
NAME

oo::object — root class of the class hierarchy

SYNOPSIS

package require TclOO

oo::object method ?arg ...?

CLASS HIERARCHY

oo::object

DESCRIPTION

The oo::object class is the root class of the object hierarchy; every object is an instance of this

class. Since classes are themselves objects, they are instances of this class too. Objects are always

referred to by their name, and may be renamed while maintaining their identity.

Instances of objects may be made with either the create or new methods of the oo::object object

itself, or by invoking those methods on any of the subclass objects; see oo::class for more details.

The configuration of individual objects (i.e., instance-specific methods, mixed-in classes, etc.) may

be controlled with the oo::objdefine command.

Each object has a unique namespace associated with it, the instance namespace. This namespace

holds all the instance variables of the object, and will be the current namespace whenever a method

of the object is invoked (including a method of the class of the object). When the object is

destroyed, its instance namespace is deleted. The instance namespace contains the object's my

command, which may be used to invoke non-exported methods of the object or to create a reference

to the object for the purpose of invocation which persists across renamings of the object.

CONSTRUCTOR

The oo::object class does not define an explicit constructor.

DESTRUCTOR

The oo::object class does not define an explicit destructor.

EXPORTED METHODS

The oo::object class supports the following exported methods:

obj destroy
This method destroys the object, obj, that it is invoked upon, invoking any destructors on the

object's class in the process. It is equivalent to using rename to delete the object command.

The result of this method is always the empty string.

NON-EXPORTED METHODS

The oo::object class supports the following non-exported methods:

obj eval ?arg ...?

https://www.tcl.tk/man/tcl/TclCmd/rename.htm
https://www.tcl.tk/man/tcl/TclCmd/rename.htm
https://www.tcl.tk/man/tcl/TclCmd/my.htm
https://www.tcl.tk/man/tcl/TclCmd/define.htm
https://www.tcl.tk/man/tcl/TclCmd/class.htm

This method concatenates the arguments, arg, as if with concat, and then evaluates the

resulting script in the namespace that is uniquely associated with obj, returning the result of

the evaluation.

Note that object-internal commands such as my and self can be invoked in this context.

obj unknown ?methodName? ?arg ...?

This method is called when an attempt to invoke the method methodName on object obj fails.

The arguments that the user supplied to the method are given as arg arguments. If

methodName is absent, the object was invoked with no method name at all (or any other

arguments). The default implementation (i.e., the one defined by the oo::object class)

generates a suitable error, detailing what methods the object supports given whether the object

was invoked by its public name or through the my command.

obj variable ?varName ...?

This method arranges for each variable called varName to be linked from the object obj's

unique namespace into the caller's context. Thus, if it is invoked from inside a procedure then

the namespace variable in the object is linked to the local variable in the procedure. Each

varName argument must not have any namespace separators in it. The result is the empty

string.

obj varname varName

This method returns the globally qualified name of the variable varName in the unique

namespace for the object obj.

obj <cloned> sourceObjectName

This method is used by the oo::object command to copy the state of one object to another. It

is responsible for copying the procedures and variables of the namespace of the source object

(sourceObjectName) to the current object. It does not copy any other types of commands or

any traces on the variables; that can be added if desired by overriding this method in a

subclass.

EXAMPLES

This example demonstrates basic use of an object.

set obj [oo::object new]
$obj foo → error "unknown method foo"
oo::objdefine $obj method foo {} {
 my variable count
 puts "bar[incr count]"
}
$obj foo → prints "bar1"
$obj foo → prints "bar2"
$obj variable count → error "unknown method variable"
$obj destroy
$obj foo → error "unknown command obj"

https://www.tcl.tk/man/tcl/TkCmd/destroy.htm
https://www.tcl.tk/man/tcl/TclCmd/variable.htm
https://www.tcl.tk/man/tcl/TclCmd/my.htm
https://www.tcl.tk/man/tcl/TclCmd/self.htm
https://www.tcl.tk/man/tcl/TclCmd/my.htm
https://www.tcl.tk/man/tcl/TclCmd/concat.htm

NAME

oo::class — class of all classes

SYNOPSIS

package require TclOO

oo::class method ?arg ...?

CLASS HIERARCHY

oo::object

→ oo::class

DESCRIPTION

Classes are objects that can manufacture other objects according to a pattern stored in the factory

object (the class). An instance of the class is created by calling one of the class's factory methods,

typically either create if an explicit name is being given, or new if an arbitrary unique name is to be

automatically selected.

The oo::class class is the class of all classes; every class is an instance of this class, which is

consequently an instance of itself. This class is a subclass of oo::object, so every class is also an

object. Additional metaclasses (i.e., classes of classes) can be defined if necessary by subclassing

oo::class. Note that the oo::class object hides the new method on itself, so new classes should

always be made using the create method.

CONSTRUCTOR

The constructor of the oo::class class takes an optional argument which, if present, is sent to the

oo::define command (along with the name of the newly-created class) to allow the class to be

conveniently configured at creation time.

DESTRUCTOR

The oo::class class does not define an explicit destructor. However, when a class is destroyed, all its

subclasses and instances are also destroyed, along with all objects that it has been mixed into.

EXPORTED METHODS

cls create name ?arg ...?

This creates a new instance of the class cls called name (which is resolved within the calling

context's namespace if not fully qualified), passing the arguments, arg ..., to the constructor,

and (if that returns a successful result) returning the fully qualified name of the created object

(the result of the constructor is ignored). If the constructor fails (i.e. returns a non-OK result)

then the object is destroyed and the error message is the result of this method call.

cls new ?arg ...?

This creates a new instance of the class cls with a new unique name, passing the arguments,

arg ..., to the constructor, and (if that returns a successful result) returning the fully qualified

name of the created object (the result of the constructor is ignored). If the constructor fails

https://www.tcl.tk/man/tcl/TclCmd/define.htm
https://www.tcl.tk/man/tcl/TclCmd/object.htm
https://www.tcl.tk/man/tcl/TclCmd/object.htm

(i.e., returns a non-OK result) then the object is destroyed and the error message is the result

of this method call.

Note that this method is not exported by the oo::class object itself, so classes should not be

created using this method.

NON-EXPORTED METHODS

The oo::class class supports the following non-exported methods:

cls createWithNamespace name nsName ?arg ...?

This creates a new instance of the class cls called name (which is resolved within the calling

context's namespace if not fully qualified), passing the arguments, arg ..., to the constructor,

and (if that returns a successful result) returning the fully qualified name of the created object

(the result of the constructor is ignored). The name of the instance's internal namespace will

be nsName; it is an error if that namespace cannot be created. If the constructor fails (i.e.,

returns a non-OK result) then the object is destroyed and the error message is the result of this

method call.

EXAMPLES

This example defines a simple class hierarchy and creates a new instance of it. It then invokes a

method of the object before destroying the hierarchy and showing that the destruction is transitive.

oo::class create fruit {
 method eat {} {
 puts "yummy!"
 }
}
oo::class create banana {
 superclass fruit
 constructor {} {
 my variable peeled
 set peeled 0
 }
 method peel {} {
 my variable peeled
 set peeled 1
 puts "skin now off"
 }
 method edible? {} {
 my variable peeled
 return $peeled
 }
 method eat {} {
 if {![my edible?]} {
 my peel
 }
 next
 }
}
set b [banana new]
$b eat → prints "skin now off" and "yummy!"
fruit destroy
$b eat → error "unknown command"

NAME

oo::define, oo::objdefine, oo::Slot — define and configure classes and objects

SYNOPSIS

package require TclOO

oo::define class defScript

oo::define class subcommand arg ?arg ...?

oo::objdefine object defScript

oo::objdefine object subcommand arg ?arg ...?

oo::Slot arg...

CLASS HIERARCHY

oo::object

→ oo::Slot

DESCRIPTION

The oo::define command is used to control the configuration of classes, and the oo::objdefine

command is used to control the configuration of objects (including classes as instance objects), with

the configuration being applied to the entity named in the class or the object argument. Configuring

a class also updates the configuration of all subclasses of the class and all objects that are instances

of that class or which mix it in (as modified by any per-instance configuration). The way in which

the configuration is done is controlled by either the defScript argument or by the subcommand and

following arg arguments; when the second is present, it is exactly as if all the arguments from

subcommand onwards are made into a list and that list is used as the defScript argument.

CONFIGURING CLASSES

The following commands are supported in the defScript for oo::define, each of which may also be

used in the subcommand form:

constructor argList bodyScript

This creates or updates the constructor for a class. The formal arguments to the constructor

(defined using the same format as for the Tcl proc command) will be argList, and the body of

the constructor will be bodyScript. When the body of the constructor is evaluated, the current

namespace of the constructor will be a namespace that is unique to the object being

constructed. Within the constructor, the next command should be used to call the superclasses'

constructors. If bodyScript is the empty string, the constructor will be deleted.

deletemethod name ?name ...?

This deletes each of the methods called name from a class. The methods must have previously

existed in that class. Does not affect the superclasses of the class, nor does it affect the

subclasses or instances of the class (except when they have a call chain through the class

being modified) or the class object itself.

destructor bodyScript

https://www.tcl.tk/man/tcl/TclCmd/next.htm
https://www.tcl.tk/man/tcl/TclCmd/proc.htm
https://www.tcl.tk/man/tcl/TclCmd/object.htm

This creates or updates the destructor for a class. Destructors take no arguments, and the body

of the destructor will be bodyScript. The destructor is called when objects of the class are

deleted, and when called will have the object's unique namespace as the current namespace.

Destructors should use the next command to call the superclasses' destructors. Note that

destructors are not called in all situations (e.g. if the interpreter is destroyed). If bodyScript is

the empty string, the destructor will be deleted.

Note that errors during the evaluation of a destructor are not returned to the code that

causes the destruction of an object. Instead, they are passed to the currently-defined

bgerror handler.

export name ?name ...?

This arranges for each of the named methods, name, to be exported (i.e. usable outside an

instance through the instance object's command) by the class being defined. Note that the

methods themselves may be actually defined by a superclass; subclass exports override

superclass visibility, and may in turn be overridden by instances.

filter ?-slotOperation? ?methodName ...?

This slot (see SLOTTED DEFINITIONS below) sets or updates the list of method names

that are used to guard whether method call to instances of the class may be called and what

the method's results are. Each methodName names a single filtering method (which may be

exposed or not exposed); it is not an error for a non-existent method to be named since they

may be defined by subclasses. By default, this slot works by appending.

forward name cmdName ?arg ...?

This creates or updates a forwarded method called name. The method is defined be forwarded

to the command called cmdName, with additional arguments, arg etc., added before those

arguments specified by the caller of the method. The cmdName will always be resolved using

the rules of the invoking objects' namespaces, i.e., when cmdName is not fully-qualified, the

command will be searched for in each object's namespace, using the instances' namespace's

path, or by looking in the global namespace. The method will be exported if name starts with

a lower-case letter, and non-exported otherwise.

method name argList bodyScript

This creates or updates a method that is implemented as a procedure-like script. The name of

the method is name, the formal arguments to the method (defined using the same format as for

the Tcl proc command) will be argList, and the body of the method will be bodyScript. When

the body of the method is evaluated, the current namespace of the method will be a

namespace that is unique to the current object. The method will be exported if name starts

with a lower-case letter, and non-exported otherwise; this behavior can be overridden via

export and unexport.

mixin ?-slotOperation? ?className ...?

This slot (see SLOTTED DEFINITIONS below) sets or updates the list of additional classes

that are to be mixed into all the instances of the class being defined. Each className

argument names a single class that is to be mixed in. By default, this slot works by

replacement.

renamemethod fromName toName

This renames the method called fromName in a class to toName. The method must have

previously existed in the class, and toName must not previously refer to a method in that

class. Does not affect the superclasses of the class, nor does it affect the subclasses or

instances of the class (except when they have a call chain through the class being modified),

https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32
https://www.tcl.tk/man/tcl/TclCmd/proc.htm
https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32
https://www.tcl.tk/man/tcl/TclCmd/bgerror.htm
https://www.tcl.tk/man/tcl/TclCmd/next.htm

or the class object itself. Does not change the export status of the method; if it was exported

before, it will be afterwards.

self subcommand arg ...

self script

This command is equivalent to calling oo::objdefine on the class being defined (see

CONFIGURING OBJECTS below for a description of the supported values of

subcommand). It follows the same general pattern of argument handling as the oo::define and

oo::objdefine commands, and “oo::define cls self subcommand ...” operates identically to

“oo::objdefine cls subcommand ...”.

superclass ?-slotOperation? ?className ...?

This slot (see SLOTTED DEFINITIONS below) allows the alteration of the superclasses of

the class being defined. Each className argument names one class that is to be a superclass

of the defined class. Note that objects must not be changed from being classes to being non-

classes or vice-versa, that an empty parent class is equivalent to oo::object, and that the

parent classes of oo::object and oo::class may not be modified. By default, this slot works by

replacement.

unexport name ?name ...?

This arranges for each of the named methods, name, to be not exported (i.e. not usable outside

the instance through the instance object's command, but instead just through the my command

visible in each object's context) by the class being defined. Note that the methods themselves

may be actually defined by a superclass; subclass unexports override superclass visibility, and

may be overridden by instance unexports.

variable ?-slotOperation? ?name ...?

This slot (see SLOTTED DEFINITIONS below) arranges for each of the named variables to

be automatically made available in the methods, constructor and destructor declared by the

class being defined. Each variable name must not have any namespace separators and must

not look like an array access. All variables will be actually present in the instance object on

which the method is executed. Note that the variable lists declared by a superclass or subclass

are completely disjoint, as are variable lists declared by instances; the list of variable names is

just for methods (and constructors and destructors) declared by this class. By default, this slot

works by appending.

CONFIGURING OBJECTS

The following commands are supported in the defScript for oo::objdefine, each of which may also

be used in the subcommand form:

class className

This allows the class of an object to be changed after creation. Note that the class's

constructors are not called when this is done, and so the object may well be in an inconsistent

state unless additional configuration work is done.

deletemethod name ?name ...

This deletes each of the methods called name from an object. The methods must have

previously existed in that object (e.g., because it was created through oo::objdefine method).

Does not affect the classes that the object is an instance of, or remove the exposure of those

class-provided methods in the instance of that class.

https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32
https://www.tcl.tk/man/tcl/TclCmd/my.htm
https://www.tcl.tk/man/tcl/TclCmd/class.htm
https://www.tcl.tk/man/tcl/TclCmd/object.htm
https://www.tcl.tk/man/tcl/TclCmd/object.htm
https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32
https://www.tcl.tk/man/tcl/TclCmd/self.htm
https://www.tcl.tk/man/tcl/TclCmd/define.htm#M21

export name ?name ...?

This arranges for each of the named methods, name, to be exported (i.e. usable outside the

object through the object's command) by the object being defined. Note that the methods

themselves may be actually defined by a class or superclass; object exports override class

visibility.

filter ?-slotOperation? ?methodName ...?

This slot (see SLOTTED DEFINITIONS below) sets or updates the list of method names

that are used to guard whether a method call to the object may be called and what the

method's results are. Each methodName names a single filtering method (which may be

exposed or not exposed); it is not an error for a non-existent method to be named. Note that

the actual list of filters also depends on the filters set upon any classes that the object is an

instance of. By default, this slot works by appending.

forward name cmdName ?arg ...?

This creates or updates a forwarded object method called name. The method is defined be

forwarded to the command called cmdName, with additional arguments, arg etc., added

before those arguments specified by the caller of the method. Forwarded methods should be

deleted using the method subcommand. The method will be exported if name starts with a

lower-case letter, and non-exported otherwise.

method name argList bodyScript

This creates, updates or deletes an object method. The name of the method is name, the

formal arguments to the method (defined using the same format as for the Tcl proc command)

will be argList, and the body of the method will be bodyScript. When the body of the method

is evaluated, the current namespace of the method will be a namespace that is unique to the

object. The method will be exported if name starts with a lower-case letter, and non-exported

otherwise.

mixin ?-slotOperation? ?className ...?

This slot (see SLOTTED DEFINITIONS below) sets or updates a per-object list of

additional classes that are to be mixed into the object. Each argument, className, names a

single class that is to be mixed in. By default, this slot works by replacement.

renamemethod fromName toName

This renames the method called fromName in an object to toName. The method must have

previously existed in the object, and toName must not previously refer to a method in that

object. Does not affect the classes that the object is an instance of and cannot rename in an

instance object the methods provided by those classes (though a oo::objdefine forwarded

method may provide an equivalent capability). Does not change the export status of the

method; if it was exported before, it will be afterwards.

unexport name ?name ...?

This arranges for each of the named methods, name, to be not exported (i.e. not usable outside

the object through the object's command, but instead just through the my command visible in

the object's context) by the object being defined. Note that the methods themselves may be

actually defined by a class; instance unexports override class visibility.

variable ?-slotOperation? ?name ...?

This slot (see SLOTTED DEFINITIONS below) arranges for each of the named variables to

be automatically made available in the methods declared by the object being defined. Each

variable name must not have any namespace separators and must not look like an array

https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32
https://www.tcl.tk/man/tcl/TclCmd/my.htm
https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32
https://www.tcl.tk/man/tcl/TclCmd/proc.htm
https://www.tcl.tk/man/tcl/TclCmd/define.htm#M32

access. All variables will be actually present in the object on which the method is executed.

Note that the variable lists declared by the classes and mixins of which the object is an

instance are completely disjoint; the list of variable names is just for methods declared by this

object. By default, this slot works by appending.

SLOTTED DEFINITIONS

Some of the configurable definitions of a class or object are slotted definitions. This means that the

configuration is implemented by a slot object, that is an instance of the class oo::Slot, which

manages a list of values (class names, variable names, etc.) that comprises the contents of the slot.

The oo::Slot class defines three operations (as methods) that may be done on the slot:

slot -append ?member ...?

This appends the given member elements to the slot definition.

slot -clear
This sets the slot definition to the empty list.

slot -set ?member ...?

This replaces the slot definition with the given member elements.

A consequence of this is that any use of a slot's default operation where the first member argument

begins with a hyphen will be an error. One of the above operations should be used explicitly in

those circumstances.

You only need to make an instance of oo::Slot if you are definining your own slot that behaves like

a standard slot.

SLOT IMPLEMENTATION

Internally, slot objects also define a method --default-operation which is forwarded to the default

operation of the slot (thus, for the class “variable” slot, this is forwarded to “my -append”), and

these methods which provide the implementation interface:

slot Get
Returns a list that is the current contents of the slot. This method must always be called from a

stack frame created by a call to oo::define or oo::objdefine.

slot Resolve element

This converts an element of the slotted collection into its resolved form; for a simple value, it

could just return the value, but for a slot that contains references to commands or classes it

should convert those into their fully-qualified forms (so they can be compared with string
equals): that could be done by forwarding to namespace which or similar.

slot Set elementList

Sets the contents of the slot to the list elementList and returns the empty string. This method

must always be called from a stack frame created by a call to oo::define or oo::objdefine.

The implementation of these methods is slot-dependent (and responsible for accessing the correct

part of the class or object definition). Slots also have an unknown method handler to tie all these

pieces together, and they hide their destroy method so that it is not invoked inadvertently. It is

https://www.tcl.tk/man/tcl/TkCmd/destroy.htm
https://www.tcl.tk/man/tcl/TclCmd/namespace.htm
https://www.tcl.tk/man/tcl/TclCmd/string.htm
https://www.tcl.tk/man/tcl/TclCmd/string.htm
https://www.tcl.tk/man/tcl/TclCmd/variable.htm

recommended that any user changes to the slot mechanism itself be restricted to defining new

operations whose names start with a hyphen.

Note that slot instances are not expected to contain the storage for the slot they manage; that will be

in or attached to the class or object that they manage. Those instances should provide their own

implementations of the Get and Set methods (and optionally Resolve; that defaults to a do-nothing

pass-through).

EXAMPLES

This example demonstrates how to use both forms of the oo::define and oo::objdefine commands

(they work in the same way), as well as illustrating four of the subcommands of them.

oo::class create c
c create o
oo::define c method foo {} {
 puts "world"
}
oo::objdefine o {
 method bar {} {
 my Foo "hello "
 my foo
 }
 forward Foo ::puts -nonewline
 unexport foo
}
o bar → prints "hello world"
o foo → error "unknown method foo"
o Foo Bar → error "unknown method Foo"
oo::objdefine o renamemethod bar lollipop
o lollipop → prints "hello world"

This example shows how additional classes can be mixed into an object. It also shows how mixin is

a slot that supports appending:

oo::object create inst
inst m1 → error "unknown method m1"
inst m2 → error "unknown method m2"

oo::class create A {
 method m1 {} {
 puts "red brick"
 }
}
oo::objdefine inst {
 mixin A
}
inst m1 → prints "red brick"
inst m2 → error "unknown method m2"

oo::class create B {
 method m2 {} {
 puts "blue brick"
 }
}
oo::objdefine inst {
 mixin -append B
}
inst m1 → prints "red brick"
inst m2 → prints "blue brick"

https://www.tcl.tk/man/tcl/TclCmd/set.htm

NAME

my — invoke any method of current object

SYNOPSIS

package require TclOO

my methodName ?arg ...?

DESCRIPTION

The my command is used to allow methods of objects to invoke any method of the object (or its

class). In particular, the set of valid values for methodName is the set of all methods supported by

an object and its superclasses, including those that are not exported. The object upon which the

method is invoked is always the one that is the current context of the method (i.e. the object that is

returned by self object) from which the my command is invoked.

Each object has its own my command, contained in its instance namespace.

EXAMPLES

This example shows basic use of my to use the variables method of the oo::object class, which is

not publicly visible by default:

oo::class create c {
 method count {} {
 my variable counter
 puts [incr counter]
 }
}
c create o
o count → prints "1"
o count → prints "2"
o count → prints "3"

https://www.tcl.tk/man/tcl/TclCmd/object.htm
https://www.tcl.tk/man/tcl/TclCmd/self.htm

NAME

next, nextto — invoke superclass method implementations

SYNOPSIS

package require TclOO

next ?arg ...?

nextto class ?arg ...?

DESCRIPTION

The next command is used to call implementations of a method by a class, superclass or mixin that

are overridden by the current method. It can only be used from within a method. It is also used

within filters to indicate the point where a filter calls the actual implementation (the filter may

decide to not go along the chain, and may process the results of going along the chain of methods as

it chooses). The result of the next command is the result of the next method in the method chain; if

there are no further methods in the method chain, the result of next will be an error. The arguments,

arg, to next are the arguments to pass to the next method in the chain.

The nextto command is the same as the next command, except that it takes an additional class

argument that identifies a class whose implementation of the current method chain (see info object

call) should be used; the method implementation selected will be the one provided by the given

class, and it must refer to an existing non-filter invocation that lies further along the chain than the

current implementation.

THE METHOD CHAIN

When a method of an object is invoked, things happen in several stages:

1. The structure of the object, its class, superclasses, filters, and mixins, are examined to build

a method chain, which contains a list of method implementations to invoke.

2. The first method implementation on the chain is invoked.

3. If that method implementation invokes the next command, the next method implementation

is invoked (with its arguments being those that were passed to next).

4. The result from the overall method call is the result from the outermost method

implementation; inner method implementations return their results through next.

5. The method chain is cached for future use.

METHOD SEARCH ORDER

When constructing the method chain, method implementations are searched for in the following

order:

1. In the classes mixed into the object, in class traversal order. The list of mixins is checked in

natural order.

https://www.tcl.tk/man/tcl/TclCmd/info.htm

2. In the classes mixed into the classes of the object, with sources of mixing in being searched

in class traversal order. Within each class, the list of mixins is processed in natural order.

3. In the object itself.

4. In the object's class.

5. In the superclasses of the class, following each superclass in a depth-first fashion in the

natural order of the superclass list.

Any particular method implementation always comes as late in the resulting list of implementations

as possible; this means that if some class, A, is both mixed into a class, B, and is also a superclass of

B, the instances of B will always treat A as a superclass from the perspective of inheritance. This is

true even when the multiple inheritance is processed indirectly.

FILTERS

When an object has a list of filter names set upon it, or is an instance of a class (or has mixed in a

class) that has a list of filter names set upon it, before every invocation of any method the filters are

processed. Filter implementations are found in class traversal order, as are the lists of filter names

(each of which is traversed in natural list order). Explicitly invoking a method used as a filter will

cause that method to be invoked twice, once as a filter and once as a normal method.

Each filter should decide for itself whether to permit the execution to go forward to the proper

implementation of the method (which it does by invoking the next command as filters are inserted

into the front of the method call chain) and is responsible for returning the result of next.

Filters are invoked when processing an invocation of the unknown method because of a failure to

locate a method implementation, but not when invoking either constructors or destructors. (Note

however that the destroy method is a conventional method, and filters are invoked as normal when

it is called.)

EXAMPLES

This example demonstrates how to use the next command to call the (super)class's implementation

of a method. The script:

oo::class create theSuperclass {
 method example {args} {
 puts "in the superclass, args = $args"
 }
}
oo::class create theSubclass {
 superclass theSuperclass
 method example {args} {
 puts "before chaining from subclass, args = $args"
 next a {*}$args b
 next pureSynthesis
 puts "after chaining from subclass"
 }
}
theSubclass create obj
oo::objdefine obj method example args {
 puts "per-object method, args = $args"
 next x {*}$args y
 next
}

https://www.tcl.tk/man/tcl/TkCmd/destroy.htm

obj example 1 2 3

prints the following:

per-object method, args = 1 2 3
before chaining from subclass, args = x 1 2 3 y
in the superclass, args = a x 1 2 3 y b
in the superclass, args = pureSynthesis
after chaining from subclass
before chaining from subclass, args =
in the superclass, args = a b
in the superclass, args = pureSynthesis
after chaining from subclass

This example demonstrates how to build a simple cache class that applies memoization to all the

method calls of the objects it is mixed into, and shows how it can make a difference to computation

times:

oo::class create cache {
 filter Memoize
 method Memoize args {
 # Do not filter the core method implementations
 if {[lindex [self target] 0] eq "::oo::object"} {
 return [next {*}$args]
 }

 # Check if the value is already in the cache
 my variable ValueCache
 set key [self target],$args
 if {[info exist ValueCache($key)]} {
 return $ValueCache($key)
 }

 # Compute value, insert into cache, and return it
 return [set ValueCache($key) [next {*}$args]]
 }
 method flushCache {} {
 my variable ValueCache
 unset ValueCache
 # Skip the caching
 return -level 2 ""
 }
}

oo::object create demo
oo::objdefine demo {
 mixin cache
 method compute {a b c} {
 after 3000 ;# Simulate deep thought
 return [expr {$a + $b * $c}]
 }
 method compute2 {a b c} {
 after 3000 ;# Simulate deep thought
 return [expr {$a * $b + $c}]
 }
}

puts [demo compute 1 2 3] → prints "7" after delay
puts [demo compute2 4 5 6] → prints "26" after delay
puts [demo compute 1 2 3] → prints "7" instantly
puts [demo compute2 4 5 6] → prints "26" instantly
puts [demo compute 4 5 6] → prints "34" after delay
puts [demo compute 4 5 6] → prints "34" instantly
puts [demo compute 1 2 3] → prints "7" instantly
demo flushCache
puts [demo compute 1 2 3] → prints "7" after delay

NAME

self — method call internal introspection

SYNOPSIS

package require TclOO

self ?subcommand?

DESCRIPTION

The self command, which should only be used from within the context of a call to a method (i.e.

inside a method, constructor or destructor body) is used to allow the method to discover information

about how it was called. It takes an argument, subcommand, that tells it what sort of information is

actually desired; if omitted the result will be the same as if self object was invoked. The supported

subcommands are:

self call
This returns a two-element list describing the method implementations used to implement the

current call chain. The first element is the same as would be reported by info object call for

the current method (except that this also reports useful values from within constructors and

destructors, whose names are reported as <constructor> and <destructor> respectively), and

the second element is an index into the first element's list that indicates which actual

implementation is currently executing (the first implementation to execute is always at index

0).

self caller
When the method was invoked from inside another object method, this subcommand returns a

three element list describing the containing object and method. The first element describes the

declaring object or class of the method, the second element is the name of the object on which

the containing method was invoked, and the third element is the name of the method (with the

strings <constructor> and <destructor> indicating constructors and destructors

respectively).

self class
This returns the name of the class that the current method was defined within. Note that this

will change as the chain of method implementations is traversed with next, and that if the

method was defined on an object then this will fail.

If you want the class of the current object, you need to use this other construct:

info object class [self object]

self filter
When invoked inside a filter, this subcommand returns a three element list describing the

filter. The first element gives the name of the object or class that declared the filter (note that

this may be different from the object or class that provided the implementation of the filter),

the second element is either object or class depending on whether the declaring entity was an

object or class, and the third element is the name of the filter.

self method

https://www.tcl.tk/man/tcl/TclCmd/next.htm
https://www.tcl.tk/man/tcl/TclCmd/info.htm

This returns the name of the current method (with the strings <constructor> and

<destructor> indicating constructors and destructors respectively).

self namespace
This returns the name of the unique namespace of the object that the method was invoked

upon.

self next
When invoked from a method that is not at the end of a call chain (i.e. where the next
command will invoke an actual method implementation), this subcommand returns a two

element list describing the next element in the method call chain; the first element is the name

of the class or object that declares the next part of the call chain, and the second element is the

name of the method (with the strings <constructor> and <destructor> indicating

constructors and destructors respectively). If invoked from a method that is at the end of a call

chain, this subcommand returns the empty string.

self object
This returns the name of the object that the method was invoked upon.

self target
When invoked inside a filter implementation, this subcommand returns a two element list

describing the method being filtered. The first element will be the name of the declarer of the

method, and the second element will be the actual name of the method.

EXAMPLES

This example shows basic use of self to provide information about the current object:

oo::class create c {
 method foo {} {
 puts "this is the [self] object"
 }
}
c create a
c create b
a foo → prints "this is the ::a object"
b foo → prints "this is the ::b object"

This demonstrates what a method call chain looks like, and how traversing along it changes the

index into it:

oo::class create c {
 method x {} {
 puts "Cls: [self call]"
 }
}
c create a
oo::objdefine a {
 method x {} {
 puts "Obj: [self call]"
 next
 puts "Obj: [self call]"
 }
}
a x → Obj: {{method x object method} {method x ::c method}} 0
 → Cls: {{method x object method} {method x ::c method}} 1
 → Obj: {{method x object method} {method x ::c method}} 0

https://www.tcl.tk/man/tcl/TclCmd/next.htm

