -1, &ds);

You can then pass Tcl_DStringValue(&ds) to your system call that expects a
native string. Afterwards you need to call Tcl_DStringFree(&ds) to free up any
memory allocated by Tcl_UtfToExternalDString.

To translate strings the other way, use Tcl_ExternalToUtfDString:

Tcl_ExternalToUtfDString(NULL, string, -1, &ds);

The third argument to these procedures is the length of string in bytes (not
characters), and minus 1 means that Tcl should calculate it by looking for a NULL
byte. Tcl stores its UTF-8 strings with a NULL byte at the end so it can do this.

The first argument to these procedures is the encoding to translate to or from.
NULL means the system encoding. If you have data in nonstandard encodings, or
need to translate into something other than the system encoding, you need to get a
handle on the encoding with Tcl_GetEncoding, and free that handle later with
Tcl_FreeEncoding:

encoding = Tcl_GetEncoding(interp, name);
Tcl_FreeEncoding(encoding);

The names of the encodings are returned by the encoding names Tcl command, and
you can query them with a C API, too.

Windows has a quirky string data type called TCHAR, which is an 8-bit byte on
Windows 95/98, and a 16-bit Unicode character on Windows NT and Windows CE. If
you use a C API that takes an array of TCHAR, then you have to know what kind of
system you are running on to use it properly. Tcl provides two procedures that deal

with this automatically. Tcl_WinTCharToUf works like Tcl_ExternalToUtfDString,
and Tcl_WinUtfToTChar works like Tcl_UtfToExternalDString:

Tcl_WinUtfToTChar(string, -1, &ds);
Tcl_WinTCharToUtf(string, -1, &ds);

Finally, Tcl has several procedures to work with Unicode characters, which are type
Tcl_UniChar, and UTF-8 encoded characters. Examples include Tcl_UniCharToUtf,
Tcl_NumUtfChars, and Tcl_UtfToUniCharDString. Consult the reference materials
for details about these procedures.

Tcl_Main and Tcl_AppInit

This section describes how to make a custom main program that includes Tcl.
However, the need for custom main programs has been reduced by the use of
loadable modules. If you create your commands as a loadable package, you can just
load them into tclsh or wish. Even if you do not need a custom main, this section
will explain how all the pieces fit together.

The Tcl library supports the basic application structure through the Tcl_Main
procedure that is designed to be called from your main program. Tcl_Main does
three things:

It calls Tcl_CreateInterp to create an interpreter that includes all the
standard Tcl commands like set and proc. It also defines a few Tcl variables
like argc and argv. These have the command-line arguments that were
passed to your application.

It calls Tcl_AppInit, which is not part of the Tcl library. Instead, your
application provides this procedure. In Tcl_AppInit you can register
additional application-specific Tcl commands.

It reads a script or goes into an interactive loop.

You call Tcl_Main from your main program and provide an implementation of the
Tcl_AppInit procedure:

Example 47-13 A canonical Tcl main program and Tcl_AppInit

/* main.c */
#include <tcl.h>
int Tcl_AppInit(Tcl_Interp *interp);
/*
 * Declarations for application-specific command procedures
 */
int Plus1ObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);

main(int argc, char *argv[]) {
 /*
 * Initialize your application,
 * then initialize and run Tcl.
 */
 Tcl_Main(argc, argv, Tcl_AppInit);
 exit(0);
}
/*

 * Tcl_AppInit is called from Tcl_Main after the Tcl
 * interpreter has been created, and before the script file
 * or interactive command loop is entered.
 */
int
Tcl_AppInit(Tcl_Interp *interp) {
 /*
 * Tcl_Init reads init.tcl from the Tcl script library.
 */
 if (Tcl_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 /*
 * Register application-specific commands.
 */
 Tcl_CreateObjCommand(interp, "plus1", Plus1ObjCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 Random_Init(interp);
 Blob_Init(interp);
 /*
 * This file is read if no script is supplied.
 */
 Tcl_SetVar(interp, "tcl_rcFileName", "~/.mytcl",
 TCL_GLOBAL_ONLY);
 /*
 * Test of Tcl_Invoke, which is defined on page 725.
 */
 Tcl_Invoke(interp, "set", "foo", "$xyz [foo] {", NULL);
 return TCL_OK;
}

The main program calls Tcl_Main with the argc and argv parameters passed into
the program. These are the strings passed to the program on the command line,
and Tcl_Main will store these values into Tcl variables by the same name. Tcl_Main
is also given the address of the initialization procedure, which is Tcl_AppInit in our
example. Tcl_AppInit is called by Tcl_Main with one argument, a handle on a
newly created interpreter. There are three parts to the Tcl_AppInit procedure:

The first part initializes the various packages the application uses. The
example calls Tcl_Init to set up the script library facility described in Chapter
12. The core Tcl commands have already been defined by Tcl_CreateInterp,
which is called by Tcl_Main before the call to Tcl_AppInit.

The second part of Tcl_AppInit does application-specific initialization. The
example registers the command procedures defined earlier in this Chapter.

The third part defines a Tcl variable, tcl_RcFileName, which names an
application startup script that executes if the program is used interactively.

You can use your custom program just like tclsh, except that it includes the
additional commands you define in your Tcl_AppInit procedure. The sample
makefile on the CD creates a program named mytcl. You can compile and run that
program and test random and the other commands.

Tk_Main

The structure of Tk applications is similar. The Tk_Main procedure creates a Tcl
interpreter and the main Tk window. It calls out to a procedure you provide to
complete initialization. After your Tk_AppInit returns, Tk_Main goes into an event
loop until all the windows in your application have been destroyed.

Example 47-14 shows a Tk_AppInit used with Tk_Main. The main program
processes its own command-line arguments using Tk_ParseArgv, which requires a
Tcl interpreter for error reporting. The Tk_AppInit procedure initializes the clock
widget example that is the topic of Chapter 49:

Example 47-14 A canonical Tk main program and Tk_AppInit

/* main.c */
#include <tk.h>

int Tk_AppInit(Tcl_Interp *interp);

/*
 * A table for command line arguments.
 */
char *myoption1 = NULL;
int myint2 = 0;
static Tk_ArgvInfo argTable[] = {
 {"-myoption1", TK_ARGV_STRING, (char *) NULL,
 (char *) &myoption1, "Explain myoption1"},
 {"-myint2", TK_ARGV_CONSTANT, (char *) 1, (char *) &myint2,
 "Explain myint2"},
 {"", TK_ARGV_END, },
};

main(int argc, char *argv[]) {
 Tcl_Interp *interp;
 /*
 * Call this before creating any interpreters.
 */
 Tcl_FindExecutable();
 /*
 * Create an interpreter for the error message from
 * Tk_ParseArgv. Another one is created by Tk_Main.
 * Parse our arguments and leave the rest to Tk_Main.
 */
 interp = Tcl_CreateInterp();
 if (Tk_ParseArgv(interp, (Tk_Window) NULL, &argc, argv,

 argTable, 0) != TCL_OK) {
 fprintf(stderr, "%s\n", interp->result);
 exit(1);
 }
 Tcl_DeleteInterp(interp);

 Tk_Main(argc, argv, Tk_AppInit);
 exit(0);
}
int ClockCmd(ClientData clientData,
 Tcl_Interp *interp,
 int argc, CONST char *argv[]);
int ClockObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);
void ClockObjDestroy(ClientData clientData);

int
Tk_AppInit(Tcl_Interp *interp) {
 /*
 * Initialize packages
 */
 if (Tcl_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 if (Tk_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 /*
 * Define application-specific commands here.
 */
 Tcl_CreateCommand(interp, "wclock", ClockCmd,
 (ClientData)Tk_MainWindow(interp),
 (Tcl_CmdDeleteProc *)NULL);
 Tcl_CreateObjCommand(interp, "oclock", ClockObjCmd,
 (ClientData)NULL, ClockObjDestroy);
 /*
 * Define start-up filename. This file is read in
 * case the program is run interactively.
 */
 Tcl_SetVar(interp, "tcl_rcFileName", "~/.mytcl",
 TCL_GLOBAL_ONLY);
 return TCL_OK;
}

The Event Loop

An event loop is used to process window system events and other events like timers
and network sockets. The different event types are described later. All Tk
applications must have an event loop so that they function properly in the window
system environment. Tk provides a standard event loop with the Tk_MainLoop
procedure, which is called at the end of Tk_Main. The wish shell provides an event
loop automatically. The tclsh shell does not, although you can add an event loop
using pure Tcl as shown in Example 16-2 on page 230.

Some applications already have their own event loop. You have two choices if you
want to add Tk to such an application. The first is to modify the existing event loop
to call Tcl_DoOneEvent to process any outstanding Tcl events. The unix directory of
the source distribution has a file called XtTest.c that adds Tcl to an Xt (i.e., Motif)
application. The other way to customize the event loop is to make your existing
events look like Tcl event sources, and register them with the event loop. Then you
can just use Tk_Main. There are four event classes, and they are handled in the
following order by Tcl_DoOneEvent:

Window events. Use the Tk_CreateEventHandler procedure to register a
handler for these events. Use the TCL_WINDOW_EVENTS flag to process these in
Tcl_DoOneEvent.

File events. Use these events to wait on slow devices and network
connections. On UNIX you can register a handler for all files, sockets, and
devices with Tcl_CreateFileHandler. On Windows and Macintosh, there are
different APIs for registration because there are different system handles for
files, sockets, and devices. On all platforms you use the TCL_FILE_EVENTS flag
to process these handlers in Tcl_DoOneEvent.

Timer events. You can set up events to occur after a specified time period. Use
the Tcl_CreateTimerHandler procedure to register a handler for the event.
Use the TCL_TIMER_EVENTS flag to process these in Tcl_DoOneEvent.

Idle events. These events are processed when there is nothing else to do.
Virtually all the Tk widgets use idle events to display themselves. Use the
Tcl_DoWhenIdle procedure to register a procedure to call once at the next idle
time. Use the TCL_IDLE_EVENTS flag to process these in Tcl_DoOneEvent.

Invoking Scripts from C

The main program is not the only place you can evaluate a Tcl script. You can use
the Tcl_Eval procedure essentially at any time to evaluate a Tcl command:

Tcl_Eval(Tcl_Interp *interp, char *script);

The return value of Tcl_Eval is a return code like TCL_OK, TCL_ERROR, TCL_BREAK,
TCL_CONTINUE, or TCL_RETURN. The result of the command is obtained with
Tcl_GetStringResult or Tcl_GetObjResult. Those APIs return whatever was set
with the Tcl_SetResult, Tcl_SetObjResult, or the other APIs used to set the
result of a command procedure.

The script is evaluated in the current Tcl procedure scope, which may be the global
scope. Similarly, calls like Tcl_GetVar and Tcl_SetVar access variables in the
current scope. If for some reason you want a new procedure scope, the easiest
thing to do is to call your C code from a Tcl procedure used for this purpose. It is not
easy to create a new procedure scope with the exported C API.

Tcl_Eval modifies its argument.

You should be aware that Tcl_Eval may modify the string that is passed into it as a
side effect of the way substitutions are performed. If you pass a constant string to
Tcl_Eval, make sure your compiler has not put the string constant into read-only
memory. If you use the gcc compiler, you may need to use the -fwritable-strings
option. Chapter 48 shows how to get the right compilation settings for your system.

Variations on Tcl_Eval

There are several variations on Tcl_Eval. The possibilities include strings or
Tcl_Obj values, evaluation at the current or global scope, a single string (or
Tcl_Obj value) or a variable number of arguments, and optional byte-code
compilation. The most general string-based eval is Tcl_EvalEx, which takes a
counted string and some flags:

Tcl_EvalEx(interp, string, count, flags);

The flags are TCL_GLOBAL_EVAL and TCL_EVAL_DIRECT, which bypasses the byte-
code compiler. For code that is executed only one time, TCL_EVAL_DIRECT may be
more efficient. Tcl_GlobalEval is equivalent to passing in the TCL_GLOBAL_EVAL

flag. The Tcl_VarEval procedure takes a variable number of strings arguments and
concatenates them before evaluation:

Tcl_VarEval(Tcl_Interp *interp, char *str, ..., NULL);

Tcl_EvalObj takes an object as an argument instead of a simple string. The string
is compiled into byte codes the first time it is used. If you are going to execute the
script many times, then the Tcl_Obj value caches the byte codes for you. The
general Tcl_Obj value interface to Tcl_Eval is Tcl_EvalObjEx, which takes the
same flags as Tcl_EvalEx:

Tcl_EvalObjEx(interp, objPtr, flags);

For variable numbers of arguments, use Tcl_EvalObjv, which takes an array of
Tcl_Obj pointers. This routine concatenates the string values of the various
Tcl_Obj values before parsing the resulting Tcl command:

Tcl_EvalObjv(interp, objc, objv);

Bypassing Tcl_Eval

In a performance-critical situation, you may want to avoid some of the overhead
associated with Tcl_Eval. David Nichols showed me how to call the implementation
of a C command procedure directly. The trick is facilitated by the
Tcl_GetCommandInfo procedure that returns the address of the C command
procedure for a Tcl command, plus its client data pointer. The Tcl_Invoke procedure
is shown in Example 47-15. It is used much like Tcl_VarEval, except that each of
its arguments becomes an argument to the Tcl command without any substitutions
being performed.

For example, you might want to insert a large chunk of text into a text widget
without worrying about the parsing done by Tcl_Eval. You could use Tcl_Invoke
like this:

Tcl_Invoke(interp, ".t", "insert", "insert", buf, NULL);

Or:

Tcl_Invoke(interp, "set", "foo", "$xyz [blah] {", NULL);

No substitutions are performed on any of the arguments because Tcl_Eval is out of
the picture. The variable foo gets the following literal value:

$xyz [blah] {

Example 47-15 shows Tcl_Invoke. The procedure is complicated for two reasons.
First, it must handle a Tcl command that has either the object interface or the old
string interface. Second, it has to build up an argument vector and may need to
grow its storage in the middle of building it. It is a bit messy to deal with both at the
same time, but it lets us compare the object and string interfaces. The string

interfaces are simpler, but the object interfaces run more efficiently because they
reduce copying and type conversions.

Example 47-15 Calling C command procedure directly with
Tcl_Invoke

#include <tcl.h>

/*
 * Tcl_Invoke --
 * Directly invoke a Tcl command or procedure
 *
 * Call Tcl_Invoke somewhat like Tcl_VarEval
 * Each arg becomes one argument to the command,
 * with no further substitutions or parsing.
 */
 /* VARARGS2 */ /* ARGSUSED */
int
Tcl_Invoke TCL_VARARGS_DEF(Tcl_Interp *, arg1)
{
 va_list argList;
 Tcl_Interp *interp;
 char *cmd; /* Command name */
 char *arg; /* Command argument */
 char **argv; /* String vector for arguments */
 int argc, i, max; /* Number of arguments */
 Tcl_CmdInfo info; /* Info about command procedures */
 int result; /* TCL_OK or TCL_ERROR */

 interp = TCL_VARARGS_START(Tcl_Interp *, arg1, argList);
 Tcl_ResetResult(interp);

 /*
 * Map from the command name to a C procedure
 */
 cmd = va_arg(argList, char *);
 if (! Tcl_GetCommandInfo(interp, cmd, &info)) {
 Tcl_AppendResult(interp, "unknown command \"",
 cmd, "\"", NULL);
 va_end(argList);
 return TCL_ERROR;
 }

 max = 20; /* Initial size of argument vector */

#if TCL_MAJOR_VERSION > 7
 /*
 * Check whether the object interface is preferred for
 * this command
 */

 if (info.isNativeObjectProc) {

 Tcl_Obj **objv; /* Object vector for arguments */
 Tcl_Obj *resultPtr; /* The result object */
 int objc;

 objv = (Tcl_Obj **) ckalloc(max * sizeof(Tcl_Obj *));
 objv[0] = Tcl_NewStringObj(cmd, strlen(cmd));
 Tcl_IncrRefCount(objv[0]); /* ref count == 1*/
 objc = 1;

 /*
 * Build a vector out of the rest of the arguments
 */

 while (1) {
 arg = va_arg(argList, char *);
 if (arg == (char *)NULL) {
 objv[objc] = (Tcl_Obj *)NULL;
 break;
 }
 objv[objc] = Tcl_NewStringObj(arg, strlen(arg));
 Tcl_IncrRefCount(objv[objc]); /* ref count == 1*/
 objc++;
 if (objc >= max) {
 /* allocate a bigger vector and copy old one */
 Tcl_Obj **oldv = objv;
 max *= 2;
 objv = (Tcl_Obj **) ckalloc(max *
 sizeof(Tcl_Obj *));
 for (i = 0 ; i < objc ; i++) {
 objv[i] = oldv[i];
 }
 Tcl_Free((char *)oldv);
 }
 }
 va_end(argList);

 /*
 * Invoke the C procedure
 */
 result = (*info.objProc)(info.objClientData, interp,
 objc, objv);

 /*
 * Make sure the string value of the result is valid
 * and release our references to the arguments
 */
 (void) Tcl_GetStringResult(interp);
 for (i = 0 ; i < objc ; i++) {
 Tcl_DecrRefCount(objv[i]);
 }
 Tcl_Free((char *)objv);

 return result;
 }

#endif
 argv = (char **) ckalloc(max * sizeof(char *));
 argv[0] = cmd;
 argc = 1;

 /*
 * Build a vector out of the rest of the arguments
 */
 while (1) {
 arg = va_arg(argList, char *);
 argv[argc] = arg;
 if (arg == (char *)NULL) {
 break;
 }
 argc++;
 if (argc >= max) {
 /* allocate a bigger vector and copy old one */
 char **oldv = argv;
 max *= 2;
 argv = (char **) ckalloc(max * sizeof(char *));
 for (i = 0 ; i < argc ; i++) {
 argv[i] = oldv[i];
 }
 Tcl_Free((char *) oldv);
 }
 }
 va_end(argList);

 /*
 * Invoke the C procedure
 */
 result = (*info.proc)(info.clientData, interp, argc, argv);

 /*
 * Release the arguments
 */
 Tcl_Free((char *) argv);
 return result;
}

This version of Tcl_Invoke was contributed by Jean Brouwers. He uses
TCL_VARARGS_DEF and TCL_VARARGS_START macros to define procedures that take a
variable number of arguments. These standard Tcl macros hide the differences in
the way you do this on different operating systems and different compilers. It turns
out that there are numerous minor differences between compilers that can cause
portability problems in a variety of situations. Happily, there is a nice scheme used
to discover these differences and write code in a portable way. This is the topic of
the next chapter.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 48. Compiling Tcl and Extensions
This chapter explains how to build Tcl from the source distribution, and how to
create C extensions that are built according to the standard Tcl Extension
Architecture (TEA).

Compiling Tcl from the source distribution is easy. One of the strengths of Tcl is that
it is quite portable, so it has been built on all kinds of systems including Unix,
Windows, Macintosh, AS/400, IBM mainframes, and embedded systems. However, it
can be a challenge to create a Tcl extension that has the same portability. The Tcl
Extension Architecture (TEA) provides guidelines and samples to help extension
authors create portable Tcl extensions. TEA is a result of collaboration within the Tcl
user community, and the version described here is the 2nd generation known as
TEA2.

This chapter starts with a walk through of how Tcl itself is built. This serves as a
model for building extensions. There are also some by-products of the Tcl build
process that are designed to make it easier to build your extensions. So if you are
an extension author, you will almost always want to get started by compiling Tcl
itself.

You can find the Tcl and Tk sources on the CD-ROM, and on the Web:

http://www.tcl.tk/software/tcltk/

Source distributions can be found at the Tcl FTP site:

ftp://ftp.tcl.tk/pub/tcl/

The on-line CVS repository for Tcl software is explained here:

http://www.tcl.tk/software/tcltk/netcvs.html

http://www.sourceforge.net/projects/tcl

If you have trouble with these URLs, please check this book's Web site for current
information about the Tcl sources:

http://www.beedub.com/book/

http://www.tcl.tk/software/tcltk/default.htm
ftp://ftp.tcl.tk/pub/tcl/default.htm
http://www.tcl.tk/software/tcltk/netcvs.html
http://www.sourceforge.net/projects/tcl
http://www.beedub.com/book/default.htm

Standard Directory Structure

The Source Distribution

Table 48-1 describes the directory structure of the Tcl source distribution. The Tk
distribution is similar, and you should model your own source distribution after this.
It is also standard to place the Tcl, Tk, and other source packages under a common
source directory (e.g., /usr/local/src or /home/welch/cvs). In fact, this may be
necessary if the packages depend on each other.

Table 48-1. The Tcl source directory structure

tcl8.4 The root of the Tcl sources. This contains a README and
license_terms file, and several subdirectories.

tcl8.4/compat This contains .c files that implement procedures that
are otherwise broken in the standard C library on some
platforms. They are only used if necessary.

tcl8.4/doc This contains the reference documentation. Currently
this is in nroff format suitable for use with the UNIX
man program. The goal is to convert this to XML.

tcl8.4/generic This contains the generic .c and .h source files that are
shared among Unix, Windows, and Macintosh.

tcl8.4/mac This contains the .c and .h source files that are specific
to Macintosh. It also contains Code Warrior project
files.

tcl8.4/library This contains init.tcl and other Tcl files in the standard
Tcl script library.

tcl8.4/library/encoding This contains the Unicode conversion tables.

tcl8.4/library/package There are several subdirectories (e.g., http2.3) that
contain Tcl script packages.

tcl8.4/test This contains the Tcl test suite. These are Tcl scripts
that exercise the Tcl implementation.

tcl8.4/tools This is a collection of scripts used to help build the Tcl
distribution.

tcl8.4/unix This contains the .c and .h source files that are specific
to UNIX. This also contains the configure script and the
Makefile.in template.

tcl8.4/unix/dltest This contains test files for dynamic loading.

tcl8.4/unix/platform These can be used to build Tcl for several different
platforms. You create the package directories yourself.

tcl8.4/win This contains the .c and .h source files that are specific
to Windows. This also contains the configure script and
the Makefile.in template. This may contain a
makefile.vc that is compatible with nmake.

The Installation Directory Structure

When you install Tcl, the files end up in a different arrangement than the one in the
source distribution does. The standard installation directory is organized so that it
can be shared by computers with different machine types (e.g., Windows, Linux,
and Solaris). The Tcl scripts, include files, and documentation are all in shared
directories. The applications and programming libraries (i.e., DLLs) are in platform-
specific directories. You can choose where these two groups of files are installed
with the --prefix and --exec-prefix options to configure, which is explained in
detail in the next section. Table 48-2 shows the standard installation directory
structure:

Table 48-2. The installation directory structure

arch/bin This contains platform-specific applications. On Windows, this also
contains binary libraries (i.e., DLLs). Typical arch names are
solaris-sparc, linux-ix86, and win-ix86.

arch/lib This contains platform-specific binary libraries on UNIX systems (e.g.,
libtcl8.4.so)

bin This contains platform-independent applications (e.g., Tcl script
applications).

doc This contains documentation.

include This contains public .h files.

lib This contains subdirectories for platform-independent script
packages. Packages stored here are found automatically by the Tcl
auto loading mechanism described in Chapter 12.

lib/tcl8.2 This contains the contents of the tcl8.4/library source directory,
including subdirectories.

lib/package This contains Tcl scripts for package. Example package directories
include tk8.4 and itcl3.2.

man This contains reference documentation in UNIX man format.

If you are an expert in configure, you may be aware of other options that give you
even finer control over where the different parts of the installation go. However,
because of the way Tcl automatically searches for scripts and binary libraries, you
should avoid deviating from the recommended structure.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Building Tcl from Source

Compiling Tcl from the source distribution is a two-step process: configuration,
which uses a configure script; then compiling, which is controlled by the make
program. The configure script examines the current system and makes various
settings that are used during compilation. When you run configure, you make
some basic choices about how you will compile Tcl, such as whether you will compile
with debugging systems, or whether you will turn on threading support. You also
define the Tcl installation directory with configure. You use make to compile the
source code, install the compiled application, run the test suite, and clean up after
yourself.

The make facility is familiar to any Unix programmer. By using the freely available
Cygwin tools, you can use configure and make on Windows, too. You have two
compiler choices on Windows, the free mingw compiler and the Microsoft VC++
compiler. However, gcc is not supported for Tcl builds on Windows.

Windows and Macintosh programmers may not have experience with make. The
source distributions may also include project files for the Microsoft Visual C++
compiler and the Macintosh development environments. It may be easier for you to
use these project files, especially on the Macintosh. Look in the win and mac
subdirectories of the source distribution for these project files. However, the focus of
this chapter is on using configure and make to build your Tcl applications and
extensions.

Configure and Autoconf

Autoconf is a clever and, unfortunately, complex system for creating portable build
environments. By using autoconf, a developer on Windows or Linux can generate a
configure script and a Makefile template that is usable by other developers on
Solaris, HP-UX, FreeBSD, AIX, or any system that is vaguely UNIX-like. The
configure script examines the current system and turns the Makefile template into
a platform specific Makefile. The three steps: setup, configuration and make, are
illustrated by the build process for Tcl and Tk:

Setup. The developer of a source code package creates a configure.in
template that expresses the system dependencies of the source code. They
use the autoconf program to process this template into a configure script.
The developer also creates a Makefile.in template. Creating these templates
is described later. The Tcl and Tk source distributions already contain the
configure script, which can be found in the unix and win subdirectories.

Configure. A user of a source code package runs configure on the computer
system they will use to compile the sources. This step converts Makefile.in

to a Makefile suitable for the platform and configuration settings. If you have
only one platform, simply run configure in the unix (or win) directory:

% cd /usr/local/src/tcl8.4/unix
% ./configure flags

The configure flags are described in Table 48-3. I use ./configure because I
do not have . on my PATH. Furthermore, I want to ensure that I run the
configure script from the current directory! If you build for multiple platforms,
create subdirectories of unix and run configure from there. For example,
here we use ../configure:

% cd /usr/local/src/tcl8.2/unix
% mkdir linux
% cd linux
% ../configure flags

Make. The configure script uses the Makefile.in template to generate the
Makefile. Once configure is complete, you build your program with make:

% make

You can do other things with make. To run the test suite, do:

% make test

To install the compiled program or extension, do:

% make install

The Tcl Extension Architecture defines a standard set of actions, or make targets, for
building Tcl sources. Table 48-4 on page 740 shows the standard make targets.

Make sure you have a working compiler.

As the configure script executes, it prints out messages about the properties of the
current platform. You can tell if you are in trouble if the output contains either of
these messages:

checking for cross compiler ... yes
or

checking if compiler works ... no

Either of these means that configure has failed to find a working compiler. In the
first case, it assumes that you are configuring on the target system but will cross-
compile from a different system. In the second case, an attempt to compile a tiny
sample program failed. In either case, the resulting Makefile is useless. While
cross-compiling is common on embedded processors, it is rarely necessary on UNIX
and Windows. I see these messages only when my UNIX environment isn't set up
right to find the compiler.

Many UNIX venders no longer bundle a working compiler. Fortunately, the freely
available gcc compiler has been ported to nearly every UNIX system. You should be
able to search the Internet and find a ready-to-use gcc package for your platform.

On Windows, Tcl is built with either the free mingw compiler the Microsoft Visual
C++ compiler. It ships with a batch file, vcvars32.bat, that sets up the
environment so that you can run the Microsoft compiler from the command line. You
should read that file and configure your environment so that you do not have to
remember to run the batch file all the time.

Standard Configure Flags

Table 48-3 shows the standard options for Tcl configure scripts. These are
implemented by a configure library file (aclocal.m4 and tcl.m4) that you can use
in your own configure scripts. The facilities provided by tcl.m4 are described in
more detail later.

Table 48-3. Standard configure flags

--prefix=dir Defines the root of the installation directory hierarchy. The default
is /usr/local.

--exec-
prefix=dir

This defines the root of the installation area for platform-specific
files. This defaults to the --prefix value. An example setting is
/usr/local/solaris-sparc.

--enable-gcc Uses the gcc compiler instead of the default system compiler.

--disable-
shared

Disables generation of shared libraries and Tcl shells that
dynamically link against them. Statically linked shells and static
archives are built instead.

--enable-
symbols

Compiles with debugging symbols.

--enable-
threads

Compiles with thread support turned on.

--with-tcl=dir Specifies the location of the build directory for Tcl.

--with-tk=dir Specifies the location of the build directory for Tk.

--with-
tclinclude=dir

Specifies the directory that contains tcl.h.

--with-
tcllib=dir

Specifies the directory that contains the Tcl binary library (e.g.,
libtclstubs.a).

--with-
x11include=dir

Specifies the directory that contains X11.h.

--with-
x11lib=dir

Specifies the directory that contains the X11 binary library (e.g.,
libX11.6.0.so).

Any flag with disable or enable in its name can be inverted. Table 48-3 lists the
nondefault setting, however, so you can just leave the flag out to turn it off. For
example, when building Tcl on Solaris with the gcc compiler, shared libraries,
debugging symbols, and threading support turned on, use this command:

configure --prefix=/home/welch/install \
 --exec-prefix=/home/welch/install/solaris \
 --enable-gcc --enable-threads --enable-symbols

Keep all your sources next to the Tcl sources.

Your builds will go the most smoothly if you organize all your sources under a
common directory. In this case, you can specify the same configure flags for Tcl and
all the other extensions you will compile. In particular, you must use the same --
prefix and --exec-prefix so that everything gets installed together.

If your source tree is not adjacent to the Tcl source tree, then you must use --
with-tclinclude or --with-tcllib so that the header files and runtime library can
be found during compilation. Typically, this can happen if you build an extension
under your home directory, but you are using a copy of Tcl that has been installed
by your system administrator. The --with-x11include and --with-x11lib flags
are similar options necessary when building Tk if your X11 installation is in a
nonstandard location.

Installation

The --prefix flag specifies the main directory (e.g., /home/welch/install). The
directories listed in Table 48-2 are created under this directory. If you do not specify
--exec-prefix, then the platform-specific binary files are mixed into the main bin
and lib directories. For example, the tclsh8.4 program and libtcl8.4.so shared
library will be installed in:

/home/welch/install/bin/tclsh8.4
/home/welch/install/lib/libtclsh8.4.so

The script libraries and manual pages will be installed in:

/home/welch/install/lib/tcl8.4
/home/welch/install/man

If you want to have installations for several different platforms, then specify an --
exec-prefix that is different for each platform. For example, if you use --exec-
prefix=/home/welch/install/freebsd, then the tclsh8.4 program and
libtcl8.4.so shared library will be installed in:

/home/welch/install/freebsd/bin/tclsh8.4
/home/welch/install/freebsd/lib/libtclsh8.4.so

The script libraries and manual pages will remain where they are, so they are
shared by all platforms. Note that Windows has a slightly different installation
location for binary libraries. They go into the arch/bin directory along with the main
executable programs.

Using Stub Libraries

One problem with extensions is that they get compiled for a particular version of Tcl.
As new Tcl releases occur, you find yourself having to recompile extensions. This
was necessary for two reasons. First, the Tcl C library tended to change its APIs
from release to release. Changes in its symbol table tie a compiled extension to a
specific version of the Tcl library. Another problem occurred if you compiled tclsh
statically and then tried to dynamically load a library. Some systems do not support
back linking in this situation, so tclsh would crash. Paul Duffin created a stub library
mechanism for Tcl that helps solve these problems.

The main idea is that Tcl creates two binary libraries: the main library (e.g.,
libtcl8.4.so) and a stub library (e.g., libtclstub.a). All the code is in the main
library. The stub library is just a big jump table that contains addresses of functions
in the main library. An extension calls Tcl through the jump table. The level of
indirection makes the extension immune to changes in the Tcl library. It also handles
the back linking problem. If this sounds expensive, it turns out to be equivalent to
what the operating system does when you use shared libraries (i.e., dynamic link
libraries). Tcl has just implemented dynamic linking in a portable, robust way.

To make your extension use stubs, you have to compile with the correct flags, and
you must add a new call to your extensions Init procedure (e.g., Sample_Init).
The TCL_USE_STUBS compile-time flag turns the Tcl C API calls into macros that use
the stub table. The Tcl_InitStubs call ensures that the jump table is initialized, so
you must call Tcl_InitStubs as the very first thing in your Init procedure. A
typical call looks like this:

if (Tcl_InitStubs(interp, "8.1", 0) == NULL) {
 return TCL_ERROR;
}

Tcl_InitStubs is similar in spirit to Tcl_PkgRequire in that you request a
minimum Tcl version number. Stubs have been supported since Tcl 8.1, and the API
will evolve in a backward-compatible way. Unless your extension uses new C APIs
introduced in later versions, you should specify the lowest version possible so that it
is compatible with more Tcl applications.

Using autoconf

Autoconf uses the m4 macro processor to translate the configure.in template into
the configure script. The configure script is run by /bin/sh (i.e., the Bourne
Shell). Creating the configure.in template is simplified by a standard m4 macro
library that is distributed with autoconf. In addition, a Tcl distribution contains a
tcl.m4 file that has additional autoconf macros. Among other things, these macros
support the standard configure flags described in Table 48-3.

Configure macros are hard.

Creating configure templates can be complex and confusing. There are several
layers of macro processing: m4 macros in configure.in, shell variables in
configure, autoconf substitutions in Makefile.in, and Makefile variables. The days
I have spent trying to change the Tcl configuration files really made me appreciate
the simplicity of Tcl! Fortunately, there is now a standard set of Tcl-specific autoconf
macros and a sample Tcl extension that uses them. By editing the configure.in
and Makefile.in sample templates, you can ignore the details of what is happening
under the covers.

The tcl.m4 File

The Tcl source distribution includes tcl.m4 and aclocal.m4 files. The autoconf
program looks for the aclocal.m4 file in the same directory as the configure.in
template. In our case, the aclocal.m4 file just includes the tcl.m4 file. In the TEA
sample extension described later, the tcl.m4 file is kept in a tclconfig
subdirectory.

The tcl.m4 file defines macros whose names begin with TEA (for Tcl Extension
Architecture). The standard autoconf macro names begin with AC. This book does
not provide an exhaustive explanation of all these autoconf macros. Instead, the
important ones are explained in the context of the sample extension.

The tcl.m4 file replaces the tclConfig.sh found in previous versions of Tcl.
(Actually, tclConfig.sh is still produced by the Tcl 8.4 configure script, but its use
is deprecated.) The idea of tclConfig.sh was to capture some important results of
Tcl's configure so that they could be included in the configure scripts used by an
extension. However, it is better to recompute these settings when configuring an
extension because, for example, different compilers could be used to build Tcl and
the extension. So, instead of including tclConfig.sh into an extension's configure

script, the extension's configure.in should use the TEA macros defined in the
tcl.m4 file.

Makefile Templates

Autoconf implements yet another macro mechanism for the Makefile.in templates.
The basic idea is that the configure script sets shell variables as it learns things
about your system. Finally, it substitutes these variables into Makefile.in to create
the working Makefile. The syntax for the substitutions in Makefile.in is:

@configure_variable_name@

For example, the --prefix command line value is put into the prefix shell variable,
and then substituted into the Makefile.in template wherever @prefix@ occurs.
Often, the make variable and the shell variable have the same name. For example,
the following statement in Makefile.in passes the TCL_LIBRARY value determined
by configure through to the Makefile:

TCL_LIBRARY = @TCL_LIBRARY@

The AC_SUBST macro specifies what shell variables should be substituted in the
Makefile.in template. For example:

AC_SUBST(TCL_LIBRARY)

The Sample Extension

This section describes the sample extension that is distributed as part of the Tcl
Extension Architecture (TEA) standard. The goal of TEA is to create a standard for
Tcl extensions that makes it easier to build, install, and share Tcl extensions. The
sample Tcl extension is on the CD, and it can be found on the Web at:

ftp://ftp.tcl.tk/pub/tcl/examples/tea/

There is also documentation on the Web at:

http://www.tcl.tk/software/tcltk/tea/

The extension described here is stored in the network CVS repository under the
module name samplextension. If you want direct access to the latest versions of
Tcl source code, you can learn about the CVS repository at this web page:

http://www.tcl.tk/software/tcltk/netcvs.html

The sample extension implements the Secure Hash Algorithm (SHA1). Steve Reid
wrote the original SHA1 C code, and Dave Dykstra wrote the original Tcl interface to
it. Michael Thomas created the standard configure and Makefile templates, and Jeff
Hobbs updated the sample for TEA2.

Instead of using the original name, sha1, the example uses a more generic name,
sample, in its files, libraries, and package names. When editing the sample
templates for your own extension, you can simply replace occurrences of "sample"
with the appropriate name for your extension. The sample files are well commented,
so it is easy to see where you need to make the changes.

configure.in

The configure.in file is the template for the configure script. This file is very well
commented. The places you need to change are marked with __CHANGE__. The first
macro to change is:

AC_INIT(generic/sample.h)

The AC_INIT macro lists a file that is part of the distribution. The name is relative to
the configure.in file. Other possibilities include ../generic/tcl.h or
src/mylib.h, depending on where the configure.in file is relative to your sources.
The AC_INIT macro is necessary to support building the package in different
directories (e.g., either tcl8.4/unix or tcl8.4/unix/solaris). The next thing in
configure.in is a set of variable assignments that define the package's name and
version number:

ftp://ftp.tcl.tk/pub/tcl/examples/tea/default.htm
http://www.tcl.tk/software/tcltk/tea/default.htm
http://www.tcl.tk/software/tcltk/netcvs.html

PACKAGE = sample
MAJOR_VERSION = 0
MINOR_VERSION = 4
PATCH_LEVEL =

The package name determines the file names used for the directory and the binary
library file created by the Makefile. This name is also used in several configure and
Makefile variables. You will need to change all references to "sample" to match the
name you choose for your package.

The version and patch level support a three-level scheme, but you can leave the
patch level empty for two-level versions like 0.4. If you do specify a patch-level,
you need to include a leading "." or "p" in it. These values are combined to create
the version number like this:

VERSION = ${MAJOR_VERSION}.${MINOR_VERSION}${PATCH_LEVEL}

The configure.in file has a bunch of magic to determine the name of the shared
library file (e.g., sample04.dll, libsample.0.4.so, sample.0.2.shlib, etc.). You
need to change the macro to match your package name. Define
samplestub_LIB_FILE if you want to generate a stub library:

AC_SUBST(sample_LIB_FILE)
AC_SUBST(samplestub_LIB_FILE)

There are several standard TEA macros in configure.in that expand to a set of
rules to determine the compiler and other settings. Most of these you can leave
alone. Although in some cases you need to change the sample if you are creating a
Tk extension, or if you need to use internal Tcl or Tk header files. For example, you
may need to add TEA_PATH_TKCONFIG and TEA_LOAD_TKCONFIG, and to choose
between TEA_PUBLIC_TCL_HEADERS, TEA_PRIVATE_TCL_HEADERS and between
TEA_PUBLIC_TK_HEADERS and TEA_PRIVATE_TK_HEADERS. Using private headers (i.e.,
tclInt.h) is strongly discouraged.

There is also a platform-specific section where you may which to adjust the
CLEANFILES and EXTRA_SOURCES macros to match your needs. This section also
defines the BUILD_sample macro on Windows. Windows compilers create a special
case for shared libraries (i.e., DLLs). When you compile the library itself, you need
to declare its functions one way. When you compile code that uses the library, you
need to declare its functions another way. This complicates sample.h. Happily, the
complexity is hidden inside the BUILD_sample macro. We will show later how this is
used in sample.h to control the definition of the Sample_Init procedure.

The last macro in configure.in determines which templates are processed by the
configure script. The sample generates the Makefile from the Makefile.in
template with this directive:

AC_OUTPUT([Makefile])

Makefile.in

The Makefile.in template is converted by the configure script into the Makefile.
The sample Makefile.in is well commented so that it is easy to see where to make
changes. There are a few variables with sample in their name. In particular,
sample_LIB_FILE corresponds to a variable name in the configure script. You need
to change both files consistently:

sample_LIB_FILE = @sample_LIB_FILE@

The @varname@ syntax is used to substitute the configure variable with its platform-
specific name (e.g., libsample.dll or libsample.so). You must define the set of
source files and the corresponding object files that are part of the library. In the
sample, sample.c implements the core of the Secure Hash Algorithm, and the
tclsample.c file implements the Tcl command interface:

sample_SOURCES = sample.c tclsample.c @EXTRA_SOURCES@

The object file definitions use the OBJEXT variable that is .o for UNIX and .obj for
Windows:

sample_OBJECTS = $(sample_SOURCES:.c=.@OBJEXT@)

The header files that you want to have installed are assigned to the GENERIC_HDRS
variable. The srcdir Make variable is defined during configure to be the name of
the directory containing the file named in the AC_INIT macro:

GENERIC_HDRS = $(srcdir)/generic/sample.h

The sample Makefile includes several standard targets. Even if you decide not to use
the sample Makefile.in template, you should still define the targets listed in Table
48-4 to ensure your extension is TEA compliant. Plans for automatic build
environments depend on every extension implementing the standard make targets.
The targets can be empty, but you should define them so that make will not
complain if they are used.

Table 48-4. TEA standard Makefile targets

all Makes these targets in order: binaries, libraries, doc.

binaries Makes executable programs and binary libraries (e.g., DLLs).

libraries Makes platform-independent libraries.

doc Generates documentation files.

install Makes these targets in order: install-binaries, install-
libraries, install-doc.

install-
binaries

Installs programs and binary libraries.

install-
libraries

Installs script libraries.

install-doc Installs documentation files.

test Runs the test suite for the package.

depend Generates makefile dependency rules.

clean Removes files built during the make process.

distclean Removes files built during the configure process.

Standard Header Files

This section explains a technique you should use to get symbols defined properly in
your binary library. The issue is raised by Windows compilers, which have a notion
of explicitly importing and exporting symbols. When you build a library you export
symbols. When you link against a library, you import symbols. The BUILD_sample
variable is defined on Windows when you are building the library. This variable
should be undefined on UNIX, which does not have this issue. Your header file uses
this variable like this:

#ifdef BUILD_sample
#undef TCL_STORAGE_CLASS
#define TCL_STORAGE_CLASS DLLEXPORT
#endif /* BUILD_sample */

The TCL_STORAGE_CLASS variable is used in the definition of the EXTERN macro. You
must use EXTERN before the prototype for any function you want to export from
your library:

EXTERN int Sample_Init _ANSI_ARGS_((Tcl_Interp *Interp));

The _ANSI_ARGS_ macro is used to guard against old C compilers that do not
tolerate function prototypes.

Using the Sample Extension

You should be able to configure, compile, and install the sample extension without
modification. On my Solaris machine, the binary library is named sample0.4.so,
while on my Windows NT machine the library is named sample04.dll. The package
name is Tclsha1, and it implements the sha1 Tcl command. Ordinarily these names
would be more consistent with the file names and package names in the template
files. However, the names in the sample are designed to be easy to edit in the
template. Assuming that you use make install to copy the binary library into the
standard location for your site, you can use the package from Tcl like this:

package require Tclsha1
sha1 -string "some string"

The sha1 command returns a 128 bit encoded hash function of the input string.
There are a number of options to sha1 you can learn about by reading the manual
page that is included with the extension.

Chapter 49. Writing a Tk Widget in C
This chapter describes the implementation of a simple clock widget. Two
implementations are shown: the original string-based command interface and the
Tcl_Obj command interface.

A custom widget implemented in C has the advantage of being efficient and flexible.
However, it requires more work, too. This chapter illustrates the effort by explaining
the implementation of a clock widget. It is a digital clock that displays the current
time according to a format string. This is something you could implement in several
lines of Tcl using a label widget, the clock command, and after for periodic
updates. However, the point of the example is to show the basic structure for a Tk
widget implemented in C, not how much easier Tcl programming is :-). The
implementation of a widget includes:

A data structure to describe one instance of the widget.

A class procedure to create a new instance of the widget.

An instance procedure to operate on an instance of the widget.

A set of configuration options for the widget.

A configuration procedure used when creating and reconfiguring the widget.

An event handling procedure.

A display procedure.

Other widget-specific procedures.

Two implementations are compared: string-based and Tcl_Obj based. The version
that uses Tcl_Obj values can interpret command line options more efficiently. A
new option parsing package hides most of the details. The string-based version of
each procedure is shown first, and then the Tcl_Obj version is shown for
comparison. The display portion of the code is the same in the two versions.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Initializing the Extension

The widget is packaged as an extension that you can dynamically load into wish.
Example 49-1 shows the Clock_Init procedure. It registers two commands, clock
and oclock, which use the string-based and Tcl_Obj interfaces, respectively. It also
initializes the stub table, which is described in Chapter 48, and declares a package
so that scripts can load the widget with package require.

Example 49-1 The Clock_Init procedure

int ClockCmd(ClientData clientData,
 Tcl_Interp *interp,
 int argc, CONST char *argv[]);
int ClockObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);
void ClockObjDelete(ClientData clientData);

/*
 * Clock_Init is called when the package is loaded.
 */

int Clock_Init(Tcl_Interp *interp) {
 if (Tcl_InitStubs(interp, "8.1", 0) == NULL) {
 return TCL_ERROR;
 }
 Tcl_CreateCommand(interp, "wclock", ClockCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 Tcl_CreateObjCommand(interp, "oclock", ClockObjCmd,
 (ClientData)NULL, ClockObjDelete);
 Tcl_PkgProvide(interp, "Tkclock", "1.0");
 return TCL_OK;
}

The Widget Data Structure

Each widget is associated with a data structure that describes it. Any widget
structure will need a pointer to the Tcl interpreter, the Tk window, and the display.
The interpreter is used in most of the Tcl and Tk library calls, and it provides a way
to call out to the script or query and set Tcl variables. The Tk window is needed for
various Tk operations, and the display is used when doing low-level graphic
operations. The rest of the information in the data structure depends on the widget.
The different types will be explained as they are used in the rest of the code. The
structure for the clock widget follows:

Example 49-2 The Clock widget data structure

#include "tk.h"
#include <sys/time.h>

typedef struct {
 Tk_Window tkwin; /* The window for the widget */
 Display *display; /* Tk's handle on the display */
 Tcl_Interp *interp; /* Interpreter of the widget */
 Tcl_Command widgetCmd; /* clock instance command. */
 Tk_OptionTable optionTable; /* Used to parse options */
 /*
 * Clock-specific attributes.
 */
 int borderWidth; /* Size of 3-D border */
 Tcl_Obj *borderWidthPtr;/* Original string value */
 int relief; /* Style of 3-D border */
 Tk_3DBorder background;/* Color for border & background */
 XColor *foreground; /* Color for the text */
 XColor *highlight; /* Color for active highlight */
 XColor *highlightBg; /* Color for neutral highlight */
 int highlightWidth; /* Thickness of highlight rim */
 Tcl_Obj *highlightWidthPtr; /* Original string value */
 Tk_Font tkfont; /* Font info for the text */
 char *format; /* Format for time string */
 /*
 * Graphic contexts and other support.
 */
 GC textGC; /* Text graphics context */
 Tk_TimerToken token; /* Periodic callback handle*/
 char *clock; /* Pointer to the clock string */
 int numChars; /* length of the text */
 int textWidth; /* in pixels */
 Tcl_Obj *widthPtr; /* The original width string value*/
 int textHeight; /* in pixels */
 Tcl_Obj *heightPtr; /* The original height string value*/
 int padX; /* Horizontal padding */
 Tcl_Obj *padXPtr; /* The original padX string value*/

 int padY; /* Vertical padding */
 Tcl_Obj *padYPtr; /* The original padY string value */
 int flags; /* Flags defined below */
} Clock;
/*
 * Flag bit definitions.
 */
#define REDRAW_PENDING 0x1
#define GOT_FOCUS 0x2
#define TICKING 0x4

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Widget Class Command

The Tcl command that creates an instance of a widget is known as the class
command. In our example, the clock command creates a clock widget. The
command procedure for clock follows. The procedure allocates the Clock data
structure. It registers an event handler that gets called when the widget is exposed,
resized, or gets the focus. It creates a new Tcl command that operates on the
widget. Finally, it calls ClockConfigure to set up the widget according to the
attributes specified on the command line and the default configuration
specifications.

Example 49-3 The ClockCmd command procedure

int
ClockCmd(clientData, interp, argc, argv)
 ClientData clientData;/* Main window of the app */
 Tcl_Interp *interp; /* Current interpreter. */
 int argc; /* Number of arguments. */
 CONST char **argv; /* Argument strings. */
{
 Tk_Window main = (Tk_Window) clientData;
 Clock *clockPtr;
 Tk_Window tkwin;

 if (argc < 2) {
 Tcl_AppendResult(interp, "wrong # args: should be \"",
 argv[0], " pathName ?options?\"", (char *) NULL);
 return TCL_ERROR;
 }
 tkwin = Tk_CreateWindowFromPath(interp, main,
 argv[1], (char *) NULL);
 if (tkwin == NULL) {
 return TCL_ERROR;
 }
 /*
 * Set resource class.
 */
 Tk_SetClass(tkwin, "Clock");
 /*
 * Allocate and initialize the widget record.
 */
 clockPtr = (Clock *) Tcl_Alloc(sizeof(Clock));
 clockPtr->tkwin = tkwin;
 clockPtr->display = Tk_Display(tkwin);
 clockPtr->interp = interp;
 clockPtr->borderWidth = 0;
 clockPtr->highlightWidth = 0;
 clockPtr->relief = TK_RELIEF_FLAT;
 clockPtr->background = NULL;

 clockPtr->foreground = NULL;
 clockPtr->highlight = NULL;
 clockPtr->highlightBg = NULL;
 clockPtr->tkfont = NULL;
 clockPtr->textGC = None;
 clockPtr->token = NULL;
 clockPtr->clock = NULL;
 clockPtr->format = NULL;
 clockPtr->numChars = 0;
 clockPtr->textWidth = 0;
 clockPtr->textHeight = 0;
 clockPtr->padX = 0;
 clockPtr->padY = 0;
 clockPtr->flags = 0;
 /*
 * Register a handler for when the window is
 * exposed or resized.
 */
 Tk_CreateEventHandler(clockPtr->tkwin,
 ExposureMask|StructureNotifyMask|FocusChangeMask,
 ClockEventProc, (ClientData) clockPtr);
 /*
 * Create a Tcl command that operates on the widget.
 */
 clockPtr->widgetCmd = Tcl_CreateCommand(interp,
 Tk_PathName(clockPtr->tkwin),
 ClockInstanceCmd,
 (ClientData) clockPtr, (void (*)()) NULL);
 /*
 * Parse the command line arguments.
 */
 if (ClockConfigure(interp, clockPtr,
 argc-2, argv+2, 0) != TCL_OK) {
 Tk_DestroyWindow(clockPtr->tkwin);
 return TCL_ERROR;
 }
 Tcl_SetResult(interp, Tk_PathName(clockPtr->tkwin),
 TCL_VOLATILE);
 return TCL_OK;
}

The Tcl_Obj version, ClockObjCmd, does some additional work to set up an option
table that is used to efficiently parse the command line options to the clock
command. The option table is created the first time the clock command is used. The
clientData for ClockObjCmd is initially NULL; it is used to store the option table
once it is initialized. While ClockCmd uses the clientData to store a reference to
the main Tk window, ClockObjCmd uses the Tk_MainWindow procedure to get a
reference to the main Tk window.

Example 49-4 The ClockObjCmd command procedure

int
ClockObjCmd(clientData, interp, objc, objv)
 ClientData clientData;/* Main window of the app */
 Tcl_Interp *interp; /* Current interpreter. */
 int objc; /* Number of arguments. */
 Tcl_Obj **objv; /* Argument values. */
{
 Tk_OptionTable optionTable;
 Clock *clockPtr;
 Tk_Window tkwin;
 if (objc < 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "pathName ?options?");
 return TCL_ERROR;
 }
 optionTable = (Tk_OptionTable) clientData;
 if (optionTable == NULL) {
 Tcl_CmdInfo info;
 char *name;

 /*
 * Initialize the option table for this widget the
 * first time a clock widget is created. The option
 * table is saved as our client data.
 */

 optionTable = Tk_CreateOptionTable(interp, optionSpecs);
 name = Tcl_GetString(objv[0]);
 Tcl_GetCommandInfo(interp, name, &info);
 info.objClientData = (ClientData) optionTable;
 Tcl_SetCommandInfo(interp, name, &info);
 }
 tkwin = Tk_CreateWindowFromPath(interp,
 Tk_MainWindow(interp),
 Tcl_GetString(objv[1]), (char *) NULL);
 if (tkwin == NULL) {
 return TCL_ERROR;
 }
 /*
 * Set resource class.
 */
 Tk_SetClass(tkwin, "Clock");
 /*
 * Allocate and initialize the widget record.
 */
 clockPtr = (Clock *) ckalloc(sizeof(Clock));
 clockPtr->tkwin = tkwin;
 clockPtr->display = Tk_Display(tkwin);
 clockPtr->interp = interp;
 clockPtr->optionTable = optionTable;
 clockPtr->borderWidth = 0;
 clockPtr->borderWidthPtr = NULL;
 clockPtr->highlightWidth = 0;
 clockPtr->highlightWidthPtr = NULL;
 clockPtr->relief = TK_RELIEF_FLAT;

 clockPtr->background = NULL;
 clockPtr->foreground = NULL;
 clockPtr->highlight = NULL;
 clockPtr->highlightBg = NULL;
 clockPtr->tkfont = NULL;
 clockPtr->textGC = None;
 clockPtr->token = NULL;
 clockPtr->clock = NULL;
 clockPtr->format = NULL;
 clockPtr->numChars = 0;
 clockPtr->textWidth = 0;
 clockPtr->widthPtr = NULL;
 clockPtr->textHeight = 0;
 clockPtr->heightPtr = NULL;
 clockPtr->padX = 0;
 clockPtr->padXPtr = NULL;
 clockPtr->padY = 0;
 clockPtr->padYPtr = NULL;
 clockPtr->flags = 0;
 /*
 * Register a handler for when the window is
 * exposed or resized.
 */
 Tk_CreateEventHandler(clockPtr->tkwin,
 ExposureMask|StructureNotifyMask|FocusChangeMask,
 ClockEventProc, (ClientData) clockPtr);
 /*
 * Create a Tcl command that operates on the widget.
 */
 clockPtr->widgetCmd = Tcl_CreateObjCommand(interp,
 Tk_PathName(clockPtr->tkwin),
 ClockInstanceObjCmd,
 (ClientData) clockPtr, (void (*)()) NULL);
 /*
 * Parse the command line arguments.
 */
 if ((Tk_InitOptions(interp, (char *)clockPtr,
 optionTable, tkwin) != TCL_OK) ||
 (ClockObjConfigure(interp, clockPtr,
 objc-2, objv+2, 0) != TCL_OK)) {
 Tk_DestroyWindow(clockPtr->tkwin);
 return TCL_ERROR;
 }
 Tcl_SetStringObj(Tcl_GetObjResult(interp),
 Tk_PathName(clockPtr->tkwin), -1);
 return TCL_OK;
}

The Widget Instance Command

For each instance of a widget, a new command is created that operates on that
widget. This is called the widget instance command. Its name is the same as the Tk
pathname of the widget. In the clock example, all that is done on instances is to
query and change their attributes. Most of the work is done by Tk_ConfigureWidget
and ClockConfigure, which are shown in the next section. The ClockInstanceCmd
command procedure is shown in the next example:

Example 49-5 The ClockInstanceCmd command procedure

static int
ClockInstanceCmd(clientData, interp, argc, argv)
 ClientData clientData;/* A pointer to a Clock struct */
 Tcl_Interp *interp;/* The interpreter */
 int argc; /* The number of arguments */
 CONST char *argv[];/* The command line arguments */
{
 Clock *clockPtr = (Clock *)clientData;
 int result = TCL_OK;
 char c;
 int len;
 if (argc < 2) {
 Tcl_AppendResult(interp, "wrong # args: should be \"",
 argv[0], " option ?arg arg ...?\"", (char *) NULL);
 return TCL_ERROR;
 }
 c = argv[1][0];
 len = strlen(argv[1]);
 if ((c == 'c') && (strncmp(argv[1], "cget", len) == 0)
 && (len >= 2)) {
 if (argc != 3) {
 Tcl_AppendResult(interp,
 "wrong # args: should be \"",
 argv[0], " cget option\"",
 (char *) NULL);
 return TCL_ERROR;
 }
 result = Tk_ConfigureValue(interp, clockPtr->tkwin,
 configSpecs, (char *) clockPtr, argv[2], 0);
 } else if ((c == 'c') && (strncmp(argv[1], "configure", len)
 == 0) && (len >= 2)) {
 if (argc == 2) {
 /*
 * Return all configuration information.
 */
 result = Tk_ConfigureInfo(interp, clockPtr->tkwin,
 configSpecs, (char *) clockPtr,
 (char *) NULL,0);

 } else if (argc == 3) {
 /*
 * Return info about one attribute, like cget.
 */
 result = Tk_ConfigureInfo(interp, clockPtr->tkwin,
 configSpecs, (char *) clockPtr, argv[2], 0);
 } else {
 /*
 * Change one or more attributes.
 */
 result = ClockConfigure(interp, clockPtr, argc-2,
 argv+2,TK_CONFIG_ARGV_ONLY);
 }
 } else {
 Tcl_AppendResult(interp, "bad option \"", argv[1],
 "\": must be cget, configure, position, or size",
 (char *) NULL);
 return TCL_ERROR;
 }
 return result;
}

Example 49-6 shows the ClockInstanceObjCmd procedure. It uses the
Tk_GetIndexFromObj routine to map the first argument to an index, which is then
used in a switch statement. It uses the Tk_GetOptionValue and Tk_GetOptionInfo
procedures to parse the widget configuration options.

Example 49-6 The ClockInstanceObjCmd command procedure

static int
ClockInstanceObjCmd(clientData, interp, objc, objv)
 ClientData clientData;/* A pointer to a Clock struct */
 Tcl_Interp *interp; /* The interpreter */
 int objc; /* The number of arguments */
 Tcl_Obj *objv[]; /* The command line arguments */
{
 Clock *clockPtr = (Clock *)clientData;
 CONST char *commands[] = {"cget", "configure", NULL};
 enum command {CLOCK_CGET, CLOCK_CONFIGURE};
 int result;
 Tcl_Obj *objPtr;
 int index;

 if (objc < 2) {
 Tcl_WrongNumArgs(interp, 1, objv,
 "option ?arg arg ...?");
 return TCL_ERROR;
 }
 result = Tcl_GetIndexFromObj(interp, objv[1], commands,
 "option", 0, &index);
 if (result != TCL_OK) {
 return result;

 }
 switch (index) {
 case CLOCK_CGET: {
 if (objc != 3) {
 Tcl_WrongNumArgs(interp, 1, objv,
 "cget option");
 return TCL_ERROR;
 }
 objPtr = Tk_GetOptionValue(interp,
 (char *)clockPtr,
 clockPtr->optionTable,
 (objc == 3) ? objv[2] : NULL,
 clockPtr->tkwin);
 if (objPtr == NULL) {
 return TCL_ERROR;
 } else {
 Tcl_SetObjResult(interp, objPtr);
 }
 break;
 }
 case CLOCK_CONFIGURE: {
 if (objc <= 3) {
 /*
 * Return one item if the option is given,
 * or return all configuration information.
 */
 objPtr = Tk_GetOptionInfo(interp,
 (char *) clockPtr,
 clockPtr->optionTable,
 (objc == 3) ? objv[2] : NULL,
 clockPtr->tkwin);
 if (objPtr == NULL) {
 return TCL_ERROR;
 } else {
 Tcl_SetObjResult(interp, objPtr);
 }
 } else {
 /*
 * Change one or more attributes.
 */
 result = ClockObjConfigure(interp, clockPtr,
 objc-2, objv+2);
 }
 }
 }
 return TCL_OK;
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Configuring and Reconfiguring Attributes

When the widget is created or reconfigured, then the implementation needs to
allocate the resources implied by the attribute settings. Each clock widget uses
some colors and a font. These are described by graphics contexts that parameterize
operations. Instead of specifying every possible attribute in graphics calls, a
graphics context is initialized with a subset of the parameters, and this is passed
into the graphic commands. The context can specify the foreground and background
colors, clip masks, line styles, and so on. The clock widget allocates a graphics
context once and reuses it each time the widget is displayed.

There are two kinds of color resources used by the widget. The focus highlight and
the text foreground are simple colors. The background is a Tk_3DBorder, which is a
set of colors used to render 3D borders. The background color is specified in the
attribute, and the other colors are computed based on that color. The code uses
Tk_3DBorderColor to map back to the original color for use in the background of
the widget.

After the resources are set up, a call to redisplay the widget is scheduled for the
next idle period. This is a standard idiom for Tk widgets. It means that you can
create and reconfigure a widget in the middle of a script, and all the changes result
in only one redisplay. The REDRAW_PENDING flag is used to ensure that only one
redisplay is queued up at any time. The ClockConfigure procedure is shown in the
next example:

Example 49-7 ClockConfigure allocates resources for the widget

static int
ClockConfigure(interp, clockPtr, argc, argv, flags)
 Tcl_Interp *interp;/* For return values and errors */
 Clock *clockPtr; /* The per-instance data structure */
 int argc; /* Number of valid entries in argv */
 char *argv[]; /* The command line arguments */
 int flags; /* Tk_ConfigureWidget flags */
{
 XGCValues gcValues;
 GC newGC;

 /*
 * Tk_ConfigureWidget parses the command line arguments
 * and looks for defaults in the resource database.
 */
 if (Tk_ConfigureWidget(interp, clockPtr->tkwin,
 configSpecs, argc, argv, (char *) clockPtr, flags)
 != TCL_OK) {
 return TCL_ERROR;
 }
 /*

 * Give the widget a default background so it doesn't get
 * a random background between the time it is initially
 * displayed by the X server and we paint it
 */
 Tk_SetWindowBackground(clockPtr->tkwin,
 Tk_3DBorderColor(clockPtr->background)->pixel);
 /*
 * Set up the graphics contexts to display the widget.
 * The context is used to draw off-screen pixmaps,
 * so turn off exposure notifications.
 */
 gcValues.background =
 Tk_3DBorderColor(clockPtr->background)->pixel;
 gcValues.foreground = clockPtr->foreground->pixel;
 gcValues.font = Tk_FontId(clockPtr->tkfont);
 gcValues.graphics_exposures = False;
 newGC = Tk_GetGC(clockPtr->tkwin,
 GCBackground|GCForeground|GCFont|GCGraphicsExposures,
 &gcValues);
 if (clockPtr->textGC != None) {
 Tk_FreeGC(clockPtr->display, clockPtr->textGC);
 }
 clockPtr->textGC = newGC;
 /*
 * Determine how big the widget wants to be.
 */
 ComputeGeometry(clockPtr);
 /*
 * Set up a call to display ourself.
 */
 if ((clockPtr->tkwin != NULL) &&
 Tk_IsMapped(clockPtr->tkwin)
 && !(clockPtr->flags & REDRAW_PENDING)) {
 Tk_DoWhenIdle(ClockDisplay, (ClientData) clockPtr);
 clockPtr->flags |= REDRAW_PENDING;
 }
 return TCL_OK;
}

Example 49-8 shows the ClockObjConfigure procedure. The Tk_SetOptions
interface, which is used to set fields in the Clock data structure, has one potential
problem. It is possible that some configuration options are correct, while others
cause errors. In this case, ClockObjConfigure backs out the changes, so the whole
configuration has no effect. This requires a two-pass approach, with the second pass
used to restore the original values. Tk_SetOptions has a feature that lets you
classify changes to the widget. The GEOMETRY_MASK and GRAPHICS_MASK are bits
defined by the clock widget to divide its attributes into two classes. It changes its
graphics context or recomputes its geometry only if an attribute from the
appropriate class is changed.

Example 49-8 ClockObjConfigure allocates resources for the widget

static int
ClockObjConfigure(interp, clockPtr, objc, objv)
 Tcl_Interp *interp;/* For return values and errors */
 Clock *clockPtr; /* The per-instance data structure */
 int objc; /* Number of valid entries in argv */
 Tcl_Obj *objv[]; /* The command line arguments */
{
 XGCValues gcValues;
 GC newGC;
 Tk_SavedOptions savedOptions;
 int mask, error;
 Tcl_Obj *errorResult;

 /*
 * The first time through this loop we set the
 * configuration from the command line inputs. The second
 * pass is used to restore the configuration in case of
 * errors
 */
 for (error = 0 ; error <= 1 ; error++) {
 if (!error) {
 /*
 * Tk_SetOptions parses the command arguments
 * and looks for defaults in the resource
 * database.
 */
 if (Tk_SetOptions(interp, (char *) clockPtr,
 clockPtr->optionTable, objc, objv,
 clockPtr->tkwin, &savedOptions,
 &mask) != TCL_OK) {
 continue;
 }
 } else {
 /*
 * Restore options from saved values
 */
 errorResult = Tcl_GetObjResult(interp);
 Tcl_IncrRefCount(errorResult);
 Tk_RestoreSavedOptions(&savedOptions);
 }
 if (mask & GRAPHICS_MASK) {
 /*
 * Give the widget a default background so it doesn't
 * get a random background between the time it is
 * initially displayed by the system and we paint it
 */
 Tk_SetBackgroundFromBorder(clockPtr->tkwin,
 clockPtr->background);
 /*
 * Set up the graphics contexts to display the widget.
 * The context is used to draw off-screen pixmaps,
 * so turn off exposure notifications.
 */
 gcValues.background =

 Tk_3DBorderColor(clockPtr->background)->pixel;
 gcValues.foreground = clockPtr->foreground->pixel;
 gcValues.font = Tk_FontId(clockPtr->tkfont);
 gcValues.graphics_exposures = False;
 newGC = Tk_GetGC(clockPtr->tkwin,
 GCBackground|GCForeground|GCFont|GCGraphicsExposures,
 &gcValues);
 if (clockPtr->textGC != None) {
 Tk_FreeGC(clockPtr->display, clockPtr->textGC);
 }
 clockPtr->textGC = newGC;
 }
 /*
 * Determine how big the widget wants to be.
 */
 if (mask & GEOMETRY_MASK) {
 ComputeGeometry(clockPtr);
 }
 /*
 * Set up a call to display ourself.
 */
 if ((clockPtr->tkwin != NULL) &&
 Tk_IsMapped(clockPtr->tkwin)
 && !(clockPtr->flags & REDRAW_PENDING)) {
 Tk_DoWhenIdle(ClockDisplay,
 (ClientData) clockPtr);
 clockPtr->flags |= REDRAW_PENDING;
 }
 /*
 * All OK, break out and avoid error rollback.
 */
 break;
 }
 if (!error) {
 Tk_FreeSavedOptions(&savedOptions);
 return TCL_OK;
 } else {
 Tcl_SetObjResult(interp, errorResult);
 Tcl_DecrRefCount(errorResult);
 return TCL_ERROR;
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Specifying Widget Attributes

Several of the fields in the Clock structure are attributes that can be set when the
widget is created or reconfigured with the configure operation. The
Tk_ConfigureWidget procedure is designed to help you manage the default values,
their resource names, and their class names. It works by associating a widget
option with an offset into the widget data structure. When you use a command line
argument to change an option, Tk_ConfigureWidget reaches into your widget
structure and changes the value for you. Several types are supported, such as
colors and fonts, and Tk_ConfigureWidget handles all the memory allocation used
to store the values. Example 49-9 shows the Tk_ConfigSpec type used to represent
information about each attribute:

Example 49-9 The Tk_ConfigSpec typedef

typedef struct Tk_ConfigSpec {
 int type;
 char *name;
 char *dbName;
 char *dbClass;
 char *defValue;
 int offset;
 int specflags;
 Tk_CustomOption *customPtr;
} Tk_ConfigSpec;

The initial field is a type, such as TK_CONFIG_BORDER. Colors and borders will be
explained shortly. The next field is the command-line flag for the attribute, (e.g., -
background). Then comes the resource name and the class name. The default value
is next, (e.g., light blue). The offset of a structure member is next, and the
Tk_Offset macro is used to compute this offset. The specflags field is a bitmask of
flags. The two used in this example are TK_CONFIG_COLOR_ONLY and
TK_CONFIG_MONO_ONLY, which restrict the application of the configuration setting to
color and monochrome displays, respectively. You can define additional flags and
pass them into Tk_ConfigureWidget if you have a family of widgets that share
most, but not all, of their attributes. The tkButton.c file in the Tk sources has an
example of this. The customPtr is used if you have a TK_CONFIG_CUSTOM type,
which is explained in detail in the manual page for Tk_ConfigureWidget. Example
49-10 shows the Tk_ConfigSpec specification of widget attributes for the clock
widget.

Example 49-10 Configuration specs for the clock widget

static Tk_ConfigSpec configSpecs[] = {
 {TK_CONFIG_BORDER, "-background", "background",
 "Background", "light blue",

 Tk_Offset(Clock, background), TK_CONFIG_COLOR_ONLY},
 {TK_CONFIG_BORDER, "-background", "background",
 "Background", "white", Tk_Offset(Clock, background),
 TK_CONFIG_MONO_ONLY},
 {TK_CONFIG_SYNONYM, "-bg", "background", (char *) NULL,
 (char *) NULL, 0, 0},
 {TK_CONFIG_SYNONYM, "-bd", "borderWidth", (char *) NULL,
 (char *) NULL, 0, 0},
 {TK_CONFIG_PIXELS, "-borderwidth", "borderWidth",
 "BorderWidth","2", Tk_Offset(Clock, borderWidth), 0},
 {TK_CONFIG_RELIEF, "-relief", "relief", "Relief",
 "ridge", Tk_Offset(Clock, relief), 0},
 {TK_CONFIG_COLOR, "-foreground", "foreground",
 "Foreground", "black", Tk_Offset(Clock, foreground),0},
 {TK_CONFIG_SYNONYM, "-fg", "foreground", (char *) NULL,
 (char *) NULL, 0, 0},
 {TK_CONFIG_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor", "red", Tk_Offset(Clock, highlight),
 TK_CONFIG_COLOR_ONLY},
 {TK_CONFIG_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor", "black",
 Tk_Offset(Clock, highlight),TK_CONFIG_MONO_ONLY},
 {TK_CONFIG_COLOR, "-highlightbackground",
 "highlightBackground", "HighlightBackground",
 "light blue", Tk_Offset(Clock, highlightBg),
 TK_CONFIG_COLOR_ONLY},
 {TK_CONFIG_COLOR, "-highlightbackground",
 "highlightBackground", "HighlightBackground",
 "black", Tk_Offset(Clock, highlightBg),
 TK_CONFIG_MONO_ONLY},
 {TK_CONFIG_PIXELS, "-highlightthickness",
 "highlightThickness","HighlightThickness",
 "2", Tk_Offset(Clock, highlightWidth), 0},
 {TK_CONFIG_PIXELS, "-padx", "padX", "Pad",
 "2", Tk_Offset(Clock, padX), 0},
 {TK_CONFIG_PIXELS, "-pady", "padY", "Pad",
 "2", Tk_Offset(Clock, padY), 0},
 {TK_CONFIG_STRING, "-format", "format", "Format",
 "%H:%M:%S", Tk_Offset(Clock, format), 0},
 {TK_CONFIG_FONT, "-font", "font", "Font",
 "Courier 18",
 Tk_Offset(Clock, tkfont), 0},
 {TK_CONFIG_END, (char *) NULL, (char *) NULL,
 (char *) NULL, (char *) NULL, 0, 0}
};

There is an alternative to the Tk_ConfigureWidget interface that understands
Tcl_Obj values in the widget data structure. It uses a a similar type,
Tk_OptionSpec, and Tk_ConfigureWidget is replaced by the Tk_SetOptions,
Tk_GetOptionValue, and Tk_GetOptionInfo procedures. Example 49-11 shows the
Tk_OptionSpec type.

Example 49-11 The Tk_OptionSpec typedef

typedef struct Tk_OptionSpec {
 Tk_OptionType type;
 char *optionName;
 char *dbName;
 char *dbClass;
 char *defValue;
 int objOffset;
 int internalOffset;
 int flags;
 ClientData clientData;
 int typeMask;
} Tk_OptionSpec;

The Tk_OptionSpec has two offsets, one for normal values and one for Tcl_Obj
values. You can use the second offset to set Tcl_Obj values directly from the
command line configuration. The TK_CONFIG_PIXELS type uses both offsets. The
pixel value is stored in an integer, and a Tcl_Obj is used to remember the exact
string (e.g., 0.2cm) used to specify the screen distance. Most of the functionality of
the specflags field of Tk_ConfigSpec (e.g., TK_CONFIG_MONO_ONLY) has been
changed. The flags field accepts only TK_CONFIG_NULL_OK, and the rest of the
features use the clientData field instead. For example, the color types uses
clientData for their default on monochrome displays. The typeMask supports a
general notion of grouping option values into sets. For example, the clock widget
marks attributes that affect geometry and color into different sets. This lets the
widget optimize its configuration procedure. Example 49-12 shows the
Tk_OptionSpec specification of the clock widget attributes.

Example 49-12 The Tk_OptionSpec structure for the clock widget

#define GEOMETRY_MASK 0X1
#define GRAPHICS_MASK 0X2

static Tk_OptionSpec optionSpecs[] = {
 {TK_OPTION_BORDER, "-background", "background",
 "Background", "light blue", -1,
 Tk_Offset(Clock, background), 0,
 (ClientData) "white", GRAPHICS_MASK},
 {TK_OPTION_SYNONYM, "-bg", "background", (char *) NULL,
 (char *) NULL, -1, 0, 0, 0, 0},
 {TK_OPTION_PIXELS, "-borderwidth", "borderWidth",
 "BorderWidth", "2", Tk_Offset(Clock, borderWidthPtr),
 Tk_Offset(Clock, borderWidth),
 0, 0, GEOMETRY_MASK},
 {TK_OPTION_SYNONYM, "-bd", "borderWidth", (char *) NULL,
 (char *) NULL, -1, 0, 0, 0, 0},
 {TK_OPTION_RELIEF, "-relief", "relief", "Relief",
 "ridge", -1, Tk_Offset(Clock, relief), 0, 0, 0},
 {TK_OPTION_COLOR, "-foreground", "foreground",

 "Foreground", "black",-1, Tk_Offset(Clock, foreground),
 0, (ClientData) "black", GRAPHICS_MASK},
 {TK_OPTION_SYNONYM, "-fg", "foreground", (char *) NULL,
 (char *) NULL, -1, 0, 0, 0, 0},
 {TK_OPTION_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor", "red",-1, Tk_Offset(Clock, highlight),
 0, (ClientData) "black", GRAPHICS_MASK},
 {TK_OPTION_COLOR, "-highlightbackground",
 "highlightBackground", "HighlightBackground",
 "light blue",-1, Tk_Offset(Clock, highlightBg),
 0, (ClientData) "white", GRAPHICS_MASK},
 {TK_OPTION_PIXELS, "-highlightthickness",
 "highlightThickness","HighlightThickness",
 "2", Tk_Offset(Clock, highlightWidthPtr),
 Tk_Offset(Clock, highlightWidth), 0, 0,
 GEOMETRY_MASK},
 {TK_OPTION_PIXELS, "-padx", "padX", "Pad",
 "2", Tk_Offset(Clock, padXPtr),
 Tk_Offset(Clock, padX), 0, 0, GEOMETRY_MASK},
 {TK_OPTION_PIXELS, "-pady", "padY", "Pad",
 "2", Tk_Offset(Clock, padYPtr),
 Tk_Offset(Clock, padY), 0, 0, GEOMETRY_MASK},
 {TK_OPTION_STRING, "-format", "format", "Format",
 "%H:%M:%S",-1, Tk_Offset(Clock, format), 0, 0,
 GEOMETRY_MASK},
 {TK_OPTION_FONT, "-font", "font", "Font",
 "Courier 18",
 -1, Tk_Offset(Clock, tkfont), 0, 0,
 (GRAPHICS_MASK|GEOMETRY_MASK)},
 {TK_OPTION_END, (char *) NULL, (char *) NULL,
 (char *) NULL, (char *) NULL, -1, 0, 0, 0, 0}
};

Table 49-1 lists the correspondence between the configuration type of the option
and the type of the associated field in the widget data structure. The same types are
supported by the Tk_ConfigSpec and Tk_OptionSpec types, with a few exceptions.
The TK_CONFIG_ACTIVE_CURSOR configuration type corresponds to the
TK_OPTION_CURSOR; both of these set the widgets cursor. The TK_CONFIG_MM and
TK_CONFIG_CURSOR types are simply not supported by Tk_OptionSpec because they
were not very useful. The TK_OPTION_STRING_TABLE replaces TK_CONFIG_CAP_STYLE
and TK_CONFIG_JOIN_STYLE with a more general type that works with
Tcl_GetIndexFromObj. In this case, the clientData is an array of strings that are
passed to Tcl_GetIndexFromObj. The index value corresponds to the integer value
returned from procedures like Tk_GetCapStyle.

Table 49-1. Configuration flags and corresponding C types

TK_CONFIG_ACTIVE_CURSOR
TK_OPTION_CURSOR

Cursor

TK_CONFIG_ANCHOR
TK_OPTION_ANCHOR

Tk_Anchor

TK_CONFIG_BITMAP
TK_OPTION_BITMAP

Pixmap

TK_CONFIG_BOOLEAN
TK_OPTION_BOOLEAN

int (0 or 1)

TK_CONFIG_BORDER
TK_OPTION_BORDER

Tk_3DBorder *

TK_CONFIG_CAP_STYLE int (see Tk_GetCapStyle)

TK_CONFIG_COLOR
TK_OPTION_COLOR

XColor *

clientData is monochrome default.

TK_CONFIG_CURSOR Cursor

TK_CONFIG_CUSTOM

TK_CONFIG_DOUBLE
TK_OPTION_DOUBLE

double

TK_CONFIG_END
TK_OPTION_END

(signals end of options)

TK_CONFIG_FONT
TK_OPTION_FONT

Tk_Font

TK_CONFIG_INT
TK_OPTION_INT

int

TK_CONFIG_JOIN_STYLE int (see Tk_GetJoinStyle)

TK_CONFIG_JUSTIFY
TK_OPTION_JUSTIFY

Tk_Justify

TK_CONFIG_MM double

TK_CONFIG_PIXELS
TK_OPTION_PIXELS

int

objOffset used for original value.

TK_CONFIG_RELIEF
TK_OPTION_RELIEF

int (see Tk_GetRelief)

TK_CONFIG_STRING
TK_OPTION_STRING

char *

TK_OPTION_STRING_TABLE The clientData is an array of strings used with
Tcl_GetIndexFromObj

TK_CONFIG_SYNONYM
TK_OPTION_SYNONYM

(alias for other option)

clientData is the name of another option.

TK_CONFIG_UID Tk_Uid

TK_CONFIG_WINDOW
TK_OPTION_WINDOW

Tk_Window

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Displaying the Clock

There are two parts to a widget's display. First, the size must be determined. This is
done at configuration time, and then that space is requested from the geometry
manager. When the widget is later displayed, it should use the Tk_Width and
Tk_Height calls to find out how much space was actually allocated to it by the
geometry manager. Example 49-13 shows ComputeGeometry. This procedure is
identical in both versions of the widget.

Example 49-13 ComputeGeometry computes the widget's size

static void
ComputeGeometry(Clock *clockPtr)
{
 int width, height;
 Tk_FontMetrics fm; /* Font size information */
 struct tm *tmPtr; /* Time info split into fields */
 struct timeval tv; /* BSD-style time value */
 int bd; /* Padding from borders */
 char clock[1000]; /* Displayed time */

 /*
 * Get the time and format it to see how big it will be.
 */
 gettimeofday(&tv, NULL);
 tmPtr = localtime(&tv.tv_sec);
 strftime(clock, 1000, clockPtr->format, tmPtr);
 if (clockPtr->clock != NULL) {
 ckfree(clockPtr->clock);
 }
 clockPtr->clock = ckalloc(1+strlen(clock));
 clockPtr->numChars = strlen(clock);

 bd = clockPtr->highlightWidth + clockPtr->borderWidth;
 Tk_GetFontMetrics(clockPtr->tkfont, &fm);
 height = fm.linespace + 2*(bd + clockPtr->padY);
 Tk_MeasureChars(clockPtr->tkfont, clock,
 clockPtr->numChars, 0, 0, &clockPtr->textWidth);
 width = clockPtr->textWidth + 2*(bd + clockPtr->padX);

 Tk_GeometryRequest(clockPtr->tkwin, width, height);
 Tk_SetInternalBorder(clockPtr->tkwin, bd);
}

Finally, we get to the actual display of the widget! The routine is careful to check
that the widget still exists and is mapped. This is important because the redisplay is
scheduled asynchronously. The current time is converted to a string. This uses the
POSIX library procedures gettimeofday, localtime, and strftime. There might be
different routines on your system. The string is painted into a pixmap, which is a

drawable region of memory that is off-screen. After the whole display has been
painted, the pixmap is copied into on-screen memory to avoid flickering as the
image is cleared and repainted. The text is painted first, then the borders. This
ensures that the borders overwrite the text if the widget has not been allocated
enough room by the geometry manager.

This example allocates and frees the off-screen pixmap for each redisplay. This is
the standard idiom for Tk widgets. They temporarily allocate the off-screen pixmap
each time they redisplay. In the case of a clock that updates every second, it might
be reasonable to permanently allocate the pixmap and store its pointer in the Clock
data structure. Make sure to reallocate the pixmap if the size changes.

After the display is finished, another call to the display routine is scheduled to
happen in one second. If you were to embellish this widget, you might want to make
the uptime period a parameter. The TICKING flag is used to note that the timer
callback is scheduled. It is checked when the widget is destroyed so that the
callback can be canceled. Example 49-14 shows ClockDisplay. This procedure is
identical in both versions of the widget.

Example 49-14 The ClockDisplay procedure

static void
ClockDisplay(ClientData clientData)
{
 Clock *clockPtr = (Clock *)clientData;
 Tk_Window tkwin = clockPtr->tkwin;
 GC gc; /* Graphics Context for highlight */
 Tk_TextLayout layout; /* Text measurement state */
 Pixmap pixmap; /* Temporary drawing area */
 int offset, x, y; /* Coordinates */
 int width, height; /* Size */
 struct tm *tmPtr; /* Time info split into fields */
 struct timeval tv; /* BSD-style time value */

 /*
 * Make sure the clock still exists
 * and is mapped onto the display before painting.
 */
 clockPtr->flags &= ~(REDRAW_PENDING|TICKING);
 if ((clockPtr->tkwin == NULL) || !Tk_IsMapped(tkwin)) {
 return;
 }
 /*
 * Format the time into a string.
 * localtime chops up the time into fields.
 * strftime formats the fields into a string.
 */
 gettimeofday(&tv, NULL);
 tmPtr = localtime(&tv.tv_sec);
 strftime(clockPtr->clock, clockPtr->numChars+1,
 clockPtr->format, tmPtr);

 /*
 * To avoid flicker when the display is updated, the new
 * image is painted in an offscreen pixmap and then
 * copied onto the display in one operation. Allocate the
 * pixmap and paint its background.
 */
 pixmap = Tk_GetPixmap(clockPtr->display,
 Tk_WindowId(tkwin), Tk_Width(tkwin),
 Tk_Height(tkwin), Tk_Depth(tkwin));
 Tk_Fill3DRectangle(tkwin, pixmap,
 clockPtr->background, 0, 0, Tk_Width(tkwin),
 Tk_Height(tkwin), 0, TK_RELIEF_FLAT);

 /*
 * Paint the text first.
 */
 layout = Tk_ComputeTextLayout(clockPtr->tkfont,
 clockPtr->clock, clockPtr->numChars, 0,
 TK_JUSTIFY_CENTER, 0, &width, &height);
 x = (Tk_Width(tkwin) - width)/2;
 y = (Tk_Height(tkwin) - height)/2;
 Tk_DrawTextLayout(clockPtr->display, pixmap,
 clockPtr->textGC, layout, x, y, 0, -1);

 /*
 * Display the borders, so they overwrite any of the
 * text that extends to the edge of the display.
 */
 if (clockPtr->relief != TK_RELIEF_FLAT) {
 Tk_Draw3DRectangle(tkwin, pixmap,
 clockPtr->background,
 clockPtr->highlightWidth,
 clockPtr->highlightWidth,
 Tk_Width(tkwin) - 2*clockPtr->highlightWidth,
 Tk_Height(tkwin) - 2*clockPtr->highlightWidth,
 clockPtr->borderWidth, clockPtr->relief);
 }
 if (clockPtr->highlightWidth != 0) {
 GC gc;

 /*
 * This GC is associated with the color, and Tk caches
 * the GC until the color is freed. Hence no freeGC.
 */

 if (clockPtr->flags & GOT_FOCUS) {
 gc = Tk_GCForColor(clockPtr->highlight, pixmap);
 } else {
 gc = Tk_GCForColor(clockPtr->highlightBg, pixmap);
 }
 Tk_DrawFocusHighlight(tkwin, gc,
 clockPtr->highlightWidth, pixmap);
 }
 /*

 * Copy the information from the off-screen pixmap onto
 * the screen, then delete the pixmap.
 */

 XCopyArea(clockPtr->display, pixmap, Tk_WindowId(tkwin),
 clockPtr->textGC, 0, 0, Tk_Width(tkwin),
 Tk_Height(tkwin), 0, 0);
 Tk_FreePixmap(clockPtr->display, pixmap);

 /*
 * Queue another call to ourselves. The rate at which
 * this is done could be optimized.
 */
 clockPtr->token = Tk_CreateTimerHandler(1000,
 ClockDisplay, (ClientData)clockPtr);
 clockPtr->flags |= TICKING;
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Window Event Procedure

Each widget registers an event handler for expose and resize events. If it
implements a focus highlight, it also needs to be notified of focus events. If you
have used other toolkits, you may expect to register callbacks for mouse and
keystroke events too. You should not need to do that. Instead, use the regular Tk
bind facility and define your bindings in Tcl. That way they can be customized by
applications. This procedure is identical in both versions of the widget.

Example 49-15 The ClockEventProc handles window events

static void
ClockEventProc(ClientData clientData, XEvent *eventPtr)
{
 Clock *clockPtr = (Clock *) clientData;
 if ((eventPtr->type == Expose) &&
 (eventPtr->xexpose.count == 0)) {
 goto redraw;
 } else if (eventPtr->type == DestroyNotify) {
 Tcl_DeleteCommandFromToken(clockPtr->interp,
 clockPtr->widgetCmd);
 /*
 * Zapping the tkwin lets the other procedures
 * know we are being destroyed.
 */
 clockPtr->tkwin = NULL;

 if (clockPtr->flags & REDRAW_PENDING) {
 Tk_CancelIdleCall(ClockDisplay,
 (ClientData) clockPtr);
 clockPtr->flags &= ~REDRAW_PENDING;
 }
 if (clockPtr->flags & TICKING) {
 Tk_DeleteTimerHandler(clockPtr->token);
 clockPtr->flags &= ~TICKING;
 }
 /*
 * This results in a call to ClockDestroy.
 */
 Tk_EventuallyFree((ClientData) clockPtr,
 ClockDestroy);
 } else if (eventPtr->type == FocusIn) {
 if (eventPtr->xfocus.detail != NotifyPointer) {
 clockPtr->flags |= GOT_FOCUS;
 if (clockPtr->highlightWidth > 0) {
 goto redraw;
 }
 }
 } else if (eventPtr->type == FocusOut) {

 if (eventPtr->xfocus.detail != NotifyPointer) {
 clockPtr->flags &= ~GOT_FOCUS;
 if (clockPtr->highlightWidth > 0) {
 goto redraw;
 }
 }
 }
 return;
redraw:
 if ((clockPtr->tkwin != NULL) &&
 !(clockPtr->flags & REDRAW_PENDING)) {
 Tk_DoWhenIdle(ClockDisplay, (ClientData) clockPtr);
 clockPtr->flags |= REDRAW_PENDING;
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Final Cleanup

When a widget is destroyed, you need to free
up any resources it has allocated. The
resources associated with attributes are
cleaned up by Tk_FreeOptions. The others
you must take care of yourself. The
ClockDestroy procedure is called as a result
of the Tk_EventuallyFree call in the
ClockEventProc. The Tk_EventuallyFree
procedure is part of a protocol that is needed
for widgets that might get deleted when in the
middle of processing. Typically the
Tk_Preserve and Tk_Release procedures are
called at the beginning and end of the widget
instance command to mark the widget as
being in use. Tk_EventuallyFree will wait
until Tk_Release is called before calling the
cleanup procedure. The next example shows
ClockDestroy:

Example 49-16 The ClockDestroy cleanup procedure

static void
ClockDestroy(clientData)
 ClientData clientData;/* Info about entry widget. */
{
 register Clock *clockPtr = (Clock *) clientData;

 /*
 * Free up all the stuff that requires special handling,
 * then let Tk_FreeOptions handle resources associated
 * with the widget attributes.
 */
 if (clockPtr->textGC != None) {
 Tk_FreeGC(clockPtr->display, clockPtr->textGC);
 }

 if (clockPtr->clock != NULL) {
 Tcl_Free(clockPtr->clock);
 }
 if (clockPtr->flags & TICKING) {
 Tk_DeleteTimerHandler(clockPtr->token);
 }
 if (clockPtr->flags & REDRAW_PENDING) {
 Tk_CancelIdleCall(ClockDisplay,
 (ClientData) clockPtr);
 }
 /*
 * This frees up colors and fonts and any allocated
 * storage associated with the widget attributes.
 */
 Tk_FreeOptions(configSpecs, (char *) clockPtr,
 clockPtr->display, 0);
 Tcl_Free((char *) clockPtr);
}

The version of ClockDestroy that uses the Tcl_Obj interfaces calls
Tk_FreeConfigOptions instead of Tk_FreeOptions. The ClockObjDelete command
is called when the oclock command is removed from the interpreter. This has to
clean up the option table used to parse options, if it has been initialized. There is no
corresponding delete procedure for the string-based version of the widget. Example
49-17 shows ClockObjDelete.

Example 49-17 The ClockObjDelete command

void
ClockObjDelete(ClientData clientData)
{
 Tk_OptionTable optionTable = (Tk_OptionTable) clientData;
 if (optionTable != NULL) {
 Tk_DeleteOptionTable(optionTable);
 }
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 50. C Library Overview
This chapter provides a bird's eye view of the facilities in the Tcl and Tk C libraries.
For details of the APIs, you will need to consult the on-line reference material.

C libraries provide comprehensive access to the Tcl and Tk implementation. You
have complete control over the Tcl script environment, plus you can extend Tcl and
Tk by writing new features in C. You can implement new commands, I/O channels,
event sources, widgets, canvas items, image types, and geometry managers. The
platform-independent I/O subsystem and the event loop are available for use from
C. This chapter provides an overview of the Tcl and Tk C libraries.

For serious C programming, you need to consult the on-line reference material. The
manual pages describe groups of related C procedures. For example, on UNIX, you
can run man on individual procedures and see the documentation for the whole
group of related procedures:

man Tcl_CreateCommand

The Windows Help and HTML versions are indexed by procedure. You can find the
HTML on the CD-ROM and the Web:

http://www.tcl.tk/man/

The Tcl and Tk sources are also excellent reference material. The code is well written
with a consistent style that encourages lots of comments. Virtually all the exported
APIs are used by Tcl and Tk themselves, so you can read the source code to see
how the APIs are used. The Tcl and Tk sources are on the CD-ROM in tcl8.4 and
tk8.4 directories. Chapter 48 describes the source directory structure and how to
build Tcl from the source code.

http://www.tcl.tk/man/default.htm

An Overview of the Tcl C Library

Application Initialization

The Tcl_Main and Tcl_AppInit procedures are illustrated by Example 47-13 on
page 720. They provide a standard framework for creating main programs that
embed a Tcl interpreter. Tcl_Init is used to source the init.tcl script.
Tcl_SourceRCFile sources the per-user startup file (e.g., .tclshrc).
Tcl_SetMainLoop is used to set up an event loop (e.g., by Tk).

The Tcl_InitStubs procedure must be called during initialization by an extension
that has been linked against the Tcl stub library, which is described on page 735.
Tcl_InitStubs is illustrated in Example 47-1 on page 698.

The Tcl_FindExecutable searches the system to determine the absolute file name
of the program being run. This should be called early, before Tcl_Main or
Tcl_CreateInterp. Once Tcl_FindExecutable has been called,
Tcl_GetNameOfExecutable can be used to get the value of the program name.

Creating and Deleting Interpreters

A Tcl interpreter is created and deleted with the Tcl_CreateInterp and
Tcl_DeleteInterp procedures. You can find out whether an interpreter is in the
process of being deleted with the Tcl_InterpDeleted call. You can register a
callback to occur when the interpreter is deleted with Tcl_CallWhenDeleted.
Unregister the callback with Tcl_DontCallWhenDeleted.

Slave interpreters are created and manipulated with Tcl_CreateSlave,
Tcl_GetSlave, Tcl_GetSlaves, Tcl_GetMaster, Tcl_CreateAlias,
Tcl_CreateAliasObj, Tcl_GetAlias, Tcl_GetAliasObj, Tcl_GetAliases,
Tcl_GetInterpPath, Tcl_IsSafe, Tcl_MakeSafe, Tcl_ExposeCommand, and
Tcl_HideCommand.

Creating and Deleting Commands

Register a new Tcl command with Tcl_CreateCommand, and delete a command with
Tcl_DeleteCommand. The Tcl_GetCommandInfo and Tcl_SetCommandInfo
procedures query and modify the procedure that implements a Tcl command and the
ClientData that is associated with the command. When a command is created, a
token is returned. The following procedures manipulate the command using the
token: Tcl_GetCommandInfoFromToken, Tcl_SetCommandInfoFromToken, and
Tcl_DeleteCommandFromToken. A command that uses the Tcl_Obj interface is

created with Tcl_CreateObjCommand. Command procedures are illustrated in
Chapter 47.

Dynamic Loading and Packages

Tcl_PkgRequire checks a dependency on another package. Tcl_PkgProvide
declares that a package is provided by a library. These procedures are equivalent to
the package require and package provide Tcl commands. The Tcl_PkgPresent
procedure returns the version number of the package, if it is loaded.
Tcl_PkgProvideEx, Tcl_PkgRequireEx, and Tcl_PkgPresentEx let you set and
query the clientData associated with the package. The Tcl_StaticPackage call is
used by statically linked packages so that scripts can load them into slave
interpreters.

Managing the Result String

The result string is managed through the Tcl_SetResult, Tcl_AppendResult,
Tcl_AppendElement, Tcl_GetStringResult, and Tcl_ResetResult procedures. The
object interface is provided by Tcl_SetObjResult and Tcl_GetObjResult.

Error information is managed with the Tcl_AddErrorInfo, Tcl_AddObjErrorInfo,
Tcl_SetErrorCode, Tcl_SetObjErrorCode, Tcl_SetErrorCodeVA,
Tcl_LogCommandInfo, and Tcl_PosixError procedures. The Tcl_WrongNumArgs
generates a standard error message. Tcl_SetErrno, Tcl_GetErrno, Tcl_ErrnoId,
and Tcl_ErrnoMsg provide platform-independent access to the errno global variable
that stores POSIX error codes.

Memory Allocation

The Tcl_Alloc, Tcl_Realloc, and Tcl_Free procedures provide platform- and
compiler-independent functions to allocation and free heap storage. Use these
instead of alloc, realloc, and free. Note that Tcl_Alloc and Tcl_Realloc will panic if
no memory is available. The following procedures will return a NULL pointer instead
of panicking: Tcl_AttemptAlloc, Tcl_AttemptRealloc. The Tcl_Preserve and
Tcl_Release procedures work in concert with Tcl_EventuallyFree to guard data
structures against premature deallocation. These are described on page 715.

The following macros are layers over the memory APIs that provide extra debugging
support if the TCL_MEM_DEBUG compile-time option is used: ckalloc, ckfree,
ckrealloc, attemptckalloc, attemptckrealloc. To view the debugging
information, use Tcl_DumpActiveMemory or Tcl_ValidateAllMemory. Use
Tcl_InitMemory to create the memory Tcl command that provides script-level access
to these APIs.

Lists

You can chop a list up into its elements with Tcl_SplitList, which returns an array
of strings. You can create a list out of an array of strings with Tcl_Merge. This
behaves like the list command in that it will add syntax to the strings so that the
list structure has one element for each of the strings. The Tcl_ScanElement,
Tcl_ScanCountedElement, Tcl_ConvertCountedElement, and Tcl_ConvertElement
procedures are used by Tcl_Merge. The object interface to lists is provided by
Tcl_NewListObj, Tcl_SetListObj, Tcl_ListObjIndex, Tcl_ListObjLength,
Tcl_ListObjAppendList, Tcl_ListObjAppendElement, Tcl_ListObjGetElements,
and Tcl_ListObjReplace.

Command Parsing

If you are reading commands, you can test for a complete command with
Tcl_CommandComplete. You can do backslash substitutions with Tcl_Backslash. A
more formal Tcl parser is provided by these procedures: Tcl_ParseCommand,
Tcl_ParseExpr, Tcl_ParseBraces, Tcl_ParseQuotedString, Tcl_ParseVarName,
Tcl_ParseVar and Tcl_FreeParse. The result of the parse is a sequence of tokens,
which you can evaluate with Tcl_EvalTokens and Tcl_EvalTokensStandard.

Command Pipelines

The Tcl_OpenCommandChannel procedure does all the work of setting up a pipeline
between processes. It handles file redirection and implements all the syntax
supported by the exec and open commands. Use Tcl_WaitPid to wait for the
process to complete.

If the command pipeline is run in the background, then a list of process identifiers is
returned. You can detach these processes with Tcl_DetachPids, and you can clean
up after them with Tcl_ReapDetachedProcs.

Tracing the Actions of the Tcl Interpreter

There are several procedures that let you trace the execution of the Tcl interpreter
and provide control over its behavior. Tcl_CreateTrace and Tcl_CreateObjTrace
register a procedure that is called before the execution of each Tcl command.
Remove the registration with Tcl_DeleteTrace. Traces on individual commands are
controlled with Tcl_TraceCommand, Tcl_UntraceCommand, and
Tcl_CommandTraceInfo.

You can trace modifications and accesses to Tcl variables with Tcl_TraceVar and
Tcl_TraceVar2. The second form is used with array elements. Remove the traces

with Tcl_UntraceVar and Tcl_UntraceVar2. You can query the traces on variables
with Tcl_VarTraceInfo and Tcl_VarTraceInfo2.

Evaluating Tcl Commands

There is a large family of procedures that evaluate Tcl commands. Tcl_Eval
evaluates a string as a Tcl command. Tcl_VarEval and Tcl_VarEvalVA take a
variable number of string arguments and concatenates them before evaluation. The
Tcl_EvalFile command reads commands from a file. Tcl_GlobalEval evaluates a
string at the global scope. The Tcl_EvalEx procedure takes flags. The
TCL_GLOBAL_EVAL flag causes evaluation at the global scope. The TCL_EVAL_DIRECT
flags does evaluation without first compiling the script to byte codes.

Tcl_EvalObj and Tcl_GlobalEvalObj provide an object interface. Their argument
is a script object that gets compiled into byte codes and cached. Use these
procedures if you plan to execute the same script several times. The Tcl_EvalObjEx
procedure takes the evaluation flags described above. The Tcl_EvalObjv procedure
takes an array of Tcl_Obj that represent the command and its arguments. Unlike
the other procedures, Tcl_EvalObjv does not do substitutions on the arguments to
the command.

If you are implementing an interactive command interpreter and want to use the
history facility, then call Tcl_RecordAndEval or Tcl_RecordAndEvalObj. This
records the command on the history list and then behaves like Tcl_GlobalEval.

You can set the recursion limit of the interpreter with Tcl_SetRecursionLimit. If
you are implementing a new control structure, you may need to use the
Tcl_AllowExceptions procedure. This makes it acceptable for Tcl_Eval and friends
to return something other than TCL_OK and TCL_ERROR.

If you want to evaluate a Tcl command without modifying the current interpreter
result and error information, use Tcl_SaveResult, Tcl_RestoreResult, and
Tcl_DiscardResult.

The Tcl_SubstObj procedure implements the mechanics of the subst Tcl command.

Reporting Script Errors

If your widget makes a callback into the script level, what do you do when the
callback returns an error? Use the Tcl_BackgroundError procedure that invokes the
standard bgerror procedure to report the error to the user.

Manipulating Tcl Variables

You can set a Tcl variable with Tcl_SetVar and Tcl_SetVar2. These two procedures
assign a string value, and the second form is used for array elements. The
Tcl_SetVar2Ex procedure assigns a Tcl_Obj value to the variable, and it can be
used with array elements. You can retrieve the value of a Tcl variable with
Tcl_GetVar and Tcl_GetVar2. The Tcl_GetVar2Ex procedure returns a Tcl_Obj
value instead of a string. In the rare case that you have the name of the variable in
a Tcl_Obj instead of a simple string, you must use Tcl_ObjSetVar2 procedure and
Tcl_ObjGetVar2. You can delete variables with Tcl_UnsetVar and Tcl_UnsetVar2.

You can link a Tcl variable and a C variable together with Tcl_LinkVar and break
the relationship with Tcl_UnlinkVar. Setting the Tcl variable modifies the C
variable, and reading the Tcl variable returns the value of the C variable. If you need
to modify the Tcl variable directly, use Tcl_UpdateLinkedVar.

Use the Tcl_UpVar and Tcl_UpVar2 procedures to link Tcl variables from different
scopes together. You may need to do this if your command takes the name of a
variable as an argument as opposed to a value. These procedures are used in the
implementation of the upvar Tcl command.

Evaluating Expressions

The Tcl expression evaluator is available through the Tcl_ExprLong,
Tcl_ExprDouble, Tcl_ExprBoolean, and Tcl_ExprString procedures. These all use
the same evaluator, but they differ in how they return their result. The object
interface to expressions is implemented with Tcl_ExprLongObj,
Tcl_ExprDoubleObj, Tcl_ExprBooleanObj, and Tcl_ExprObj. You can register the
implementation of new math functions by using Tcl_CreateMathFunc, and you can
query them with Tcl_GetMathFuncInfo and Tcl_ListMathFuncs.

Converting Numbers

You can convert strings into numbers with the Tcl_GetInt, Tcl_GetDouble, and
Tcl_GetBoolean procedures. The Tcl_PrintDouble procedure converts a floating
point number to a string. Tcl uses it any time it must do this conversion.

Tcl Objects

Tcl 8.0 uses dual-ported objects instead of strings to improve execution efficiency.
The basic interface to objects is provided by Tcl_NewObj, Tl_DuplicateObj,
Tcl_IncrRefCount, Tcl_DecrRefCount, Tcl_InvalidateStringRep, and
Tcl_IsShared. Example 47-5 on page 706 and Example 47-15 on page 725
illustrate some of these procedures. You can define new object types. The interface
consists of Tcl_RegisterObjType, Tcl_GetObjType, Tcl_AppendAllObjTypes, and
Tcl_ConvertToType.

Primitive Object Types

The basic Tcl object types are boolean, integer, double-precision real, and string.
The types provide procedures for creating objects, setting values, and getting
values: Tcl_NewBooleanObj, Tcl_SetBooleanObj, Tcl_GetBooleanFromObj,
Tcl_NewDoubleObj, Tcl_SetDoubleObj, Tcl_GetDoubleFromObj, Tcl_NewIntObj,
Tcl_GetIntFromObj, Tcl_SetIntObj, Tcl_NewLongObj, Tcl_GetLongFromObj, and
Tcl_SetLongObj. 64-bit integers are supported with Tcl_NewWideInt,
Tcl_SetWideInt, and Tcl_GetWideIntFromObj.

String Object Types

The Tcl_Obj values are used to store strings in different encodings. The natural
string value in a Tcl_Obj is UTF-8 encoded. There can also be Unicode (i.e., 16-bit
characters) or ByteArray (i.e., 8-bit characters) format strings stored in a Tcl_Obj.
Conversions among these string types are done automatically. However, certain
operations work best with a particular string encoding, and the Tcl_Obj value is
useful for caching an efficient representation.

These procedures operate on string objects with the UTF-8 encoding:
Tcl_NewStringObj, Tcl_SetStringObj, Tcl_GetString, Tcl_GetStringFromObj,
Tcl_AppendToObj, Tcl_AppendStringsToObj, and Tcl_AppendObjToObj. These
procedures operate on Unicode strings: Tcl_NewUnicodeObj, Tcl_SetUnicodeObj,
Tcl_AppendUnicodeToObj, Tcl_GetUnicode, Tcl_GetUnicodeFromObj,
Tcl_GetRange, Tcl_GetUniChar. The Tcl_AppendObjToObj preserves the existing
representation (e.g., Unicode or UTF-8) of the string being appended to.

The Tcl_GetCharLength returns the length in characters of the string.
Tcl_SetObjLength procedure sets the storage size of the string in bytes, which is
generally different from the character length. This can be used to overallocate a
string in preparation for creating a large one. Use Tcl_AttemptSetObjLength to
avoid a panic if you cannot grow the object to the requested size.

The Tcl_Concat and Tcl_ConcatObj procedures operate like the concat Tcl
command. Its input is an array of strings (for Tcl_Concat) or Tcl_Obj values (for
Tcl_ConcatObj). They trim leading and trailing white space from each one, and
concatenate them together into one string with a single space character between
each value.

ByteArrays for Binary Data

The ByteArray Tcl_Obj type is used to store arbitrary binary data. It is simply an
array of 8-bit bytes. These are its procedures: Tcl_NewByteArrayObj,
Tcl_SetByteArrayObj, Tcl_GetByteArrayFromObj, and Tcl_SetByteArray-
Length.

Dynamic Strings

The Tcl dynamic string package is designed for strings that get built up
incrementally. You will need to use dynamic strings if you use the
Tcl_TranslateFileName procedure. The procedures in the package are
Tcl_DStringInit, Tcl_DStringAppend, Tcl_DStringAppendElement,
Tcl_DStringStartSublist, Tcl_DStringEndSublist, Tcl_DStringLength,
Tcl_DStringValue, Tcl_DStringSetLength, Tcl_DStringFree, Tcl_DString-
Result, and Tcl_DStringGetResult. Dynamic strings are explained in more detail
on page 717.

Character Set Encodings

The procedures that convert strings between character set encodings use an
abstract handle on a particular encoding. The Tcl_GetEncoding and
Tcl_FreeEncoding procedures allocate and release these handles.
Tcl_SetSystemEncoding is called by Tcl to set the encoding for the current system.
Tcl_CreateEncoding creates a new encoding. The Tcl_GetEncodingName and
Tcl_GetEncodingNames procedures query the available encodings. The encodings
are stored in files in default location, which you query and set with
Tcl_GetDefaultEncodingDir and Tcl_SetDefaultEncodingDir.

There are three sets of procedures that translate strings between encodings. The
easiest to use are Tcl_ExternalToUtfDString and Tcl_UtfToExternalDString,
which put the result into a Tcl_DString. These are built on top of
Tcl_ExternalToUtf and Tcl_UtfToExternal, which are harder to use because they
have to deal with partial conversions at the end of the buffer. The
Tcl_WinTCharToUtf and Tcl_WinUtfToTChar procedures are for use with Windows
TChar type, which is an 8-bit character on Windows 98 and a 16-bit Unicode
character on Windows NT.

There are many utility procedures for operating on Unicode and UTF-8 strings:
Tcl_UniChar, Tcl_UniCharToUtf, Tcl_UtfToUniChar, Tcl_UniCharToUtfDString,
Tcl_UtfToUniCharDString, Tcl_UniCharLen, Tcl_UniCharNcmp,
Tcl_UtfCharComplete, Tcl_NumUtfChars, Tcl_UtfFindFirst, Tcl_UtfFindLast,
Tcl_UtfNext, Tcl_UtfPrev, Tcl_UniCharAtIndex, Tcl_UtfAtIndex, and
Tcl_UtfBackslash.

These procedures convert Unicode characters to different cases:
Tcl_UniCharToUpper, Tcl_UniCharToLower, and Tcl_UniCharToTitle. These
procedures convert strings: Tcl_UtfToUpper, Tcl_UtfToLower, Tcl_UtfToTitle.
The procedures compare Unicode strings: Tcl_UniCharCaseMatch and
Tcl_UniCharNcasecmp.

These procedures test classification of Unicode characters: Tcl_UniCharIsAlnum,
Tcl_UniCharIsAlpha, Tcl_UniCharIsControl, Tcl_UniCharIsDigit,
Tcl_UniCharIsGraph, Tcl_UniCharIsLower, Tcl_UniCharIsPrint,

Tcl_UniCharIsPunct, Tcl_UniCharIsSpace, Tcl_UniCharIsUpper, and
Tcl_UniCharIsWordChar.

AssocData for per Interpreter Data Structures

If your extension needs to store information that is not associated with any
particular command, you can associate it with an interpreter with AssocData. The
Tcl_SetAssocData registers a string-valued key for a data structure. The
Tcl_GetAssocData gets the data for a key, and Tcl_DeleteAssocData removes the
key and pointer. The registration also includes a callback that is made when the
interpreter is deleted. This is a layer on top of the hash table package described
next.

Hash Tables

Tcl has a nice hash table package that automatically grows the hash table data
structures as more elements are added to the table. Because everything is a string,
you may need to set up a hash table that maps from a string-valued key to an
internal data structure. The procedures in the package are Tcl_InitHashTable,
Tcl_InitObjHashTable, Tcl_InitCustomHashTable, Tcl_DeleteHashTable,
Tcl_CreateHashEntry, Tcl_Delete-HashEntry, Tcl_FindHashEntry,
Tcl_GetHashValue, Tcl_SetHashValue, Tcl_GetHashKey, Tcl_FirstHashEntry,
Tcl_NextHashEntry, and Tcl_HashStats. Hash tables are used in the blob
command example presented in Chapter 47.

Option Processing

Tcl_GetIndexFromObj and Tcl_GetIndexFromObjStruct provide a way to look up
keywords in a table. They are designed to work with options on a Tcl command.
Tcl_GetIndexFromObj is illustrated in Example 47-8 on page 711.

Regular Expressions and String Matching

The regular expression library used by Tcl is exported through the
Tcl_RegExpMatch, Tcl_RegExpCompile, Tcl_RegExpExec, and Tcl_RegExpRange
procedures. The Tcl_Obj version of this interface uses the Tcl_RegExpMatchObj,
Tcl_GetRegExpFromObj, Tcl_RegExpExecObj and Tcl_GetRegExpInfo procedures.
The string match function is available through the Tcl_StringMatch and
Tcl_StringCaseMatch procedures.

Event Loop Implementation

The event loop is implemented by the notifier that manages a set of event sources
and a queue of pending events. The tclsh and wish applications already manage the
event loop for you. The simplest interface is provided by Tcl_DoOneEvent. In some
cases, you may need to implement new event sources. Use
Tcl_CreateEventSource and Tcl_DeleteEventSource to create and destroy an
event source. An event source manipulates the events queue with Tcl_QueueEvent,
Tcl_DeleteEvents, and Tcl_SetMaxBlockTime.

Each thread runs a notifier. You can enqueue events for another thread's notifier
with Tcl_ThreadQueueEvent. After you do this, you must signal the other thread
with Tcl_ThreadAlert. The ID of the current thread is returned from
Tcl_GetCurrentThread.

The notifier is implemented with a public API so that you can replace the API with a
new implementation for custom situations. This API consists of Tcl_InitNotifier,
Tcl_FinalizeNotifier, Tcl_WaitForEvent, Tcl_Alert-Notifier, Tcl_Sleep,
Tcl_CreateFileHandler, and Tcl_DeleteFileHandler.

If you want to integrate Tcl's event loop with an external one, such as the Xt event
loop used by Motif, then you can use the following procedures: Tcl_WaitForEvent,
Tcl_SetTimer, Tcl_ServiceAll, Tcl_ServiceEvent, Tcl_GetServiceMode, and
Tcl_SetServiceMode. There is an example application of this in the unix/xtTest.c
file.

File Handlers

Use Tcl_CreateFileHandler to register handlers for I/O streams. You set up the
handlers to be called when the I/O stream is ready for reading or writing, or both.
File handlers are called after window event handlers. Use Tcl_DeleteFileHandler
to remove the handler.

Tcl_CreateFileHandler is UNIX-specific because UNIX has a unified handle for
files, sockets, pipes, and devices. On Windows and the Macintosh, there are
different system APIs to wait for events from these different classes of I/O objects.
These differences are hidden by the channel drivers for sockets and pipes. For
nonstandard devices, the best thing is to create a channel driver and event source
for them.

Timer Events

Register a callback to occur at some time in the future with
Tcl_CreateTimerHandler. The handler is called only once. If you need to delete the
handler before it gets called, use Tcl_DeleteTimerHandler.

Idle Callbacks

If there are no outstanding events, the Tk makes idle callbacks before waiting for
new events to arrive. In general, Tk widgets queue their display routines to be
called at idle time. Use Tcl_DoWhenIdle to queue an idle callback, and use
Tcl_CancelIdleCall to remove the callback from the queue. The Tcl_Sleep
procedure delays execution for a specified number of milliseconds.

Input/Output

The Tcl I/O subsystem provides buffering and works with the event loop to provide
event-driven I/O. The interface consists of Tcl_OpenFileChannel,
Tcl_OpenCommandChannel, Tcl_MakeFileChannel, Tcl_GetChannel,
Tcl_GetChannelNames, Tcl_GetChannelNamesEx, Tcl_GetOpenFile,
Tcl_RegisterChannel, Tcl_UnregisterChannel, Tcl_DetachChannel,
Tcl_IsStandardChannel, Tcl_Close, Tcl_Read, Tcl_ReadChars, Tcl_Gets,
Tcl_Write, Tcl_WriteObj, Tcl_WriteChars, Tcl_Flush, Tcl_Seek, Tcl_Tell,
Tcl_Eof, Tcl_GetsObj, Tcl_InputBlocked, Tcl_InputBuffered,
Tcl_OutputBuffered, Tcl_Ungets, Tcl_ReadRaw, Tcl_WriteRaw,
Tcl_GetChannelOption, and Tcl_SetChannelOption.

I/O Channel Drivers

Tcl provides an extensible I/O subsystem. You can implement a new channel (i.e.,
for a UDP network socket) by providing a Tcl command to create the channel and
registering a set of callbacks that are used by the standard Tcl I/O commands like
puts, gets, and close. The interface to channels consists of these procedures:
Tcl_CreateChannel, Tcl_GetChannel, Tcl_GetChannelType,
Tcl_GetChannelInstanceData, Tcl_GetChannelName, Tcl_GetChannelHandle,
Tcl_GetChannelMode, Tcl_BadChannelOption, Tcl_GetChannelBufferSize,
Tcl_SetDefaultTranslation, Tcl_SetChannelBufferSize, and
Tcl_NotifyChannel.

The Tcl_CreateChannelHandler and Tcl_DeleteChannelHandler are used in the
interface to the main event loop. The Tcl_CreateCloseHandler and
Tcl_DeleteCloseHandler set and delete a callback that occurs when a channel is
closed. The Tcl_GetStdChannel and Tcl_SetStdChannel are used to manipulate
the standard input and standard output channels of your application.

Network sockets are created with Tcl_OpenTcpClient and Tcl_OpenTcpServer. The
Tcl_MakeTcpClientChannel provides a platform-independent way to create a Tcl
channel structure for a socket connection.

The Tcl_StackChannel, Tcl_UnstackChannel, Tcl_GetTopChannel, and
Tcl_GetStackedChannel procedures support layering of I/O channels. This can be
used to push compression- or encryption-processing modules onto I/O channels.

The driver for a channel type implements a set of procedures that are registered in
a Tcl_ChannelType structure. This structure has changed format in a backward
compatible way so that older stub-enabled extensions can interoperate with newer
versions of Tcl. The version of the channel type structure is returned with
Tcl_ChannelVersion. The following accessor functions should be used instead of
accessing the structure directly: Tcl_ChannelBlockModeProc,
Tcl_ChannelBlockModeProc, Tcl_ChannelCloseProc, Tcl_ChannelClose2Proc,
Tcl_ChannelInputProc, Tcl_ChannelOutputProc, Tcl_ChannelSeekProc,
Tcl_ChannelWideSeekProc, Tcl_ChannelSetOptionProc, Tcl_ChannelGet-
OptionProc, Tcl_ChannelWatchProc, Tcl_ChannelGetHandleProc,
Tcl_ChannelFlushProc, and Tcl_ChannelHandlerProc.

Each I/O channel is registered with one or more interpreters, and each of these is
recorded in a reference count. Tcl_SpliceChannel and Tcl_CutChannel are used to
add or remove a channel from the per-interpreter channel list. The reference count
and registration are queried with Tcl_IsChannelShared, Tcl_IsChannelExisting,
and Tcl_IsChannelRegistered. Tcl_ChannelBuffered queries the amount of data
buffered in the channel. In addition, each interpreter is bound to a particular thread,
so Tcl_GetChannelThread is used to find the right thread to notify about I/O
events. Tcl_ClearChannelHandlers will remove all handlers in order to deactivate
a channel.

Manipulating File Names

The Tcl_SplitPath, Tcl_JoinPath, and Tcl_GetPathType procedures provide the
implementation for the file split, file join, and file pathtype Tcl commands
that are used to manipulate file names in a platform-independent manner. The
Tcl_TranslateFileName procedure converts a file name to native syntax. It also
expands tilde (~) in file names into user home directories.

Examining the File System

Tcl 8.4 provides a broad set of Tcl_FS procedures to access the file system. These
procedures provide portability across UNIX, Windows, and Macintosh. They also
support the Virtual File System interface; that all C extensions that use these APIs
will automatically access any embedded file systems.

These procedures are for basic file system operations: Tcl_FSCopyFile,
Tcl_FSCopyDirectory, Tcl_FSCreateDirectory, Tcl_FSDeleteFile,
Tcl_FSRemoveDirectory, Tcl_FSRenameFile, Tcl_FSListVolumes, Tcl_FSLink,
Tcl_FSLstat, Tcl_FSUtime, Tcl_FSFileAttrsGet, Tcl_FSFileAttrsSet,
Tcl_FSFileAttrStrings, Tcl_FSStat, Tcl_FSAccess, Tcl_FSOpenFileChannel,
Tcl_FSGetCwd, Tcl_FSChdir, Tcl_FSMatchInDirectory, Tcl_FSFileSystemInfo,
and Tcl_AllocStatBuf.

These procedures are used for source and load: Tcl_FSEvalFile,
Tcl_FSLoadFile.

These procedures are used for platform-independent file name manipulation:
Tcl_FSGetPathType, Tcl_FSPathSeparator, Tcl_FSJoinPath, Tcl_FSSplitPath,
Tcl_FSEqualPaths, Tcl_FSGetNormalizedPath, Tcl_FSJoinToPath,
Tcl_FSConvertToPathType, Tcl_FSGetInternalRep, Tcl_FSGetTranslatedPath,
Tcl_FSNewNativePath, Tcl_FSGetNativePath, and
Tcl_FSGetTranslatedStringPath.

The following APIs are now deprecated in favor of the corresponding Tcl_FS
procedures: Tcl_Stat, Tcl_Access, Tcl_Chdir and Tcl_GetCwd.

Virtual File System Implementations

A Virtual File System (VFS) is implemented by registering a set of procedures that
handle various aspects of file system access. The procedures include
Tcl_FSRegister, Tcl_FSUnregister, Tcl_FSData, Tcl_FSMountsChanged, and
Tcl_FSGetFileSystemForPath.

Thread Support

The Tcl library is thread safe. The procedures listed here provide a convenient,
cross-platform API for programming with threads. The following procedures serialize
access to data structures: Tcl_MutexLock, Tcl_MutexUnlock, Tcl_ConditionWait,
and Tcl_ConditionNotify. Thread local storage is provided by
Tcl_GetThreadData. All of these procedures are self-initializing, so there are no
explicit initialization calls. There are, however, Tcl_ConditionFinalize and
Tcl_MutexFinalize.

The following procedures manage thread life cycle: Tcl_CreateThread,
Tcl_ExitThread, Tcl_JoinThread, and Tcl_FinalizeThread.

The Tcl_CreateThreadExitHandler procedure registers a procedure that is called
when a thread is terminated. In particular, it can clean up thread local storage. Use
Tcl_DeleteThreadExitHandler to remove a registration.

Working with Signals

Tcl provides a simple package for safely dealing with signals and other asynchronous
events. You register a handler for an event with Tcl_AsyncCreate. When the event
occurs, you mark the handler as ready with Tcl_AsyncMark. When the Tcl
interpreter is at a safe point, it uses Tcl_AsyncReady to determine which handlers
are ready, and then it uses Tcl_AsyncInvoke to call them. Your application can call
Tcl_AsyncInvoke, too. Use Tcl_AsyncDelete to unregister a handler.

Exit Handlers

The Tcl_Exit procedure terminates the application. The Tcl_Finalize procedure
cleans up Tcl's memory usage and calls exit handlers, but it does not exit. This is
necessary when unloading the Tcl DLL. The Tcl_CreateExitHandler and
Tcl_DeleteExitHandler set up callbacks that occur when Tcl_Exit is called.

Macintosh

The Macintosh platform has a number of APIs used to manipulate Mac-specific
resources and to register handlers for Mac-specific events: Tcl_MacSetEventProc,
Tcl_MacConvertTextResource, Tcl_MacEvalResource, Tcl_MacFindResource,
Tcl_GetOSTypeFromObj, Tcl_SetOSTypeObj, and Tcl_NewOSTypeObj.

Panic

Tcl_Panic is used to abort the application if some serious internal error occurs.
Tcl_PanicVA takes a variable number of arguments. You can alter the default
behavior of Tcl_Panic by setting a handler with Tcl_SetPanicProc. The panic
macro calls Tcl_Panic.

Miscellaneous

Tcl_GetHostName returns the name of the current machine. This is the same as the
info hostname value. Tcl_GetTime returns the current time in seconds and
microseconds. Tcl_GetVersion returns the version and patch level of the Tcl
interpreter. Tcl_PutEnv sets a value in the environment, and should be used instead
of putenv.

Tcl_SignalId and Tcl_SignalMsg convert between signal numbers (e.g., 9) and
signal names (e.g., "SIGKILL").

An Overview of the Tk C Library

Main Programs and Command-Line Arguments

The Tk_Main procedure does the standard setup for your application's main window
and event loop. The Tk_ParseArgv procedure parses command-line arguments. This
procedure is designed for use by main programs. It uses a table of Tk_ArgvInfo
records to describe your program's arguments. These procedures are illustrated by
Example 47-14 on page 721.

If your extension uses the Tk library, you should link against the Tk stub library. In
this case, you must call Tk_InitStubs in your extension's initialization routine.

Creating Windows

The Tk_Init procedure creates the main window for your application. The
Tk_CreateWindow and Tk_CreateWindowFromPath are used to create windows for
widgets. The actual creation of the window is delayed until an idle point. You can
force the window to be created with Tk_MakeWindowExist or destroy a window with
Tk_DestroyWindow.

The Tk_MainWindow procedure returns the handle on the application's main window.
The Tk_MapWindow and Tk_UnmapWindow are used to display and withdraw a window,
respectively. The Tk_MoveToplevelWindow call is used to position a top-level
window. Tk_GetNumMainWindows returns the number of main windows opened by
the current process.

Translate between window names and the Tk_Window type with Tk_Name,
Tk_PathName, and Tk_NameToWindow. You can convert from an operating system
window ID to the corresponding Tk_Window with Tk_IdToWindow procedure.

Tk_SetClassProcs registers widget-specific handlers to react to system wide font
and color changes, to create platform-specific windows, and to handle modal input
loops.

Application Name for Send

The name of the application is defined or changed with Tk_SetAppName. This name
is used when other applications send it Tcl commands using the send command.

Configuring Windows

The configuration of a window includes its width, height, cursor, and so on. Tk
provides a set of routines that configure a window and also cache the results. This
makes it efficient to query these settings because the system does not need to be
contacted. The window configuration routines are Tk_ConfigureWindow,
Tk_ResizeWindow, Tk_MoveWindow, Tk_MoveResizeWindow,
Tk_SetWindowBorderWidth, Tk_DefineCursor, Tk_ChangeWindowAttributes,
Tk_SetWindowBackground, Tk_SetWindowColormap, Tk_UndefineCursor,
Tk_SetWindowBackgroundPixmap, Tk_SetWindowBorderPixmap, Tk_MoveWindow,
and Tk_SetWindowBorder.

Command Options

The Tk_CreateOptionTable, Tk_SetOptions, Tk_GetOptionValue,
Tk_GetOptionInfo, Tk_RestoreSavedOptions, Tk_FreeSavedOptions,
Tk_InitOptions, Tk_FreeConfigOptions, and Tk_DeleteOptionTable procedures
are used to parse command line options with procedures that use Tcl_Obj values.
Canvas item types are supported by Tk_CanvasTagsOption.

Tk_AddOption is used to add a value to the option database. This creates defaults
for command line options that are not explicitly passed to widget commands.

Window Coordinates

The coordinates of a widget relative to the root window (the main screen) are
returned by Tk_GetRootCoords. The Tk_GetVRootGeometry procedure returns the
size and position of a window relative to the virtual root window. The
Tk_CoordsToWindow procedure locates the window under a given coordinate.

Window Stacking Order

Control the stacking order of windows in the window hierarchy with
Tk_RestackWindow. Windows higher in the stacking order obscure lower windows.

Window Information

Tk keeps lots of information associated with each window, or widget. The following
calls are fast macros that return the information without calling the X server:
Tk_WindowId, Tk_Parent, Tk_StrictMotif, Tk_Display, Tk_DisplayName,
Tk_ScreenNumber, Tk_Screen, Tk_X, Tk_Y, Tk_Width, Tk_Height, Tk_Changes,
Tk_Attributes, Tk_IsMapped, Tk_IsTopLevel, Tk_IsContainer, Tk_IsEmbedded,
Tk_ReqWidth, Tk_ReqHeight, Tk_InternalBorderWidth, Tk_MinReqWidth,
Tk_MinReqHeight, Tk_InternalBorderLeft, Tk_InternalBorderRight,

Tk_InternalBorderTop, Tk_InternalBorderBottom, Tk_Visual, Tk_Depth, and
Tk_Colormap.

Configuring Widget Attributes

The Tk_ConfigureWidget procedure parses command-line specification of attributes
and allocates resources like colors and fonts. Related procedures include Tk_Offset,
Tk_ConfigureInfo, Tk_ConfigureValue, and Tk_FreeOptions. Tk_GetScrollInfo
and Tk_GetScrollInfoObj parse arguments to scrolling commands like the xview
and yview widget operations.

The Selection and Clipboard

Retrieve the current selection with Tk_GetSelection. Clear the selection with
Tk_ClearSelection. Register a handler for selection requests with
Tk_CreateSelHandler. Unregister the handler with Tk_DeleteSelHandler. Claim
ownership of the selection with Tk_OwnSelection. Manipulate the clipboard with
Tk_ClipboardClear and Tk_ClipboardAppend.

Event Loop Interface

The standard event loop is implemented by Tk_MainLoop. If you write your own
event loop, you need to call Tcl_DoOneEvent so that Tcl can handle its events. Call
Tcl_DoOneEvent with TCL_DONT_WAIT until it returns 0 to indicate no more events
need to be processed. If you read window events directly, (e.g., through
Tk_CreateGenericHandler), you can dispatch to the correct handler for the event
with Tk_HandleEvent. Note that most of the event loop is implemented in the Tcl
library, except for Tk_MainLoop and the window event handler interface that are
part of the Tk library. You can create handlers for file, timer, and idle events after
this call. Restrict or delay events with the Tk_RestrictEvent procedure.

Handling Window Events

Use Tk_CreateEventHandler to set up a handler for specific window events. Widget
implementations need a handler for expose and resize events, for example. Remove
the registration with Tk_DeleteEventHandler. You can set up a handler for all
window events with Tk_CreateGenericHandler. This is useful in some modal
interactions where you have to poll for a certain event. If you get an event you do
not want to handle yourself, you can push it onto the event queue with
Tk_QueueWindowEvent. Tk_CollapseMotionEvents will eliminate extra motion
events from the queue. Tk_RestrictEvents will filter and selectively delay events.
Delete the event handler with Tk_DeleteGenericHandler.

Tk_CreateClientMessageHandler is used for WM_PROTOCOL events. Delete the
handler with Tk_DeleteClientMessageHandler.

Event Bindings

The routines that manage bindings are exported by the Tk library, so you can
manage bindings yourself. For example, the canvas widget uses the API to
implement bindings on canvas items. The procedures are Tk_CreateBindingTable,
Tk_DeleteBindingTable, Tk_CreateBinding, Tk_DeleteBinding, Tk_BindEvent,
Tk_GetBinding, Tk_GetAllBindings, and Tk_DeleteAllBindings.

Keyboard Grab

Tk_Grab and Tk_Ungrab change the state of any keyboard grab, which is used to
restrict input to a particular window.

Handling Graphic Protocol Errors

You can handle graphic protocol errors by registering a handler with
Tk_CreateErrorHandler. Unregister it with Tk_DeleteErrorHandler. UNIX has an
asynchronous interface, so the error will be reported sometime after the offending
call was made. You can call the Xlib XSynchronize routine to turn off the
asynchronous behavior in order to help you debug.

Using the Resource Database

The Tk_GetOption procedure looks up items in the resource database. The resource
class of a window is set with Tk_SetClass, and the current class setting is retrieved
with Tk_Class.

Managing Bitmaps

Tk maintains a registry of bitmaps by name, (e.g., gray50 and questhead). You can
define new bitmaps with Tk_DefineBitmap, and you can get a handle on the bitmap
from its name with Tk_GetBitmap. Related procedures include Tk_NameOfBitmap,
Tk_SizeOfBitmap, Tk_GetBitmapFromData, Tk_FreeBitmap,
Tk_AllocBitmapFromObj, Tk_GetBitmapFromObj, and Tk_FreeBitmapFromObj.

Creating New Image Types

Tk_CreateImageType and Tk_InitImageArgs are used to register the
implementation of a new image type. The registration includes image command
options and several procedures that call back into the implementation to support
creation, display, and deletion of images. When an image changes, the widgets that
display it are notified by calling Tk_ImageChanged. The Tk_NameOfImage procedure
returns the Tcl name of an image. The Tk_GetImageMasterData returns the client
data associated with an image type.

Using an Image in a Widget

The following routines support widgets that display images. Tk_GetImage maps from
the name to a Tk_Image data structure. Tk_RedrawImage causes the image to
update its display. Tk_SizeOfImage tells you how big it is. When the image is no
longer in use, call Tk_FreeImage. The Tk_DeleteImage deletes an image.

Photo Image Types

One of the image types is photo, which has its own C interface for defining new
formats. The job of a format handler is to read and write different image formats
such as GIF or JPEG so that the photo image can display them. The
Tk_CreatePhotoImageFormat procedure sets up the interface. There are several
support routines for photo format handlers. The Tk_FindPhoto procedure maps
from a photo name to its associated Tk_PhotoHandle data structure. The image is
updated with Tk_PhotoBlank, Tk_PhotoPutBlock, and Tk_PhotoPutZoomedBlock.
The image values can be obtained with Tk_PhotoGetImage. The size of the image
can be manipulated with Tk_PhotoExpand, Tk_PhotoGetSize, and Tk_PhotoSetSize

Canvas Object Support

The C interface for defining new canvas items is exported via the
Tk_CreateItemType procedure. The description for a canvas item includes a set of
procedures that the canvas widget uses to call the implementation of the canvas
item type. The Tk_GetItemTypes returns information about all types of canvas
objects. The support routines for the managers of new item types are
Tk_CanvasGetCoord, Tk_CanvasDrawableCoords, Tk_CanvasSetStippleOrigin,
Tk_CanvasTkwin, Tk_CanvasWindowCoords, and Tk_CanvasEventuallyRedraw. The
following procedures help with the generation of postscript: Tk_CanvasPsY,
Tk_CanvasPsBitmap, Tk_CanvasPsColor, Tk_CanvasPsFont, Tk_CanvasPsPath, and
Tk_CanvasPsStipple. If you are manipulating text items directly, then you can use
the Tk_CanvasGetTextInfo procedure to get a description of the selection state and
other details about the text item.

Geometry Management

A widget requests a certain size with the Tk_GeometryRequest procedure. If it
draws a border inside that area, it calls Tk_SetInternalBorder. The geometry
manager responds to these requests, although the widget may get a different size.
The Tk_ManageGeometry procedure sets up the relationship between the geometry
manager and a widget. The Tk_MaintainGeometry procedure arranges for one
window to stay at a fixed position relative to another widget. This is used by the
place geometry manager. The relationship is broken with the
Tk_UnmaintainGeometry call. The Tk_SetGrid call enables gridded geometry
management. The grid is turned off with Tk_UnsetGrid.

String Identifiers (UIDS)

Tk maintains a database of string values such that a string appears in it only once.
The Tk_Uid type refers to such a string. You can test for equality by using the value
of Tk_Uid, which is the string's address, as an identifier. A Tk_Uid is used as a name
in the various GetByName calls introduced below. The Tk_GetUid procedure installs a
string into the registry.

Note: The table of Tk_Uid values is a memory leak. The leak is not serious under
normal operation. However, if you continually register new strings as Tk_Uid values,
then the hash table that records them continues to grow. This table is not cleaned
up when Tk is finalized. The mapping from a string to a constant is better served by
the Tcl_GetIndexFromObj call.

Colors, Colormaps, and Visuals

Use Tk_GetColor, Tk_GetColorByValue, Tk_AllocColorFromObj, and
Tk_GetColorFromObj to allocate a color. You can retrieve the string name of a color
with Tk_NameOfColor. When you are done using a color, you need to call
Tk_FreeColor or Tk_FreeColorFromObj. You can get a graphics context for drawing
a particular color with Tk_GCForColor. Colors are shared among widgets, so it is
important to free them when you are done using them. Use Tk_GetColormap and
Tk_FreeColormap to allocate and free a colormap. Colormaps are shared, if
possible, so you should use these routines instead of the platform-specific routines
to allocate colormaps. The window's visual type is set with Tk_SetWindowVisual.
You can get a visual context with Tk_GetVisual.

3D Borders

The three-dimensional relief used for widget borders is supported by
Tk_Get3DBorder, Tk_3DBorderGC, Tk_Draw3DRectangle, Tk_Fill3DRectangle,
Tk_Draw3DPolygon, Tk_Free3DBorder, Tk_Fill3DPolygon, Tk_3DVerticalBevel,
Tk_3DHorizontalBevel, Tk_SetBackgroundFromBorder, Tk_NameOf3DBorder,
Tk_3DBorderColor, Tk_Alloc3DBorderFromObj, Tk_Get3DBorderFromObj, and

Tk_Free3DBorderFromObj. Widgets use Tk_DrawFocusHighlight to draw their focus
highlight.

Mouse Cursors

Allocate a cursor with Tk_GetCursor, Tk_GetCursorFromData,
Tk_GetCursorFromObj, and Tk_AllocCursorFromObj. Map back to the name of the
cursor with Tk_NameOfCursor. Release the cursor resource with Tk_FreeCursor or
Tk_FreeCursorFromObj. Tk_SetCaretPos sets the per-window caret position, which
is used for over-the-spot X Input Methods and Windows IME windows.

Fonts and Text Display

Allocate a font with Tk_GetFont, Tk_GetFontFromObj, or Tk_AllocFontFromObj.
Get the name of a font with Tk_NameOfFont. Release the font with Tk_FreeFont or
Tk_FreeFontFromObj. Once you have a font, you can get information about it with
Tk_FontId, Tk_FontMetrics, and Tk_PostscriptFontName. Tk_MeasureChars,
Tk_TextWidth, Tk_DrawChars, and Tk_UnderlineChars measure and display simple
strings. Tk_ComputeTextLayout, Tk_FreeTextLayout, Tk_DrawTextLayout,
Tk_UnderlineTextLayout, Tk_CharBbox, Tk_DistanceToTextLayout,
Tk_PointToChar, Tk_IntersectTextLayout, and Tk_TextLayoutToPostscript
measure and display multiline, justified text.

Graphics Contexts

A graphics context records information about colors, fonts, line drawing styles, and
so on. Instead of specifying this information on every graphics operation, a graphics
context is created first. Individual graphics operations specify a particular graphic
context. Allocate a graphics context with Tk_GetGC and free it with Tk_FreeGC.

Allocate a Pixmap

A pixmap is a simple color image. Allocate and free pixmaps with Tk_GetPixmap and
Tk_FreePixmap.

Screen Measurements

Translate between strings like 4c or 72p and screen distances with Tk_GetPixels,
Tk_GetPixelsFromObj, Tk_GetMMFromObj, and Tk_GetScreenMM. The first call
returns pixels (integers); the second returns millimeters as a floating point number.

Relief Style

Window frames are drawn with a particular 3D relief such as raised, sunken, or
grooved. Translate between relief styles and names with Tk_GetRelief,
Tk_GetReliefFromObj, and Tk_NameOfRelief.

Text Anchor Positions

Anchor positions specify the position of a window within its geometry parcel.
Translate between strings and anchor positions with Tk_GetAnchor,
Tk_GetAnchorFromObj, and Tk_NameOfAnchor.

Line Cap Styles

The line cap defines how the end point of a line is drawn. Translate between line cap
styles and names with Tk_GetCapStyle and Tk_NameOfCapStyle.

Line Join Styles

The line join style defines how the junction between two line segments is drawn.
Translate between line join styles and names with Tk_GetJoinStyle and
Tk_NameOfJoinStyle.

Dashed Lines

Tk_GetDash converts from a string to a dash pattern.

Text Justification Styles

Translate between line justification styles and names with Tk_GetJustify,
Tk_GetJustifyFromObj, and Tk_NameOfJustify.

Atoms

An atom is an integer that references a string that has been registered with the
system. Tk maintains a cache of the atom registry to avoid contacting the system
when atoms are used. Use Tk_InternAtom to install an atom in the registry, and
Tk_GetAtomName to return the name given an atom.

X Resource ID Management

Each window system resource like a color or pixmap has a resource ID associated
with it. The Tk_FreeXId call releases an ID so it can be reused. This is used, for
example, by routines like Tk_FreeColor and Tk_FreePixmap.

Windows Application Handles

Tk_GetHINSTANCE returns the global application handle for Windows. Tk_GetHWND
returns the Windows HWND identifier for the Tk window. Tk_HWNDToWindow maps
from the Windows handle to the corresponding Tk window.

Part VII: Changes
Part VII describes the changes between versions of Tcl and Tk. These chapters
are useful to quickly determine what features were added in each release.

Chapter 51 describes changes in Tcl 7.4 and Tk 4.0.

Chapter 52 describes changes in Tcl 7.5 and Tk 4.1.

Chapter 53 describes changes in Tcl 7.6 and Tk 4.2.

The Tcl and Tk version numbers were unified in the next release, Tcl/Tk 8.0,
which is described in Chapter 54.

Chapter 55 describes changes in Tcl/Tk 8.1.

Chapter 56 describes changes in Tcl/Tk 8.2.

Chapter 57 describes changes in Tcl/Tk 8.3.

Chapter 58 describes changes in Tcl/Tk 8.4.

Chapter 51. Tcl 7.4/Tk 4.0
This chapter has notes about upgrading your application to Tcl 7.4 and Tk 4.0 from
earlier versions of Tk such as Tk 3.6. This includes notable new features that you
may want to take advantage of as well as things that need to be fixed because of
incompatible changes.

Porting your scripts from any of the Tk version 3 releases is easy. Not that many
things have changed. The sections in this chapter summarize what has changed in
Tk 4.0 and what some of the new commands are.

wish

The wish shell no longer requires a -file (or -f) argument, so you can drop this
from your script header lines. This flag is still valid but no longer necessary.

The class name of the application is set from the name of the script file instead of
always being Tk. If the script is /usr/local/bin/foobar, then the class is set to
Foobar, for example.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Obsolete Features

Several features that were replaced in previous versions are now completely
unsupported.

The variable that contains the version number is tk_version. The ancient (version
1) tkVersion is no longer supported.

Button widgets no longer have activate and deactivate operations. Instead,
configure their state attribute.

Menus no longer have enable and disable operations. Instead, configure their
state attribute.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The cget Operation

All widgets support a cget operation that returns the current value of the specified
configuration option. The following two commands are equivalent:

lindex [$w config option] 4
$w cget option

Nothing breaks with this change, but you should enjoy this feature.

Input Focus Highlight

Each widget can have an input focus highlight, which is a border that is drawn in
color when the widget has the input focus. This border is outside the border used to
draw the 3D relief for widgets. It has the pleasant visual effect of providing a little
bit of space around widgets, even when they do not have the input focus. The
addition of the input focus highlight does not break anything, but it changes the
appearance of your interfaces a little. In particular, the highlight on a canvas
obscures objects that are at its edge. See page 616 for a description of the generic
widget attributes related to the input focus highlight.

Bindings

The hierarchy of bindings has been fixed so that it is actually useful to define
bindings at each of the global (i.e., all), class, and instance levels. The new
bindtags command defines the order among these sources of binding information.
You can also introduce new binding classes (e.g., InsertMode), and bind things to
that class. Use the bindtags command to insert this class into the binding
hierarchy. The order of binding classes in the bindtags command determines the
order in which bindings are triggered. Use break in a binding command to stop the
progression, or use continue to go on to the next level.

bindtags $w [list all Text InsertMode $w]

The various Request events have disappeared: CirculateRequest,
ConfigureRequest, MapRequest, and ResizeRequest. The Keymap event is gone,
too.

Extra modifier keys are ignored when matching events. Although you can still use
the Any wild card modifier, it is no longer necessary. The Alt and Meta modifiers are
set up in a general way so that they are associated with the Alt_L, Alt_R, Meta_L,
and Meta_R keysyms.

Chapter 29 describes bindings starting at page 435.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Scrollbar Interface

The interface between scrollbars and the scrollable widgets has changed. Happily,
the change is transparent to most scripts. If you hook your scrollbars to widgets in
the straightforward way, the new interface is compatible. If you use the xview and
yview widget commands directly, however, you might need to modify your code.
The old interface still works, but there are new features of these operations that
give you even better control. You can also query the view state, so you do not need
to watch the scroll set commands to keep track of what is going on. Finally,
scrollable widgets are constrained so that the end of their data remains stuck at the
bottom (right) of their display. In most cases, nothing is broken by this change.
Chapter 33 describes the scrollbar protocol starting at page 501.

pack info

Version 3 of Tk introduced a new syntax for the pack command, but the old syntax
was still supported. This continues to be true in nearly all cases except the pack
info command. If you are still using the old packer format, you should probably
take this opportunity to convert to the new packer syntax.

The problem with pack info is that its semantics changed. The new operation used
to be known as pack newinfo. In the old packer, pack info returned a list of all the
slaves of a window and their packing configuration. Now pack info returns the
packing configuration for a particular slave. You must first use the pack slaves
command to get the list of all the slaves and then use the (new) pack info to get
their configuration information. Chapter 25 describes the pack geometry manager
starting at page 396.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Focus

The focus mechanism has been cleaned up to support different focus windows on
different screens. The focus command takes a -displayof argument. Tk
remembers which widget inside each toplevel has the focus. When the focus is given
to a toplevel by the window manager, Tk automatically assigns focus to the right
widget. The -lastfor argument queries which widget in a toplevel will get the focus
by this means. Chapter 39 describes focus starting at page 603.

The focus default and focus none commands are no longer supported. There is
no real need for focus default anymore, and focus none can be achieved by
passing an empty string to the regular focus command.

The tk_focusFollowsMouse procedure changes from the default explicit focus
model where a widget must claim the focus to one in which moving the mouse into
a widget automatically gives it the focus.

The tk_focusNext and tk_focusPrev procedures implement keyboard traversal of
the focus among widgets. Most widgets have bindings for <Tab> and <Shift-Tab>
that cycle the focus among widgets.

The send Command

The send command has been changed so that it does not time out after five seconds
but instead waits indefinitely for a response. Specify the -async option if you do not
want to wait for a result. You can also specify an alternate display with the -
displayof option. Chapter 43 describes send starting on page 648.

The name of an application can be set and queried with the new tk appname
command. Use this instead of winfo name ".".

Because of the changes in the send implementation, it is not possible to use send
between Tk 4.0 applications and earlier versions.

Internal Button Padding

Buttons and labels have new defaults for the amount of padding around their text.
There is more padding now, so your buttons get bigger if you use the default padX
and padY attributes. The old defaults were one pixel for both attributes. The new
defaults are 3m for padX and 1m for padY, which map into three pixels and ten pixels
on my display.

There is a difference between buttons and the other button-like widgets. An extra
two pixels of padding is added, in spite of all padX and padY settings in the case of
simple buttons. If you want your checkbuttons, radiobuttons, menubuttons, and
buttons with all the same dimensions, you'll need two extra pixels of padding for
everything but simple buttons.

Radiobutton Value

The default value for a radiobutton is no longer the name of the widget. Instead, it
is an empty string. Make sure that you specify a -value option when setting up your
radiobuttons.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Entry Widget

The scrollCommand attribute changed to xScrollCommand to be consistent with
other widgets that scroll horizontally. The view operation changed to the xview
operation for the same reason. Chapter 34 describes the entry widget starting on
page 507.

The delete operation has changed the meaning of the second index so that the
second index refers to the character immediately following the affected text. The
selection operations have changed in a similar fashion. The sel.last index refers to
the character immediately following the end of the selection, so deleting from
sel.first to sel.last still works. The default bindings have been updated, of
course, but if you have custom bindings, you must fix them.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Menus

The menu associated with a menubutton must be a child widget of the menubutton.
Similarly, the menu for a cascade menu entry must be a child of the menu.

The @y index for a menu always returns a valid index, even if the mouse cursor is
outside any entry. In this case, it simply returns the index of the closest entry,
instead of none.

The selector attribute is now selectColor.

The postcascade operation posts the menu of a cascade entry:

$menu postcascade index

The insert operation adds a menu entry before a specified entry:

$menu insert index type options...

Chapter 30 describes menus starting at page 462.

Listboxes

Listboxes changed quite a bit in Tk 4.0. See Chapter 35 for all the details. There are
now four Motif-like selection styles, and two of these support disjoint selections. The
tk_listboxSingleSelect procedure no longer exists. Instead, configure the
selectMode attribute of the listbox. A listbox has an active element, which is drawn
with an underline. It is referenced with the active index keyword.

The selection commands for listboxes have changed. Change:

$listbox select from index1
$listbox select to index2

to:

$listbox select anchor index1
$listbox select set anchor index2

The set operation takes two indices, and anchor is a valid index, which typically
corresponds to the start of a selection.

You can selectively clear the selection and query whether there is a selection in the
listbox. The command to clear the selection has changed. It requires one or two
indices. Change:

$listbox select clear

to:

$listbox select clear 0 end

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

No geometry Attribute

The frame, toplevel, and listbox widgets no longer have a geometry attribute. Use
the width and height attributes instead. The geometry attribute was confused with
geometry specifications for top-level windows. The use of width and height is more
consistent. Note that for listboxes the width and height are in terms of lines and
characters, while for frames and toplevels, they are in screen units.

Text Widget

The tags and marks of the text widgets have been cleaned up a bit, justification and
spacing are supported, variable tab stops can be defined, and you can embed
widgets in the text display.

A mark now has a gravity ÿ either left or right ÿ that determines what happens
when characters are inserted at the mark. With right gravity you get the old
behavior: The mark gets pushed along by the inserted text by sticking to the right-
hand character. With left gravity it remains stuck. The default is right gravity. The
mark gravity operation changes it.

When text is inserted, it picks up only tags that are present on both sides of the
insert point. Previously it would inherit the tags from the character to the left of the
insert mark. You can also override this default behavior by supplying tags to the
insert operation.

The widget scan operation supports horizontal scrolling. Instead of using marks like
@y, you need a mark like @x,y.

For a description of the new features, see Chapter 36.

Color Attributes

Table 51-1 lists the names of the color attributes that changed. These attributes are
described in more detail in Chapter 41 starting at page 620.

Table 51-1. Changes in color attribute names

Tk 3.6 Tk4.0

selector selectColor

Scrollbar.activeForeground Scrollbar.activeBackground

Scrollbar.background troughColor

Scrollbar.foreground Scrollbar.background

Scale.activeForeground Scale.activeBackground

Scale.background troughColor

Scale.sliderForeground Scale.background

(did not exist) highlightBackground

(did not exist) highlightColor

Color Allocation and tk colormodel

In Tk 3.6, color allocations could fail if the colormap was full. In this case, Tk would
revert its colormodel to monochrome and use only black and white. The tk
colormodel command was used to query or set the colormodel. In Tk 4.0, color
allocations do not fail. Instead, the closest possible color is allocated. Because of
this, the tk colormodel operation is no longer supported. Use the winfo visual
command, which is described on page 624, to find out the characteristics of your
display.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Canvas scrollincrement

The canvas widget changed the scrollIncrement attribute to a pair of attributes:
xScrollIncrement and yScrollIncrement. The default for these is now one-tenth
the width (height) of the canvas instead of one pixel. Scrolling by one page scrolls
by nine-tenths of the canvas display.

The Selection

The selection support has been generalized in Tk 4.0 to allow use of other selections
such as the CLIPBOARD and SECONDARY selections. The changes do not break
anything, but you should check out the new clipboard command. Some other
toolkits, notably OpenLook, can paste data only from the clipboard. Chapter 38
describes the selection starting at page 591.

The bell Command

The bell command rings the bell associated with the terminal. You need to use the
xset program to modify the parameters of the bell such as volume and duration.
This command is described on page 497.

Chapter 52. Tcl 7.5/Tk 4.1
Tk 4.1 is notable for its cross-platform support. Your Tk scripts can run on Windows,
Macintosh, and UNIX. The associated Tcl release, 7.5, saw significant changes in
event-driven I/O, network sockets, and multiple interpreters.

Cross-platform support, network sockets, multiple Tcl interpreters, and an enhanced
foreach command are the highlights of Tcl 7.5 and Tk 4.1.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Cross-Platform Scripts

Cross-platform support lets a Tcl/Tk script run unchanged on UNIX, Windows, and
Macintosh. However, you can still have platform dependencies in your program. The
most obvious dependency is if your script executes other programs or uses C-level
extensions. These need to be ported for your script to continue to work.

File Name Manipulation

File naming conventions vary across platforms. New file operations were added to
help you manipulate file names in a platform-independent manner. These are the
file join, file split, and file pathtype operations, which are described on
page 110. Additional commands to copy, delete, and rename files were added in Tcl
7.6

Newline Translations

Windows and Macintosh have different conventions for representing the end of line
in files. These differences are handled automatically by the new I/O subsystem.
However, you can use the new fconfigure command described on page 231 to
control the translations.

The tcl_platform Variable

In practice you may need a small amount of platform-specific code. The
tcl_platform array holds information about the computer and operating system
that your script is running on. This array is described on page 193. You can use a
script file with the name of the platform to isolate all your platform-specific code.
The following command sources either unix.tcl, windows.tcl, or macintosh.tcl
from your script library:

source [file join $lib $tcl_platform(platform).tcl]

The console Command

The Windows and Macintosh versions of wish have a built-in console. The commands
you enter in the console are evaluated in the main Tcl interpreter, but the console is
really implemented in another Tcl interpreter to avoid conflicts. You can show and
hide the console with the console command, which is described on page 29.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The clock Command

The clock command eliminates the need to exec date to get the time of day in Tcl.
The equivalent is:

clock format [clock seconds]

The format operation takes an optional format string that lets you control the date
and time string. There is also clock scan to parse clock values, and clock clicks
to get high resolution clock values. The clock command is described on page 183.

The load Command

The load command supports shared libraries (i.e., DLLs) that implement new Tcl
commands in compiled code. With this feature, the preferred way to package
extensions is as a shared library. This eliminates the need to compile custom
versions of wish if you use extensions. The details about creating shared libraries
are described on page 697. For example, you could load the Tix library with:

load libtix.so Tix

The info command added two related operations, sharedlibextention and
nameofexecutable, which are described on page 192.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The package Command

The package command provides an alternate way to organize script libraries. It also
supports extensions that are added with the load command. The package command
supports a provide/require model where packages are provided by scripts in a
library, and your application specifies what it needs with package require
commands. The package facility supports multiple versions of a package, if
necessary. Packages are described on page 173.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Multiple foreach loop variables

This is one of my favorite features. The foreach command supports multiple loop
variables and multiple value lists. This means that you can assign values to multiple
variables during each loop iteration. The values can come from the same list or from
lists that are processed in parallel. Multiple foreach loop variables are described on
page 81. For example, you can iterate through the contents of an array with:

foreach {name value} [array get arrName] {
 # arrName($name) is $value
}

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Event Loop Moves from Tk to Tcl

To support network sockets, the event loop was moved from Tk to Tcl. This means
that the after and update commands are now part of Tcl. The fileevent command
was added to support nonblocking I/O. The vwait command was added to Tcl and is
equivalent to the tkwait variable command. Event-driven I/O is described in
Chapter 16 starting on page 227.

The tkerror command has been replaced by bgerror. This is the procedure that is
called when an error occurs while processing an event. Backwards compatibility is
provided if you already define tkerror. These procedures are described on page
202.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Network Sockets

The socket command provides access to TCP/IP sockets. There are C APIs to define
new channels, and there are extensions that provide UDP and other protocols.
Chapter 17 describes sockets starting on page 239. Example 43-4 on page 653 uses
sockets as a replacement for the Tk send command.

info hostname

The info hostname command was added to find out your host identifier.

The fconfigure Command

The best way to use sockets is with event-driven I/O. The fileevent command
provides part of the solution. You also need to be able to control the blocking
behavior and buffering modes of sockets. The fconfigure command lets you do this
and more. You can also control the newline translation modes and query socket-
specific settings. The fconfigure command is described on page 231.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Multiple Interpreters and Safe-Tcl

Chapter 19 describes the new interp command and the Safe-Tcl security
mechanism. You can create multiple Tcl interpreters in your application and control
them with the interp command. You create command aliases so that the
interpreters can exchange Tcl commands. If an interpreter is created in a safe
mode, then its set of Tcl commands is restricted so that its scripts cannot harm your
computer or application. However, with aliases you can give the untrusted scripts
limited access to resources.

The grid Geometry Manager

Chapter 26 describes the new grid geometry manager that provides a table-like
metaphor for arranging widgets. Like pack, grid is constraint-based, so the grid
automatically adjusts if widgets change size or if widgets are added and deleted.
The grid command was influenced by the blt_table geometry manager, but it is a
whole new implementation.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Text Widget

Several new operations were added to the text widget. The dump operation provides
a way to get all the information out of the widget, including information about tags,
marks, and embedded windows. The mark next and mark previous operations let
you search for marks. The tag prevrange is the complement of the existing tag
nextrange operation.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Entry Widget

The bbox operation was added to the entry widget. This is used to refine the
bindings that do character selection and set the input cursor.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Chapter 53. Tcl 7.6/Tk 4.2
Tk 4.2 saw improvements in its cross-platform support., including virtual events,
additions to the file command, improvements to the exec command on Windows,
and the addition of common dialogs for choosing colors and selecting files. The grid
geometry manager was rebuilt to improve its layout algorithm.

Grid saw a major rewrite for Tk 4.2 to improve its layout algorithm. Cross-platform
scripts were enhanced by the addition of standard dialogs and virtual events. Tcl 7.6
saw improvements in exec and pipelines on Windows. The Macintosh version got a
significant performance boost from a new memory allocator.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

More file Operations

The file command was rounded out with copy, rename, delete, and mkdir
operations. These operations are described on page 112.

Virtual Events

The new event command defines virtual events like <<Cut>> <<Copy>> and
<<Paste>>. These virtual events map to different physical events on different
platforms. For example, <<Copy>> is <Control-c> on Windows and <Command-c> on
Macintosh. You can write your scripts in terms of virtual events, and you can define
new virtual events for your application. You can also use the event command to
generate events for testing purposes. Virtual events and the event command are
described starting at page 446.

Standard Dialogs

Several standard dialogs were added to Tk. These let you display alerts, prompt the
user, choose colors, and select files using dialogs that are implemented in native
look for each platform. For example, to ask the user a yes/no question:

tk_messageBox -type yesno \
 -message "Ok to proceed?" \
 -icon question
=> yes

To open an existing file:

set file [tk_getOpenFile]

The standard dialogs are described in Chapter 39 starting at page 599.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

New grid Geometry Manager

The grid geometry manager was overhauled to improve its layout algorithm, and
there were several user-visible changes. The weights on rows and columns that
affect resize behavior were changed from floating point values to integers. A -pad
row and column attribute was added to provide padding for a whole row or column.
The columnconfigure and rowconfigure operations now return the current settings
if given no arguments. There are two new grid operations. The update operation
forces an update of the grid layout. The remove operation removes a widget from
the grid but remembers all its grid settings, so it is easy to put it back into the grid
later.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

Macintosh unsupported1 Command

The unsupported1 command provides access to different window styles on the
Macintosh. If supported, it might be a style operation in the wm command, but it is
Macintosh-specific, so it is not fully supported. However, you can use it to get
several different styles of Macintosh windows. This command is described on page
489.

Chapter 54. Tcl/Tk 8.0
Tcl 8.0 includes an on-the-fly byte code compiler that improves performance of
scripts from two to 20 times depending on what commands they use. The Tk version
number was set to match Tcl. Tk 8.0 uses native buttons, menus, menubars, and
scrollbars. Font objects allow flexible font handling in a platform-independent way.

Tcl 8.0 added a byte-code compiler that improves performance dramatically. The
compiler is transparent to Tcl scripts, so you do not have to do anything special to
take advantage of it. The other main addition to Tcl is support of binary data. It is
now safe to read binary data into Tcl variables, and new commands convert between
strings and binary representations.

Tk 8.0 has native look and feel on UNIX, Windows, and Macintosh. This is due to
native buttons, native menus, native scrollbars, and a new cross-platform menu bar
facility. A new cross-platform font facility improves the font support. Tk also has
support for application embedding, which is used in the Web browser plug-in
described in Chapter 20.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_9071533.html

The Tcl Compiler

The Tcl Compiler is an on-the-fly compiler that is virtually transparent to Tcl scripts.
The compiler translates a script to byte codes the first time it evaluates it. If the
script is evaluated again, such as in a loop or in a procedure body, then the byte
codes are executed and the translation step is saved. If a procedure is redefined,
then the compiler discards any translated byte codes for it.

The compiler uses a dual-ported object model instead of the simple string-based
model used in earlier versions of Tcl. The dual-ported objects hold a string value and
a native representation of that string such as an integer, double-precision floating
point value, or compiler byte codes. This makes it possible to save translations
between strings and the native representations. The object model is described in
Chapter 47 starting at page 703.

The performance improvement for your application will depend on what features you
use. Math expressions and list accesses are much faster. Overall you should expect
a factor of 2 speedup, and I have heard reports of 10 and 20 times improvement in
parts of some applications.

Compile-Time Errors

The compiler catches some sorts of errors earlier than the pure interpreted version.
The first time a compiler runs a procedure, it translates the whole thing to byte
codes first. If there are syntax errors at the end of the procedure, it prevents any
code in the procedure from running.

A similar problem occurs with list data. If a string is not a perfect list, then the list
commands will fail when parsing it, even if they do not use the damaged part of the
list. For example, lindex used to process only enough of a list to find the requested
element. In Tcl 8.0 the whole list is converted into a native representation. Errors at
the end of a list will prevent you from getting elements at the beginning. This is
mainly an issue when you use list operations on arbitrary input data.

Binary String Support

Tcl now supports binary data. This means that an embedded NULL byte no longer
terminates a value. Instead, Tcl keeps a byte count for its string objects. This is
facilitated by the switch from simple strings to dual-ported objects.

The binary format and binary scan commands support conversions between
binary data and strings. These are described on page 59. The unsupported0
command was improved and became the fcopy command, which is described on
page 250.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Namespaces

Chapter 14 describes the Tcl namespace facility that partitions the global scope for
variables and procedures. Namespaces are optional. Simple scripts can avoid them,
but larger applications can use them for structuring. Library packages should also
use namespaces to facility code sharing without conflict.

Safe-Tcl

Hidden commands were added to the Safe-Tcl security model. Instead of removing
unsafe commands from an interpreter, the commands are hidden. The master can
invoke hidden commands inside a slave. This is necessary so that the command
sees the correct context. This adds new operations to the interp command:
invokehidden, hide, expose, and hidden. Hidden commands are described on page
297.

Initialization of a safe interpreter with a safe base that supports auto loading and a
standard exit alias has been abstracted into a Tcl interface. The
safe::interpCreate and safe::interpInit procedures create or initialize a slave
with the safe base. The safe::interpDelete procedure cleans up. The safe base is
described on page 300.

To support the Trusted security policy, the interp marktrusted command was
added. This promotes an unsafe interpreter back into a trusted one. Of course, only
the master can do this.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

New lsort

The lsort command was reimplemented. The new implementation is reentrant,
which means that you can use lsort inside a sorting function called by lsort. New
options have lessened the need for custom sorting procedures, too. The -
dictionary option sorts cases together, and it handles numbers better. The -index
option sorts lists on a key field. These are described on page 70.

tcl_precision Variable

The tcl_precision variable was removed in the 8.0p2 release and added back in
the 8.0.3 release. Its default value was increased from 6 to 12, which should be
enough for most applications.

Year 2000 Convention

The clock command now implements the following standard convention for two-
digit year names:

70399 map to 197031999.

00369 map to 200032069.

Actually, the ability to parse a date value after 2037 and before 1903 may be limited
on your system by the size of an integer (e.g., 32-bits) and the clock epoch, which
is January 1, 1970 on Windows and most UNIX systems.

Http Package

A Tcl implementation of the HTTP/1.0 protocol was added to the Tcl script library.
The http::geturl command is described on page 251.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Serial Line I/O

Support for serial line devices was added to fconfigure. The -mode argument
specifies the baud rate, parity setting, and the number of data and stop bits. The -
mode option to fconfigure is described on page 234.

Windows has some special device names that always connect you to the serial line
devices when you use open. They are com1 and com2. UNIX has names for serial
devices in /dev. Interactive applications can open the current terminal with
/dev/tty.

As of this writing, there is no way to open serial devices on the Macintosh. I expect
a new serial command for this purpose, or possibly a flag to open.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Platform-Independent Fonts

A platform-independent font-naming system was added in Tk 8.0. Names like times
10 bold are interpreted on all platforms. The font command lets you create font
objects that can be associated with widgets. The font metrics command returns
detailed size information. The font command is described on page 640.

The tk scaling Command

The tk scaling command queries or sets the mapping from pixels to points. Points
are used with fonts, and points and other screen measures are used in the canvas.
The tk scaling command is described on page 669.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Application Embedding

Tk supports application embedding. Frames and toplevels have a -container
attribute that indicates that they embed another application. This is necessary for
geometry management and focus protocols. Frames and toplevels have a -use
parameter that embeds them into an existing window. Wish also takes a -use
command-line argument. Embedding is described on pages 489 and 312.

Native Menus and Menubars

Tk 8.0 has a native menubar mechanism. You define a menu and associate it with a
toplevel. On the Macintosh, this menu appears along the top of the screen when the
window is activated. On Windows and UNIX, the menubar appears along the top of
the window. This facility is described on page 464.

Tear-off menus now track any changes to the menu they were created from. As part
of this, the -transient attribute was replaced with a -type attribute.

You can create multicolumn menus with the -columnbreak attribute.

CDE Border Width

On UNIX, the default border width changed from two to one to match the CDE look
and feel.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Native Buttons and Scrollbars

Buttons, menus, and scrollbars are native widgets on Windows and Macintosh. This
goes a long way to providing your applications with a native look. The bindings on
the text and entry widgets were also tuned to match platform standard bindings.
See page 392 for an example of the same Tk program on all platforms.

Buttons on all platforms support a -default attribute, which has three values:
active, normal, and disabled. The active state displays like a default button. The
normal state displays like a regular button, but leaves room for the highlight used in
the active state. The disabled state, which is the default, may be smaller. You still
need to program a key binding that invokes the button.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Images in Text Widgets

The text widget supports embedded images. They work much like the embedded
windows but provide a more efficient way to embed images. These are described on
page 544.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

No Errors from destroy

The destroy command used to raise an error if the window did not exist. Now it
does not.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

grid rowconfigure

The grid columnconfigure and rowconfigure commands take an argument that
specifies a row or column. This value can be a list:

grid columnconfigure {0 3} -weight 1

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

The Patch Releases

There was a hiatus in the development of the 8.0 release as John Ousterhout left
Sun Microsystems to form Scriptics Corporation. The 8.0p2 release was made in the
fall of 1997, about the same time the first alpha release of 8.1 was made. Almost a
year later, there were a series of patch releases: 8.0.3, 8.0.4, and 8.0.5, which were
made in conjunction with releases of the TclPro development tools. The main
changes in these patch releases were in C APIs, which were added to support TclPro
Wrapper and TclPro Compiler. These tools are introduced on page 200. There were
only a few changes after 8.0p2 that were visible to Tcl script writers, and these are
documented here.

fconfigure -error

The fconfigure -error option was added so that you can find out whether or not
an asynchronous socket connection attempt has failed. It returns an empty string if
the connection completed successfully. Otherwise, it returns the error message.

tcl_platform(debug)

A new element was added to the tcl_platform variable to indicate that Tcl was
compiled with debugging symbols. The motivation for this is the fact that a Windows
application compiled with debugging symbols cannot safely load a DLL that has been
compiled without debugging symbols. Similarly, an application compiled without
debugging symbols cannot safely load a DLL that does have debugging symbols.
The problem is an artifact of the Microsoft C runtime library.

When you build Tcl DLLs with debugging symbols their name has a trailing "d", such
as tcl80d.dll instead of tcl80.dll. By testing tcl_platform(debug), a savvy
application can attempt to load a matching DLL.

tcl_findLibrary

The tcl_findLibrary procedure was added to help extensions find their script
library directory. This is used by Tk and other extensions. The big picture is that Tcl
has a complex search path that it uses to find its own script library. It searches
relative to the location of tclsh or wish and assumes a standard installation or a
standard build environment. The search supports sites that have several Tcl
installations and helps extensions find their correct script library. The usage of
tcl_findLibrary is:

tcl_findLibrary base version patch script enVar varName

The base is the prefix of the script library directory name. The version is the main
version number (e.g., "8.0"). The patch is the full patch level (e.g., "8.0.3"). The

script is the initialization script to source from the directory. The enVar names an
environment variable that can be used to override the default search path. The
varName is an output parameter that is set to the name of the directory found by
tcl_findLibrary. A side effect of tcl_findLibrary is to source the script from the
directory. An example call is:

tcl_findLibrary tk 8.0 8.0.3 tk.tcl TK_LIBRARY tk_library

tcl_findLibrary is described on page 180.

auto_mkindex_old

The auto_mkindex procedure was reimplemented by Michael McLennan to support
[incr Tcl] classes and methods. This changed the semantics somewhat so that all
procedures are always indexed. Previously, only procedures defined with the word
"proc" starting at the beginning of a line were indexed. The new implementation
sources code into a safe interpreter and watches for proc commands however they
are executed, not how they are typed into the source file. The old version of
auto_mkindex was saved as auto_mkindex_old for those applications that used the
trick of indenting procedure definitions to hide them from the indexing process.

Windows Keysyms for Start and Menu Keys

The Microsoft keyboards have special keys that bring up the Start menu and trigger
menu traversal. New keysyms App, Menu_L, and Menu_R were added for these keys.

The MouseWheel Event

The MouseWheel event was added to support the scrolling wheel built into Microsoft
mice. There is a %D event parameter that gets replaced with a positive or negative
number to indicate relative scrolling motion.

Transparent Fill on Canvas Text

Canvas text items now honor the convention that an empty fill attribute turns
them transparent. This convention was previously implemented for all other canvas
item types. This feature makes it easy to hide items with:

$canvas itemconfigure item -fill ""

safe::loadTk

This procedure was extended to take a -display displayname argument so that
you can control where the main window of the safe interpreter is created. Its -use
argument was extended to take either window IDs or Tk window pathnames.

Chapter 55. Tcl/Tk 8.1
Tcl/Tk 8.1 features Unicode support for internationalization, thread safety, and a
new regular expression package.

Tcl 8.1 should probably have been called Tcl 9.0. The internal changes required to
support Unicode caused a major overhaul that touched nearly the entire
implementation. At the same time, the code base was cleaned up so that it could be
used in multithreaded environments, and it added a platform-independent dynamic
loading facility (i.e., stub libraries). Finally, thanks to Henry Spencer, an all new
regular expression package was added that brings Advanced Regular Expressions to
Tcl. However, in spite of all these changes, scripts written for earlier versions of Tcl
are very compatible with Tcl 8.1.

Unicode and Internationalization

The effect of Unicode on Tcl scripts is actually very limited. There is a new backslash
sequence, \u XXXX, that specifies a 16-bit Unicode character. There are also facilities
to work with character set encodings and message catalogs.

fconfigure -encoding

The Tcl I/O system supports character set translations. It automatically converts
files to Unicode when it reads them in, and it converts them to the native system
encoding during output. The fconfigure -encoding option can be used to specify
alternate encodings for files. This option is described on page 219.

The encoding Command

The encoding command provides access to the basic encoding mechanism used in
Tcl. The encoding convertfrom and convertto operations convert strings between
different encodings. The encoding system operation queries and sets the encoding
used by the operating system. The encoding command is described on page 222.

The msgcat Package

Message catalogs are implemented by the msgcat package, which is described on
page 226. A message catalog stores translations of user messages into other
languages. Tcl makes message catalogs easy to use.

UTF-8 and Unicode C API

The effects of Unicode on the Tcl C API is more fundamental. Tcl uses UTF-8 to
represent Unicode internally. This encoding is compatible with ASCII, so Tcl
extensions that pass only ASCII strings to Tcl continue to work normally. However,
to take advantage of Unicode, Tcl extensions need to translate strings into UTF-8 or
Unicode before calling the Tcl C library. There is a C API for this. An example of its
use is shown on page 718.

Thread Safety

The Tcl C library is thread-safe. This means that you can use Tcl in an application
that uses threads. The threading model for Tcl is a thread can have one or more Tcl
interpreters, but a Tcl interpreter cannot be used by different threads. For
communication between threads, Tcl provides the ability to send Tcl scripts to an
interpreter in another thread.

The Tcl C library provides mutex variables, condition variables, and thread local
storage. These primitives are used by Tcl internally, and they are meant to be used
by Tcl extensions to serialize access to their own data structures. The Tcl library
allows different implementations of the threading primitives. This is done to support
Unix, Windows, and Macintosh. Tcl uses native threads on Windows, and Posix
pthreads on Unix. MacOS does not have true threads, so it is easy to provide the
required thread API.

The testthread Command

Tcl 8.1 does not export threads to the script level, except through the testthread
testing command. (Chapter 21 describes the Thread extension built for Tcl 8.3 and
Tcl 8.4 that extends the testthread package described here.) You can try out
testthread by compiling the tcltest program instead of the regular tclsh shell. Table
55-1 describes the testthread operations, which are implemented in the
generic/tclThreadTest.c file. These operations are likely to be similar to those of
the API provided by the more general threading extension, but you should check the
documentation associated with that extension for more details.

Table 55-1. The testthread command

testthread
create ?
script?

Creates a new thread and a Tcl interpreter. Runs script after creating
the Tcl interpreter. If no script is specified, the new thread waits with
testthread wait.

testthread
id

Returns the thread ID of the current thread.

testthread
errorproc
proc

Registers proc as a handler for errors from other threads. If they
terminate with a Tcl error, this procedure is called with the error
message and errorInfo values as arguments. Otherwise, a message
is printed to stderr.

testthread
exit

Terminates the current thread.

testthread
names

Returns a list of thread IDs.

testthread
send id ?-
async?
script

Sends a script to another thread for evaluation. If -async is specified,
the command does not wait for the result.

testthread
wait

Enters the event loop. This is used by worker threads to wait for
scripts to arrive for evaluation. Threads can also use vwait for this
purpose.

Advanced Regular Expressions

An all new regular expression implementation supports Unicode and Advanced
Regular Expressions, which are described in detail in Chapter 11. The new regular
expression syntax has been added in a way that is compatible with earlier versions
of regular expressions. There are also new regexp and regsub command options to
control the new regular expression engine.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

New String Commands

The string command was enhanced with several new operations that include string
classification operations (string is), character string mappings (string map), title
case conversion (string totitle), an easier-to-use equality test (string equal),
and new string manipulation commands (string repeat and string replace). The
-nocase and -length options have been added to commands like string compare
and string tolower. These additions are listed in Table 4-1 on page 50 and
explained in more detail in Chapter 4. Note: These only appeared in the Tcl 8.1.1
patch release.

The DDE Extension

Dynamic Data Exchange (DDE) is a communication protocol used among Windows
applications. The protocol exchanges data with a server identified by name. Each
service implements a number of operations known as topics. The data exchange can
be synchronous or asynchronous. The dde command is implemented as an
extension that is distributed with Tcl. You must use package require dde to load
the extension. Table 55-2 summarizes the dde command.

Table 55-2. The dde command options

dde servername
?topic?

Registers the current process as a DDE service with name
TclEval and the given topic. If topic is not specified, this
command returns the currently registered topic.

dde ?-async?
execute service
topic data

Sends data to the service with the given topic.

dde ?-async?
eval topic cmd
?arg ...?

Sends cmd and its arguments to the TclEval service with the
given topic. This is an alternative to the Tk send command.

dde ?-async?
poke service
topic data

Similar to the execute operation, but some services export
operations under poke instead of execute.

dde ?-async?
request service
topic item

Fetches the named item from the service with the given topic.

dde services
server topic

Returns server and topic if that server currently exists;
otherwise, it returns the empty string.

dde services
server {}

Returns all the topics implemented by server.

dde services {}
topic

Returns all servers that implement topic.

dde services {}
{}

Returns all server, topic registrations.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Miscellaneous

Serial Line I/O

The Windows serial line drivers were converted to use threads, so you can wait for
I/O with fileevent when using serial devices. There is no API change here, but this
was a limitation on Windows that was annoying in previous Tcl releases.

tcl_platform(user)

The tcl_platform(user) array element records the currently logged in user. This
masks differences in environment variables and system calls used to get this
information on different platforms.

Chapter 56. Tcl/Tk 8.2
Tcl 8.2 is primarily a bug fix and stabilization release. This release is recommended
instead of Tcl 8.1.

Tcl 8.2 adds almost no new features at the Tcl script level. Instead, it adds a few
new C APIs that enable some interesting extensions to be added without having to
modify the core Tcl distribution. At the same time, Scriptics focused on the
outstanding bug reports in order to make the 8.2 release as stable as possible.

The Trf Patch

Andreas Kupries contributed a mechanism that allows I/O channel processing
modules to be stacked onto open I/O channels. This adds a new Tcl_StackChannel
C API, but there are no changes visible at the Tcl script level. However, it enables
several interesting extensions such as compression and encryption (e.g., SSL) to be
added to Tcl. Andreas has an extension that exports the channel filter mechanism to
the Tcl script level. This is used primarily for testing, but you can also use it for
script-level data filters.

Faster String Operations

The UTF-8 encoding has the drawback that characters are not all the same size:
They are either one, two, or three bytes in length. The variable-sized characters
make operations like string length, string index, and string range quite slow
in comparison to a system that uses fixed-sized characters. A new Unicode string
type, which uses 16-bit characters, was added to support faster string operations.
This change does not cause any changes that are visible to Tcl scripts, except for
improved performance in comparison to Tcl 8.1.

Empty Array Names

Perhaps the only change in Tcl 8.2 visible to Tcl scripts is support for empty array
names. This is a quirk you can get by using name spaces or upvar, but it was
previously difficult to use directly. For example, the syntax $::foo::(item)
references an array. That worked in any version of Tcl that supported namespaces.
However, in Tcl 8.2 you can also use $(item) directly, which implies that the array
name is the empty string. This trick is exploited by Jean-Luc Fontain's STOOOP
object-oriented extension.

Browser Plugin Compatibility

The Web Browser plugin requires changes to the event loop mechanism because Tcl
is embedded in an application with its own event loop. While the C APIs have
supported alternate event loops since Tcl 8.0.3, it has been difficult to do this sort of
embedding without recompiling Tcl. The Tcl_SetNotifier API was added to support
embedding a "stock" Tcl interpreter.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Finer Control of Windows Serial Port Monitoring

On Windows systems, Tcl polls the serial ports for fileevents at the default rate of
approximately every 10 milliseconds. Tcl 8.2 introduced the fconfigure -
pollinterval option to give the ability to specify a shorter polling interval.

Regular Expression Expanded Syntax Option

Although Tcl 8.1 introduced support for expanded regular expression syntax (where
whitespace and comments are ignored), it required you the signal the expanded
syntax by including the (?x) option embedded in the regular expression string. Tcl
8.2 introduced the regexp -expanded option as an alternate way of enabling
expanded regular expression syntax.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Chapter 57. Tcl/Tk 8.3
Tcl/Tk 8.3 enhanced the capabilities of the canvas widget through the incorporation
of the popular <dash= patch, as well as providing incremental improvements to other
Tcl/Tk features.

Tcl 8.3 incorporated several key contributed patches, particularly for Tk. Jan
Nijtmans's dash and image patches provided many handy features such as dashed
lines on the canvas, improved image support, and more. Bringing these patches into
the Tcl core not only provided new features usable in general Tcl scripts, but it
allowed people to use several popular extensions and tools without the need for
manually applying these patches and recompiling Tcl.

New File Manipulation Commands and Options

The new file channels command returns a list of open I/O channels, which can be
sockets, regular files, or channels created by extensions. It accepts an optional glob
pattern argument (e.g., sock*) to constrain the list.

The file atime and file mtime commands now accept an optional argument to
set the access time or modification time of the specified file. This gives you the
ability to perform the equivalent of the Unix touch command in pure Tcl code.

In addition to the previous ability to set file permissions using the same octal code
format as the Unix chmod command, the -permissions option of the file
attributes command now allows you to set file permissions symbolically. You can
use the same symbolic attributes as the Unix chmod command (for example,
u+s,go-rw to add sticky bit for user and remove read and write permissions for
group and other). A simplified ls-style string, of the form rwxrwxrwx (the string
must be 9 characters) is also supported (for example, rwxr-xr-t is equivalent to
01755).

New glob Options

New -directory, -join, -path, and -types options for glob command make it
easier to manipulate directories in a platform-independent manner. <Matching File
Names with glob= on page 122 describes these new options.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Regular Expression Command Enhancements

Both regexp and regsub gained a -start option, which indicates a starting offset
into the string being matched. The new regexp -inline option can return the
matching characters, rather than storing them in a variable. The regexp -all option
finds all occurrences of the match pattern; in conjunction with the -inline option it
returns all the matches as a list, whereas without the -inline option it returns the
number of matches.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Direct Return of scan Matches

If you don't provide any variables to store the results of a scan command, it now
returns its matches directly as a list.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Removing Duplicate List Elements with lsort

The new lsort -unique option removes duplicate elements from a list as it is
sorted.

Deleting Elements from an Array

The new array unset command deletes all elements from an array whose key
matches be given glob-style pattern. If no pattern is provided, the command deletes
the array variable and all of its elements.

Enhanced clock Features

The clock scan command was extended to support common ISO 8601 date and
time formats. An "easter egg" was included in both clock scan and clock format
so that they understand the Stardate format (try %Q with clock format).

The clock clicks -milliseconds option was added to guarantee a millisecond
granularity to the returned values.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Support for Delayed Package Loading in pkg_mkIndex

The new pkg_mkIndex -lazy option generates a package index file that delays
actual loading of a package until an application attempts to use one of the
commands provided by the package. Without this option, the generate package
immediately loads its command when an application executes it package require
command.

The Img Patch

The Img patch adds an alpha channel, better transparency support, and improved
GIF support, including the ability to save GIF images. See the "Bitmaps and Images"
section starting on page 625 for more information about these features. This patch
also supports other image types (e.g., JPEG) that can be loaded as extensions;
script-level support for other image types is typically provided through the Img
extension, which can be used now without patching the Tcl core.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

The Dash Patch

The "dash patch" added a variety of new Tk features ÿ primarily to the canvas
widget, but in other areas as well.

Canvas Improvements

The dash patch provided several significant improvements to the canvas widget:

Canvas coordinates may be specified as a single list argument instead of
individual arguments, which makes it easier to construct commands.

Many items now support the notion of a dash pattern for outlines,
implemented through a variety of new item options containing the word dash.
Windows 95 supports only single-pixel wide dashed lines, whereas other
platforms support thick dashed lines.

The canvas now includes a state attribute, which modifies the default state of
the canvas. Individual canvas objects all have their own -state attributes,
which may override the default canvas state. Items also have new attributes
to control their appearance based upon their state. The attributes that start
with -active control the appearance when the mouse pointer is over the item,
while the attributes starting with -disabled control the appearance when the
state is disabled. Additionally, disabled canvas items don't react to canvas
bindings.

Advanced tag searching is available for all canvas operations that accept a tag
or item ID as an argument. This adds the ability to search for canvas items
based on boolean expressions of tag values.

The canvas can generate Postscript for embedded images on all platforms.
Additionally, on Unix platforms, it can generate Postscript for embedded
widgets currently displayed on the screen (that is, displayed within the
canvas's viewport and not obscured by other windows).

The internal implementation of the canvas now uses Tcl_Obj values, which
improved its performance.

Hidden Text

Tags in text widgets now include an -elide attribute, to hide text with that tag. This
feature is used by the popular TkMan manual page browser, which can be used now
without patching the Tcl core.

Pointer Warping

Tk applications now have the ability to move the mouse under program control. Use
the event generate -warp option when generating KeyPress, KeyRelease,
ButtonPress, ButtonRelease, or Motion events. For example:

event generate .c <Motion> -warp 1 -x 10 -y 20

Entry Widget Validation

New options were added to the entry widget for input validation. The options specify
command callbacks that are made at various times, such as when the entry widget
takes input focus, loses input focus, or has its value change. The commands are
subject to % keyword substitution similar to the substitutions in event bindings. The
keywords are used to get the name of the entry widget (e.g., %W), the character that
is being added, and so forth. (See "Entry Widget Validation" on page 822.)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Other New Tk Features

Listbox Enhancements

Listboxes have a new listVariable attribute to link the contents of the listbox to a
variable that contains a list value (in much the same way that the textVariable
option is used in several other widgets). Listboxes also have new itemconfigure
and itemcget operations to set and query the color of individual items.

New Directory Chooser Dialog

A new tk_chooseDirectory command allows users to browse a directory hierarchy
and select a directory, in much the same way as the tk_getOpenFile command
works for regular files.

Window Manager Interactions with Toplevel Windows

The wm state command now accepts an optional argument allowing you to set the
state of a toplevel. On Windows systems, wm state also supports a new zoomed
state for maximized windows.

Support Added for Windows System Cursors

On Windows systems, you can now use Windows system cursors in .ani and .cur
files by using the format -cursor @filename when setting a widget's cursor.

Mousewheel Support for Listbox and Text Widgets on Unix

Default binding were added to listbox and text widgets so that on Unix system that
report mousewheel events as <ButtonPress-4> and <ButtonPress-5> events, the
listbox and text widgets respond to the mousewheel.

New Quadruple Event Modifier

You can use Quadruple as a modifier (e.g., <Quadruple-ButtonPress-1>.)

X Input Methods (XIM)

A new tk useinputmethods command changes the behavior of Tk on X where X
Input Methods (XIM) were recognized and used without question. With 8.3, they are
recognized and initialized, but not used unless XIM is turned on (tk
useinputmethods 1). This should only affect users with special input methods, and
the new default behavior should be more beneficial to the average user.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

The Patch Releases

A series of 8.3 patch releases mainly provided incremental improvements and bug
fixes, but did add a few new features. The 8.3.5 patch release was a final
stabilization release for the 8.3 series, and was released concurrently with version
8.4.1. The only significant new feature of 8.3.5 versus the previous patch release
was the ability of the canvas to generate Postscript for embedded widgets on
Windows platforms, which was concurrently added with the 8.4.1 patch release.

Detection of Entry Validation Type

The %V substitution for entry widget validation reports the type of validation that
triggered the callback (key, focusin, focusout, forced). (8.3.1)

Macintosh File Selection Dialog Enhancement

On the Macintosh ÿ when Navigation Services are installed ÿ the tk_getOpenFile
and tk_getSaveFile commands accept a -message option to specify a message to
include in the client area of the dialog. (8.3.1)

State Attributes for Label Widgets

The label widget now supports a state attribute, with normal, active, and
disabled states. (8.3.1) Additionally, it has new activeBackground and
activeForeground attributes to control its appearance in the active state (8.3.2),
and a disabledForeground attribute to control its appearance in the disabled state
(8.3.1).

Support for Windows Icons

On Windows systems, you can provide the path of a valid Windows icon file (usually
.ico or .icr files) when setting the window's icon with the wm iconbitmap
command. (8.3.3)

New Reference Pages

The online documentation includes new colors, cursors, and keysyms reference
pages, documenting the supported color names, cursor names, and keysyms.
(8.3.2)

Chapter 58. Tcl/Tk 8.4
Tcl 8.4 provided significant performance improvements, many new commands and
options, and three new Tk widgets.

Speed was a primary objective of Tcl/Tk 8.4. Version 8.0 provided major
performance improvements to Tcl with the introduction of the bytecode compiler.
But new features added in version 8.1 (in particular, multi-threaded support and
internationalization support with Unicode strings) slowed down Tcl significantly. The
goal for 8.4 was for scripts to run as fast as ÿ or faster than ÿ they did under 8.0,
and the goal was achieved in almost all areas of the language.

Tcl/Tk 8.4 is perhaps the most significant release since 8.1 in terms of new features.
Virtually all aspects of the language gained new functionality, and new widgets were
added to the core for the first time since version 8.0.

Version 8.4 also marked the transition from Tcl being under the sole control of John
Ousterhout to its management by the Tcl Core Team (TCT), which is composed of a
group people who have been instrumental to Tcl's development over the years. The
TCT is responsible for determining changes and new features for upcoming versions
of Tcl. They also work with maintainers, who have responsibility over specific
aspects of Tcl/Tk, and other community volunteers to actually implement the
changes. Anyone can suggest a new feature or change to Tcl by submitting a Tcl
Improvement Proposal (TIP). A description of the TIP process and a list of all
submitted TIPs are available at http://www.purl.org/tcl/tip. Development of the 8.4
release was already in progress before the TIP process was in place, so not all new
8.4 features were controlled by TIPs; however, in this chapter, any new feature that
was proposed by a TIP has that TIP number indicated.

http://www.purl.org/tcl/tip

64-Bit Support

Changes to several commands provide better support for 64-bit values, even on 32-
bit platforms. (TIP #72) The changes implemented were designed to maximize
backward compatibility.

64-Bit Arithmetic

The expr command now supports 64-bit (wide integer) arithmetic. Integer
constants unable to fit in a signed 32-bit value are treated as wide integers, unless
they exceed the capacity of 64 bits, in which case they are treated as double-
precision floating point values. The result of an arithmetic operation is a double if at
least one of the operands is a double, a wide integer if at least one of the operands
is a wide integer, and a normal integer otherwise.

The int() function always returns a non-wide integer (converting by dropping the
high bits), and the new wide() function always returns a wide integer (converting
by sign-extending).

The incr command can increment variables containing 64-bit values correctly, but
can accept only 32-bit values as amounts to increment by.

64-Bit Value Conversions

The format and scan commands now support the l modifier for use with integer-
handling conversion specifiers (d, u, i, o, and x), which tells them to work with 64-
bit values. The binary command gained new w and W specifiers for its format and
scan subcommands, which operate on 64-bit wide values in a fashion analogous to
the existing i and I specifiers (that is, smallest byte to largest, and largest byte to
smallest, respectively).

64-Bit Filesystem Support

All Tcl commands interacting with the filesystem (file, glob, seek, and tell) work
correctly for files larger than 2 GB.

Native Word Size Detection

The tcl_platform array contains a new tcl_platform(wordSize) element, which
gives the native size of machine words on the host platform.

Additional Filesystem Features and Commands

Virtual Filesystems

Tcl is now "virtual filesystem (VFS) aware," which allows filesystem interaction and
input/output to take place on something other than the system's native filesystem.
(TIP #17) This means that, given appropriate extensions, any ordinary Tcl code can
use the standard file commands: cd, pwd, glob, file, open, etc. and operate on
"virtual files" without realizing it. Such virtual files can be remote files (on FTP sites
or over an HTTP connection) or inside archives (for example, Zip or tar files).

The basic Tcl distribution doesn't expose the capability of manipulating virtual
filesystems at the Tcl script level. However, the new C APIs enables several
interesting extensions and applications. TclVFS is the extension that allows standard
Tcl scripts to "mount" and use virtual filesystems. TclVFS includes support for virtual
filesystem types including: FTP, HTTP, WebDAV, Zip archives, tar archives, MetaKit
databases, and Tcl namespaces. TclKit, which provides a method of distributing
single-file, standalone executables written in Tcl/Tk, is also based on Tcl's VFS
capabilities. TclKit is described in Chapter 22.

New file Subcommands and glob Options

The file command gained several new subcommands, primarily to support the new
virtual filesystem capabilities described above (TIP #17): file normalize, file
separator, and file system. TIP #17 added the glob -tail option. TIP #99
added the file link command for creating hard and symbolic links. See "The file
Command" on page 108 for more information on the file subcommands, and
"Matching File Names with glob" on page 122 for more information on glob.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

New and Enhanced List Commands

Tcl 8.4 added several new commands and options that increase performance when
manipulating lists:

The new lset command allows you to directly change the value of an
individual list element. This is much faster than using lreplace to replace the
element with a new value. See "The lset Command" on page 66.

The lindex command now accepts multiple indices to allow retrieval of values
in nested lists. See "Getting List Elements: llength, lindex, and lrange" on 68.

Many new options were added to lsearch for faster and more flexible list
searching. You can use the -sorted, -ascii, -decreasing, -dictionary, -
increasing, -integer, and -real options indicate that the list is already
sorted in various ways, which allows lsearch to use a more efficient searching
algorithm. TIP #80 added the -all, -inline, -not, and -start options,
giving you the ability to do things such as retrieve multiple elements with a
search. See "Searching Lists: lsearch" on page 69.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Array Searching and Statistics

New -exact, -glob, and -regexp options to the array names command allow you
to specify the type of pattern matching to use when searching for array element
names. The new array statistics command returns statistics about the array
internals, used primarily for debugging and profiling purposes.

Enhanced Support for Serial Communications

The fconfigure -handshake, -queue, -sysbuffer, -timeout, -ttycontrol, -
ttystatus, and -xchar options provide much finer control over serial port
communications than was available under previous versions of Tcl. See "The
fconfigure Command" on page 231 for a description of these options.

New String Comparison Operators

Two new string comparison operators, eq and ne, can be used to force a string
equality or inequality comparison everywhere that you can evaluate an expression
(for example, expr, for, if, and while).

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Command Tracing

Tcl now has the ability to trace commands as well as variables. (TIP #62) Options
include triggering actions: before or after executing any specified command; before
or after entering any command within a specified procedure; when a command is
renamed; or when a command is deleted. A new command syntax for creating and
using variable traces was also added, to match the features of command tracing.
The old syntax for variable traces will be retained for now for backwards
compatibility, but its use is deprecated. For more information on using traces, see
"Tracing Variables and Commands" on page 193.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Additional Introspection Commands

Several new commands support more introspection and control of the Tcl
interpreter:

info functions returns a list of all the math functions currently defined. (TIP
#15)

info script now accepts an optional pathname argument. If provided, it
becomes the return value for all future invocation of info script for the
duration of the session. This can be useful in virtual file system applications.

interp recursionlimit sets and returns the maximum depth for nested Tcl
procedure calls and other operations that create Tcl stack frames. (TIP #87)

namespace exists reports whether or not a specified namespace exists.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Other Tcl Changes

Unsetting Nonexistent Variables

With the -nocomplain option, unset suppresses any possible errors. A new --
option also allows you to delete variables that might have the same name as any
unset options.

Direct Return of Substituted String with regsub

The final regsub argument (the name of the variable in which to store the
substituted string) is now optional. If omitted, regsub simply returns the substituted
string (or the original string, of no substitutions were made). (TIP #76)

Increased Time Resolution on Windows

Previously, the time command, the clock clicks command, and all related
functions were limited to a resolution of (typically) 10 milliseconds on Windows
systems. Tcl 8.4 on Windows now features microsecond precision with accuracy in
the tens of microseconds. (TIP #7)

Bug Fixed in fcopy to Respect Channel Encodings

The fcopy command in prior versions of Tcl improperly ignored the encodings of the
channels. Now fcopy respects the channel encodings, and performs proper
translations on the data if the channels have different encodings.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

New Tk Widgets

Tk 8.4 features three new widgets:

A spinbox is an extended entry widget that allows the user to move, or "spin,"
through a fixed set of values, such as times or dates, in addition to editing the
value as in an entry.

A labelframe is very similar to the standard frame, but also has the ability to
display a label. (TIP #18)

A panedwindow contains any number of panes, arranged horizontally or
vertically. Each pane contains one widget, and each pair of panes is separated
by a moveable sash, which causes the widgets on either side of the sash to be
resized. (TIP #41)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Text Widget Undo Mechanism and Other Enhancements

The text widget gained several new features in Tk 8.4:

A mechanism for unlimited undoing and redoing of changes was added. (TIP
#26) When the new -undo option is set to a Boolean true value, the widget
records every insert and delete action on a stack. Default key bindings allow
the user to undo and redo changes, and a programmatic interface gives the
application full control over the undo and redo stacks. (See "The Undo
Mechanism" on page 548.)

The text widget generates a <<Modified>> virtual event whenever the
contents of the widget changes. (TIP #26)

The text widget generates a <<Selection>> virtual event whenever the text
selection of the widget changes. (TIP #26)

The text widget's delete and get operations now accept multiple ranges,
instead of only a single character or range of characters. (TIP #93)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

New pack and grid Features

Asymmetric Padding

Both the pack and grid commands now support asymmetric padding. If you provide
a single screen distance value to either -padx or -pady, then that value is used for
both the left and right (or top and bottom) padding around the widget, just as it has
been in previous versions of Tk. But now if you provide a 2-element list of screen
distance values, then the first value determines the padding on the left (top), and
the second value determines the padding on the right (bottom).

Uniform Rows and Columns in grid

The new -uniform option for grid columnconfigure and grid rowconfigure
makes it easier to create layouts with equal-sized cells. (TIP #37)

Displaying Both Text and an Image in a Widget

In previous versions of Tk, labels, menu entries, and the various button widgets
could not display text and a bitmap or image at the same time. Tk 8.4 introduced
the compound attribute, which specifies whether the widgets should display both an
image (or bitmap) and text, and if so, where the image should be placed relative to
the text. (TIP #11)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

New Button Relief Attributes

Buttons, checkbuttons, and radiobuttons all gained an -overrelief option, which
specifies a relief style to use when the mouse cursor is over the widget.
Checkbutton and radiobutton widgets also gained an -offrelief option, which
specifies the relief style to use for the widget when the widget is in an "off" state
and the indicator is not drawn. These new relief options make it much easier to
create "toolbars" from a collection of button widgets. (TIP #82)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Controlling the State of Entries and Listboxes

The entry and listbox widgets gained new options for controlling their state:

The entry widget state attribute now supports a readonly value. When an
entry is in the readonly state, the value displayed cannot be changed by
either the application or the user, and the insertion cursor is never displayed.
However, the user can still select the contents of the widget. The entry widget
also supports new disabledForeground, disabledBackground, and
readonlyBackground attributes to control its appearance in the different
states.

The listbox widget now supports a state attribute, with normal and disabled
states, and a disabledForeground attribute to control its appearance in the
disabled state. Additionally, a new activeStyle attribute controls the style in
which the active element is drawn. (TIP #94)

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

More Window Manager Interaction

Several wm subcommands were added to provide additional interaction with the
window manager and control over toplevel windows:

wm attributes returns or sets platform-specific attributes associated with a
window. (TIP #95)

wm stackorder returns information about the stacking order of an
application's toplevel windows. (TIP #74)

wm iconbitmap accepts a new -default option on Windows platforms for
designating a default icon bitmap for all of an application's toplevel windows.
(TIP #8)

tk windowingsystem returns the current Tk windowing system, one of x11
(X11-based), win32 (MS Windows), classic (Mac OS Classic), or aqua (Mac
OS X Aqua). (TIP #108)

Other Tk Changes

Mouse Button Repeat Control

You can now configure how buttons, scales, scrollbars, and spinboxes respond when
the user holds down a mouse button or key for that widget. The repeatDelay
attribute specifies the number of milliseconds a button or key must be held down
before it begins to auto-repeat, and the repeatInterval attribute determines the
number of milliseconds between auto-repeats.

Better Support for Image Transparency

Tk 8.4 provides greater access to transparency information for photo images. Photo
image object commands now support a transparency subcommand with get and
set operations, which respectively get and set the transparency setting of individual
pixels in the image. (TIP #14) Additionally, a new -compositingrule option to the
copy subcommand allows you to specify how transparent pixels in the source image
are combined with the destination image. (TIP #98)

Selecting Multiple Files with tk_getOpenFile

The tk_getOpenFile -multiple option allows a user to select multiple files to open,
returning the files selected as a list.

Fixed-Width Button Support on Windows Systems

On Windows systems, the button width attribute now accepts a negative value to
specify a minimum width, enabling better compliance with native Windows look-and-
feel.

Easier Access to Clipboard Contents

A new clipboard get subcommand returns the contents of the clipboard ÿ
equivalent to selection get -selection CLIPBOARD.

Determining if an Image is Used

The image inuse command returns whether or not a specified image is in use by
any widget.

New Events and Substitutions for Window Managers

To enable writing Tk-based window managers, Tk 8.4 added support for five new
event types: <CirculateRequest>, <Create>, <MapRequest>, <ResizeRequest>,
and <ConfigureRequest>. The %i and %P event substitutions were also added. (TIP
#47)

Caret Management for Improved XIM/IME Support

A new tk caret command sets and queries the caret location for the display of the
specified Tk window. The caret is the per-display cursor location used for indicating
global focus (for example, to comply with Microsoft Accessibility guidelines), as well
as for location of the over-the-spot XIM (X Input Methods) or Windows IME
windows. (TIP #96)

New bell Option to Prevent Resetting Screen Savers

The bell command has the side effect of resetting the screen saver for the screen,
which usually makes the screen visible again. The new -nice option prevents the
bell command from resetting the screen saver.

Generating Postscript for Embedded Widgets

The Tk 8.4.1 patch release added the ability on Windows for the canvas to generate
Postscript for embedded widgets currently displayed on the screen (that is,
displayed within the canvas's viewport and not obscured by other windows). This
capability was added concurrently with the 8.3.5 patch release.

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Chapter 59. About The CD-ROM
This chapter describes what is available on the CD-ROM.

The CD-ROM contains the Tcl/Tk software distributions, the examples from the book,
and a collection of Tcl-related software found on the Internet. The CD is one volume
in a hybrid format that is readable on UNIX (ISO 9660 format with Rock Ridge
extensions), Windows (Juliet format with long file names), and Macintosh (HFS).
Kudos to the ISO standard for supporting multiple formats simultaneously, and to
the Linux mkhybrid application used to create the disk image.

The Tcl/Tk distributions are in the tcl_84 and tcl_83 folders. The .tar.gz files
there are source distributions that can be unpacked on a UNIX system with a
command like this:

gunzip < tcl8.4.2.tar.gz | tar xvf -

You can compile the source code like this (there are more detailed instructions in
Chapter 46):

cd tcl8.4.2/unix
./configure --enable-gcc
make

There are also source distributions in .zip files that contain the same files as the
.tar.gz packages. There are Windows installers in .exe files that install ready-to-
run Tcl/Tk interpreters and script libraries.

The macintosh/binhex folder contains various Macintosh distributions in BINHEX
format. The macintosh folder contains some of these already converted to native
installers.

The plugin folder contains the Web browser plugin. There is a source distribution
and binary distributions for a variety of UNIX platforms, Windows, and Macintosh.

The tclpro folder contains demo copies of TclPro, which is described in more detail
on page 198. TclPro provides another way to get a free version of Tcl/Tk compiled
for your platform. TclPro also has a nice set of development tools. You can get a
demo license for the tools at:

http://www.scriptics.com/registration/welchbook.html

The exsource folder contains the examples from the book. These are automatically
extracted from Framemaker files. One thing to watch out for is that single quotes
get extracted as \". I have left these as-is. The browser.tcl script lets you view
and try out the examples.

The tclhttpd directory contains an unpacked version of the TclHttpd distribution.
You should be able to start the server by loading the bin/httpd.tcl script into wish

http://www.scriptics.com/registration/welchbook.html

or tclsh. This script starts a Web server on port 8015.

The tea_sample directory contains a sample Tcl extension from the Tcl Extension
Architecture. This example illustrates how to create Tcl extensions on Windows and
UNIX.

The download folder contains software downloaded from the Internet. Some of
these have associated .README files. Others are described by files in the index
folder. These descriptions are derived from the Tcl Resource Center found at:

http://www.tcl.tk/resource/

The index/index.html file provides a listing and description of the software in the
download folder.

The CD_UTILS folder contains software you may find helpful, such as Winzip and a
version of Tar for Macintosh. I have also included the mkhybrid software used to
create the CD image, as well as other scripts used in the process.

The welch folder contains a picture of me and a copy of my PGP key. The key ID is
7EDF9C79 and its fingerprint is:

94 D8 90 6A FD 9C AE 94 40 E3 C6 D6 B1 90 E0 03

http://www.tcl.tk/resource/default.htm
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

Technical Support

Prentice Hall does not offer technical support for this software. If there is a problem
with the media, however, you may obtain a replacement CD by emailing a
description of the problem. Send your email to:

disc_exchange@prenhall.com

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_10071533.html

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

#, pad with spaces in format
% in clock format
% in event bindings
<$nopage>mv. [See file rename]
() for arrays
() in regular expressions
(?!re) in regular expressions
(?=re) in regular expressions
(?\\
 re) in regular expressions
(?abc) in regular expressions
* in regular expressions
*, matching character
*? in regular expressions
, command substitution
, dollar sign
, in regular expressions
-, left justify string in format
--disable-shared
--enable-gcc
--enable-symbols
--enable-threads
--exec-prefix=dir
--prefix=dir
--with-tcl=dir
--with-tclinclude=dir
--with-tcllib=dir
--with-tk=dir
--with-x11include=dir
--with-x11lib=dir
-about, regexp option
-above, event option
-all, lsearch option
-archive, file property
-ascii, lsearch option
-async, send option
-blocking, fconfigure option
-blocksize, http\\
 \\
 geturl option 2nd
-borderwidth, event option
-buffering, fconfigure option
-buffersize, fconfigure option
-channel, http\\
 \\
 geturl option
-config filename, TclHttpd
-count, event option

-creator, file attribute
-data, for image
-decreasing, lsearch option
-default, tk_messageBox option
-defaultextension, tk_getOpenFile option
-delta, event option
-detail, event option
-dictionary, lsearch option
-direct, pkg_mkIndex option 2nd
-displayof, send option
-docRoot directory
-eofchar, fconfigure option
-exact, lsearch option
-expanded, regular expression option
-filetypes, tk_getOpenFile option
-fill, pack option
-format, image
-glob, lsearch option
-group, file attribute
-handler, http\\
 \\
 geturl option
-headers, http\\
 \\
 geturl option
-increasing, lsearch option
-indices, regular expression option
-inline, lsearch option
-integer, lsearch option
-ipadx and -ipady pack options
-keycode, event option
-keysym, event option
-line, regular expression option
-lineanchor, regular expression option
-linestop, regular expression option
-longname, file property
-maskdata, for image
-maskfile, for image
-mode, event option
-mode, fconfigure option for serial devices
-nocase, regexp option
-not, lsearch option
-override, event option
-overstrike, font attribute
-owner, file attribute
-padx and -pady, pack options
-peername, fconfigure socket option
-peerport, fconfigure option
-permissions, file attribute
-progress, http\\
 \\
 geturl option
-query, http\\
 \\

 geturl option 2nd 3rd 4th
-real, lsearch option
-root, event option
-rootx, event option
-rooty, event option
-sendevent, event option
-serial, event option
-shortname, file property
-shrink, image operation
-slant, font attribute
-sorted, lsearch option
-start, lsearch option
-state, event option
-sticky, grid option
-subwindow, event option
-system, file attribute
-timeout, http\\
 \\
 geturl option 2nd
-title, of standard dialog
-translation, fconfigure option
-underline, font attribute
-validate, http\\
 \\
 geturl option
-verbose, pkg_mkIndex option
-weight, font attribute
-x, event option, event option
-y, event option
. . in regular expressions
., (dot) in regular expressions
/bin/sh _to run a Tcl script
/debug, Application Direct URL
/mail, Application Direct URL
/status, Application Direct URL
= =
? in regular expressions
?, string match character
?? in regular expressions
@ in binary format
\\
 \\
 in regular expressions
\\\\, backslash
\\0 in regular expressions
\\a in regular expressions
\\A in regular expressions
\\a, bell
\\b in regular expressions
\\B in regular expressions
\\b, backspace
\\c in regular expressions
\\cX in regular expressions
\\d in regular expressions

\\D in regular expressions
\\e in regular expressions
\\f in regular expressions
\\f, form feed
\\m in regular expressions
\\M in regular expressions
\\n in regular expressions
\\n, newline
\\r in regular expressions
\\r, carriage return
\\s in regular expressions
\\S in regular expressions
\\t in regular expressions
\\t, tab
\\uXXXX in regular expressions
\\v in regular expressions
\\v, vertical tab
\\W in regular expressions
\\x in regular expressions
\\xhh in regular expressions
\\xy in regular expressions
\\xyz in regular expressions
\\y in regular expressions
\\Y in regular expressions
\\Z in regular expressions
^ in regular expressions
{ } for argument grouping
{m,n} in regular expressions
{m,n}? in regular expressions
| in regular expressions
~ in file names
3D Border
3dDarkShadow, system color
3dLight, system color
64-Bit
 Arithmetic
 Filesystem Support
 Value Conversions

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

A, a, in binary format
abbreviation of commands
abs(x), absolute value
AC_INIT
AC_OUTPUT
AC_SUBST 2nd
accepting socket connections
access time, file
acos(x), arccosine
activate canvas objects
activate, button operation
Activate, window event 2nd
activeBackground, widget attribute
ActiveBorder, system color
activeBorderWidth, widget attribute
ActiveCaption, system color
activeForeground, widget attribute
activeRelief, widget attribute
ActiveState Corporation
addinput. [See fileevent.]
addtag, canvas operation
advanced regular expressions
Advanced Regular Expressions
after, safe alias
after, Tcl command
aliases defined by the browser package
aliases, command
aliases, introspection on
Allocate a Pixmap
Allocation, Memory
alnum, in regular expressions
alnum, string class
alpha, in regular expressions
alpha, string class
Alt, key modifier
alternation in regular expressions
anchor position, pack
Anchor Positions, Text
anchor the selection, entry widget
anchor, widget attribute
anchoring a regular expression
animation with images
animation with update 2nd 3rd
ANSI_ARGS
Any, key modifier
app-defaults file 2nd
append mode, open
append to clipboard 2nd

append to list
APPEND, open mode
append, Tcl command
AppleScript on Macintosh
applets
application activation
application and user resources
application class
application class warning
application deactivation
Application Direct URL
 /debug
 /mail
 /status
 e-mail form results.
 form handlers
 specifying content type
application embedding 2nd
Application Initialization
application name 2nd
appname, tk command operation
AppWorkspace, system color
Aqua window system, Mac OS X 2nd
arc canvas item
arccosine function
Architecture, Tcl Extension
arcsine function
arctangent function
argc, Tcl variable
args, example 2nd
args, parameter keyword 2nd
Arguments and Tcl_GetIndexFromObj, Parsing
Arguments, Main Programs and Command-Line
argv, saving for window session
argv, Tcl variable 2nd
arithmetic on text indices
arithmetic operators
array
 ArrayInvert
 collecting variables
 complex indices
 convert to list 2nd
 created with variable trace
 empty variable name
 for a Database
 for simple database
 global 2nd
 list of
 names of indices
 searching and statistics
 set from list
 syntax
 Tcl command
arrow keys

arrow on canvas
ascii, string class
asin(x), arcsine
aspect ratio, message widget 2nd
aspect ratio, of window
AssocData for per Interpreter Data Structures
Associating State with Data
asymmetric padding 2nd
Asymmetric padding in geometry managers
asynchronous I/O
asynchronous message sending, threads 2nd
atan(x), arctangent
atan2(y,x), arctangent
atime, file access time
Atom and window ID information
atom, in C
attemptckalloc
attemptckrealloc
attribute
 activeBackground
 activeBorderWidth
 activeForeground
 activeRelief
 anchor
 aspect
 background
 bitmap
 borderWidth
 button widgets
 Canvas Widget
 colormap
 colors, all
 configuring in C
 cursor
 disabledBackground
 disabledForeground
 elementBorderWidth
 entry widget
 exportSelection
 file
 foreground
 Frames and Toplevels
 geometry, old
 height
 highlightBackground
 highlightColor 2nd
 highlightThickness
 image
 insertBackground 2nd
 insertBorderWidth
 insertOffTime
 insertOnTime
 insertWidth
 justify

 Label Widget
 length
 listbox widget
 menu entries
 Message Widget
 of Fonts
 options and resources
 orient
 padX
 padY
 platform-specific window
 readonlyBackground
 relief
 Scale Widget
 scrollbar widget
 selectBackground 2nd
 selectBorderWidth
 selectColor
 selectForeground 2nd
 setgrid
 size
 spinbox widget
 text tags
 text widget
 troughColor
 types, in C
 visual
 width
 wrapLength
AUTH_TYPE, CGI environment variable
auto extracting applications
auto loading and auto_import
auto loading, description
auto, end of line translation
auto-repeat, timing control
auto_import, procedure hook
auto_index, Tcl variable
auto_mkindex_old
auto_noexec, Tcl variable 2nd
auto_noload, disable library
auto_path, Tcl variable 2nd 3rd
autoconf, configure and
autoconf, tcl.m4 file
autoconf, using
automatic decompression
automatic program execution 2nd
automatic quoting

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

B, b, in binary format
b, regular expression option
back references
background error handler
background errors
background for area covered by insert cursor
background I/O reader
background proceses, in C
background, execute in
Background, system color
background, widget attribute
backslash character, \\\\
backslash escapes in regular expressions
backslash quoting
backslash sequences 2nd 3rd
backslash-newline, in quoted string
backspace character, \\b
BackSpace key
Ball, Steve
balloon help
basic authentication using http\
 \
 geturl
baud rate, I/O channel
bd. Synonym for borderwidth.
Beasley, David
beep. [See bell.]
bell character, \\a
bell, prevent resetting screen savers
bell, Tk command
bg. Synonym for background.
bgerror 2nd
bgerror, background error handler
binaries, make target
binary
 conversion types
 data and file I/O
 data, ByteArrays
 data, pack
 data, unpack
 encoding
 end of line translation
 registry value type
 string support
 Tcl command
bind, canvas command
bind, Tk command
Bind_Display

Bind_Edit
Bind_Interface
Bind_New
Bind_Read
Bind_Save
BindDefine
BindDragto
binding
 adding to
 arrow keys
 break and continue
 button modifiers
 canvas object 2nd
 canvas selection
 canvas text objects
 class
 command to event
 continue
 destroy window
 different binding tags
 double click
 entry widget
 event syntax
 event types
 execute in the global scope
 global
 in C code
 keyboard events
 listbox
 browse selection
 extended selection
 multiple selection
 single selection
 Meta and Escape
 mouse events
 order of execution
 scale widget
 scrollbar widget
 sequence of events
 tab key
 tag, defining
 text tags
 text widget 2nd 3rd
 Tk 4.0 changes
 top-level windows
 user interface for
 window changes size
 window dragging
 X, Y coordinates
BindMark
BindSelect
bindtags, Tk command
BindYview
bit blit

bitmap
 built-in
 canvas item
 definition in C code
 for icon 2nd
 image type
 in label
 on canvas
 widget attribute
blank, in regular expressions
blinking cursor 2nd
Blob and BlobState
blob Command Example
Blob_Init and BlobCleanup procedures
BlobCommand and BlobPoke
BlobCreate and BlobDelete
BlobData and BlobN
BlobNames procedure
BlobState data structures
BLT
body, http\\
 \\
 geturl result
bold text 2nd
Bonet, Achim
book Web site
book, font weight
boolean expressions
boolean preference item
boolean, string class
borders
 3D
 are drawn in the canvas
 vs. padding, example
borderWidth, widget attribute
Borenstein, Nathaniel
bound quantifiers
bounding box, canvas
bounding box, of text
box on canvas
break, Tcl command
 bindings
Brouwers, Jean
browse selection mode, listbox
browser for the code examples
browser package aliases
Browser Plugin Compatiblity
browser Tcl plugin
browser\\
 \\
 displayForm
 displayURL
 getForm
 getURL

 getURL callbacks
 status
buffering, I/O channel
Building a List
Building Tcl from Source
built-in bitmaps
built-in commands, finding
bulleted list
button
 as event modifier
 associated with a Tcl procedure
 associated with variables
 attributes
 command
 container for 2nd
 emulate in text widget
 event option
 fixed width
 fixing a troublesome situation
 minimum width
 mouse as event modifiers
 number, mouse
 operations
 padding
 padding vs. packer padding
 problems with command
 procedures for commands
 relief attributes
 row of 2nd
 scope of command
 Tk widget
 user-defined
Button, window event
ButtonFace, system color
ButtonFrame, system color
ButtonHighlight, system color
ButtonPress, window event
ButtonRelease, window event
ButtonShadow, system color
ButtonText, system color
byte code compiler 2nd 3rd
ByteArrays for Binary Data

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

C command procedure. [See command procedure]
C Library, Using the Tcl
C Programming and Tcl
C programming with Critcl
C shell history, comparison
C variables linked to Tcl variables
C, creating commands in
C, evaluate Tcl command from
c, in binary format
c, in string format
C, Invoking Scripts from
c, regular expression option
C, Tcl_Eval runs Tcl commands from
calculating clicks per second
call by name 2nd
call stack, viewing 2nd
callbacks 2nd
 code wrapper
 idle
 into a namespace
 scope for
 socket accept
Calling C command with Tcl_Invoke
Calling Out to Tcl Scripts
canvas
 active objects
 adding tags
 arc object
 arrow
 attributes
 bindings on objects
 bindings, text object
 bitmap object
 borders obscure items
 bounding box 2nd
 C interface
 circle
 convert mouse to canvas x, y
 coordinate space
 coordinates vs. screen coordinates
 coordinates, large
 copy and paste
 dashed lines 2nd
 disabled objects
 display list
 drag object
 embedded window
 events coordinates

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_index.html#idd1e115674

 find overlapping vs. find closest
 gridded geometry
 hidden objects
 hints
 hit detection 2nd
 image object
 large scroll area
 line object
 min max scale
 moving objects
 object bindings
 object support in C
 objects with many points
 oval object
 polygon object
 postscript
 proposed improvements
 rectangle object
 resources for objects
 rotation
 scaling objects 2nd
 scroll increment
 scroll region 2nd
 selection handler example
 set or query item coordinates
 spline
 state
 stroke drawing example
 summary of operations
 tag on object 2nd
 tag persistence
 tags are not persistent
 tags vs. object IDs
 tags, logical combination
 text object attributes
 text object bindings
 text operations
 transparent text
Cap Styles, Line
Caps Lock key
CaptionText, system color
capturing program output
capturing subpatterns
caret
Caret Management for XIM/IME Support
carriage return character, \\r
carriage-return line-feed translation
cascaded menus
case. [See switch.]
catalog files
 managing message
 sample message
catalogs, message
 namespaces and

catch
 catching more than errors
 errors from open
 example 2nd
 possible return values
 Tcl command
cavity model, pack
cd, Tcl command
cd, Tcl command, multi-threaded scripts and
CDE Border Width
ceil(x), next highest integer
cells in colormap
center, anchor position
centering a window
centimeters
cget, widget operation 2nd
CGI
 Application, Guestbook
 argument parsing
 definition of
 Directories
 environment variables 2nd
 example script
 html package
 ncgi.tcl package
 script library for
Cgi_Header
Cgi_Parse and Cgi_Value
Chained conditional with elseif
change directory
changing a list variable
Changing Command Names with rename
changing the system encoding
changing widgets 2nd
channel [See input/output]2nd [See input/output]
 drivers, I/O
 flush I/O
 stacking
 threads and 2nd
character
 class names
 classes in regular expressions
 code 2nd
 from strings
character set 2nd
 conversions
 encoding 2nd 3rd
 of URL
checkbutton, Tk widget
child windows
children, of namespace
choice preference item
choosing items from a listbox
choosing the parent for packing

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_index.html#idd1e17413
file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_index.html#idd1e17413

Chopping File Pathnames
circle, canvas object
Circulate, window event
CirculateRequest, window event
ckalloc 2nd
ckfree
ckrealloc
class
 application
 application, warning
 event binding
 of application
 resource 2nd
 widget
clean, make target
clear clipboard
clear photo image
clear the selection
clicks per second
clicks, clock operation
client machine, window session
client of HTTP
client of the echo service
client side of remote evaluation
client sockets 2nd
ClientData
Clipboard access
CLIPBOARD selection 2nd
clipboard, Tk command
clock formatting keywords
clock seconds
clock widget
Clock widget data structure
clock, Tcl command
Clock_Init procedure
ClockCmd command procedure
ClockConfigure allocates resources for the widget
ClockDestroy cleanup procedure
ClockDisplay procedure
ClockEventProc handles window events
ClockInstanceCmd command procedure
ClockInstanceObjCmd command procedure
ClockObjCmd command procedure
ClockObjConfigure, Tcl_Obj version
ClockObjDelete command
clone, menu operation
close a window
close errors from pipes
close window callback
close, Tcl command
Closing I/O channels
cntrl, in regular expressions
code checker
code generation

code, procedure for callbacks
code, read the Tcl source 2nd
Codes from Command Procedures
coding style
collating elements
color
 allocating in C
 attributes
 convert to number
 darker color
 dialog to choose
 exhaustion
 name
 of text
 palettes
 resource names 2nd
 reverse video
 RGB specification
 Tk 4.0 new attributes
 values
 values, in C
colormap
 allocation
 cells
 command-line argument
 event
 for frame
 in C
 size of default
 widget attribute
columnbreak menu attribute
columns of widgets
columns, uniform size
com port
combobox [See spinbox.]
comm communication package, tcllib
comm extension
command
 abbreviations
 aliases for safe interpreters
 aliases, saving as Tcl commands
 body
 build with list
 built-in, finding
 buttons
 C interface, String
 C interface, Tcl_Obj
 call with Tcl_Invoke
 callbacks
 complete Tcl command
 creating and deleting
 defined by a namespace, listing
 evaluate from C
 evaluation

 example, blob
 for entry widget
 from C using Tcl_Eval
 hidden from safe interpreters
 history 2nd
 http\\
 \\:geturl option
 implement in C 2nd
 list-related
 lookup
 on radiobutton or checkbutton
 parsing in C
 passing variable names
 prefix callbacks
 reading commands
 substitution
 syntax
 that concatenates its arguments
 that uses regular expressions
Command key, Macintosh
command line arguments
command procedure 2nd
 and Data Objects
 BlobCmd
 call with Tcl_Invoke
 RandomCmd
 RandomObjCmd
 Result Codes from
Command tracing
command-line
 argument
 colormap
 display
 geometry
 name
 sync
 to Wish
 use
 visual
 arguments 2nd 3rd 4th
 arguments, in C
 arguments, main programs and
 parsing
comments
 in line
 in regular expressions
 in resource file
 in switch
Communicating Processes
compare, string command
Comparing file modify times
Comparing strings 2nd 3rd
comparing text indices 2nd
comparison function, sorting a list

compatibility, regular expression patterns
Compile-Time Errors
compiler, byte code
compiler, make sure you have a working
compiler, Microsoft Visual C++
compiler, Tcl Dev Kit
Compiling Tcl and Extensions
compiling Tcl and extensions
 multi-threaded support
complex indices for arrays
compound attribute to display text and image
compound, widget attribute
Computing a darker color
concat and eval
concat and lists
concat, list, double quotes comparison
concat, Tcl command
concatenate strings and lists
condition variables 2nd
 standard use 2nd
conditional, if then else.
config/plugin.cfg file
configure
 and autoconf
 flags, Standard
 macros are hard
 widget operation 2nd
 window event
Configure, window event
configure.in 2nd
ConfigureRequest, window event
configuring
 attributes, in C 2nd
 read-write channels
 Security Policies
 widget attributes 2nd
 window, in C
 windows
conflict between namespace and global variables
Connect client to an eval server
connect, socket
connection state, TclHttpd
console, Tcl command 2nd
CONST in the Tcl 8.4 APIs
constructing code with the list command
Constructing Lists
constructing procedures dynamically
containers. [See frame.]
containing window
content type for Application Direct URL
Content-Encoding for URL
Content-Type of URL
CONTENT_LENGTH, CGI environment variable
CONTENT_TYPE, CGI environment variable

Contexts, Graphics
continue in bindings
continue, Tcl command
 bindings
Control key event
Control Structure Commands
control, string class
controlling terminal
conversion types, binary
conversions between encodings
Conversions, Character Set
conversions, string format
convertfrom, encoding
Converting Between Arrays and Lists
converting existing packages to namespaces
Converting Numbers
convertto, encoding
cookie, HTTP, setting in TclHttpd
coordinate space, canvas
coordinates of mouse event
coordinates, general
Coordinates, Window
copy and paste
copy image area
Copy options for photo images
Copy, virtual event
Copying Files
corner grips
correct quoting with eval
cos(x), cosine
cosh(x), hyperbolic cosine
counting with regsub
covering a window with place
Cox, Christopher
cr, end of line translation
CREAT, open mode
create
 commands in C
 directories
 elements in a hash table
 file pathnames
 file, open
 hash tables in C
 hierarchy of interpreters
 image types in C
 interpreter in C
 interpreter in scripts
 interpreters
 interpreters in C
 loadable package
 Starpack
 threads 2nd
 window event
 windows in C 2nd

Critcl, tool for mixing C and Tcl
crlf, end of line translation
cross-platform
 cancel event
 clipboard
 file naming
 scripts
 virtual events
ctime, file change time
curly braces
 group arguments to eval with
 positioning is important
 stripped off
 vs. double quotes
current directory
 multi-threaded scripts and
current, namespace
cursor
 blinking 2nd
 entry widget
 in C
 mouse
 text insert
 widget attribute
 widget option in C
Custom Dialogs
cut and paste
Cut, virtual event
CVS repository for Tcl software
Cygwin UNIX environment for Windows

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

d, in binary format
d, in string format
Darley, Vince
dashed lines, canvas
data encapsulation
data in a Metakit view
Data Objects, C Command Procedures and
Data Structures with Arrays
Data Structures, AssocData for per Interpreter
data transformation
Data, Using Tcl_Preserve and Tcl_Release to Guard
data-driven user interface
database
 Metakit
 ODBC
 simple in-memory 2nd
 using the resource
date formatting
date parsing
date, getting current
day, %d
DDE Extension
Deactivate, window event 2nd
debug URL for TclHttpd
Debug, procedure
debug, text widget
debugger and TclHttpd
debugger, Tcl Dev Kit
debugging
debugging Tk applications with tkinspect
declaring variables 2nd
decoding HTML entities
decoration, window
default button
default parameter values
defining new binding tags
delete
 characters in entry
 commands in C
 files
 interpreter
 interpreters in C
 list element by value
 menu items
 namespace
 text in text widget 2nd 3rd
 the section
demibold, font

depend, make target
depth, screen
destroy
 hash tables
 no errors
 Tk command
 widget
 window
 window event 2nd
detached window
Determining if an image is used
dev, file attribute
dialog
 buiding with procedure
 custom
 data-driven approach
 message for
 simple example
 to make choice
 window for
dictionary search rules
dictionary. [See array.]
digit, in regular expressions
digit, string class
directory
 create
 current
 file test
 for packages
 structure, installation
 structure, Tcl source
 Tcl script from C
directory selection dialog
disabled canvas objects
disabled entry
disabledForeground, widget attribute 2nd 3rd
DisabledText, system color
disabling the library facility
display list graphics
display space, with pack
display, command-line argument
Display, Fonts and Text
Displaying Both Text and an Image in a Widget
distclean, make target
distribution, Tcl source code
dither image
dlineinfo, text operation
DLL, loading into Tcl 2nd
DLLEXPORT
DNS client
doc, installation directory
doc, make target
Doc_AddRoot
Doc_CheckTemplates

Doc_Coookie
Doc_Dynamic
Doc_Error sock
Doc_ErrorPage
Doc_IndexFile
Doc_IsLinkToSelf
Doc_NotFound
Doc_NotFoundPage
Doc_PublicHtml
Doc_Redirect
Doc_Root
Doc_SetCookie
Doc_Subst
Doc_TemplateInterp
Doc_TemplateLibrary
Doc_Webmaster
document root, TclHttpd 2nd
document type handler, TclHttpd
DOCUMENT_ROOT, CGI environment variable
dollar sign syntax
DOS to UNIX
double click
double quotes
 and eval
 compared to concat and list
 vs. curly braces
double(x), convert to floating point
Double, event
double, string class
Double-click, warning about
downloading files with http\
 \
 geturl
dp_send, Tcl command
drag object on canvas
drag out a box
drag out a selection
drag windows, bindings
drag-and-drop
drawing application, ImPress
Drivers, I/O Channel
DString interface 2nd
Duffin, Paul
dummy comment
dump, text operation
dword, registry value type
dword_big_endian
Dykstra, Dave
Dynamic HTML, CGI
dynamic linking 2nd
Dynamic Loading and Packages
Dynamic Strings, DString

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

e or E, in string format
e, anchor position
e, regular expression option
e-mail application, exmh
e-mail, sending from TclHttpd
echo server, multi-threaded example
echo service, example
EchoArgs
edit bindings for canvas text
editable text
Effective Tcl/Tk Programming, book
elementBorderWidth, widget attribute
else. [See if.]
elseif. [See if.]
Emacs-like binding for Meta and Escape
embed_args and plugin, variables
embed_args, Tcl variable
embedded
 application in window
 applications
 images for a bulleted list
 images in text
 options, the (?x) syntax
 Tk windows
 widgets in text
 window in frame
 window on canvas
Employee DB example
Empty Array Names
encoding
 binary
 changing the system
 character set, in C
 character sets
 conversions between
 fconfigure option for character sets 2nd
 for X font
 I/O channels
 scripts in different
 system
 Tcl command 2nd
end-of-file
 character
 condition
 makes a channel readable
end-of-line
 character 2nd
 translations

engineering manual, Tcl
Enter, window event
entry
 adjust selection
 attributes
 binding to commands
 bindings
 blinking cursor
 changes in Tk 4.1
 get the contents
 hidden value for password
 indices
 insert string
 long strings in
 move cursor 2nd
 operations
 read only state
 read-only
 scrolling
 state
 tips for use
 Tk 4.0 changes
 Tk widget
 validating contents
 variable for value
 with label
entrycget, menu operation
entryconfigure, menu operation
env, Tcl variable to hold environment
Environment Variables
environment variables
 CGI
 multi-threaded scripts and
eof channel
eof, Tcl command
eq, string comparison
equal sized widgets, grid
equal, string command
EqualSizedLabels
equivalence classes
errno
error
 background, in Tcl
 catching
 errorCode, variable
 errorInfo, variable 2nd
 fconfigure option
 from return
 handler for Tk
 http\\
 \\:geturl result 2nd
 information in C
 reporting script
 Tcl command

 thread error handling 2nd 3rd 4th
 X protocol
Escape key
eval
 and double quotes
 example 2nd
 in aliases
 in namespace 2nd
 server
 server for remote evaluation of code
 Tcl command
 user input
 wrapper procedure example
Evaluating Expressions from C
Evaluating Tcl Commands from C
event
 % keywords summary
 bindings
 bindings, in C
 for Tk-Based Window Managers
 generating 2nd
 handler, in C
 handler, resize in C
 keywords
 modifier
 sequences
 syntax, bindings
 text is selected
 text widget is modified
 Tk command
 types, binding
 virtual
event loop
 event sources
 I/O handler
 implementation
 in C, Timer
 in C, Window
 in tclsh
 interface
 moves from Tk to Tcl
 threads and
event-driven programming
Examining a Metakit database
Examining the File System
example browser
Example Plugins
Example, The blob Command
exception. [See catch.]
exceptions
EXCL, open mode
exclusive open
exec
 ExecLog procedure

 limitations on Windows
 syntax for I/O redirection
 Tcl command for running programs
executable, is file
execute programs automatically
executing programs
execution environment
exists, array command
exists, interp operation
exit
 command alias
 handlers
 hidden command
 multi-threaded scripts and
 Tcl command
exmh, e-mail application
exp(x), exponential
expand vs. fill, with pack
expand, more than one widget
expand_sz, registry value type
expanded regular expressions allow comments
Expanding Tilde in File Names
expanding variables in resources
Expect
Expect, Tcl extension
Exploring Expect, book
exponential function
export from namespace
exporting and importing procedures
exportSelection, widget attribute
expose, interp operation
Expose, window event
expr, Tcl command
expressions
 and string matching, regular
 evaluating
 from C code
extend a selection
extended selection mode, listbox
extension
 architecture, Tcl
 compiling
 many bundled in kitten Starkit
 multi-threaded scripts, using in
 of file name
 the programming sample
EXTERN

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

f, in binary format
f, in string format
false, string class
family, font
fblocked, Tcl command
fconfigure
 changes in Tcl 8.0
 changes in Tcl 8.1
 changes in Tk 4.1
 file encodings and
 Tcl command
fcopy
 and channel encodings
 HttpCopyDone example
 Tcl command
feedback, to user
fg. Synonym for foreground.
fifo, special file
file
 64-bit support
 atime, access time
 attributes 2nd
 base name
 change modify time
 change name
 channel names
 compare modify times
 copy
 current script
 delete
 dialogs
 directory create
 encodings and fconfigure
 end of line character
 end-of-file
 equality test
 exists test
 extension
 fifo
 find by name
 finding with info script
 for image
 for preferences
 handlers, in C
 hidden command
 I/O and Binary Data
 in a simple Starkit
 is executable

 is plain
 join pathnames
 limited access with safe interp
 lstat
 mkdir
 mtime, modify time
 multiple threads accessing
 name change
 name manipulation
 name manipulation in C
 name patterns
 native name
 of widget attributes
 open dialog
 open for I/O
 operations added in Tcl 7.6
 ownership
 partial re-write
 pathname type
 read line by line
 read symlink value
 readable test
 rename
 rootname
 size
 split pathnames
 stat
 stat, array elements
 symbolic and hard link
 symbolic and hard links
 symbolic link
 tail
 Tcl command
 tilde in names
 type
 writable test
file selection dialog
file system interface, VFS
File System, Examining the
File_Process
fileevent and end of file
fileevent, Tcl command 2nd
fill vs. expand, with pack
find file by name
find related files
find text in widget
finding files with info script
first, string command
Fixed-Width Button Support on Windows Systems
flat, relief
floor(x), next lowest integer
flush, Tcl command
Flynt, Clif
fmod(x,y), floating point modulo

focus
 and dialogs
 changes from keyboard traversal
 event generation and
 event option
 events
 grab
 grab, tkwait sequence
 grabbing the focus
 highlight 2nd
 highlight color
 introduction
 model of window
 tab binding
 Tk 4.0 changes
 Tk command
 tk_focusNext
focus, input
FocusIn, window event
FocusOut, window event
font
 actual
 and text attributes
 attributes of
 command summary
 creating named
 failure to find
 fall back to fixed
 family or typeface
 in C code
 measure
 metrics
 missing
 names
 platform-independent
 resource
 scaling size
 selection dialog 2nd
 selection example
 selection program, Unix
 system
 Tk command
Fontain, Jean-Luc
FontWidget handles missing fonts
for loop, example
for, Tcl command
foreach, multiple loop variables
foreach, Tcl command
foreground, widget attribute
forget namespace import
forget, package operation
form
 and processing form data, HTML
 data, TclHttpd

 feed character, \\f
 handlers
 HTML with browser\\
 \\:getForm
 newguest.html
 self-checking HTML
 with entry widgets
format date and time
Format flags
Format Templates
format text with message widget
format, Tcl command 2nd
Formatting strings
foundry, font
frame
 as container 2nd
 attributes
 colormap
 nested for packing
 packing example
 positioned on canvas
 reparented
 size
 Tk widget
free
FTP access, via VFS
FTP client
FTP server
full screen
function definition. [See procedure]

[Team LiB]

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_4ektyc/js37f9_pdf_out/0130385603_index.html#idd1e7558

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

g or G, in string format
gamma value
generating events 2nd
geometry
 command-line argument
 gridding
 gridding, canvas 2nd
 gridding, listbox
 management in C
 manager
 canvas
 pack 2nd
 panedwindow
 place
 text
 manager, name
 of widget
 of window
 old attribute
 propagation, turning off
GET, HTTP protocol
gets, Tcl command
gid, file attribute
GIF
glob options added in Tcl 8.3
glob, string matching
glob, Tcl command 2nd
global arrays 2nd
global binding
global command goes inside a procedure
global scope and the variable command
global, Tcl command
goto
Grab Can Fail
grab, Tk command
Grabbing the Focus
graph, in regular expressions
graph, string class
Graphic Protocol Errors, Handling
Graphical Applications with Tcl & Tk, book
graphics context 2nd
gravity of text marks 2nd
Gravity, window event
GrayText, system color
grid
 -ipadx and -ipady
 -padx and -pady
 added in Tk 4.1

 asymmetric padding
 basic example
 changes in Tk 4.2
 changes in Tk 8.0
 command summary
 external padding
 internal padding
 minimum size
 multiple widgets in a cell
 options
 pack, combining with 2nd
 panedwindow and
 resize behavior
 row and column constraints
 row and column padding
 row and column span 2nd
 row and column specifications
 sticky settings 2nd
 text widget and scrollbar
 Tk command 2nd
 uniform rows and columns
 weights
 window under mouse, query
gridded geometry
gridded geometry for a canvas
gridded geometry, in C
gridded, resizable listbox
griddied geometry for a listbox
grips on corners
groove, relief
group file ownership
group leader, window
group your patterns with curly braces
grouping rules
guard data with, Tcl_Preserve and Tcl_Release
Guestbook CGI Application
guestbook.cgi 2nd 3rd

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

H, h, in binary format
handlers
 exit
 file
 graphic protocol errors
 window events
hard and symbolic links
hard link, file
Harrison, Mark 2nd
hash table
 creating and destroying
 creating and removing elements
 package, in C
hbox, window layout
HEAD, HTTP
Header Files, Standard
height
 event option
 of widget
 virtual root window
 widget attribute
height, of image
Hello, World! Tk program
Hello, World!, canvas example
Help menu
help pop-up
hexadecimal string
hidden
 canvas objects
 commands
 commands, exposing
 field
 file attribute
 text
hide, interp operation
high resolution timer
Highlight, system color
highlightBackground, widget attribute
highlightColor, widget attribute 2nd
HighlightText, system color
highlightThickness, widget attribute
HINSTANCE, Windows application handle
history syntax, Tcl
history, command
history, Tcl command
hit counts, TclHttpd
hit detection, in canvas
Hobbs, Jeff 2nd 3rd

horizontal and vertical layout, nested
horizontal fill in a menu bar
horizontal window layout
hostname
Hot Tip
 abbreviate history commands
 append is efficient
 args and eval
 array elements on demand
 array for module data
 attribute resource names
 Big lists can be slow
 bind callback is in global scope
 borders, padding, and highlight
 braces get stripped off
 bugs in transferring sockets between threads
 button command procedures
 canvas borders obscure features
 canvas hints
 canvas stroke example
 canvas tags are not persistent
 careful file open
 color, convert to RGB
 combining pack and grid 2nd
 comments at the end of line
 comments in switch
 configure tags early
 create managed widgets as children of a panedwindow
 curly brace placement
 detecting windowing system
 do not declare Tcl variables
 double-click warning
 embedding applications
 end-of-file makes a channel readable
 entry, displaying end of string
 errors on close
 eval and double quotes
 exit kills all threads
 expr is unreliable for string comparison
 find file by name
 find overlapping vs. find closest
 font, fall back to fixed
 global inside procedures
 grab can fail
 grid weights when shrinking
 group command bodies with braces for safety
 group expressions with braces
 group expressions with braces for performance
 grouping before substitution
 I/O operations and fileevent
 labels that change size
 list handling in C code
 list with foreach
 list, after, and send

 main thread must be the last one to terminate
 menu accelerator, consistent
 menu index pattern
 message text layout
 mouse cursors, all shown
 name of the current interpreter 2nd
 namespace import takes a snapshot
 only exported names appear in package indexes.
 open a process pipeline
 pack the scrollbar first
 packing widgets to a side
 parentheses do not group
 partially qualified names can refer to two different objects.
 pipelines and error output
 procedures to hide list structure
 quotes lose list structure
 resources, general patterns first
 result string, managing in C
 Scotty extension supports many network protocols
 scrollbar for two listboxes
 scrolling widgets on a canvas
 send requires X authority
 send, constructing commands
 single round of interpretation
 size not set until mapped
 standard I/O channels in multi-threaded scripts
 string conversions by expr
 synchronous messages can deadlock multi-threaded scripts
 Tcl_Eval may modify its string
 Tcl_Obj initial reference count is zero
 text mark gravity
 The list command does automatic quoting
 thread\
 \:join blocks
 threads might not start immediately after creation
 tkwait on global variable
 traces on entry values
 trapping errors from pipelines
 update, using safely
 Upvar aliases do not work
 Use arrays to collect related variables
 use canvas tags instead of IDs
 variable for widget name
 virtual root window coordinates
 Watch out for long pathnames
 widget data, safety in C
 window session protocol
 window size, getting correct
hour, %H
how auto loading works
HTML
 A Quick Introduction
 comments, removing
 Dynamic Pages

 entity decoder
 form data mapped to procedure arguments
 form, self-checking
 Page, Beginning
 simple parser
 tags, partial list
 Tcl template file 2nd
 templates, for site structure
 templates, form handlers
html package, tcllib 2nd
Html_DecodeEntity
Html_Parse
http
HTTP download
http package
HTTP, network protocol
http\
 \
 cleanup
 config
 formatQuery
 geturl
 register
 reset
 unregister
http\\
 \\
 cleanup
 code 2nd
 data
 error
 geturl
 geturl options
 geturl state array
 size
 status
 wait
HTTP_ACCEPT, CGI environment variable
HTTP_AUTHORIZATION, CGI environment variable
HTTP_COOKIE, CGI environment variable
HTTP_FROM, CGI environment variable
Http_Get fetches the contents of a URL
Http_Head validates a URL
HTTP_REFERER, CGI environment variable
HTTP_USER_AGENT, CGI environment variable
HttpCopyDone is used with fcopy
Httpd_Error
Httpd_Redirect
Httpd_ReturnData
Httpd_ReturnFile
Httpd_SelfUrl
HttpGetText reads text URLs
HTTPS URL access
HWND, Windows identifier

hyperbolic cosine function
hyperbolic sine function
hyperbolic tangent function
hypot(x,y), hypoteneus

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

I, i, in binary format
i, in string format
i, regular expression option
I/O Channel Drivers
I/O events, in C 2nd
icon
 bitmap 2nd
 name
 position
 window for
icon bitmap for toplevels
ID Management, X Resource
Identifiers (UIDS), String
idle events, in C 2nd 3rd
if, Tcl command
image
 and namespaces
 and text in a widget
 C interface 2nd
 C interface, photo
 clear
 command summary
 copy
 create options, in text
 determine if used
 dither
 in text widget 2nd
 load from file
 masks
 on canvas
 save to file
 Tk command
 transparency
 widget attribute
IME
IME windows
Img Tk extention for image formats
Implementing join in Tcl
import from namespace
import takes a snapshot, namespace
importing and exporting procedures
ImPress, drawing application
in regular expressions 2nd
in string match
InactiveBorder, system color
InactiveCaption, system color
InactiveCaptionText, system color
inch, screen measurement

include, directory
incr procedure, improved
incr Tcl From The Ground Up, book
incr Tcl From The Ground Up, book[]
incr Tcl object system
incr Tcl, object system
incr, Tcl command 2nd
increment a variable
index
 a character, entry widget
 canvas text object
 entry widget
 modifiers for text widgets
 of loadable packages
 of menu item
 string operation
 text widget 2nd
indices, listbox widget
infinite loop
info hostname
info script, finding files relative to
info, Tcl command
InfoBackground, system color
InfoText, system color
init.tcl, location during startup
initialization
 application
 extension
 of Tcl
 procedure, for a package
ino, file attribute (inode)
input data into Tcl lists
input focus 2nd 3rd
input focus highlight
input/output
 binary data
 channel properties 2nd
 channels, stacking
 command summary 2nd
 configuration
 events, in C
 from C
 from safe interpreters
 redirection
inscope, namespace operation
insert
 items into menu
 position, setting entry
 string into entry widget
 text in text widget 2nd
insertBackground, widget attribute 2nd
insertBorderWidth, widget attribute
insertOffTime, widget attribute
insertOnTime, widget attribute

insertWidth, widget attribute
Inspector, Tcl Dev Kit
install, make target
install-binaries, make target
install-doc, make target
install-libraries, make target
Installation Directory Structure
Installation, Tcl
int(x), truncate to integer
integer, string class
integrating TclHttpd with your application
interactive command entry
interactive command history
interactive resize
interactive, detecting
Interface, DString
Interface, String Command
Interface, Tcl_Obj Command
internal padding, -ipady
internationalization
Internationalization 2nd
Internet Explorer
interp, for TclHttpd
interp, Tcl Command
interpreter
 creating
 creating in C
 data structures, AssocData
 exists test
 hierarchy of
 internal state
 name as a command
 namespaces and
 registry of names
 thread-enabled
 tracing commands in C
interprocess communication. [See send.]
intranet applications, Tcl plug-in
Introduction to HTML
introspection
introspection, with pack
invoke menu item from program
invokehidden, interp operation
Invoking Scripts from C
IP address, TclHttpd
IRC client
is, string command
iso8859, fonts
issafe, interp operation 2nd
italic text 2nd
itcl, object-oriented Tcl
iterator in Tcl, creating new 2nd

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

Jacl, Tcl interpreter in Java
Java
Java Tcl Interpreter, Jacl
Javascript
Javascript, access from Tcl plug-in
Johnson, Eric
join in Tcl, Implementing
Join Styles, Line
join, file names
join, Tcl command
joinable threads 2nd
JPEG image format
justify
 in text widget 2nd
 string
 text in C
 widget attribute

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

Keeping References to Tcl_Obj Values
Kenny, Kevin
keyboard
 bindings and focus
 event, generate
 events
 focus traversal
 grab 2nd
 Key events
 map
 selection, menu
 shortcuts and focus
KeyPress, window event
 Key, window event
KeyRelease, window event
keysym
 keyboard symbol
 what is generated by your keyboard
kitten extension bundle, Starkit
Kupries, Andreas

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

label
 and an entry
 arranging
 attributes
 displaying different strings
 lining up 2nd
 multiline
 size
 state
 Tk widget
 width and wrap length
labelframe
 attributes
 Tk widget
Landers, Steve
lappend, Tcl command
lassign, list assignment with foreach.
last, string command
Layout attributes for text
ldelete, Tcl procedure
Leave,window event
length, string command
length, widget attribute
Lewis, Brian
lf, end of line translation
lib, directory
Libes, Don 2nd 3rd 4th
libraries make target
library
 and imported commands, loading
 based on the tclIndex File
 directory, Tcl
 how it works
 index
 introduction
 of procedures
 regular expression C
 search path
 shared
 Tcl C 2nd
 Tk C
 using stubs
light font
limit recursion depth
Limitations of exec on Windows
limited socket access
limited temporary files
lindex, Tcl command 2nd

Line Cap Styles
Line Join Styles
line on canvas
line segment performance
line spacing in text widget
link, registry value type
linked listboxes
linking, dynamic
links, symbolic and hard
linsert, Tcl command
list
 accessing nested
 and concat
 append elements
 assignment into
 automatic quoting
 command summary
 comparison with double quotes and concat
 constructing commands 2nd 3rd 4th 5th 6th
 convert to array
 delete by value
 efficient modification
 eliminating duplicate values
 extract element
 find matching element
 generating Tcl commands
 implement a stack
 insert elements
 join into string
 length of
 manipulation in C code 2nd
 modifying
 nested lists and lset
 of arrays
 performance of
 quote arguments to send
 replace elements
 searching
 sorting
 splice together
 split string into
 sublist
 summary of operations
 syntax
 Tcl command
 with foreach
 with interp eval
list example
listbox
 attributes
 bindings
 browse selection
 disabled state
 extended selection

 geometry gridding
 indices
 linked
 multiple selection
 operations
 pair of
 pair working together
 scroll bindings
 selecting items
 selectMode attribute
 single selection
 state
 Tk 4.0 changes
 Tk widget
 virtual events
 with optional scrollbars
listen, sockets
listing commands defined by a namespace
llength, Tcl command
load
 automatic package
 changes in Tk 4.1
 hidden command
 into slave interpreters
 pkg_mkIndex option
 shared libraries
 Tcl Command
 Tcl command 2nd
 tclIndex file
loadable package, creating
loadable package, initialization
loading option database files
loading package
 programming API
locale, specifying a
locate your script files, trick to
locating packages, auto_path variable
locating the Tcl script library
location of icon
location of window
Lock, caps lock
log files, TclHttpd
Log Procedure
log(x), logarithm
log10(x)
logging
 multi-threaded example
logging the output of a program
look-ahead in regular expressions
looking at all widget attributes
looking at marks
looking at tags
lookup, command
loop

 break & continue
 event
 for
 foreach
 reading input
 while
LoVerso, John
lower case conversion
lower, in regular expressions
lower, string class
lower, Tk command
lrange, Tcl command
lreplace, example
lreplace, Tcl command
lsearch, Tcl command
lset, Tcl command
lsort, changes in Tcl 8.0
lsort, Tcl command

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

m, regular expression option
Mac OS X Aqua, window system
Macintosh
 Apple menu
 auto_path
 Classic and Aqua windowing systems
 command key
 file types
 look and feel
 serial devices
 shared libraries
 shared library location
 source Tcl from resource
 system colors
 system font size
 unsupported1 Command
 window styles.
 zoom, full
Mackerras, Paul
MacWindowStyle
mail, sending from TclHttpd
main program
 Command-Line Arguments
 Tcl_AppInit, Tcl
 Tk_AppInit, Tk
main thread, terminating
Makefile targets, TEA standard
Makefile Templates
Makefile.in 2nd
man, installation directory
managing
 bitmaps
 geometry
 global state
 message catalog files
 Tcl_Obj reference counts
 the result string 2nd
 user preferences
 X resource id
manipulating
 file names
 files and directories
 menus and menu entries
 Tcl variables
manual, on-line
map, string command
Map, window event 2nd
Mapping Strings

mapping windows for display
MapRequest, window event
mark gravity, text
mark position in text 2nd
marktrusted, interp operation
match, string command
matching
 characters
 file names with glob
 precedence
 regular expressions and string
math
 64-bit
 expressions
 functions, built-in
 functions, querying
math functions, built in
 trig functions
maximum size, window
McLennan, Michael 2nd 3rd
Measurements, Screen
medium, font weight
Memory Allocation
memory, Tcl command
memory, Tcl Command
menu
 accelerator 2nd
 accelerator linked to bindings
 add items
 apple
 attributes for entries
 attributes for widget
 button for
 by name package
 cascade
 cascaded menu helper procedure
 clone for tearoff
 define with resource database
 delete items
 entries via resources
 entry index keywords
 example of different types
 example, screen shot
 help
 invoke action from script
 keyboard selection
 menubar
 menubuttons
 multicolumn
 multicolumn palette
 operations on entries
 packing a menubar
 pop-up
 post on screen

 system
 system color
 tear off
 Tk widget
 unpost from display
 user defined
 virtual events
MenuActive, system color
MenuActiveText, system color
menubutton, Tk widget
MenuDisabled, system color
MenuGet maps from name to menu
MenuText, system color
message
 arranging text
 attributes
 formats long lines of text
 text layout
 Tk widget
Message Box
message catalogs
 example
 managing
 namespaces and
Meta key 2nd
Metakit
 adding data to a view
 an embedded database
 creating a view or table
 data model
 examining data
 selecting rows
 tables and views
microsecond precision for time
Microsoft VC++ compiler
Microsoft Word special characters
millimeters
MIME type
min max scale, example
minimize, window operation
minimum button width
minimum size, pane in panedwindow
minimum size, window
minimum widget size, with grid
minute, %M
missing font
mkdir, make directory
Mod, general event modifier bit
mode, file attribute
Modified, virtual event
modifiers, event
modify time, file attribute
modifying a list 2nd
Modifying Tcl_Obj Values

module data
module prefix for procedure names
module support
month, %B
Motion, window event
Mounting VFS
mouse
 button repeat control
 coordinates
 cursor
 cursor on Windows
 cursors
 event coordinates
 event, generate
 events
 moving
 warping
MouseWheel event
MouseWheel, window event 2nd
move cursor, entry widget 2nd
moving the mouse
msgcat package 2nd 3rd
msgcat\
 \
 mcunknown
msgcat\\
 \\
 mc
 mcload
 mclocale 2nd 3rd
 mcpreferences
 mcset locale
 mcunknown
mtime, file attribute
multi-threaded Tcl scripts. [See threads.]
multi_sz, registry value type
multicolumn palette menus
multiline labels
multiple
 foreach loop variables
 interpreters
 interpreters and Safe-Tcl 2nd
 loop variables with foreach
 return values
 selection mode, listbox
 value lists with foreach
multiway branch, switch
mutexes 2nd

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

n, anchor position
n, regular expression option
name
 command-line argument
 giving out yours
 manipulating file
 namespace syntax
 of all interpreters
 of atom
 of color
 of current interpreter 2nd
 of encoding
 of fonts
 of geometry manager for window
 of I/O channels
 of images
 of interpreter, in C
 of interpreter, send 2nd 3rd
 of packages
 of procedure
 of text marks
 of variable
 of widgets
 on icon
 qualified namespace
 quirks in namespaces
 window server
Named Fonts
namespace
 added in Tcl 8.0
 and upvar
 callbacks and
 check if one exists
 converting packages to use
 efficient variable references
 import takes a snapshot
 listing commands
 message catalogs
 name manipulation
 nested
 original
 Tcl command
 uplevel, and
 using
 variables
 widgets, images, and interpreters
Native Buttons and Scrollbars
native file name

native look and feel
Native Menus and Menubars
ncgi package 2nd
ne, anchor position
ne, string comparison
nested frames
nested lists
nested namespaces
Netscape Navigator
network programming
network server
Network Sockets
networking extensions, tcllib
New Image Types, Creating
newguest.cgi script 2nd
newguest.html Form
newline character
newline sensitive matching
Newline Translations
Newman, Matt
Nichols, David
Nijtmans, Jan 2nd
nlink, file attribute
NNTP client
NO_CONST
NOCTTY, open mode
NONBLOCK, open mode
nonblocking I/O 2nd
none, registry value type
nongreedy quantifiers
normal, font
Numbers, Converting
numeric value, widget for
nw, anchor position

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

o, in string format
Object Support, Canvas
Object Types, Primitive
Object Types, String
object-oriented, incr Tcl
objects with many points
Objects, C Command Procedures and Data
Objects, Tcl
ODBC
offRelief, widget attribute
on-line manual
open
 a window
 a window, binding
 catching errors from
 client socket with a timeout
 connection to an HTTP server
 file dialog
 file for an unsafe interpreter
 file for writing
 files for I/O
 Process Pipeline
 server socket
 Tcl command
operators, arithmetic
option database. [See resource.]
option menus
Option Processing
option, Tk command
optional scrollbars
Options to the standard file dialogs
options vs. attributes vs. resources
Oracle
OraTcl
Order, Window Stacking
Organizing source into packages
orient, widget attribute
original namespace
Ousterhout, John 2nd 3rd
oval, canvas object
overRelief, widget attribute
override redirect
ownership, file

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

p, regular expression option
pack
 asymmetric padding
 binary data
 command options
 display space
 expand vs. fill
 grid, combining with 2nd
 into other relatives
 nested frames
 order of children
 packing order 2nd
 packing space and display space
 padding
 padding vs. button padding
 panedwindow and
 resizing windows
 scrollbars first
 space for
 Tk 4.0 changes
 Tk command
 unexpected results
package
 convert to namespaces
 creating a loadable
 directory
 dynamic loading
 html
 implemented in C code
 index
 index file
 initialization in C
 ncgi 2nd
 Tcl command 2nd
 version numbers
 versions, comparing
packaging sources in starkits
padding
 and anchors
 around widgets
 asymmetric 2nd 3rd
 button vs. packer
 in buttons
 widget
padX, widget attribute
padY, widget attribute
page array, TclHttpd
page layout application

palette menus
pane manager
Pane_Create sets up vertical or horizontal panes
PaneDrag adjusts the percentage
panedwindow
 adding panes
 attributes
 creating managed widgets
 minimum pane size
 operations
 orientation of panes
 pane order
 positioning pane contents
 removing panes
PaneGeometry updates the layout
parameters, variable number of
parent
 directory
 for pack
 namespace
 window 2nd 3rd 4th
Parentheses are not a grouping mechanism
parity, serial interface
parsing
 arguments
 arguments and Tcl_GetIndexFromObj
 command-line arguments
 Tcl commands in C
 URLs
pass by reference
Passing Arrays by Name
password entry, hidden value
password, prompting for
paste
 canvas example
 PRIMARY or CLIPBOARD selection
 selection at the insert cursor
 virtual event
PATH_INFO, CGI environment variable
PATH_TRANSLATED, CGI environment variable
pathname from window ID
pattern match
 glob, file name match
 glob, string match
 menu entries
 resource database
 switch command
 URL regular expression
performance
 appending strings
 canvas items
 declaring variables
 faster string operations
 improving expression

 tuning
performance improvements
performance tuning
Perl
Photo image attributes
Photo image operations
photo, C interface
pid, Tcl command
pie slice, canvas
pipes
 and errors
 closing
 fileevent
 setting up in C
Pitfalls of Shared Tcl_Obj Values
pixel depth
pixels
pixels per inch
pixmap
 configuration type
 in C
 off screen
pkg_mkIndex options
pkg_mkIndex, Tcl command 2nd
pkgIndex.tcl in a Starkit
place
 basics
 event option
 geometry manager
 panedwindow and
 Tk command
placement options
plain file
Platform-Independent Fonts
Platform-Specific End of Line Characters
Platform-specific file attributes
plugin
 examples, web browser
 Tcl 8.2 support
 Tcl in a Web page
plus, in bindings
Plus1ObjCmd procedure
pointer warping
Pointer Warping
points
points per pixel
polygon, canvas item
pop-up menus
POP3 client
POP3 server
port, TclHttpd
position
 a window above a sibling
 in text widget

 in virtual root window
 relative to widget
 text anchor
POSIX
 errorCode
 file access
 flags for open
post menu on screen
POST, form data
POST, HTTP protocol
postcascade , menu operation
Postscript for Widgets Embedded on a Canvas Under Windows
postscript from canvas
pow(x,y), power
precision, of expressions
Predefined Variables
Pref_Add
Pref_Dialog
Pref_Init
PrefDialogItem
PrefDismiss
PrefEntrySet
preferences
 data definition
 help
 initialization
 items, adding
 read from file
 saving to file
 user interface
 variables
PrefFixupBoolean
PrefItemHelp
PrefReadFile
PrefReset
PrefSave
PrefValue
PrefValueSet
present working directory. [See current directory.]
Preserving errorInfo when calling error
preserving threads 2nd
PRIMARY selection
Primitive Object Types
print [See puts.]
 a procedure definition
 environment variable values
 in regular expressions
 string class
 variable by name
PrintByName, Tcl procedure
printer points
printf. [See format command]
private procedure
proc, Tcl command 2nd

procedure
 arguments from HTML forms
 array parameters
 as parameter
 characters allowed in names
 construct dynamically
 definition 2nd
 for button commands
 importing and exporting
 introspection
 library
 multiple return values
 naming conventions
 printing definition
 query definition
 small is good
 to build dialogs
 variable scope
process ID
Processing HTML Form Data
procmail email filtering
 email filtering, procmail
profiling Tcl code
program and Tcl_AppInit, Tcl main
program and Tk_AppInit, Tk main
program arguments, TclHttpd
program output, saving
programming
 and Tcl, C
 entry widgets
 listboxes
 scales
 scrollbars
prompt for a password
Prompter Dialog
Prompting for input
property of widget. [See attribute.]
Property, window event
Protocol Errors, Handling Graphic
protocol handler, window manager
provide, package operation
provide/require package model
proxy, web server
punct, in regular expressions
punct, string class
Puoplo, Gerald
putenv
puts
puts, limited with safe interp
puts, Tcl command
pwd, Tcl command

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

q, regular expression option
qualified names
qualified names, performance
qualifiers, namespace operation
Quantifiers in regular expressions
QUERY_STRING, CGI environment variable
querying aliases
questhead
quirks, namespaces
quit application, protocol to
quit button
quotes compared to concat and list
quoting
 and eval 2nd
 and regular expressions
 automatic
 tips, funny values
 tips, grouping

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

radiobutton, Tk widget
Raines, Paul
raise an error
raise, Tk command
raised, relief
Raising an error with return
rand(), random number
Random Access I/O
random access I/O
random number
 example
 example using namespaces 2nd
 function
 in C
RandomCmd C command procedure
RandomObjCmd C command procedure
RDONLY, open mode
RDWR, open mode
read
 and evaluate
 commands from a socket
 file line by line
 I/O in background
 option database file
 options for photo images
 Tcl command
 Tcl commands from a file 2nd
 Tcl source code 2nd
readable, file
readline. [See gets.]
readlink, file operation
readlink, with file link command
readonly
 entry
 entry widget
 open
 state
 text widget
 variables
readonly, file attribute
realloc
records, with arrays
rectangle on canvas
recursion limit
redefining procedures
redirect URL request
redisplay. [See update.]
redo. [See history.]

reference count, zero initial value
Reference Counts, Managing Tcl_Obj
References to Tcl_Obj Values, Keeping
Referencing an array indirectly
reflection and debugging
regexp
 command options 2nd
 in text search
 lsearch option
 Tcl command
register image format, in C
registry, font
registry, Tcl command
regsub
 counting with
 direct return of substituted string
 Tcl command
regular expression 2nd
 C library
 new for Tcl 8.1
 syntax 2nd
Reid, Steve
relative and absolute window sizes
relative position of windows
releasing threads 2nd
Relief Style
relief, button
relief, widget attribute
Remote eval using sockets
REMOTE_ADDR, CGI environment variable
REMOTE_USER, CGI environment variable
Removing Elements from a Hash Table
rename, Tcl command
Renaming Files and Directories
Reparent, window event
reparented frame
repeating a string
replacing substring
Reporting Script Errors
REQUEST_METHOD, CGI environment variable
REQUEST_URI, CGI environment variable
requested hight of widget
require, package operation 2nd
ResEdit, Macintosh 2nd
ResizeRequest, window event
resizing
 and -expand
 grids
 text and scrollbar
 windows 2nd
 windows, effect of expand
resource
 associated with Tcl variable
 attribute names

 attribute vs. options vs.
 class
 color
 database access
 database description
 example
 file example
 font
 for all button widgets
 for canvas objects
 ID Management, X
 introduction
 loading from files 2nd
 lookup in C code
 Macintosh
 name patterns
 non-standard names
 order of patterns
 specifications
 user vs. application
 with variable references
Resource_ButtonFrame, defines buttons 2nd
Resource_GetFamily merges resources
resource_list, registry value type
RESOURCE_MANAGER property
Result Codes from Command Procedures
result string, managing in C 2nd
return codes, Tcl_Eval
Return key
return multiple values
return, Tcl command 2nd
reverse video
RGB color values 2nd
ridge, relief
ring the bell
Rooms. [See Virtual Root.]
root window ID
root, file name
Rose, Marshall
Roseman, Mark
rotation not supported, canvas
round(x), round to integer
row insert, Metakit view
row of buttons
rows of widgets
rows, uniform size
RS 232, serial devices
rubber banding
Run procedure
Running Programs with exec
runs Tcl commands from C, Tcl_Eval

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

s, anchor position
s, in string format
s, regular expression option
S, s, in binary format
safe after command
safe base
safe interpreter, creating
safe interpreters
Safe-Tcl 2nd 3rd
Safe-Tk and the Browser Plugin
Safe-Tk Restrictions
safe\
 \
 loadTk
safe\\
 \\
 interpAddToAccessPath
 interpConfigure
 interpCreate
 interpDelete
 interpFindInAccess
 interpInit
 setLogCmd
Safesock security policy
same width widgets with grid
Sample Extension
sample message catalog files
sample regular expressions
saving preferences
Saving session state
saving state as Tcl commands
scale of screen units
scale widget
 attributes
 bindings
 canvas implementation
 operations
 Tk widget
 variable
scaling canvas objects
scan, Tcl command
scanf. [See scan command]
scope
 for callbacks
 global variables
 local variables
screen
 coordinates vs. canvas coordinates

 depth
 for toplevel
 height
 identifier
 measurement units 2nd
 converting
 in C
 scaling
 multiple
 position of window
 relative coordinates
 width
screen savers and bell
Script Errors, Reporting
script library
 initialization
 setting with TCL_LIBRARY
 using
script, current
script, namespace callbacks
SCRIPT_NAME, CGI environment variable
Scriptics
Scriptics Corporation
scripts and the library
Scripts from C, Invoking 2nd
scripts in different encodings
scroll entry widget
Scroll_Set manages optional scrollbars
scrollbar
 attributes
 automatic hiding
 bindings
 entry widget
 example 2nd
 for canvas
 for listbox
 for two widgets
 horizontal or vertical
 operations
 protocol with widgets
 set size
 system color
 Tk widget
 widgets on a canvas
 with text
ScrollFixup
sdarchive, starkit archive
sdx, starkit development tool
se, anchor position
search operation, in text
search path, library 2nd
searching
 arrays
 lists 2nd

 text widget 2nd
 through files
second, %S
secure hash algorithm, sha1
Secure sockets
secure web access
security policies
 and Browser Plugin
 configuration 2nd
 configured for each client
 creating
 feature sets
 Safesock
 Tempfile
seek, Tcl command
select loop, Tcl interface
select text in entry widget
select. [See fileevent.]
selectBackground, widget attribute 2nd
selectBorderWidth, widget attribute
selectColor, widget attribute
selectForeground, widget attribute 2nd
Selecting data with mk\
 \
 select
Selecting Multiple Files with tk_getOpenFile
selection
 adjust, entry widget
 and clipboard in C
 attributes
 canvas example 2nd
 clear
 CLIPBOARD
 deleting
 exporting to X
 handler example
 model
 ownership
 PRIMARY
 text widget 2nd
 Tk command
 virtual event
selectMode, for listbox
self-checking form
self-contained Tcl distribution
self-updating applications
send
 application name in C
 command information
 command options
 command to another application
 constructing command reliably
 cross-platform replacement
 name of interpreter 2nd

 timeout changed in Tk 4.0
 Tk command
 X authority required
sender application
sending messages to threads 2nd
serial ports 2nd 3rd 4th
server socket options
server sockets
server, multi-threaded example
SERVER_NAME, CGI environment variable
SERVER_PORT, CGI environment variable
SERVER_PROTOCOL, CGI environment variable
SERVER_SOFTWARE, CGI environment variable
services, on Windows
session, window system
 client
 command
 saving
Set Conversions, Character
set, Tcl command 2nd
setgrid, widget attribute
sha1, secure hash algorithm
share, I/O channels with interp
shared libraries 2nd 3rd
shared resources, threads 2nd
Shared Tcl_Obj Values, Pitfalls of
shared variables, threads 2nd
sharing code as Starkits
Shen, Sam
Shift key
shrinking frames and pack propagate
signal handling, in C
Signals, Working with
significant digits
Simple Records
sin(x), sine
single selection mode, listbox
sinh(x), hyperbolic sine
SiteFooter
SiteMenu
SitePage
size
 font attribute
 not valid until window is mapped
 of file
 of integer word
 of label
 placement and decoration
 relative to widget
slaves, interp operation
sleep, Tcl_Sleep
sleep. [See after.]
Smith, Chad
SMTP client

SMTP server
socket
 accepting connections
 added in Tcl 7.5
 client side
 client timeout
 connect to HTTP server
 limited with safe interp
 listen
 peer address
 read Tcl commands from
 server example
 special file
 Tcl Command
socket I/O, non-blocking
solid, relief
sort
sorting lists
source
 example
 hidden command
 in safe interpreters
 loading code into TclHttpd 2nd
 Tcl command 2nd
source code
 best location
 compiling Tcl from
 distribution, Tcl
 is worth reading,Tcl 2nd
source files relative to current script
space
 around widgets
 in array indices
 in regular expressions
 in string format
 string class
spacing, widgets
special characters in character sets
specifying a locale
Spencer, Henry 2nd
spinbox
 attributes
splice lists together
spline curve on canvas
split data into Tcl lists
split file names
split, Tcl command
sqrt(x), square root
square brackets
srand(x), random number seed
SSL and TLS
SSL channel plugin
stack depth limit
stack trace 2nd 3rd

stack, data structure
stack, example
stacking I/O channels
stacking order, window 2nd 3rd 4th 5th 6th 7th
standalone Tcl script
Standard Configure Flags
Standard Dialogs 2nd
Standard Directory Structure
Standard Header Files
Standard Makefile targets, TEA
standard options
Standard Tcl Library
 networking extensions
 Starkit main.tcl file
 tcllib 2nd
starkit
 archive
 create a simple one
 creating tclhttpd.kit
 examine the virtual file system
 files in
 kitten extension bundle
 main program
 packaging Tcl applications
 sdx development tool
 sharing among applications
 starkit\
 \:autoextend and auto_path
 starkit\\
 \\:startup return values
 starpacks
 storing application data
 thin clients
 Wiki
starpack
 how to create
 Tclkit and Starkits
stat, file attributes
stat, symlink attributes
state
 canvas and canvas items
State of Entries, Listboxes, and Labels
state of window
static code checker
status, http\\
 \\
 geturl result
Status, Tcl procedure
status, TclHttpd
stderr, standard error output
stdin, standard input
stdout, standard output
Steffen, Daniel
sticky geometry settings

stop bits, serial interface
Stop procedure
store widget names in variables
Storing application data in a Starkit
strftime
strftime, [See clock format]
string
 characters from
 class names
 classification 2nd
 command interface in C
 command, changes in Tcl 8.1
 comparison 2nd 3rd 4th
 comparison operators
 comparison, using expr
 concatenate
 display. [See label.]
 dynamic (DString) in C
 effect of backslash-newline
 encoding conversions
 expressions
 extract a character
 find last substring
 identifiers (UIDS) in C
 indices
 internationalization in C
 length in characters
 mapping to new strings
 match simple pattern
 matching
 matching, regular expressions in C
 object types in C
 processing with subst
 repeating
 replacing substring
 result, managing in C 2nd
 storage size
 Tcl command 2nd
stroke, canvas example
structures, with arrays
Stub Libraries, Using
style
 guide, Tcl
 Line Cap
 Line Join
 Relief
 Text Justification
subpatterns to parse strings
subst
 document templates
 Tcl command
 template example
substitution
 and hidden commands

 before grouping
 no eval
 rules
summary of package loading
summary of the Tk Commands
Sun Microsystems 2nd
sunken, relief
sw, anchor position
SWIG
switch
 example
 on exact strings
 substitutions in patterns
 Tcl command
 with fallthrough cases
Sybase
SybTcl
symbolic and hard links
symbolic link
symbolic link, file
sync, command-line argument
synchronous message sending, threads 2nd
syntax
 advanced regular expressions
 arrays
 character code
 command
 curly braces
 dollar sign
 I/O pipelines
 list 2nd
 regular expressions
 square brackets
 Tcl Dev Kit Checker
system encoding
system font
system menus

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

t, regular expression option
tab character, \\t
Tab key
tab stops
tab to change focus
tab, default binding
Table, Hash 2nd
table-like layouts, grid
Tables or views in a Metakit database
tag
 canvas vs. text
 canvas widget 2nd
 canvas, logical combination
 text widget 2nd
 attributes
 bindings
 initialization
tail, file name
tan(x), tangent
tanh(x), hyperbolic tangent
target, interp operation
TChar
Tcl 7.4
Tcl 7.5 2nd
Tcl 7.6 2nd 3rd
Tcl 8.0 Patch Releases
Tcl and Extensions, Compiling
Tcl and the Tk Toolkit, book
Tcl and Tk sources, on the web
Tcl books
 Building Network Management Tools with Tcl/Tk
 Effective Tcl/Tk Programming
 Exploring Expect
 Graphical Applications with Tcl & Tk
 incr Tcl From The Ground Up
 Tcl and the Tk Toolkit
 Tcl/Tk for Programmers
 Tcl/Tk in a Nutshell
 Tcl/Tk Tools
 Web Tcl Complete
Tcl C Library 2nd
Tcl command [See also Tk command]
 after, timer events
 append, strings
 array, data type
 bgerror, error handler 2nd
 binary, convert between string and binary
 break, exit loop

 catch, error handler
 cd, change directory
 close, I/O channel
 concat, concatenate strings and lists 2nd
 console, Windows and Macintosh 2nd
 continue, loop
 dde, dynamic data exchange
 encoding, character sets
 eof, test end of file
 error, raise error
 eval, evaluate a string
 exec, run programs
 exit, terminate
 expr, math expressions
 fblocked, I/O channel
 fconfigure, I/O channel properties
 fcopy, I/O channel copy
 file, operate on files
 fileevent, select I/O channel 2nd
 flush, I/O channel
 for, loop
 foreach, loop
 format, strings 2nd
 from C, Tcl_Eval 2nd
 generating with list
 gets, read line
 glob, match file names 2nd
 global, variables
 history, of commands
 if, conditional
 incr, improved version
 incr, increment variable
 info, introspection
 interp, create interpreter
 join, merge lists
 lappend, append to list
 lindex, element from list 2nd
 linsert, modify list
 list for code generation
 list, create lists
 list-related commands
 llength, list length
 load, compiled extensions 2nd
 lrange, list sublist
 lreplace, modify list
 lset
 lsort, sort list
Tcl Command
 memory
Tcl command
 memory, for debugging malloc/free
 namespace, variables and procedures 2nd
 number executed
 open, I/O channel

 package, manage libraries
 pid, get process ID
 pkg_mkIndex, generate package index
 proc, define procedures 2nd
 puts, print line
 pwd, get working directory
 read, I/O channel
 regexp, match regular expression
 registry, Windows
 regsub, regular expression substitution
 rename, commands and procedures
 return, from procedure 2nd
 scan, parsing strings
 seek, move I/O channel offset
 set, getting variable value
 set, variable assignment
 socket, network
 source, read Tcl script file
 split, data into list
 string, collection of operations
 subst, substitute Tcl in data
 switch, multiway branch
 table of
 tell, read I/O channel offset
 testthread
 time, measure command speed
 trace, variables
 unknown, command fallback
 unset, delete variable
 uplevel, evaluate in different scope
 upvar, variable references
 vwait, wait for event
 while, loop
 writing commands to files
Tcl Core Team, TCT
Tcl Dev Kit development tools
Tcl distribution, self-contained
Tcl Engineering Manual
Tcl Extension Architecture
Tcl Extention Architecture (TEA)
Tcl Improvement Proposal, TIP
Tcl Initialization
Tcl library
Tcl main program and Tcl_AppInit
Tcl Objects
Tcl Scripts, Calling Out to
Tcl Service Manager
Tcl shell library environment
Tcl shell, sample program 2nd
Tcl source code is worth reading 2nd
Tcl source directory structure
Tcl Style Guide
Tcl variable
 argc

 argv 2nd 3rd 4th 5th
 auto_index
 auto_noexec 2nd
 auto_noload
 auto_path 2nd 3rd 4th
 embed_args
 env 2nd
 errorCode
 errorInfo 2nd
 from C
 tcl_interactive
 tcl_library 2nd
 tcl_patchLevel
 tcl_pkgPath
 tcl_platform
 tcl_precision
 tcl_prompt1
 tcl_version
Tcl version
Tcl, C Programming and
Tcl, compiling from source 2nd
Tcl, CVS repository
tcl.m4 autoconf macros
Tcl/Tk
 8.4
Tcl/Tk 8.0 2nd
Tcl/Tk 8.1 2nd
Tcl/Tk 8.2 2nd
Tcl/Tk 8.3
Tcl/Tk Aqua
 Aqua, Tcl/Tk for Mac OS X
 Mac OS X
Tcl/Tk for Programmers, book
Tcl/Tk for Real Programmers, book
Tcl/Tk in a Nutshell, book
Tcl/Tk Tools, book
Tcl_Access
Tcl_AddErrorInfo
Tcl_AddObjErrorInfo
Tcl_Alert-Notifier
Tcl_Alloc
Tcl_Alloc and Tcl_Free
Tcl_AllocStatBuf
Tcl_AllowExceptions
Tcl_AppendAllObjTypes
Tcl_AppendElement 2nd
Tcl_AppendObjToObj
Tcl_AppendResult 2nd 3rd 4th 5th
Tcl_AppendStringsToObj 2nd
Tcl_AppendToObj
Tcl_AppendUnicodeToObj
Tcl_AppInit 2nd 3rd 4th
Tcl_AsyncCreate
Tcl_AsyncDelete

Tcl_AsyncInvoke 2nd
Tcl_AsyncMark
Tcl_AsyncReady
Tcl_AttemptAlloc
Tcl_AttemptRealloc
Tcl_AttemptSetObjLength
Tcl_BackgroundError
Tcl_Backslash
Tcl_BadChannelOption
TCL_BREAK
Tcl_CallWhenDeleted
Tcl_CancelIdleCall
Tcl_ChannelBlockModeProc 2nd
Tcl_ChannelBuffered
Tcl_ChannelClose2Proc
Tcl_ChannelCloseProc
Tcl_ChannelFlushProc
Tcl_ChannelGetHandleProc
Tcl_ChannelGetOptionProc
Tcl_ChannelHandlerProc
Tcl_ChannelInputProc
Tcl_ChannelOutputProc
Tcl_ChannelSeekProc
Tcl_ChannelSetOptionProc
Tcl_ChannelType
Tcl_ChannelVersion
Tcl_ChannelWatchProc
Tcl_ChannelWideSeekProc
Tcl_Chdir
Tcl_ClearChannelHandlers
Tcl_Close
Tcl_CommandComplete
Tcl_CommandTraceInfo
Tcl_Concat 2nd
Tcl_ConcatObj 2nd
Tcl_ConditionFinalize
Tcl_ConditionNotify
Tcl_ConditionWait
TCL_CONTINUE
Tcl_ConvertCountedElement
Tcl_ConvertElement
Tcl_ConvertToType
Tcl_CreateAlias
Tcl_CreateAliasObj
Tcl_CreateChannel 2nd
Tcl_CreateChannelHandler
Tcl_CreateCloseHandler
Tcl_CreateCommand 2nd 3rd 4th 5th 6th 7th 8th
Tcl_CreateEncoding
Tcl_CreateEventSource
Tcl_CreateExitHandler
Tcl_CreateFileHandler 2nd 3rd
Tcl_CreateHashEntry 2nd
Tcl_CreateInterp 2nd 3rd

Tcl_CreateMathFunc
Tcl_CreateObjCommand 2nd 3rd 4th
Tcl_CreateObjTrace
Tcl_CreateSlave
Tcl_CreateThread
Tcl_CreateThreadExitHandler
Tcl_CreateTimerHandler
Tcl_CreateTrace
Tcl_CutChannel
Tcl_DecrRefCount 2nd 3rd 4th 5th
Tcl_Delete-HashEntry
Tcl_DeleteAssocData
Tcl_DeleteChannelHandler
Tcl_DeleteCloseHandler
Tcl_DeleteCommand 2nd
Tcl_DeleteCommandFromToken
Tcl_DeleteEvents
Tcl_DeleteEventSource
Tcl_DeleteExitHandler
Tcl_DeleteFileHandler 2nd
Tcl_DeleteHashTable
Tcl_DeleteInterp 2nd
Tcl_DeleteThreadExitHandler
Tcl_DeleteTimerHandler
Tcl_DeleteTrace
Tcl_DelteHashEntry
Tcl_DetachChannel
Tcl_DetachPids
Tcl_DiscardResult
Tcl_DontCallWhenDeleted
Tcl_DoOneEvent 2nd
Tcl_DoWhenIdle
Tcl_DString
Tcl_DString-Result
Tcl_DStringAppend 2nd
Tcl_DStringAppendElement
Tcl_DStringEndSublist
Tcl_DStringFree
Tcl_DStringGetResult
Tcl_DStringInit 2nd
Tcl_DStringLength
Tcl_DStringSetLength
Tcl_DStringStartSublist
Tcl_DStringValue 2nd
Tcl_DumpActiveMemory
Tcl_DuplicateObj 2nd
Tcl_Eof
Tcl_ErrnoId
Tcl_ErrnoMsg
TCL_ERROR 2nd
Tcl_Eval 2nd 3rd 4th 5th
Tcl_Eval modifies its argument.
Tcl_Eval, Bypassing
Tcl_Eval, return codes

TCL_EVAL_DIRECT
Tcl_EvalEx 2nd
Tcl_EvalFile 2nd
Tcl_EvalObj 2nd
Tcl_EvalObjEx 2nd
Tcl_EvalObjv 2nd
Tcl_EvalTokens
Tcl_EvalTokensStandard
Tcl_EventuallyFree 2nd
Tcl_Exit 2nd
Tcl_ExitThread
Tcl_ExposeCommand
Tcl_ExprBoolean
Tcl_ExprBooleanObj
Tcl_ExprDouble
Tcl_ExprDoubleObj
Tcl_ExprLong
Tcl_ExprLongObj
Tcl_ExprObj
Tcl_ExprString
Tcl_ExternalToUtf
Tcl_ExternalToUtfDString 2nd
Tcl_Finalize
Tcl_FinalizeNotifier
Tcl_FinalizeThread
Tcl_FindExectuable
Tcl_FindExecuatable 2nd
Tcl_FindHashEntry
tcl_findLibrary 2nd
Tcl_FirstHashEntry 2nd 3rd
Tcl_Flush
Tcl_Free 2nd
Tcl_Free, Tcl_Alloc and
Tcl_FreeEncoding 2nd
Tcl_FreeParse
Tcl_FSAccess
Tcl_FSChdir
Tcl_FSConvertToPathType
Tcl_FSCopyDirectory
Tcl_FSCopyFile
Tcl_FSCreateDirectory
Tcl_FSData
Tcl_FSDeleteFile 2nd
Tcl_FSEqualPaths
Tcl_FSEvalFile
Tcl_FSFileAttrsGet
Tcl_FSFileAttrsSet
Tcl_FSFileAttrStrings
Tcl_FSFileSystemInfo
Tcl_FSGetCwd
Tcl_FSGetFileSystemForPath
Tcl_FSGetInternalRep
Tcl_FSGetNativePath
Tcl_FSGetNormalizedPath

Tcl_FSGetPathType
Tcl_FSGetTranslatedPath
Tcl_FSGetTranslatedStringPath
Tcl_FSJoinPath
Tcl_FSJoinToPath
Tcl_FSLink
Tcl_FSListVolumes
Tcl_FSLoadFile
Tcl_FSLstat
Tcl_FSMatchInDirectory
Tcl_FSMountsChanged
Tcl_FSNewNativePath
Tcl_FSOpenFileChannel
Tcl_FSPathSeparator
Tcl_FSRegister
Tcl_FSRemoveDirectory
Tcl_FSRenameFile
Tcl_FSSplitPath
Tcl_FSStat
Tcl_FSUnregister
Tcl_FSUtime
Tcl_Get*FromObj warning
Tcl_GetAlias
Tcl_GetAliases
Tcl_GetAliasObj
Tcl_GetAssocData
Tcl_GetBoolean
Tcl_GetBooleanFromObj
Tcl_GetByteArrayFromObj
Tcl_GetChannel 2nd
Tcl_GetChannelBufferSize
Tcl_GetChannelHandle
Tcl_GetChannelInstanceData
Tcl_GetChannelMode
Tcl_GetChannelName
Tcl_GetChannelNames
Tcl_GetChannelNamesEx
Tcl_GetChannelOption
Tcl_GetChannelThread
Tcl_GetChannelType
Tcl_GetCharLength
Tcl_GetCommandInfo 2nd 3rd
Tcl_GetCommandInfoFromToken
Tcl_GetCurrentThread
Tcl_GetCwd
Tcl_GetDefaultEncodingDir
Tcl_GetDouble
Tcl_GetDoubleFromObj
Tcl_GetEncoding 2nd
Tcl_GetEncodingName
Tcl_GetEncodingNames
Tcl_GetErrno
Tcl_GetHashKey
Tcl_GetHashValue 2nd

Tcl_GetHostName
Tcl_GetIndexFromObj 2nd 3rd 4th 5th
Tcl_GetIndexFromObjStruct
Tcl_GetInt 2nd 3rd 4th
Tcl_GetInterpPath
Tcl_GetIntFromObj 2nd
Tcl_GetListFromObj
Tcl_GetLongFromObj
Tcl_GetMaster
Tcl_GetMathFuncInfo
Tcl_GetNameOfExecutable
Tcl_GetObjResult 2nd 3rd 4th
Tcl_GetObjType
Tcl_GetOpenFile
Tcl_GetOSTypeFromObj
Tcl_GetPathType
Tcl_GetRange 2nd
Tcl_GetRegExpFromObj
Tcl_GetRegExpInfo
Tcl_Gets
Tcl_GetServiceMode
Tcl_GetSlave
Tcl_GetSlaves
Tcl_GetsObj
Tcl_GetStackedChannel
Tcl_GetStdChannel
Tcl_GetString
Tcl_GetStringFromObj
Tcl_GetStringResult 2nd
Tcl_GetThreadData
Tcl_GetTime
Tcl_GetTopChannel
Tcl_GetUniChar
Tcl_GetUnicode
Tcl_GetUnicodeFromObj
Tcl_GetVar 2nd
Tcl_GetVar2
Tcl_GetVar2Ex
Tcl_GetVersion
Tcl_GetWideIntFromObj
TCL_GLOBAL_EVAL
Tcl_GlobalEval 2nd
Tcl_GlobalEvalObj
Tcl_HashStats
Tcl_HashTable
Tcl_HideCommand
Tcl_IncrRefCount 2nd 3rd 4th
Tcl_Init 2nd
Tcl_InitCustomHashTable
Tcl_InitHashTable 2nd
Tcl_InitMemory
Tcl_InitNotifier
Tcl_InitObjHashTable
Tcl_InitStubs 2nd 3rd 4th

Tcl_InitStubs
Tcl_InputBlocked
Tcl_InputBuffered
tcl_interactive, Tcl variable
Tcl_InterpDeleted
Tcl_InvalidateStringRep
Tcl_Invoke
Tcl_Invoke bypasses Tcl_Eval
Tcl_IsChannelExisting
Tcl_IsChannelRegistered
Tcl_IsChannelShared
Tcl_IsSafe
Tcl_IsShared 2nd
Tcl_IsStandardChannel
Tcl_JoinPath
Tcl_JoinThread
TCL_LIBRARY, environment variable
tcl_library, Tcl variable 2nd
Tcl_LinkVar 2nd
Tcl_ListMathFuncs
Tcl_ListObjAppendElement 2nd
Tcl_ListObjAppendList 2nd
Tcl_ListObjGetElements
Tcl_ListObjIndex
Tcl_ListObjLength
Tcl_ListObjReplace
Tcl_LogCommandInfo
Tcl_MacConvertTextResource
Tcl_MacEvalResource
Tcl_MacFindResource
Tcl_MacSetEventProc
Tcl_Main 2nd
Tcl_Main and Tcl_AppInit
Tcl_MakeFileChannel
Tcl_MakeSafe
Tcl_MakeTcpClientChannel
TCL_MEM_DEBUG
Tcl_Merge 2nd
Tcl_MutexFinalize
Tcl_MutexLock
Tcl_MutexUnlock
Tcl_NewBooleanObj
Tcl_NewByteArrayObj
Tcl_NewDoubleObj
Tcl_NewIntObj
Tcl_NewListObj 2nd
Tcl_NewLongObj
Tcl_NewObj
Tcl_NewStringObj 2nd
Tcl_NewUnicodeObj
Tcl_NewWideInt
Tcl_NextHashEntry
Tcl_NotifyChannel
Tcl_NumUtfChars

Tcl_Obj
Tcl_Obj Command Interface, The
Tcl_Obj reference count
Tcl_Obj Reference Counts, Managing
Tcl_Obj structure., The
Tcl_Obj Values, Keeping References to
Tcl_Obj Values, Modifying
Tcl_Obj Values, Pitfalls of Shared
Tcl_Obj version of Tk widget
Tcl_ObjGetVar2
Tcl_ObjSetVar2
TCL_OK 2nd
Tcl_OpenCommandChannel 2nd
Tcl_OpenFileChannel
Tcl_OpenTcpClient
Tcl_OpenTcpServer
Tcl_OutputBuffered
Tcl_Panic
Tcl_PanicVA
Tcl_ParseBraces
Tcl_ParseCommand
Tcl_ParseExpr
Tcl_ParseQuotedString
Tcl_ParseVar
Tcl_ParseVarName
tcl_patchLevel, Tcl variable
tcl_pkgPath, Tcl variable
Tcl_PkgPresent
Tcl_PkgPresentEx
Tcl_PkgProvide 2nd 3rd
Tcl_PkgProvide, Using
Tcl_PkgProvideEx
Tcl_PkgRequire
Tcl_PkgRequireEx
tcl_platform
 threaded element
tcl_platform, debug element
tcl_platform, Tcl variable
tcl_platform, user element
Tcl_PosixError
tcl_precision
tcl_precision variable
tcl_precision, changes in Tcl 8.0
Tcl_Preserve 2nd
Tcl_PrintDouble
tcl_prompt1, Tcl variable
Tcl_PutEnv
Tcl_QueueEvent
Tcl_Read
Tcl_ReadChars
Tcl_ReadRaw
Tcl_Realloc
Tcl_ReapDetachedProcs
Tcl_RecordAndEval

Tcl_RecordAndEvalObj
Tcl_RegExpCompile
Tcl_RegExpExec
Tcl_RegExpExecObj
Tcl_RegExpMatch
Tcl_RegExpMatchObj
Tcl_RegExpRange
Tcl_RegisterChannel
Tcl_RegisterObjType
Tcl_Release 2nd
Tcl_ResetResult 2nd 3rd
Tcl_RestoreResult
TCL_RETURN
tcl_safeCreateInterp
tcl_safeDeleteInterp
tcl_safeInitInterp
Tcl_SaveResult
Tcl_ScanCountedElement
Tcl_ScanElement
Tcl_Seek
Tcl_ServiceAll
Tcl_ServiceEvent
Tcl_SetAssocData
Tcl_SetBooleanObj
Tcl_SetByteArray-Length
Tcl_SetByteArrayObj
Tcl_SetChannelBufferSize
Tcl_SetChannelOption
Tcl_SetCommandInfo 2nd
Tcl_SetCommandInfoFromToken
Tcl_SetDefaultEncodingDir.
Tcl_SetDefaultTranslation 2nd
Tcl_SetDoubleObj
Tcl_SetErrno
Tcl_SetErrorCode
Tcl_SetErrorCodeVA
Tcl_SetHashValue 2nd
Tcl_SetIntObj 2nd 3rd
Tcl_SetListObj
Tcl_SetLongObj.
Tcl_SetMainLoop
Tcl_SetMaxBlockTime
Tcl_SetNotifier
Tcl_SetObjErrorCode
Tcl_SetObjLength
Tcl_SetObjResult 2nd 3rd 4th
Tcl_SetOSTypeObj
Tcl_SetRecursionLimit
Tcl_SetResult 2nd
Tcl_SetServiceMode
Tcl_SetStdChannel
Tcl_SetStringObj 2nd 3rd 4th
Tcl_SetSystemEncoding
Tcl_SetTimer

Tcl_SetUnicodeObj
Tcl_SetVar 2nd 3rd
Tcl_SetVar2
Tcl_SetVar2Ex
Tcl_SetWideInt
Tcl_SignalId
Tcl_SignalMsg
Tcl_Sleep 2nd
Tcl_SourceRCFile
Tcl_SpliceChannel
Tcl_SplitList
Tcl_SplitPath
Tcl_StackChannel
Tcl_Stat
TCL_STATIC
Tcl_StaticPackage
TCL_STORAGE_CLASS
Tcl_StringCaseMatch
Tcl_StringMatch
Tcl_SubstObj
Tcl_Tell
Tcl_ThreadAlert
Tcl_ThreadQueueEvent
Tcl_TraceCommand
Tcl_TraceVar 2nd
Tcl_TraceVar2
Tcl_TranslateFileName 2nd
Tcl_Ungets
Tcl_UniChar
Tcl_UniCharAtIndex
Tcl_UniCharCaseMatch
Tcl_UniCharIsAlnum
Tcl_UniCharIsAlpha
Tcl_UniCharIsControl
Tcl_UniCharIsDigit
Tcl_UniCharIsGraph
Tcl_UniCharIsLower
Tcl_UniCharIsPrint
Tcl_UniCharIsPunct
Tcl_UniCharIsSpace
Tcl_UniCharIsUpper
Tcl_UniCharIsWordChar
Tcl_UniCharLen 2nd
Tcl_UniCharNcasecmp
Tcl_UniCharNcmp
Tcl_UniCharToLower
Tcl_UniCharToTitle
Tcl_UniCharToUpper
Tcl_UniCharToUtf
Tcl_UniCharToUtfDString
Tcl_UnlinkVar
Tcl_UnregisterChannel
Tcl_UnsetVar
Tcl_UnsetVar2

Tcl_UnstackChannel
Tcl_UntraceCommand
Tcl_UntraceVar
Tcl_UntraceVar2
Tcl_UpdateLinkedVar
Tcl_UpVar
Tcl_UpVar2
Tcl_UtfAtIndex
Tcl_UtfBackslash
Tcl_UtfCharComplete
Tcl_UtfFindFirst
Tcl_UtfFindLast
Tcl_UtfNext
Tcl_UtfPrev
Tcl_UtfToExternal
Tcl_UtfToExternalDString 2nd
Tcl_UtfToLower
Tcl_UtfToTitle
Tcl_UtfToUniChar
Tcl_UtfToUniCharDString
Tcl_UtfToUpper
Tcl_ValidateAllMemory
TCL_VARARGS_START
Tcl_VarEval 2nd
Tcl_VarEvalVA
Tcl_VarTraceInfo
Tcl_VarTraceInfo2
tcl_version, Tcl variable
TCL_VOLATILE
Tcl_WaitForEvent 2nd
Tcl_WaitPid
Tcl_WinTCharToUtf 2nd
Tcl_WinUtfToTChar 2nd
Tcl_Write
Tcl_WriteChars
Tcl_WriteObj
Tcl_WriteRaw
Tcl_WrongNumArgs 2nd
TclBlend, Java integration
tclConfig.sh
Tclets, network applications
TclHttpd
 adding source code
 architecture
 configuration parameters
 debug URL
 displaying values
 document root 2nd
 document type handler
 domain handler
 e-mail, sending
 error page
 group ID
 hit counters

 HTML template
 integrating with application
 IP address
 log files
 not found page
 page array
 port
 quick start configuration
 script library
 self-checking form
 source code distribution
 sourcing Tcl scripts
 starkit main program 2nd 3rd
 starkit, creating
 TclPro Debugger, using
 templates
 URL domain handler
 user ID
 vfs directory
 webmaster e-mail 2nd
tclIndex file
Tclkit
 and Starkits
 Tcl/Tk interpreter
 thin clients
 zlib compression
tcllib
 comm package
 html package
 Standard Tcl Library
TclODBC
tclPkgUnknown
TclPro Debugger and TclHttpd
TclPro is now Tcl Dev Kit
tclsh, application
TclVFS extension
TclX
TCP/IP
TCT, Tcl Core Team
TEA
TEA standard Makefile targets
TEA, Tcl Extention Archtecture
TEA_LOAD_TKCONFIG
TEA_PATH_TCLCONFIG
TEA_PATH_TKCONFIG
TEA_PRIVATE_TCL_HEADERS
TEA_PRIVATE_TK_HEADERS
TEA_PUBLIC_TCL_HEADERS
TEA_PUBLIC_TK_HEADERS
tell, I/O channel
tell, Tcl command
Tempfile security policy
template
 binary format

 configure.in
 for procedure body
 HTML
 Makefile.in
 SiteMenu and SiteFooter
terminal, controlling
terminate
 thread 2nd
terminate process
test, make target
testthread, Tcl command
text
 anchor positions, in C
 and image in a widget
 attributes
 attributes for tags
 attributes from multiple tags
 bindings 2nd
 bold
 bounding box
 bulleted list
 changes in Tk 4.1
 clearing marks
 color
 compare indices
 configure tags early
 debug setting
 deleting 2nd
 display and fonts, in C
 dumping widget contents
 embedded window 2nd 3rd
 entry widget
 find range of tag
 finding marks
 get string from widget
 hidden
 images
 in a message widget
 index 2nd
 index arithmetic
 insert cursor
 insert string
 inserting 2nd
 italic
 justification 2nd 3rd 4th
 justification, in C
 line spacing
 mark 2nd
 gravity 2nd
 introspection
 names
 modification, event
 on canvas
 operations

 read-only
 scan for fast scrolling
 scrolling operations
 search widget
 searching
 selection
 selection event
 tabs
 tag 2nd
 bindings
 initialization
 introspection
 operations
 Tk 4.0 changes
 Tk widget
 two scrollbars
 underlined
 undo mechanism 2nd
 view line
 virtual events
 widget introspection
 with scrollbar
text variable, entry widget
textvariables and upvar
then. [See if.]
thin clients and starkits 2nd
Thomas, Michael
Thread extension [See also threads.]2nd
 commands
 loading
thread namespace [See also tpool namespace, tsv namespace]2nd
 thread\
 \:attach
 \:cond 2nd
 \:configure
 \:create 2nd
 \:detach
 \:errorproc
 \:join
 \:mutex 2nd
 \:preserve
 \:release
 \:send 2nd
 \:transfer
 \:wait
 thread\\
 \\:attach
 \\:cond
 \\:configure
 \\:create
 \\:detach
 \\:errorproc
 \\:eval
 \\:exists

 \\:id
 \\:join
 \\:mutex
 \\:names
 \\:preserve
 \\:release
 \\:send
 \\:transfer
 \\:unwind
 \\:wait
thread pools 2nd
 configuration options
Thread Support 2nd 3rd
threads
 asynchronous messages 2nd
 channels 2nd
 compiling for support
 condition variables 2nd
 configuration options
 creating 2nd
 creation vs execution
 current directory
 deadlock with synchronous messages
 definition
 echo server example
 environment variables
 error handling 2nd 3rd 4th
 event loop
 extensions
 file access from multiple
 ID, thread
 joinable 2nd
 killing 2nd
 logging example
 main thread termination
 messages 2nd
 mutexes 2nd
 preserving 2nd
 releasing 2nd
 sending messages 2nd
 server example
 shared resources 2nd
 shared variables 2nd
 synchronous messages 2nd
 Tcl interpreters and
 tcl_platform(threaded)
 thread namespace
 thread pools 2nd
 thread safety
 thread support, testing for
 threading model in Tcl
 tpool namespace
 transferring I/O channels 2nd
 transferring sockets

 tsv namespace
tilde in file names
tilde key, asciicircum
time
 event option
 formatting
 getting current
 in microseconds
 parsing
 resolution on Windows
 stamps in a log
 Tcl command
time, Tcl command
timeout on client socket
Timer Events
timer events, in C 2nd
timer, high resolution
timer. [See after.]
TIP, Tcl Improvement Proposal
title case conversion
title, of window
title, supressing
Tix
Tk 4.0, porting issues
Tk 4.1, porting issues
Tk 4.2, porting issues
Tk 8.0, porting issues
Tk 8.1, porting issues
Tk 8.2, porting issues
Tk 8.3, porting issues 2nd
Tk by example
Tk C Library
tk colormodel, removed in Tk 4.0
Tk command [See also widgets.]
 bell
 bind, events
 bindtags, binding groups
 clipboard, cut and paste
 destroy, window
 event, generation
 focus, on window
 font, control
 grab, focus
 grid, geometry manager 2nd
 image, manipulation
 lower, window
 option, resource database
 pack, geometry manager
 place, geometry manager
 raise, window
 selection, cut and paste
 send, command to application
 tk, miscellaneous
 tkerror

 tkwait, for event
 unsupported1, window styles
 update, events
 winfo, window info
 wm, window control
Tk command summary
Tk fundamentals
Tk in Child Interpreters
Tk main program and Tk_AppInit
Tk manual pages
tk scaling
Tk thread safety
Tk widget attributes and the resource database
Tk widget-creation commands
Tk widget-manipulation commands
tk, Tk command
Tk_3DBorder
Tk_3DBorderColor
Tk_3DBorderGC
Tk_3DHorizontalBevel
Tk_3DVerticalBevel
Tk_Alloc3DBorderFromObj
Tk_AllocBitmapFromObj
Tk_AllocColorFromObj
Tk_AllocCursorFromObj
Tk_AllocFontFromObj
Tk_Anchor
Tk_AppInit, Tk main program and
Tk_Attributes
Tk_BindEvent
Tk_CancelIdleCall 2nd
Tk_CanvasDrawableCoords
Tk_CanvasEventuallyRedraw
Tk_CanvasGetCoord
Tk_CanvasGetTextInfo
Tk_CanvasPsBitmap
Tk_CanvasPsColor
Tk_CanvasPsFont
Tk_CanvasPsPath
Tk_CanvasPsStipple
Tk_CanvasPsY
Tk_CanvasSetStippleOrigin
Tk_CanvasTagsOption
Tk_CanvasTkwin
Tk_CanvasWindowCoords
Tk_Changes
Tk_ChangeWindowAttributes
Tk_CharBbox
tk_chooseColor
tk_chooseDirectory
Tk_Class
Tk_ClearSelection
Tk_ClipboardAppend
Tk_ClipboardClear

Tk_CollapseMotionEvents
Tk_Colormap
Tk_ComputeTextLayout 2nd
TK_CONFIG_ACTIVE_CURSOR
TK_CONFIG_ANCHOR
TK_CONFIG_BITMAP
TK_CONFIG_BOOLEAN
TK_CONFIG_BORDER
TK_CONFIG_CAP_STYLE
TK_CONFIG_COLOR
TK_CONFIG_CURSOR
TK_CONFIG_CUSTOM
TK_CONFIG_DOUBLE
TK_CONFIG_END
TK_CONFIG_FONT
TK_CONFIG_INT
TK_CONFIG_JOIN_STYLE
TK_CONFIG_JUSTIFY
TK_CONFIG_MM
TK_CONFIG_PIXELS
TK_CONFIG_RELIEF
TK_CONFIG_STRING
TK_CONFIG_SYNONYM
TK_CONFIG_UID
TK_CONFIG_WINDOW
Tk_ConfigSpec 2nd
Tk_ConfigSpec typedef
Tk_ConfigureInfo 2nd
Tk_ConfigureValue 2nd 3rd
Tk_ConfigureWidget 2nd
Tk_ConfigureWidget flags and corresponding C types
Tk_ConfigureWindow
Tk_CoordsToWindow
Tk_CreateBinding
Tk_CreateBindingTable
Tk_CreateClientMessageHandler
Tk_CreateErrorHandler
Tk_CreateEventHandler 2nd 3rd
Tk_CreateGenericHandler 2nd
Tk_CreateImageType
Tk_CreateItemType
Tk_CreateOptionTable 2nd
Tk_CreatePhotoImageFormat
Tk_CreateSelHandler
Tk_CreateTimerHandler
Tk_CreateWindow
Tk_CreateWindowFromPath 2nd 3rd
Tk_DefineBitmap
Tk_DefineCursor
Tk_DeleteAllBindings
Tk_DeleteBinding
Tk_DeleteBindingTable
Tk_DeleteClientMessageHandler
Tk_DeleteErrorHandler

Tk_DeleteEventHandler
Tk_DeleteGenericHandler
Tk_DeleteImage
Tk_DeleteOptionTable
Tk_DeleteOptionTable
Tk_DeleteSelHandler
Tk_DeleteTimerHandler 2nd
Tk_Depth
Tk_DestroyWindow 2nd
tk_dialog, built-in dialog
Tk_Display 2nd
Tk_DisplayName
Tk_DistanceToTextLayout
Tk_DoWhenIdle 2nd 3rd
Tk_Draw3DPolygon
Tk_Draw3DRectangle 2nd
Tk_DrawChars
Tk_DrawFocusHighlight 2nd
Tk_DrawTextLayout 2nd
Tk_EventuallyFree
Tk_Fill3DPolygon
Tk_Fill3DRectangle 2nd
Tk_FindPhoto
tk_focusFollowsMouse
tk_focusNext
Tk_Font
Tk_FontId
Tk_FontMetrics
Tk_Free3DBorder
Tk_Free3DBorderFromObj
Tk_FreeBitmap
Tk_FreeBitmapFromObj
Tk_FreeColor 2nd
Tk_FreeColorFromObj
Tk_FreeColormap
Tk_FreeConfigOptions
Tk_FreeCursor
Tk_FreeCursorFromObj
Tk_FreeFont
Tk_FreeFontFromObj
Tk_FreeGC 2nd
Tk_FreeImage
Tk_FreeOptions 2nd
Tk_FreePixmap 2nd 3rd
Tk_FreeSavedOptions 2nd
Tk_FreeTextLayout
Tk_FreeXId
Tk_GCForColor
Tk_GeometryRequest 2nd
Tk_Get3DBorder
Tk_Get3DBorderFromObj
Tk_GetAllBindings
Tk_GetAnchor
Tk_GetAnchorFromObj

Tk_GetAtomName
Tk_GetBinding
Tk_GetBitmap
Tk_GetBitmapFromData
Tk_GetBitmapFromObj
Tk_GetCapStyle
Tk_GetColor
Tk_GetColorByValue
Tk_GetColorFromObj
Tk_GetColormap
Tk_GetCursor
Tk_GetCursorFromData
Tk_GetCursorFromObj
Tk_GetDash
Tk_GetFont
Tk_GetFontFromObj
Tk_GetFontMetrics
Tk_GetGC 2nd
Tk_GetHINSTANCE
Tk_GetHWND
Tk_GetImage
Tk_GetImageMasterData
Tk_GetItemTypes
Tk_GetJoinStyle
Tk_GetJustify
Tk_GetJustifyFromObj
Tk_GetMMFromObj
Tk_GetNumMainWindows
tk_getOpenFile
tk_getOpenFile, selecting multiple files
Tk_GetOption
Tk_GetOptionInfo 2nd
Tk_GetOptionValue
Tk_GetPixels
Tk_GetPixelsFromObj
Tk_GetPixmap 2nd
Tk_GetRelief
Tk_GetReliefFromObj
Tk_GetRootCoords
tk_getSaveFile
Tk_GetScreenMM
Tk_GetScrollInfo
Tk_GetScrollInfoObj
Tk_GetSelection
Tk_GetString
Tk_GetUid
Tk_GetVisual
Tk_GetVRootGeometry
Tk_Grab
Tk_HandleEvent
Tk_Height
Tk_HWNDToWindow
Tk_IdToWindow
Tk_Image

Tk_ImageChanged
Tk_Init 2nd
Tk_Init procedure
Tk_InitImageArgs
Tk_InitOptions 2nd
Tk_InitStubs
Tk_InternalBorderBottom
Tk_InternalBorderLeft
Tk_InternalBorderRight
Tk_InternalBorderTop
Tk_InternalBorderWidth
Tk_InternAtom
Tk_IntersectTextLayout
Tk_IsContainer
Tk_IsEmbedded
Tk_IsMapped 2nd
Tk_IsTopLevel
Tk_Justify
tk_listboxSingleSelect
Tk_Main 2nd
Tk_MainLoop 2nd
Tk_MaintainGeometry
Tk_MainWindow
Tk_MakeWindowExist
Tk_ManageGeometry
Tk_MapWindow
Tk_MeasureChars 2nd
tk_messageBox
Tk_MinReqHeight
Tk_MinReqWidth
Tk_MoveResizeWindow
Tk_MoveToplevelWindow
Tk_MoveWindow 2nd
Tk_Name
Tk_NameOf3DBorder
Tk_NameOfAnchor
Tk_NameOfBitmap
Tk_NameOfCapStyle
Tk_NameOfColor
Tk_NameOfCursor
Tk_NameOfFont
Tk_NameOfImage
Tk_NameOfJoinStyle
Tk_NameOfJustify
Tk_NameOfRelief
Tk_NameToWindow
Tk_Offset
TK_OPTION_ANCHOR
TK_OPTION_BITMAP
TK_OPTION_BOOLEAN
TK_OPTION_BORDER
TK_OPTION_COLOR
TK_OPTION_CURSOR
TK_OPTION_DOUBLE

TK_OPTION_END
TK_OPTION_FONT
TK_OPTION_INT
TK_OPTION_JUSTIFY
TK_OPTION_PIXELS
TK_OPTION_RELIEF
TK_OPTION_STRING
TK_OPTION_STRING_TABLE
TK_OPTION_SYNONYM
TK_OPTION_WINDOW
Tk_OptionSpec
Tk_OptionSpec typedef
Tk_OptionTable
Tk_OwnSelection
Tk_Parent
Tk_ParseArgv 2nd
Tk_PathName 2nd
Tk_PhotoBlank
Tk_PhotoExpand
Tk_PhotoGetImage
Tk_PhotoGetSize
Tk_PhotoHandle
Tk_PhotoPutBlock
Tk_PhotoPutZoomedBlock
Tk_PhotoSetSize
Tk_PointToChar
Tk_PostscriptFontName
Tk_QueueWindowEvent
Tk_RedrawImage
Tk_ReqHeight
Tk_ReqWidth
Tk_ResizeWindow
Tk_RestackWindow
Tk_RestoreSavedOptions 2nd
Tk_RestrictEvent
Tk_RestrictEvents
Tk_Screen
Tk_ScreenNumber
Tk_SetAppName
Tk_SetBackgroundFromBorder 2nd
Tk_SetCaretPos
Tk_SetClass 2nd 3rd
Tk_SetClassProcs
Tk_SetGrid
Tk_SetInternalBorder 2nd
Tk_SetOptions 2nd
Tk_SetWindowBackground 2nd
Tk_SetWindowBackgroundPixmap
Tk_SetWindowBorder
Tk_SetWindowBorderPixmap
Tk_SetWindowBorderWidth
Tk_SetWindowColormap
Tk_SetWindowVisual
Tk_SizeOfBitmap

Tk_SizeOfImage
Tk_StrictMotif
Tk_TextLayoutToPostscript
Tk_TextWidth
Tk_Uid
Tk_UndefineCursor
Tk_UnderlineChars
Tk_UnderlineTextLayout
Tk_Ungrab
Tk_UnmaintainGeometry
Tk_UnmapWindow
Tk_UnsetGrid
Tk_Visual
Tk_Width
Tk_Window 2nd 3rd
Tk_WindowId
Tk_X
Tk_Y
tkerror, Tcl procedure
tkinspect
tkman, UNIX program
tkwait with global variables
tkwait, Tk command
TLS secure socket extension
tolower, string command
toolbars
toolwindow, Windows
toplevel
 attributes
 icon bitmap
 of widget
 Tk widget
 window styles
totitle, string command
toupper, string command
tpool namespace [See also thread namespace, tsv namespace]2nd
 tpool\\
 \\:create
 \\:get
 \\:names
 \\:post
 \\:preserve
 \\:release
 \\:wait
trace
 command execution
 example for preferences
 execution, in C
 Tcl command
 variables, in C
transfer, I/O channel to interp
transferring I/O channel
 threads 2nd
transforming data to program with regsub

transient window
Transparent Fill on Canvas Text
transparent images
transpose characters
Tranter, Jeff
trapping errors from pipelines
Trf Patch
trig functions
trim, string command
trimleft, string command
trimright, string command
triple click
troublesome button command
troughColor, widget attribute
true, string class
TRUNC, open mode
truncate file, open
tsv namespace [See also thread namespace, tpool namespace]2nd
 tsv\
 \:get
 \:set
 tsv\\
 \\:append
 \\:exists
 \\:get
 \\:incr
 \\:lappend
 \\:lindex
 \\:linsert
 \\:llength
 \\:lock
 \\:lpop
 \\:lpush
 \\:lrange
 \\:lreplace
 \\:lsearch
 \\:move
 \\:names
 \\:object
 \\:pop
 \\:set
 \\:unset
turn data into list
Turning off geometry propagation
two screens
type
 conversions are automatic
 of file 2nd
 of images
 of menu item
 Tcl_Obj in C
type-in widget. [See entry.]
typeface. [See font.]

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

u, in string format
Uhler, Stephen 2nd
uid, user ID
underlined text
undo mechanism, text widgets
undo, in text widget
Unicode and Internationalization
Unicode and UTF-8
Unicode Fonts
Uniform Rows and Columns in grid
uniform widget size, grid
UNIX look and feel
UNIX Tcl Scripts
UNIX to DOS
unknown backslash sequences are an error
unknown, in safe interpreters
unknown, Tcl command
unmap window 2nd
Unmap, window event 2nd
unpack binary data
unpost, menu operation
unset, Tcl command
Unsetting Nonexistent Variables
unsupported1, Tk command 2nd
untrusted scripts
update idletasks is safer
update, automatic application
update, Tk command
uplevel, namespaces and
uplevel, Tcl command
upper case conversion
upper, in regular expressions
upper, string class
upvar
 aliases do not work with Tk widget text variables
 example 2nd
 namespaces
 Tcl command
 textvariables
 variable traces
URI manipulation
URL
 access from Tcl
 character set
 Content-Encoding
 copy to file
 CVS repository
 Decoding

 domain handler, TclHttpd
 fetch with HTTP
 get with browser\\
 \\:displayURL
 implementing by a program
 redirection
 Tcl source location
Url_Decode
Url_DecodeQuery
Url_Encode
Url_PrefxInstall
use, command-line argument
USE_COMPAT_CONST
USE_NON_CONST
User and Group ID
user customization
user feedback
user interface to preferences
user-defined buttons
user-defined menus
UTF-8 and Unicode 2nd

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

validation, entry contents
value, delete list element by
Values, Keeping References to Tcl_Obj
Values, Modifying Tcl_Obj
Values, Pitfalls of Shared Tcl_Obj
variable
 aliases with upvar
 args
 argv 2nd 3rd
 argv0
 array
 assignment
 auto_noexec 2nd
 auto_noload
 auto_path 2nd 3rd
 call by name
 characters allowed in names
 command at global scope
 command line arguments
 currently defined
 declaring 2nd
 deleting
 efficient names
 embed_args
 environment
 errorCode
 errorInfo 2nd
 for button
 for entry text 2nd
 for label text
 for listbox
 for scale widget
 from preferences
 increment
 manipulate from C code
 names
 namespace
 namespace vs. global conflict
 pass by reference
 plugin
 predefined, list of
 print by name
 PrintByName
 read-only
 scope and procedures
 Tcl command
 tcl_library 2nd
 tcl_pkgPath

 tcl_platform
 tcl_precision
 test if defined
 thread-shared 2nd
 trace access
 trace, array example
 wait for modification
Variable number of arguments
variable, linked to C variable
variables
 unsetting nonexistent
Vasiljevic, Zoran
vbox, vertical layout
vcompare, package operation
version number, Tcl
version numbers
version, patch level
versions, of packages 2nd
vertical layout
vertical tab character, \\v
VFS
view text contents
viewable window
Virtual Events
virtual events
 \\> 2nd 3rd 4th
virtual events for cut, copy, and paste
Virtual File Systems
Virtual Filesystems
virtual root coordinates, correcting
virtual root window
Visibility, window event
visual
 available
 class, widget attribute 2nd
 command-line argument
 default
 of window
volume, of bell
vwait, Tcl command

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

w, anchor position
w, in binary format
w, regular expression option
wait for Tk event
warping, mouse (pointer)
Web browser status line
Web browser Tcl plugin
Web server, TclHttpd
Web Tcl Complete, book
webmaster e-mail, TclHttpd 2nd
weekday, %a
when to use regular expressions
while loop to read input
while, Tcl command
white space
wide integer
widget
 attributes
 attributes, in C
 C data structure
 class command, in C
 class definition
 cleanup in C
 container. [See frame.]
 containing
 data structure, in C
 definition
 destroy
 destroy, in C
 display in C
 embed in text
 frame for container
 geometry
 height
 hide by unmapping
 image, from C
 implemented in C
 instance command, in C
 introduction
 names in variables
 naming
 reconfigure
 screen of
 screen position
 spacing between
 Tcl_Obj version
 toplevel of
 unmapping

 width
 X, Y coordinate
widgets
 button
 canvas
 checkbutton
 entry
 frame
 label
 labelframe
 listbox
 menu
 menubutton
 message
 namespaces and
 panedwindow
 radiobutton
 scale
 scrollbar
 spinbox
 text
 toplevel
width
 equal with grid
 event option
 of widget
 virtual root window
 widget attribute
Wikit, a Wiki-Wiki
window
 Activate event
 aspect ratio
 binding on close
 binding on open
 changes size
 children
 class, resource
 close
 close or delete callback
 colormap
 configuration in C
 Configure event
 coordinates, in C
 create options, in text
 creating in C
 current state
 decoration
 deiconify
 deleting
 depth of screen pixels
 Destroy event
 detached
 embedded in canvas
 embedding

 events, in C 2nd
 exists
 family relationships
 focus model
 general information in C
 geometry
 geometry manager
 gridding
 group
 grouping when closed
 hierarchy
 hierarchy information
 icon bitmap
 iconify
 icons for
 ID of
 layout in binding
 location information.
 manager 2nd
 manager, miscellaneous
 Map event
 mapped onto display
 maximized
 maxsize
 minimize
 minsize
 mouse location
 MouseWheel event
 name of
 open
 open, is
 override redirect
 parent
 pathname
 placement
 platform-specific attributes
 position from
 protocol handler
 protocol, miscellaneous
 resize, interactive
 rooms
 screen information
 server name
 session state
 size from
 stacking order 2nd 3rd 4th 5th
 stacking order, in C
 startup command
 state
 styles
 system, detecting
 title 2nd
 toplevel of
 transient

 unmap
 Unmap event
 virtual root
 visibile
 visual 2nd
 visual of
 wait for destroy
 wait for visibility
 withdraw
window manager interaction
window manager, Tk-based
Window, system color
WindowBody, system color
WindowFrame, system color
Windows
 and exec problems
 auto_path
 com ports
 DLL location
 look and feel
 mouse cursor
 platform-specific window attributes
 services, Tcl applications as
 shared libraries
 Start and Menu Keys
 Start Menu
 system colors.
 system font size
 system menu
 text mode files
 toolwindow
Windows Application Handles
Windows IME
WindowText, system color
winfo, Tk command
Wippler, Jean-Claude
Wish command line options
wish, application
withdraw window
wm, Tk command
WM_DELETE_WINDOW
WM_PROTOCOL
Word size detection, integer
Word, Microsoft, special characters
wordchar, string class
wordend, string command
wordstart, string command
Working with Signals
World Wide Web
wrapLength, widget attribute
wrapping Tcl applications 2nd
writable, file
write only, open
Write options for photo images

Writing a Tk Widget in C
WRONLY, open mode

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

X authority, send
X Font Names
X ID for resource, in C
X Input Methods 2nd
X protocol errors
X resource database. [See resource.]
X Resource ID Management
X selection, export string to
x, regular expression option
X, x, in binary format
X, x, in string format
X, Y coordinate of widget
X, Y coordinates, in event
X, Y mouse coordinates
XColor
XCopyArea
Xdefaults. [See resource.]
xdigit, in regular expressions
xdigit, string class
Xerox PARC
xfontsel, UNIX program
xhost list and send
XIM, X Input Method
xlsfonts, UNIX program
xmodmap, program
xrdb. [See resource.]
xset program
XSynchronize
xview scrollbar operation

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

year
year 2000 compliance
Year 2000 Compliance
ypostion, menu operation
yview scrollbar operation

[Team LiB]

[Team LiB]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R]
[S] [T] [U] [V] [W] [X] [Y] [Z]

Zeltserman, Dave
Zimmer, Adrian
zip file via VFS
zlib compression
zlib to automatically compress Tclkit
zoom box style
zoomed, window

[Team LiB]

