

Tripathi837411_c09.indd 184Tripathi837411_c09.indd 184 9/7/2022 10:53:43 PM9/7/2022 10:53:43 PM

Programming and GUI Fundamentals

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson
Anjan Bose
Adam Drobot
Peter (Yong) Lian

Andreas Molisch
Saeid Nahavandi
Jeffrey Reed
Thomas Robertazzi

Diomidis Spinellis
Ahmet Murat Tekalp

Suman Lata Tripathi
Lovely Professional University
Phagwara, India

Abhishek Kumar
Lovely Professional University
Phagwara, India

Jyotirmoy Pathak
Lovely Professional University
Phagwara, India

Programming and GUI Fundamentals

Tcl-Tk for Electronic Design Automation (EDA)

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per‐copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the web at www.copyright
.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley
.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared
between when this work was written and when it is read. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762‐2974, outside the United States at (317) 572‐3993 or fax
(317) 572‐4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging‐in‐Publication Data applied for:

Hardback: 9781119837411

Cover Design: Wiley
Cover Image: © whiteMocca/Shutterstock

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

www.copyright.com
www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission

v

About the Authors xi

1 Introduction 1
1.1	 	Features	of	Tcl	 2
1.2	 	Special	Variable	 4
1.3	 	Tcl	First	Program	 5
1.4	 Tcl	Identifiers	 5
1.5	 Applications	of Tcl	 6
	 References	 6

2 Basic Commands 7
2.1	 	Introduction	 7
2.2	 	Set	Command	 8
2.3	 	Variable	Substitution	 9
2.4	 	Grouping	 9
2.5	 	Command	Substitution	 10
2.6	 	Math	Expressions	 11
2.7	 	Backslash	Substitution	(\&)	 11
2.8	 	Tcl	Operator	 12
2.8.1	 Arithmetic	Operators	 12
2.8.2	 Relational	Operators	 13
2.8.3	 Logical	Operators	 13
2.8.4	 Bitwise	Operators	 14
2.8.5	 Ternary	Operators	 15
2.8.6	 Shift	Operators	 15
2.8.6.1	 Operator	Precedence	 16
2.8.7	 Tcl	In-built	Math	Function	 16
2.9	 	Procedure	 17
2.9.1.1	 Advantages	of a	Procedure	 17
2.10	 	Eval	Commands	 18
2.11	 	Solved	Questions	 18
2.12	 	Review	Questions	 20
2.13	 	MCQs	Based	on	Tcl	Basics	 20
	 References	 22
2.A	 Appendix	I	(Built-in	math	functions)	 22
2.B	 	Appendix	II	(Tcl	Backslash	sequence)	 23

Contents

Contentsvi

3 Program Flow Control 25
3.1	 	If–Else	Command	 25
3.1.1	 	If–Elseif–Else	Commands	 27
3.2	 	Switch-Case	Command	 28
3.3	 	Loop	Command	 29
3.3.1	 While	Loop	 30
3.3.2	 For	Loop	 31
3.3.3	 Foreach	Command	 35
3.4	 	Continue	and	Break	 37
3.5	 	Catch	and	Error	 37
3.6	 	Solved	Problems	 39
3.7	 	Practice	Questions	 42
3.8	 	MCQs	 43
	 References	 44

4 Tcl Data Structure 45
4.1	 	String	and	Matching	Command	 45
4.1.1	 Append	Command	 48
4.1.2	 Format	Command	 48
4.1.3	 Number	Base	Conversion	with the	Format	Command	 49
4.1.4	 Scan	Command	 50
4.1.5	 Clock	Command	 50
4.1.6	 Clock	Format	Command	 51
4.1.7	 Clock	Scan	Command	 53
4.1.8	 Clock	Add	Command	 53
4.1.9	 Solved	Problems	 54
4.1.10	 Review	Problems	 57
4.1.11	 MCQs	on Strings	 58
4.2	 	Lists	and	their	Commands	 60
4.2.1	 List-based	Commands	 60
4.2.1.1	 List	Element	Commands	 61
4.2.1.2	 List	Modification	Commands	 62
4.2.1.3	 Search	and	Update	the List	 62
4.2.1.4	 Sorting	of List	Elements	 64
4.2.1.5	 Split	and	Join	 64
4.2.2	 Solved	Problems	 65
4.2.3	 Review	Problems	 66
4.2.4	 MCQs	on List	 66
4.3	 	Arrays	and	their	Commands	 67
4.3.1	 Array-Based	Commands	 68
4.3.2	 Solved	Examples	 70
4.3.3	 Review	Problems	 71
4.3.4	 MCQs	on Arrays	and	their	Commands	 72
	 References	 73

Contents vii

5 Tcl Object-Oriented Programming 75
5.1	 	Class	 75
5.2	 	Creation	of a	Class	 75
5.3	 	Define	a Member	in a	Class	 76
5.4	 	Define	Method	 76
5.5	 	Constructor	and	Destructor	 76
5.6	 	Destroying	of Class	 76
5.7	 	Invoking	Method	 77
5.8	 	Registering	Method	for Callback	 79
	 References	 80

6 File Processing 81
6.1	 	Introduction	 81
6.2	 	Tcl	File	Command	 82
6.2.1	 Opening	a File	 82
6.2.2	 Closing	a File	 82
6.2.3	 Writing	into	a File	 83
6.2.4	 Reading	of the	File	 84
6.2.5	 Write	with	Append	Mode	 85
6.3	 	Tcl	File	In-built	Commands	 86
6.3.1	 File	Seek	Command	 86
6.3.2	 File	Tell	Command	 87
6.3.3	 File	Eof	Command	 87
6.3.4	 List-based	Command	into	the File	 87
6.4	 	Solved	Questions	 88
6.5	 	Review	Questions	 94
6.6	 	MCQs	based	on Tcl	File	Processing	 94
	 References	 95

7 Toolkit Widgets 97
7.1	 	Features	of Tk	Widgets	 97
7.2	 	Geometry	Manager	 98
7.3	 	Widget	Naming	 99
7.4	 	Widget	Dimension	 99
7.5	 	Widget	Configuration	 99
7.6	 	Widget	Programming	 100
7.6.1	 Button	Widget	 100
7.6.2	 Label	Widget	 103
7.6.3	 Textvariable	Widget	Command	 105
7.6.4	 Entry	Widget	 106
7.6.5	 Frame	Widget	 107
7.6.6	 Scale	Widget	 109
7.6.6.1	 Slider	Value	Synchronize	to Label	 110
7.6.7	 Message	Widget	 112
7.6.8	 Spinbox	Widget	 113
7.7	 	Solved	Problems	 114
7.8	 	Unsolved	Problems	 120
7.9	 	MCQs	on	Tk	Widgets	 120
	 References	 124

Contentsviii

8 Binding Commands and Other Widgets 125
8.1	 	Class	and	Widget	Binding	 126
8.1.1	 Bindtag	Command	 126
8.1.2	 Event	Pattern	 127
8.1.3	 Event	Type	 127
8.1.4	 Bind	with Mouse	Button	 128
8.1.5	 Bind	with Mouse	Motion	 129
8.2	 	Widget	Characteristic	Commands	 131
8.2.1	 Unpack	Command	 131
8.2.2	 Arranging	on Side	 132
8.2.3	 Stacking	 132
8.2.4	 Cavity	Model	 133
8.2.5	 Packing	and	Display	Space	(the	−fill	and	–expand	commands)	 133
8.2.6	 Padding	 134
8.2.7	 Anchoring	 135
8.3	 	Menubar-Menu-Menubutton	 136
8.3.1	 Entries	to a	Menu	 137
8.3.2	 Cascade	Menu	 140
8.4	 	Tearoff	command	 141
8.5	 	Listbox	Widget	 142
8.6	 	Place	manager	 143
8.7	 	Solved	Problems	 145
8.8	 	MCQs	on	Bind,	Menu,	and	Place	Manager	 151
	 References	 153

9 Canvas Widgets and Tk Commands 155
9.1	 	Canvas	Coordinate	 156
9.2	 	Drawing	over	Canvas	 156
9.2.1	 Arc	 157
9.2.2	 Line	 157
9.2.3	 Rectangle	 158
9.2.4	 Polygon	 158
9.2.5	 Oval	 159
9.2.6	 Text	 159
9.2.7	 Bitmap	 160
9.2.8	 Image	Widget	 161
9.3	 	Event	Binding	of Canvas	Object	 165
9.4	 	Create	a Movable	Object	 166
9.5	 	Tk	built-in	Command	 169
9.5.1	 Tk_choose	Color	 169
9.5.2	 tk_chooseDirectory	 170
9.5.3	 tk_getOpenFile	/	tk_getSaveFile	 171
9.5.4	 tk_messageBox	 173
9.6	 	Solved	Problems	 173
9.7	 	Review	Problem	 179
9.8	 	MCQs	of	Canvas	 179
9.A	 Appendix	A	 181
	 References	 183

Contents ix

10 Tcl-Tk for EDA Tool 185
10.1	 Accessing Vivado Tool via Tcl Script 185
10.2	 Sourcingthe TclScriptwith Vivado 190
10.3	 ImplementingCounterProgramwith VivadoTclConsole 194
10.4	 Advantageof Vivadoin TclMode 198
 Reference 199
10.A	 Appendix 199

 Index 211

xi

Dr. Suman Lata Tripathi received her Ph.D. in the area of microelectronics and VLSI from
MNNIT, Allahabad. She received her M.Tech in Electronics Engineering from UP Technical
University, Lucknow, and her B.Tech in Electrical Engineering from Purvanchal University,
Jaunpur. She is a Professor at Lovely Professional University and has more than seventeen years of
experience in academics. She has published more than 74 research papers in refereed journals and
conferences. She has organized several workshops, summer internships, and expert lectures for
students. She has worked as a session chair, conference steering committee member, editorial
board member, and reviewer in international/national IEEE journals and conferences. She has
received the “Research Excellence Award” in 2019 and “Research Appreciation Award” in 2020,
2021 at Lovely Professional University, India. She received the best paper award at IEEE ICICS‐2018.
She has published the edited books Recent Advancement in Electronic Devices, Circuit, and Materials;
Advanced VLSI Design and Testability Issues; and Electronic Devices and Circuit Design Challenges
for IoT Application. She is also an editor of the book series on Green Energy: Fundamentals,
Concepts, and Applications and Design and Development of Energy Efficient Systems, which are yet
to be published. She is currently working on an accepted book proposal specifically on Electronic
Device and Circuits Design Challenges to Implement Biomedical Applications. She is working as a
series editor for a title, Smart Engineering Systems.

Her area of expertise includes microelectronics device modeling and characterization, low
power VLSI circuit design, VLSI design of testing, advanced FET design for IoT, embedded system
design, biomedical applications, etc.

Mr. Jyotirmoy Pathak has completed his post graduation in VLSI Design and graduation in
Electronics and Communication Engineering from Anna University, India. He holds more than 10
research papers in a refereed journal. He holds 9 patents and 1 copyright. He has been the reviewer
of many journals such as the IETE Journal of Research etc. He has also played the role of session
chair for many international conferences.

His area of expertise includes VLSI signal processing, hardware security, FPGA prototype
development, and low power ASIC design.

About the Authors

About the Authorsxii

Dr. Abhishek Kumar obtained his Ph.D. in the area of VLSI Design for Low Power and Secured
Architecture from Lovely Professional University, India. He received his M.Tech in Electronics
Engineering from the University of Mumbai, India, and graduated from The Institution of
Engineers (India). He has been an Associate Professor at Lovely Professional University for 11
years. He has published more than 35 research papers in refereed journals and conferences. He has
organized workshops, summer internships, and expert lectures for students. He has worked as a
session chair, conference steering committee member, editorial board member, and reviewer in
international/national journals and conferences. He has published the book Intelligent Green
Technologies for Sustainable Smart Cities with Wiley‐Scrivener and another book Machine Learning
Technique with VLSI is in production with Wiley‐Scrivener.

His area of expertise includes VLSI design, low power architecture, memory design, data
converters, ASIC‐SoC, cryptology, and side channel attacks.

1

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

Language is a structured system of communication used by humans. When a human wishes to
communicate with a computer system, a programming language is required. A programming
 language is able to convert a set of instructions, known as the source code, to perform a specific
task. There are a number of common programming languages, such as C, C++, and JAVA. Each
programming language requires a specific compiler, which is able to translate the source code into
machine code. There are also other mechanisms to produce machine code that are interpreter‐
based, and these use step‐by‐step executors of the source code. A language can be implemented
with either a compiler or interpreter. A combination of both platforms is possible too where the
compiler generates the machine code and then passes it to the interpreter for execution [1].

Tcl stands for Tool Command Language. It is an interpreter‐based scripting language, designed
to be easy to embed into the application. A scripting language is a programming language that
automates the execution of tasks. Scripts are written for the run time execution and are interpreted
rather than compiled. Some popular scripting languages are Python, Ruby, Bash, Node Js, and Perl.
Scripting languages are required in web applications, system administration, gaming, and plugin
development for an existing system. Scripting languages are preferred owing to the (i) ease of
learning, (ii) fast editing, (iii) interactivity, and (iv) functionality.

The shell script is a set of instructions in the specific programming language to be run by the
UNIX shell, a command‐line interpreter. Tcl (pronounced as tickle) is high‐level, interpreted,
dynamic programming. Tcl is very similar to the UNIX shell languages, namely Bounce, C, Korn,
and Perl, and therefore offers a wide range of programmability [2]. Tcl supports a wide range of
programming paradigms, like object‐oriented programming, and the imperative and functional pro-
cedural styles offer the ability for applications to communicate with each other. It is possible to
associate Tcl with the toolkit (Tk) used for building a graphical user interface (GUI). Tk is a cross‐
platform, which offers a wide range of widget libraries that can also be associated with other pro-
gramming languages.

Tcl and the X‐window toolkit were developed by Prof. John Ousterhout of U.C. Berkeley to solve
the difficulty associated with a programming language. It was initially developed for UNIX, then
ported to Windows, MAC, DOS, and QS/2. Its ability to integrate a Tcl interpreter with existing
applications and to interact with the program set is what differentiates it from other programs.
Table 1.1 presents a comparison between programming and scripting languages.

1

Introduction

1 Introduction2

1.1 Features of Tcl

 ● Low development time
 ● Easy integration with Tk
 ● Cross‐platform independence can access with Windows, Mac, Unix
 ● Inclusion into another programming languages
 ● Open‐source
 ● Command‐based operation
 ● Dynamically redefined and overridden
 ● Data types are based on strings
 ● Event‐driven interface

A Tcl application requires a Tcl interpreter and a text editor. Nomenclature and version of the
editor would be different depending on the operating system. Vi is preferred for UNIX or LINUX
systems and notepad for Windows as a .tcl file. A Tcl script development with a text editor must be
saved with the extension .tcl, which is known as the source file. The interpreter enables us to exe-
cute the Tcl command line by line. The latest version of the Tcl installer for the Windows operating
system can be downloaded from http://activestate.com. The latest stable version is tcl8.6.

There is a different mechanism to access the Tcl interpreter

Search ➔ tclsh

Figure 1.1 shows a command‐line interpreter based on the Windows environment.

Table 1.1  Programming and scripting language comparison.

Programming language Scripting language

Set of instructions executes a task Based on script written for run time
environment

Compiler based Interpreter based

Develop from scratch Can integrate with existing

Run independent of parent program Run inside another program

Compiled into a more compact form, does not
need to be interpreted

Can be interpreted within another program

Offer full usage of language Faster execution

One‐shot conversion Line‐by‐line conversion

Long development time Shorter development time since less coding

C, C++, C#, Java, VB, COBOL, PASCAL JavaScript, Tcl, Perl, PHP, Ruby, Lua, Shell

http://activestate.com/

1.1 FeturFes oof cc 3

Search ➔ wish

Figure 1.1  Command-line interpreter.

Figure 1.2  Wish interpreter.

Wish, i.e., Windowing Shell, is a Tcl interpreter, as presented in Figure 1.2, embedded with Tk;
the Tcl command is read from a standard text editor or notepad. The Tcl command can be edited in
the console window and wish in a smaller window to display the Tk widget. Alternatively, users
can interact via importing the source file into the interpreter. A set of Tcl commands edited with
notepad saved with the .tcl extension can be imported into the console.

File ➔ Source ➔
locate the file ➔
open search ➔ tkcon

 Figure 1.3  Tkcon interpreter.

1 Introduction4

The tkcon interface shown in Figure 1.3 is a replacement of the standard console with Tk. It
provides a GUI while the Tk commands are used in the program. Users can enter the program
using a standard text editor or can import a source file.

File ➔ Load file ➔ Locate the file ➔ Open

1.2 Special Variable

Tcl includes some special variables that present their usage (see Figure 1.4). The following is a list
of the special variables [3].

tcl_library Sets the location of Tcl library.
tcl_version Displays the current version of the interpreter.
tcl_patchLevel Displays the current patch level.
tcl_interactive Switches between interactive (1) and non‐interactive (0) mode.
tcl_precision Displays the number of digits to generate when converting floating‐

point values to strings.
tcl_rcFileName Provides the user‐specific startup file.
tcl_pkgPath Provides a list of directories where packages are installed.
Argc Refers to several command‐line arguments.
Argv Refers to the list containing the command‐line arguments.
argv0 Refers to the filename being interpreted.
env (PATH) When Tcl starts, it creates the env array and reads the environment. It

displays the array of elements for the environment variable.

Tk is the most common extension of Tcl, and enables the creation and manipulation of the inter-
face widgets. Advantages of the GUI design with command‐line arguments are (i) faster develop-
ment, (ii) a higher level of interface than other standard library toolkits, (iii) interface can be
factorized with user application.

Figure 1.4  Tcl special variable.

1.5  AAplicalions iof ip 5

The following online platforms prove that an online interpreter does not need to be installed:

https://onecompiler.com/tcl
https://rextester.com/l/tcl_online_compiler
https://ideone.com/l/tcl

1.3 Tcl First Program

The following Tcl script displays a statement at the std. output [4]:

puts “Hello Tcl World”

Each line of the script can be terminated by a newline or semicolon (;). A script can be stopped
from execution via commenting by adding a hash (#) at the beginning. Figure 1.5 displays a simple
program to display.

1.4 Tcl Identifiers

Tcl is a case‐sensitive language. Identifiers are the names used to identify the variable (defined by
the user). An identifier can start with an alphabetical letter (A–Z/a–z), underscore (_), or numeric
digit (0–9). It avoids characters such as @ and %.

Examples: var., Var, St1, s_1, prog50.
Whitespace in Tcl is known as a blank statement and the interpreter ignores it. Whitespace

describes the blank, newline, tab character, or comment. It separates one part of the statement
from another.

1.5   Applications of Tcl

There are several reasons a developer may prefer a Tcl scripting language. The following are the
most favorable applications for the Tcl language.

a) Cross‐platform application
b) Graphical user interface development

Figure 1.5  Tcl simple program.

https://onecompiler.com/tcl
https://rextester.com/l/tcl_online_compiler
https://ideone.com/l/tcl

1 Introduction6

c) Software testing via API of the application
d) Scalable website
e) Embedded application
f) Web‐server hosting

 References

 1 https://www.tcl.tk/software/tcltk/choose.html
 2 https://www.tutorialspoint.com/tcl- tk/index.htm
 3 https://www.activestate.com
 4 Beebe, N.H. (2013). A Bibliography of O’Reilly & Associates and O’Reilly Media. Inc. Publishers.

Department of Mathematics, University of Utah.

https://www.tcl.tk/software/tcltk/choose.html
https://www.tutorialspoint.com/tcl-tk/index.htm
https://www.activestate.com/

7

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

2.1 Introduction

Tcl is a script‐based language that was developed by
John Osterhout in 1989 (University of California,
Berkeley). It has a lower number of keywords and syn
tax compared with others making it easy to learn.
Windows‐based Tcl shells can be used as tclsh or wish,
as shown in Figures 2.1 and 2.2, respectively. The first
is similar to a C‐shell while the second is a Tcl inter
preter that extends its Tk command to create and
manipulate widgets. The console window executes the
Tcl program and the graphical user interface (GUI)
developed with Tk widgets appears in the wish win
dow. Console and wish are intractable. Both shells
print a % prompt and execute the Tcl command and
print the result sequentially. A Tcl program saves with
an extension of .tcl.

The basic syntax of a Tcl program is

Command arg1, arg2 ,…………. Argn

Here, the command can be either built‐in or a user‐
defined procedure followed by arguments separated by
whitespace. Whitespace separates the commands and
their arguments, and a newline or semicolon ends a Tcl
statement. Arguments are string values. In the case of
more than one argument, each argument must be
enclosed by curly braces { }.

 ● Tcl command One or more arguments separated by whitespace.
 ● Tcl script Sequence of commands separated by newlines, a semicolon is a terminator.
 ● Comments Individual Tcl statements can be commented with symbol #.
 ● puts Writes the result string along with a new line.

2

Basic Commands

Figure 2.1  Tclsh screen.

Figure 2.2  Wish screen.

2 Basic Commands8

To display the value or string on the monitor screen, the following scripts are used:

 puts stdout {Welcome to Tcl World}
 puts {Welcome to Tcl World}

In this example, puts is a command to write the result as a standard output (stdout). The default
stdout device is a monitor screen. A group of arguments must be enclosed within {}, else the result
is an error.

The system‐defined command starts with (bin) number % and results appear immediately
following the statement [1]. Figure 2.3 shows that the puts command displays the argument, and
the puts command identifies the I/O stream identifier and a string. The puts command writes
the string to the I/O stream along with the newline character.

The output can be re‐structured in a different format with a backslash sequence, namely \a
(Bell), \n (newline), \t(tab). Figure 2.4 displays the output “Hello Tcl‐Tk” controlled
by the(\) sequence. Appendix II summarizes the backslash sequence.

2.2 Set Command

The set command initializes variables with a constant value. A variable can be initialized with a
set command and holds a value. The variable is case sensitive, a reference to computer memory
where the value is stored. It takes two argument set names of variables where the second is their

Figure 2.3  The puts
command in Tcl.

Figure 2.4  The puts command
with (\) sequence.

2.4 Goouinn 9

value. The variable can be of any length. The interpreter can create value implicitly [2]. Figure 2.5
shows the variable declaration with the set command, (bin) 1 and (bin) 2 declare a constant
value of 22 to a and the string “Welcome to Tcl Script” to b. (Bin) 3 assigns (a + b) to variable c
but returns an error in the case of (bin) 4. Since the variable (a – b) is separated by whitespace,
it is interpreted as a different variable. A Tcl variable can accept a single variable, and grouping
requires the avoidance of errors.

2.3   Variable Substitution

The value of a variable can be updated via the $ symbol; an argument declared with the $ symbol
can be rewritten by the substitution of a value for the variable. A previously declared variable can
be substituted in the current statement, as shown in Figure 2.6, where the string “Welcome to
Script World” is assigned to a variable “a.” The command puts displays the string substituted by
$a, and displays the string “Welcome to Script World.”

2.4   Grouping

Grouping is required when more than one word or integer needs to be assigned to a single variable.
There are two ways to group the argument: double quotes “ ” or curly braces { }. Since Tcl is a
string‐based language, a string may contain one or more arguments. A single argument does not
need to be a group, but more than one argument needs to be a group. The difference between “ ”
and { } grouping is the permission for substitution; grouping with double quotes results in complete
substitution of the whole group while that with braces does not allow substitution. Therefore, group
ing of variables should be performed with double quote else grouping with braces is sufficient. A vari
able grouped with braces prints the arguments similar to the grouping. Here & is considered as a
normal character, not for substitution purposes. Thus, curly braces are used when substitutions on the
argument need to be delayed. Grouping and substitution are employed by the Tcl interpreter before it
runs a command.

Figure 2.5  Variable
declarations with the set
command.

Figure 2.6  Variable
substitution.

2 Basic Commands10

Figure 2.7 explains the grouping feature of Tcl, where bin(7) groups the two strings via “ ”
and creates a single string with substitution $country substituted with India and $capital substi
tuted with New Delhi; while in bin(8), grouping is performed via { }, where $country and
$capital are considered as a single variable and new string without substitution.

2.5   Command Substitution

A Tcl command is shown within square brackets []. An argument written in [] is considered as a
command and evaluated accordingly. A Tcl command has two arguments: the first is a variable
declared via a set and the second is in [command] after evaluation, where the result gets updated
onto a variable.

Figure 2.8 presents the implicit declaration of a string’s script and command string length,
enclosed in []. Variable x gets updated with the evaluation, i.e., 6. (bin) 2 shows variable subs
titution of x.

Command substitution can relate to a single or more than one (nested) command, where the
order of execution is followed from left to right (default). Each right bracket encountered in
the command is evaluated one after another. The space inside the bracket is ignored. The inter
preter evaluates the nested command by considering everything left of the right bracket as a single
character and the results are updated with the remaining nested command, as presented in
Figure 2.9.

Figure 2.7  Substitution with
grouping.

Figure 2.9  Nesting of commands.

Figure 2.8  Command substitution.

2.7 Baccssassh oussisosion (\& 11

2.6   Math Expressions

A mathematical expression starts with expr inside [] (square brackets). This command is equiva
lent to the C‐expression syntax. A Tcl interpreter treats the expr command like other Tcl commands
and leaves the expression upon implementation. The command expr deals with a primary integer,
floating number, and binary value, and the logical operation returns a true (1) or false (0). Integer
results are promoted over floating as the requirement and the floating number is presented in scien
tific notation [3]. An example of variable and command substitution with expr helps to implement
a mathematical expression, as shown in Figure 2.10; where the symbol (+) stands for summation.

2.7   Backslash Substitution (\&)

Backslash substitution is slightly different from regular substitution (&), and it is presented by \&. It
disables substitution and returns the character as written in the string prefixed with \$. It prefers to
quote special characters. Backslash substitution \& does not allow substitution, since the interpreter
interprets a single string. Here,(\) disables the substitution of a single character immediately fol
lowing the backslash. Any character immediately following the backslash will stand without substi
tution. In the case to disable multiple substitutions, multiple backslash symbols are to be used.

Figure 2.11 explains an example of disabling substitution, (bin) 3 combines the variables z1
and z2 by substitution but (bin) 4 (uses \$) does not substitute in the values of z1 and z2. It
treats $z1 and $z2 as new variables and simply prints the variable $z1 $z2.

Figure 2.10  Math expressions with the expr command.

Figure 2.11  Disable
substitution.

2 Basic Commands12

Table 2.1  Arithmetic operator.

Symbol Description

+ Performs addition

− Performs subtraction

* Performs multiplication

/ Performs division

% Returns the remainder after division

2.8   Tcl Operator

A Tcl operator is a symbol that instructs the compiler to perform a specific operation. An operator
applies to the data (variable) known as the operand. Operators that work with only one operand
are called unary operators. Those which work with two operands are called binary operators. There
is also ternary operators that work with three operands. The Tcl script is a rich built‐in operator and
provides the following [4]:

 ● Arithmetic operators
 ● Relational operators
 ● Logical operators
 ● Bitwise operators
 ● Ternary operators

2.8.1  Arithmetic Operators

Table 2.1 lists the arithmetic operators supported by the Tcl language. Figure 2.12 describes the
arithmetic operator, where each symbol there has the usual meaning similar to the C‐language.

Figure 2.12  Arithmetic operator.

2.8 cs upGasoG 13

2.8.2  Relational Operators

The relational operators shown in Table 2.2 require two different operands. It evaluates the rela
tion between operators and returns the result 1 for true and 0 for false. The relational operator
presented in Figure 2.13 compares the variables a = 20 and b = 10 and displays the result accord
ing to the operator in the expression.

Table 2.2  Relational operator.

Symbol Description Output

= = Checks the value of the two operands are equal Returns 1 if same, else 0

! = Checks the value of two operands are not equal Returns 1 if not equal, else 0

> Checks left operand is greater than the right operand Returns 1 if true, else 0

< Checks left operand is less than arg2 Returns 1 if true, else 0

>= Checks left operand is greater than or equal to the right operand Returns 1 if true, else 0

<= Checks left operand is smaller than or equal to the right operand Returns 1 if true, else 0

2.8.3  Logical Operators

A logical operator is used to create the condition in the program. The three logical operators sup
ported by the Tcl language are presented in Table 2.3. Two different operands may be combined
and create a condition to return either 0 (false) or 1 (true).

Figure 2.14 evaluates the relation with variables a and b initialized as 0 and 1, respectively. Here,
[expr $a && $b] returns 0 since both operands are not 1. Additionally, [expr $a || $b]
returns 1 since one of the operands is 1 and [expr !$a] returns 1 since the negation of a is 1.

Figure 2.13  Relational operator.

2 Basic Commands14

Table 2.3  Logical operator.

Symbol Description Output

&& Logical AND Returns 1 if both operands are non zero, else 0

|| Logical OR Returns 1 if any operand is non zero, else 0

! Logical NOT Reverses the style of the operand

2.8.4  Bitwise Operators

The bitwise operator works on bits of two different operands and performs a bit‐by‐bit operation.
The Tcl language supports three bitwise operators “&” –bitwise AND, “|” –bitwise OR,
and “^” –bitwise XOR, which updates each bit of the operand according to the truth table
given in Table 2.4.

Figure 2.15 describes the bitwise operator; variables “a” and “b” are initialized as 10 and 20,
respectively. Bitwise operator [expr $a & $b] evaluates the binary conversion of each operand,
evaluates in binary, and returns the result in decimal equivalent.

Figure 2.14  Logical operator.

Table 2.4  Bitwise operator.

Input Bitwise AND Bitwise OR Bitwise XOR

a b a & b a | b a ^ b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

2.8 cs upGasoG 15

2.8.5  Ternary Operators

The ternary operators are based on three operands and map the function as a 2 : 1 multiplexer. A
ternary operator consists of three segments: a condition; true expression; and false expression. The
syntax of the ternary operator is shown as follows:
Condition? True: False

It evaluates the true statement if the condition is true else a false statement since the condition
is formed with a mathematical operator necessary to use the expr command in []. As shown in
Figure 2.16, variable z updates as x if the condition is true else z will update with the value of y.
A relational operator is used to create the condition.

Figure 2.15  Bitwise operator.

Figure 2.16  Ternary operator.

2.8.6  Shift Operators

Shift operators move each bit of the operand. They
apply to a single operand and shift the bits either left or
right by a defined number of bit positions and displays
the result as a default decimal equivalent. The shift
operator is necessary to execute within an expr com
mand in []. A list of shift operators is provided in
Table 2.5.

Figure 2.17 describes the shifting of the value of
a = 7 left and right twice. Operand a is presented as an
8‐bit binary equivalent 00000111. Shifting left twice
inserts two zeros in the least significant position and

Table 2.5  Shift operator.

Symbol Description

<< Shift bits of arg left by n‐times,
where n is an integer. Inserts
0 in blank bits positions on
the right

>> Shifts bits of arg right by
n‐times, where n is an integer.
Inserts 0 in blank bits positions
on the left

2 Basic Commands16

results in 0011100 = 28. Similarly, shifting right twice and inserting two zeros in the most signifi
cant position results in 0000001 = 1.

Note – If the operand value is an even number, shifting the content left is equivalent to multiply
ing by 2 and shifting the content right is equivalent to dividing by 2.

2.8.6.1  Operator Precedence
An operator in the expression applies to the operand. Precedence and order of associativity of the
Tcl operator determine the order of execution in a grouped expression. The operator with the high
est precedence will be evaluated first and the operator with the lowest precedence will be evaluated
at the end. Table 2.6 lists the precedence order of the operators supported by the Tcl language.

2.8.7  Tcl In-built Math Function

Tcl offers several in‐built functions for math operations, which are included in Appendix I. These
functions are applied to one or more than one argument. A command with expr within [] is used
to evaluate an expression. The math function invokes the math library function. The Tcl expression
comprises operations, operators, and parentheses. Whitespace is used to separate the operator and
operand and can be ignored. The evaluation of the Tcl expression is similar to the C language; their
meaning and precedence are similar. The Tcl expression evaluates a numerical result as either an inte
ger or float.

Figure 2.17  Shift left and shift right.

Table 2.6  Operator precedence order.

Category Operator Symbol

Sign, bit‐wise, logical NOT − + ~!

Exponentiation **

Arithmetic + ‐ * / %

Shift << >>

Relational == != < > <= >=

Bitwise & | ^

Logical && ||

Ternary ? :

2.9 GocpdoGp 17

2.9   Procedure

The procedure in Tcl is similar to the function/task/subroutine in other programming languages.
A set of scripts that are repeated multiple times in the program can be written separately as a pro
cedure and can be called in the program. This offers reusability of the code; a group of code per
forms a specific task, written separately, and can be called in the main program by its
procedure_name [5].

A procedure in Tcl is defined with proc.

proc procedure_name {arguments} {
Body

 }

Each procedure has a unique name through which it can be identified; remember, the name is
case sensitive. The procedure name and variable name should not have a conflict. Each procedure
has its variable to present the expression and the body contains a series of commands. A Tcl proce
dure is ended with a return command and returns a single value of the result.

An addition procedure, as presented
in Figure 2.18, calls a user‐defined pro
cedure to add, which returns an addi
tion of two values. The mapping of
local values 10, 20 to the procedure
variables a, b, respectively, follows the
order of declaration. A procedure acts
as a user‐defined command. It must fol
low the hierarchy of the command sub
stitution and thus it gets called in
square brackets.

Figure 2.19 performs a summation
with the help of a procedure where the
variable is implicitly declared. An argu
ment is inside a procedure grouped
within curly braces. Opening of the
curly brace on the end of the first line
ignores the newline character and gob
bles up text until a matching right brace
is found.

2.9.1.1  Advantages of a Procedure
Use of a procedure in the script includes the following advantages:

a) reduces the duplication of code;
b) decomposes the complex variable into smaller species;
c) improves clarity and readability of code;
d) reuses code;
e) hides information.

Figure 2.19  Using proc with default variable.

Figure 2.18  Addition with the procedure.

2 Basic Commands18

2.10   Eval Commands

For evaluation‐involved substitution,
Tcl will allow an executing program to
create new commands and execute
them during evaluation. The Tcl com
mand is defined as a list of strings,
commands, or procedures. The eval
command takes one or more argu
ments, and comprises a Tcl script con
taining one or more command. The
eval command concatenates all its
arguments like the concat command, passes the concatenated string to the Tcl interpreter recur
sively, and returns the result of that evaluation. The eval command returns the final value of the
commands being evaluated.

The above example assigns a string to variable x and puts the command assigned to variable
cmd. The eval command evaluates the nested substitution of the cmd and x values (Figure 2.20).

2.11   Solved Questions

Problem 2.1
Write Tcl script to convert Celsius to Fahrenheit.

Solution
The mathematical procedure to convert
the numerical value of temperature
from °C to F is given as follows.

 ● Define a variable by a single variable
 ● Express the conversion formula

which returns the temperature value
in Fahrenheit

 ● Call the procedure inside square
brackets

A procedure is preferred that express a
mathematical relation as a function;
there is no limit to calling a procedure
any number of times (see Figure 2.21).

Problem 2.2
Write Tcl script to generate a random number.

Solution
There is an in‐built function rand() to generate random numbers in the range of 0 to 1 (includ
ing both ends) with 16 points after the decimal. Every time this function is called inside square
brackets, a unique random number is produced, as shown in Figure 2.22. The range of numbers

Figure 2.20  The eval command.

Figure 2.21  Temperature conversion with proc.

2.11 oslpd opssions 19

can be extended to 0–10 by
 multiplying the function by 10,
i.e., rand()*10, and extended to
0–100 by multiplying by 100, i.e.,
rand()*100, and so on. To
remove the fractional part,
round(rand()) is preferred to
display only the integer part.

Problem 2.3
Write the Tcl script to find the
maximum in the given number.

Solution

 ● Define a procedure with two variables
 ● Define a decision with an if condi

tion; which returns a maximum of two
 ● Call procedure maps the variable over

the procedure variable

In the example shown in Figure 2.23, a
procedure is defined with variables x
and y; a relational operator compares
two variables and returns x if (x > y)
else y. In the main program, two varia
bles a and b are assigned with local vari
ables 23 and 32, respectively. The
procedure is called any number of times
and maps the variable to proc in the
same order as defined. It returns
the result from proc mapped back to
the variable val from where proc has
been called.

Problem 2.4 (Recursive Procedure)
Write a Tcl script to compute a factorial using a recursive procedure.

Solution
Recursion in the Tcl script is
a way of defining a function
in which a function is
applied in its function itself.
A function calls the same
function. There is a limit of
1000 recursion calls in Tcl
(Figure 2.24).

Figure 2.22  Random number generation with rand() function.

Figure 2.23  Using proc to find the maximum of two
numbers.

Figure 2.24  Factorial computation using proc.

2 Basic Commands20

Problem 2.5
Write Tcl script to find an Armstrong Number.

Solution
An Armstrong number is observed if the sum of cubes of individual digits is equal to the num
ber itself.

 371 is an Armstrong number as 3^3 + 7^3 + 1^3 = 371.

Some other Armstrong numbers are 0, 1, 153, 371, 407.

set str 153
set len [string length $str]
set num1 [string index $str 0]
set num2 [string index $str 1]
set num3 [string index $str 2]
if {[expr ($num1*$num1*$num1) + ($num2*$num2*$num2) +
($num3*$num3*$num3)] == "$str"} {
puts "str is an Armstrong number"
} else {
puts "given string is not an Armstrong number"
}

2.12   Review Questions

1) Write Tcl script to compute arithmetic functions using the procedure.
2) Write a Tcl script to generate random number ranges 0–100 if input1 is greater than input2

else 0–1000.
3) Write Tcl script to identify a given number of odd numbers.

2.13   MCQs Based on Tcl Basics

1 Command interpolation is caused by which of the following?
A \ Disable Substitution
B $ Enable Substitution
C % Format
D [] Command
 Solution (d)

2 What is the output of the following TCL program?
 set x 4;
 set y x + 10;

A 4
B 5
C x + 10
D None of the above
 Solution (c)

MC s Baspd on cs Basics 21

3  What is the extension of a Tcl program?
A .tcl
B .wish
C .tk
D .script
 Solution (d)

4  What is used to decode a Tcl script?
A Compiler
B Interpreter
C Assembler
D None of the above
 Solution (b)

5  Which will generate random numbers in the range of 0–1?
A rand()
B rand()*10
C rand()*100
D rand()*1000
 Solution (a)

6  Variable interpolation or substitution is caused by which of the following?
A whitespace
B \
C #
D $
 Solution (d)

7 What is the advantage of using a Tcl procedure?
A Removes duplication of script
B Simplifies the program
C Hides information
D All of the above
 Solution (d)

Important Points

$ enables substitution
\$ disables substitution
[] square brackets for command substitution
“ ” grouping with double‐quotes allow substitution
{ } grouping with curly braces prevents substitution
proc procedure must exist before being called

2 Basic Commands22

 References

 1 Welch, B.B., Jones, K., and Hobbs, J. (2003). Practical Programming in Tcl/Tk. Prentice Hall
Professional.

 2 https://zetcode.com/lang/tcl/basiccommands
 3  https://www.tutorialspoint.com/tcl tk/tcl_basic_syntax.htm
 4  Ousterhout, J.K. (1994). Tcl/Tk Engineering Manual. Sun Microsystems.
 5  Flynt, C. (2012). Tcl/Tk: A Developer’s Guide. Elsevier.

2.A  Appendix I (Built-in math functions)

abs (x) Calculates the absolute value of arg either integer or floating
acos (arg) Calculates arccosine of x
asin (arg) Calculates the arcsine
atan (arg) Calculates arctangent of arg
ceil (arg) Calculates the smallest integer of arg
cos (arg) Calculates the cosine of arg
cosh (arg) Calculates hyperbolic cosine of arg
double (arg) Returns floating value; if arg is integer, converts into floating, then returns
exp (arg) Calculates the exponential value of arg
floor (arg) Calculates largest integer equal or less than arg
fmod (x/y) Performs division x/y and returns floating‐point reminder, reports error in

case y = 0
hypt (x,y) Calculates the length of the hypotenuse of a right‐angle triangle
int (arg) Returns integer with the same width of the machine
log (arg) Calculates the natural logarithmic value of arg
log10 (arg) Calculates base 10 logarithmic value of arg
pow (x,y) Calculates x raised to y
rand () Returns a random number between 0 and 1, the internal clock of the machine

is used to set the seed
round (x) Rounds the value of x to the nearest integer
sin (arg) Calculates sine of arg
sinh (arg) Calculates the hyperbolic sine of arg
sqrt (arg) Calculates the square root of arg
srand arg () Calculates a random number between 0 and 1. Value of arg resets the seed of

the random number generator. Each interpreter has its seed
tan (arg) Calculates the tangent of arg
tanh (arg) Calculates the hyperbolic tangent of arg
wide (arg) Returns a 64‐bit wide integer

https://zetcode.com/lang/tcl/basiccommands/
https://www.tutorialspoint.com/tcl-tk/tcl_basic_syntax.htm

2.B Auupndix II cs Baccssassh spqopncp& 23

2.B  Appendix II (Tcl Backslash sequence)

\a Bell
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash (“\”)

25

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

Program flow control controls the order of execution of the individual states. By default, when a
Tcl program is run, it is executed from the top of the source file to the bottom sequentially, but
there are certain control flow commands that can alter the order. These commands can be condi-
tional and executed when certain specific conditions are met. Flow control has a command body
to be executed and returns the value of the last command chosen to execute. The loop‐based com-
mand enables execution of a set of instructions to be executed a specific number of times repeat-
edly and there are some fine‐tuning controls, like break, continue, return, and error. Every
programming language supports the conditional statement [1].

3.1 If–Else Command

The if command is used to verify a Boolean condition. If the condition is true, it executes body1
else body2. To avoid substitution, it is necessary to group the command body (group of instruc-
tions) by curly braces. Control of the flow command triggers the evaluation when the condition is
met, as shown by the flow chart in Figure 3.1.

if {Condition } then {
 body1
}

if {Condition } {
 body1
} else {
 body2
}

These are two formats of syntax. The if command verifies the condition and evaluates body1
if the condition is true, and then is optional. The else command in the other syntax creates a
branch. If the condition is true, it executes body1 else body2 when conditions are false. Here the
else commands are optional. Since the Tcl interpreter uses the expr command internally, one
does not need to use it explicitly. Conditions are created with the use of Tcl operators. Example 3.1
shows the expression controls with a single condition; however, if the condition is not met, it
returns a blank statement.

3

Program Flow Control

3 Program Flow Control26

Example 3.1 The value of x is set internally for the comparison, but is not substituted due to the
curly braces. If the condition executed is true, it executes the if expression otherwise the else
expression.

set x 100
if {$x > 50} {
puts "x is greater than 50"
}

set x 100
if {$x > 50} then {
puts "x is greater than 50"
}

if {$x == 2} {
puts "$x is 2"
} else {
puts "$x is not 2"
}

set x 1;
if {$x != 1} {
 puts "$x is != 1"}
 else {
 puts "$x is 1"
 }

set x 1;
if {$x==1} {
puts "GOT 1"
}

Condition

Else
Expression

If
Expression

True

False

Figure 3.1  If–else condition flowchart.

3.1 If–llse Commann 27

3.1.1 If–Elseif–Else Commands

The else command is used whenever
two branches need to be implemented,
and multiple branches are implemented
with the elseif command. The
elseif command evaluates the second
condition when the first condition is not
met and may extend to the third or more
condition. The last expression does not
follow any condition considered as the
default statement and gets evaluated if
the earlier listed conditions are not met.
Any number of conditions can be
chained to create branches, as shown in
Figure 3.2.

if {condition1} {
 body1
} elseif {condition2} {
 body2
} elseif {condition3} {
 body3
 .
 .
} else {
 bodyn

Example 3.2 Verify the input character is a vowel with an if–elseif–else condition.
Set a variable character and compare five times with vowels a, e, i, o, u with if–elseif, and a
default expression is last with the else branch. If the character matches with a vowel, display
“char is a vowel” else “char is not a vowel”.

set char u
if {$char == "a"} {
 puts "char is a vowel"
} elseif {$char == "e"} {
 puts "char is a vowel"
} elseif {$char == "i"} {
 puts "char is a vowel"
} elseif {$char == "o"} {
 puts "char is a vowel"
} elseif {$char == "u"} {
 puts "char is a vowel"
} else {
 puts "char is not
a vowel"
}

Condition 1 Expression 1
True

False

Condition 2 Expression 2
True

False

Condition n Expression n
True

Else
Expression

Default

Next Expression

Figure 3.2  If–elseif–else condition
flowchart.

3 Program Flow Control28

Example 3.3 A student scores 40, 60, and 60 in English, Math, and Science subjects, respectively.
Criteria followed for awarding the division are based on the average score of the three subjects:
more than 60, first division; more than 50 and less than 60, second division; more than 33 and less
than 50, third division; and below 33, fail. Write Tcl script to calculate the division of the student.

Solution
Define three variables to initialize the scores in English, Math, and Science.

 Total English Math Science

 Average Total / 3

An if statement condition evaluates based on the value of the condition average of the score
obtained by a student in English, Math, and Science and decides which division to be awarded.

set english 40
set maths 60
set science 60
set total [expr
$maths+$english+$science]
set averagr [expr $total/3]
if { $average >60 } {
 puts "First division "
} elseif { $average >50} {
 puts "Second division "
} elseif { $average > 33} {
 puts "Third division "
} else {
 puts "Failed "
}

3.2 Switch-Case Command

A switch command implements multiple branch links to a case expression. It contains a condi-
tion to be tested at multiple command bodies depending on the value of the expression, as pre-
sented in Figure 3.3. The body contains either a simple expression or pattern matching. As soon as
the pattern match evaluates the following expression, it returns the following body expression. The
last condition is the default and gets evaluated when no earlier condition has been evaluated. In
case the default string is not available and no condition is met, the switch command returns an
empty string. The body must be grouped by curly braces to avoid substitution. The value/pattern to
the switch case is numeric, alphabetic, or a string.

switch switchingString {
matchString1 { body1}
matchString2 { body2 }
 ...
matchStringn { bodyn }
 }

3.3 ooop Commann 29

Example 3.4 Evaluate the grade of a candidate given in Example 3.3 based on switch‐case condi-
tions.

Solution
The condition per is set to evaluate the average. The switch condition is framed according to the
level of the score and decodes the grade.

set english 60
set maths 60
set science 60
set total [expr
$maths+$english+$science]
set per [expr $total/3]
switch $per {
60 {puts "First division "}
50 {puts "Second division " }
33 {puts "Third division " }
default {puts "Failed " }
}

3.3 Loop Command

The loop command in Tcl enables execution of the set of expressions repeatedly based on the
given condition. There are three types of loops supported in Tcl: while; for; and forever [2].

Switch

Expression 1

Expression 2

Expression n

Case 1

Case 2

Case n

Expression n
Default

Next Expression

Figure 3.3  Switch case flowchart.

3 Program Flow Control30

Condition

Expression

False

True Next Expression

Figure 3.4  While loop flowchart.

3.3.1 While Loop

The while command has two parts: a test condition
and command body. It continuously executes the body
till the condition is truly presented, as shown by the
flowchart in Figure 3.4. Since the variable of the body
gets updated on each loop, it is necessary to store the
internal variable depending on the requirement. The
test condition may be a single or group of statements
which evaluate to true (1) or false (0). When the condi-
tion gets a false, it is removed from the loop and the
control goes to the next immediate expression.

while {booleanExpr} {
 body
 }

Example 3.5 Write Tcl script to display the number ranges 0 to 10 using the while loop.

Solution
Set a variable i = 0; the while loop continues to evaluate the following expression until the condi-
tion is true, i.e., i 10. On every iteration, the value of i increments and is displayed. The puts
command in the while loop after the incr command displays the incremented value on each
iteration.

set i 0 ;
while {$i <= 10} {
 incr i
 puts $i
 }

Example 3.6 Write a Tcl script to display only even numbers in the range 0 to 10 using the
while loop.

Solution
A while loop continues to evaluate the following two expressions until the condition is true. The
puts command in the while loop before the set expression verifies when the condition is true
and it is displayed. On the last iteration, x is set to 10 but the (x < 10) condition becomes false and
is not displayed.

3.3 ooop Commann 31

set x 0;
while {$x < 10} {
 puts "x is $x an even";
 set x [expr $x + 2]

set a 10
while { $a < 20 } {
puts "value of a: $a"
incr a
}

Here, the puts command in the while loop appears before the incr command. It verifies
when the condition is found true and displays the puts command.

Note – Care is needed when using the puts command inside a while loop.

3.3.2 For Loop

The for loop supported in Tcl is similar to the for
loop in the C statement. It contains four arguments:
initialization; condition; increment; and expres-
sions, as shown in Figure 3.5. The first argument
initializes the loop once, and the loop control vari-
able is declared in this step. The second argument is
the condition that determines the number of times
the loop will iterate if the condition is found true. If
the condition becomes false, the loop is not exe-
cuted, and the iteration control jumps to the next
instructions after for loop. The third argument is
after the iteration control jumps up to the incre-
ment statement. Here the variable can be updated.
The fourth argument is/are expressions in the loop
to execute and these repeat themselves.

for {initialization} {condition}
{increment} {
 expression(s)
 }

Condition

Expressions

False

True

Initiallization

Increment

Next Expression

Figure 3.5  Flowchart of for loop.

3 Program Flow Control32

Example 3.7 Write Tcl script to display the range of numbers in the range of 0 to 9 using the for
loop.

Solution
The variable i inside the for loop begins at 0. The value of i is displayed and increments until it
is less than 10. The loop executes a certain number of times and displays for values from 0 to 9.

for {set i 0} {$i < 10}
{incr i} {
 puts $i
}

Example 3.8 Write Tcl script to display only odd numbers between 0 to 10.

Solution
A for loop is required, similar to Example 3.7, to create a range of numbers from 0 to 9. It needs
to select only an odd number if the condition inside the for loop divides the number by 2 and
compares the remainder with 1. If the remainder is 1 display, else do not display.

for {set i 0} {$i < 10}
{incr i} {
 if {$i % 2 == 1} {
 puts "$i an
odd number"
 }
 }

Example 3.9 Write Tcl script to display a truth table for logic gates (AND/OR/NOT/NAND/NOR/
XOR/XNOR).

Solution
The procedure is used to present a Boolean equation of different logic gates and for a loop used to
create a truth table. A separate for loop requires for each variable. Nesting of the for loop requires
creating more than one input truth table. Each logic gate is declared as a separate procedure return
with the defined equation of logic gates. The logical operator is used to present logical relations in
the procedure. The proc invokes the procedure in the program wherever it is needed to evaluate
the logical relation. Variable created through the for loop or nested for loop passes to the proce-
dure to return the single value binary result.

3.3 ooop Commann 33

proc not {a} {return [expr ! $a]}
proc and {a b} {return [expr
$a & $b]}
proc or {a b} {return [expr
$a | $b]}
puts "NOT Gate Truth Table"
puts "input\toutput"
for {set i 0} {$i < 2} {incr i} {
puts "$i\t[not $i]"
}
puts "AND Gate Truth Table"
puts "input1 input2 output"
for {set i 0} {$i < 2} {incr i} {
for {set j 0} {$j < 2} {incr j} {
puts "$i $j [and $i $j]"
}
}
puts "OR Gate Truth Table"
puts "input1 input2 output"
for {set i 0} {$i < 2} {incr i} {
for {set j 0} {$j < 2} {incr j} {
puts "$i $j [or $i $j]"
}
}

The NAND‐NOR logic gate implements with nesting of the procedure described in the following.
NAND logic requires a NOT and AND procedure while NOR requires an OR and NOR procedure. The
order of the procedure needs to be carefully defined.

NOT = !A
AND = A & B
OR = A | B

3 Program Flow Control34

proc not {a} {return [expr ! $a]}
proc and {a b} {return [expr
$a & $b]}
proc or {a b} {return [expr
$a | $b]}
proc nand {a b} {not [and $a $b]}
proc nor {a b} {not [or $a $b]}
puts "NAND Gate Truth Table"
puts "input1 input2 output"
for {set i 0} {$i < 2} {incr i} {
for {set j 0} {$j < 2} {incr j} {
puts "$i $j [nand $i $j]"
}
}
puts "NOR Gate Truth Table"
puts "input1 input2 output"
for {set i 0} {$i < 2} {incr i} {
for {set j 0} {$j < 2} {incr j} {
puts "$i $j [nor $i $j]"
}
}

To define the XOR and XNOR gate, three nesting procedures are required with the careful declara-
tion of the order of precedence.

3.3 ooop Commann 35

proc not {a} {return [expr ! $a]}
proc and {a b} {return [expr $a & $b]}
proc or {a b} {return [expr $a | $b]}
proc xnor {a b} {or [and $a $b] [and
[not $a] [not $b]]}
proc xor {a b} {or [and [not $a] $b]
[and $a [not $b]]}
puts "XOR Gate Truth Table"
puts "input1 input2 output"
for {set i 0} {$i < 2} {incr i} {
for {set j 0} {$j < 2} {incr j} {
puts "$i $j [xor $i $j]"
}
}
puts "XNOR Gate Truth Table"
puts "input1 input2 output"
for {set i 0} {$i < 2} {incr i} {
for {set j 0} {$j < 2} {incr j} {
puts "$i $j [xnor $i $j]"
}
}

3.3.3 Foreach Command

The foreach command implements a loop
with variables. The variable takes a value from
the defined list or string, presented as a flow-
chart in Figure 3.6. Each element of the list (first
to last) applies to the loop and executes the
expression under the loop [3]. Each element is
executed only once. The number of elements
and loop iterations will not be the same if the
number of elements is not sufficient for each
loop variable, so empty values are used for the
missing elements.

set x { }
foreach i $x {
 expressions
}

Element
count > 0

Expression

Next
Expression

No

Yes

Element
count > 0

Yes

No

Figure 3.6  Foreach command flowchart.

3 Program Flow Control36

Example 3.10 Write a Tcl script to display each element of the list individually.

Solution
By setting a list, a foreach loop requires a local variable and is applied to each element of the list,
and the puts command is executed to display.

set numbers {1 2 3 4 5 6 7 8 9 10}
foreach x $numbers {
puts "x = $x"
}

Example 3.11 Write Tcl script to display each element of a string along with the index number.

Solution
The index of the string begins with zero. A string x contains three elements. The foreach loop
consists of a local variable j and applies on each element of x, and executes the puts statement
and increments by a variable i.

set x "a b c"
set i 0;
foreach j $x {
 puts "$j is item
number $i in list x"
 incr i
}

Example 3.12 Write Tcl script to find the sum of all elements in a list.

Solution
Declare a list (m) and a variable (n) with an initial value of zero. The foreach command creates a
loop to each element one by one in m and an updated value of n.

3.5 Cattch ann –rror 37

set m {1 2 3 4 5}
set n 0
foreach i $m {
set n [expr $n + $i]
}
puts "Sum of all elements in
list=$n"

3.4   Continue and Break

The execution loop can be controlled by the break and continue statements. These statements
continue to check for the conditional test. The break command says to immediately exit from the
loop and the continue command says to continue the loop for the next iteration.

set i 0
set sum 0
while { 1 } {
 incr i
 if {$i == 5} { continue }
 if {$i > 10} { break }
 set sum [expr $sum+$i]
}
puts "Sum = $sum"

In the above example, the value of i is incremented and added to the sum in the loop. When
i = 5, the continue command allows to execute the next iteration until (i > 10), then the break
command says to terminate the loop and execute the next puts statement.

3.5 Catch and Error

A command may raise errors due to wrong arguments or due to the wrong implementation. The
error may cause the execution of the program to be aborted. In Tcl, errors are handled with the
catch and error commands [4].

Catch command is used to detect the error in Tcl script:

catch { command } resultvar

Syntax of the catch command includes a command and a resultvar, which indicates the error
message 0 if there was no error and 1 if it catches an error.

3 Program Flow Control38

Example 3.13 The availability of files in the working directory can be populated with the ls
command (list search) as shown in the following. If we try to open a file that is not available, the
interpreter will catch the error, and a return of 1 indicates an error is detected.

ls
C:/ActiveTcl/bin:
bitmap- editor.tcl cards.txt critcl
critcl.tcl diagram- viewer.tcl dtplite.tcl
file input.txt nns.tcl
nnsd.tcl nnslog.tcl one.csv
pt.tcl sdx.kit tcl86t.dll
tcldocstrip.tcl tclkit.upx.exe* tclkit.upx2.exe*
tclsh.exe* tclsh86t.exe* tclsht.exe*
tk86t.dll tkcon.tcl two.csv
wish.exe* wish86t.exe* wisht.exe*
catch {set file [open "myNonexistingfile.txt" r]} result | 1

Error command raises an error condition that will terminate a script unless it is trapped with
the catch command.

error “Error Message” “Error Info” “Error Code”

The error command enables the description of the detected error in detail. We can display the
predefined error message, error information, and error code on detecting the error.

catch {set file [open "myNonexistingfile.txt" r]} result
puts "ErrorMsg: $result"
puts "ErrorCode: $errorCode"
puts "ErrorInfo:$errorInfo"

There is a possibility that a Tcl procedure can fall into error conditions. In such a case, the user
may specify the error message when the catch returns 1. It will help in debugging but also enhance
the length of the program.
proc errorproc {x} {
 if {$x >= 0} {
 error
"Error generated by
error" "Info String
for error" $x
 }
}
catch {errorproc
0} result
puts "ErrorMsg:
$result"
puts
"ErrorCode:$errorCode"
puts
"ErrorInfo:$errorInfo"

3.6 ollsen Proolseml 39

Example 3.14 Specify the error condition for dividing by zero in a procedure and display the
error message.

Solution

proc Div {a b} {
 if {$b == 0} {
 error "Error generated"
"Error in string" 401
 } else {
 return [expr $a/$b]
 }
}
if {[catch {puts "Result = [Div
10 0]"} errmsg]} {
 puts "ErrorMsg: $errmsg"
 puts "ErrorCode:$errorCode"
 puts "ErrorInfo:$errorInfo"
}
if {[catch {puts "Result = [Div
10 2]"} errmsg]} {
 puts "ErrorMsg: $errmsg"
 puts "ErrorCode:$errorCode"
 puts "ErrorInfo:$errorInfo"
}

3.6 Solved Problems

[1] Write a Tcl script to find the average of a given number in a list.

Solution
First, define a procedure to calculate the average. It can accept a list as input and return the single
result average.

 ● In the procedure:
 ❍ Define a variable sum initially zero
 ❍ A foreach command with local variable x is applied to each element and added to the sum
 ❍ Compute the average expression by dividing by the length of the list
 ❍ Return the average

 ● Invoke the procedure with the list as input

3 Program Flow Control40

proc avg {numbers} {
 set sum 0
 foreach x $numbers {
 set sum [expr $sum + $x]
 }
 set average [expr $sum/
[llength $numbers]]
 return $average
}
puts "Average of {70 80 50
60}=[avg {70 80 50 60}]"
puts "Average of {70 80 50}=[avg
{70 80 50}]"

[2] Write a Tcl script to find the number of characters in your name.

Solution
Suppose the name is MANISH.

 ● Declare the name a string and a variable len to display the count value
 ● The split command splits each character of the string and separates them by whitespace
 ● A foreach loop on the split string is applied to each element and increments the variable len

3.6 ollsen Proolseml 41

[3] Write Tcl script to calculate factorial using the while loop.

Solution

proc fact {n} {
set f 1
while {$n>=2} {
set f [expr $f*$n]
set n [expr $n - 1]
}
return $f
}
puts "Factorial of 5=[fact 5]"

[4] Write Tcl script to display the following pattern.

Solution

0
0 1
0 1 2
0 1 2 3
0 1 2 3 4
0 1 2 3 4 5

[5] Write a script to verify the given string is a palindrome.

Solution

 ● Define a string
 ● Calculate the length of the string
 ● Use a for loop on half of the string length
 ● Read the character in the first index assigned to var1
 ● Read the character in last index assigned to var2
 ● Compare var1 and var2, if equal, print palindrome

3 Program Flow Control42

set a "abcba"
set len [string length $a]
set n [expr $len/2]
for { set i 0 } { $i < $n } {
incr i } {
set b [string index $a $i]
set c [expr $len - 1 - $i]
set d [string index $a $c]
if {$b != $d} {
puts "not a palindrome"
Exit
}
}
puts "Palindrome"

3.7 Practice Questions

[1] Write Tcl script to find the factorial using the while loop.

[2] Write a Tcl script to find the number of vowels in your name.

[3] Comment on the following program:

for {set i 0; set sum 0} {$i <= 10} {set sum [expr $sum+$i];
incr i} {
}
puts "Sum = $sum"

[4] How many times will the following loop be executed?

 for {set i 0} {$i < 9} {incr i} {
 puts $i
}

[5] Comment on the result:

set c [list Mark Roy Brian]
foreach o $c {
 puts $o
}

3.8 CCl 43

3.8 MCQs

[1] Calculate the output value of s in the program:

 set a 6
 set b 5
 set s 0
 for {set I 1} {$i<= $b} {incr i} {
 set s [expr $a + $s]
 }
 puts $s

(a) s = 6
(b) s = 5
(c) s = 30
(d) s = 11
 Solution (c)

[2] A foreach loop in Tcl executes the statement for ________ variable in the list.
(a) Selected
(b) Each
(c) Alternate
(d) Null
 Solution (b)

[3] What will the following Tcl script return?

 set list1 {a e i o u}
 puts [lsearch $list1 o]

(a) 3,o
(b) o
(c) 4
(d) 3
 Solution (d)

[4] What will the following Tcl script execute?

 set k 1
 foreach value {2 3 4} {
 set k [expr $k * $value]
 }
 puts $k

(a) Multiply each element of a list by k
(b) Multiply each element of the list by k and update the value of k
(c) Multiply each element of the list by k, update values of k, and display 24
(d) None of the above
 Solution (c)

3 Program Flow Control44

[5] What will the following script display?

 set c [list read write speak]
 foreach o $c {
 puts $o
 }

(a) read, write, speak
(b) write, read, speak
(c) speak, write, read
(d) None of the above
 Solution (a)

 References

 1 Welch, B.B., Jones, K., and Hobbs, J. (2003). Practical Programming in Tcl/Tk. Prentice‐Hall
Professional.

 2 Nadkarni, A.P. (2017). The Tcl Programming Language: A Comprehensive Guide. Createspace
Independent Publishing Platform.

 3 Harrison, M. and McLennan, M. (1998). Effective Tcl/Tk Programming: Writing Better Programs with
Tcl and Tk. Addison Wesley Longman Publishing Co., Inc.

 4  Flynt, C. (1999). Tcl/Tk for real programmers, 698. AP Professional.

45

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

The basic data structure of Tcl is a string and two higher levels of data structure are the list and
array. The string is the default data type used to represent an integer, floating number, or text. In
Tcl, a string contains 16‐bit unicode and alphanumeric characters. A list is an ordered collection of
numbers, words, or strings. Lists are implemented as strings [1]. The array is the indexed collection
of variables. The index can be a string and the array variable another string. A string‐list‐array has
its syntax and commands. These commands must execute in square brackets. The string‐based
command starts with string [string], the list‐based command starts with l
[l.......], and the array‐based command starts with array [array].

4.1 String and Matching Command

The string is the basic data type in Tcl. The string is a combination of alphanumeric character
numbers or Boolean variables. A string declares with the set command, and does not require
grouping in the case of a single word. More than one word in a string can be grouped using double
quotes “ ” or curly braces {}. The declaration of a string is shown in Figure 4.1.

There is a large number of string‐based commands, as presented in Table 4.1.
The syntax of a Tcl string command is

string operation stringname othertag

4

Tcl Data Structure

Figure 4.1  String declaration.

4 Tcl Data Structure46

Table 4.1  String-based command.

String-based command Description

string length string name Returns length of string

string index stringname index
value

Returns character at the index position. Index position starts
with 0 and keyword end can use for the last character

string range string name
first last

Returns part of a string composed of first and last index
numbers

string compare string1
string2

Compares two strings lexicographically, returns
−1 string1 sort before string2

0 string1 equals string2

1 string1 sort after string2

string first string1 string2 Returns the index of the character in string1 that starts the
first match to string2,
−1 if there is no match to string2 in string1

string last string1 string2 Returns the index of the character in string1 that starts the
last match to string2
−1 if there is no match to string2 in string1

string wordend string index Returns the index of the character just after the last one in the
word which contains the index character of the string

string wordstart string index Returns the index of the character just before the last one in
the word which contains the index character of the string

string match pattern
stringname

1 if the pattern matches the string name
0 if the pattern does not match

string tolower stringname Converts all characters of the string to lower case

string toupper stringname Converts all characters of the string to upper case

string totitle stringname Converts the string into title case (first letter to uppercase and
remaining in lower case)

string trim stringname

trimchar

Removes the trim character from the string name from both
terminals (left–right)
Removes space if trim character is not specified

string trimleft stringname
trimchar

Removes the trim character from the start (left) terminal of
the string name

string trimright stringname
trimchar

Removes the trim character from the end (right) terminal of
the string name

The string‐based command starts with a string; the second argument (operation) determines a
specific operation; and the third argument (string name) and additional arguments are required
depending on the command. A string command must be invoked within square brackets.

The string‐based command is explained with an example:
Defines a string st1= “This is my test string”

A single operation command executes according to the description in Table 4.1. The nesting
feature of the string command enables mixing of more than one command and executes the com-
mand focused on the initial string. [String length [string range $st1 5 10] ➔ first,

4.1 Strring aind atccring Cooaind 47

Figure 4.3 includes the string trim example. The character to be removed can be declared sepa-
rately or implicitly (Figure 4.4).

Figure 4.3  String trim.

Figure 4.2  String basic
command.

the string range execution results in the output “is my test” which acts as the input string for
the outer command [string length] to compute the number of characters 11, as shown in
Figure 4.2.

Figure 4.4  String case.

Figure 4.5 shows the comparison of two strings in lexicographical order. The string compare
command compares two strings lexicographically (compares the strings character by character). If
the first character of both strings is the same, continue with the second character and so on until
the end. If both strings are equal return 0; if the non‐matching character occurs first in string
1 return −1; and if the non‐matching character occurs first in string2 return 1.

4 Tcl Data Structure48

4.1.2  Format Command

The format command represents a string in the given format and converts the string according to
the specifier presented in Table 4.2. Syntax of the command is

format spec value

Table 4.2  Format specifier.

Specifier Description

%d Signed Integer (decimal)

%u Unsigned Integer

%o Unsigned octal

%x Unsigned hexadecimal

%c ASCII

%s String

%f Floating number

%e / %E Floating number with scientific notation

4.1.1 Append Command

As the name stands, the append command depends on the variable of the first argument, and
then remaining arguments [2]. The variable will declare implicitly or not declare initially. It adds
two new variables at the end of the string. It works on the memory allocation scheme to provide
the extra space required for the expansion. In Figure 4.6, st2 has been appended after st1, while
the third string is not declared instantly appended.

Figure 4.6  String append.

Figure 4.5  String compare.

4.1 Strring aind atccring Cooaind 49

Figure 4.7  Format command example.

The spec is the combination of (i) literal place in the result and (ii) keywords indicating how to
format. The keyword starts with %. It is similar to the printf command in the C language.

Figure 4.7 presents the floating‐point presentation in regular and scientific format. The number
of variables after the decimal is controlled by introducing the number of characters in the specifier,
as shown in Figure 4.8. Precision indicates the period and a number. The specifiers %f and %e
denote the number of digits after the decimal point. The specifier %g indicates the total number of
significant digits and %d and %x indicate the number of digits to be printed with a padding of zeros
if necessary.

Figure 4.8  Format command with precision.

4.1.3  Number Base Conversion with the Format Command

Digital design frequently requires the conversion of a number into four popular formats: binary
with base 2; octal with base 8; decimal with base 10; and hexadecimal with base 16. A method to
perform conversion is described in Figures 4.9–4.12. The default number in the Tcl console is in
decimal, and a number in binary starts with 0b, in octal 0o, and hexadecimal 0x.

4 Tcl Data Structure50

Figure 4.12  Hexadecimal to other formats.

Figure 4.11  Binary to other formats.

Figure 4.10  Octal to other formats.

Figure 4.9  Decimal to other formats.

4.1.4 Scan Command

The scan command parses a string based on the format specifier, similar to scanf in C language,
and operates by scanning the string and format together. This command parses substrings from an
input string and returns a count of the number of conversions performed, or returns −1 if the end
of the input string is reached before any conversions have been performed. The scan format uses
square brackets; % indicates the start of a conversion specifier (Figure 4.13). The syntax of the scan
command is

scan string {%[format]} variable

4.1.5 Clock Command

The clock command is used to display the current time in seconds. Clock with a format command
can be used to display the time in different formats. [Clock seconds] fetches the current sys-
tem of time and display it in seconds. The current time is stored in the assigned variable. Every
time its value would be updated is given in Figure 4.14. The clock command was added in Tcl7.5.
The clock click is a high‐resolution time value as a system‐dependent integer.

Figure 4.13  Scan command example.

4.1 Strring aind atccring Cooaind 51

Figure 4.14  Clock seconds
example.

 ● clock click Returns a high‐resolution time value as a system
dependent integer value

 ● set time [clock seconds] Updates the current value of time in seconds
 ● set time [clock milliseconds] Updates the current value of time in milliseconds
 ● set time [clock microseconds] Updates the current value of time in microseconds

Most clock commands deal with times represented as a count of seconds from epoch time, and
this is the representation that clock seconds returns. The clock click command returns a
platform‐dependent high‐resolution timer. Unlike clock seconds and clock milliseconds,
the value of clock click is not guaranteed to be tied to any fixed epoch; it is simply intended to
be the most precise interval timer available and is intended only for relative timing studies such as
benchmarks.

4.1.6 Clock Format Command

The clock command provides access to the time and date. The clock command performs several
operations that obtain and manipulate values that represent time. Digital devices display the time
in different formats like HH:MM: SS, HH:MM:SS: AM/PM, HH: MM. The clock format com-
mand further converts the time variable into a specific format and returns it in a readable form.
The syntax of the clock format command is

clock format clockvalue –format string –GMT boolean

-GMT Boolean acts as a switch, allowing selection of the timezone; boolean 1 selects
Greenwich meantime and otherwise Local Time. The –format string controls the format to be
returned. The content of the string has content similar to the format command. Several % descrip-
tors that can be used to describe the output are included in the following (Figure 4.15).

 %HHour (00 – 23)
 %lHour (00 – 12)
 %MMinutes (00 – 59)
 %S......Seconds (00 – 59)
 %pPM or AM

4 Tcl Data Structure52

Figure 4.15  Time representation with clock format.

There are predefined templates for the time representation (Figure 4.16).

%D Date as %m/%d/%y
%r. Time as %I:%M:%S %p
%R Time as %I:%M
%T Time as %I:%M:%S
%Z Time Zone Name
%a Abbreviated weekday name (Mon, Tue, etc.)
%A Full weekday name (Monday, Tuesday, etc.)
%b Abbreviated month name (Jan, Feb, etc.)
%B Full month name (January, February, etc.)
%d. Day of month
%m Month number (01- 12)
%y. Year in century
%Y Year with 4 digits

Figure 4.16  Clock format with predefined template.

4.1 Strring aind atccring Cooaind 53

A command that prints the current
date and time of the system according
to the default setting is shown in
Figure 4.17.

Figure 4.17  Clock format to display system time.

4.1.7 Clock Scan Command

The clock scan command accepts the time formatted as a string and converts it to the count
value of seconds. It takes a format command followed by a string describing the expected format
of the input.

clock scan dateString - base seconds –format string - gmt boolean

It converts dateString to an integer clock value, and year, month, and day are part of the
string scan. It uses a format command that begins with % to represent the clock value of seconds
presented in a specific pattern (Figure 4.18).

Figure 4.18  Clock scan.

4.1.8 Clock Add Command

This command performs clock arithmetic on a value. It adds an offset to a time that is expressed as
an integer number of seconds from the epoch time of 1 January 1970, 00:00 UTC. The other argu-
ment of the command is –timezone, where −GMT. and –locale have their usual meanings.
The addition of seconds, minutes, and hours is straightforward to give an increment to the time
values. The addition results in enhancement of the number of seconds from the epoch [3].

clock add time value incremental value

The example in Figure 4.19 explains the addition of seconds, minutes, and hours into the current
time of the clock. The new value of clock time shows there is an increment of 5 hours, 35 minutes,
and 25 seconds. The addition or subtraction of hours is defined in terms of absolute time, which
means that it will add a fixed amount of time in the timezone. There is a surprising result that
appears when crossing a point at which a leap second is inserted. The clock add command ignores
the leap second; therefore, assumes that time comes in the sequence 23 : 59 : 59 then 00 : 00 : 00.
Adding and subtracting days and weeks is accomplished by converting the given time to a calendar
day and the time of day in the appropriate time zone and locale. The requisite number of days
(weeks are converted to days by multiplying by seven) is added to the calendar day, and the date
and time are then converted back to a count of seconds from the epoch time.

4 Tcl Data Structure54

4.1.9  Solved Problems

1. Write a TCL program to find the number of vowels in a string using string commands.

Solution

set str "scripting language"
set c 0
set l [string length $str]
puts " Length Of The
String = $l"
for {set j 0} {$j<$l}
{incr j} {
set b [string index $str $j]
if { $b=="a" | $b=="e" |
$b=="i" | $b=="o" | $b=="u"}
{incr c}}
puts " The Number Of Vowels
Is =$c"

2.  Write Tcl script to display your computer date in the following formats:
 (a) dd : mm : yyyy
 (b) mm : dd : yyyy
 (c) yyyy : mm : dd

Figure 4.19  Clock add.

4.1 Strring aind atccring Cooaind 55

Solution

set time [clock
seconds]
puts "DD:MM:YYYY
Format [clock
format $time
- format %d:%m:%Y]"
puts "MM:DD:YYYY
Format [clock
format $time
- format %b:%d:%Y]"
puts "YYYY:MM:DD
Format [clock for-
mat $time - format
%Y:%b:%d]"

3.  Write Tcl script to verify if a given string is a palindrome or not.

Solution

proc check {a} {
set len [string length $a]
set x [string reverse [string
range $a 0 $len- 1]]
if {$a==$x} {
puts "Palindrome"
} else {
puts "Not Palindrome"
}
}
puts [check tata]
puts [check 12321]
puts [check rotor]
puts [check noon]

4. Write Tcl script to find the length of a string.

Solution

The following two methods find the length of the string.

4 Tcl Data Structure56

Method 1: Split the string, separated by whitespace, and count each character.

set str "lenghtofthisstring"
set len 0
set list1 [split $str ""]
foreach value $list1 {incr len}
puts "Length = $len"

Method II: Convert a string into a list using the split command then with a list‐based command

set str “lenghtofthisstring”
set lst [split $str {}]
puts $lst
set len [llength $lst]
puts “Length = $len”

5. Write Tcl script to swap the content of two strings.

Solution

set st1 "12345"
set st2 "54321"
puts "Before Swap"
puts "st1=$st1"
puts "st2=$st2"

set st3 ""
set st3 $st1
set st1 $st2
set st2 $st3
puts "After Swap"
puts "st1=$st1"
puts "st2=$st2"

4.1 Strring aind atccring Cooaind 57

6. Write Tcl script to swap the set of characters in the given string.

Solution

set a "language"
set b [string range $a 4 5]
set c [string range $a 7 8]
set d [string replace $a 4 5 $c]
set e [string replace $d 7 8 $b]
puts "Before Swap $a"
puts "After Swap $e"

7. Write Tcl script to convert the current time of the system into a different time zone.

Solution

4.1.10  Review Problems

1. Write the result of the following TCL string‐based command.

 set str1 "posco"
 set str2 "calculator"
 puts [string compare $str1 $str2]
 puts [string index $str1 2]
 puts [string length $str1]
 puts [string range $str1 2 4]
 puts [string range $str1 2 end]
 puts [string toupper $str1]
 puts [string tolower [string toupper $str1]]
 puts [string trim $str1 o]

4 Tcl Data Structure58

2.  Write the result of the following Tcl string‐based command.

 set str1 "cosco"
 set str2 "ball"
 puts [string compare $str1 $str2]
 puts [string index $str1 2]
 puts [string length $str1]
 puts [string range $str1 2 4]
 puts [string range $str1 2 end]
 puts [string toupper $str1]
 puts [string tolower [string toupper $str1]]
 puts [string trim $str1 o]

3.  Write Tcl script to display the time in the following given formats.

4. Design a computational engine that can accept numbers in any format (binary, octal, decimal,
hexadecimal) and convert the equivalent into other formats.

4.1.11  MCQs on Strings

[1] What is the output of the following TCL program?

 set a malayalam
 set len [string length $a]
 set n [expr $len/2]

A 8
B  9
C 4
D 5

 Solution (c)

[2] What is the output of the following TCL program?

 set x 2
 set y 3
 expr $x- 1
 expr $y- 1
 string compare $x $y

A −1
B  0
C +1
D None

 Solution (a)

4.1 Strring aind atccring Cooaind 59

[3] The command stringtrimremove removes a character from ______
A Left end
B  Right end
C Centre
D Both terminals

 Solution (d)

[4] What does the output of the following program display?

 set st “@@This is #my @world##}
 set st1 [string trimright $st #]
 set st2 [string trimleft $st1 @]
 puts $st2

A @@This is @my @world##
B  @This is #my @world#
C This is my world
D This is #my @world

 Solution (d)

[5] What is the Tcl format command used for?
A Display the variable in a particular format
B  Display the variable with precision
C Change the variable in a particular format
D All of the above

 Solution (d)

[6] What is needed to convert a Tcl string to a list?
A Split
B  Join
C Concat
D Append

 Solution (a)

[7] What is the output of the following TCL program?

 set x 2
 set y 3
 expr $x- 1
 expr $y- 1
 puts [string compare $x $y]

A −1
B  −0
C +1
D +0

 Solution (a)

4 Tcl Data Structure60

Figure 4.20  List declaration. Figure 4.21  List created in Tcl console.

4.2   Lists and their Commands

A Tcl list is an ordered string. It differs from a list in that the list elements are separated by whites-
pace. The set command is used to declare a list and grouping of elements requires double quotes
and curly braces. Because of relationship between a string and a list, they can mutually be con-
verted to each other. The following three ways are used to define a list.

 (i) By declaring a list element – each element of the list can be defined separated by whites-
pace. Here, grouping requires curly braces.

 set list1 {element1 element2 element3 ………..elementn}

 (ii) By a list command – a list command followed by list element, grouped by square
brackets.

 set list2 [list element1 element2 element3 ………..
elementn]

 (iii) By a split command – a split command can convert the unordered string into an
ordered list, by splitting the string element via a special character. Whitespace is inserted
in the place of a special character.

set list3
[split “stringsplcharcansplcharconvertsplchartolist” “splchar”]

Each element of the list can be accessed by its index number. The index number starts from the
left and the first element has an index of 0. The list‐based command begins with “l.”

Figures 4.20 and 4.21 describe the three methods to declare a string. List1 is where each ele-
ment is a programming language separated by whitespace, list2 uses the list command, and
list3 splits a string by indicating a special character underscore (_).

4.2.1  List-based Commands

The list command takes any number of arguments and returns a list of those arguments. The
length of the returned list is the same as the number of arguments given to the list command. The
arguments to list need not have a proper list structure: they will be automatically quoted as neces-
sary. If any of the arguments to the list are themselves lists, the result will be a nested list structure.
Table 4.3 presents the command used to manipulate the list.

4.2 riti aind tcerr Cooaindi 61

Table 4.3  List-based command.

Command Description

[llength $listname] Returns the length of the list; number of elements

[lindex $listname indexnumber] Returns the elements of a list appointed to an index number

[lrange$listname
index1 index2]

Returns the elements of a list indicated through index1 to
index2

[linsert $listname indexnumber
newelement]

Inserts a new element to an existing list appointed to an
index number

[lreplace $listname
index1 index2 element1
element2.....elementn]

Replaces the element indicated through index1 to index2
by the given new elements

[lappend $listname newelement] Appends a new element at the end of an existing element

[lassign $listname var1
var2....]

Assigns an element to a variable individually

[lsort $listname –switch] Sorts the list’s element defined by switches. The switches can
be ASCII / integer / real / increasing/ decreasing / dictionary
/ unique

[lsearch $listname element] Searches for a particular element in the list. Returns the
index number if found else −1

4.2.1.1  List Element Commands
Element‐oriented list command is presented in Figure 4.22, where llength returns the length of
the list but it is not necessary for the element to be a single variable, as it can be a string grouped
under “ ” or { }. The index and command in Figure 4.23 returns the element “Tk GUI” at index
3 and lrange returns the {VHDL Verilog} {Tk GUI} for the range of elements 2 to 3. Here,
a string is considered as a single element.

set list1 {C C++ Java
Python Tcl Perl}
puts [llength $list1]
puts [lindex
$list1 3]
puts [lrange
$list1 2 5]

Figure 4.22  Element-based list command.

4 Tcl Data Structure62

set list2 {SQL DBMS
{VHDL Verilog}
"Tk GUI"}
puts [llength $list2]
puts [lindex
$list2 3]
puts [lrange
$list2 2 4]

4.2.1.2  List Modification Commands
The existing list can be modified with the linsert and lreplace commands. linset can
insert a new element at the specified index, in the case where the index is greater than or equal to
the length of the list elements appended to the end. linsert modifies to a new list which needs
to be initialized as a new variable else the old list will be populated as shown in Figure 4.24.
Figure 4.25 presents the lreplace which replaces the range of elements with a new element.

set list1 {Complier Interpreater
Debugger}
puts [linsert $list1 2
simulator]
puts $list1
puts [llength $list1]
set list2 [linsert $list1 2
simulator]
puts $list2
puts [llength $list2]

set list1 {Complier Interpreater
Debugger}
puts [lreplace $list1 1 2
 Simulator Emulator]
puts $list1
puts [llength $list1]

4.2.1.3  Search and Update the List
The lsearch command performs a search of the element in a list and returns the index number
of the first matching element (unless the options -all or -inline are specified) else it returns
−1 if the specified element is found in the list. This command searches the elements of the list
to see if one of them matches the pattern. Figure 4.26 describes matching the element into
list1, and returns the index number if it matches else returns with −1.

Figure 4.23  String as an element of the list.

Figure 4.24  linsert example.

Figure 4.25  lreplace example.

4.2 riti aind tcerr Cooaindi 63

set list1 {Root Trunk Stem
Fruit Flower}
puts [lsearch $list1 Fruit]
puts [lsearch $list1 Leaves]

An -option command with lsearch indicates how the element of the list is to be matched
against the pattern. It must have one of the following values:

 ● all changes the result to be the list of all matching indices;
 ● inline the matching value is returned instead of its index;
 ● ascii the elements in the list are examined as a unicode string;
 ● decreasing the list elements are to be compared using a dictionary‐style comparison;
 ● exact the list elements must contain the same string as the pattern;
 ● glob a glob style pattern which is matched against each list element using the string

match command. It is the default style of pattern matching;
 ● not negates the sense of the match and returns the index of the first non‐match-

ing value;
 ● start index the list is searched at position index. If the index has the value end, it refers to

the last element in the list, and the end‐integer refers to the last element in the
list minus the specified integer offset.

Example 4.1
lsearch {a b c d e} c => 2
lsearch - all {a b c a b c} c => 2 5
lsearch - inline {a20 b35 c47} b* => b35
lsearch - inline - not {a20 b35 c47} b* => a20
lsearch - all - inline - not {a20 b35 c47} b* => a20 c47
lsearch - all - not {a20 b35 c47} b* => 0 2
lsearch - start 3 {a b c a b c} c => 5

Note – If more than one of the options is specified, the option specified last takes precedence.
The example in Figure 4.27 describes each element of the list that can be assigned to a variable

with the lassign command. A puts command can display each element by its index number.
Similarly, by combining the elements, a new list can be formed. The curly braces do not permit
variable substitution list4 to declare with the [list] method.

set list3 {Cricket
 Footbal Hockey}
lassign $list3 T1 T2 T3
puts $T1
puts $T2
puts $T3
set list4 [list $T1 $T2 $T3]
puts $list4

Figure 4.26  lsearch example.

Figure 4.27  lassign example.

4 Tcl Data Structure64

4.2.1.4  Sorting of List Elements
The lsort command sorts the list’s element in a variety of ways and returns a new sorted list. The
implementation of the lsort command uses the merge sort algorithm. By default, ASCII sorting
is used with the result returned in increasing order. A list can be sorted by following a specified
option (Figure 4.28).

 ● ascii A default sorting that returns a list in increasing order
 ● dictionary Uses a dictionary‐style comparison
 ● integer Converts a list element to an integer and uses integer comparison
 ● real Converts a list element to a floating number and uses floating comparison
 ● increasing Sorts from smallest to largest
 ● decreasing Sorts from largest to smallest
 ● unique Removes duplicates

Figure 4.28  lsort example.

Figure 4.29  Split and join example.

4.2.1.5  Split and Join
The split command converts a string into a list by inserting whitespace in between elements.
The Join command are the inverse of the split, it takes the separated list element and reformats
it as a string by the specified character (Figure 4.29).

4.2 riti aind tcerr Cooaindi 65

4.2.2  Solved Problems

1. Write Tcl script to define three variables and convert into a list by the lappend command.

Solution

set x 1
set y 2
set z 3
set output {}
foreach i {x y z} {
lappend output [set $i]}
puts $output

2.  Write a Tcl script to convert a list to a string and a string to a list.

Solution

 List to String
set list {a b c d e f}
for {set i 0} {$i<[llength
$list]} {incr i} {
 append string [lindex
$list $i]
}
puts $string

String to List
 set string abcdef
 set l [split abcdef {}]
 puts $l

3.  Write Tcl script to swap 19 and 25 in the IP address 172.19.25.0.

Solution

set a 172.19.25.0
puts "Before Swap $a"
set b [split $a .]
set u [lindex $b 0]
set v [lindex $b 1]
set w [lindex $b 2]
set x [lindex $b 3]
set z [join "$u $w $v $x" .]
puts "After Swap $z"

4 Tcl Data Structure66

4.2.3  Review Problems

1. Practice the following problem:

set x {1 2}
set y "$x 3”
set y [concat $x 3]
set z [list $x 3]
puts $z

set var {orange blue red green}
set var [lreplace $var 2 3
black white]
 puts $var

set var {orange blue red green}
set var [linsert $var 3
black white]
puts $var

set var {orange blue red green}
set var [lsort $var]
puts $var

set days {Monday Tuesday Wednesday Thursday Friday Saturday Sunday}
set n [llength $days]
set i 0
while {$i < $n} {
puts [lindex $days $i]
incr i
}

4.2.4  MCQs on List

[1] What does the following Tcl script return?

 set color {red blue green {orange pink} black}
 puts [llength $color]

A 6
B  5
C 4
D 3

 Solution (b)

[2] What does the puts [lindex $listname number] command return?
A Index number
B  Variable on a specified index number
C Pair of index and variable on an index
D None of the above

 Solution (b)

[3] Which statement prints out a sorted list?
A puts [list sort {4 5 3 1}]
B  puts [list lsort {4 5 3 1}]
C puts [lsort {4 5 3 1}]
D puts [sort {4 5 3 1}]

 Solution (c)

4.3 rraai aind tcerr Cooaindi 67

[4] What can be used to convert a Tcl string to a list?
A Split
B  Join
C Concat
D Append

 Solution (a)

[5] What does the following Tcl script return?

 Set list1 {a e i o u}
 Puts [lsearch $list1 o]

 (a) 3,o
 (b) o
 (c) 4
 (d) 3

 Solution (d)

4.3   Arrays and their Commands

A Tcl array is the most systematic way to arrange a group of elements using indices. Each element of
an array has a user‐defined index. The array can be internally implemented with a hash table. The
cost of accessing each element is almost the same. An array is initialized with the set command
using either curly braces or small brackets; two popular ways to initialize a Tcl array are as follows.

Define the array by index and element.

 array set arrayname {index element}

Define elements of the array separately.

 set arrayname (index) element

Figure 4.30 illustrates that the initialization starts with an array where all elements need to be
defined inside curly braces, that is, the index numbers and their elements need to be defined
together. Each element can be accessed by the array name(index). Alternatively, array elements

Figure 4.30  Array initialization by array command. Figure 4.31  Array initialization by setting elements.

4 Tcl Data Structure68

can be defined individually at the respective array index, as shown in Figure 4.31). Here the gets
command is used to format the structure of the array.

Figure 4.32  Array index as an alphanumeric character.

A Tcl array is associative. The array is sorted and retrieved without a specific order. The index
does not need to be a numeric value of a string; it can be an alphanumeric character, as shown in
Figure 4.32.

Table 4.4  Arrray command in Tcl.

Array Command Description

[array exists arrayname] Verifies if an array exists; returns 1 if true else 0

[array names arrayname] Returns the list of indices of the array
The order of the return is random

[array size arrayname] Returns the size of the array, i.e., number of elements

[array get arrayname] Returns the list of alternative pairs of index and element

[parray arrayname] Prints only the array element

unset arrayname/element Uninitializes the array or individual element

4.3.1  Array-Based Commands

An array command accesses the array element and returns information about the array elements
through iteration. Array‐based commands are given in Table 4.4.

An explanation of an array‐based command is based on the following example, where the month
name has been declared as an array.

array set month {
 1 jan 2 Feb 3 Mar
 4 Apr 5 May 6 Jun
 7 Jul 8 Aug 9 Sep
 10 Oct 11 Nov 12 Dec
 }

4.3 rraai aind tcerr Cooaindi 69

The size of an array, determined by the command [array size month], provides the num-
ber of index‐element pairs returned as the result. Whether the array is defined earlier or not is
verified by the command [array exist month] that returns “1” for the true result and 0 if
not refined.

set n [array size month]
puts "Size of array=$n"
puts "Array Exists=[array
exists month]"

The command parray month simply prints the month(index) and its corresponding element
in vertical order.

The command [array get month] prints the index‐element pair horizontally.

Array List

Arrays are accessed using the index,
the index can be any string.

Lists are accessed using the index, the index is an
integer.

Arrays are unordered collections of values. Lists are ordered sequences of values.

4 Tcl Data Structure70

Array List

Internally, an array is maintained by hash tables.
Adding an element to an array will rearrange the
elements in a “tree.”

Internally list elements are stored sequentially.

“get command to convert an array to a list and array set command to
convert a list to an array”

4.3.2  Solved Examples

1. Write a Tcl script to define a vowel as an array and apply the array command.

Solution

array set vowel {
0 a
1 e
2 i
3 o
4 u
}
puts [array exists vowel]
puts [array size vowel]
puts [array names vowel]

2.  Write a Tcl script to define an array of four operating systems as variables and display using the
array command.

Solution

set os(0) windows
set os(1) linux
set os(2) sun
set os(3) mac
puts [array get os]
puts $os(0)
puts $os(1)
puts $os(2)
puts $os(3)
parray os

3.  Write Tcl script to delete/remove an element from an array and display.

4.3 rraai aind tcerr Cooaindi 71

Solution

array set script {
0 tcl
1 perl
2 sql
}
parray script
unset script(1)
parray script
unset script
puts [array exist script]

4. Write Tcl script to define a one‐dimensional array.

Solution

for { set i 0 } { $i < 8 } { incr i } {
 set base($i) $i
 puts "base($i) = $base($i)"
}

5. Write Tcl script to define a two‐dimensional array.

Solution

for { set i 0 } { $i < 3 } { incr i } {
 for { set j 0 } { $j < 3 } { incr j } {
 set base($i,$j) $i
 puts "base($i,$j) = $base($i,$j)"
 }
}

4.3.3  Review Problems

1. Execute the following program:

4 Tcl Data Structure72

array set arr {
1 hari
2 Rajesh
3 Ram
}
if {[array exists arr]} {
puts "Array Exists"
} else {
puts "Array Does Not Exists"
}
puts "Total Array Items are : [array size arr]"
puts "Array Numbers in list are : [array names arr]"
puts "Name of persons in the arraylist are : $arr(1) $arr(2)
$arr(3)”

2.  Practice the Tcl script shown as follows and comment on the output.

array set noble2020 {
Physics {Roger Penrose,Reinhard Genzel, Andrea Ghez}
Chemistry {Emmanuelle Charpentier,Jennifer A.Doudna}
Medicine {Charvey J. Alter, Michael Houghton, Charles M. Rice}
Literature {Louise Glück}
Economics {Paul R. Milgrom, Robert B. Wilson}
}
puts "Noble2020 has [array size noble2020] entries"
puts "Noble has the following entries [array names noble2020] "
puts "Prize for Medicine category goes to $noble2020(Medicine)"
puts "Prize for Chemistry category goes to $noble2020(Chemistry)"

4.3.4  MCQs on Arrays and their Commands

[1] Which statement prints the index of all elements in an array x?
A puts [array elements x]
B  puts [array elements $x]
C puts [array names x]
D puts [array names $x]

 Solution (c)

[2]  Identify the command that can remove/delete an element from an array.
A set
B  unset
C delete
D remove

 Solution (b)

73eeereicei

[3]  Identify the command to print all elements of an array together.
A array name
B  arrey get
C array exists
D parray

 Solution (d)

[4] The index of an array can be
A numeric
B  words
C either nuremic or words
D none of the above

 Solution (c)

[5] If an array is not defined, what will puts [array exists names] return?
A 1
B  0
C Error
D Does not Exist

 Solution (b)

 References

 1 https://zetcode.com/lang/tcl/arrays
 2  https://www.tcl.tk/man/tcl8.4/TclCmd/array.html
 3  https://www.tutorialspoint.com/tcl- tk

https://zetcode.com/lang/tcl/arrays
https://www.tcl.tk/man/tcl8.4/TclCmd/array.html
https://www.tutorialspoint.com/tcl-tk

75

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

The object‐oriented programming concept has been introduced with Tcl 8.6. The basis of the
object‐oriented programming is an object. An object is represented as a real‐world entity that cap-
tures the state and behavior. There are two different approaches to define a command: (i) action‐
oriented and (ii) object‐oriented.

Action‐oriented is a command for each action that can be taken as an object, and the command
takes an object name as an argument. Examples are the Tcl file command. An action‐oriented
approach is preferred when the number of objects is large and unpredictable.

Object‐oriented is a command for each object, where the name of the command is the name of
an object. When the command is invoked, the first argument specifies the operation to perform on
the object. The object‐oriented approach prefers when the number of objects is limited to 100 and
defined and exists for at least a moderate time. It is necessary to ensure object name should not
conflict with the existing command [1, 2].

Tcl is flexible on which to build their system, which leads to a plethora of such systems, with
diverse functionality with the following object‐oriented packages.

 [incr tcl] The first Tcl package like C++. It duplicates the C++ model of cladding with
single or multiple inheritances

 [XoTcl] Designed for research for into dynamic OO programming
 [Snit] Useful for building a Tk widget

5.1 Class

The class is a template that defines data and methods (called members) encapsulated by an object
of a specific type. Creation or instantiation of the object is the primary work of the class.

5.2   Creation of a Class

In Tcl, a class can be created using the command oo::class create. A newly created class can
be used to create an object. Now the class definition script defines the state for the object of the
class, by adding an argument to oo: class create or oo: define.

oo::class create classname definitionscript
oo::define classname

5

Tcl Object-Oriented Programming

5 Tcl Object-Oriented Programming76

5.3   Define a Member in a Class

Each object has associated data. Each object has its variable known as the instance variable of the
data member.

oo::define classname {
 variable ….

}

The state of an object is uniquely defined by data members. A member in a class is defined
through the script oo::define. A data member for each object variable of the class is defined by
the variable statement. There can be multiple variable statements, defining single or multiple
variables.

5.4   Define Method

An object can execute some task by defining the method. The method creates a procedure that can
be evaluated within the object scope. The difference between an in‐built command and a proc
command lies in how it is invoked and how the method is executed.

method name argument body

The TclOO method has the following features:
(a) the TclOO class may have multiple methods;
(b) the method may be registered as a callback script to be evaluated when an event occurs;
(c) the object may invoke its method;
(d) everything about an object should be defined inside a class.

5.5 Constructor and Destructor

The constructor and destructor are two special methods used to create and destroy objects auto-
matically. A constructor method runs when an object is created and a destructor method is run
when an object is destroyed.

5.6   Destroying of Class

The destroy command will erase the definition of class; an object belonging to the class and all
that is inherited from a particular class. Destroying a class is useful during interactive development
and debugging, as described in Figure 5.1.

classname destroy

5.7 nnooing ettod 77

5.7   Invoking Method

An existing command, procedure, or object can be evaluated within the body of a method. The Tcl
interpreter generates an error in the case of an attempt to evaluate a procedure or object that is not
defined. The method name is used as the command and the method is a subcommand within that
command. Other methods can be invoked with the name of the object and the method name.
TclOO provides a virtual command my to evaluate a method within the current object [3]. The my
command is used in the object to invoke the method of its class. Each object has its command.

Example 5.1 Write Tcl script to invoke a class and compute locally.

Solution

oo::class create ascending {
 method count {} {
 my variable x
 puts "[incr x]"
 }
}
ascending create local
local count
local count
local count
local count
local count

Example 5.2 Write Tcl script to create a class and evaluate via the object method.

Solution

A class is created with the following three methods to show an evaluation of the object method:
 ● Show Displays the value of the object variable
 ● External Invokes the show method of another object
 ● Internal Invokes the show method of the current object

Figure 5.1  Destroying
of class.

5 Tcl Object-Oriented Programming78

oo::class create withmethod {
variable var
constructor {value} {
set var $value
}
method show {} {
puts "Value is $var"
}
method external {name1} {
$name1 show
}
method internal {} {
my show
}
}

set object1 [withmethod new 1]
set object2 [withmethod new 2]

$object1 external $object2
$object1 internal

Example 5.3 Write Tcl script to compute summation with the help of class.

Solution

oo::class create summation {
 constructor {} {
 variable v 0
 }
 method add x {
 variable v
 incr v $x
 }
 method value {} {
 variable v
 return $v
 }
 destructor {
 variable v
 puts "Ended with value $v"
 }
}
set sum [summation new]
puts "Start with [$sum value]"
for {set i 1} {$i <= 10} {incr i} {
 puts "Add $i to get [$sum add $i]"
}
$sum destroy

5.8  RegisRegie Rsthod her CaalCac 79

Example 5.4 Write Tcl script to create a class and evaluate locally.

Solution

oo::class create method1 {
variable x y z
constructor {} {
set x 5
set y 7
set z 11
}
method show {var} {
puts "Value of var is [set $var]"
}
method bad_show {} {
puts x
puts y
puts z
}
method good_show {} {
my show x
my show y
my show z
}
}
method1 create local
puts "BAD"
local bad_show
puts "GOOD"
local good_show
local destroy
method1 destroy

5.8   Registering Method for Callback

The Tcl/Tk mechanism is implemented via a callback. These commands require an object as a
well‐known method for the evaluation. The NAMESPACE package of Tcl includes the names-
pace current command to register a namespace procedure with a callback. It returns the cur-
rent namespace which can be obtained with a procedure name to provide a complete path to the
procedure. TclOO returns the name of the current object that can be combined with the method
name and argument to register a callback [4].

5 Tcl Object-Oriented Programming80

Example 5.5 Write Tcl script to evaluate objects via the callback method.

Solution
The after command is used inside‐outside an object. The method after10 uses the self‐com-
mand while the global scope uses the name of the object.

oo::class create delay {
variable a
constructor {var} {
set a $var
}
method show {} {
puts "a is $a at [clock seconds]"
}
method after10 {} {
after 10000 [list [self] show]
}
}

set a [delay new 2]
set b [delay new 5]
$a after10
after 5000 [list $b show]

 References

 1 https://www.magicsplat.com/articles/oo.html
 2 https://wiki.tcl- lang.org/page/TclOO
 3 https://wiki.tcl- lang.org/page/TclOO+Tutorial
 4 Flynt, C. (2012). Tcl/Tk: A Developer’s Guide. Elsevier.

https://www.magicsplat.com/articles/oo.html
https://wiki.tcl-lang.org/page/TclOO
https://wiki.tcl-lang.org/page/TclOO+Tutorial

81

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

6.1 Introduction

The file processing operation of Tcl supports accessing content to read from as well as write to a file on
a disk. There are several operations on the file’s attributes. The in‐built command opens, gets, puts,
reads, writes, and closes to read from and write to the content via a console terminal. Primarily, data
enter through the command terminal; alternatively, file access is a dynamic way to interact. File sys-
tems are implemented differently for different operating systems. To support different file systems, a
platform‐independent interface is provided to the file system [1]. File accessing is the text‐based con-
figuration file based on the storage location. A file in Tcl is represented as a sequence of bytes that can
access the data from a file in Notepad (.txt), comma‐separated value (.csv), rich text format (.rtf), etc.

Data written into the file can be read on the wish terminal as the most current result can be writ-
ten on the file with a given extension. Tcl supports an interface with the file system using a buffer-
ing mechanism. A temporary file ID is assigned to each of the files, and an individual file can be
accessed through the given ID. File accessing activity starts with the opening of a file with the
open command and finishes with the closing of a file with the close command. The intermedi-
ate section consists of reading, writing, or file manipulation activity [2]. Creating a file involves
having to declare the purpose of the file (read or write); determined by AccessMode. A Tcl file
supports six different access modes listed in Table 6.1

6

File Processing

Table 6.1  Access mode of Tcl file.

AccessMode Activity Description

r Only read Opens an existing file for reading purposes. The file must exist in the
working directory. It is the default access mode

w Only write Opens an existing text file for writing purposes with truncation; if the file
does not exist, create a new file, start writing

a Write with
append

Opens a text file for writing in append mode. The file must exist and
append content to the existing file content

r+ Read and Write Opens a text file for both read as well as write. File must exist in the
working directory

w+ Read and Write Opens a text file for both reading and writing. If the file exists, start writing
with truncating existing content or create a new file if it does not exist

A+ Read and write
with append

Opens a text file for reading and writing. Read from the beginning and
write in append mode. If a file exists, write after the end of the existing
content or create a new file if not exist

6 File Processing82

6.2 Tcl File Command

This section describes the file‐related commands of the Tcl script. Different commands are associ-
ated with reading from and writing to the file. These commands are helpful for the electronic
design automation (EDA) tool to store the internal result. The Tcl file commands are file, open,
read, get, puts, close, eof, seek, tell, and flush. By default, a file is accessed sequen-
tially – the next byte is fetched after the previous byte. However, seek, tell, and eof can modify
the accessing pattern to be non‐sequential.

6.2.1  Opening a File

To open a file, Tcl uses the open command. The open command opens the file titled filename
with the access type and permission provided, and returns a file pointer. The syntax of the open
command is

open filename accessMode
The filename is chosen by the user in the assigned access mode.

Figure 6.1 presents the creation of a file with the open command; it is possible to create multiple
files where each file is assigned a unique temporary file number. Opening a file in a particular
mode requires mentioning the file with an extension. Figure 6.2 shows the output of the program,
where file1 is assigned to ID “filee462w36220”, file2 is assigned to ID “filee462d8b8c0”, and
file3 is assigned to ID “filee462ddd460”. The set command has been paired to allow access to
the file pointer file1_text, and so on. A file in write mode automatically creates the file in the
“bin” directory. However, the file will be empty.

6.2.2  Closing a File

An already opened file after a program-
mer is finished with the access needs to
closed explicitly. To close a file, Tcl uses
the close command to flush the open
channel of any pending data resulting in
a writing to the disk and closing of the
channel. The syntax of the close com-
mand is as follows, as shown in
Figure 6.3.

close $filename

Figure 6.2  Result of Figure 6.1.

close $�lename

Figure 6.3  Tcl script to close a file.

Figure 6.1  Tcl script to open a file with
extension.

6.2 cl File ooomnn 83

6.2.3  Writing into a File

Writing into a file is similar to writing to the console terminal. The puts command is used to write
content into the referenced file pointer. The write activity is line‐oriented or paragraph‐oriented.
The puts command is used to put the content in the opened file. In the case where multiple state-
ments need to be written, statements must be enclosed in double quotes “……”. The file must exist
on the hard disk, or else the error message will state the file cannot be found.

Example 6.1 Write a few statements into a file myfile.txt, then close the file.

set file [open
“myfile.txt” w]
set data1
“Welcome to
File Processing
Script”
set data2
“This is my
First File script”
puts $file $data1
puts $file $data2
close $file

Figure 6.4 shows the writing activity of content into myfile.txt with the puts command; here
two different statements are assigned to variables data1 and data2. Each statement is to be writ-
ten separately. The execution results are shown in myfile.txt as a written statement. Conjunction
between two statements can be added to arrange the statement like \n for newline \t for tab space
etc. presented in Figure 6.5. After writing, the file must be closed else flush the channel to com-
plete the write.

set file [open
 myfile.txt w]
set data1
“Welcome to File
Processing Script”
set data2 “This is my
First File script”
puts $file $data1
\n $data2
close $file

Figure 6.4  Tcl script to write with the puts command.

Figure 6.5  Tcl script to write multiple statements with the
puts command.

6 File Processing84

6.2.4  Reading of the File

Reading of a file in Tcl script is supported by the gets command, where the content of the file is
read and displayed in the console window. The gets command is line‐oriented and can read a
single line from the beginning, while the read command can read the complete message from the
file at one time [3]. A file must exist in the bin directory of the disk titled “myfile.txt”; the content
of the file is shown in Figure 6.6.

To read the content through the Tcl script, first open the file in reading mode and use the gets
command twice since two different statements are there, as shown in Figure 6.7. While reading
each statement separately, we can assign each onto two separate variables, as presented in
Figure 6.8.

To read multiple statements from myfile.txt, the gets command can be conjugated with the
while loop, as shown in Figure 6.8. The while loop continues to execute until the content of the
file is greater than zero and is assigned to variable data, which can be displayed even after the clos-
ing of the file. To read the multiple statements without a while loop, alternatively, the read com-
mand can be used and assigned to variables independently, as shown in Figures 6.9 and 6.10.

set file [open "myfile.txt" r]
while {[gets $file data] > 0} {
puts $data
}
close $file

Figure 6.6  File available in the directory.

Figure 6.7  Tcl script for a single
statement.

Figure 6.8  © Tcl script for multiple
statements.

6.2 cl File ooomnn 85

6.2.5  Write with Append Mode

A Tcl file in append mode allows updating of the content in an existing file. This mode is used to
preserve the content of the existing file and new content will be added after the previous content.
Figure 6.11 shows the existing content in the file. The foreach command can been used to add
more statements at the end of the first statement. A local variable of the foreach loop selects the
string and appends; the result of execution is presented in Figure 6.12.

Figure 6.9  Tcl script to read the file in a loop.
Figure 6.10  Tcl script for the read command.

Figure 6.11  Previous content in the file.

Figure 6.12  Result after appending.

set file [open "myfile.txt" a]
foreach content {"This is my new content" "I will write after
previous one"} {
puts $file $content
}
close $file

6 File Processing86

Table 6.2  Tcl file in-built command.

File command Description

file atime filename Returns decimal string with which file was accessed last time

file dirname filename Returns a name comprising all of the path components in the name
excluding the last element. If the name is a relative file name and
only contains one path element, then returns “.” (or “:” on a
Macintosh). If the name refers to a root directory, then the root
directory is returned.

file executable name Returns 1 if the file is executable else 0

file exist name Returns 1 if the file exists else 0

file extension name Returns the extension of the existing file .xxxx

file isdirectory name Returns 1 if the file is a directory else 0

file isfile name Returns 1 if the file is a file else 0

file mtime name Returns the decimal string with which the file name was last
modified

file readable name Returns 1 if the file is readable else 0

file writable name Returns 1 if the file is writable else 0

file size name Returns the number of bytes assigned into a file string ID

file type name The return type of the file name, i.e., File, directory,
characterSpecial, blockSpecial, FIFO, link, or socket.

file tail name Returns all of the characters in the name after the last directory
separator. If the name contains no separators, then returns the name

6.3   Tcl File In-built Commands

In this section, the in‐built commands of Tcl are listed. File manipulates the name and its attrib-
utes. The syntax of the file command is as follows.

file option filename arg1 arg2…….
Option indicates what to do with the file name. A list of file commands are presented in

Table 6.2 [4, 5] (Figure 6.13).

6.3.1  File Seek Command

The seek command changes the sequence of accessing bytes from a file. Seek requires two argu-
ments, a file identifier and integer, within the file.

seek $filename 100
This change the file sequence to read or write from byte number 100.
Sometimes, a third integer can be included in the seek command, which specifies the integer

such as start, current, end, start.

 ● file.start Measures the file access position relative to the start of the file
 ● file.current Measures the file access position relative to the file’s current position
 ● file.end Measures the file access position relative to the end of the file
 ● seek $filename − 100 start Sets the file access position to 100 bytes from the start of

the file

6.3 cl File nn-billt ooomnns 87

6.3.2  File Tell Command

The tell command returns the file current position of a particular file identifier.
tell $filename 50 ➔returns 50

6.3.3  File Eof Command

The eof command takes a file identifier as an argument and returns 0 or 1; indicates whether a
recent gets command for the file attempts to read past the end‐of‐file (EOF).

eof $filename➔returns 0

6.3.4  List-based Command into the File

A list‐based command starts with character “l”; the list is an ordered collection of elements sepa-
rated by space assigned to an index in ascending order. A list element can be accessed through a
particular index number. A few popular list commands are as follows.

Figure 6.13  File-based in-built commands with examples.

6 File Processing88

 ● lindex Returns a list element based on the position number
 ● lrange Returns a set of list elements given by two different index numbers
 ● linsert Inserts a new element into the existing list

Based on this list command, accessing files can be manipulated. There is a file available in the
directory shown in Figure 6.14, where the gets command can read a single statement, the read
command reads the complete block of the message, while for the requirement to read a specific
index or range of content from the file, lindex and lrange should be used.

The execution result is shown in Figure 6.15 and explains the use of the list command with file
read. The command lindex reads the element available at index number 4 (index starts at 0), i.e.,
“based” and lrange displays the range of elements between indexes 3 and 7, i.e., “script‐based
language”, contained by Tk.

6.4   Solved Questions

Problem 6.1
Write a Tcl script to write multiple statements in the file and read by combining them as a single
statement.

Solution
The above program says to write multiple statements and read too; the file must be writable as well
readable.

 ● Open a file in W+ access mode.
 ● Write the following statements using the puts command:

 – Statement1: Tcl script preferred by EDA industry
 – Statement2: With the integration of the TK widget possible to create a GUI
 – Stetement3: Independent system can be developed
 – Statement4: I love the Tcl script

 ● Close the file
 ● Open the file in reading mode
 ● Read the individual statement assigned to a local variable
 ● Close the file again
 ● Concatenate each local variable

Figure 6.14  Initial content in a file. Figure 6.15  Execution result of file access by
the list command.

6.4 ollen besltions 89

set file [open
 myfile.txt w]
puts $file "Tcl
script preferred by
EDA industry"
puts $file "With
integration of TK
widget possible to
create GUI"
puts $file
"Independent system
can be developed"
puts $file "I love
Tcl script"
close $file

set file [open
 myfile.txt r]
set line1
[gets $file]
set line2
[gets $file]
set line3
[gets $file]
set line4
[gets $file]
close $file
set line [con-
cat $line1,
$line2, $line3,
$line4]puts $line

The open command creates myfile.txt in the bin directory, four statements have been written in
the file with the puts command, as shown in Figure 6.16. The reading activity is completed by the
gets command presented in Figure 6.17. Since puts and gets are line‐oriented, four times are
used to write and read the four statements.

Problem 6.2
Write a Tcl script to read multiple statements from an existing file using the gets command
inside a loop.

Solution
Since the gets command is line‐oriented, it can read a single statement. By initializing the gets
command inside a loop, it is possible to read multiple statements until the loop is true.

 ● Open the file in reading mode
 ● Initialize a while loop
 ● Declare a local variable upon reading a statement with the gets command

Figure 6.16  Writing with the puts command.

Figure 6.17  Reading with the gets command.

6 File Processing90

 ● Check for condition EOF if reading completes; close the file
 ● Display the local variable
 ● Close the file

There is a file already existing in the bin directory, which contains the following statement. To read
with loop, the following script is given. The script continues to execute until the end of the file
encounter, then closes the file. The puts "line \n" displays each statement.

set file [open
 myfile.txt r]
 while {1} {
 set line [gets $file]
 if {[eof $file]} {
 close $file
}
 puts "$line \n"
}
}

Figure 6.18 presents the content already available in myfile.txt. The script above includes a while
(1) loop which will continue to read the statement from the beginning of the file line by line using
the gets command and display on the console terminal, as shown in Figure 6.19. The condition
for the loop is checked with the EOF; when encountered, stop reading and close the file.

Problem 6.3
Write Tcl script to calculate the sum integer written over a file and display the result.

Solution
 ● Make sure the file is available in the bin directory
 ● Open the file in read mode
 ● Initialize the sum variable to zero
 ● Initialize a loop to each variable and add with sum variable
 ● Display the sum variable
 ● Close the file

set file [open myfile.txt r]
set sum 0
foreach num [read $file] {
 set sum [expr $sum + $num]
 }
puts $sum
close $file

Figure 6.18  Earlier content written in the file.

Figure 6.19  Execution result of the read inside the loop.

6.4 ollen besltions 91

In this program, the Tcl script tends to read the integer written in myfile.txt displayed in
Figure 6.20. Initialize a sum variable with zero; the foreach loop uses a local variable and
applies to each inte ger read from the file, which are added to the sum variable. At the end of the
loop, the result of sum 55 is displayed, as shown in Figure 6.21.

Problem 6.4
Write a Tcl script to write 10 different names in a file with extension .csv and copy the content into
another file with extension .csv without physically accessing the directory.

Solution
We seek to read the content of the file and write onto another file. One needs to open two inde-
pendent files with the .csv extension, one file in reading mode and the other file in write mode.
Read the first line from one.csv using the gets command and write into two.csv using the puts
command. This read–write activity can be completed within a loop until the reading is completed.

 ● Open a file one.csv in reading mode and another two.csv in write mode
 ● Initialize a while loop where the condition content after reading is not zero
 ● Declare a local variable to hold the read name
 ● Write the located variable into two.csv
 ● Close both files

set file1 [open one.csv r]
set file2 [open two.csv w]
while {[gets $file1 data] > 0} {
puts $file2 $data
}
close $file1
close $file2

Figure 6.22 displays the 10 different names to be read from the file one.csv. Reading and writing
activity is accomplished in a while loop based on the gets and puts commands, respectively. At
the end of the loop, execution of the script generates a two.csv file in the bin directory and updates
the content in the file two.csv, as displayed in Figure 6.23.

Alternatively, a similar result can be executed by the Tcl script with the split command. Here,
the read command reads the entire message and updates in the local variable data. Each element
from the read block is to be split; separate each state by \n a newline, and assign to variable lines.
A foreach loop writes each line onto file2, until all lines have been read out.

Figure 6.20  Integer already
written in the file.

Figure 6.21  Execution result of read command.

6 File Processing92

set file1 [open one.csv r]
set file2 [open two.csv w]
set data [read $file1]
set lines [split $data "\n"]
foreach line $lines {
puts $file2 $line
}
close $file2
close $file1

Problem 6.5
Write a Tcl script to generate 10 random numbers and write them into the file.

Solution
 ● Open a file in write mode (.csv extension)
 ● Declare a for loop to execute 10 times
 ● Initialize a local variable num to hold the variable
 ● Write the num in the file
 ● Close file

set file [open
 myfile.csv w]
for {set i 0} {$i < 10}
{incr i} {
set num [expr
round(rand()*100)]
puts $file $num
}
close $file

Figure 6.24  Random number written in the file.

Figure 6.22  Content of file one.csv to
be read.

Figure 6.23  Content written in two.csv.

6.4 ollen besltions 93

This Tcl script generates random numbers in the range 0–100. The rand() function generates a
random number in the range of 0 to 1 with precision bits up to 16 bits, and round(rand())
produces only integers. The range of random numbers can be enhanced with a multiplication of
100. Here, a generated random number is written in the file myfile.csv. The generation and the
puts activity is repeated 10 times using the for loop, which results in 10 random numbers, as
displayed in Figure 6.24.

Problem 6.6
An experiment of testing an electronics component is performed by measuring the voltage and
current through the terminal. The table in Figure 6.25 presents the component ID, voltage, and
current. The results column indicates whether the component has passed the test and is suitable
for usage, else it fails. Write Tcl script to pick the components that passed.

Solution
Figure 6.25 presents the data collected during the experiment. The Result column shows which
component passed or failed. To following procedure locates only the components that “Pass”.

 ● Make the file experiment.csv available in the bin directory
 ● Write script, open the file in the reading mode
 ● Read the first statement of the experiment with the gets command
 ● Look for the result (Result column) based on lindex or lrange and update in the local variable
 ● If the local variable matches with “Pass”, display the component (Component column)
 ● Close file

Figure 6.25  Initial measurement of experiments.

Figure 6.26  Result of the script.

set file [open experiment.txt r]
while { [gets $file data] > 0} {
if {[lrange $data 3 3] == "Pass"} {
puts [lindex $data 0]
}
}
close $file

Here list‐based commands lrange and lindex have been used to read the selected value from
the statement. A statement is read by the gets command; look for an element available in a range
3–3, if a match to “pass”, write the content in index 0 (name of component). Repeat these activities
in a while loop. The execution result of the script is given in Figure 6.26. The console terminal
displays a list of components that passed in the experimentation.

6 File Processing94

6.5   Review Questions

1. Write a Tcl script to read the 10 integers from the file and sort the even and odd numbers.
2. Write a Tcl script to read the 10 integers from the file arranged in ascending/descending order

and write into another file.

6.6   MCQs based on Tcl File Processing

1 How many different Tcl file access modes are there?
A 2
B 4
C 6
D 8

 Solution (c)

2 Which default access modes provide Tcl file access?
A r
B w
C a
D r+
E  w+
F a+

 Solution (a)

3  Which file access modes provide permission to read?
A r
B r+
C w+
D a+
E  All of above

 Solution (e)

4  Which file access modes provide permission to write?
A w
B w+
C r+
D a
E  a+
F All of above

 Solution (f)

5  Which file access modes allow to write without losing existing content from the file?
A w
B w+
C a
D a+

 Solutions (c) and (d)

95eeerences

6 Which file access modes write with overlap to existing content?
A w
B w+
C a
D a+

 Solutions (a) and (b)

7  Which file access modes can automatically create a new file?
A w
B w+
C a+
D All of above

 Solution (d)

8 Identify the incorrect statement.
A The puts command can write single line onto the file
B The gets command can read a single line from file
C The read command reads the complete content of the file
D None of the above

 Solution (d)

9  Which of the following are line‐oriented commands?
A set and reset
B gets and puts
C printf and scanf
D seek and read

 Solution (b)

10 How is the content of a Tcl file accessed?
A Sequentially
B Concurrently
C Parallelly
D Randomly

 Solution (a)

 References

 1 Welch, B.B., Jones, K., and Hobbs, J. (2003). Practical Programming in Tcl/Tk. Prentice Hall
Professional.

 2 Flynt, C. (2012). Tcl/Tk: A Developer’s Guide. Elsevier.
 3  Wheeler, B. (2011). Tcl/Tk 8.5 Programming Cookbook. Packt Publishing Ltd.
 4  https://www.tcl.tk/man/tcl/TclCmd/file.htm
 5  Ousterhout, J.K. (1993). Tcl and the TK Toolkit. Addison.

https://www.tcl.tk/man/tcl/TclCmd/file.htm

97

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

Toolkit (Tk) is a free and open‐source cross‐platform widget toolkit, which provides a library
of widgets to create a graphical user interface (GUI). Tk offers a library of widgets for many
programming languages. Some of the most popular widgets are button, text, label, frame, menu,
canvas, etc., which provide a better mechanism to interact with the system. A widget is an inte-
gral component of a GUI that has a particular appearance and behavior, through which an end‐
user communicates with the application. The Tcl script is meant for a computational purpose in
the background and the GUI view is developed with the widget for visual appearance. The
Window Shell (WISH) [1] program provides a mechanism to run the tclsh shell in the graphical
window. The Tk window acts like a frame or container into which all the widgets are placed.

7.1   Features of Tk Widgets

The following are the important features of a Tk widget [2]:

(a) platform independent – can be designed with multiple platforms;
(b) customizable – all the features of a Tk widget are customizable. Size, color, shape, and appear-

ance can be customized as per the need;
(c) configurable – widget instances are stored in the database, which can be manipulated or read

just through the configurable feature;
(d) it is open source;
(e) it provides a high level of extendibility;
(f) it can be used with other dynamic languages and not just Tcl;
(g) GUI looks identical across platforms;
(h) offers a large number of widgets;
(i) Tk provides a set of Tcl commands that create and manipulate widgets;
(j) a widget is a window in a GUI that has a particular appearance and behavior.

Tk supports the Tcl command to manipulate widgets. The Tcl computation is performed in the
background, and the user can interact via the widget. Some of the widgets are dedicated to provid-
ing an input and some of them display the output of a specified widget. A simple way to invoke a
widget is by its name. Each widget has its appearance and configuration options, and a set of meth-
ods that are used to access and manipulate the widget. Table 7.1 lists the available widgets in the
Tk library.

7

Toolkit Widgets

7 Toolkit Widgets98

7.2   Geometry Manager

Each widget is under the control of the geometry manager which manipulates or optimizes the size
and location on the screen. The three mostly used geometry managers are (i) Grid, (ii) Pack, and (iii)
Place [3]. The geometry manager arranges the widget on the screen according to the script. A widget
will not appear on the screen until the geometry manager learns about it. Tk‐based programs are
event driven, where events are driven by users via a mouse or keyboard. The binding feature enables
the binding of the widget with the Tcl script. Eventbinding structures the hierarchy of global bind-
ing, class binding, and instance binding. A widget binds with a particular action to execute the pro-
gram and displays the result on the linked widget. The geometry manager learns about the Tk widget
and makes them appear on the screen. The three types of geometry manager are the following.

(i) Grid – arranges the widget in the 2D grid; according to either a specified row or column‐
wise from the top left of the screen.

 grid .widget_name –row x1 –column y1 –rowspan x2 –
columnspan y2

Table 7.1  Tk widget command.

Command Description

Button Creates a button that is clickable and triggers an action

Label Creates a single line of text (read‐only)

Entry Creates a single‐line text‐entry widget

Message Creates multiple‐line text (read‐only)

Frame Creates a frame that holds other widgets

Radiobutton Creates a radio button that has a set of on/off buttons linked to a variable

Checkbutton Creates a toggle button linked to a Tcl variable

Toplevel Creates a frame that is a new top‐level window

Text Creates general‐purpose text

Frame Creates a container used to hold child widgets

Menubutton Creates a button for displaying the menu

Menu Creates a menu

Listbox Creates a widget that displays a list of cells, one or more of which may be selected

Scale Creates a scale to horizontally/vertically choose a numeric value through the slider

Scrollbar Creates a scrollbar linked to another widget or text

Progressbar Creates a widget to provide visual feedback on the progress of a long operation, like a
file upload.

Canvas Drawing widget for displaying graphics and images

Spinbox Creates a widget that allows for selecting a value through spinning

Treeview Creates a hierarchy of widgets

7.5 Widget ooniggurtioo 99

Here, x1 and y1 specify the position to keep the .widget_name, x2 and y2 specify the num-
ber of rows and columns required to adjust according to the following widgets.

-column number Sets the column position for the widget.
-row number Sets the row position for the widget.
-columnspan number Number of columns to be used for this widget, Default 1.
-rowspan number Number of rows to be used for this widget, Default 1.

(ii) Pack – are constraint‐based, and packs the widget around the edge of the cavity. It packs
the widget in horizontal and vertical boxes.

pack .widet_name –padx x1 –pady y1

Here, x1 and y1 are integers, and −padx and −pady put a space between the widgets.

(iii) Place – places a widget at the constraint using absolute positioning.

place .widget_name –x x1 –y y1

Here, x1 and y1 specify the distance from the horizontal and vertical borders of the screen.

7.3   Widget Naming

The naming system in Tk reflects the order in the hierarchy of widgets. The root window is named
with (.) and an element in the window is accessible with (.name_of_widget). A button can
be named as .b and can be accessed as an element with the same name (.b) for configuration
and manipulation. Each widget acts as a child of the main window, a frame is declared with .f
and a button associated with frame .f.b and so on. Here, the frame acts as a parent and the but-
ton acts as a child. The drawback of the naming system is, in the case of the interface changes, the
frequent updates in the widget of positioning and the need to change its name.

7.4   Widget Dimension

The default unit of the widget is the pixel, specified without dimension. Other dimensions are
inches (i), millimeters (m), centimeters (cm), and points (p).

7.5   Widget Configuration

Tk treats each widget name as a command name and can perform operations on a specific widget
by invoking the widget’s name. Attributes to the widgets are specified by arguments. The attribute
changes the appearance of the widget and beautifies the interface, starting with a dash (−) and the
name for the widget specified with –text. A widget can have one or more attributes. The setting of
a widget instance can change by the configuration (config) command. The syntax for config
uses the same‐named argument that is used to create that widget. Features of the widget can be
assigned during instantiation or can be configured later in the programming.

Syntax: .widgetname config attribute

7 Toolkit Widgets100

Table 7.2 lists the different configurations available for GUI development.

7.6   Widget Programming

The Tk script begins with the creation of the widget, arranging with the geometry manager, and
binding with the course of action.

7.6.1  Button Widget

A button is a very popular widget used in developing the GUI, A button is instanced from the name
button followed by its name .b. A widget may contain one or more attribute feature. It possesses
the in‐built action of a left click of the mouse and generates an event whenever someone triggers
and executes the bonded task.

Syntax for the button widget is button .b –command attribute.........

 button .b –text Hello –command {puts “Hello Tk World”}
 grid .b –row 0 –column 0

Table 7.2  Widget configuration.

Configuration Attribute Description

-background color / -bg color Changes the background color of the widget

-foreground color / -fg color Changes the foreground color of the widget

-borderwidth n Draws a border in 3D effect

-font {Descriptor size feature} Changes the font of widget
Description – time, ariel, caliber, etc.
Size – 0–100
Feature – bold, italic, underline

-height n Sets the height of a widget to be n pixels

-width n Set width of widget to be n pixels

-text “Widget_Text” Sets the text for the widget

-flash Flashes the widget, to draw attention

-relief feature Sets the 3D shape of the widget
Feature – flat or raised or groove or ridged or solid or sunken

-textvariable Updates the text value dynamically

Figure 7.1  Button widget.

7.6 Widget uoguraaiog 101

This script is used to create an instance of the button named .b, and the text printed on the but-
ton is “Welcome”. The button .b has the default binding with the left click of the mouse. A left
click of the mouse executes the Tcl command and displays the statement “Hello Tk World” on the
console (Figure 7.1).

The grid manager learns to make a button appear on row 0 column 0 and maps accordingly.
Similar to an object‐based system, the naming of the Tk widget begins with the (.) dot conven-
tion. A class of the widget is a command that creates an instance of that widget.

Example 7.1 Write a Tcl script to display the widgets on the GUI screen, as shown in Figure 7.2.

Solution
The GUI presented in Figure 7.2 possesses a label that displays a single‐line statement “Widget for
GUI,” a button titled “widgets,” an entrybox, a checkbutton, a radiobutton, a horizontal scale, and
a vertical scrollbar.

label .l ‐text "Widget for GUI"
button .b ‐text widgets
entry .e
checkbutton .c
radiobutton .r
scale .s ‐orien h
scrollbar .sb

grid .l ‐row 0 ‐column 3
grid .b ‐row 1 ‐column 1
grid .e ‐row 2 ‐column 2
grid .c ‐row 3 ‐column 1
grid .r ‐row 3 ‐column 3
grid .s ‐row 4 ‐column 2
grid .sb ‐row 5 ‐column 1

Each widget is invoked from the library by its name and needs an instance name. Finally, each
widget learns with the grid manager to appear at a particular row number and column number to
avoid overlap.

Example 7.2 Write a Tcl script to create a button. An event on the button displays the output as
a standard output.

Solution
The following Tk script creates a button titled “Press
Me,” which has a default action with a click of the
mouse. For each action on the button, the statement is
displayed on the standard output device (Figure 7.3).

button .b ‐text "Press Me" ‐
command {puts "Welcome to Tk
World"}
pack .b

Figure 7.2  Multiple widgets on screen.

Figure 7.3  Button with the puts command.

7 Toolkit Widgets102

Example 7.3 Write a Tcl script to create a button widget. An event on the button closes the tool.

Solution
In this example, the exit command is linked with
a button, attribute –text labels the button
“Press Me,” and –command binds the in‐built
command exit with the button. Left‐click action
of the mouse on the button closes the tool
(Figure 7.4).

button .b ‐text "Press Me" ‐
command exit
pack .b

Example 7.4 Write a Tcl script to create six buttons and configure with a different attribute
shown in Table 7.2.

Solution
In this program, six different buttons have been created, namely (b1......b6). The attributes to
each button have been assigned during instantiation itself (configuration attributes are given in
Table 7.2). The output GUI of the script is shown in Figure 7.5

button .b1 ‐text "Welcome" ‐fg black ‐bg green ‐height 5 ‐width 10 ‐
relief flat ‐borderwidth 7
button .b2 ‐text "to" ‐fg blue ‐bg pink ‐height 5 ‐width 10 ‐relief
raised ‐borderwidth 7
button .b3 ‐text "my" ‐fg white ‐bg black ‐height 5 ‐width 10 ‐
relief groove ‐borderwidth 7
button .b4 ‐text "World" ‐fg red ‐bg yellow ‐height 5 ‐width 10 ‐
relief ridge ‐font {times 15 italic} ‐borderwidth 7
button .b5 ‐text "of" ‐fg yellow ‐bg pink ‐height 5 ‐width 10 ‐
relief solid ‐borderwidth 7 ‐font {times 15 underline}
button .b6 ‐text "GUI" ‐fg black ‐bg red ‐height 5 ‐width 10 ‐relief
sunken ‐font {times 15 bold} ‐
borderwidth 7

grid .b1 ‐row 0 ‐column 0
grid .b2 ‐row 0 ‐column 1
grid .b3 ‐row 0 ‐column 2
grid .b4 ‐row 1 ‐column 1
grid .b5 ‐row 2 ‐column 1
grid .b6 ‐row 3 ‐columnspan 3

Note – Each widget must be arranged in a separate row and column to avoid overlap.

Figure 7.4  Button with the exit command.

7.6 Widget uoguraaiog 103

7.6.2  Label Widget

The label widget is incorporated into almost all Tk applications that are used to display a single line
of text. Here, \n displays a single line in multiple statements (Figure 7.6).

Syntax: label .l label_name –command attribute

label .l1 ‐text "A single line
statement"
pack .l1
label .l2 ‐text "More than one
\n statement in \n label
widget"
pack .l2

Example 7.5 Write a Tcl script to create different labels to configure their attributes.

Solution
In the following program, eight different labels are created. The background of the label is config-
ured with the command –background color/-bg color according to the name of the color.
Similarly, the foreground of the label is configured with the command –foreground

Figure 7.6  Label widget.

Figure 7.5  Button and different attributes.

7 Toolkit Widgets104

color/-fg color according to the name of the color. The text of the label is configured as 3D
with the command –relief. The format of the text is configured with the command –font,
requiring a combination of {font size style} (Figure 7.7).

label .lab1 ‐text "This is text"
pack .lab1
label .lab2 ‐text "This is colored text" ‐foreground green ‐background
blue
pack .lab2
label .lab3 ‐text "Sunken text" ‐relief sunken ‐foreground yellow ‐
background black
pack .lab3
label .lab4 ‐text "Grooved text" ‐relief groove ‐fg green ‐bg blue
pack .lab4
label .lab5 ‐text "Flat text" ‐relief flat ‐fg white ‐bg black
pack .lab5
label .lab6 ‐text "Ridged text" ‐relief ridge ‐fg black ‐bg gray
pack .lab6
label .lab7 ‐text "Raised text" ‐relief raised ‐fg blue ‐bg pink
pack .lab7
label .lab8 ‐text "Times font" ‐font {times 25 bold} ‐fg black ‐bg
green
pack .lab8

Example 7.6 Write a Tcl script to define the button, and label the widget and change the button
text with a configuration command.

Solution
In this program, a button (.b) has been invoked titled “Programming Language.” The packer lets
it be displayed on the screen. The .b config command adds a different feature to the button, as
shown in Figure 7.8.

Figure 7.7  Label with different attributes.

7.6 Widget uoguraaiog 105

Similarly, the above script can be modified for other widgets too. Figure 7.9 presents the config
command with the label. A label has an instant title (.l), and the packer lets it be displayed on
the screen. The config command adds the different features into the label.

7.6.3  Textvariable Widget Command

The textvariable dynamically updates the variable values linked to a specified widget value.
Whenever the widget value changes, its content updates throughout the program. It is mostly used
on entry and label widgets. A textvariable is useful to update the variable in the main program
where the result is returned from a procedure.

Figure 7.9  Label with config.

Figure 7.8  Button with config.

7 Toolkit Widgets106

The following script contains two different textvariables var1 and var2 for input1 and
input2, respectively. A constant value is assigned to both variables. However, the value can be
updated from the console terminal or other widget links. The result of summation is updated to
var3 and will be placed on the mentioned row and column, as presented in Figure 7.10.

label .l1 ‐text "Input1="
label .l2 ‐textvariable var1
label .l3 ‐text "Input2="
label .l4 ‐textvariable var2
label .l5 ‐text "Input1 + Input2="
label .l6 ‐textvariable var3
set var1 25
set var2 35
set var3 [expr $var1 + $var2]
grid .l1 ‐row 0 ‐column 0
grid .l2 ‐row 0 ‐column 1
grid .l3 ‐row 1 ‐column 0
grid .l4 ‐row 1 ‐column 1
grid .l5 ‐row 2 ‐column 0
grid .l6 ‐row 2 ‐column 1

7.6.4  Entry Widget

The entry is the most important widget that accepts a single line of text as an input. The appear-
ance is an entry widget like a space, where the user can input some value. Acceptance of the
input from users is essential in every Tk application, as shown in Figure 7.11. The -entry sup-
ports the display of results with a combination of textvariables. The result of Tcl script stored in the
textvariable gets updated and displays the value over a linked entry blank space.

Syntax: entry .e –command attribute

entry .e
pack .e
.e config - bg pink

Figure 7.12 experiments with the entry widget and textvariable. Whenever the value of the
variable class is updated, it displays the latest value of the entry space.

entry .e ‐bg red ‐textvariable class
set class "Online or Offline"
pack .e

Figure 7.10  Sum in a label.

Figure 7.11  Entry for user input.

Figure 7.12  Entry with textvariable.

7.6 Widget uoguraaiog 107

The above script creates an entry space, and the pack manager learns to display it. The configura-
tion command can update the feature according to the attribute. Additional features applicable to
entry widgets are given in the following.

-justify Justifies the side of text left, right, or center (default left)
-show Hides the characters for security purposes

entry .e ‐bg yellow ‐width 20 ‐
textvariable var ‐justify right
‐show “*"
set var "GUI Application"
pack .e

For example, Figure 7.13 shows hiding of the characters in the entry space with a special char-
acter using –show. It is helpful for creating security‐related applications.

7.6.5  Frame Widget

The frame widget is a rectangular container widget that groups widgets for designing the GUI. The
purpose is to act as a spacer or container for complex window layouts. The frame creates a new
window and makes it for the frame widget. The primary purpose of the frame widget is to act as a
spacer or container for complex window layouts. The frame command returns the pathname of
the new window. Other widgets can be arranged in the frame.

Syntax: frame frameName options

Where options present the feature of the frame widget, the common options are –background,
-height, -padx, -pady; the –relief condition sets the 3D condition and –borderwidth
the width used to draw a border with the 3D effect. Figure 7.14 shows two different frames with
different attributes and packs. The default packing order is from top and center. The frame appears
in the same sequence as it packed.

frame .myFrame1 ‐background red ‐relief ridge
‐borderwidth 8 ‐height 100 ‐width 100
frame .myFrame2 ‐background blue ‐relief
raised ‐borderwidth 8 ‐height 100 ‐width 50
pack .myFrame1
pack .myFrame2

A frame positioned on the window can pack along the top,
 bottom, right, or left sides. While packing, the -side direction
command instructs to arrange the widget with the mentioned
direction.

pack.one.two –side bottom ➔ frame. two bottom
of frame.one.

Figure 7.13  Entry space with a
hidden character.

Figure 7.14  Frame widget.

7 Toolkit Widgets108

frame .one ‐width 40 ‐height
40 ‐bg red
frame .two ‐width 100 ‐height
100 ‐bg green
pack .one .two ‐side bottom

pack.one.two –side top ➔ frame. two top of frame.one.

frame .one ‐width 40 ‐height
40 ‐bg red
frame .two ‐width 100 ‐height
100 ‐bg green
pack .one .two ‐side top

pack.one.two –side left ➔ frame. two left of frame.one.

frame .one ‐width 40 ‐height
40 ‐bg red
frame .two ‐width 100 ‐height
100 ‐bg green
pack .one .two ‐side left

pack.one.two –side right ➔ frame. two right of frame.one.

frame .one ‐width 40 ‐height
40 ‐bg red
frame .two ‐width 100 ‐height
100 ‐bg green
pack .one .two ‐side right

Example 7.6 Write a Tcl script to create two frames, where frame-1 consists of three horizontal
buttons and frame-2 consists of two vertical buttons, as shown in Figure 7.15.

Solution
Figure 7.15 has two frames that need to pack with a –side top command. Add three buttons to
frame1 and two buttons to frame2.

7.6 Widget uoguraaiog 109

frame .f1 ‐width 100 ‐height 60
frame .f2 ‐width 20 ‐height 50
pack .f1 .f2 ‐side top
label .f1.l1 ‐width 7 ‐text "Frame‐1"
button .f1.b1 ‐padx 15 ‐pady 15 ‐text "Button B1"
button .f1.b2 ‐padx 15 ‐pady 15 ‐text "Button B2"
button .f1.b3 ‐padx 15 ‐pady 15 ‐text "Button B3"
pack .f1.l1 .f1.b1 .f1.b2 .f1.b3 ‐side left

label .f2.l1 ‐width 5 ‐text "Frame‐2"
button .f2.b1 ‐padx 12 ‐pady 20 ‐text "Button B1"
button .f2.b2 ‐padx 12 ‐pady 20 ‐text "Button B2"
pack .f2.l1 ‐side left
pack .f2.b1 .f2.b2 ‐side top

7.6.6  Scale Widget

Scale is one of the widgets used to provide an input to the program. It can be either horizontal or
vertical. It consists of a slider in the scale widget, the movement of the scale left–right (horizontal
scale), and top–bottom (vertical scale) is used to set numeric values in the specified range. A slider
above the scale points to the current value of the scale and is displayed next to the slider. Scale can
be instantiated by the following syntax.

Syntax: scale .scale_name –command attribute

The features of the scale widget can be described by the commands in Table 7.3.
There are three major fields where the value of scale can be used:

(a) to get/set the value explicitly;
(b) scale can associate with the Tcl variable. Tcl command/procedure can synchronize with the

current value of scale;
(c) Tcl command/procedure executes when the scale slider value changes (Figure 7.16).

Figure 7.15  Buttons in horizontal and vertical arrangements.

7 Toolkit Widgets110

scale .s - orient horizontal -
from 0 - to 100 - length 100 -
 label "My Horizontal Scale"
pack .s

scale .s ‐orient vertical ‐from
0 ‐to 100 ‐length 100 ‐label
"My Vertical Scale"
pack .s

The attribute to the scale set can be instantaneous or can be updated via the config command.

7.6.6.1  Slider Value Synchronize to Label
The current value of scale pointed by the slider can be set as a variable. The current value of the
slider can be declared as the –variable value updates the value of –textvariable of other
widgets. The linking of variable to textvariable is accomplished by the same name and can update
the value dynamically. The example in Figure 7.17 presents that the current value of the slider is
81, which is passed to the linked label.

scale .s ‐orient horizontal ‐
from 0 ‐to 100 ‐length 150 ‐
variable val ‐label "Current
Value of Scale is"
label .l ‐textvariable val
pack .s .l

Figure 7.16  Scale orientation.

Figure 7.17  Slider on a scale.

Table 7.3  Scale commands.

Scale Command Description

-length number Sets the length of the widget

-sliderlength Sets the size of the slider

-label Sets the label for the scale

-orient Sets the scale orientation as either horizontal or vertical

-from Starting range of the scale

-to Ending range of the scale

-tickinterval Sets the interval for the slider over the scale

-command Invokes a procedure to be executed on the binded action

-textvariable Updates the variable value

7.6 Widget uoguraaiog 111

Example 7.7 Write a Tcl script to design a horizontal scale and display the current value of the
slider after moving it.

Solution

Example 7.8 Write a Tcl script to design a scale that returns the square of the current value of
the slider after moving it (Figure 7.18).

Figure 7.18  Scale with
procedure.

7 Toolkit Widgets112

Solution
scale .s ‐from 0 ‐to 20 ‐length 200 ‐tickinterval 10 ‐variable x ‐
command myproc
proc myproc {value} {
puts "The value of Slider is [expr $value*$value]"
}
pack .s

7.6.7  Message Widget

The message widget displays multiple lines of text. Formatting the text into multiple lines is done
with “\”. A backslash is used to display the multiple statements separately without embedding [4].
It is designed for use in dialog boxes. It formats the text into a box of a given width.

Syntax: message .messagename option

The available options for the message widget is –font, −background, −foreground,
−borderwidth, etc., as given in Table 7.2. Additional options are (i) -justify alignment,
which sets the alignment of the text, and can be left, center, or right; and (ii) –aspect ratio,
which sets the aspect ratio in percent. Figure 7.19 shows the message formatted into multiple lines
and center justified.

message .msg ‐text "Write single
statement
\ into multiple line" ‐jus-
tify center
pack .msg

It formats the text into a box with a given width. The aspect ratio is defined to be the ratio of the
width to the height, times 100.

 aspect ratio width height / *100

The default is 150, which means the text will be one and a half times as wide in height.

message .msg ‐aspect 100 ‐jus-
tify left ‐text \
"this is my first line,
this is my second line"
pack .msg

Figure 7.19  Message text on multiple lines.

7.6 Widget uoguraaiog 113

message .msg ‐aspect 300 ‐jus-
tify left ‐text \
"this is my first line,
this is my second line"
pack .msg

7.6.8  Spinbox Widget

Spinbox widget allows users to choose numbers or arbitrary values. It contains the option to spin
the value upward or downward by defined steps actioned by a mouse left‐click. Its structure pos-
sesses an entry box and an up‐down arrow which increments or decrements the value with a click
action (default 1). It is one graphical widget used to provide input to the Tcl script. Through spin-
ning or direct entry into the box, the current value of the spin box is held in a defined -text-
variable which is linked to other widgets.

Syntax: spinbox .sp –command attribute

Additional attributes to the spin box are

-from num start value of the spinbox
-to num end value of the spinbox
-increment num incremental step
-textvariable char variable associated with the spinbox

Example 7.9 Write a Tcl script to compute the product of two digits where the input is provided
through a spinbox.

Solution
Figure 7.20 shows a GUI containing two different spinboxes, a button, and a label/input to the
program is provided by textvariables x and y of sp1 and sp2, respectively.

spinbox .sp1 ‐from 0 ‐to 100 ‐increment 1 ‐textvariable x ‐bg pink ‐
font {times 18 bold}
spinbox .sp2 ‐from 0 ‐to 100 ‐increment 1 ‐textvariable y ‐bg pink ‐
font {times 18 bold}
pack .sp1 .sp2 ‐side left ‐anchor nw
button .b ‐text Compute ‐command {set z [expr $x * $y]} ‐font {times
12 bold}
label .l ‐textvariable z ‐bg yellow ‐font {times 18 bold}
pack .b .l ‐side top

Figure 7.20  Product with a spinbox widget.

7 Toolkit Widgets114

In this chapter, the basic categories of the widget are described. The configuration command
beautifies the widgets and makes the screen more presentable. These configuration commands
apply to all widgets. The following advanced categories of widgets are going to be discussed along
with widget positioning.

7.7   Solved Problems

1. Write a Tcl script to develop a GUI for random number generation with an event on button.

Solution
There are two different frames, the first frame contains the button “Random” and the second frame
contains a label that displays the random number with click action on a mouse (Figure 7.21).

frame .f1 ‐width 100 ‐height 100 ‐bg red
frame .f2 ‐width 100 ‐height 10
pack .f1 .f2 ‐side top
button .f1.b1 ‐padx 50 ‐pady 50 ‐bg yellow ‐text "Random" ‐command
{set var [expr round(rand()*100)]}
label .f1.l1 ‐width 10 ‐textvariable var
pack .f1.b1 .f1.l1 ‐side left

label .f2.l ‐width 50 ‐text "Script to generate Random Number"
pack .f2.l ‐side left

2. Write a Tcl script to create two different scales, with the movement of the first slider displaying
the half value, and the movement of the second slider displaying the double value.

Solution
Here, two different scales red and green, linked with the Tcl procedure, return half and double of
the slider value, respectively. The current value of the slider passes to the procedure and displays
the half and double value on the console (Figure 7.22).

proc color1 {value1} {
set x1 [expr $value1 / 2]
puts "Half of red =$x1"
}

Figure 7.21  GUI for random number generation.

7.7 olled uooleas 115

proc color2 {value2} {
set y1 [expr $value2 * 2]
puts "Twice of green=$y1"
}
scale .s1 - orient horizontal - from 0 - to 100 - tickinterval 5
- variable x - length 500 - tickinterval 5 - label Red - command color1
scale .s2 - orient horizontal - from 0 - to 100 - tickinterval
5 - variable y - length 500 - tickinterval 5 - label Green
- command color2
pack .s1 .s2 - side top

3. Write a Tcl script to create a GUI for the half adder.

Solution
A half adder is a combinational digital circuit that accepts two inputs and results in the sum and
carry. The truth table presents the relation between the input and output sum, and carry
(Figure 7.23).

Figure 7.22  Scale with
procedure.

7 Toolkit Widgets116

Input Output

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

checkbutton .a - textvariable a - width 10
- height 10
checkbutton .b - textvariable b - width 10
- height 10
grid .a - row 0 - column 0
grid .b - row 0 - column 1
button .sum - padx 5 - pady 5 - text sum
- command {set sum [expr $a ^ $b]}
button .carry - padx 5 - pady 5 - text carry
- command {set carry [expr $a & $b]}
label .resultsum - textvariable sum - bg
yellow - width 5
label .resultcarry - textvariable carry
- bg yellow - width 5
grid .sum - row 1 - column 0.
a - textvariable a - width
grid .carry - row 1 - column 1
grid .resultsum - row 2 - column 0
grid .resultcarry - row 2 - column 1

4. Write a Tcl script to create a GUI for the full adder.

Solution
A full adder is a combinational circuit that performs the addition of three current values and
results in the sum and carry. The truth table of the full adder justifies the relation between the
input and output (Figure 7.24).

Input Output

A B C Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 7.23  GUI of the half adder.

7.7 olled uooleas 117

label .l - text "GUI of Full Adder" - font {times 20 bold}
checkbutton .a - textvariable a - width 10 - height 10
checkbutton .b - textvariable b - width 10 - height 10
checkbutton .c - textvariable c - width 10 - height 10
grid .l - row 0 - column 1
grid .a - row 1 - column 0
grid .b - row 1 - column 1
grid .c - row 1 - column 2

button .sum - padx 5 - pady 5 - text sum - command {set sum [expr $a ^
$b ^ $c]}
button .carry - padx 5 - pady 5 - text carry - command {set carry [expr
($a & $b)|($b & $c)|($a & $c)]}
label .resultsum - textvariable sum - bg yellow - width 5
label .resultcarry - textvariable carry - bg yellow - width 5

grid .sum - row 2 - column 0
grid .carry - row 2 - column 2
grid .resultsum - row 3 - column 0
grid .resultcarry - row 3 - column 2

5. Write a Tcl script to create a GUI for an arithmetic calculator.

Solution
Two entry boxes accept the input from the user and four arithmetic operations are linked to the
button, which updates the result into a textvariable result. The third entry box content is defined
by the textvariable result. The result of the arithmetic operation is dynamically updated in the
third entry box (Figure 7.25).

frame .f - width 1000 - height 1000 - bg grey
entry .f.e1 - textvariable x - width 10 - bg yellow - font {times
20 bold}

Figure 7.24  GUI of the full adder.

7 Toolkit Widgets118

entry .f.e2 - textvariable y - width 10 - bg yellow - font {times
20 bold}
button .f.b1 - text "+" - command {set result [expr $x + $y]} - relief
groove - font {times 20 bold}
button .f.b2 - text "- " - command {set result [expr $x - $y]} - relief
raised - font {times 20 bold}
button .f.b3 - text "*" - command {set result [expr $x * $y]} - relief
ridge - font {times 20 bold}
button .f.b4 - text "/" - command {set result [expr $x / $y]} - relief
sunken - font {times 20 bold}
button .f.b5 - text "%" - command {set result [expr $x % $y]} - relief
raised - font {times 20 bold}
entry .f.e3 - textvariable result - width 10 - bg yellow - font {times
20 bold}
grid .f - rowspan 3 - columnspan 5
grid .f.e1 - row 0 - column 1 - padx 10 - pady 10
grid .f.e2 - row 0 - column 3 - padx 10 - pady 10
grid .f.b1 - row 1 - column 0 - padx 10 - pady 10
grid .f.b2 - row 1 - column 1 - padx 10 - pady 10
grid .f.b3 - row 1 - column 2 - padx 10 - pady 10
grid .f.b4 - row 1 - column 3 - padx 10 - pady 10
grid .f.b5 - row 1 - column 4 - padx 10 - pady 10
grid .f.e3 - row 2 - column 2 - padx 10 - pady 10

6. Write a Tcl script to create a simple GUI to develop the power of a number.

Solution
Two user-defined inputs are assigned to the entry box and the button titled “=” computes the
power of them and updates the result into the third entry box. It is necessary to declare the result
of the button and the content of the entry space with the same textvariable (Figure 7.26).

entry .e1 - textvariable x
label .l - text "to power"
entry .e2 - textvariable y

Figure 7.25  GUI of a calculator.

7.7 olled uooleas 119

button .b - text = - borderwidth 7 - command {set result [expr
$x ** $y]}
entry .e3 - textvariable result
pack .e1 .l .e2 .b .e3 - side left

7. Write a Tcl script to display the message statement justified on four different sides with aspect
ratios of 10, 50, 100, and 500.

Solution
The aspect ratio arranges the message test according to the specified height and width (Figure 7.27).

message .msg1 - aspect 50 - justify left - text "This is online class
of Tcl Tk"
pack .msg1 - side left
message .msg2 - aspect 100 - justify right - text "This is online class
of Tcl Tk"
pack .msg2 - side right
message .msg3 - aspect 500 - justify center - text "This is online
class of Tcl Tk"
pack .msg3 - side top
message .msg4 - aspect 10 - justify center - text "This is online class
of Tcl Tk"
pack .msg4 - side bottom

Figure 7.26  GUI of a power calculation.

Figure 7.27  Message justified with the aspect ratio.

7 Toolkit Widgets120

7.8   Unsolved Problems

1. Write a Tcl script to create the shown screen containing a label and button widget. The title of
the label is Welcome and the title of the button Exit. Action on the button closes the tool.

2. Write a Tcl script to create a simple GUI for the following arithmetic operation.

3. Write a Tcl script to create the following simple GUI.

4. Write a Tcl script to create the following frame and position the widget.

7.9   MCQs on Tk Widgets

[1] Select the correct statement.
A  Tk is an open‐source, cross‐platform widget toolkit
B A library provides of the basic elements of GUI widgets
C A GUI can be built in many programming languages
D Tk widgets are supported by Linux, Mac OS, Unix, and Microsoft Windows operating

systems
E All of the above
 [Solution (e)]

7.9 Cs oo Tk Widgets 121

[2] Is Tk is an extension of Tcl?
A  No
B Maybe
C Yes
D None of the above
 [Solution (c)]

[3] Which describe(s) the use of a widget?
A  To create a widget
B To manipulate a widget
C To rearrange a widget
D All of the above
 [Solution (d)]

[4] What is the distance between widgets measured in?
A  Millimeters
B Centimeters
C Inches
D Pixels
 [Solution (d)]

[5] Which widget accepts input from a user?
A  Entry
B Checkbutton
C Scale
D Spinbox
E All of the above
 [Solution (e)]

[6] Which widget can display output results?
A  Entry
B Label
C Both
D None
 [Solution (d)]

[7] With what can two widget values be communicated?
A  Text
B Textvariable
C Variable
D All of above
 [Solution (b)]

[8] Which command is used to determine the orientation of the scale widget?
A  -orien h
B -orient h
C -orient v
D All of the above
 [Solution (d)]

7 Toolkit Widgets122

[9] What command is given to name a widget?
A  -text
B -textvariable
C All of the above
D None of the above
 [Solution (a)]

[10] What command is given to associate a variable with a widget?
A  -text
B -textvariable
C All of the above
D None of the above

 [Solution (b)]

[11] Which are types of geometry managers?
A  Pack
B Place
C Grid
D All of the above

 [Solution (d)]

[12] What is/are the primary objective(s) of a geometry manager?
A  To plan the layout for the GUI
B To keep the widget at a given coordinate location
C To keep the widget horizontally or vertically or at the corner
D All of the above

 [Solution (a)]

[13] Which is the correct statement?
A  A label widget can display a single line
B A message widget displays more than one line
C A label with \n is equivalent to a message
D All of the above

 [Solution (d)]

[14] What is/are necessary to use to make the widget appear on the GUI screen?
A  Pack geometry manager
B Place geometry manager
C Grid geometry manager
D Any one of the above

 [Solution (d)]

[15] Which command can be used to manipulate a widget even after making the widget appear on
the GUI screen?
A  .config
B .configure
C Either (a) or (b)
D None of the above

 [Solution (c)]

7.9 Cs oo Tk Widgets 123

[16] Which command(s) causes a different 3D shape of the widget?
A  -relief raised
B -relief groove
C -relief ridge
D -relief sunken
E All of the above

 [Solution (e)]

[17] What is -command used for?
A  Bind an in‐built Tcl command with a specific widget
B Bind a procedure with a particular widget
C Both (a) and (b)
D Neither (a) nor (b)

 [Solution (c)]

[18] What will the following program display?

proc color2 {value2} {
set y1 [expr $value2 * $value2]
puts "$y1"
}
scale .s2 - orient horizontal - from 0 - to 100 - tickinterval 5
- variable y - length 500 - command color2
pack .s2 - side top

A  Factorial of the variable pointed by a slider over a horizontal scale
B Factorial of the variable pointed by a slider over a vertical scale
C Square of the variable pointed by a slider over a horizontal scale
D Square of the variable pointed by a slider over a vertical scale

 [Solution (c)]

[19] Which widgets comprise the following GUI?

A  Input radiobutton, function button, and result on label
B Input button, function button, and result on entry
C Input checkbutton, function button, and result on entry
D Input checkbutton, function button, and result on label

 [Solution (d)]

7 Toolkit Widgets124

[20] What will the following script display?

entry .e1 - textvariable x
entry .e2 - textvariable y
button .b - text = - borderwidth 7 - command {set result [expr
$x ** $y]}
entry .e3 - textvariable result
pack .e1 .e2 .b .e3 - side left

A  X*Y
B XY

C X + Y
D X/Y

 [Solution (b)]

 References

 1 Welch, B.B., Jones, K., and Hobbs, J. (2003). Practical Programming in Tcl/Tk. Prentice Hall
Professional.

 2 https://www.tutorialspoint.com/tcl- tk/index.htm
 3 https://www.tcl.tk/man/tcl/UserCmd/wish.html
 4 https://zetcode.com/gui/tcltktutorial/dialogs/

https://www.tutorialspoint.com/tcl-tk/index.htm
https://www.tcl.tk/man/tcl/UserCmd/wish.html
https://zetcode.com/gui/tcltktutorial/dialogs/

125

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

The bind commands bind the Tcl commands with an event on the Tk widget. Tk widgets are
event-driven and execute the in-built Tcl command or user‐defined procedure whenever a
bonded action triggers. The keyboard and mouse are two inputs to trigger an action of events.
The different events are key press, key release, button press, button release, mouse enter, mouse
leave, focus in, focus out, destroy, window change size, window open, and window close. A
bind command associates X events with the Tcl script and to be executed in sequence [1].

Syntax: bind .widgetName < eventSpecification > TclCommand

Three components of the bind command are (a) widget name of a particular widget on which
an event is triggered, (b) event specification specifying the action of an event applied through a
mouse or keyboard, and (c) Tcl command executing an in‐built or user‐defined procedure in
sequence and returning the result on the specified label or console window.

proc display {a} {
 puts "Bind is working"
}
button .btn ‐text "press me" ‐textvariable a
label .l ‐textvariable result
pack .btn .l ‐side left
bind .btn <Button‐1> {set result [display $a]}

This program binds <Button-1> (featuring a click of the mouse) with the button “press me”.
On event, it calls a procedure display and returns the result (Figures 8.1 and 8.2).

8

Binding Commands and Other Widgets

Figure 8.1  Before event.

Figure 8.2  After
event.

8 Binding Commands and Other Widgets126

Table 8.1  List of event generation.

Event Description

<Return> Press Enter on keyboard

<ButtonPress> /
<Button>

Button pressed on mouse

<ButtonRelease> Button released on mouse

<KeyPress> Focussed key pressed

<KeyRelease> Focussed key released

<Motion> Mouse pointer movement

<Bi-Motion> Mouse motion event, a user drags the mouse with the left button pressed

<Leave> Mouse leaves the widget

<Enter> Mouse enters to widget

<BackSpace> Backspace on keyboard

<Down> Down arrow on keyboard

<Up> Up arrow on keyboard

<Left> Left arrow on keyboard

<Right> Right arrow on keyboard

<Tab> Tab on keyboard

<Escape> Escape on keyboard

<Comma> Comma on keyboard

<Control-c> Combination of two keys

8.1   Class and Widget Binding

The bind command determines the next step on the occurrence of an event. The default widget
follows the class binding. Table 8.1 list the different events available for Tcl. An event must be
enclosed within < >. The angle brackets delimit the single event. The bind command allows a
binding to a sequence of events. If no brackets are included, the event defaults to a KeyPress
event, and all the characters specify keys in a sequence. Three different bindings are found in
application: (i) global binding defined with word keyboard “all”; (ii) class binding derived with
the widget name, like canvas has a class of Canvas, etc.; and (iii) instance name to a specified
instance of the widget. The order of the binding is as follows: global binding; class binding;
instance binding.

8.1.1  Bindtag Command

The bind commands are associated with a particular window, class, keyword, or other string. All
of these are called bindtags [2]. Each window contains a list of bindtags that determine how events
are processed for the window. Whenever an event occurs in a window (applied to the window’s tag
in order), for each tag, the most specified binding matches the given tag and event executed.

8.1 CCass and Widget Binding 127

The bindtag determines which bindings apply to a window and the order of evaluation. The bind-
tag argument selects the window to which binding applies. A tag begins with a dot (.) or a path-
name for a window else an arbitrary string. Each window has its associated list of tags and bindings
that apply to a particular window.

The bindtag

 ● provides the name of the internal window
 ● provides the name of the top‐level window
 ● provides the name of the class of a widget
 ● of “all” means that binding applies to all windows

8.1.2  Event Pattern

The argument sequence of one or more event patterns is separated by whitespace. Each event can
take one of three forms of ASCII character, (.), or < >. The first format of the event pattern uses
the ASCII character’s keysym. The second format of the event pattern is longer but more general.
Event patterns are enclosed by angle brackets, and may contain more modifiers, event types, and
button identifications. Shift and Control are two popular modifiers. The third format of the event
pattern specifies a user‐defined event known as a virtual event. Binding to a virtual event created
before the virtual event is defined, in the case where the event changes, the window dynamically
bound to the virtual event will respond immediately to the definition.

8.1.3  Event Type

Event types are standard or nonstandard X event types that describe when an event is generated
and sent to the window [3, 4].

i) Activate – sent to all sub‐windows in a top‐level when it changes from deactivating to activate
ii) Deactivate – sent when a window’s state changes from active to deactivate

iii) MouseWheel – for a scrolling feature; by rolling the wheel, an event gets generated. Once the
event is received, the movement of the wheel is substituted by delta field %D, which describes
the movement of the mouse wheel. For Windows 95 and 98 machines, the minimum move-
ment is 120; however, a higher resolution device’s value of “1” corresponds to one text line.
The value determines the direction your widget should scroll. Positive value Up/Left and
negative value Down/Right.

iv) Configure – sent to the window when the size, position, or borderwidth changes
v) Map – top‐level mapping when a transition to normal starts

vi) Unmap – top‐level unmapping in a withdrawn state
vii) Visibility – when the window obscurity changes, (%s) specifies a new state

viii) Expose ‐– whenever all or part of a window is to be redrawn
ix) Destroy – when the window is destroyed
x) FocusIn – when the target acquires focus

xi) FocusOut – focus changed to outside of the target
xii) Enter – mouse pointer enters the window

xiii) Leave – mouse window leaves the window
xiv) Colormap – color map associated with window changes

8 Binding Commands and Other Widgets128

8.1.4  Bind with Mouse Button

All three buttons of the mouse are capable of binding with the widget and executing the linked Tcl
script. The default bind with the button is the left click of the mouse. Binding with pressing and
releasing of a mouse button can be distinguished. Additionally, the motion of the mouse button
can execute an event, whenever the mouse cursor enters or leaves the widget. KeyPress can be
abbreviated as Key and since it is a special case of an event, the angle brackets can be left out. The
following are four equivalent event specifications.

 <KeyPress- 1> <Key- 1> <1> 1

Key is nothing but the keysym printed on the key of the keyboard, and the commonly used key-
syms are listed in Table 8.1. It includes all alphanumeric ASCII characters and non‐alphanumeric
ASCII characters like Shift_L for the left shift key.

<Button-1> / <ButtonPress-1 > Left‐click press on mouse button
<ButtonRelease-1 > Left‐click release on mouse button
<MouseWheel> Center button of mouse
<Button-3> / <ButtonPress-3 > Right‐click press on mouse button
<ButtonRelease-3 > Right‐click release on mouse button

Example 8.1 Write a Tcl script to create a GUI for arithmetic addition which executes the result
upon pressing the ENTER button.

Solution

The following script develops a GUI for arithmetic addition composed of two entry boxes to accept
inputs the from the user and the result of addition appears at the label. The second entry (in2) has
been bonded with the event <Return> (Enter on keyboard). On pressing, the specified event
occurs, executes the Tcl script (procedure to calculate the sum), and returns the result on the label
(result). Here it is necessary to set the Tcl script result and label the result with the same textvari-
able, thus their values can be updated dynamically (Figures 8.3 and 8.4).

proc sum {x y} {
 set result [expr $x + $y]
 return $result
}
entry .in1 ‐width 6 ‐text-
variable in1
label .l1 ‐text +
entry .in2 ‐width 6 ‐text-
variable in2
label .result ‐textvari-
able result
pack .in1 .l1 .in2 .result ‐
side left
bind .in2 <Return> {set result
[sum $in1 $in2]}

Figure 8.3  Before event.

Figure 8.4  After event.

8.1 CCass and Widget Binding 129

Example 8.2 Write a Tcl script to create a GUI for factorial calculation, where the result appears
upon pressing the ENTER button.

Solution

The following script develops a GUI to calculate the factorial of a user‐defined value, and is com-
posed of a label and entry box. The user inserts the value to the entry space which is bonded with
the event <Return> (Enter on keyboard). Whenever a specified event occurs, the Tcl script is
executed (calling a procedure of factorial) and returns the result on the specified label result. The
label result must be defined with the textvariable result to update the value (Figures 8.5 and 8.6).

proc factorial {num} {
if {$num <=1} {
return 1
} else {
return [expr $num * [factorial
[expr $num - 1]]]
}
}
label .l1 - text
"Factorial of "
entry .e - textvariable x
label .l2 - textvariable result
pack .l1 .e .l2 - side left
bind .e <Return> {set result
[factorial $x]}

8.1.5  Bind with Mouse Motion

Tcl script supports the additional feature of event bindings with the motion of the mouse wheel.
The keyword presented with %x and %y dynamically updates with the current coordinate on the
mouse wheel event relative to the screen on the console window. Enter, Leave, and Motion are
three commonly used events to update the coordinate value. Enter and Leave are triggered when
the mouse cursor is close or away from the widget, while Motion is generated when the mouse
cursor moves within the widget. The % substitution performs the command bound to the event and
%% is used to display a single % symbol.

Syntax: bind. <Motion > {puts “pointer at %x,%y”}

<Enter> Mouse cursor moves toward widget
<Leave> Mouse cursor moves away from widget
<Motion> Mouse cursor moves within widget

%x is replaced with the pointer’s x‐coordinate and %y is replaced with the pointer’s
y‐coordinate.

Figure 8.5  Before event.

Figure 8.6  After event.

8 Binding Commands and Other Widgets130

Example 8.3 Write script to develop a GUI for random number generation with a mouse event.

Solution

The following script develops a GUI for a random number generator composed of a label. The first
label title start is bonded with the event <Enter> (motion of mouse cursor) (mouse cursor moves
toward label), generates a random number in the range of 0–100 according to the script and dis-
plays on the second label (Figures 8.7 and 8.8).

label .l1 - text "Generate a Random Number"
label .l2 - textvariable result - bg pink
pack .l1 .l2 - side left
bind .l1 <Enter> {set result [expr round(rand()*100)]}

Figure 8.7  Before event. Figure 8.8  After event.

Example 8.4 Write a Tcl script for a scale widget whose scrolling feature is controlled by the left
and right keys on the keyboard.

Solution

The following Tcl script instances a horizontal scale whose scrollbar movement is performed by
a key <Left>/<Down> and <Right>/<Up> event. The event generate command
expands with %, and focus %W specifies the focus field for the event and creates a surrounding
on the focused scale. The scale is bonded with the <MouseWheel> event. Delta (%D) refers
to the MouseWheel direction and magnitude that the mouse wheel was rotated. The value is not
the screen distance but is in units of motion of the mouse wheel; in multiples of 120. The field
corresponds to the %D substitution for binding scripts. The variable increment maps the
increment value to the <Left> key and the decrement value to the <Right> key (Figure 8.9).

scale .s - orient horizontal - from 0 - to 100
pack .s
bind .s <Enter> {focus %W}
bind .s <MouseWheel> {set increment [expr (%D/360)]
 if {$increment == 1} {
 event generate %W <Left>
 } else {
 event generate %W <Right>}
 }

Figure 8.9  Horizontal scale scrollbar movement maps of keysym.

8.2 Widget Charaateristia Commands 131

8.2   Widget Characteristic Commands

8.2.1  Unpack Command

The pack command makes the widget appear on the screen. To remove the mapped widget, one
may use the pack forget command. The mapped specified widget gets removed. If more than
one widget is mapped on a frame and pack forget is applied to the frame, the whole widget along
with the frame get unmapped.

Syntax: pack forget .widget_name

Example 8.10 Write a Tcl script to create a group of labels and buttons and two different frames,
and delete the button from both frames and later delete one of the frames.

Solution

frame .f1 - bg red - width 100
- height 100
button .f1.b1 - text Button- 1
label .f1.l1 - text Label- 1
pack .f1
pack .f1.b1 .f1.l1 - side left

frame .f2 - bg green - width
100 - height 100
button .f2.b2 - text Button- 2
label .f2.l2 - text Label- 2
pack .f2
pack .f2.b2 .f2.l2 - side left

pack forget .f1.b1

pack forget .f2.l2

pack forget .f1

Figure 8.10  Button-label on Frame-1.

Figure 8.11  Button-label on Frame-2.

Figure 8.12  Remove button from Frame-1.

Figure 8.13  Remove label from Frame-2.

Figure 8.14  Remove Frame-1.

8 Binding Commands and Other Widgets132

Figures 8.10 and 8.11 show the creation of a button and label on frame-1 and frame-2.
Removal of an individual widget with the pack forget command is shown in Figures 8.12
and 8.13 and deletion of the frame is shown in Figure 8.14.

8.2.2  Arranging on Side

The instantiated widget can arrange on four possible sides: top; bottom; left; and right. The default
side is the top. During packing of the widget, the command –side directs the widget to pack in
the specified side. In the case where more than one widget is packed together, the order of packing
follows the instantaneous order and follows the side concerning the first widget in sequence.
Figure 8.15 presents the ordering of three button widgets from the right side.

button .b1 –text B1
button .b2 –text B2
button .b3 –text B3
pack .b1 .b2 .b3 –side right

8.2.3  Stacking

The widget is arranged either horizontally or vertically. If widgets are stacked on more than one
side, a complex arrangement appears. The example below shows the horizontal and vertical stack
of buttons packed on the left and top sides. In the first example, two buttons are stacked from the
left to right on a frame and the frame is packed on the left side. In the second example, two buttons
are framed from left to right and the frame is packed on the top side (Figure 8.16 and 8.17).

frame .one ‐bg pink
foreach i {x y} {
button .one.$i ‐text $i
pack .one.$i ‐side left
}
pack .one ‐side left

frame .two ‐bg grey
foreach i {x y} {
button .two.$i ‐text $i
pack .two.$i ‐side top
}
pack .two ‐side top

Figure 8.15  Arrange a button on the right side.

Figure 8.16  Horizontal stack. Figure 8.17  Vertical stack.

8.2 Widget Charaateristia Commands 133

8.2.4  Cavity Model

The cavity model presents the available free space on the frame. In the example shown below, four
frames have been placed in the main window with a different dimension, but there is free space
leftover where more widgets can be placed. The packing is based on the cavity. Packing on another
side does not stack on the side of the existing frame because the frame is packed along with the
mainframe (Figure 8.18).

frame .one ‐width 50 ‐height 50
‐bg grey
frame .two ‐width 100 ‐height
100 ‐bg yellow
frame .three ‐width 30 ‐height
20 ‐bg green
frame .four ‐width 60 ‐height
200 ‐bg red
pack .one ‐side left
 pack .two ‐side right
pack .three ‐side top
pack .four ‐side bottom

8.2.5  Packing and Display Space (the −fill and –expand commands)

The display space is the area requested by a widget to paint itself while the packing space is the
area allowed by the packer for the placement of the widget. Within geometry constraints, a widget
may be allocated more (or less) packing space than it needs to display itself, causing a cavity space.
The -fill command allows the widget to stretch on the side and fill the space. A widget can fill
horizontally, vertically, or in both directions to the blank background of the main window
(Figures 8.19 and 8.20).

frame .one ‐width 10 ‐
height 20 ‐bg red
frame .two ‐width 40 ‐
height 60 ‐bg yellow
frame .three ‐width 30 ‐
height 25 ‐bg green
pack .one ‐side bottom
pack .two ‐side top
pack .three ‐side left

Figure 8.18  Remove button from Frame-1.

Figure 8.19  Widget showing cavity on frame.

8 Binding Commands and Other Widgets134

pack .one ‐side bot-
tom ‐fill x
pack .two ‐side top ‐fill y
pack .three ‐side left ‐
fill both

The -fill command stretches the side of the frame in a specified detection. The red frame can
be expanded horizontally but resists expanding vertically due to the green frame. The yellow
frames do not expand in the vertical cavity since the vertical space is occupied by a green frame.
The -expand true command allows the widget to expand its packing space into any unclaimed
space in the packing cavity. It uses its extra packing space for its display (Figure 8.21).

pack .one ‐side bottom
‐fill x ‐expand true
pack .two ‐side top ‐
fill y ‐expand true
pack .three ‐side
left ‐fill both ‐
expand true

The -expand true allows expansion of the red frame in the x‐direction, the yellow frame in
the y‐direction until the space is limited by the green frame, and the green frame in the x‐direction
but the y‐direction is limited by the yellow frame.

8.2.6  Padding

Padding is an alternative way to fill the blank space. The two types of padding are external and
internal. Internal padding –ipadx and –ipady allocate more display space in the x and y direc-
tion, respectively, inside the border. To add some space around each frame, the padding of each cell
needs to be set. Padding is some blank space that surrounds a widget and separates it visually from
its content.

Figure 8.20  Widget with –fill command.

Figure 8.21  Widget with –expand command.

8.2 Widget Charaateristia Commands 135

-ipadx n Specifies how much horizontal internal padding to leave on each side of the
content, defaults to 0.
-ipady n Specifies how much vertical internal padding to leave on each side of the con-

tent, defaults to 0.

frame .f ‐width 100 ‐height 100
‐bg pink
pack .f
button .f.b1 ‐text PAD1
button .f.b2 ‐text PAD2
pack .f.b1
pack .f.b2 ‐ipadx 10 ‐ipady 10

The example shows a place frame of size 100*100, button PAD1 without internal padding, and
PAD2 with internal padding. Extra internal space is provided in the x and y directions, as presented
in Figure 8.22.

External padding adds some space around the outside of a grid cell: (i) padx adds padding in the
horizontal direction and (ii) pady adds padding in the vertical direction. Both padx and pady are
measured in pixels, not in units, so setting both of them to the same value will create the same
amount of padding in both directions. In a button widget, –padx and –pady provide more display
space outside the border, giving them more space to keep the button text away from the edge of
the button.

8.2.7  Anchoring

In an earlier section, we described packing of the widget by side, expanding, and filling; still, there
is space left at the corner. A widget can be placed at a particular position mentioned as n, ne,
e, se, s, sw, w, nw, and center, as shown in Figure 8.23. Default anchoring is –
anchor center.

 label .l1 ‐text Foo1
label .l2 ‐text Foo2
label .l3 ‐text Foo3
label .l4 ‐text Foo4
label .l5 ‐text Foo5
label .l6 ‐text Foo6
label .l7 ‐text Foo7
label .l8 ‐text Foo8
label .l9 ‐text Foo9

Figure 8.22  Button with ipad.

Figure 8.23  Direction with anchoring.

8 Binding Commands and Other Widgets136

 pack .l1 ‐side top ‐anchor n
pack .l2 ‐side top ‐
anchor ne
pack .l3 ‐side right ‐
anchor e
pack .l4 ‐side right ‐
anchor se
pack .l5 ‐side bottom ‐
anchor s
pack .l6 ‐side bottom ‐
anchor sw
pack .l7 ‐side left ‐
anchor w
pack .l8 ‐side top ‐
anchor nw
pack .l9 ‐anchor center

The example above contains nine labels; four of them are packed in the north, east, west, and
south directions, four are packed on north‐east, south‐east, south‐west, and north‐west corners,
and one is at the center, presented in Figure 8.24.

Note: –side chooses the side direction and –anchor chooses the corner between two sides.

8.3   Menubar-Menu-Menubutton

The menu is composed of a set of button‐like entries. Users can create a menu and then insert
entries into it, as shown in the example. Entries into the menu include a radiobutton, checkbutton,
button, and command. Between two entries, there is the provision of a separator to maintain the
distance and set entries apart. It displays a collection of one‐line entries arranged in columns.
There are two special characteristics of a cascaded menu, which are to post a submenu and tearoff
to detach the many child menus from the parent and make them dockable.

A menubutton is a button that posts the menu on a click. It acts as a contatiner for the menu.
When a user clicks on the menubutton, a menu appears and remains till the user clicks outside the
menu to dismiss it. If the user selects, presses, and holds the menubutton, the menu remains
unposted. When the mouse is released over the menu, the entries to it can be selected as pointed
by the mouse cursor.

Syntax for menubutton: menubutton .menubuttonName options

Syntax for menu: menu .menuName options

Syntax for adding menu to menubutton:

 .menuName add radio/check –label name –command
Tcl command

Figure 8.24  Anchoring of label.

8.3 ennuarrennrennuntton 137

menubutton .mb ‐menu .mb.menu ‐
text "Select Me"
menu .mb.menu
.mb.menu add check ‐label Yes
.mb.menu add radio ‐label No
pack .mb

The example in Figure 8.25 creates a menubutton labeled “Select Me.” A click of the mouse over
it displays a menu containing two entries, Yes and No.

8.3.1  Entries to a Menu

The menu is a child of the menubutton, similarly, a cascaded menu acts as child to the menu and
so on. The first menu entry is represented by the dashed line. It is necessary to implement the
tearoff command. Entries for the menu command, check, and radio are similar to the corre-
sponding button types. The main difference is that the text string in the menu entry is defined by
–label not by –text. The string to display on the right side of the menu entry is -accel. The
accelerator keystroke describes a sequence that may be used to invoke the same function as the
menu entry. It is a display option and does not set the corresponding binding (which can be
achieved using the bind command). This option is not available for the separator or tearoff entries
(Figure 8.26).

menubutton .mb - text File - menu
.mb.menu
pack .mb - padx 5 - pady 5
menu .mb.menu
.mb.menu add radio - label New
.mb.menu add radio - label Open
- accel "clrl+O"
.mb.menu add radio - label Save
- accel "clrl+S"
.mb.menu add radio - label "Save
As" - accel "clrl+A"
.mb.menu add radio - label Close
- accel "clrl+W"
.mb.menu add separator

Entries to a menu are numbered as an index starting from 0. There are several mechanisms to
add entries to the menu, the most popular are add. Name to entries is given by –label command.
Accelerator command to the menu entry added with –accel command act as a shortcut to access.
Each radio entry can be linked to a system‐defined Tcl script to a user‐defined procedure. While
selecting a particular label, a tick appears on left. Tables 8.2 and 8.3 present the feature of the men-
ubutton and menu, respectively.

Figure 8.25  Creation of menu for menubutton.

Figure 8.26  Adding entries to menu.

8 Binding Commands and Other Widgets138

Radio and check entry to a menu is similar to radiobutton and checkbutton widget, respectively.
When invoked, it toggles back and forth between the select and deselect state. When an entry is
selected, values are stored into a global variable (−onvalue option) and when deselected, another
value is stored in a global variable (−offvalue). A checkbutton shows the checkbox indicator to
the left of the label. If –command is associated with a checkbutton entry, the Tcl command is exe-
cuted when selected. The radio entries are organized into groups of which only one entry may be
selected at a time. When a particular radio entry is selected, it is stored in a particular value in a
global variable. At the same time, the previously selected entry is automatically deselected. Each
radio entry displays an indicator on the left side. If a -command option is specified for a radiobut-
ton entry, then its value is evaluated as a Tcl command each time the entry is invoked; this happens
after selecting the entry.

Example 8.11 Write a script to design and GUI containing a menubar menu and add entries
with a separator.

Solution

The following script creates a menubutton named engineering, under which it contains menu
entries, as shown in Figure 8.27.

Table 8.2  Attributes to menu.

Command Description

-command
action

Sets the command action for a button

-text Name Sets the Name for the widget.

-textvariable
varname

Variable associated with the widget. When the text of the widget changes, the
variable is set to the text of the widget.

-width number Sets the width for the widget.

-menu menuName Specifies the name of the associated menu widget.

-underline
charPosition

Sets the position for hotkey.

Table 8.3  Attributes to menubutton.

Command Description

-font
descriptor

Used to set the font for a widget.

-menu menuName Specifies the name of the associated submenu widget.

-tearoff
Boolean

Allows or disallows a menu to be removed from menubutton and displayed in a
permanent window. Default is enabled.

-command
action

Sets the command action to be done before a menu is posted.

8.3 ennuarrennrennuntton 139

menubutton .mb ‐text Engineering ‐
menu .mb.menu
pack .mb ‐padx 10 ‐pady 10
menu .mb.menu
.mb.menu add radio ‐label electrical
.mb.menu add radio ‐label electronics
.mb.menu add separator
.mb.menu add checkbutton ‐label CSE
.mb.menu add checkbutton ‐label IT

Example 8.12 Write Tcl script to develop a GUI for menubar‐menu along with an accelerator
and execute the procedure on each radio entry.

Solution

The following script creates a menubutton that posts a menu, five entries to the menu, and a sepa-
rator. Each radio entry is linked to a Tcl command, which calls a Tcl procedure/command. Here,
an in‐built command and messageBox have been used to implement the procedure execution, as
shown in Figure 8.28.

menubutton .mb ‐text File ‐menu .mb.menu
menu .mb.menu
.mb.menu add radio ‐label New ‐accel "ctrl+N" ‐command filecmd
.mb.menu add radio ‐label Open ‐accel "ctrl+O" ‐command opencmd
.mb.menu add radio ‐label Save ‐accel "ctrl+S" ‐command savecmd
.mb.menu add radio ‐label "Save As" ‐accel "ctrl+A"
.mb.menu add radio ‐label Close ‐accel "ctrl+W" ‐command exit
.mb.menu add separator
proc filecmd {} {tk_messageBox ‐message Filing!}
proc searchcmd {} {tk_messageBox ‐message Searching!}
proc savecmd {} {tk_messageBox ‐message Saving!}
pack .mb ‐padx 5 ‐pady 5 ‐side left ‐anchor nw

Figure 8.27  Menu with separator.

Figure 8.28  Tcl command
associated with menu entry.

8 Binding Commands and Other Widgets140

8.3.2  Cascade Menu

A menu can be added to the menubar and a menu added to one of the entries in the menu is
known as a submenu. A cascaded menu entry associated with the menu is presented as a small
arrow on the right. A cascaded entry allows the construction of a submenu when the user selects a
new submenu to get posted. There are provisions to add multiple entries to the submenu and cre-
ate a sub‐submenu too.

menubutton .mb1 ‐text File ‐menu .mb1.file
pack .mb1
menu .mb1.file
.mb1.file add cascade ‐label New ‐menu
.mb1.file.fnew
.mb1.file add separator
.mb1.file add radio ‐label Quit
menu .mb1.file.fnew
.mb1.file.fnew add radio ‐label Bookmark
.mb1.file.fnew add radio ‐label Import

The example shown in Figure 8.29 shows a submenu associated with the menu entry “New.” The
submenu remains posted or un‐posted as the submenu is controlled by New. Entries to the menu
and submenu can be linked to Tcl script shown in the example to the menu entries “Hello!” and
“Open.” A cascaded submenu to the entry “Fruit” contains the entries “apple,” “orange,” and
“kiwi,” as shown in Figure 8.30. Each entry linked to the puts command displays a statement in
the console window on selecting each radio entry.

menubutton .mb - text Sampler - menu .mb.menu
pack .mb - padx 10 - pady 10
set m [menu .mb.menu]
$m add command - label Hello! - command {puts "Hello, World!"}
$m add check - label Open - command {puts "open a file"}
$m add separator
$m add cascade - label Fruit - menu $m.sub1
set m2 [menu $m.sub1]
$m2 add radio - label apple - command {puts "My favorite Fruit"}
$m2 add radio - label orange - command {puts "A Yellow Fruit"}
$m2 add radio - label kiwi - command {puts "I don't like it"}

.mb1 .mb1.�le.fnew

.mb1.�le

Figure 8.29  Creation of submenu.

Figure 8.30  Command link to menu and submenu.

8.4 earooo Command 141

In the earlier example, while defining entries, all the features have been included, but this is not
necessary after adding the remaining feature as it can be added with the configuration
(.configure) command.

Syntax : .configure –menu .menubar

Example 8.13 Write a script to develop a GUI and change the configuration of entries
(Figure 8.31).

Solution

menu .m
.m add cascade - menu .m.file - label File
.m add command - command searchcmd - label Search
.m add command - command helpcmd - label Help
menu .m.file
.m.file add cascade - label New
.m.file add cascade - label Open
.m.file add cascade - label Save
. configure - menu .m
proc filecmd {} {tk_messageBox - message Filing!}
proc searchcmd {} {tk_messageBox - message Searching!}
proc helpcmd {} {tk_messageBox - message Helping!}

8.4   Tearoff Command

A tearoff entry appears at the top of the menu, enabled with the tearoff option. When a tearoff
entry is created, it appears as a dashed line at the top of the menu. Under the default bindings,
invoking the tearoff entry causes a tornoff copy to be made of the menu and all of its submenus.
One of the applications of the tearoff command is the pop‐up menu. A pop‐up menu not associ-
ated with menubutton appears at the event.
tk_popup posts a pop‐up menu. First, creating a menu followed by $x $y presents the x and

y coordinates. It posts a menu in the screen at a defined coordinate position and configures Tk so
that the menu and its cascaded children can be traversed with the mouse or the keyboard.

Syntax: tk_popup $menu $x $y

Figure 8.31  Configuring menu entries.

8 Binding Commands and Other Widgets142

Example 8.14 Write a Tcl script to bind a pop‐up menu with a mouse right‐click.

Solution:

A pop‐up menu is created with the tk_popup command, which appears on the provided x and y
co‐ordinates. Figure 8.32 shows the x and y coordinates are bound with Button-3 (right‐click of
the mouse).
menu .m ‐tearoff 0
.m add command ‐label Beep ‐command bell
.m add command ‐label Exit ‐command exit
bind . <Button‐3> {showMenu %X %Y}
proc showMenu {x y} {
 tk_popup .m $x $y
}

8.5   Listbox Widget

The listbox widget displays one text per line with a scrolling feature. First, the listbox is blank.
There are operations to insert, select, or delete, but not modify. A listbox is always associated with
a scrollbar, having the feature to scroll in both directions via –xscrollcommand and
– yscrollcommand. The content in the list box is inserted starting from index 0. The content of
interest can be selected with a double click of the mouse (Figure 8.33).

Syntax: listbox .listbox_name –command attribute

listbox .lstb ‐bg pink
.lstb insert 0 Option1
Option2 Option3
pack .lstb

Tk automatically creates class bindings for listboxes. The behavior of a listbox is determined by
its -select mode option.

a) Single/browse at most one element can be selected in the listbox at once. Clicking button 1 on
an element selects it and deselects any other selected item.

b) Multiple/extended any number of elements may be selected at once. Any time the set of
selected item(s) in the listbox is updated by the user through the keyboard or mouse, the virtual
event <<ListboxSelect>> will be generated.

Figure 8.32  Creation of pop-up menu.

Figure 8.33  Creation of listbox.

8.6 Caae anager 143

Example 8.15 Write a Tcl script to bind a procedure with listbox content (Figure 8.34).

Solution

proc setlabel {text} {
.l configure - text $text
}
listbox .lstb
.lstb insert 0 choice0 choice1 cloice2
pack .lstb
label .l - text "No choice selected"
pack .l
bind .lstb <<ListboxSelect>> {setlabel
[.lstb get active]}

8.6   Place Manager

Place managers follow the absolute position or relative position for layout management based on
the size. In absolute positioning, the programmer needs to specify the position and the size of each
widget in pixels. The size and the position of a widget do not change even after resizing the
window [1].

Syntax : place .widget_name –x x_loc –y y_loc
 place .widget_name –relx x_loc –rely y_loc
-x x_loc Sets the absolute x position for the widget
-y y_loc Sets the absolute y position for the widget
-relx x_Frac Sets the relative x position as a fraction of the parent widget
-rely y_Frac Sets the relative y position as a fraction of the parent widget

The location specified in terms of screen units allows for the widgets to resize themselves when
the master changes size. Preserving the relative configuration place command enables positioning

Figure 8.34  Listbox with select mode.

8 Binding Commands and Other Widgets144

of a widget at a fixed location. The relative location pre-
sents the ratio of child/parent, relx/rely, which is spec-
ified relatively as the floating number. Presented in
Figure 8.35, 0.0 corresponds to the top‐left edge of the mas-
ter and 1.0 corresponds to the bottom‐right edge of the
master. The relative location need not be in the range of
0.0–1.0. In the case where both x and –relx are specified,
then their values are summed, −relx 0.5 x −2 corre-
sponds to a position on the left edge of the content, two
pixels to the left of the center of its container.

Example 8.16 Write a script to place four buttons with place geometry management via absolute
location.

Solution

This example shows the four buttons have been managed on the screen with absolute position. The
absolute coordinate value of x and y is measured from the top‐left corner (Figure 8.36).

button .b1 ‐text M
button .b2 ‐text E
button .b3 ‐text E
button .b4 ‐text T
place .b1 ‐x 0 ‐y 0
place .b2 ‐x 50 ‐y 0
place .b3 ‐x 0 ‐y 50
place .b4 ‐x 50 ‐y 50

Example 8.17 Write a Tcl script to place four buttons with place geometry management via
relative location (Figure 8.37).

Solution

button .b1 - text M
button .b2 - text E
button .b3 - text E
button .b4 - text T
place .b1 - relx 0.0 - rely 0.0
place .b2 - relx 0.25 - rely 0.25
place .b3 - relx 0.5 - rely 0.4
place .b4 - relx 0.8 - rely 0.9

Figure 8.36  Absolute positioning with place manager.

X increases

(1,0)

(0,0)

Y
 in

cr
ea

se
s

Figure 8.35  Relation position range.

Figure 8.37  Relative positioning with place manager.

8.7 oCled rouCems 145

8.7   Solved Problems

1.  Write a Tcl script to develop a GUI for number base conversion.

Solution

The following script develops a GUI for base conversion, composed of an entry, checkbutton, and
label. Th e entry button is dedicated to accepting an input from a user in decimal format. Three
check buttons (binary, octal, and hexadecimal) are bonded to the Tcl script and return the con-
verted result in the specified format. Since the checkbutton is default bound with a mouse left-
click, <Button-1> need not to be specified. Clicking on a specified checkbutton returns the
result on the label output. To update the value dynamically, the label and checkbutton textvariable
must have the same name (Figures 8.38–8.41).

label .l1 ‐text "Input"
entry .e1 ‐textvariable x
label .l2 ‐text "Select Function"
checkbutton .c1 ‐text Binary ‐command {set result [format %b $x]}
checkbutton .c2 ‐text Octal ‐command {set result [format %o $x]}
checkbutton .c3 ‐text Hexa ‐command {set result [format %x $x]}
label .l3 ‐text "Output"
entry .e2 ‐textvariable result
grid .l1 ‐row 0 ‐column 0
grid .e1 ‐row 0 ‐column 1 ‐columnspan 3
grid .l2 ‐row 1 ‐column 0
grid .c1 ‐row 1 ‐column 1
grid .c2 ‐row 1 ‐column 2
grid .c3 ‐row 1 ‐column 3
grid .l3 ‐row 2 ‐column 0
grid .e2 ‐row 2 ‐column 1 ‐columnspan 3

Figure 8.40  Event on octal.

Figure 8.41  Event on hexadecimal.

Figure 8.38  Before event.

Figure 8.39  Event on binary.

8 Binding Commands and Other Widgets146

2.  Write a Tcl script to develop a standard calculator.

Solution

button .quit ‐text "Off" ‐fg red ‐command exit
 label .readout ‐textvariable result ‐bg white
 set result " "
 button .key0 ‐text "0" ‐width 3 ‐command {append result 0}
 button .key1 ‐text "1" ‐width 3 ‐command {append result 1}
 button .key2 ‐text "2" ‐width 3 ‐command {append result 2}
 button .key3 ‐text "3" ‐width 3 ‐command {append result 3}
 button .key4 ‐text "4" ‐width 3 ‐command {append result 4}
 button .key5 ‐text "5" ‐width 3 ‐command {append result 5}
 button .key6 ‐text "6" ‐width 3 ‐command {append result 6}
 button .key7 ‐text "7" ‐width 3 ‐command {append result 7}
 button .key8 ‐text "8" ‐width 3 ‐command {append result 8}
 button .key9 ‐text "9" ‐width 3 ‐command {append result 9}
 button .point ‐text "." ‐width 3 ‐command {append result .}
 button .plus ‐text "+" ‐width 3 ‐command {append result +}
 button .minus ‐text "‐" ‐width 3 ‐command {append result ‐}
 button .times ‐text "*" ‐width 3 ‐command {append result *}
 button .div ‐text "/" ‐width 3 ‐command {append result /}
 button .equal ‐text "=" ‐width 3 ‐command {append result =
[expr $result]}
 button .sign ‐text "+/‐" ‐width 3 ‐command {set result [expr
$result*‐1]}
 button .clear ‐text "C/CE" ‐width 3 ‐command {set result ""}
 grid .quit .readout ‐sticky nsew
 grid .key7 .key8 .key9 .times .clear
 grid .key4 .key5 .key6 .minus .div
 grid .key1 .key2 .key3 .plus .equal
 grid .key0 .sign .point ‐

The layout of the standard calculator contains buttons and
labels. The input digit and function are selected by a specified
key as a button. The label (readout) acts as a space to show the
result. Here, the same textvariable is used for the label and but-
ton to be updated dynamically. Each key (except off, C/CE, and
sign) is linked to an append command, to write in the next
right space. Initially, the result is blank. The default mouse
action <Button-1> on the button “=” updates the result text-
varibale. The width of the label (screen) is auto-adjusted as per
the appended text. The button sign updates the result multiplied
by “−1” and C/CE makes the label blank (clear screen). The
OFF button executes the command exit which closes the tool
(Figures 8.42 and 8.43).

Figure 8.42  Calculator before
input.

8.7 oCled rouCems 147

3.  Write a Tcl script to generate a five button widget with a for loop.

Solution

The following for loop is executed five times and on each iteration, generates a button widget
whose instant number and label update with the loop counting variable (Figure 8.44).

for {set k 1} {$k < 6}
{incr k} {
 button .x$k ‐text
"Button $k"
 pack .x$k
 }

4.  Write a Tcl script to develop a graphical interface to compute arithmetic functions where the
input is provided through scale.

Solution

The example shows two horizontal scale scrollbar values to set the input to the calculator. At the
center, the button displays the function to be chosen, and the corresponding result is displayed on
the provided label (Figure 8.45).

Figure 8.44  Creation of button with for loop.

Figure 8.43  Calculator with the result.

8 Binding Commands and Other Widgets148

scale .s1 - orient horizontal - from 0 - to 100 - length
150 - variable val1
scale .s2 - orient horizontal - from 0 - to 100 - length
150 - variable val2
button .b1 - padx 5 - pady 5 - bg red - text + - command
{set addition [expr $val1 + $val2]}
label .l3 - textvariable addition - bg yellow - width 5
button .b2 - padx 5 - pady 5 - bg red - text - - command
{set sub [expr $val1 - $val2]}
label .l4 - textvariable sub - bg yellow - width 5
button .b3 - padx 5 - pady 5 - bg red - text * - command
{set Mul [expr $val1 * $val2]}
label .l5 - textvariable Mul - bg yellow - width 5
button .b4 - padx 5 - pady 5 - bg red - text / - command
{set div [expr $val1 / $val2]}
label .l6 - textvariable div - bg yellow - width 5
grid .s1 - row 2 - column 0
grid .b1 - row 0 - column 2
grid .b2 - row 1 - column 2
grid .s2 - row 2 - column 3
grid .l3 - row 0 - column 5
grid .l4 - row 1 - column 5
grid .b3 - row 2 - column 2
grid .b4 - row 3 - column 2
grid .l5 - row 2 - column 5
grid .l6 - row 3 - column 5

Figure 8.45  GUI of the calculator with scale input.

8.7 oCled rouCems 149

5.  Write a Tcl script to develop a GUI containing two different menus and add entries to
each menu.

Solution

The following example shows two menubuttons “File” and “Edit.” Each menubutton contains sepa-
rate menu entries (Figures 8.46–8.48).

menubutton .mb1 ‐text File ‐menu
.mb1.file
menubutton .mb2 ‐text Edit ‐menu
.mb2.edit
pack .mb1 .mb2 ‐side left ‐anchor nw
menu .mb1.file
.mb1.file add command ‐label Open
.mb1.file add command ‐label Save
.mb1.file add command ‐label Save As
.mb1.file add command ‐label Quit

menu .mb2.edit
.mb2.edit add command ‐label Cut
.mb2.edit add command ‐label Paste
.mb2.edit add command ‐label Copy
.mb2.edit add command ‐label Clear

Figure 8.46  Two menubuttons.

Figure 8.47  Menu of menubutton-1. Figure 8.48  Menu of menubutton-2.

8 Binding Commands and Other Widgets150

6.  Write a Tcl script to develop a GUI for a submenu (Figure 8.49).

Solution

menubutton .mb ‐text Sampler ‐menu
.mb.menu
pack .mb ‐padx 10 ‐pady 10
set m [menu .mb.menu]
$m add command ‐label Hello! ‐command
{puts "Hello, World!"}
$m add check ‐label Open ‐command {puts
"open a file"}
$m add separator
$m add cascade ‐label Fruit ‐
menu $m.sub1
set m2 [menu $m.sub1]
$m2 add radio ‐label apple ‐command
{puts "My favorite Fruit"}
$m2 add radio ‐label orange ‐command
{puts "A Yellow Fruit"}
$m2 add radio ‐label kiwi ‐command
{puts "I like it"}

7.  Write a Tcl script to develop a GUI that contains two frames each having a button and an entry.
The layout of the GUI should be managed by the relative positioning (Figure 8.50).

Solution

frame .f1 - width 250
- height 250 - bg yellow
place .f1 - x 0 - y 0
button .f1.b1 - text B1
place .f1.b1 - relx 0.1
- rely 0.1
entry .f1.e1
place .f1.e1 - relx 0.4
- rely 0.2
frame .f2 - width 250
- height 250 - bg green
place .f2 - x 300 - y 300
button .f2.b2 - text B2
place .f2.b2 - relx 0.5
- rely 0.5
entry .f2.e2
place .f2.e2 - relx 0.2
- rely 0.6

Figure 8.49  Submenu.

Figure 8.50  Place manager with relation position.

8.8 CCs on Bindd, ennd, and Caae anager 151

8.8   MCQs on Bind, Menu, and Place Manager

[1] Which is/are the correct statement(s)?
A  A mouse click on the menubutton displays the menu
B Press and hold the mouse on a menubutton continues to display the menu
C A mouse click outside to dismiss the menu
D All of the above
 [Solution (d)]

[2] What is/are the objective(s) of the geometry manager?
A  To plan the layout for a GUI
B To keep the widget at the given coordinate location
C To position the widget horizontally, vertically, or at the corner
D All of the above
 [Solution (d)]

[3] Which is the correct format of the bind command?
A  bind .b ButtonPress-1 {gets “Button Pressed”}
B bind .b {ButtonPress-1} {gets “Button Pressed”}
C bind .b <ButtonPress-1> {puts “Button Pressed”}
 [Solution (b)]

[4] Place manager with the -relx and -rely commands displays the widget with relative dis-
tance to what?
A  Another widget
B Reference widget
C First widget with pack
D Frame
 [Solution (d)]

[5] What does button .b.f indicate?
A  A button b over-frame f
B A-frame f over button b
C A button f over frame b
D A frame b over button f
 [Solution (a)]

[6] With what can a widget be expanded horizontally or vertically?
A  –command
B –anchor
C –pad
D –fill
 [Solution (d)]

8 Binding Commands and Other Widgets152

[7] With what can a widget be removed/deleted from a GUI screen?
A  pack forget .widgetname
B destroy .widgetname
C Both of the above
D None of the above
 [Solution (c)]

[8] What is the syntax to bind an event to a button widget with a Tcl command?
A  Bind .b ButtonPress-1 {puts “Button Pressed”}
B Bind .b {ButtonPress-1} {puts “Button Pressed”}
C Bind .b {ButtonPress-1} {gets “Button Pressed”}
D Bind .b < ButtonPress-1 > {puts “Button Pressed”}
 [Solution (d)]

[9] What will bind. <Motion> {puts "pointer at %x,%y"} display?
A  Nothing
B x coordinate of the mouse coordinates
C y coordinate of the mouse coordinates
D x,y coordinates of the mouse coordinates
 [Solution (d)]

[10]  What orientation will the following Tcl script generate six buttons?

 for {set k 1} {$k < 6} {incr k} {
 button .x$k - text "Button $k"
 pack .x$k
 }

A  Top to bottom
B Left to right
C Right to left
D Bottom to top
 [Solution (a)]

[11] What is the statement “menu is a child of the menubutton”?
A  True
B False
 [Solution (a)]

[12] Which of the following statements is/are correct?
A  Press and hold the mouse on the menubutton will continue to display the menu
B Mouse click outside the menubutton will dismiss the menu
C Both are correct
 [Solution (c)]

153eoerenaes

[13]  What will the -tearoff command of the menu widget do?
A  Invoke a Tcl command
B Delete a Tcl command
C Destroy a Tcl command
D Deactivate a Tcl command
 [Solution (a)]

[14]  What will the following script generate?

 menubutton .mb - text File - menu .mb.menu
 pack .mb
 menu .mb.menu
 .mb.menu add radio - label New

A  A menu titled “File” and menubar titled “New”
B A menubar titled “New” and menu titled “File”
C A menu titled “File” and a menu titled “New”
D A menubar titled “File” and menu titled “New”
 [Solution (d)]

[15] What will button .b -command exit do?
A  Bind the mouse left buttonpress with a button
B Bind the mouse left buttonrelease with a button
C Bind the mouse right buttonpress with a button
D Bind the mouse right buttonrelease with a button
 [Solution (d)]

 References

 1 https://zetcode.com/gui/tcltktutorial/layout/
 2 https://www.tutorialspoint.com/tcl‐tk/
 3  Welch, B.B., Jones, K., and Hobbs, J. (2003). Practical Programming in Tcl/Tk. Prentice Hall

Professional.
 4  https://www.tcl.tk/man/

155

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

Canvas is a flexible widget that provides drawing areas. Similar to the MS-Paint feature, the user
can place an object such as a line, image, polygon, rectangle, etc. and can be programmed to
respond according to an input. A canvas displays any number of objects on the canvas which can
be manipulated. Objects can be bonded with user action and can be animated. The bind com-
mand, which was discussed in Chapter 8, lets the canvas object behave according to the Tcl script.

Syntax for canvas widget:

canvas .canvasName attribute

Canvas creates a window and makes it into a canvas widget. Attributes to the canvas change the
appearance. Table 9.1 lists the attributes to the canvas widget defined on the command line during
instantiating [1].

9

Canvas Widgets and Tk Commands

Table 9.1  Attributes to the canvas.

Command Description

-background-color Sets the background color

-height number Sets the height of the widget

-width number Sets the width of the widget

-closeenough
distance

Sets the closeness of the mouse cursor to an object over the canvas. Defaul1.0
pixel

-scrollregion
boundingbox

Sets the bounding box of the total area of the canvas

-xscrollincrement
size

Sets the amount to scroll horizontally for scrolling

-yscrollincrement
size

Sets the amount to scroll vertically for scrolling

Note – The geometry manager must be applied to make the canvas appear over the interface.

Example 9.1 Write a Tcl script to create a canvas widget with a red background.

Solution
The example in Figure 9.1 creates canvas .c. The command line attributes to the canvas –bg,
-width, and -height set the background color, width, and height, respectively.

9 Canvas Widgets and Tk Commands156

9.1   Canvas Coordinate

The placing of the widget over the canvas is specified by the coordinate. Different objects are char-
acterized by different set of coordinates [2, 3]. Coordinates are defined into set (x, y) values that
specify their anchor point. An object like a line, rectangle, or polygon require multiple set of coor-
dinates to draw a joining line at the end point. All coordinates over a canvas are stored as floating-
point numbers. The coordinate and distance are specified in the screen unit. By default, coordinates
are measured in pixels; however, it can change by suffixing the following.

X

Y

X = 0, Y = 0

i inches
m millimeter
p printer point (1/72 in.)

The coordinates at canvas position (0, 0) define on the top left corner, and the x-coordinate value
increases toward the right and the y-coordinate value increases downward. When objects are cre-
ated, they occupy specified coordinates on the canvas; they can be updated with the coords
command.

 ● -x position specifies the x-coordinate on the left edge of the area over the canvas
 ● -y position specifies the y-coordinate on the top edge of the area over the canvas

9.2   Drawing over Canvas

The following are the list of widgets for drawing over the canvas. The create command places
the following object over the canvas widget.

Syntax for drawing an object over a canvas: .c create object

Figure 9.1  Canvas with background color.

9.2 Daaing oveD Canvas 157

9.2.1  Arc

The arc widget draws an arc over the drawing area of the canvas. The dimension is set by the
4-coordinate points in the bounding box. The arc is determined by the commands –start angle
and –extent angle. The chord style connects two endpoints of the arc and arc style fills the arc
itself without the outline. The –fill color command set the color of the arc.

.canvasname create arc x1 y1 x2 y2

canvas .c - bg red - width 100 - height 100
pack .c
.c create arc 10 20 50 100 - fill yellow - start 45 - extent 90

The above script creates a canvas with a red background along with the pack manager. For the arc
over the canvas in Figure 9.2, the attributes to the arc are explained as follows.

-start degree Starting angle of arc
-extent degree Length of arc in counterclockwise
-fill color Fill color into the arc
-outline color Color of the arc itself
-stipple bitmap Stipple pattern for the fill
-style style Set style of arc pieslice, chord
-width number Set width in a specified coordinate
-tag taglist Lists the tags for the arc

9.2.2  Line

The line widget draws a line over the canvas, defined by two or more sets of coordinates, where
each set of coordinates define an endpoint to the line.

.canvasname create line x1 x2
x3 x4 ……xn yn

canvas .c - bg red - width 100
- height 100
pack .c
.c create line 10 30 50 80
- fill yellow - arrow both - width 7

This example creates a line over the canvas, as shown in Figure 9.3. The following are the
 commands to set a feature to a line.

-fill color Sets color to the line
-arrow where Sets an arrow to line none, first, last, or both
-arrowshape {a b c} Sets the shape of the arrow; a-length of part touching the line,

b- overall length, and c- width
-width number Sets the width of the line
-capstyle what Sets the end style of the line as butt, projecting, or round
-joinstyle what Sets the joining style of the line as bevel, miter, or round
-smooth Boolean 1-spline, 0-straight line
-stipple bitmap Pattern for filling the line
-tag taglist Lists the tags for the line item

Figure 9.2  Arc on the canvas.

Figure 9.3  Line on the canvas.

9 Canvas Widgets and Tk Commands158

9.2.3  Rectangle

The rectangle widget draws a rectangle over the canvas specified by the coordinates of the opposite
corners. The rectangle can have the -fill color and -fill outline commands.

.canvasname create rectangle x1
y1 x2 y2

canvas .c - bg red - width 200 -
height 200
pack .c
.c create rectangle 20 100 70
150 - fill yellow - outline white

The example above creates a rectangle over canvas shown in Figure 9.4. The following com-
mands set the feature to the rectangle.

-fill color Sets color to the interior of the rectangle
-outline color Sets color to the outline of the rectangle
-stipple bitmap Pattern for filling the rectangle
-width number Sets the thickness of the outline
-tag taglist Lists the tags for the rectangle

9.2.4  Polygon

A polygon widget creates a closed-shape polygon specified by
several coordinate points. Each point indicates the vertex of the
polygon either smoothly or straightly connected. There is no
outline option for a polygon.

canvas .c - bg red - width 200
- height 200
pack .c
.c create polygon 60 60 80 100
120 140 80 140 20 120 \
40 120 40 100 40 100 - fill yellow
 .canvasname create
polygon x1 y1 x2 y2 …….xn yn

This example creates a polygon over the canvas, as shown in Figure 9.5. Following commands
set the features to the polygon.

-fill color Sets color to the interior of the rectangle
-smooth boolean Sets 1 spline curve around the points
-splinessteps number Sets the line segment approximate design
-stipple bitmap Sets a stipple pattern for filling
-tag taglist Lists the tags for the rectangle

Figure 9.4  Rectangle
on the canvas.

Figure 9.5  Polygon on the canvas.

9.2 Daaing oveD Canvas 159

9.2.5  Oval

The oval widget creates an oval shape defined by two sets of coordinates, which define its bound-
ing box. If the coordinates define a rectangle shape, a circle will be drawn. Color to interior and
outline is set accordingly.

 .c oval create
oval x1 y1 x2 y2
canvas .c - bg red - width 200 -
height 200
pack .c
.c create oval 20 120 80 180 -
 fill yellow
.c create oval 10 100 30 50 -
fill yellow

This example creates an oval on the canvas, as shown in Figure 9.6. The following commands set
the features to the oval.

-fill color Sets color to the interior of the oval
-outline color Sets color to the outline of the oval
-stipple bitmap Sets the pattern for filling the oval
-width number Sets the thickness of the outline
-tag taglist Lists the tags for the rectangle

9.2.6  Text

The text command creates text on the canvas having a display and edit feature. The coordinate or
position of the text is specified by one set of coordinate and anchor positions. The size of the text is
determined by the number of lines and length of each line. In the case where the line is longer than
the specified width, then the text is wrapped onto multiple lines. The text command supports
selection, editing, and can extend onto multiple lines.

 .canvasname create text
x y -text
canvas .c - bg red - width 100
- height 100
pack .c
.c create text 25 25 - text
 "Canvas" - fill yellow

This example creates the text “Canvas,” as presented in Figure 9.7 and the following are the
operations that can be applied to manipulate the canvas text.

dchar Deletes a character
focus Focuses on a specified index
icursor Inserts a cursor before
index Returns the index value
insert Inserts before a specified index

Figure 9.7  Text on the canvas.

Figure 9.6  Oval on the canvas.

9 Canvas Widgets and Tk Commands160

select adjust Moves the boundary of selection
select clear Clears the section
select from Starts a selection
select to Extends the selection to a specified index

9.2.7  Bitmap

A bitmap refers to the graphics with back-
ground and foreground color selected by
1-bit per pixel (see Figure 9.8). A bitmap is
positioned with two coordinate and anchor
positions. A bitmap is specified by its sym-
bolic name or name of the file and contains its definition beginning with @. The available bitmaps
are info, error, warning, question, questhead, hourglass, gray12, gray25, gray50, gray75.

.canvasname create bitmap x y option

canvas .c -bg red -width 120 -
height 120
pack .c
.c create bitmap 10 10 -bitmap
info
.c create bitmap 10 20 -bitmap
warning
.c create bitmap 30 50 -bitmap
question
.c create bitmap 30 80 -bitmap
questhead
.c create bitmap 50 10 -bitmap
error
.c create bitmap 80 90 -bitmap
hourglass
.c create bitmap 70 20 -bitmap
gray12
.c create bitmap 70 60 -bitmap
gray25
.c create bitmap 90 30 -bitmap
gray50
.c create bitmap 90 70 -bitmap
gray75

Figure 9.9 presents the addition of a bitmap on the canvas. The following commands are used to
set the features to the bitmap.

-anchor position Sets the anchor to c, n, ne, e, se, s, sw, w, nw
-background color Sets the background color (zero bits)
-foreground color Sets the foreground color (1 bit)

Figure 9.9  Bitmap on the canvas.

Figure 9.8  Bitmap.

9.2 Daaing oveD Canvas 161

-bitmap name Sets the built-in bitmap symbol
-bitmap @file Sets the bitmap defined in a file
-tag taglist Lists the tags for the bitmap

9.2.8  Image Widget

The image widgets create a displayable image on the canvas. First, images that need to be defined
in the directory should be in the supported formats of GIF, PNG, PPM, PGM, JPG, JPEG, BMP, and
read via the –file command. An image is created with the image command, which is a two-step
process.

image create command

image create photo imagename -file xxxx.png

image display command

.canvasName create image x y -option

Here, the options are image imageName , which presents a variable that holds the image to the
display.

Once an image is defined, one needs to specify its position on the canvas with a coordinate value,
anchor point, or tag. Size and color are defined when the image is created and in the case of rede-
fining, the image automatically gets updated.

The following commands set the features to the image.

-image name Sets the name of an image
-anchor position Sets the anchor to c, n, ne, e, se, s, sw, w, nw
-tag taglist Lists the tags for the image

Example 9.2 Write a script to create an image of AND logic
gate over the canvas.

Solution
The following command reads an image with a supported
extension available in the bin directory; see Figure 9.10. It
reads the and.png file, creates an image and makes the image
appear over the specified coordinate, and displays on the can-
vas, as shown in Figure 9.11.

image create photo img -file
"and.png"
canvas .c -height 100 -width
200
.c create image 50 50 -image
img
pack .c

Figure 9.10  Image in the directory.

Figure 9.11  Image on the canvas.

9 Canvas Widgets and Tk Commands162

Example 9.3 Write a Tcl script to create two
different images over the canvas.

Solution
Figure 9.12 shows there are two different
images available in the bin directory. The com-
mand-line arguments read them one by one
and assigns the coordinate location to them.
The following script reads the file “and.png”
and “or.png” from the directory and places
them over the canvas at specified coordinates.
The coordinate values must be different to
avoid overlapping, as shown in Figure 9.13.

image create photo and -file
"and.png"
image create photo or -file
"or.png"
canvas .c
.c create image 100 100 -image
and
.c create image 200 200 -image
or
pack .c

The photo image was contributed by Paul Mackerras. It displays a full color image and can
undergo dithering and correction. The photo image supports different image formats. The follow-
ing are attributes to the image create photo command.

-format format Specifies the format of the file
-data string Converts the content of the photo to a string
-file name Names the file
-gamma value Gamma correction factor, where a value higher than 1 sets the brightness
-height value Sets the height in screen units
-width value Sets the width in screen units
-palette spec Specifies the number of the gray level

canvas .c - height $height - width $width

By taking the size of the image into account, this command adjusts the canvas height and width
according to the image.

Example 9.4 Write a Tcl script to create an image on the canvas, and auto set the image dimen-
sion according to the canvas dimension.

Solution
The following script reads the image file “and.png”. Here, the commands [image height] and
[image width] are used to read the height and width, respectively, of a particular image and

Figure 9.13  Image on the canvas.

Figure 9.12  Image in the directory.

9.2 Daaing oveD Canvas 163

have been assigned to a variable height and width. During the creation of an image on the canvas,
the coordinate value indicates a position from the top left and the command –image updates the
associated feature, such as the filename height and width via variable substitution, as described in
Figure 9.14.

image create photo img -file
"and.png"

set height [image height img]
set width [image width img]

canvas .c -height $height -
width $width -bg pink
.c create image 10 10 -image
img -anchor nw
pack .c

Example 9.5 Write a script to create two images over the canvas, adjust the image dimension
according to the canvas dimension.

Solution
The following example explains the variable height is set as the height of “and.png” and the width
is set as the width of “or.png”. The canvas dimensions are set to be double the height and width
values. During image creation on the canvas, the dimension is set automatically, as presented
in Figure 9.15.

image create photo and -file
"and.png"
image create photo or -file
"or.png"
set height [image height and]
set width [image width or]
canvas .c -height [expr 2*$height]
-width [expr 2*$width] -bg pink
.c create image 50 50 -image and
.c create image 50 120 -image or
pack .c

Example 9.6 Write a Tcl script to create all objects on the canvas.

Solution
The following example creates all objects on the canvas (see Figure 9.16).

Figure 9.14  Image dimension adjustment.

Figure 9.15  Image dimension for each image.

9 Canvas Widgets and Tk Commands164

canvas .c -bg red -width 200 -
height 200
pack .c
.c create arc 10 10 50 50 -fill
yellow
.c create line 10 30 50 50 100
10 -arrow both -fill yellow
.c create oval 50 50 100 80 -
fill yellow
.c create polygon 50 150 80 120
120 100 190 180 -fill yellow
.c create rectangle 150 150 170
170 -fill yellow
.c create text 200 50 -text
"Hello" -fill yellow
.c create text 140 50 -text
"Hello" -fill yellow
.c create bitmap 180 50 -bitmap
info

Note – In this example, the polygon and rectangle are overlapping due to coordinate matches.

Example 9.7 Write a script to create a series of arcs on the canvas to obtain a circular shape
formed by the arcs.

Solution
Each arc originates at the same coordinate and draws an angle of 45° (see Figure 9.17).

canvas .c
pack .c
.c create arc 10 10 100 100 -
start 0 -extent 45
.c create arc 10 10 100 100 -
start 45 -extent 45
.c create arc 10 10 100 100 -
start 90 -extent 45
.c create arc 10 10 100 100 -
start 225 -extent 45
.c create arc 10 10 100 100 -
start 135 -extent 45
.c create arc 10 10 100 100 -
start 180 -extent 45
.c create arc 10 10 100 100 -
start 360 -extent 45
.c create arc 10 10 100 100 -
start 270 -extent 45
.c create arc 10 10 100 100 -
start 315 -extent 45

Figure 9.16  Objects on the canvas.

Figure 9.17  Circle using arcs.

9.3  Event BenBeng of CeECas Obvent 165

9.3   Event Binding of Canvas Object

The bind command invokes associated widgets whenever a particular event has occurred. The
bind command for the widget on canvas is similar to the bind command for another widget
except that it operates on an object on the canvas rather than the entire widget. Bind permits a
manual entry for the event sequence and substitution performed on command before invoking it.
Binding events are specified with the keyboard and mouse (such as Enter, Leave, Motion,
ButtonPress, and KeyPress) [4]. Mouse-related events Enter, Leave, and Motion direct the current
object while the keyboard-related events direct the focused object. If a virtual event is defined, it
triggers only when the virtual event sequence occurs via mouse or keyboard.

If binding is created for a canvas window using the bind command, triggering will occur in
addition to binding created for the canvas object using the bind widget command. The binding
for an object triggers before any of the bindings for the window as a whole.

Example 9.8 Write a Tcl script to create a canvas and a button which is bonded with text. A
mouse action on a button creates the text input over the canvas.

Solution
The following example creates a yellow background canvas and a button widget labeled text. The
button is bonded with <Button-1 > (left click of the mouse button) and invokes a procedure
named plaintext. Figure 9.18 presents that the variables to proc are w (window) and name. The
provided string “Create a Text” is placeable on the complete window. The proc sets the (x, y) coor-
dinate as (50,50) and creates a text widget on the specified coordinate over $w.

proc paintext {w name} {
 set x 50
 set y 50
 $w create text $x $y -text
$name
 }
canvas .c -bg yellow
pack .c
button .b1 -text "Text" -
command {paintext .c "Create a
Text"}
pack .b1

Example 9.9 Write a Tcl script to create a canvas and a button which is bonded with text. Text
objects are placed in different locations on each action of the mouse.

Solution
In Example 9.8, the coordinate position has been specified by a set command to a static value. Its
value can dynamically be updated in the following example. A built-in Tcl command global
declares a global variable inside the procedure in the current namespace, unless a variable by the
same name exists in the global namespace, in which case it refers to that variable presented in
Figure 9.19. The incr command increments the (x, y) coordinate value and creates each object at
the updated value.

Figure 9.18  Bounded text widget.

9 Canvas Widgets and Tk Commands166

proc paintext {w name} {
 global x 50
 global y 50
 incr x 25
 incr y 25
 $w create text $x $y -text $name
 }
canvas .c -bg yellow
pack .c
button .b1 -text "Text" -command {paintext .c "Create a Text"}
pack .b1

9.4   Create a Movable Object

A movable object on the canvas can be created by binding the object with <B1-Motion>. Each
time the pointer moves, the new coordinate value is updated dynamically with the cords opera-
tion. The value of x and y is replaced with the pointer’s x-coordinate and y-coordinate, respectively.
The canvas’s object behavior is modeled with a movable tag, where pathname (%w) is passed to the
procedures move or drag. Here, %x and %y is substituted with the (x,y) coordinate of
the event.

Syntax for binding:
.canvasname bind $object <Event> {procname $object %x %y}

Example 9.10 Write a script to create an oval on the canvas and bind it with a mouse action.
Create the oval to be movable with the mouse pointer.

Solution
In this example, a white oval has been created over a black canvas screen. The set command
defines the oval as a variable which is bonded with < B1-Motion> and its pointer position is
passed to the procedure moveit. The proc dynamically updates the coordinate value for the oval
on a canvas and makes it movable with the mouse pointer (see Figure 9.20).

Figure 9.19  Bounded
text widget at different
locations on the canvas.

9.4  CvCntv Cf ECObv Obvent 167

proc moveit {object x y} {
.c coord $object [expr $x - 10]
[expr $y -25] [expr $x +25] [expr
$y + 25]
}
canvas .c -width 200 -height 200 -
bg black
pack .c
set oval [.c create oval 10 10 100
100 -fill white]
.c bind $oval <B1-Motion> {moveit
$oval %x %y}

Example 9.11 Write a Tcl script to create an oval and line on the canvas and bind it with a mouse
action and make them movable with the mouse pointer (see Figure 9.21).

Solution

proc moveit {object x y} {
 .c coords $object [expr $x-25]
[expr $y-25] [expr $x+25] [expr
$y+25]
}
canvas .c -width 250 -height 100
set myoval [.c create oval 0 0 50
50 -fill orange]
set myline [.c create line 50 50
100 100 -fill blue -width 4]
.c bind $myoval <B1-Motion>
{moveit $myoval %x %y}
.c bind $myline <B1-Motion>
{moveit $myline %x %y}
grid .c -row 0 -column 0

Example 9.12 Write a Tcl script to create two different images on the canvas and make them
moveable with the action of the mouse.

Solution
The following example reads two images “and.png” and “or.png” from the directory with the
photo command. Creation and dimension of the image on the canvas is associated to variables
and and or. Figure 9.22 shows the images are bounded with <B1-Motion> and invoke proc
moveit when selected by the mouse. The movement of the cursor updates the coordinate value
(%x,%y). Command coords dynamically updates the coordinate value and makes it movable.

Figure 9.20  Movable oval on the canvas

Figure 9.21  Movable oval and line on the canvas.

9 Canvas Widgets and Tk Commands168

proc moveit {object x y} {
.c coord $object [expr $x - 10]
[expr $y -25]
}
image create photo and -file
"and.png"
image create photo or -file
"or.png"
canvas .c -height 500 -width
500 -bg red
set and [.c create image 50 50
-image and]
set or [.c create image 50 120
-image or]
pack .c
.c bind $and <B1-Motion> {moveit
$and %x %y}
.c bind $or <B1-Motion> {moveit
$or %x %y}

Example 9.13 Write a script to create objects rectangle and oval on the canvas, while the coordi-
nate is computed with the eval command.

Solution
The following example creates an object on the canvas, the eval command triggers a procedure
with four variables to proc. Figure 9.23 presents centerX centerY, which provides the coor-
dinates of the originate object and width, height calculate the actual coordinate values and
return makes them appear on the canvas.

canvas .myCanvas
pack .myCanvas
proc CenteredRectangle {centerX
centerY width height} {
return [list [expr $centerX -
$width] \
[expr $centerY - $height] \
[expr $centerX + $width] \
[expr $centerY + $height]]
}
eval .myCanvas create rectangle
[CenteredRectangle 150 100 10 75]
eval .myCanvas create rectangle
[CenteredRectangle 80 80 75 10]
eval .myCanvas create oval
[CenteredRectangle 140 110 75 50]

Figure 9.22  Movable image on the canvas.

Figure 9.23  Object on the canvas via
eval command.

9.5  Tk ObBbnttBe ooCen 169

9.5   Tk built-in Command

The Tk command provides access to Tk’s internal component objects. Most of the information
used by this command relates to the entire system, screen, or display, rather than to a specific win-
dow. The Tk in-built commands are listed in Appendix 9.A.

9.5.1  Tk_choose Color

Tk_chooseColor is an in-built Tk command that invokes a procedure to create a pop-up win-
dow to choose the color.

Syntax: tk_chooseColor option

The following are options along with command line arguments.

-initialcolor color Specifies the color to display in the pop-up
-parent window Makes a window to the logical parent of the color dialog
-title titlestring Specifies a string to display as the title of the dialog box

Example 9.14 Write a Tcl script to create a GUI of button and label, where an event on button
invokes a window to choose the color and change the label’s color.

Solution
The following script creates a button “Choose a Color” and label “Change my color” event on the
button to execute a command (procedure) onSelect on the selected widget (label). Configuration
command with [tk_chooseColor] provides a pop-up window to select color, and choose the
background and foreground colors for the label. The user selects a button pop-up window to choose
the color; the first pop-up for background color and the second pop-up for foreground color of the
label (Figures 9.24–9.27).

button .b -text "Choose a
color" -command "onSelect .l"
place .b -x 20 -y 30
label .l -text "Change my
color"
place .l -x 20 -y 90
proc onSelect {widget} {
 $widget configure -bg
[tk_chooseColor]
 $widget configure -fg
[tk_chooseColor]
}

Figure 9.24  GUI before event.

9 Canvas Widgets and Tk Commands170

Figure 9.25  GUI during first event. Figure 9.26  GUI during second event.

Figure 9.27  GUI after
both events.

9.5.2  tk_chooseDirectory

tk_chooseDirectory provides a pop-up window to select a file from the directory.
Syntax: tk_chooseDirectory option
The following are options along with command line arguments.

-command string Specifies a prefix of the Tcl command when a user closes
the dialog

-initialdir dirname Specifies the directory when the dialog pops up
-message string Specifies the message to include for the client
-mustexist boolean One-user may select the existing directory
-parent window Makes the window the logical parent
-title titelstring Specifies a string to display the title of the dialog box

Example 9.15 Write a Tcl script to create a GUI to pop up a dialog box that can select a directory
when the event is on a button.

Solution
This example creates an interface consisting of a button and label, An event on the button pops up
a dialog box to select a directory. Upon selecting, the text of label changes due to config
(Figures 9.28–9.30).

label .l -text "Select a Directory"
button .b -text "Choose a directory" -command "onSelect .l"
pack .b .l -side left -anchor nw
proc onSelect {widget} {
 set dir [tk_chooseDirectory]
 .l config -text "Directory Selected"
}

9.5  Tk ObBbnttBe ooCen 171

9.5.3  tk_getOpenFile / tk_getSaveFile

These commands open a dialog box to choose a file to open or save. These commands are associ-
ated with the file menu. tk_getOpenFile enables users to create an application to select an
existing file and tk_getSaveFile enables the user to confirm whether the existing file should
be overwritten.

Syntax: tk_getOpenFile option
 tk_getSaveFile option

The following are options along with the command line arguments.

-command string Specifies the prefix of the Tcl command when the
user closes the dialog

-confirmoverwrite boolean Reaction of save when the file already exists
-filetypes filepatternList Filetypes listbox exists in the file dialog
-initialdir directory Specifies the file in a directory when dialog pops up
-initialfile filetype Specifies the filename to be displayed when pop up
-message stringname Specifies the message to include in the client area of

the dialog
-multiple boolean Allows the user to choose multiple files
-parent window Makes the window the logical parent
-title titlestring Specifies a string to display as the title
-typevariable variablename Global variable to present which filter to use

Example 9.16 Write a Tcl script to create an interface to select a file from a directory upon an
event on a button.

Solution
In this example, the interface comprises a button and label. An event on the button pops up a
dialog box to prompt the user to select a file from the directory from the list of different types of
files. When the user selects the button, it executes command doit applied on the label, containing
global variable types which list the file to display in the listbox and pops up a window to select the
file. The selected file path configures the text on the label (Figures 9.31 and 9.32).

Figure 9.29  Pop-up dialog box.
Figure 9.30  After event.

Figure 9.28  Before event.

9 Canvas Widgets and Tk Commands172

set types {
 {"All Source Files"
{.tcl .c .h}}
 {"Image Files"
{.gif}}
 {"All files"
*}
}
proc doIt {label} {
 global types
 set file [tk_getOpenFile -
filetypes $types]
 $label configure -text
$file
}
label .l -text "No File"
button .b -text "Select a
file?" -command {doIt .l}
grid .b -row 0 -column 0
grid .l -row 0 -column 1 Figure 9.31  Before event.

Figure 9.32  Pop-up dialog box to select the file.

9.5.4  tk_messageBox

tk_messageBox pops up a message window and waits for the user response. It creates and dis-
plays a message window with a specific message and set of buttons (-type). Each button has a
unique name waiting for the user response and executes the associate command.

-command string Specifies prefix of the Tcl command when user closes dialog box
-default name Symbolic name of the default button
-icon iconImage Specifies an icon to display (bitmap image)
-message string Specifies the message to display in the message box
-type predefinedType Arranges a predefined set of buttons to be displayed

9.6  bEvn C Obvoas 173

Example 9.17 Write a script to create the interface, which pops up a message box containing two
buttons and commands for each button.

Solution
The following example pops up a message box asking “Really quit” and provides two options but-
tons “Yes” and “No” and waits for a response. There are different commands associated with each
button. When the user selects “No,” a new window pop-up contains the message “I know you like
this application!” and “Yes” exits from the tool (Figures 9.33 and 9.34).

set answer [tk_messageBox -message "Really quit?" -type yesno]
case $answer {
 yes exit
 no {tk_messageBox -message "I know you like this
application!"}
 }

Figure 9.33  After event.

Figure 9.34  Message
box before response.

9.6   Solved Problems

[1] Write a Tcl script to create a sine wave on the canvas.

Solution
In Tcl-Tk, a periodic signal is generated using a Fourier series containing sine and cosine functions
at harmonic frequencies.

F(t) = sin(t) + sin(3 t)/3 + sin(5 t)/5 + sin(7 t)/7 + sin(9 t)/9 + . . .

 = sin(nt)/n (n odd, 0 < n <).
Let the period be 25 ns, then the fundamental frequency f = 1/(2*π*25).

canvas .sinewave -bg black -width 450 -height 100
pack .sinewave
set coordList {}
for {set x 0} {$x<=450} {incr x} {
lappend coordList $x [expr sin($x/25.0)*50 + 50]
}
eval .sinewave create line $coordList -fill green

9 Canvas Widgets and Tk Commands174

Create a canvas of height 100 and width 450. For the loop append, the list of coordinates begins
from 0 and executes the sin function until 450. Purposefully, the sine function is multiplied by 50
to amplify and then 50 is added to bring the result into the vertical range (Figure 9.35).

Figure 9.35  Message box after
selecting No.

[2] Write a Tcl script to create a square wave on the canvas.

Solution
Create a canvas of height 100 and width 450. The square wave is mapped over a sine wave of fre-
quency 1/(2*π*25). For each value of x, the for loop updates the coordinate list y and z. Another
for loop is used until the nth harmonic 101 (creates a perfect square wave) from the frequency of
the sine wave. Here, z is updated for the vertical axis with an incremental step of two until 101,
then the same process is performed on the horizontal axis to update the y-axis (Figure 9.36).

Figure 9.36  Sine wave.

canvas .squarewave -bg black -width 450 -height 100
pack .squarewave
set coordList {}
for {set x 0} {$x<=450} {incr x} {
set y 0
set z 0
for {set N 1} {$N<=101} {set N [expr {$N + 2}]} {
set z [expr sin($x*$N/25.0)/$N* 50]
set y [expr $y + $z]
}
lappend coordList $x [expr $y+50]
}
eval .squarewave create line $coordList -fill green

9.6  bEvn C Obvoas 175

[3] Create a symbolic library containing components with the drag and drop feature.

Solution
The following Tcl script creates a symbolic library of canvas widgets, as shown in Figure 9.37. The
developed GUI is partitioned into three regions: (i) workspace to draw; (ii) control button on the
bottom ribbon; and (iii) left ribbon for the library. Button selection enables the library, a widget is
bonded with <Button-1 > with the drag and drop feature, and a clear button removes all widgets.

Figure 9.37  Square wave.

canvas .c1 -width 460 -height 350 -bg white -relief groove -
borderwidth 4
grid .c1 -row 1 -column 1 -columnspan 2
frame .f1
button .f1.b1 -text "Selection Board" -command {
.c1 create line 55 0 55 350 -width 1
.c1 create rect 10 10 30 30 -fill red -tag movable
.c1 create poly 30 10 30 30 50 30 -fill black -tag movable -outline
black
.c1 create poly 30 10 50 10 50 30 -fill green -tag movable -outline
black
.c1 create rect 10 30 30 50 -fill green -tag movable
.c1 create poly 30 30 30 50 50 30 -fill blue -tag movable -outline
black
.c1 create poly 50 30 30 50 50 50 -fill yellow -tag movable -outline
black
.f1.b1 configure -state disabled
}
button .f1.b2 -text "Clear All" -command {
.c1 delete all
.f1.b1 configure -state normal
}
pack .f1.b1 -side left
pack .f1.b2 -side left
grid .f1 -row 2 -column 1
proc CanvasMarkIt { x y can } {
global canvas
$can raise current
set x [$can canvasx $x]
set y [$can canvasy $y]

9 Canvas Widgets and Tk Commands176

set canvas($can,obj) [$can find closest $x $y]
set canvas($can,x) $x
set canvas($can,y) $y
}
proc CanvasDragIt {x y can} {
global canvas
set x [$can canvasx $x]
set y [$can canvasy $y]
set dx [expr $x - $canvas($can,x)]
set dy [expr $y - $canvas($can,y)]
$can move $canvas($can,obj) $dx $dy
set canvas($can,x) $x
set canvas($can,y) $y
}
.c1 bind movable <Button-1> {CanvasMarkIt %x %y %W}
.c1 bind movable <B1-Motion> {CanvasDragIt %x %y %W}

[4] Write a Tcl script to create an object on the canvas bonded with a button.

Solution
The following script develops a GUI with five functions bound with buttons on the bottom rib-
bon. An event on the button makes a particular function appear, as described in Figures 9.38
and 9.39.

proc ClrCanvas {w} {
 $w delete "all"
}
proc DrawAxis {w} {
 set midX [expr {
$::maxX / 2 }]
 set midY [expr {
$::maxY / 2 }]
 $w create line 0 $midY
$::maxX $midY - tags "axis"
 $w create line $midX 0
$midX $::maxY - tags "axis"
}
proc PaintText {w Txt} {
 global y
 incr y 10
 $w create text 20 $y - text
$Txt - tags "text"
}

proc DrawFn2 {w} {
 set offY 0 ;# [expr {
$::maxY / 2 }]
 for { set x 0 } { $x <=
$::maxX } { incr x 5 } {
 set y [expr { rand() *
$::maxY + $offY }]
 #puts "$x $y"
 if {$x>0} { $w create line
$x0 $y0 $x $y - tags "Fn2" }
 set x0 $x
 set y0 $y
 }
}

9.6  bEvn C Obvoas 177

proc DrawBox {w} {
 global x1 y1 x2 y2
 $w create rect 50 10 100
60 - tags "box"
 $w create rect $x1 $y1 $x2
$y2 - tags "box"
 incr x1 15
 incr x2 15
 incr y1 10
 incr y2 10
}
proc DrawFn1 {w} {
 $w create line 0 100 50 200
100 50 150 70 200 155 250 50
300 111 350 222
 - tags "Fn1"
- smooth bezier
}

#: Main :
frame .f1
frame .f2
pack .f1 .f2

set maxX 320
set maxY 240
set y 0

set x1 120
set x2 150
set y1 50
set y2 80

canvas .cv - width $maxX - height
$maxY - bg white
pack .cv - in .f1

button .b0 - text "Clear"
- command { ClrCanvas .cv }
button .b1 - text "Text"
- command { PaintText .cv
"Canvas" }
button .b2 - text "Axis"
- command { DrawAxis .cv }
button .b3 - text "Box"
- command { DrawBox .cv }
button .b4 - text "Fn1"
- command { DrawFn1 .cv }
button .b5 - text "Fn2"
- command { DrawFn2 .cv }
pack .b0 .b1 .b2 .b3 .b4 .b5
- in .f2 - side left - padx 2

Figure 9.38  Symbolic library interface.

Figure 9.39  Function on the canvas.

9 Canvas Widgets and Tk Commands178

[5] Write a Tcl script to create a progress bar.

Solution
The following example creates an interface comprising a progressbar oriented horizontal (with a
maximum value of 100), variable a, and a button (Figure 9.40). Event on button start counter
(Figure 9.41) invokes a proc Counter; runs a for loop to display 0 to 100 after 25 ns and updates
the variable to the progressbar (Figure 9.42).

Figure 9.41  Progressbar before event.

proc Counter {} {
 for {set i 0} {$i < 100} {incr i} {
 puts "$i"
 after 25
 .pb configure -value $i
 update idletask
 }
}
ttk::progressbar .pb -orient horizontal -maximum 100 -length 400
-value 0 -variable a
button .bt -text "Start counter" -command Counter
pack .pb
pack .bt

Figure 9.40  Canvas clear function.

Figure 9.42  Progressbar after event.

9.8  Cas o CeECas 179

9.7   Review Problem

Write a script to create a line over the canvas and bind it with a mouse action. Make the line mov-
able with the mouse pointer.

9.8   MCQs of Canvas

[1] padx n1 and -pady n2 are used for ___________ separation between two widgets
A  Internal
B  External
C Internal and external
D No
 [Solution (c)]

[2] What is the create command of the canvas used for?
A  Change configuration of canvas
B  Manipulate the canvas
C To add a drawing object on the canvas
D None of the above
 [Solution (c)]

[3] What does the canvas bitmap create?
A  Image graphics
B  Icon
C Symbolic name with an icon
 [Solution (c)]

[4] What will the following script generate?

canvas .c
pack .c
.c create bitmap 10 10 -bitmap info

A 

B 

C

D

 [Solution (c)]

9 Canvas Widgets and Tk Commands180

[5] What does the canvas closeenough attribute measure?
A  Distance from mouse to an underlapping object
B  Distance from mouse to an overlapping object
C Distance from boundary to an overlapping object
D Distance from boundary to an underlapping object

 [Solution (b)]

[6] What is the statement the bind command allows commands to be bound to widgets?
A  True
B  False

 [Solution (a)]

[7] The canvas command creates a ____________ on which a canvas widget is placed.
A  Frame
B  Window
C Coordinate
D Box

 [Solution (b)]

[8] What are the xview and yview canvas widget commands used for?
A  Scaling
B  3D view
C Scrolling
D Rotation

 [Solution (c)]

[9] Select the true statement(s) associated with widget programming.
A  Creates an instance of the widget
B  Specifies behavior
C Tells the geometry manager to make the widget appear
D All of the above

 [Solution (d)]

[10] What will the button .b -command exit do?
A  Bind a mouse left buttonpress with button
B  Bind a mouse left buttonrelease with button
C Bind a mouse right buttonpress with button
D Bind a mouse right buttonrelease with button

 [Solution (a)]

9.A Appendix A 181

Table A.1  Tk in-built command.

Tk command Description

bell Rings a display’s bell

bind Arranges for X events to invoke Tcl scripts

bindtag Determines which bindings apply to a window, and order of evaluation

bitmap Images display with two colors

button Creates and manipulates “button” action widgets

busy Confines pointer-events to a window sub-tree

canvas Creates and manipulates the drawing surface area

checkbutton Creates and manipulates “checkbutton” Boolean selection widgets

clipboard Manipulates Tk clipboard

colors Symbolizes color names recognized by Tk

console Controls the console on systems without a real console

cursor Mouse cursors available in Tk

destroy Destroys one or more windows

entry Creates and manipulates “entry” one-line text entry widget

event Defines and generates an event

focus Manages the input focus

font Creates and inspects fonts

fontchooser Controls font selection dialog

frame Creates and manipulates frame container widgets

geometry Variables used or set by Tk

grab Confines pointer and keyboard events to a window sub-tree

grid Geometry manager that arranges widgets in a grid

image Creates and manipulates images

keysyms Keysyms recognized by Tk

label Creates and manipulates “label” non-interactive text widget

labelframe Creates and manipulates labeled container widgets

listbox Creates and manipulates “listbox” item list widgets

lower Changes a window’s position in the stacking order

menu Creates and manipulates menu widgets and menubars

menubutton Creates and manipulates menubutton pop-up menu indicator widgets

message Creates and manipulates “message” non-interactive text widgets

option Adds/retrieves window options to/from the option database

options Standard options supported by widgets

pack Geometry manager that packs around edges of the cavity

(Continued)

9.A  Appendix A   

9 Canvas Widgets and Tk Commands182

Table A.1  (Continued)

Tk command Description

panedwindow Creates and manipulates paned window split container widgets

photo Full-color images

place Geometry manager for fixed placement

radiobutton Creates and manipulates radio button pick-one widgets

raise Changes a window’s position in the stacking order

safe::loaftk Loads Tk into a safe interpreter

scale Creates and manipulates scale value-controlled slider widgets

scrollbar Creates and manipulates scrollbar scrolling control and indicator widgets

selection Manipulates the X selection

send Executes a command in a different application

spinbox Creates and manipulates “spinbox” value spinner widgets

text Creates and manipulates text editing widgets

tk Manipulates Tk internal state

tk::mac Accesses Mac-specific functionality on OS X from Tk

tk_bisque Modifies the Tk color palette

tk_choosecolor Pops up a dialog box for the user to select a color

tk_
choosedirectory

Pops up a dialog box for the user to select a directory

tk_dialog Creates modal dialog and waits for the response

tk_focusnext Utility procedures for managing the input focus

tk_focusprev Utility procedures for managing the input focus

tk_getopenfile Pops up a dialog box for the user to select a file to open or save

tk_getsavefile Pops up a dialog box for the user to select a file to open or save

tk_library Variables used or set by Tk

tk_menusetfocus Creates and manipulates “menu” widgets and menubars

tk_messagebox Pops up a message window and waits for the user response

tk_optionmenu Creates an option menubutton and its menu

tk_patchlevel Variables used or set by Tk

tk_popup Posts a pop-up menu

tk_setpalette Modifies the Tk color palette

tk_strictmotif Variables used or set by Tk

tk_textcopy Creates and manipulates “text” hypertext editing widgets

tk_textcut Creates and manipulates “text” hypertext editing widgets

tk_textpaste Creates and manipulates “text” hypertext editing widgets

tk_version Variables used or set by Tk

tkerror Command invoked to process background errors

tkwait Waits for the variable to change or window to be destroyed

toplevel Creates and manipulates “toplevel” main and pop-up window widgets

(Continued)

RvovCveevas 183

References

 1 https://www.tcl.tk/man/tcl/TkCmd/contents.html
 2  http://fpgaforum.blogspot.com/2006/02/building- square- wave- from- fourier_21.html
 3  Welch, B.B., Jones, K., and Hobbs, J. (2003). Practical Programming in Tcl/Tk. Prentice Hall

Professional.
 4  https://www.tutorialspoint.com/tcl- tk

Tk command Description

ttk::buton Widget that issues a command when pressed

tk::combobox Text field with dropdown selection list

ttk::entry Editable text field widget

ttk::frame Simple container widget

ttk::intro Introduction to the Tk theme engine

ttk::label Displays a text string and/or image

ttk::labelframe Container widget with optional label

ttk::menubutton A widget that drops down a menu when pressed

ttk::notebook Multi-paned container widget

ttk::panewindow Multi-paned container window

ttk::progressbar Provides progress feedback

ttk::radiobutton Mutually exclusive option widget

ttk::scale Creates and manipulates a scale widget

ttk::scrollbar Controls the viewport of a scrollable widget

ttk::separator Separator bar

ttk::sizegrip Bottom-right corner resizes the widget

ttk::spinbox Selecting text field window

ttk::style Manipulates style database

ttk::treeview Hierarchical multicolumn data display widget

ttk::widget Standard options and commands supported by Tk themed widgets

ttk image Defines an element based on an image

ttk vsapi Defines a Microsoft Visual Styles element

winfo Returns window-related information

wm Communicates with the window manager

Table A.1  (Continued)

https://www.tcl.tk/man/tcl/TkCmd/contents.html
http://fpgaforum.blogspot.com/2006/02/building-square-wave-from-fourier_21.html
https://www.tutorialspoint.com/tcl-tk/

185

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

The Tcl/Tk scripting language has become the de-facto standard for electronic design automation
(EDA) tools and computer-aided design (CAD) tool application. Users can interact with the tool
via a graphical interface and scripting interface. Tcl is an extension language for EDA created by
John Ousterhout in the late 1980s. Along with ASIC industries like Synopsis, Cadence, Mentor,
Xilinx’s product range encompasses synthesis, verification, report analysis, floorplanning, static
timing analysis, place, route, etc. The synopsis suggests the use of Tcl as primary scripting for the
EDA interface. Model Technologies uses Tcl/Tk in its most popular tool ModelSim.

Scripting offers a feature to automate the repetitive function and extend the basic function of the
application. A tool designer relies on multiple vendors for tool development. It is cumbersome to
integrate components developed with different platforms, while blocks developed in the Tcl envi-
ronment make the design easier. A single common mode language means the designer need only
be an expert in Tcl to automate the multiple blocks of the tool.

Xilinx has adopted Tcl as the native programming language for the Vivado design suite [1]. The
Tcl interpreter in the Vivado provides the full power and flexibility of Tcl to control the application,
and access the design object and properties. Vivado is an EDA tool developed by Xilinx that can be
controlled using a Tcl script [2]. There is an in-built command in Tcl to read and write files to a
local directory and create a directory dynamically, create a project, add files to the project, then
synthesize, implement and generate a report. Tcl command and script are specified to the Vivado
design suite. Design constraint files for the Vivado IDE are specified similarly to the Tcl command
and are interpreted similarly by the Tcl interpreter [3].

The Vivado tool writes a journal file with extension .jou into the directory from where the tool
has been launched. It records the Tcl command run during the session. A log file .log is also created
which includes the output of the commands that are executed. Journal and log files verify which
commands to run and what results they produced.

10.1 Accessing Vivado Tool via Tcl Script

Figure 10.1 presents the home page of the Vivado design suite; at the bottom, the Tcl Console ena-
bles the users to enter the Tcl command. Users can get help directly from the Tcl Console, and
every command supports the –help command-line argument. The –help command provides
additional information about the command, syntax, and examples.

<command> - help

10

Tcl-Tk for EDA Tool

10 Tcl-Tk for EDA Tool186

The commands in Table 10.1 are useful while accessing the Vivado tool via Tcl commands
(description given in the Appendix).

 ● Step 1: Enter the following command in the Tcl Console to create project FA1 in directory
Example, the –part adds the FPGA device Artix −7 and the project part xc7a15tcpg236–1, as
shown in Figure 10.2.

create_project FA - force C:/Xilinx/Example - part xc7a15tcpg236- 1

Figure 10.1  Homepage of Vivado Design Suite.

Table 10.1  Command to access Vivado Tool.

Command Property

create_project Creates a new project

current_project Specifies current project

save_project_as Saves the project into the specified directory

add_files Adds Verilog file (.v) into the project

add_files -fileset constrs Adds constraints file (.xdc)

set_property top Defines top module

launch_simulation Simulates design and generates a waveform

launch_runs Synthesizes the active design

launch_runs Implements the active design

place_design Automatically places ports and leaf-level instance

route_design Routes the active design

phys_opt_desgn Optimizes the active design

close_project Closes currently opened project

10.1 Accceesing sivao Tool isv Tcl crsip 187

 ● Step 2: Create a Verilog file (FA.v) and constraint file (FA_xdc.xdc) physically in the specified
directory. Add the following command to add the source file. Double click on the file name to
open the source file, as shown in Figures 10.3–10.5.

add_files C:/Xilinx/Example/FA.v
add_files C:/Xilinx/Example/FAtb.v

add_files - fileset constrs_1 - norecurse
C:/Xilinx/Example/FA_xdc.xdc

Figure 10.2  Vivado interface after creating project.

Figure 10.3  Adding
FA module.

Figure 10.4  Adding
stimulus file.

10 Tcl-Tk for EDA Tool188

 ● Step 3: Save project.

save_project_as FA C:/Xilinx/Example

 ● Step 4: Update the compile order. The following command sets the top-level module.

set_property top FA [current_fileset]

 ● Step 5: Synthesize the design via entering the Tcl command, as shown in Figure 10.6.

launch_runs synth_1

Figure 10.5  Adding
constraint file.

 ● Step 6: Open_run displays the devices and packages, as shown in Figure 10.7.

open_run - name FA synth_1

Figure 10.6  Synthesize
project summary.

Figure 10.7  FPGA
package view.

 ● Step 7: Simulation of the stimulus program executed via the Tcl command. A testbench wave-
form is shown in Figure 10.8 created with a delay specified in the program.

launch_simulation

10.1 Accceesing sivao Tool isv Tcl crsip 189

 ● Step 8: Implementation step executed via Tcl command.

launch_runs impl_1

 ● Step 9: Report generation, with the following command, generates the power report shown in
Figure 10.9 with the extension .xpe and saves it into the specified directory.

report_power - no_propagation - xpe C:/Xilinx/Example/FA.xpe

Figure 10.9  Power
report.

 ● Step 10: Report generation, with the following command, generates the timing report, as shown
in Figure 10.10.

report_timing - nworst 5 - path_type full - input_pins

Figure 10.10  Timing
report.

Figure 10.8  Testbench
waveform.

10 Tcl-Tk for EDA Tool190

 ● Step 11: Report generation, with the following command, generates the utilization, as shown in
Figure 10.11.

report_utilization - file C:/Xilinx/Example/util.txt

Figure 10.11  Utilization
report.

 ● Step 12: Data sheet report generation, with the following command, generates the datasheet
report, as shown in Figure 10.12.

report_datasheet - sort_by port - show_all_corners

Figure 10.12  Datasheet
report.

10.2  Sourcing the Tcl Script with Vivado

In the previous example, all the steps are written separately and their execution result can be visu-
alized. Alternatively, there is a one-step process where all the commands can be written together
in a notepad with the extension .tcl and sourced to the Vivado interpreter. First, one needs to create
a directory for the module FS (C:/Xilinx/Example/FS). Use WordPad to write the program and save
it into the specified directory with the extension (.v). Figure 10.13 shows the three different files
required, the main program of the full subtractor (FS.v), the stimulus program (FStb.v), and the
constraint file (FS_xdc.xdc). Write the program shown below with help of notepad and save it with

10.2  Sourcing the rcl ruci c te civaS 191

the extension .tcl (FS.tcl). The file FS.tcl contains all the steps from the creation of the project to
bitstream generation, and is executed in the sequence it is written. Users can visualize the result of
each execution one by one. The Project Summary tab on the Vivado homepage contains an over-
view and dashboard options, where all the reports of the program are summarized. The report of
the program is available from the Tcl Console tab of the transcript window too.

FS.tcl script

create_project FS - force C:/Xilinx/Example/FS - part xc7a15tcpg236- 1
add_files C:/Xilinx/Example/FS/FS.v
add_files C:/Xilinx/Example/FS/FStb.v
add_files - fileset constrs_1 - norecurse C:/Xilinx/Example/FS/
FS_xdc.xdc
set_property top FS [current_fileset]
synth_design - rtl
update_compile_order - fileset sim_1
launch_simulation

Figure 10.13  Source and constraint file of full subtractor.

10 Tcl-Tk for EDA Tool192

launch_runs synth_1
wait_on_run synth_1
launch_runs impl_1
wait_on_run impl_1

open_run - name FS synth_1
report_power - no_propagation - xpe C:/Xilinx/Example/FS/FS.xpe
report_timing - nworst 5 - path_type full - input_pins
report_utilization - file C:/Xilinx/Example/FS/util.txt
report_datasheet - sort_by port - show_all_corners
launch_runs impl_1 - to_step write_bitstream

Source the program FS.tcl in the Vivado interpreter, as shown in Figure 10.14.

Tools ➔ Run Tcl Script - ➔ locate the file (FS.tcl)➔ ok

Figure 10.14  Sourcing a
.tcl script.

Here, all the steps are executed internally and finally the result appears in the project summary.
From the dashboard, different reports can be obtained, as shown in Figures 10.15–10.19.

Figure 10.15  Simulation
waveform of FS.

(A) Simulation waveform

10.2  Sourcing the rcl ruci c te civaS 193

Figure 10.16  Utilization
reports of FS.

Figure 10.17  Timing
report of FS.

Figure 10.18  Power
report of FS.

(B) Utilization Report

(C) Timing Report

(D) Power Report

10 Tcl-Tk for EDA Tool194

10.3  Implementing Counter Program with Vivado Tcl Console

Following the step mentioned in section 10.2, store the three files counter.v, countertb.v, and coun-
ter_const.xdc into the directory C/Xilinx/Example/counter (Figure 10.20).

Source the program FS.tcl in the vivado interpreter, as shown in Figure 10.21.

Tools ➔ Run Tcl Script - ➔ locate the file (counter.tcl)➔ ok

Counter.tcl Script

create_project counter - force C:/Xilinx/Example/counter - part
xc7a15tcpg236- 1
add_files C:/Xilinx/Example/counter/counter.v
add_files C:/Xilinx/Example/counter/countertb.v
add_files - fileset constrs_1 - norecurse C:/Xilinx/Example/counter/
counter_const.xdc
set_property top counter [current_fileset]
synth_design - rtl
update_compile_order - fileset sim_1
launch_simulation
launch_runs synth_1
wait_on_run synth_1
launch_runs impl_1
wait_on_run impl_1

Figure 10.19  Datasheet
report of FS.

(E) DataSheet Report

10.3  IiclhIhi cing Soi hu uSnguvI c te civaS rcl SinSclh 195

Figure 10.20  Source and constraint file of counter.

open_run - name counter synth_1
report_power - no_propagation - xpe C:/Xilinx/Example/counter/
counter.xpe
report_timing - nworst 5 - path_type full - input_pins
report_utilization - file C:/Xilinx/Example/FS/util.txt
report_datasheet - sort_by port - show_all_corners

launch_runs impl_1 - to_step write_bitstream

10 Tcl-Tk for EDA Tool196

Here, all the steps are executed internally and finally the result appears in the project summary.
From the dashboard, different reports can be obtained as shown in Figures 10.22–10.26.

(A) Simulation waveform

Figure 10.23  Utilization report of counter.

Figure 10.22  Simulation waveform of the counter.

Figure 10.21  Sourcing of counter.tcl.

(B) Utilization Report

10.3  IiclhIhi cing Soi hu uSnguvI c te civaS rcl SinSclh 197

(D) Timing Report

Figure 10.24  Power report of counter.

(C) Power Report

Figure 10.25  Timing report of counter.

10 Tcl-Tk for EDA Tool198

(E) Datasheet Report

Figure 10.26  Datasheet report of counter.

10.4  Advantage of Vivado in Tcl Mode

In an earlier section, the Tcl script for every step was explained to implement a digital circuit with
the Vivado EDA tool. There is also a graphical feature available to access them. In Tcl mode, all the
steps can be assembled once and all the steps will be executed in the background. The Tcl mode
offers the following advantages:

i) fast execution;
ii) does not require to look at internal execution;

10.A Aiiciasx 199

iii) result and report are accessible at summary;
iv) easy to update the device.

 Reference

 1 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug894- vivado- tcl-
scripting.pdf

 2  https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug835- vivado- tcl-
commands.pdf

 3  https://www.doulos.com/knowhow/tcltk

10.A Appendix

A few important and repetitively used Tcl commands [1, 2] are explained here.

1. create_project Creates a new project.

This creates a Vivado Design Suite project file (.xpr) or a project file for the Vivado Lab Edition
(.lpr), in the specified directory. There is different command syntax for the Vivado Lab Edition;
[−part] and [−ip] are not supported in Vivado Lab Edition.

Syntax: create_project [−part <arg>] [−force] [−in_memory] [−ip] [−rtl_
kernel] [−quiet] [−verbose] [<name>] [<dir>]

Name Description

[−part] Targets part

[−force] Overwrites existing project directory

[−in_memory] Creates an in-memory project

[−ip] Default GUI behavior is for a managed IP project

[−rtl_kernel] Default GUI behavior is for an RTL Kernel project

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command
execution

[<name>] Project name

[<dir>] Directory where the project file is saved

The default Vivado Design Suite creates an RTL project which manages the RTL source file.
After creating a project, the project type can be changed by using the set_property command
to set the DESIGN_MODE property on the current_fileset.

* RTL Project - set_property DESIGN_MODE RTL [current_fileset]
* Netlist Project - set_property DESIGN_MODE GateLvl [current_

fileset]
* I/O Planning Project - set_property DESIGN_MODE PinPlanning

[current_fileset]

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug835-vivado-tcl-commands.pdf
https://www.doulos.com/knowhow/tcltk/

10 Tcl-Tk for EDA Tool200

Example:

create_project project1 myDesigns // creates a project project1.xpr
in directory // myDesigns in the current working directory

2. close_project Closes the currently opened project.

 Syntax: close_project [−delete] [−quiet] [−verbose]

Name Description

[−delete] Deletes the project from disk

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command
execution

3. current_project Specifies the current project or sets the current project when no project
is specified.

 Syntax: current_project [−quiet] [−verbose] [<project>]

Name Description

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command
execution

[<project>] Project to set as current

current_project project_1 //set project_1 as current project

current_project // returns the name of current
project in the tool

Name Description

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command
execution

[<design>] Name of the current design to be set

4. current_design Defines the current design or returns the name of the current design in an
active project.

Example:

 current_design rtl_1 // set rtl_1 as current design

10.A Aiiciasx 201

5. create_port Creates a port and specifies its parameter such as direction, width, single-
ended, or differential ended. Newly created ports are added at the top level of the design.

 Syntax: create_port -direction <arg> [−from <arg>] [−to <arg>]
[−diff_pair] [−interface <arg>] [−quiet] [−verbose] <name>
[<negative_name>]

Name Description

-direction Direction of port IN, OUT, or INOUT

[−from] Starting bus index

[−to] Ending bus index

[−diff_pair] Creates a differential pair of ports

[−interface] Assigns a new port to interface

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<name> Name of the port

[<negative_name>] Optional negative name of a diff-pair

create_port - direction IN PORT0 //creates a new
input port named PORT0

create_interface Group1 //Creates a new
interface named Group1

create_port - direction OUT - diff_pair data //creates
differential pair ended output port data

create_port - direction OUT - from 0 - to 3 - diff_pair - interface
Group1 D_BUS

 //creates a 4 bit wide differential pair ended output bus
using interface Group1 D_BUS

create_port - direction OUT - diff_pair data_P data_N

 //creates differential pair ended output port
named data_P , data_N

6. create_net creates a new net in the current netlist of synthesized/implemented design.

 Syntax: create_net [−from <arg>] [−to <arg>] [−quiet] [−verbose] <nets>

Name Description

[−from] Starting bus index

[−to] Ending bus index

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<nets> Names of nets

10 Tcl-Tk for EDA Tool202

Example:

create_net tempBus - from 23 - to 0 //creates 24- bit bus

7. create_pin Adds a single pin or bus pins to the current netlist of an open synthesized/imple-
mented design.

 Syntax: create_pin [−from <arg>] [−to <arg>] -direction <arg> [−
quiet] [−verbose] <pins>

Name Description

[−from] Starting bus index

[−to] Ending bus index

-direction Pin direction values: IN, OUT, INOUT

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<pins> Names of pins to create

Examples:

create_pin - direction IN cpuEngine/inPin //creates input pin
IN on the module

 cpuEngine named inPin

create_pin - direction INOUT - from 0 - to 23 usbEngine0|myDMA|dataBus
 //creates 24- bit bidirectional bus
to the instance

8. create_clock Creates a clock object with a specified period of nanoseconds.

create_clock generates a virtual clock, which can be used as a time reference for setting
input and output delays.

create_generated_clock derives a clock from a physical clock and derives properties
from the master clock.

 Syntax: create_clock -period <arg> [−name <arg>] [−waveform <args>]
[−add] [−quiet] [−verbose] [<objects>]

Name Description

-period <argument> Specifies a clock period in nanoseconds(ns)

[−name] Name of the clock

[−waveform] Specifies rising/falling edge times of the defined clock

[−add] Add the existing clock to source objects

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

[<objects>] List of clock source ports, pins, or nets

10.A Aiiciasx 203

create_clock - name bftClk - period 5.000 [get_ports bftClk]

 // creates a clock named bftClk with
period 5ns

create_clock - name clk - period 10.000 - waveform {2.4 7.4} [get_
ports bftClk]

 //creates a clock named clk with period 10 ns, rising edge 2.4
ns and falling edge 7.4 ns.

create_clock - name virtual_clock - period 5.000

 //creates a virtual clock with period 5 ns
since no clock source specified

create_clock - name clk - period 10.000 - waveform {7 2} [get_
ports bftClk]

 //creates a clock named clk with period 10 ns and rising
edge at 7 ns and falling edge at 2 ns

9. read_verilog Reads one or more Verilog or SystemVerilog source file.

 Syntax: read_verilog [−library <arg>] [−sv] [−quiet] [−verbose] <files>

Name Description

[−library] Library name, Default: default lib

[−sv] Enables system Verilog compilation

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<files> Name of one or more Verilog files to be read

[−quiet] Ignores command errors

read_verilog C:/Data/FPGA_Design/new_module.v

 // reads the Verilog file new_module and adds
it to the source fileset

read_verilog { file1.v file2.v file3.v} //reads
one and more verilog files

10. add_files Adds one or more source file to the specified fileset in the current project.

 Syntax: add_files [−fileset <arg>] [−of_objects <args>] [−norecurse]
[−copy_to <arg>] [−force] [−scan_for_includes] [−quiet] [−verbose]
[<files>...]

10 Tcl-Tk for EDA Tool204

Name Description

[−fileset] Fileset name

[−of_objects] Filesets or sub-designs or RMs to add the files to

[−norecurse] Does not recursively search in specified directories

[−copy_to] Copies the file to the specified directory before adding it to project

[−force] Overwrites the existing file when -copy_to is used

[−scan_for_includes] Scans and adds any included files found in the fileset’s RTL sources

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

[<files>] Name of the files and/or directories to add

 add_files rtl.v // adds a file called rtl.v to the
current project

11. write_verilog Exports the current netlist in Verilog format.
write_verilog [- cell <arg>] [- mode <arg>] [- lib] [- port_diff_
buffers] [- write_all_overrides] [- keep_
vcc_gnd] [- rename_top <arg>] [- sdf_anno <arg>] [- sdf_file <arg>]
[- force] [- include_xilinx_libs] [- logic_function_stripped] [- quiet]
[- verbose] <file>

Name Description

[−cell] Root of the design to write

[−mode] Values: design, pin_planning, synth_stub, sta,
funcsim, timesim

[−lib] Writes each library into a separate file

[−port_diff_buffers] Outputs differential buffers when writing in -port mod

[−write_all_overrides] Writes parameter overrides on Xilinx primitives

[−keep_vcc_gnd] Do not replace VCC/GND instances with literal constants on load
terminals.

[−rename_top] Replaces top module name with custom name

[−sdf_anno] Specifies if sdf_annotate system task statement is generated

[−sdf_file] Full path to sdf file location

[−force] Overwrites existing file

[−include_xilinx_libs] Includes simulation models directly in netlist instead of linking
to the library

[−logic_function_stripped] Converts INIT strings on LUTs & RAMBs to fixed values

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<file> Defines which file to write

write_verilog C:/Data/my_verilog.v
 // writes a Verilog simulation netlist file for the whole
design to the specified file and path

10.A Aiiciasx 205

12. save_project_as saves the current project under a new name.

 Syntax: save_project_as [−scan_for_includes] [−exclude_run_results]
[−include_local_ip_cache] [−force] [−quiet] [−verbose] <name> [<dir>]

Name Description

[−scan_for_includes] Scans for include files and add them to the new project

[−exclude_run_results] Excludes run results in the new project

[−include_local_ip_cache] Includes IP cache results in the new project

[−force] Overwrites existing project directory

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<name> New name for the project to save

[<dir>] Directory where the project file is saved

Examples:

save_project_as myProject myProjectDir
 //saves the active project as a new project named myProject in a
directory called myProjectDir

13. close_design Closes the currently active design.

 Syntax: close_design [−quiet] [−verbose]

Name Description

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

In the case where multiple designs open, current_design specifies the active design.

Example:

 current_design rtl_1
 close_design

14. save_constraints Saves any changes to the constraints files of the active constraints set.

 Syntax: save_constraints [−force] [−quiet] [−verbose]

Name Description

[−force] Forces constraints save

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

10 Tcl-Tk for EDA Tool206

15. synth_design Synthesizes a design using Vivado Synthesis and opens that design.
Launches the Vivado synthesis engine to compile and synthesize a design in either Project
Mode or Non-Project Mode in the Vivado Design Suite.

 Syntax: synth_design [-name <arg>] [-part <arg>] [-constrset <arg>]
[-top <arg>] [-include_dirs <args>] [-generic <args>] [-verilog_
define <args>] [-flatten_hierarchy <arg>] [-gated_clock_conver-
sion <arg>] [-directive <arg>] [-rtl] [-bufg <arg>] [-no_lc]
[-fanout_limit <arg>] [-shreg_min_size <arg>] [-mode <arg>] [-fsm_
extraction <arg>] [-rtl_skip_ip] [-rtl_skip_constraints] [-keep_
equivalent_registers] [-resource_sharing <arg>] [-cascade_dsp
<arg>] [-control_set_opt_threshold <arg>] [-incremental <arg>]
[-max_bram <arg>] [-max_uram <arg>] [-max_dsp <arg>] [-max_bram_
cascade_height <arg>] [-max_uram_cascade_height <arg>] [-retim-
ing] [-no_srlextract] [-assert] [-no_timing_driven] [-sfcu]
[-quiet] [-verbose]

Name Description

[−name] Design name

[−part] Target part

[−constrset] Constraint fileset to use

[−top] Specifies the top module name

[−include_dirs] Specifies Verilog search directories

[−generic] Specifies generic parameters

[−verilog_define] Specifies Verilog defines

[−flatten_hierarchy] Flattens hierarchy during LUT mapping

[−gated_clock_conversion] Converts clock gating logic to flop enable (on/off/auto)

[−directive] Synthesis directive

[−rtl] Elaborates and opens an RTL design

[−bufg] Max number of global clock buffers used by synthesis (Default 12)

[−no_lc] Disables LUT combining

[−fanout_limit] Fanout limit

[−shreg_min_size] Minimum length for a chain of registers to be mapped onto SRL
(Default 3)

[−mode] Design mode (default, out_of_context)

[−fsm_extraction] FSM extraction encoding (off, one_hot, sequential, johnson,
gray, user_encoding, auto)

[−rtl_skip_ip] Excludes sub design checkpoints in the RTL elaboration of the
design

[−rtl_skip_constraints] Do not load and validate constraints against elaborated design

[−keep_equivalent_registers] Prevents registers sourced by the same logic from being merged

[−resource_sharing] Shares arithmetic operators (auto, on, off)

[−cascade_dsp] Controls how adders summing DSP block outputs will be
implemented (auto, tree, force)

10.A Aiiciasx 207

Name Description

[−control_set_opt_threshold] Threshold for synchronous control set optimization to lower
the number of control sets

[−incremental] DCP file for incremental flow value of this is the file name

[−max_bram] Maximum number of block RAM allowed in design (default -1n
−1 means that the tool will choose the max number allowed)

[−max_uram] Maximum number of Ultra RAM blocks allowed in design
(default -1n −1 means that the tool will choose the max number
allowed)

[−max_dsp] Maximum number of block DSP allowed in design (default
−1 means that the tool will choose the max number allowed)

[−max_bram_cascade_height] Controls the maximum number of BRAM that can be cascaded
by the tool (default −1 means that the tool will choose the max
number allowed)

[−max_uram_cascade_height] Controls the maximum number of URAM that can be
cascaded by the tool default −1 means that the tool will choose
the max number allowed)

[−retiming] Seeks to improve circuit performance for intra-clock sequential
paths by automatically moving registers (register balancing)
across combinatorial gates or LUTs

[−no_srlextract] Prevents the extraction of shift registers so that they get
implemented as simple registers

[−assert] Enables VHDL to assert statements to be evaluated

[−no_timing_driven] Do not run in timing-driven mode

[−sfcu] Run in single-file compilation unit mode

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

synth_design - rtl - name rtl_1 //elaborates the
source files and opens an RTL design
synth_design - top [lindex [find_top] 0] //defines the top of the
current design for synthesis

16. open_run Opens a run into a netlist or implementation design.

 Syntax: open_run [−name <arg>] [−pr_config <arg>] [−quiet]
[−verbose] <run>

Name Description

[−name] Design name

[−pr_config] PR configuration to apply while opening the design

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<run> Run to open into the design

10 Tcl-Tk for EDA Tool208

open_run - name synthPass1 synth_1 //opens the specified
synthesis run into a Netlist
Design named synthPass1

open_run impl_1 //opens an Implemented
Design for impl_1

17. create_run Defines a synthesis or implementation run.
 Syntax: create_run [−constrset <arg>] [−parent_run <arg>] [−part
<arg>] -flow <arg> [−strategy <arg>] [−report_strategy <arg>] [−
pr_config <arg>][−quiet] [−verbose] <name>

Name Description

[−constrset] Constraint fileset to use

[−parent_run] Synthesis runs to link to new implementation run

[−part] Target part

-flow Flow name

[−strategy] Strategy to apply to the run

[−report_strategy] Reports strategy to apply to the run

[−pr_config] Partition configuration to apply to the run

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<name> Name for a new run

create_run –flow synth_1 //creates a run
named synth_1
create_run impl_2 - parent_run synth_1 –flow
 //creates an implementation run and attaches it to the synth_1
synthesis run previously created

18. launch_runs Launches synthesis and implementation runs.

 Syntax: launch_runs [-jobs <arg>] [-scripts_only] [-lsf <arg>] [-sge
<arg>] [-dir <arg>] [-to_step <arg>] [-next_step] [-host <args>]
[-remote_cmd <arg>] [-email_to <args>] [-email_all] [-pre_launch_
script <arg>] [-post_launch_script <arg>] [-custom_script <arg>]
[-force] [-quiet] [-verbose] <runs>

Name Description

[−jobs] Number of jobs (default 1)

[−scripts_only] Only generates scripts

[−lsf] Uses LSF to launch jobs

[−sge] Uses SGE to launch jobs

[−dir] Launches directory

10.A Aiiciasx 209

Name Description

[−to_step] Last step to run

[−next_step] Runs next step

[−host] Launches on the specified remote host with a specified number of jobs

[−remote_cmd] Command to log in to remote hosts

[−email_to] List of email addresses to notify when jobs complete

[−email_all] Sends an email after each job completes

[−pre_launch_script] Script to run before launching each job

[−post_launch_script Script to run after each job completes

[−custom_script] User run script map file which contains run name to user-run script mapping

[−force] Runs the command

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<runs> Runs to launch

 launch_runs synth_1 synth_2 synth_4 - jobs 2
 //launches 3 different synthesis
runs with 2 parallel jobs

19. set_property Sets property on object(s)

 Syntax: set_property [−dict <args>] [−quiet] [−verbose] <name>
<value> <objects>

Name Description

[−dict] List of name/value pairs of properties to set

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<name> Name of property to set

<value> Value of property to set

<objects> Objects to set properties on

create_property - type bool truth cell //creates a user-
defined boolean property, TRUTH
 set_property truth false [lindex [get_cells] 1] //sets the
property on a cell

10 Tcl-Tk for EDA Tool210

20. get_property Gets the current value of the specified properties of object

 Syntax: get_property [−min] [−max] [−quiet] [−verbose] <name>
<object>

Name Description

[−min] Returns only the minimum value

[−max] Returns only the maximum value

[−quiet] Ignores command errors

[−verbose] Suspends message limits during command execution

<name> Name of property whose value is to be retrieved

<object> Object to query for properties

get_property NAME [lindex [get_cells] 3] //gets the NAME
property from the specified cell
get_property - min PERIOD [get_clocks] //smallest PERIOD prop-
erty from specified clock

211

Programming and GUI Fundamentals: Tcl-Tk for Electronic Design Automation (EDA), First Edition.
Suman Lata Tripathi, Abhishek Kumar, and Jyotirmoy Pathak.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

a
AccessMode 81
array 4, 45, 67–73
arrow 113, 140, 157
arrowshape 157
aspect ratio 112, 119
attribute 81, 86, 99, 100, 102–104, 106–108, 110,

113, 138, 142, 155, 157, 162

b
Bind 125, 126, 128–130, 137, 151, 152,

155, 165
bitmap 160–161
Break 37
button 100–105, 108–109, 113, 114, 117–120,

125, 128–129, 131–133, 135, 136, 142,
144–150, 165, 169–173, 175–178

c
canvas 97, 126, 155–168, 174–178
capstyle 157
catch 37–39
Class 75–80, 101, 106, 119, 126–130
clock command 50–51
clock format 51–53
clock scan 53
config command 99, 104, 105, 110
configurable 97
constructor 76, 78–80
continue 37
coords 156, 167
create 166–168

d
data type 2, 45
destroy command 76
destructor 76

e
elseif command 27
error 37–39
expr 11, 13–16, 25

f
file 81–93
File Command 82, 86
fill 133–134
focus 125, 130
Foreach 35–37, 39, 40, 85, 91
format 48–50, 53

g
geometry manager 98–99
graphical user interface (GUI) 4, 7, 97, 100,

101, 102, 107, 113, 114, 115, 117–120,
128–130, 138, 139, 141, 145, 148–150,
169–171, 175, 176

grid 98–99, 101, 102, 106, 116–118, 135, 145,
146, 148, 167, 172, 175

GUI. see graphical user interface (GUI)

i
icon 172
If‐command 25, 138
If‐else 25–26

Index

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Cover
	Title Page
	Copyright Page
	Contents
	About the Authors
	Chapter 1 Introduction
	1.1 Features of Tcl
	1.2 Special Variable
	1.3 Tcl First Program
	1.4 Tcl Identifiers
	1.5 Applications of Tcl
	References

	Chapter 2 Basic Commands
	2.1 Introduction
	2.2 Set Command
	2.3 Variable Substitution
	2.4 Grouping
	2.5 Command Substitution
	2.6 Math Expressions
	2.7 Backslash Substitution (\&)
	2.8 Tcl Operator
	2.8.1 Arithmetic Operators
	2.8.2 Relational Operators
	2.8.3 Logical Operators
	2.8.4 Bitwise Operators
	2.8.5 Ternary Operators
	2.8.6 Shift Operators
	2.8.7 Tcl In-built Math Function

	2.9 Procedure
	2.10 Eval Commands
	2.11 Solved Questions
	2.12 Review Questions
	2.13 MCQs Based on Tcl Basics
	References
	2.A Appendix I (Built-in math functions)
	2.B Appendix II (Tcl Backslash sequence)

	Chapter 3 Program Flow Control
	3.1 If–Else Command
	3.2 Switch-Case Command
	3.3 Loop Command
	3.3.1 While Loop
	3.3.2 For Loop
	3.3.3 Foreach Command

	3.4 Continue and Break
	3.5 Catch and Error
	3.6 Solved Problems
	3.7 Practice Questions
	3.8 MCQs
	References

	Chapter 4 Tcl Data Structure
	4.1 String and Matching Command
	4.1.1 Append Command
	4.1.2 Format Command
	4.1.3 Number Base Conversion with the Format Command
	4.1.4 Scan Command
	4.1.5 Clock Command
	4.1.6 Clock Format Command
	4.1.7 Clock Scan Command
	4.1.8 Clock Add Command
	4.1.9 Solved Problems
	4.1.10 Review Problems
	4.1.11 MCQs on Strings

	4.2 Lists and their Commands
	4.2.1 List-based Commands
	4.2.2 Solved Problems
	4.2.3 Review Problems
	4.2.4 MCQs on List

	4.3 Arrays and their Commands
	4.3.1 Array-Based Commands
	4.3.2 Solved Examples
	4.3.3 Review Problems
	4.3.4 MCQs on Arrays and their Commands

	References

	Chapter 5 Tcl Object-Oriented Programming
	5.1 Class
	5.2 Creation of a Class
	5.3 Define a Member in a Class
	5.4 Define Method
	5.5 Constructor and Destructor
	5.6 Destroying of Class
	5.7 Invoking Method
	5.8 Registering Method for Callback
	References

	Chapter 6 File Processing
	6.1 Introduction
	6.2 Tcl File Command
	6.2.1 Opening a File
	6.2.2 Closing a File
	6.2.3 Writing into a File
	6.2.4 Reading of the File
	6.2.5 Write with Append Mode

	6.3 Tcl File In-built Commands
	6.3.1 File Seek Command
	6.3.2 File Tell Command
	6.3.3 File Eof Command
	6.3.4 List-based Command into the File

	6.4 Solved Questions
	6.5 Review Questions
	6.6 MCQs based on Tcl File Processing
	References

	Chapter 7 Toolkit Widgets
	7.1 Features of Tk Widgets
	7.2 Geometry Manager
	7.3 Widget Naming
	7.4 Widget Dimension
	7.5 Widget Configuration
	7.6 Widget Programming
	7.6.1 Button Widget
	7.6.2 Label Widget
	7.6.3 Textvariable Widget Command
	7.6.4 Entry Widget
	7.6.5 Frame Widget
	7.6.6 Scale Widget
	7.6.7 Message Widget
	7.6.8 Spinbox Widget

	7.7 Solved Problems
	7.8 Unsolved Problems
	7.9 MCQs on Tk Widgets
	References

	Chapter 8 Binding Commands and Other Widgets
	8.1 Class and Widget Binding
	8.1.1 Bindtag Command
	8.1.2 Event Pattern
	8.1.3 Event Type
	8.1.4 Bind with Mouse Button
	8.1.5 Bind with Mouse Motion

	8.2 Widget Characteristic Commands
	8.2.1 Unpack Command
	8.2.2 Arranging on Side
	8.2.3 Stacking
	8.2.4 Cavity Model
	8.2.5 Packing and Display Space (the fill and –expand commands)
	8.2.6 Padding
	8.2.7 Anchoring

	8.3 Menubar-Menu-Menubutton
	8.3.1 Entries to a Menu
	8.3.2 Cascade Menu

	8.4 Tearoff Command
	8.5 Listbox Widget
	8.6 Place Manager
	8.7 Solved Problems
	8.8 MCQs on Bind, Menu, and Place Manager
	References

	Chapter 9 Canvas Widgets and Tk Commands
	9.1 Canvas Coordinate
	9.2 Drawing over Canvas
	9.2.1 Arc
	9.2.2 Line
	9.2.3 Rectangle
	9.2.4 Polygon
	9.2.5 Oval
	9.2.6 Text
	9.2.7 Bitmap
	9.2.8 Image Widget

	9.3 Event Binding of Canvas Object
	9.4 Create a Movable Object
	9.5 Tk built-in Command
	9.5.1 Tk_choose Color
	9.5.2 tk_chooseDirectory
	9.5.3 tk_getOpenFile / tk_getSaveFile
	9.5.4 tk_messageBox

	9.6 Solved Problems
	9.7 Review Problem
	9.8 MCQs of Canvas
	9.A Appendix A
	References

	Chapter 10 Tcl-Tk for EDA Tool
	10.1 Accessing Vivado Tool via Tcl Script
	10.2 Sourcing the Tcl Script with Vivado
	10.3 Implementing Counter Program with Vivado Tcl Console
	10.4 Advantage of Vivado in Tcl Mode
	Reference
	10.A Appendix

	Index
	EULA

PROGRAMMING AND
UIFUNDAMENTALS

