

Ubuntu® Linux®

Bible

Ubuntu® Linux®

BIBLE
David Clinton

Christopher Negus

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-72233-5

ISBN: 978-1-119-72234-2 (ebk)

ISBN: 978-1-119-72235-9 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO

REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS

OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION

WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED

BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE

SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS

NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL

ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.

NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT

THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL

SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES

THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.

FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE

CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020945959

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
Ubuntu is a registered trademark of Canonical Limited. Linux is a registered trademark of Linus Torvalds.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with
any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

v

About the Authors
David Clinton is a Linux server admin and AWS Solutions Architect who has worked with

IT infrastructure in both academic and enterprise environments. He’s administrated physi-

cal systems, containers, and networks using many Ubuntu flavors for more than a dozen

years. He has authored technology books—including AWS Certified Solutions Architect Study

Guide: Associate SAA-C01 Exam (Sybex, 2020)—and created tens of video courses for Plural-

sight teaching Amazon Web Services and Linux administration, server virtualization, and

IT security.

In a previous life, David spent 20 years as a high school teacher. He currently lives in Toronto,

Canada, with his wife and family and can be reached through his website: www.bootstrap-it.com.

Chris Negus is a principal technical writer for Red Hat, Inc. In his decades of working with

Linux and UNIX, Chris has taught hundreds of IT professionals to become certified Linux

engineers, and he has written scores of documents on everything from Linux to virtualiza-

tion to cloud computing and containerization.

Chris has also written and contributed to dozens of books on Linux and UNIX, including the

Linux Bible (all editions), Linux Troubleshooting Bible, Red Hat Linux Bible (all editions), Docker

Containers, CentOS Bible, Fedora Bible, Linux Toys, and Linux Toys II. Chris also co-authored

several books for the Linux Toolbox series for power users: Ubuntu Linux Toolbox, Fedora Linux

Toolbox, SUSE Linux Toolbox, Mac OS X Toolbox, and BSD UNIX Toolbox.

Before becoming an author and educator, Chris worked for eight years with the organization

at AT&T that developed the UNIX operating system before moving to Utah to help contribute

to Novell’s UnixWare project in the early 1990s. When not writing about Linux, Chris enjoys

playing soccer, hanging out with his wife, Sheree, and spending what time he can with his

sons, Seth and Caleb.

http://bootstrap-it.com

vii

About the Technical Editor

Jason W. Eckert is an experienced technical trainer, consultant, and best-selling author in

the technology industry. With 45 industry certifications, over 30 years of technology and

programming experience, 4 published apps, and 25 published textbooks covering topics such

as UNIX, Linux, Security, Windows Server, Microsoft Exchange Server, PowerShell, BlackBerry

Enterprise Server, and Video Game Development, Mr. Eckert brings his expertise to every

class that he teaches at triOS College. He was also named 2019 Outstanding Train-the-Trainer

from the Computing Technology Industry Association (CompTIA). For more information about

Mr. Eckert, visit www.jasoneckert.net.

http://jasoneckert.net

ix

Acknowledgments

L
ooking through the chapters of this book forces me to wonder at the size and ambi-

tion of the world of open source software. And that makes me think about all the

thousands of developers, admins, architects, and—yes—writers who make this vast

universe possible. This book is a testament to the hard work and community spirit of those

individuals.

I would like to thank my wife for all her help and support through the long and demanding

process of writing these books. And, once again, I’m indebted to all the great people at Wiley

who helped me turn a plain old manuscript into a great teaching tool.

—David Clinton

When I was hired at Red Hat about a dozen years ago, I didn’t know that the organization

would grow to about seven times its size, be bought by IBM for $34 billion, and (so far) still

maintain the spirit of openness and excitement that it had when I first signed on. Every

day when I come to work, I interact with many of the greatest Linux and cloud developers,

testers, instructors, and support professionals in the world.

While I can’t thank everyone individually, there are a few people that I want to acknowl-

edge in particular. I have the good fortune to take on so many cool and challenging projects

because of the freedom that I receive from the people to whom I report at work. They include

Michelle Bearer, Dawn Eisner, and Sam Knuth. Sam in particular has had my back and encour-

aged my work for more than a decade.

In my daily work, I want to give a shout out to my incredibly talented colleagues Scott

McCarty, Ben Breard, Laurie Friedman, Dave Darrah, Micah Abbott, Steve Milner, Ian McLeod,

Tom McKay, Joey Schorr, Bill Dettelback, Richa Marwaha, and Dirk Herrmann. Finally, a spe-

cial thank you to Vikram Goyal, who luckily lives in Australia, so he is always available to

bail me out when I blow up git in the middle of the night.

When it comes to support for writing this book, I have had the luxury of an excellent techni-

cal editor: Jason Eckert. He also worked on my most recent edition of The Linux Bible, and his

broad experience with Linux systems has helped immensely. As for Devon Lewis, Kelly Talbot,

and the people at Wiley, thanks for letting me continue to develop and improve this book

over the years. Thanks also to Margot Maley Hutchison from Waterside Productions for con-

tracting the book for me with Wiley and always looking out for my best interests.

Finally, thanks to my wife, Sheree, for sharing her life with me and doing such a great job

raising Seth and Caleb.

—Christopher Negus

xi

Contents at a Glance

Acknowledgments .ix

Introduction. xxix

Part I: Getting Started 1
Chapter 1: Starting with Linux ... 3

Chapter 2: Creating the Perfect Linux Desktop ..21

Part II: Becoming a.Linux Power User 43
Chapter 3: Using the Shell ...45

Chapter 4: Moving Around the Filesystem ..77

Chapter 5: Working with Text Files ..97

Chapter 6: Managing Running Processes ... 117

Chapter 7: Writing Simple Shell Scripts .. 133

Part III: Becoming a.Linux System Administrator 151
Chapter 8: Learning System Administration ... 153

Chapter 9: Installing Linux ... 177

Chapter 10: Getting and Managing Software ...201

Chapter 11: Managing User Accounts .. 215

Chapter 12: Managing Disks and Filesystems .. 237

Part IV: Becoming a.Linux Server Administrator 267
Chapter 13: Understanding Server Administration .. 269

Chapter 14: Administering Networking ..299

Chapter 15: Starting and Stopping Services .. 327

Chapter 16: Configuring a Print Server ... 363

Chapter 17: Configuring a Web Server ...385

Chapter 18: Configuring an FTP Server ... 413

Chapter 19: Configuring a Windows File Sharing (Samba) Server.....................................429

Chapter 20: Configuring an NFS File Server ...447

Chapter 21: Troubleshooting Linux ..467

Part V: Learning Linux Security Techniques 493
Chapter 22: Understanding Basic Linux Security ... 495

Chapter 23: Understanding Advanced Linux Security .. 525

Contents at a Glance

xii

Chapter 24: Enhancing Linux Security with AppArmor .. 553

Chapter 25: Securing Linux on a Network ... 561

Part VI: Engaging with.Cloud Computing 585
Chapter 26: Shifting to Clouds and Containers ..587

Chapter 27: Deploying Linux to the Public Cloud ...601

Chapter 28: Automating Apps and Infrastructure with Ansible 619

Chapter 29 Deploying Applications as Containers with Kubernetes 633

Appendix: Exercise Answers ..649

Index .. 701

xiii

Contents

Acknowledgments . ix

Introduction . xxix

Part I: Getting Started 1

Chapter 1: Starting with Linux . 3

Understanding What Linux Is .. 4

Understanding How Linux Differs from Other Operating Systems 6

Exploring Linux History .. 7

Free-flowing UNIX culture at Bell Labs ... 7

Commercial UNIX ... 9

Berkeley Software Distribution arrives .. 9

UNIX Laboratory and commercialization ...10

GNU transitions UNIX to freedom ...11

BSD loses some steam ..13

Linus builds the missing piece ...13

OSI open source definition ...14

Understanding How Linux Distributions Emerged ...16

Understanding Red Hat ..17

Understanding Ubuntu and other Debian distributions17

Finding Professional Opportunities with Linux Today ...18

Understanding how companies make money with Linux19

Summary ..20

Chapter 2: Creating the Perfect Linux Desktop . 21

Understanding Linux Desktop Technology ...22

Starting with the GNOME 3 Desktop Live Image ..24

Using the GNOME 3 Desktop ..25

After the computer boots up ..25

Navigating with the mouse ..25

Navigating with the keyboard ..30

Setting up the GNOME 3 desktop ..31

Extending the GNOME 3 desktop ...31

Using GNOME shell extensions ..32

Using the GNOME Tweak Tool ...33

Contents

xiv

Starting with desktop applications ...33

Managing files and folders with Nautilus ..33

Installing and managing additional software ..35

Playing music with Rhythmbox ...37

Stopping the GNOME 3 desktop ...37

Using the Unity Graphical Shell with the GNOME Desktop ..37

Using the Metacity window manager ..38

Changing GNOME’s appearance ..40

Using the panels ...40

Adding a drawer ...41

Changing panel properties ...41

Summary ..42

Exercises ...42

Part II: Becoming a Linux Power User 43

Chapter 3: Using the Shell. 45

About Shells and Terminal Windows ..46

Using the shell prompt...47

Using a Terminal window .. 48

Using virtual consoles ...49

Choosing Your Shell ...49

Running Commands ...50

Understanding command syntax ..51

Locating commands ...53

Recalling Commands Using Command History ..56

Command-line editing ...56

Command-line completion ..58

Command-line recall ..59

Connecting and Expanding Commands ..61

Piping between commands ...62

Sequential commands ..62

Background commands ..63

Expanding commands ..63

Expanding arithmetic expressions ..63

Expanding variables ..64

Using Shell Variables ..64

Creating and using aliases ...66

Exiting the shell ...67

Creating Your Shell Environment ...67

Configuring your shell ...67

Setting your prompt ..68

Adding environment variables ...70

Contents

xv

Getting Information about Commands ...71

Summary ..74

Exercises ...74

Chapter 4: Moving Around the Filesystem . 77

Using Basic Filesystem Commands ...80

Using Metacharacters and Operators ..82

Using file-matching metacharacters ..82

Using file-redirection metacharacters .. 84

Using brace expansion characters ...85

Listing Files and Directories ...86

Understanding File Permissions and Ownership ..90

Changing permissions with chmod (numbers) ..91

Changing permissions with chmod (letters) ...92

Setting default file permission with umask ...93

Changing file ownership ..93

Moving, Copying, and Removing Files ..94

Summary ..95

Exercises ...96

Chapter 5: Working with Text Files . 97

Editing Files with vim and vi ..97

Starting with vi ..99

Adding text ..99

Moving around in the text ..100

Deleting, copying, and changing text ... 101

Pasting (putting) text ... 102

Repeating commands .. 102

Exiting vi ... 102

Skipping around in the file .. 103

Searching for text ... 103

Using ex mode ..104

Learning more about vi and vim ...104

Finding Files ... 105

Using locate to find files by name ... 105

Searching for files with find ... 107

Finding files by name ..108

Finding files by size ..108

Finding files by user ...109

Finding files by permission ..109

Finding files by date and time ... 110

Using “not” and “or” when finding files .. 111

Finding files and executing commands ... 112

Searching in files with grep ... 113

Summary .. 115

Exercises ... 115

Contents

xvi

Chapter 6: Managing Running Processes . 117

Understanding Processes .. 117

Listing Processes ... 118

Listing processes with ps ... 118

Listing and changing processes with top ...120

Listing processes with System Monitor .. 122

Managing Background and Foreground Processes .. 124

Starting background processes ... 124

Using foreground and background commands .. 125

Killing and Renicing Processes .. 126

Killing processes with kill and killall .. 126

Using kill to signal processes by PID... 127

Using killall to signal processes by name ..128

Setting processor priority with nice and renice ...128

Limiting Processes with cgroups ...129

Summary .. 131

Exercises ... 131

Chapter 7: Writing Simple Shell Scripts . 133

Understanding Shell Scripts.. 133

Executing and debugging shell scripts ..134

Understanding shell variables .. 135

Special shell positional parameters ..136

Reading in parameters .. 137

Parameter expansion in bash ... 137

Performing arithmetic in shell scripts ...138

Using programming constructs in shell scripts ..139

The “if. . .then” statements ...139

The case command .. 142

The “for. . .do” loop .. 143

The “while. . .do” and “until. . .do” loops ...144

Trying some useful text manipulation programs .. 145

The global regular expression print .. 145

Remove sections of lines of text (cut) .. 145

Translate or delete characters (tr) ..146

The stream editor (sed) ...146

Using simple shell scripts ... 147

Telephone list ... 147

Backup script ...148

Summary .. 149

Exercises ... 149

Contents

xvii

Part III: Becoming a Linux System Administrator 151

Chapter 8: Learning System Administration . 153

Understanding System Administration .. 153

Using Graphical Administration Tools .. 155

Using Cockpit browser-based administration ... 155

Using other browser-based admin tools ... 157

Invoking Administration Privileges ...158

Becoming root from the shell ...158

Gaining temporary admin access with sudo ... 159

Exploring Administrative Commands, Configuration Files, and Log Files 161

Administrative commands ... 161

Administrative configuration files .. 162

Administrative log files and systemd journal 165

Using journalctl to view the systemd journal 165

Managing log messages with rsyslogd ... 166

Using Other Administrative Accounts .. 167

Checking and Configuring Hardware .. 167

Checking your hardware ..168

Managing removable hardware ... 171

Working with loadable modules .. 172

Listing loaded modules ... 172

Loading modules... 173

Removing modules .. 174

Summary .. 174

Exercises ... 175

Chapter 9: Installing Linux. 177

Choosing a Computer .. 178

Installing Ubuntu Desktop ...180

Installing Ubuntu Server ..185

Understanding Cloud-Based Installations ...188

Installing Linux in the Enterprise ...189

Exploring Common Installation Topics ...189

Upgrading or installing from scratch ..189

Dual booting ...190

Installing Linux to run virtually .. 191

Using installation boot options .. 192

Boot options for disabling features .. 192

Boot options for video problems ... 193

Boot options for special installation types .. 193

Contents

xviii

Using specialized storage ...194

Partitioning hard drives .. 195

Understanding different partition types .. 196

Tips for creating partitions .. 196

Using the GRUB 2 boot loader ... 198

Summary .. 199

Exercises ... 199

Chapter 10: Getting and Managing Software . 201

Managing Software on the Desktop ...201

Going Beyond the Software Window ..203

Understanding Linux Software Packaging ..204

Working with Debian Packaging ..205

APT basics ..205

Working with APT repositories ...209

Working with dpkg .. 211

Summary .. 214

Exercises ... 214

Chapter 11: Managing User Accounts . 215

Creating User Accounts .. 215

Adding users with adduser ...218

Setting user defaults ...220

Modifying users with usermod ...222

Deleting users with deluser ..223

Understanding Group Accounts ...223

Using group accounts .. 224

Creating group accounts ..225

Managing Users in the Enterprise ..225

Setting permissions with Access Control Lists ... 226

Setting ACLs with setfacl .. 227

Setting default ACLs ...228

Enabling ACLs ..229

Adding directories for users to collaborate.. 231

Creating group collaboration directories (set GID bit) 231

Creating restricted deletion directories (sticky bit) 233

Centralizing User Accounts ... 233

Summary ..234

Exercises ...234

Chapter 12: Managing Disks and Filesystems . 237

Understanding Disk Storage .. 237

Partitioning Hard Disks ..239

Understanding partition tables ..239

Viewing disk partitions ...240

Contents

xix

Creating a single-partition disk .. 241

Creating a multiple-partition disk .. 245

Using Logical Volume Manager Partitions ... 249

Checking an existing LVM .. 249

Creating LVM logical volumes ... 252

Growing LVM logical volumes ...254

Mounting Filesystems ..254

Supported filesystems .. 255

Enabling swap areas .. 257

Disabling swap area ...258

Using the fstab file to define mountable filesystems258

Using the mount command to mount filesystems ... 261

Mounting a disk image in loopback ... 262

Using the umount command .. 262

Using the mkfs Command to Create a Filesystem .. 263

Managing Storage with Cockpit ...264

Summary .. 265

Exercises ...266

Part IV: Becoming a Linux Server Administrator 267

Chapter 13: Understanding Server Administration . 269

Getting Started with Server Administration .. 270

Step 1: Install the server ... 270

Step 2: Configure the server ... 272

Using configuration files ... 272

Checking the default configuration .. 272

Step 3: Start the server .. 272

Step 4: Secure the server ... 274

Password protection .. 274

Firewalls .. 274

TCP Wrappers .. 274

AppArmor .. 275

Security settings in configuration files ... 275

Step 5: Monitor the server .. 275

Configure logging ... 275

Run system activity reports... 276

Watch activity live with Cockpit .. 276

Keep system software up to date .. 277

Check the filesystem for signs of crackers ... 277

Checking and Setting Servers ... 277

Managing Remote Access with the Secure Shell Service .. 277

Starting the openssh-server service .. 278

Using SSH client tools ... 278

Using ssh for remote login ... 279

Using SSH for remote execution ...280

Contents

xx

Copying files between systems with scp and rsync281

Interactive copying with sftp ..284

Using key-based (passwordless) authentication ...285

Configuring System Logging ...286

Enabling system logging with rsyslog ...287

Understanding the rsyslog.conf file ..287

Understanding log messages ..289

Setting up and using a loghost with rsyslogd289

Watching logs with logwatch..290

Checking System Resources with sar ...291

Checking System Space ..293

Displaying system space with df ...293

Checking disk usage with du ..294

Finding disk consumption with find ...294

Managing Servers in the Enterprise ...295

Summary ..296

Exercises ...296

Chapter 14: Administering Networking . 299

Configuring Networking for Desktops ..300

Checking your network interfaces ..302

Checking your network from NetworkManager302

Checking your network from Cockpit ..303

Checking your network from the command line304

Configuring network interfaces ..308

Setting IP addresses manually ...308

Setting IP address aliases ..309

Setting routes .. 310

Configuring a network proxy connection ... 311

Configuring Networking from the Command Line ... 312

Configure networking with nmtui ... 312

Editing a NetworkManager TUI connection .. 313

Understanding networking configuration files ... 314

Other networking files .. 315

Setting alias network interfaces ... 318

Setting up Ethernet channel bonding ... 319

Setting custom routes ...320

Configuring Networking in the Enterprise .. 321

Configuring Linux as a router ... 321

Configuring Linux as a DHCP server .. 322

Configuring Linux as a DNS server .. 322

Configuring Linux as a proxy server ..323

Summary ..323

Exercises ... 324

Contents

xxi

Chapter 15: Starting and Stopping Services . 327

Understanding the Initialization Daemon (init or systemd)................................... 328

Understanding the classic init daemons ..329

Understanding systemd initialization ... 335

Learning systemd basics ... 335

Learning systemd’s backward compatibility to SysVinit 341

Checking the Status of Services ..343

Checking services for SysVinit systems ...343

Stopping and Starting Services ...346

Stopping and starting SysVinit services ..346

Stopping a service with systemd .. 347

Starting a service with systemd ...348

Restarting a service with systemd ...348

Reloading a service with systemd ..349

Enabling Persistent Services ...350

Configuring persistent services for SysVinit ..350

Enabling a service with systemd .. 351

Disabling a service with systemd ... 352

Configuring a Default Runlevel or Target Unit .. 353

Configuring the SysVinit default runlevel .. 353

Adding New or Customized Services ..354

Adding new services to SysVinit ... 355

Step 1: Create a new or customized service script file 355

Step 2: Add the service script to /etc/rc.d/init.d................................. 356

Step 3: Set appropriate permission on the script 357

Step 4: Add the service to runlevel directories 357

Adding new services to systemd ... 357

Step 1: Create a new or customized service configuration unit file358

Step 2: Move the service configuration unit file358

Step 3: Add the service to the Wants directory 359

Summary ..360

Exercises ...360

Chapter 16: Con�guring a Print Server . 363

Common UNIX Printing System ... 363

Setting Up Printers ..365

Adding a printer automatically ...365

Using web-based CUPS administration ..366

Allow remote printing administration .. 367

Add a printer not automatically detected.. 367

Using the Print Settings window ..368

Configuring local printers with the Print Settings window369

Configuring remote printers .. 372

Adding a remote CUPS printer.. 373

Adding a remote UNIX (LDP/LPR) printer .. 373

Adding a Windows (SMB) printer .. 374

Contents

xxii

Working with CUPS Printing ... 375

Configuring the CUPS server (cupsd.conf) ... 375

Starting the CUPS server ... 376

Configuring CUPS printer options manually ... 377

Using Printing Commands .. 378

Printing with lp .. 378

Listing status with lpstat -t ... 379

Removing print jobs with cancel .. 379

Configuring Print Servers ...380

Configuring a shared CUPS printer ..380

Configuring a shared Samba printer ..381

Understanding smb.conf for printing ...382

Setting up SMB clients ..382

Summary ..383

Exercises ...383

Chapter 17: Con�guring a Web Server . 385

Understanding the Apache Web Server ..385

Getting and Installing Your Apache Web Server ..386

Controlling Apache ..389

Securing Apache ...389

Apache file permissions and ownership ..389

Apache and firewalls ...390

Apache and AppArmor...390

Understanding the Apache configuration files ... 393

Using directives .. 393

Understanding default settings .. 395

Adding a virtual host to Apache ...398

Allowing users to publish their own web content ...400

Securing your web traffic with TLS ...401

Understanding how SSL is configured ...402

Generating an SSL key and self-signed certificate403

Generating a certificate signing request ...405

Troubleshooting Your Web Server ..406

Checking for configuration errors ...406

Access forbidden and server internal errors ...408

Summary .. 410

Exercises ... 410

Chapter 18: Con�guring an FTP Server . 413

Understanding FTP .. 413

Installing the vsftpd FTP Server ... 415

Controlling the vsftpd Service .. 416

Securing your FTP server ... 417

Integrating Linux file permissions with vsftpd .. 418

Configuring Your FTP Server ... 418

Contents

xxiii

Setting up user access ... 418

Allowing uploading ... 419

Setting up vsftpd for the Internet ..420

Using FTP Clients to Connect to Your Server ...422

Accessing an FTP server from a browser ..422

Accessing an FTP server with the lftp command ..423

Using the gFTP client ..425

Summary ..426

Exercises ...426

Chapter 19: Con�guring a Windows File Sharing (Samba) Server 429

Understanding Samba ..429

Installing Samba ...430

Controlling Samba ... 431

Viewing Samba processes ... 431

Configuring Samba ... 435

Configuring the [global] section ... 435

Configuring the [homes] section ... 437

Configuring the [printers] section .. 437

Creating a Samba shared folder ..438

Checking the Samba share ...438

Accessing Samba Shares ... 441

Accessing Samba shares in Linux ..442

Accessing Samba shares from a Linux file manager442

Mounting a Samba share from a Linux command line442

Accessing Samba shares in Windows ...444

Using Samba in the Enterprise ..444

Summary ..444

Exercises ...445

Chapter 20: Con�guring an NFS File Server . 447

Installing an NFS Server ...448

Starting the NFS Service ..449

Sharing NFS Filesystems ...450

Configuring the /etc/exports file ..450

Hostnames in /etc/exports .. 451

Access options in /etc/exports... 452

User mapping options in /etc/exports .. 453

Exporting the shared filesystems ..454

Securing Your NFS Server ...454

Using NFS Filesystems .. 455

Viewing NFS shares ... 456

Manually mounting an NFS filesystem ... 456

Mounting an NFS filesystem at boot time .. 457

Mounting noauto filesystems ...458

Using mount options ...458

Contents

xxiv

Using autofs to mount NFS filesystems on demand460

Automounting to the /net directory ..460

Automounting home directories ... 461

Unmounting NFS Filesystems ..463

Summary ..464

Exercises ...464

Chapter 21: Troubleshooting Linux . 467

Boot-Up Troubleshooting ..467

Understanding startup ..468

Starting from the firmware (BIOS or UEFI) ..469

Troubleshooting BIOS setup ... 470

Troubleshooting boot order ... 471

GRUB 2 boot loader .. 471

Starting the kernel ... 472

Troubleshooting the initialization system .. 474

Troubleshooting Software Packages ... 476

Troubleshooting Networking ... 479

Troubleshooting outgoing connections.. 479

View network interfaces ..480

Check physical connections ...480

Check routes ..481

Check hostname resolution ..482

Troubleshooting incoming connections ...483

Check if the client can reach your system at all483

Check if the service is available to the client484

Check the service on the server ...485

Troubleshooting Memory ..485

Uncovering memory issues ...486

Checking for memory problems ..488

Dealing with memory problems ..489

Summary .. 490

Exercises ... 490

Part V: Learning Linux Security Techniques 493

Chapter 22: Understanding Basic Linux Security . 495

Implementing Physical Security .. 495

Implementing disaster recovery ... 496

Securing user accounts .. 496

One user per user account ... 497

Limiting access to the root user account .. 497

Setting expiration dates on temporary accounts 497

Removing unused user accounts .. 498

Securing passwords ...500

Choosing good passwords ..500

Contents

xxv

Setting and changing passwords ..501

Enforcing best password practices ..502

Understanding the password files and password hashes504

Securing the filesystem ...506

Managing dangerous filesystem permissions506

Securing the password files ...507

Locking down the filesystem ...508

Managing software and services ...509

Updating software packages ..509

Keeping up with security advisories ...509

Advanced implementation.. 510

Monitoring Your Systems .. 510

Monitoring log files ... 510

Monitoring user accounts ... 512

Detecting counterfeit accounts and privileges 512

Detecting bad account passwords ... 514

Monitoring the filesystem .. 516

Verifying software packages .. 516

Scanning the filesystem .. 516

Detecting viruses and rootkits ... 518

Auditing and Reviewing Linux .. 521

Conducting compliance reviews .. 521

Conducting security reviews .. 522

Summary .. 522

Exercises ...523

Chapter 23: Understanding Advanced Linux Security . 525

Implementing Linux Security with Cryptography ... 525

Understanding hashing ... 526

Understanding encryption/decryption .. 527

Understanding cryptographic ciphers ... 527

Understanding cryptographic cipher keys ... 527

Understanding digital signatures ... 533

Implementing Linux cryptography ... 535

Ensuring file integrity .. 535

Encrypting a Linux filesystem at installation 536

Encrypting a Linux directory ... 537

Encrypting a Linux file ...540

Encrypting Linux with miscellaneous tools ..540

Using Encryption from the Desktop .. 541

Implementing Linux Security with PAM ... 541

Understanding the PAM authentication process ...542

Understanding PAM contexts ...543

Understanding PAM control flags ...544

Understanding PAM modules ..545

Understanding PAM system event configuration files545

Contents

xxvi

Administering PAM on your Linux system ...546

Managing PAM-aware application configuration files546

Implementing resources limits with PAM .. 547

Implementing time restrictions with PAM ...549

Enforcing good passwords with PAM ...550

Encouraging sudo use with PAM ... 551

Obtaining more information on PAM ... 551

Summary .. 552

Exercises ... 552

Chapter 24: Enhancing Linux Security with AppArmor . 553

Understanding AppArmor ... 553

Working with AppArmor ...556

Summary .. 559

Exercises ...560

Chapter 25: Securing Linux on a Network . 561

Auditing Network Services ... 561

Evaluating access to network services with nmap ..563

Using nmap to audit your network services’ advertisements566

Working with Firewalls ... 570

Understanding firewalls ... 571

Implementing firewalls .. 572

Starting with UFW .. 572

Understanding the iptables utility ... 574

Using the iptables utility .. 576

Summary ..583

Exercises ...583

Part VI: Engaging with Cloud Computing 585

Chapter 26: Shifting to Clouds and Containers . 587

Understanding Linux Containers ...588

Namespaces ..589

Container registries ...589

Base images and layers ..590

Working with Linux Containers ...590

Deploying LXD containers ..590

Deploying Docker containers .. 593

Using containers in the enterprise ..600

Summary ..600

Exercises ...600

Contents

xxvii

Chapter 27: Deploying Linux to the Public Cloud . 601

Running Linux in the Cloud Using cloud-init ...601

Creating LXD Linux Images for Cloud Deployments ...604

Working with LXD profiles ..604

Working with LXD images ..607

Using OpenStack to deploy cloud images ...608

Using Amazon EC2 to Deploy Cloud Images .. 610

Installing the AWS CLI ... 611

Provisioning and launching an EC2 instance ... 613

Summary .. 618

Exercises ... 618

Chapter 28: Automating Apps and Infrastructure with Ansible . 619

Understanding Ansible ...620

Exploring Ansible Components .. 621

Inventories ... 621

Playbooks ... 622

Plays ... 622

Tasks ... 622

Modules ... 622

Roles, imports, and includes ..623

Stepping Through an Ansible Deployment ..623

Prerequisites ... 624

Setting up SSH keys to each node ... 624

Installing Ansible .. 626

Creating an inventory .. 626

Authenticating to the hosts ... 626

Creating a playbook ... 627

Run the playbook ..628

Running Ad-Hoc Ansible Commands ..629

Trying ad-hoc commands ...629

Summary .. 631

Exercises ... 631

Chapter 29 Deploying Applications as Containers with Kubernetes 633

Understanding Kubernetes ...634

Kubernetes masters ...634

Kubernetes workers ... 635

Kubernetes applications ... 635

Kubernetes interfaces .. 636

Trying Kubernetes ... 636

Getting Kubernetes up and running ... 637

Deploying a Kubernetes application ..638

Getting information on the deployment’s pods .. 639

Contents

xxviii

Exposing applications with services ..643

Scaling up an application ...644

Checking the load balancer ..645

Scaling down an application ..646

Deleting a service..646

Summary .. 647

Exercises ... 647

Appendix: Exercise Answers . 649

Index . 701

xxix

Introduction

Y
ou can’t learn Ubuntu without using it. But if you’re ready for some serious hands-on

research and experimentation, you can go a long way with this book. The Ubuntu Linux

Bible is based on the 10th edition of Linux Bible, but has been refocused to ensure

everything will work specifically on Ubuntu “right out of the box.”

Ubuntu may be the world’s most popular all-purpose Linux distribution. Canonical, the com-

pany that stands behind Ubuntu, reports that “Ubuntu powers millions of PCs worldwide.” It

describes it as “the world’s most popular operating system across public clouds and OpenStack

clouds” and “the #1 OS for containers.” In fact, as of this writing, of the more than a million

virtual server instances currently running on the Amazon Web Services cloud, more than 32

percent are standalone Ubuntu installations (the total number, when you include Bitnami

stacks, is probably closer to 60 percent). Compare that to Microsoft Windows share of 6

percent and the 2 percent attributed to Red Hat Enterprise Linux (see www.thecloudmarket

.com/stats).

Ubuntu has become such an industry standard that when Microsoft released its Windows

Subsystem for Linux feature back in 2016, Ubuntu was the only Linux distribution initially

available.

Most of the skills we’ll learn here will transfer well to other Linux distributions—and espe-

cially to distros like Debian, Mint, and Kali Linux that share upstream sources with Ubuntu.

So if you’re looking to get in on the action, stick around for the whole thing.

Beginner to certified professional: As long as you have used a computer, mouse, and

keyboard, you can reach good places using this book. We’ll show you how to get and

install Ubuntu, quickly put it to productive use, use it to solve critical problems

and build powerful server environments, and ultimately excel at administering and

securing it.

System administrator focused: When you’re finished with this book, you will know

how to use, modify, and maintain Ubuntu. Almost all of the topics needed to

achieve one or more Linux administration certifications are covered in this book.

That said, many software developers and hobbyists will also enjoy it as they work to

improve their skills.

Emphasis on command-line tools: Although point-and-click graphic interfaces are as

good or better as anything else these days, many advanced features can only be uti-

lized by entering commands and editing configuration files manually. We’ll mostly

focus on mastering the Linux command-line shell.

http://thecloudmarket.com/stats
http://thecloudmarket.com/stats

Introduction

xxx

Many, many demos and exercises: Instead of just telling you what Ubuntu does, we

actually show you what it does. Then, to make sure that you’ve nailed it, you’ll have

the opportunity to try it yourself. Every procedure and exercise has been tested to

work in Ubuntu.

Ubuntu Linux Bible includes in-depth discussions covering server virtualization, infrastruc-

ture orchestration, and managing cloud and containerized applications (individually or

at scale):

Cockpit administration web UI: Since the dawn of the Linux age, people have strug-

gled to develop simple graphical or browser-based interfaces for managing Linux

systems. Cockpit may well have finally delivered a way to manage the basic Linux

features through its web UI. Throughout this book, Cockpit will be our graphic tool

of choice. With Cockpit, you can now add users, manage storage, monitor activities,

and do many other administrative tasks through a single interface.

Cloud technologies: Our coverage will include setting up your own Linux host for

running virtual machines and running Linux in a cloud environment, such as Ama-

zon Web Services. Linux is at the heart of most technological advances in cloud

computing today. That means you need a solid understanding of Linux to work

effectively in tomorrow’s data centers. The first chapters will cover all the Linux

basics, which you’ll use through our various cutting-edge virtualization, net-

working, and storage administration exercises.

Ansible: Automating tasks for managing systems is now an unavoidable part of mod-

ern digital administration. Using Ansible, you can create playbooks that define

the state of a Linux system. This includes things like setting which packages are

installed, which services are running, and how features are configured. A play-

book can configure one system or a thousand systems, be combined to form a set

of system services, and be run again to return a system to a defined state. We’ll

get introduced to Ansible, create our first Ansible playbook, and run ad-hoc Ansi-

ble commands.

Containers: Packaging and running applications in containers is becoming the

preferred method for deploying, managing, and updating small, scalable software

services and features. You’ll learn how to pull container images, run them, stop

them, and even build your own container images using LXD and Docker.

Kubernetes: While containers are nice on their own, to be able to deploy, manage, and

upgrade containers in a large enterprise, you need an orchestration platform. The

Kubernetes project provides a powerful platform for just that purpose.

How This Book Is Organized
The book is organized to enable you to start off at the very beginning with Linux and grow

to become a professional Ubuntu system administrator and power user.

Introduction

xxxi

Part I, “Getting Started,” includes two chapters designed to help you understand what

Linux is and get you started with an Ubuntu desktop:

 ■ Chapter 1, “Starting with Linux,” covers topics such as what the Linux operating

system is, where Ubuntu fits in, and how to get started using it.

 ■ Chapter 2, “Creating the Perfect Linux Desktop,” provides information on how you

can create a desktop system and use some of the most popular desktop features.

Part II, “Becoming a Linux Power User,” provides in-depth details on how to use the Linux

shell, work with filesystems, manipulate text files, manage processes, and use shell scripts:

 ■ Chapter 3, “Using the Shell,” includes information on how to access a shell, run

commands, recall commands (using history), and do tab completion. The chapter

also describes how to use variables, aliases, and man pages (traditional Linux

command reference pages).

 ■ Chapter 4, “Moving Around the Filesystem,” includes commands for listing, cre-

ating, copying, and moving files and directories. More advanced topics in this

chapter include filesystem security, such as file ownership, permissions, and access

control lists.

 ■ Chapter 5, “Working with Text Files,” includes everything from basic text editors to

tools for finding files and searching for text within files.

 ■ Chapter 6, “Managing Running Processes,” describes how to see what processes

are running on your system and change them. Ways of changing processes include

killing, pausing, and sending other types of signals.

 ■ Chapter 7, “Writing Simple Shell Scripts,” includes shell commands and functions

that you can gather together into a file to run as a command itself.

In Part III, “Becoming a Linux System Administrator,” you learn how to administer

Ubuntu systems:

 ■ Chapter 8, “Learning System Administration,” provides information on basic

graphical tools, commands, and configuration files for administering Ubuntu sys-

tems. It introduces the Cockpit web UI for simplified, centralized administration.

 ■ Chapter 9, “Installing Linux,” covers common installation tasks, such as disk par-

titioning and initial software package selection, as well as more advanced installa-

tion tools.

 ■ Chapter 10, “Getting and Managing Software,” provides an understanding of how

software packages work and how to get and manage software packages.

 ■ Chapter 11, “Managing User Accounts,” discusses tools for adding and deleting

users and groups as well as how to centralize user account management.

 ■ Chapter 12, “Managing Disks and Filesystems,” provides information on adding par-

titions, creating filesystems, and mounting filesystems, as well as working with

logical volume management.

Introduction

xxxii

In Part IV, “Becoming a Linux Server Administrator,” you learn to create powerful network

servers and the tools needed to manage them:

 ■ Chapter 13, “Understanding Server Administration,” covers remote logging, moni-

toring tools, and the Linux boot process.

 ■ Chapter 14, “Administering Networking,” discusses how to configure networking.

 ■ Chapter 15, “Starting and Stopping Services,” provides information on process man-

agement tools—especially systemd.

 ■ Chapter 16, “Configuring a Print Server,” describes how to configure printers to use

locally on your Ubuntu system or over the network from other computers.

 ■ Chapter 17, “Configuring a Web Server,” describes how to configure an Apache

web server.

 ■ Chapter 18, “Configuring an FTP Server,” covers procedures for setting up a vsftpd

FTP server that can be used by others to download files from your Ubuntu system

over the network.

 ■ Chapter 19, “Configuring a Windows File Sharing (Samba) Server,” covers Windows

file server configuration with Samba.

 ■ Chapter 20, “Configuring an NFS File Server,” describes how to use Network File

System features to share folders of files among systems over a network.

 ■ Chapter 21, “Troubleshooting Linux,” covers popular tools for troubleshooting your

Ubuntu system.

In Part V, “Learning Linux Security Techniques,” you learn how to secure your Linux sys-

tems and services:

 ■ Chapter 22, “Understanding Basic Linux Security,” covers basic security concepts

and techniques.

 ■ Chapter 23, “Understanding Advanced Linux Security,” provides information on

using Pluggable Authentication Modules (PAM) and cryptology tools to tighten

system security and authentication.

 ■ Chapter 24, “Enhancing Linux Security with AppArmor,” shows you how AppArmor

can be configured to secure system services.

 ■ Chapter 25, “Securing Linux on a Network,” covers network security features,

such as the Uncomplicated Firewall (UFW) and iptables firewalls, to secure

system services.

In Part VI,” Engaging with Cloud Computing,” the book pivots from a single-system focus

toward containerization, cloud computing, and automation:

 ■ Chapter 26, “Shifting to Clouds and Containers,” describes how to pull, push, start,

stop, tag, and build container images.

 ■ Chapter 27, “Deploying Linux to the Cloud,” describes how to deploy Ubuntu images

to different cloud environments, including OpenStack, Amazon EC2, or a local

Ubuntu system configured for virtualization.

Introduction

xxxiii

 ■ Chapter 28, “Automating Apps and Infrastructure with Ansible,” tells you how to

create Ansible playbooks and run ad-hoc Ansible commands to automate the config-

uration of Ubuntu systems and other devices.

 ■ Chapter 29, “Deploying Applications as Containers with Kubernetes,” describes the

Kubernetes project and how it is used to orchestrate container images, with the

potential to massively scale up for large data centers.

Part VII contains an appendix with Exercise Answers, providing sample solutions to the

exercises included in Chapters 2 through 29.

Conventions Used in This Book
Throughout the book, special typography indicates code and commands. Commands and

code are shown in a monospaced font:

This is how code looks.

In the event that an example includes both input and output, the monospaced font is still

used, but input is presented in bold type to distinguish the two. Here’s an example:

$ ftp ftp.handsonhistory.com

Name (home:jake): jake

Password: ******

Commands that must be run using administrator permissions (often through sudo) will

display a # command-line prompt, like this:

nano /etc/group

All other commands will use the $ character, like this:

$ cat /etc/group

As for styles in the text:

 ■ New terms and important words appear in italic when introduced.

 ■ Keyboard strokes appear like this: Ctrl+A. This convention indicates to hold the Ctrl

key as you also press the “a” key.

 ■ Filenames, URLs, and code within the text appear as follows: persistence

.properties.

The following items call your attention to points that are particularly important.

NOTE

A Note box provides extra information to which you need to pay special attention.

TIP

A Tip box shows a special way of performing a particular task.

Introduction

xxxiv

Jumping into Linux
If you are new to Linux, you might have vague ideas about what it is and where it came

from. You may have heard something about it being free (as in cost) or free (as in freedom

to use it as you please). Before you start putting your hands on Linux (which we’ll do soon

enough), Chapter 1 seeks to answer some of your questions about the origins and features

of Linux and, in particular, Ubuntu.

Take your time and work through this book to get up to speed on Linux and how you can

make it work to meet your needs. This is your invitation to jump in and take the first step

toward becoming a Linux expert!

How to Contact Wiley or the Authors
If you believe you’ve found a mistake in this book, please bring it to our attention. At John

Wiley & Sons, we understand how important it is to provide our customers with accurate

content, but even with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service Team at

wileysupport@wiley.com with the subject line “Possible Book Errata Submission”.

You can contact Christopher Negus at striker57@gmail.com and David Clinton at

info@bootstrap-it.com.

CAUTION

A Caution box alerts you to take special care when executing a procedure or damage to your computer hardware or

software could result.

Visit the Ubuntu Linux Bible website
To �nd links to various Linux distributions, tips on gaining Linux certi�cation, and corrections to the
book as they become available, go to www.wiley.com/go/ubuntulinuxbible.

http://wileysupport@wiley.com
http://striker57@gmail.com
http://info@bootstrap-it.com
http://www.wiley.com/go/ubuntulinuxbible

Part I

IN THIS PART

Chapter 1

Starting with Linux

Chapter 2

Creating the Perfect Linux Desktop

Getting Started

3

CHAP T ER

1
Starting with Linux

IN THIS CHAPTER

Learning what Linux is

Learning where Linux came from

Understanding Linux distributions

Exploring professional opportunities with Linux

Becoming certi�ed in Linux

T
he operating systems war is over, and Linux has won. Proprietary operating systems simply

cannot keep up with the pace of improvements and quality that Linux can achieve with its

culture of sharing and innovation. Even Microsoft, whose former CEO Steve Ballmer once

referred to Linux as “a cancer,” now says that Linux’s use on Microsoft’s Azure cloud computing

 service has surpassed the use of Windows.

Linux is one of the most important technological advancements of the twenty-first century. Beyond

its impact on the growth of the Internet and its place as an enabling technology for a range of com-

puter-driven devices, Linux development has become a model for how collaborative projects can sur-

pass what single individuals and companies can do alone.

Google runs thousands upon thousands of Linux servers to power its search technology. Its Android

phones are based on Linux. Likewise, when you download and run Google’s Chrome OS, you get a

browser that is backed by a Linux operating system.

Facebook builds and deploys its site using what is referred to as a LAMP stack (Linux, Apache web

server, MySQL database, and PHP web scripting language)—all open source projects. In fact, Facebook

itself uses an open source development model, making source code for the applications and tools that

drive Facebook available to the public. This model has helped Facebook shake out bugs quickly, get

contributions from around the world, and fuel its exponential growth.

Financial organizations that have trillions of dollars riding on the speed and security of their

operating systems also rely heavily on Linux. These include the New York Stock Exchange, Chicago

Mercantile Exchange, and the Tokyo Stock Exchange.

Part I: Getting Started

4

As cloud continues to be one of the hottest buzzwords today, one part of the cloud that isn’t

hype is that Linux and other open source technologies continue to be the foundation on

which today’s greatest cloud innovations are being built. Every software component that

you need to build a private or public cloud (such as hypervisors, cloud controllers, network

storage, virtual networking, and authentication) is freely available from within the open

source world.

The widespread adoption of Linux around the world has created huge demand for Linux exper-

tise. This chapter starts you down a path to becoming a Linux—and Ubuntu—expert by

helping you understand what Linux is, where it came from, and what your opportunities are for

becoming proficient in it. The rest of this book provides you with hands-on activities to help

you gain that expertise. The book’s final part will show you how to apply that expertise to cloud

technologies, including automation tools and container orchestration technologies.

Understanding What Linux Is
Linux is a computer operating system. An operating system consists of the software that

manages your computer and lets you run applications on it. The features that make up

Linux and similar computer operating systems include the following:

Detecting and preparing hardware: When the Linux system boots up (when you turn

on your computer), it looks at the components on your computer (CPU, hard drive,

network cards, and so on) and loads the software (drivers and modules) needed to

access those particular hardware devices.

Managing processes: The operating system must keep track of multiple processes

running at the same time and decide which have access to the CPU and when.

The system also must offer ways of starting, stopping, and changing the status of

processes.

Managing memory: RAM and swap space (extended memory) must be allocated to

applications as they need memory. The operating system decides how requests for

memory are handled.

Providing user interfaces: An operating system must provide ways of accessing the

system. The first Linux systems were accessed from a command-line interpreter

called a shell. Today, graphical desktop interfaces are commonly available as well.

Controlling filesystems: Filesystem structures are built into the operating system (or

loaded as modules). The operating system controls ownership and access to the files

and directories (folders) that the filesystems contain.

Providing user access and authentication: Creating user accounts and allowing

boundaries to be set between users is a basic feature of Linux. Separate user and

group accounts enable users to control their own files and processes.

Offering administrative utilities: In Linux, hundreds (perhaps thousands) of com-

mands and graphical windows are available to do such things as add users, manage

Chapter 1: Starting with Linux

5

1

disks, monitor the network, install software, and generally secure and manage your

computer. Web UI tools, such as Cockpit, have lowered the bar for doing complex

administrative tasks.

Starting up services: To use printers, handle log messages, and provide a variety

of system and network services, processes called daemon processes run in the

background, waiting for requests to come in. Many types of services run in Linux.

Linux provides different ways of starting and stopping these services. In other

words, while Linux includes web browsers to view web pages, it can also be the com-

puter that serves up web pages to others. Popular server features include web, mail,

database, printer, file, DNS, and DHCP servers.

Programming tools: A wide variety of programming utilities for creating applications

and libraries for implementing specialty interfaces are available with Linux.

As someone managing Linux systems, you need to learn how to work with these features.

While many of them can be managed using graphical interfaces, an understanding of the

shell command line is critical for someone administering Linux systems.

Modern Linux systems now go way beyond what the first UNIX systems (on which Linux

was based) could do. Advanced features in Linux, often used in large enterprises, include

the following:

Clustering: Linux can be configured to work in clusters so that multiple systems can

appear as one system to the outside world. Services can be configured to pass back

and forth between cluster nodes while appearing to those using the services that

they are running without interruption.

Virtualization: To manage computing resources more efficiently, Linux can run as a

virtualization host. On that host, you could run other Linux systems, Microsoft

Windows, BSD, or other operating systems as virtual guests. To the outside world,

each of those virtual guests appears as a separate computer. KVM and Xen are two

technologies in Linux for creating virtual hosts.

Cloud computing: To manage large-scale virtualization environments, you can use

full-blown cloud computing platforms based on Linux. Projects such as OpenStack

and Red Hat Virtualization (and its upstream oVirt project) can simultaneously man-

age many virtualization hosts, virtual networks, user and system authentication,

virtual guests, and networked storage. Projects such as Kubernetes can manage con-

tainerized applications across massive data centers.

Real-time computing: Linux can be configured for real-time computing, where high-

priority processes can expect fast, predictable attention.

Specialized storage: Instead of just storing data on the computer’s hard disk, you

can store it on many specialized local and networked storage interfaces that are

available in Linux. Shared storage devices available in Linux include iSCSI, Fibre

Channel, and Infiniband. Entire open source storage platforms include projects such

as Ceph (www.ceph.io) and GlusterFS (www.gluster.org).

www.ceph.io
http://gluster.org/

Part I: Getting Started

6

Some of these advanced topics are not covered in this book. However, the features

covered here for using the shell, working with disks, starting and stopping services,

and configuring a variety of servers should serve as a foundation for working with those

advanced features.

Understanding How Linux Differs from Other

Operating Systems
If you are new to Linux, chances are good that you have used a Microsoft Windows or

macOS operating system. Although macOS had its roots in a free software operating system,

referred to as the Berkeley Software Distribution (more on that later), operating systems

from both Microsoft and Apple are considered proprietary operating systems. What that

means is the following:

 ■ You cannot see the code used to create the operating system, and therefore, you

cannot change the operating system at its most basic level if it doesn’t suit your

needs, and you can’t use the operating system to build your own operating system

from source code.

 ■ You cannot check the code to find bugs, explore security vulnerabilities, or simply

learn what that code is doing.

 ■ You may not be able to plug your own software easily into the operating system if

the creators of that system don’t want to expose the programming interfaces you

need to the outside world.

You might look at those statements about proprietary software and say, “What do I care?

I’m not a software developer. I don’t want to see or change how my operating system

is built.”

That may be true. However, the fact that others can take free and open source software

and use it as they please has driven the explosive growth of the Internet (think Google),

mobile phones (think Android), special computing devices (think TiVo), and hundreds of

technology companies. Free software has driven down computing costs and allowed for an

explosion of innovation.

Maybe you don’t want to use Linux—as Google, Facebook, and other companies have done—

to build the foundation for a multibillion-dollar company. Nonetheless, those companies

and others who now rely on Linux to drive their computer infrastructures need more and

more people with the skills to run those systems.

You may wonder how a computer system that is so powerful and flexible has come to be free

as well. To understand how that could be, you need to see where Linux came from. Thus the

next sections of this chapter describe the strange and winding path of the free software

movement that led to Linux.

Chapter 1: Starting with Linux

7

1

Exploring Linux History
Some histories of Linux begin with the following message, titled “What would you like to

see most in minix?” posted by Linus Torvalds to the comp.os.minix newsgroup on August

25, 1991, at

groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

Linus Benedict Torvalds

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and professional like gnu)

for 386(486) AT clones. This has been brewing since april, and is starting to get

ready. I’d like any feedback on things people like/dislike in minix, as my OS

resembles it somewhat (same physical layout of the file-system (due to practical

reasons, among other things). . .Any suggestions are welcome, but I won’t promise

I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes—it’s free of any minix code, and it has a multi-threaded fs. It is NOT

protable[sic] (uses 386 task switching etc), and it probably never will support

anything other than AT-harddisks, as that’s all I have :-(.

Minix was a UNIX-like operating system that ran on PCs in the early 1990s. Like Minix,

Linux was also a clone of the UNIX operating system. With few exceptions, such as Micro-

soft Windows, most modern computer systems (including macOS and Linux itself) were

derived from UNIX operating systems, created originally by AT&T.

To truly appreciate how a free operating system could have been modeled after a proprie-

tary system from AT&T Bell Laboratories, it helps to understand the culture in which UNIX

was created and the chain of events that made the essence of UNIX possible to repro-

duce freely.

Free-�owing UNIX culture at Bell Labs
The UNIX operating system was created and, from the very beginning, nurtured in a

communal environment. Its creation was not driven by market needs but by a desire to

overcome impediments to producing programs. AT&T, which owned the UNIX trademark

originally, eventually made UNIX into a commercial product. By that time, however, many

of the concepts (and even much of the early code) that made UNIX special had fallen into

the public domain.

NOTE

To learn more about how Linux was created, pick up the book Just for Fun: The Story of an Accidental Revolu-

tionary by Linus Torvalds (Harper Collins Publishing, 2001).

http://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
http://torvalds@kruuna.helsinki.fi

Part I: Getting Started

8

If you are not old enough to remember when AT&T split up in 1984, you may not remember

a time when AT&T was the phone company. Up until the early 1980s, AT&T didn’t have to

think much about competition because if you wanted a phone in the United States, you had

to go to AT&T. It had the luxury of funding pure research projects. The mecca for such pro-

jects was the Bell Laboratories site in Murray Hill, New Jersey.

After a project called Multics failed around 1969, Bell Labs employees Ken Thompson and

Dennis Ritchie set off on their own to create an operating system that would offer an

improved environment for developing software. Up to that time, most programs were writ-

ten on paper punch cards that had to be fed in batches to mainframe computers. In a 1980

lecture on “The Evolution of the UNIX Time-Sharing System,” Dennis Ritchie summed up

the spirit that started UNIX:

What we wanted to preserve was not just a good environment in which to do

programming, but a system around which a fellowship could form. We knew from

experience that the essence of communal computing as supplied by remote-

access, time-shared machines is not just to type programs into a terminal instead

of a keypunch, but to encourage close communication.

The simplicity and power of the UNIX design began breaking down barriers that, until

this point, had impeded software developers. The foundation of UNIX was set with several

key elements:

The UNIX filesystem: Because it included a structure that allowed levels of subdirec-

tories (which, for today’s desktop users, look like folders inside of folders), UNIX

could be used to organize the files and directories in intuitive ways. Furthermore,

complex methods of accessing disks, tapes, and other devices were greatly simplified

by representing those devices as individual device files that you could also access as

items in a directory.

Input/output redirection: Early UNIX systems also included input redirection and

pipes. From a command line, UNIX users could direct the output of a command to

a file using a right-arrow key (>). Later, the concept of pipes (|) was added where

the output of one command could be directed to the input of another command.

For example, the following command line concatenates (cat) file1 and file2, sorts

(sort) the lines in those files alphabetically, paginates the sorted text for printing

(pr), and directs the output to the computer’s default printer (lp):

$ cat file1 file2 | sort | pr | lp

This method of directing input and output enabled developers to create their own

specialized utilities that could be joined with existing utilities. This modularity

made it possible for lots of code to be developed by lots of different people. A user

could just put together the pieces they needed.

Portability: Simplifying the experience of using UNIX also led to it becoming extraor-

dinarily portable to run on different computer hardware. By having device drivers

(represented by files in the filesystem tree), UNIX could present an interface to

applications in such a way that the programs didn’t have to know about the details

Chapter 1: Starting with Linux

9

1

of the underlying hardware. To port UNIX later to another system, developers had

only to change the drivers. The application programs didn’t have to change for dif-

ferent hardware!

To make portability a reality, however, a high-level programming language was needed to

implement the software. To that end, Brian Kernighan and Dennis Ritchie created the

C programming language. In 1973, UNIX was rewritten in C. Today, C is still the primary

language used to create the UNIX (and Linux) operating system kernels.

As Ritchie went on to say in a 1979 lecture (www.bell-labs.com/usr/dmr/www/hist.html):

Today, the only important UNIX program still written in assembler is the assem-

bler itself; virtually all the utility programs are in C, and so are most of the

application’s programs, although there are sites with many in Fortran, Pascal, and

Algol 68 as well. It seems certain that much of the success of UNIX follows from

the readability, modifiability, and portability of its software that in turn follows

from its expression in high-level languages.

If you are a Linux enthusiast and are interested in what features from the early days of

Linux have survived, an interesting read is Dennis Ritchie’s reprint of the first UNIX pro-

grammer’s manual (dated November 3, 1971). You can find it at Dennis Ritchie’s website:

www.bell-labs.com/usr/dmr/www/1stEdman.html. The form of this documentation is UNIX

man pages, which is still the primary format for documenting UNIX and Linux operating

system commands and programming tools today.

What’s clear as you read through the early documentation and accounts of the UNIX system

is that the development was a free-flowing process, lacked ego, and was dedicated to mak-

ing UNIX excellent. This process led to a sharing of code (both inside and outside of Bell

Labs), which allowed rapid development of a high-quality UNIX operating system. It also

led to an operating system that AT&T would find difficult to reel back in later.

Commercial UNIX
Before the AT&T divestiture in 1984, when it was split up into AT&T and seven “Baby Bell”

companies, AT&T was forbidden to sell computer systems with software. Companies that

would later become Verizon, Qwest, Nokia, and Alcatel-Lucent were all part of AT&T. As a

result of AT&T’s monopoly of the telephone system, the US government was concerned that

an unrestricted AT&T might dominate the fledgling computer industry.

Because AT&T was restricted from selling computers directly to customers before its dives-

titure, UNIX source code was licensed to universities for a nominal fee. This allowed UNIX

installations to grow in size and mindshare among top universities. However, there was

still no UNIX operating system for sale from AT&T that you didn’t have to compile yourself.

Berkeley Software Distribution arrives

In 1975, UNIX V6 became the first version of UNIX available for widespread use outside of Bell

Laboratories. From this early UNIX source code, the first major variant of UNIX was created at

University of California, Berkeley. It was named the Berkeley Software Distribution (BSD).

http://www.bell-labs.com/usr/dmr/www/hist.html
http://www.bell-labs.com/usr/dmr/www/1stEdman.html

Part I: Getting Started

10

For most of the next decade, the BSD and Bell Labs versions of UNIX headed off in separate

directions. BSD continued forward in the free-flowing, share-the-code manner that was the

hallmark of the early Bell Labs UNIX, whereas AT&T started steering UNIX toward commer-

cialization. With the formation of a separate UNIX Laboratory, which moved out of Murray

Hill and down the road to Summit, New Jersey, AT&T began its attempts to commercialize

UNIX. By 1984, divestiture was behind AT&T, and it was really ready to start selling UNIX.

UNIX Laboratory and commercialization

The UNIX Laboratory was considered a jewel that couldn’t quite find a home or a way to

make a profit. As it moved between Bell Laboratories and other areas of AT&T, its name

changed several times. It is probably best remembered by the name it had as it began its

spin-off from AT&T: UNIX System Laboratories (USL).

The UNIX source code that came out of USL, the legacy of which was sold in part to Santa

Cruz Operation (SCO), was used for a time as the basis for ever-dwindling lawsuits by SCO

against major Linux vendors (such as IBM and Red Hat, Inc.). Because of that, it’s pos-

sible that the efforts from USL that have contributed to the success of Linux are lost on

most people.

During the 1980s, of course, many computer companies were afraid that a newly divested

AT&T would pose more of a threat to controlling the computer industry than would an

upstart company in Redmond, Washington. To calm the fears of IBM, Intel, Digital Equip-

ment Corporation, and other computer companies, the UNIX Lab made the following com-

mitments to ensure a level playing field:

Source code only: Instead of producing its own boxed set of UNIX, AT&T continued to

sell source code only and to make it available equally to all licensees. Each company

would then port UNIX to its own equipment. It wasn’t until about 1992, when the

lab was spun off as a joint venture with Novell (called Univel), and then eventually

sold to Novell, that a commercial boxed set of UNIX (called UnixWare) was produced

directly from that source code.

Published interfaces: To create an environment of fairness and community for its

OEMs (original equipment manufacturers), AT&T began standardizing what

different versions of UNIX had to be able to do to still be called UNIX. To that end,

Portable Operating System Interface (POSIX) standards and the AT&T UNIX System V

Interface Definition (SVID) were specifications UNIX vendors could use to create

compliant UNIX systems. Those same documents also served as road maps for the

creation of Linux.

NOTE

In an early email newsgroup post, Linus Torvalds made a request for a copy, preferably online, of the POSIX standard.

I think that no one from AT&T expected someone to actually be able to write their own clone of UNIX from those inter-

faces without using any of its UNIX source code.

Chapter 1: Starting with Linux

11

1

Technical approach: Again, until the very end of USL, most decisions on the direction

of UNIX were made based on technical considerations. Management was promoted up

through the technical ranks, and there didn’t seem to have been any talk of writing

software to break other companies’ software or otherwise restrict the success of

USL’s partners.

When USL eventually started taking on marketing experts and creating a desktop UNIX

product for end users, Microsoft Windows already had a firm grasp on the desktop market.

Also, because the direction of UNIX had always been toward source-code licensing destined

for large computing systems, USL had pricing difficulties for its products. For example, on

software that was included with UNIX, USL found itself having to pay out per-computer

licensing fees that were based on $100,000 mainframes instead of $2,000 PCs. Add to that

the fact that no application programs were available with UnixWare and you can see why

the endeavor failed.

Successful marketing of UNIX systems at the time, however, was happening with other

computer companies. SCO had found a niche market, primarily selling PC versions of UNIX

running dumb terminals in small offices. Sun Microsystems was selling lots of UNIX work-

stations (originally based on BSD but merged with UNIX in SVR4) for programmers and

high-end technology applications (such as stock trading).

Other commercial UNIX systems were also emerging by the 1980s. This new ownership

assertion of UNIX was beginning to take its toll on the spirit of open contributions. Law-

suits were launched to protect UNIX source code and trademarks. In 1984, this new, restric-

tive UNIX gave rise to an organization that eventually led the path to Linux: the Free

Software Foundation.

GNU transitions UNIX to freedom
In 1984, Richard M. Stallman started the GNU project (gnu.org), recursively known by

the phrase GNU is Not UNIX. As a project of the Free Software Foundation (FSF), GNU was

intended to become a recoding of the entire UNIX operating system that could be freely

distributed.

The GNU Project page (gnu.org/gnu/thegnuproject.html) tells the story of how the project

came about in Stallman’s own words. It also lays out the problems that proprietary soft-

ware companies were imposing on those software developers who wanted to share, create,

and innovate.

Although rewriting millions of lines of code might seem daunting for one or two people,

spreading the effort across dozens or even hundreds of programmers made the project pos-

sible. Remember that UNIX was designed to be built in separate pieces that could be piped

together. Because they were reproducing commands and utilities with well-known, pub-

lished interfaces, that effort could easily be split among many developers.

http://www.gnu.org/
http://www.gnu.org/gnu/thegnuproject.html

Part I: Getting Started

12

It turned out that not only could the same results be gained by all new code, but in some

cases that code was better than the original UNIX versions. Because everyone could see

the code being produced for the project, poorly written code could be corrected quickly or

replaced over time.

If you are familiar with UNIX, try searching the hundreds of GNU software packages, which

contain thousands of commands, for your favorite UNIX command from the Free Software

Directory (directory.fsf.org/wiki/GNU). Chances are good that you will find it there, along

with many, many other available software projects.

Over time, the term free software has been mostly replaced by the term open source soft-

ware. The term free software is preferred by the Free Software Foundation, while open source

software is promoted by the Open Source Initiative (opensource.org).

To accommodate both camps, some people use the term Free and Open Source Software (FOSS)

instead. An underlying principle of FOSS, however, is that although you are free to use

the software as you like, you have some responsibility to make the improvements that you

make to the code available to others. This way, everyone in the community can benefit

from your work, as you have benefited from the work of others.

To define clearly how open source software should be handled, the GNU software project

created the GNU Public License, or GPL. Although many other software licenses cover

slightly different approaches to protecting free software, the GPL is the most well-known—

and it’s the one that covers the Linux kernel itself. The GNU Public License includes the

following basic features:

Author rights: The original author retains the rights to their software.

Free distribution: People can use the GNU software in their own software, changing

and redistributing it as they please. They do, however, have to include the source

code with their distribution (or make it easily available).

Copyright maintained: Even if you were to repackage and resell the software, the

original GNU agreement must be maintained with the software, which means that

all future recipients of the software have the opportunity to change the source

code, just as you did.

There is no warranty on GNU software. If something goes wrong, the original developer of

the software has no obligation to fix the problem. However, many organizations, large and

small, offer paid support (often in subscription form) for the software when it is included

in their Linux or other open source software distribution. (See the section “OSI open source

definition” later in this chapter for a more detailed definition of open source software.)

Despite its success in producing thousands of UNIX utilities, the GNU project itself failed to

produce one critical piece of code: the kernel. Its attempts to build an open source kernel

with the GNU Hurd project (gnu.org/software/hurd/) were unsuccessful at first, so it failed

to become the premier open source kernel.

http://directory.fsf.org/wiki/GNU
http://www.opensource.org/
http://www.gnu.org/software/hurd

Chapter 1: Starting with Linux

13

1

BSD loses some steam
The one software project that had a chance of beating out Linux to be the premier open

source kernel was the venerable BSD project. By the late 1980s, BSD developers at University

of California (UC) Berkeley realized that they had already rewritten most of the UNIX source

code they had received a decade earlier.

In 1989, UC Berkeley distributed its own UNIX-like code as Net/1 and later (in 1991) as

Net/2. Just as UC Berkeley was preparing a complete, UNIX-like operating system that was

free from all AT&T code, AT&T hit them with a lawsuit in 1992. The suit claimed that the

software was written using trade secrets taken from AT&T’s UNIX system.

It’s important to note here that BSD developers had completely rewritten the copyright-

protected code from AT&T. Copyright was the primary means AT&T used to protect its rights

to the UNIX code. Some believe that if AT&T had patented the concepts covered in that code,

there might not be a Linux (or any UNIX clone) operating system today.

The lawsuit was dropped when Novell bought UNIX System Laboratories from AT&T in 1994.

Nevertheless, during that critical period there was enough fear and doubt about the legal-

ity of the BSD code that the momentum that BSD had gained to that point in the fledgling

open source community was lost. Many people started looking for another open source

alternative. The time was ripe for a college student from Finland who was working on his

own kernel.

NOTE

Today, BSD versions are available from three major projects: FreeBSD, NetBSD, and OpenBSD. People generally char-

acterize FreeBSD as the easiest to use, NetBSD as available on the most computer hardware platforms, and Open-

BSD as fanatically secure. Many security-minded individuals still prefer BSD to Linux. Also, because of its licensing,

BSD code can be used by proprietary software vendors, such as Microsoft and Apple, who don’t want to share their

operating system code with others. macOS is built on a BSD derivative.

Linus builds the missing piece
Linus Torvalds started work on Linux in 1991, while he was a student at the University of

Helsinki, Finland. He wanted to create a UNIX-like kernel so that he could use the same

kind of operating system on his home PC that he used at school. At the time, Linus was

using Minix, but he wanted to go beyond what the Minix standards permitted.

As noted earlier, Linus announced the first public version of the Linux kernel to the

comp.os.minix newsgroup on August 25, 1991, although Torvalds guesses that the first ver-

sion didn’t actually come out until mid-September of that year.

Although Torvalds stated that Linux was written for the 386 processor and probably wasn’t

portable, others persisted in encouraging (and contributing to) a more portable approach in

the early versions of Linux. By October 5, 1991, Linux 0.02 was released with much of the

Part I: Getting Started

14

original assembly code rewritten in the C programming language, which made it possible to

start porting it to other machines.

The Linux kernel was the last—and the most important—piece of code that was

needed to complete a whole UNIX-like operating system under the GPL. So when people

started putting together distributions, the name Linux, not GNU, is what stuck. Some

distributions, such as Debian, however, refer to themselves as GNU/Linux distributions.

(Not including GNU in the title or subtitle of a Linux operating system is also a matter of

much public grumbling by some members of the GNU project. See gnu.org.)

Today, Linux can be described as an open source UNIX-like operating system that reflects

a combination of SVID, POSIX, and BSD compliance. Linux continues to aim toward com-

pliance with POSIX as well as with standards set by the owner of the UNIX trademark, The

Open Group (opengroup.org).

The nonprofit Open Source Development Labs, renamed the Linux Foundation after merging

with the Free Standards Group (linuxfoundation.org) and which employs Linus Torvalds,

manages the direction of Linux development efforts. Its sponsors list is like a Who’s Who

of commercial Linux system and application vendors, including IBM, Red Hat, SUSE, Oracle,

HP, Dell, Computer Associates, Intel, Cisco Systems, and hundreds of others. The Linux

Foundation’s primary charter is to protect and accelerate the growth of Linux by providing

legal protection and software development standards for Linux developers.

Although much of the thrust of corporate Linux efforts is on enterprise computing, huge

improvements are continuing in the desktop arena as well. The KDE and GNOME desktop

environments continuously improve the Linux experience for casual users. Newer light-

weight desktop environments such as Chrome OS, Xfce, and LXDE now offer efficient alter-

natives that bring Linux to thousands of netbook owners.

Linus Torvalds continues to maintain and improve the Linux kernel.

NOTE

For a more detailed history of Linux, see the book Open Sources: Voices from the Open Source Revolution

(O’Reilly, 1999). The entire �rst edition is available online at

oreilly.com/openbook/opensources/book/

OSI open source de�nition
Linux provides a platform that lets software developers change the operating system

as they like and get a wide range of help creating the applications they need. One of

the watchdogs of the open source movement is the Open Source Initiative, or OSI

(opensource.org).

Although the primary goal of open source software is to make source code available, other

goals of open source software are defined by OSI in its open source definition. Most of the

http://www.gnu.org/
http://opengroup.org
http://www.linuxfoundation.org/
http://oreilly.com/openbook/opensources/book
http://www.opensource.org/

Chapter 1: Starting with Linux

15

1

following rules for acceptable open source licenses serve to protect the freedom and integ-

rity of the open source code:

Free distribution: An open source license can’t require a fee from anyone who resells

the software.

Source code: The source code must be included with the software, and there can be no

restrictions on redistribution.

Derived works: The license must allow modification and redistribution of the code

under the same terms.

Integrity of the author’s source code: The license may require that those who use

the source code remove the original project’s name or version if they change the

source code.

No discrimination against persons or groups: The license must allow all people to be

equally eligible to use the source code.

No discrimination against fields of endeavor: The license can’t restrict a project

from using the source code because it is commercial or because it is associated with

a field of endeavor that the software provider doesn’t like.

Distribution of license: No additional license should be needed to use and redistribute

the software.

License must not be specific to a product: The license can’t restrict the source code

to a particular software distribution.

License must not restrict other software: The license can’t prevent someone

from including the open source software on the same medium as non–open

source software.

License must be technology neutral: The license can’t restrict methods in which the

source code can be redistributed.

Open source licenses used by software development projects must meet these criteria to be

accepted as open source software by OSI. About 70 different licenses are accepted by OSI to

be used to label software as “OSI Certified Open Source Software.” In addition to the GPL,

other popular OSI-approved licenses include the following:

LGPL: The GNU Lesser General Public License (LGPL) is often used for distributing

libraries that other application programs depend upon.

BSD: The Berkeley Software Distribution License allows redistribution of source code,

with the requirement that the source code keep the BSD copyright notice and not

use the names of contributors to endorse or promote derived software without

 written permission. A major difference from GPL, however, is that BSD does not

require people modifying the code to pass those changes on to the community. As a

result, proprietary software vendors such as Apple and Microsoft have used BSD code

in their own operating systems.

Part I: Getting Started

16

MIT: The MIT license is like the BSD license, except that it doesn’t include the endorse-

ment and promotion requirement.

Mozilla: The Mozilla license covers the use and redistribution of source code asso-

ciated with the Firefox web browser and other software related to the Mozilla

project (www.mozilla.org/en-US/). It is a much longer license than the others

because it contains more definitions of how contributors and those reusing the

source code should behave. This entails including a file of changes when submit-

ting modifications and that those making their own additions to the code for

redistribution should be aware of patent issues or other restrictions associated

with their code.

The end result of open source code is software that has more flexibility to grow and fewer

boundaries in how it can be used. Many believe that the fact that numerous people look

over the source code for a project results in higher-quality software for everyone. As open

source advocate Eric S. Raymond says in an often-quoted line, “Given enough eyeballs, all

bugs are shallow.”

Understanding How Linux Distributions Emerged
Having bundles of source code floating around the Internet that could be compiled and

packaged into a Linux system worked well for geeks. More casual Linux users, however,

needed a simpler way to put together a Linux system. To respond to that need, some of the

best geeks began building their own Linux distributions.

A Linux distribution (often called a distro) consists of the components needed to create a

working Linux system and the procedures needed to get those components installed and

running. Technically, Linux is really just what is referred to as the kernel. Before the kernel

can be useful, you must have other software, such as basic commands (GNU utilities), ser-

vices that you want to offer (such as remote login or web servers), and possibly a desktop

interface and graphical applications. Then you must be able to gather all that together and

install it on your computer’s hard disk.

Slackware (www.slackware.com) is one of the oldest Linux distributions still supported

today. It made Linux friendly for less technical users by distributing software already com-

piled and grouped into packages. (Those packages of software components were in a format

called Tarballs.) Then you would use basic Linux commands to do things like format your

disk, enable swap, and create user accounts.

Before long, many other Linux distributions were created. Some Linux distributions were

created to meet special needs, such as KNOPPIX (a live CD Linux), Gentoo (a cool customiz-

able Linux), and Mandrake (later called Mandriva, which was one of several desktop Linux

distributions). But two major distributions rose to become the foundation for many other

distributions: Red Hat Linux and Debian.

http://www.mozilla.org/
http://www.slackware.com

Chapter 1: Starting with Linux

17

1

Understanding Red Hat
Arguably, the first widely popular and deeply functional distro was Red Hat Linux. Red

Hat simplified the initial installation process and included a software management tool

that provided updates, life cycle management, package information, and documentation.

Graphical tools and a desktop environment were also available.

Over time, Red Hat Linux was divided into three distinct and independent distros, all based

on the same code base:

 ■ Red Hat Enterprise Linux (RHEL). RHEL is a commercial product focused on enter-

prise workloads. When customers purchase an RHEL subscription, they get engi-

neering support, hardware compatibility guarantees, and access to the full range

of RHEL tools spanning orchestration, cloud, and virtualization environments. Red

Hat has been a huge commercial success. In 2019, it was purchased by IBM for an

eye-popping 34 billion dollars.

 ■ Fedora. The Fedora distro is sponsored by Red Hat and represents a more experi-

mental, cutting-edge version of the code base. Fedora is freely available.

 ■ CentOS. CentOS is a community-supported distro that’s closely linked to the current

active version of RHEL. As free software (that’s also supported by Red Hat), CentOS

is an excellent way to simulate the RHEL experience without the cost.

Those three distros—along with a few others—can be thought of as a distribution family.

They all share common command sets, filesystem conventions, and, significantly, a single

package management system (the Red Hat Package Manager, RPM).

The Red Hat family is one of two dominant Linux ecosystems. The other is Debian.

Understanding Ubuntu and other Debian distributions
Like Red Hat Linux, the Debian GNU/Linux distribution was an early Linux distribution

that excelled at packaging and managing software. Debian uses the deb packaging format

and tools to manage all of the software packages on its systems. Debian also has a reputa-

tion for stability.

Many Linux distributions can trace their roots back to Debian. According to DistroWatch

(distrowatch.com), more than 130 active Linux distributions can be traced back to Debian.

Popular Debian-based distributions include Linux Mint, elementary OS, Zorin OS, LXLE,

Kali Linux, and many others. However, the Debian derivative that has achieved the most

 success is Ubuntu (ubuntu.com).

By relying on stable Debian software development and packaging, the Ubuntu Linux dis-

tribution (sponsored by Canonical Ltd.) was able to come along and add those features

that Debian lacked. In pursuit of bringing new users to Linux, the Ubuntu project added a

simple graphical installer and easy-to-use graphical tools. It also focused on full-featured

desktop systems while still offering popular server packages.

http://distrowatch.com/
http://www.ubuntu.com/

Part I: Getting Started

18

Ubuntu was also an innovator in creating new ways to run Linux. Using live CDs or live USB

drives offered by Ubuntu, you could have Ubuntu up and running in just a few minutes. Often

included on live CDs were open source applications, such as web browsers and word proces-

sors, that actually ran in Windows. This made the transition to Linux from Windows easier for

some people.

This book, as I’m sure you’ve already noticed, will focus on the Ubuntu universe. Nearly

everything you’ll learn here will, one way or another, be possible on any other Linux distro,

but our plan is to use our time here to fully enjoy Ubuntu’s many pleasures.

Finding Professional Opportunities with Linux Today
If you want to develop a concept for a computer-related research project or technology com-

pany, where do you begin? You begin with an idea. After that, you look for the tools that

you need to explore and eventually create your vision. Then you look for others to help you

during that creation process.

Today, the hard costs of starting a company like Google or Facebook include just a computer, a

connection to the Internet, and enough caffeinated beverage of your choice to keep you up all

night writing code. If you have your own world-changing idea, Linux and thousands of soft-

ware packages are available to help you build your dreams. The open source world also comes

with communities of developers, administrators, and users who are available to help you.

If you want to get involved with an existing open source project, projects are always

looking for people to write code, test software, or write documentation. In those projects,

you will find people who use the software, work on that software, and are usually willing to

share their expertise to help you as well.

Whether you seek to develop the next great open source software project, or you simply

want to gain the skills needed to compete for the thousands of well-paying Linux admin-

istrator or development jobs, it will help you to know how to install, secure, and maintain

Linux systems.

So, what are the prospects for Linux careers? “The 2018 Open Source Jobs Report” from

the Linux Foundation (linuxfoundation.org/publications/2019/07/open-source-jobs-

report-2018-2/) found the following:

Linux talent is a high priority: Hiring people with Linux expertise is a priority for 83

percent of hiring managers. That is up from 76 percent in 2017.

Linux in demand: Linux is the most in-demand skill category.

Demand for container skills is growing: The demand for skills with containers is

growing quickly, with 57 percent of hiring managers looking for container skills.

That is up from 27 percent over the previous year.

NOTE

Ubuntu is pronounced “Oobuntu” (as in “oops”) and not “Youbuntu.”

http://linuxfoundation.org/publications/2019/07/open-source-jobs-report-2018-2
http://linuxfoundation.org/publications/2019/07/open-source-jobs-report-2018-2

Chapter 1: Starting with Linux

19

1

The message to take from this survey is that Linux continues to grow and create demands

for Linux expertise. Companies that have begun using Linux have continued to move for-

ward with it. Those using Linux continue to expand its use and find that cost savings,

security, and the flexibility it offers continue to make Linux a good investment.

Understanding how companies make money with Linux
Open source enthusiasts believe that better software can result from an open source soft-

ware development model than from proprietary development models. So, in theory, any

company creating software for its own use can save money by adding its software contribu-

tions to those of others to gain a much better end product for themselves.

Companies that want to make money by selling software need to be more creative than

they were in the old days. Although you can sell the software you create, which includes

GPL software, you must pass the source code of that software forward. Of course, others

can then recompile that product, basically using and even reselling your product without

charge. Here are a few ways that companies are dealing with that issue:

Software subscriptions: Red Hat, Inc., sells its Red Hat Enterprise Linux products on

a subscription basis. For a certain amount of money per year, you get binary code

to run Linux (so you don’t have to compile it yourself), guaranteed support, tools

for tracking the hardware and software on your computer, access to the company’s

knowledge base, and other assets.

Enterprise services: Canonical, the company that stands behind Ubuntu, is one of the

leading providers of Linux-based server and professional support solutions. Many of

those solutions are built on various flavors of Ubuntu, along with other open source

software stacks. Canonical’s service business model is what allows it to provide as

much support for Ubuntu as it does.

Training and certification: With Linux system use growing in government and big

business, professionals are needed to support those systems. There’s a wide range of

training courses and certifications to help system administrators demonstrate their

proficiency managing complex systems.

Certification programs are offered by the Linux Professional Institute (www.lpi.org),

CompTIA (www.comptia.org/certifications/linux), and Red Hat (www.redhat.com/

en/services/training-and-certification).

Bounties: Software bounties are a fascinating way for open source software companies

to make money. Suppose that you are using the XYZ software package and you need

a new feature right away. By paying a software bounty to the project itself, or to

other software developers, you can have your required improvements moved to the

head of the queue. The software you pay for will remain covered by its open source

license, but you will have the features you need—probably at a fraction of the cost

of building the project from scratch.

http://www.lpi.org/
https://www.comptia.org/certifications/linux
https://www.redhat.com/en/services/training-and-certification
https://www.redhat.com/en/services/training-and-certification

Part I: Getting Started

20

Donations: Many open source projects accept donations from individuals or open

source companies that use code from their projects. Amazingly, many open source

projects support one or two developers and run exclusively on donations.

Boxed sets, mugs, and T-shirts: Some open source projects have online stores where

you can buy boxed sets (some people still like physical DVDs and hard copies of doc-

umentation) and a variety of mugs, T-shirts, mouse pads, and other items. If you

really love a project, for goodness sake, buy a T-shirt!

This is in no way an exhaustive list, because more creative ways are being invented every

day to support those who create open source software. Remember that many people have

become contributors to and maintainers of open source software because they needed or

wanted the software themselves. The contributions they make for free are worth the return

they get from others who do the same.

Summary
Linux is an operating system that is built by a community of software developers around

the world, and Linus Torvalds still leads the development of the Linux kernel. It is derived

originally from the UNIX operating system but has grown beyond UNIX in popularity and

power over the years.

The history of the Linux operating system can be tracked from early UNIX systems that

were distributed free to colleges and improved upon by initiatives such as the Berkeley

Software Distribution (BSD). The Free Software Foundation helped make many of the com-

ponents needed to create a fully free UNIX-like operating system. The Linux kernel itself

was the last major component needed to complete the job.

Most Linux software projects are protected by one of a set of licenses that fall under the

Open Source Initiative umbrella. The most prominent of these is the GNU Public License

(GPL). Standards such as the Linux Standard Base and world-class Linux organizations and

companies (such as Canonical Ltd. and Red Hat, Inc.) make it possible for Linux to continue

to be a stable, productive operating system into the future.

Learning the basics of how to use and administer a Linux system will serve you well in any

aspect of working with Linux. The remaining chapters provide a series of exercises with

which you can test your understanding. That’s why, for the rest of the book, you will learn

best with a Linux system in front of you so that you can work through the examples in

each chapter and complete the exercises successfully.

The next chapter explains how to get started with Linux by describing how to get and use a

Linux desktop system.

21

CHAP T ER

2
Creating the Perfect

Linux Desktop

IN THIS CHAPTER

Understanding the X Window System and desktop environments

Running Linux from a Live DVD image

Navigating the GNOME 3 desktop

Adding extensions to GNOME 3

Using Nautilus to manage �les in GNOME 3

Working with the GNOME and the Unity graphical shell

Working with Metacity

U
sing Linux as your everyday desktop system is becoming easier to do all the time. As with

everything in Linux, you have choices. There are fully featured GNOME or KDE desktop envi-

ronments or lightweight desktops such as LXDE or Xfce. There are even simpler standalone

window managers.

After you have chosen a desktop, you will find that almost every major type of desktop application

on a Windows or Mac system has equivalent applications in Linux. For applications that are not

available in Linux, you can often run a Windows application in Linux using Windows compati-

bility software.

The goal of this chapter is to familiarize you with the concepts related to Linux desktop systems and

to give you tips for working with a Linux desktop. In this chapter you do the following:

 ■ Step through the desktop features and technologies that are available in Linux

 ■ Tour the major features of the GNOME desktop environment

 ■ Learn tips and tricks for getting the most out of your GNOME desktop experience

Part I: Getting Started

22

To use the descriptions in this chapter, I recommend that you have an Ubuntu system

running in front of you. You can get Ubuntu in lots of ways, including the following:

Running Ubuntu from a live medium

You can download and burn an Ubuntu Live image to a DVD or USB drive so that you

can boot it live to use with this chapter.

Installing Ubuntu permanently

Install Ubuntu to your hard disk and boot it from there (as described in Chapter 9,

“Installing Linux”).

The current release of Ubuntu uses the GNOME 3 interface by default.

NOTE

Ubuntu switched to GNOME 3 from its own Unity graphical shell (that was built to run on the GNOME desktop) with

release 17.10. Unity is still available for newer releases but only from the unsupported, community-maintained

Universe repository.

Understanding Linux Desktop Technology
Modern computer desktop systems offer graphical windows, icons, and menus that are

operated from a mouse and keyboard. If you are under 40 years old, you might think that

there’s nothing special about that. However, the first Linux systems did not have graphical

interfaces available. Also, many Linux servers today that are built for specialized tasks (for

example, functioning as a web server or file server) don’t have desktop software installed.

Nearly every major Linux distribution that offers desktop interfaces is based on the X

Window System from the X.Org Foundation (www.x.org). The X Window System provides

a framework on which different types of desktop environments or simple window man-

agers can be built. A replacement for X.org called Wayland (wayland.freedesktop.org) is

being developed. Although Wayland has been used as the default X server for some Ubuntu

releases, stability and compatibility issues have meant that its full deployment has not yet

occurred. For now, X.org is still widely used.

The X Window System (sometimes simply called X) was created before Linux existed, and

it even predates Microsoft Windows. It was built to be a lightweight, networked desktop

framework.

X works in sort of a backward client/server model. The X server runs on the local system,

providing an interface to your screen, mouse, and keyboard. X clients (such as word proces-

sors, music players, and image viewers) can be launched from the local system or from any

system on your network to which the X server gives permission to do so.

X was created in a time when graphical terminals (thin clients) simply managed the key-

board, mouse, and display. Applications, disk storage, and processing power were all on

larger centralized computers. So, applications ran on larger machines but were displayed

http://www.x.org
http://x.org
http://wayland.freedesktop.org
http://x.org

Chapter 2: Creating the Perfect Linux Desktop

23

2

and managed over the network on the thin client. Later, thin clients were replaced

by desktop personal computers. Most client applications on PCs ran locally using local

processing power, disk space, memory, and other hardware features, while applications that

didn’t start from the local system were blocked.

X itself provides a plain gray background and a simple “X” mouse cursor. There are no

menus, panels, or icons on a plain X screen. If you were to launch an X client (such as a ter-

minal window or word processor), it would appear on the X display with no border around it

to move, minimize, or close the window. Those features are added by a window manager.

A window manager adds the capability to manage the windows on your desktop and often

provides menus for launching applications and otherwise working with the desktop. A

full-blown desktop environment includes a window manager, but it also adds menus,

panels, and usually an application programming interface that is used to create applica-

tions that play well together.

So how does an understanding of how desktop interfaces work in Linux help you when it

comes to using Linux? Here are some of the ways:

 ■ Because Linux desktop environments are not required to run a Linux system, a

Linux system may have been installed without a desktop. It might offer only a

plain-text, command-line interface. You can choose to add a desktop later. After it

is installed, you can choose whether to start up the desktop when your computer

boots or start it as needed.

 ■ For a very lightweight Linux system, such as one meant to run on less powerful

computers, you can choose an efficient, though less feature-rich, window man-

ager (such as twm or fluxbox) or a lightweight desktop environment (such as

LXDE or Xfce).

 ■ For more robust computers, you can choose more powerful desktop environments

(such as GNOME and KDE) that can do things such as watch for events to happen

(such as inserting a USB flash drive) and respond to those events (such as opening

a window to view the contents of the drive).

 ■ You can have multiple desktop environments installed and you can choose which

one to launch when you log in. This way, different users on the same computer can

use different desktop environments.

Many different desktop environments are available to choose from in Linux. Here are

some examples:

GNOE 3

GNOME 3 is currently the default desktop environment for Ubuntu, Fedora, Red Hat

Enterprise Linux, and many others. Think of it as a professional desktop environment

focusing on stability more than fancy effects.

K Desktop Environment

KDE is probably the second most popular desktop environment for Linux. It has more

bells and whistles than GNOME and offers more integrated applications. KDE is also

available with Ubuntu and many other Linux systems.

Part I: Getting Started

24

Xfce

The Xfce desktop was one of the first lightweight desktop environments. It is good

to use on older or less powerful computers. It is available for Ubuntu and other Linux

distributions.

LXDE

The Lightweight X11 Desktop Environment (LXDE) was designed to be a fast-performing,

energy-saving desktop environment. Often, LXDE is used on less-expensive devices (such

as netbook computers) and on live media (such as a live CD or live USB stick). It is the

default desktop for the KNOPPIX live CD distribution but, again, is available for Ubuntu.

Starting with the GNOME 3 Desktop Live Image
A live Linux ISO image is the quickest way to get a Linux system up and running so that you

can begin trying it out. Depending on its size, the image can be burned to a CD, DVD, or USB

drive and booted on your computer. With a Linux live image, you can have Linux take over

the operation of your computer temporarily without harming the contents of your hard drive.

If you have Windows installed, Linux just ignores it and temporarily takes control over

your computer. When you’re finished with the Linux live image, you can remove the USB or

DVD media, reboot the computer, and go back to running whatever operating system was

installed on the hard disk.

To try out a GNOME desktop along with the descriptions in this section, I suggest that you

build yourself an Ubuntu installation device. Because a live USB does all its work from the

USB and in system memory, it runs slower than an installed Linux system. Also, although

you can change files, add software, and otherwise configure your system, by default, the

work you do disappears when you reboot unless you explicitly save that data to your hard

drive or external storage.

The fact that changes you make to the live environment go away on reboot is very good for

trying out Linux but not that great if you want an ongoing desktop or server system. For

that reason, I recommend that if you have a spare computer, you install Linux permanently

on that computer’s hard disk to use with the rest of this book (as described in Chapter 9).

After you have a live USB in hand, do the following to get started:

1. Get a computer. If you have a standard PC with a USB port, at least 4GB of memory

(RAM), and at least a 2GHz processor, you are ready to start. Running a live Ubuntu

session using a weaker system will probably work, but those are the current recom-

mended minimums for a desktop session.

2. Start the live session. Insert the live drive into your computer and reboot.

Depending on your computer’s configured boot order, the Linux drive might start

up automatically or you might need to manually select it. Hitting a designated

“boot order” key during the boot early stages—F12 will work on many systems—

may be necessary.

Chapter 2: Creating the Perfect Linux Desktop

25

2

3. Start Ubuntu. If the selected drive is able to boot, you’ll soon see a screen asking

you to select a language and offering you two choices: Try Ubuntu and Install

Ubuntu. For this demo, select Try Ubuntu.

4. Begin using the desktop. After a minute or two, you’ll find yourself facing a fully

functioning Ubuntu desktop session. Enjoy yourself.

You can now proceed to the next section, “Using the GNOME 3 Desktop.”

Using the GNOME 3 Desktop
The GNOME 3 desktop offers a radical departure from the now-deprecated Unity graphical

interface (which, to cover you in case you ever find yourself servicing older installations,

we’ll discuss later in the chapter). The older GNOME 2.x tools were serviceable, but GNOME

3 is elegant. With GNOME 3, a Linux desktop now appears more like the graphical interfaces

on mobile devices, with less focus on multiple mouse buttons and key combinations and

more on mouse movement and one-click operations.

Instead of feeling structured and rigid, the GNOME 3 desktop seems to expand as you need

it to. As a new application is run, its icon is added to the vertical Dock that, by default,

lives on the left side of your desktop.

After the computer boots up
If you booted up a live image, when you reach the desktop, you are assigned as the Live

System User for your username. For an installed system, you see the login screen, with user

accounts on the system ready for you to select and enter a password. Log in with the user-

name and password that you have defined for your system.

Figure 2.1 is an example of an Ubuntu GNOME 3 desktop screen. Press the Windows key (or

click the mouse cursor at the upper-left corner of the desktop) to toggle between a blank

desktop and the Activities screen.

There is very little on the GNOME 3 desktop when you start out. The top bar has the word

“Activities” on the left, a clock in the middle, and some icons on the right for such things

as adjusting audio volume, checking your network connection, and viewing the name of

the current user. The Activities screen is where you can select applications to open, switch

between active windows, or open multiple workspaces.

Navigating with the mouse

To get started, try navigating the GNOME 3 desktop with your mouse:

1. Toggle activities and windows. Click your mouse cursor at the upper-left corner

of the screen near the Activities button. Each time you click, your screen changes

between showing you the windows that you are actively using and a set of avail-

able Activities. (This has the same effect as pressing the Windows key.)

Part I: Getting Started

26

2. Open windows from the Applications bar. Open one or two applications by click-

ing their icons in the Dock on the left (Firefox, LibreOffice, etc.). Move the mouse

to the upper-left corner again, and toggle between showing all active windows

minimized (Activities screen) and showing them overlapping (full-sized). Figure 2.2

shows an example of the Activities windows view.

3. Open applications from the Applications list. Select the Application button from

the bottom of the Dock (the button has nine dots in a box). The view changes to

a set of icons representing some of the applications installed on your system, as

shown in Figure 2.3.

4. View additional applications. From the Applications screen, you can change the

view of your applications in several ways, as well as launch them in different ways:

a. Page through. To see icons representing applications that are not onscreen, use

the mouse to click the dots on the right to page through applications. If you

have a wheel mouse, you can use that to scroll the icons.

FIGURE 2.1

Starting with the GNOME 3 desktop in Ubuntu

Chapter 2: Creating the Perfect Linux Desktop

27

2

b. Frequent. Select the Frequent button on the bottom of the screen to see often-

run applications or the All button to see all applications again.

c. Launching an application. To start the application you want, left-click its icon

to open the application in the current workspace. Right-click to open a menu

that lets you choose to open a new window, add or remove the application from

Favorites (so the application’s icon permanently appears on the Dock), or show

details about the application. Figure 2.4 shows an example of the menu.

5. Open additional applications. Start up additional applications. Notice that as you

open a new application, an icon representing that application appears in the Dock

bar on the left. Here are other ways to start applications:

a. Application icon. Click any application icon to open that application.

b. Drop Dock icons on the workspace. From the Windows view, you can drag any

application icon from the Dock by pressing and holding the left mouse button on

it and dragging that icon to any of the miniature workspaces on the right.

FIGURE 2.2

Show all windows on the desktop minimized.

Part I: Getting Started

28

6. Use multiple workspaces. Move the mouse to the upper-left corner again to show a

minimized view of all windows. Notice all of the applications on the right jammed

into a small representation of one workspace while an additional workspace is

empty. Drag and drop a few of the windows to an empty desktop space. Figure 2.5

shows what the small workspaces look like. Notice that an additional empty work-

space is created each time the last empty one is used. You can drag and drop the

miniature windows to any workspace and then select the workspace to view it.

7. Use the window menu. Move the mouse to the upper-left corner of the screen to

return to the active workspace (large window view). Right-click the title bar on a

window to view the window menu. Try these actions from that menu:

a. Minimize. Remove the window temporarily from view.

b. Maximize. Expand the window to maximum size.

FIGURE 2.3

Show the list of available applications.

Chapter 2: Creating the Perfect Linux Desktop

29

2

c. Move. Change the window to moving mode. Moving your mouse moves the

window. Click to fix the window to a spot.

d. Resize. Change the window to resize mode. Moving your mouse resizes the

window. Click to keep the size.

e. Workspace selections. Several selections let you use workspaces in different

ways. Select Always on Top to make the current window always on top of other

windows in the workspace. Select Always on Visible Workspace to always show

the window on the workspace that is visible, or select Move to Workspace Up or

Move to Workspace Down to move the window to the workspace above or below,

respectively.

If you don’t feel comfortable navigating GNOME 3 with your mouse, or if you don’t have a

mouse, the next section helps you navigate the desktop from the keyboard.

FIGURE 2.4

Click the right mouse button to display an application’s selection menu.

Part I: Getting Started

30

Navigating with the keyboard

If you prefer to keep your hands on the keyboard, you can work with the GNOME 3 desktop

directly from the keyboard in a number of ways, including the following:

Windows key. Press the Windows key on the keyboard. On most PC keyboards, this

is the key with the Microsoft Windows logo on it next to the Alt key. This toggles

the mini-window (Activities) and active-window (current workspace) views. Many

people use this key often.

Select an active window. Return to any of your workspaces (press the Windows key if

you are not already on an active workspace). Press Alt+Tab to see a list of all active

windows. Continue to hold the Alt key as you press the Tab key (or right or left

arrow keys) to highlight the application that you want from the list of active desk-

top application windows. If an application has multiple windows open, press Alt+̀

(back-tick, located above the Tab key) to choose among those sub-windows. Release

the Alt key to select it.

Launch a command or application. From any active workspace, you can launch a

Linux command or a graphical application. Here are some examples:

Applications. From the Activities screen, press Ctrl+Alt+Tab and continue to press Tab

until the Applications icon is highlighted; then release Ctrl+Alt. The Applications

view appears, with the first icon highlighted. Use the Tab key or arrow keys (up,

down, right, and left) to highlight the application icon you want, and press Enter.

FIGURE 2.5

As new desktops are used, additional ones appear on the right.

Chapter 2: Creating the Perfect Linux Desktop

31

2

Command box. If you know the name (or part of a name) of a command that you

want to run, press Alt+F2 to display a command box. Type the name of the

command that you want to run into the box (try gnome-terminal to open a

terminal session, for example).

Search box. From the Activities screen, press Ctrl+Alt+Tab and continue to press Tab

until the magnifying glass (Search) icon is highlighted; then release Ctrl+Alt. In

the search box now highlighted, type a few letters of an application’s name or

description (type scr to see what you get). Keep typing until the application you

want is highlighted (in this case, Screenshot), and press Enter to launch it.

Escape. When you are stuck in an action that you don’t want to complete, try pressing

the Esc key. For example, after pressing Alt+F2 (to enter a command), opening an

icon from the top bar, or going to an overview page, pressing Esc returns you to the

active window on the active desktop.

I hope you now feel comfortable navigating the GNOME 3 desktop. Next, you can try

running some useful and fun desktop applications from GNOME 3.

Setting up the GNOME 3 desktop
Much of what you need GNOME 3 to do for you is set up automatically. However, you need to

make a few tweaks to get the desktop the way you want. Most of these setup activities are

available from the System Settings window (see Figure 2.6). Open the Settings icon from

the Applications list.

Here are some suggestions for configuring a GNOME 3 desktop:

Configure networking. A wired network connection is often configured automati-

cally when you boot up your system. For wireless, you probably have to select your

wireless network and add a password when prompted. An icon in the top bar lets

you do any wired or wireless network configuration that you need to do. Refer to

Chapter 14, “Administering Networking,” for further information on configuring

networking.

Bluetooth. If your computer has Bluetooth hardware, you can enable that device to

communicate with other Bluetooth devices (such as a Bluetooth headset or printer).

Devices. From the Devices screen, you can configure your keyboard, mouse and touch-

pad, printers, removable media, and other settings.

Sound. Click the Sound settings button to adjust sound input and output devices on

your system.

Extending the GNOME 3 desktop
If the GNOME 3 shell doesn’t do everything you’d like, don’t despair. You can add exten-

sions to provide additional functionality. Also, a tool called GNOME Tweaks lets you change

advanced settings in GNOME 3.

Part I: Getting Started

32

Using GNOME shell extensions

GNOME shell extensions are available to change the way your GNOME desktop looks and

behaves. Visit the GNOME Shell Extensions site (extensions.gnome.org) from the browser

on your GNOME 3 desktop. That site tells you what extensions you have installed and which

ones are available to install. To manage extensions through your browser, you’ll need to

install the browser extension by following the link you’re shown on the Gnome.org page

and then installing the native host connector using:

sudo apt install chrome-gnome-shell

Because the extensions page knows what extensions you have and the version of GNOME

3 that you are running, it will present only those extensions that are compatible with

your system. Many of the extensions help you add features from GNOME 2, including the

following:

Applications Menu. Adds an Applications menu to the top panel, just as it did

in GNOME 2.

Places Status Indicator. Adds a systems status menu, similar to the Places menu in

GNOME 2, to let you navigate quickly to useful folders on your system.

Window list. Adds a list of active windows to the top panel, similar to the Window list

that appeared on the bottom panel in GNOME 2.

FIGURE 2.6

The System Settings window

http://extensions.gnome.org/
http://gnome.org

Chapter 2: Creating the Perfect Linux Desktop

33

2

To install an extension, simply select the ON button next to the name. Or, you can click the

extension name from the list to see the extension’s page and click the button on that page

from OFF to ON. Click Install when you are asked if you want to download and install the

extension. The extension is then added to your desktop.

More than 100 GNOME shell extensions are available now, and more are being added all

the time. Other popular extensions include Notifications Alert (which alerts you of unread

messages), Presentation Mode (which prevents the screensaver from executing when you’re

giving a presentation), and Music Integration (which integrates popular music players into

GNOME 3, so that you are alerted about songs being played).

Because the Extensions site can keep track of your extensions, you can click the Installed

extensions button at the top of the page and see every extension that is installed. You can

turn the extensions off and on from there and even delete them permanently.

Using the GNOME Tweak Tool

If you don’t like the way some of the built-in features of GNOME 3 behave, you can change

many of them with the GNOME Tweak Tool. This tool is not installed by default, but you

can add it by installing the gnome-tweaks package. After installation, the GNOME Tweak

Tool is available by launching the Advanced Settings icon from your Applications screen.

Start with the Desktop category to consider what you might want to change in GNOME 3.

Figure 2.7 shows the Tweak Tool displaying Appearance settings.

If fonts are too small for you, select the Fonts category and click the plus sign next to the

Scaling Factor box to increase the font size, or change fonts individually for documents,

window titles, or monospace fonts.

Under Top Bar settings, you can change how clock information is displayed in the top bar or

set whether to show the week number in the calendar. To change the look of the desktop,

select the Appearance category and change, for example, the Icons theme to fit your needs.

Starting with desktop applications
Live sessions come with some cool applications that you can start using immediately. To

use GNOME 3 as your everyday desktop, you should install Ubuntu permanently to your

computer’s hard disk and add the applications you need (a word processor, image editor,

drawing application, and so on). If you are just getting started, the following sections list

some useful applications to try out.

Managing �les and folders with Nautilus

To move, copy, delete, rename, and otherwise organize files and folders in GNOME 3, you

can use the Nautilus file manager. Nautilus comes with the GNOME desktop and works like

other file managers that you may use in Windows or Mac.

To open Nautilus, click the Files icon from the Dock or Applications list. Your user account

starts with a set of folders designed to hold the most common types of content: music,

pictures, videos, and the like. These are all stored in what is referred to as your Home

directory.

Part I: Getting Started

34

When you want to save files that you downloaded from the Internet or created with a word

processor, you can organize them into these folders. You can create new folders as needed,

drag and drop files and folders to copy and move them, and delete them.

Because Nautilus is not much different from most file managers that you have used on

other computer systems, this chapter does not go into detail about how to use drag-and-

drop and navigate through folders to find your content. However, I do want to make a few

observations that may not be obvious about how to use Nautilus:

Home folder

You have complete control over the files and folders that you create in your Home folder.

However, most other parts of the filesystem are not accessible to you as a regular user.

Filesystem organization

Although it appears under the name Home, your Home folder is actually located in the

filesystem under the /home folder in a folder named after your username: for example,

/home/ubuntu or /home/chris. In the next few chapters, you learn how the file-

system is organized (especially in relation to the Linux command shell).

FIGURE 2.7

Change desktop settings using the GNOME Tweak Tool (Appearance settings).

Chapter 2: Creating the Perfect Linux Desktop

35

2

Working with files and folders

Right-click a file or folder icon to see how you can act on it. For example, you can copy,

cut, move to trash (delete), or open any file or folder icon.

Creating folders

To create a new folder, right-click in a folder window and select New Folder. Type the new

folder name over the highlighted Untitled Folder, and press Enter to name the folder.

Accessing remote content

Nautilus can display content from remote servers as well as the local filesystem. In Nau-

tilus, select Other Locations from the file menu. From the Connect to Server box that

appears at the bottom, you can connect to a remote server via SSH (secure shell), FTP with

login, Public FTP, Windows share, WebDav (HTTP), or Secure WebDav (HTTPS). Add appropri-

ate user and password information as needed, and the content of the remote server appears

in the Nautilus window. Figure 2.8 shows an example of a Nautilus window prompting you

for a password to log in to a remote server over SSH protocol (ssh://192.168.1.3).

Installing and managing additional software

The Ubuntu Desktop comes with a web browser (Firefox), a file manager (Nautilus), and a few

other common applications. However, there are many other useful applications that, because of

their size, just wouldn’t fit on the live installation media. When you install Ubuntu to your hard

disk (as described in Chapter 9), you will almost certainly want to add some more software.

FIGURE 2.8

Access remote folders using the Nautilus Connect to Server feature.

Part I: Getting Started

36

NOTE

You can try installing software if you’re still running a live session. However, keep in mind that because writeable

space on a live medium uses virtual memory (RAM), that space is limited and can easily run out. Also, when you shut

down your system, anything that you’ve installed will disappear.

When Ubuntu is installed, it’s automatically configured to connect your system to the huge

Debian-based software repository over the Internet. As long as you have an Internet con-

nection, you can run the Add/Remove software tool to download and install any of thou-

sands of software packages.

Although the facility for managing software in Ubuntu (using apt and dpkg) is described in

detail in Chapter 10, “Getting and Managing Software,” you can start installing some soft-

ware packages without knowing much about how the feature works. Begin by going to the

applications screen and opening the Ubuntu Software window (via the Dock icon).

With the Software window open, you can select the applications that you want to install by

browsing by category or hitting Ctrl+F and searching by name. Figure 2.9 shows an example

of the Software window.

FIGURE 2.9

Download and install software from the Ubuntu repository.

Chapter 2: Creating the Perfect Linux Desktop

37

2

By searching for and installing some common desktop applications, you should be able to

start using your desktop effectively. Refer to Chapter 10 for details on how to administrate

your software repositories more effectively and efficiently.

Playing music with Rhythmbox

Rhythmbox is the music player that comes with your Ubuntu Desktop. You can launch Rhythmbox

from the GNOME 3 Dock and immediately play music CDs, podcasts, or Internet radio shows. You can

import audio files in WAV and Ogg Vorbis formats or add plug-ins for MP3 or other audio formats.

Here are a few ways that you can get started with Rhythmbox:

Radio

Double-click the Radio selection under Library and choose a radio station from the list

that appears to the right.

Podcasts

Search for podcasts on the Internet and find the URL for one that interests you. Right-

click the Podcasts entry and select New Podcast Feed. Paste or type the URL of the

podcast and click Add. A list of podcasts from the site that you selected appears to the

right. Double-click the one to which you want to listen.

Audio CDs

Insert an audio CD and press Play when it appears in the Rhythmbox window. Rhythm-

box also lets you rip and burn audio CDs.

Audio files

Rhythmbox can play WAV and Ogg Vorbis files. By adding plug-ins, you can play many

other audio formats, including MP3. Because there are patent issues related to the MP3

format, you’ll need to download and install unfree software codecs to play MP3s. Ubuntu

makes it easy to select that option during the standard installation process. In Chapter 10,

I describe how to get software that you need that is not in your Ubuntu repository.

Plug-ins are available for Rhythmbox to get cover art, show information about artists and

songs, add support for music services (such as Last.fm and Magnatune), and fetch song lyrics.

Stopping the GNOME 3 desktop
When you are finished with your GNOME 3 session, select the down arrow button in the

upper-right corner of the top bar. From there, you can choose the On/Off button, which

allows you to log out or switch to a different user account without logging out.

Using the Unity Graphical Shell

with the GNOME Desktop
From version 10.10 (released in October—the tenth month—of 2010), Ubuntu moved to a

user interface stack that included the GNOME desktop and the Unity graphical shell. By the

time version 18.04 (released in April—the fourth month—of 2018) came out, Ubuntu’s use

of Unity was ended, in favor of adoption of a standard implementation of GNOME 3.

Part I: Getting Started

38

Because, from time to time, you may still come across Ubuntu systems running Unity, we’re

going to explore how some of the more critical features from those days worked. You should

become familiar with the following components:

Metacity (window manager)

The default window manager was Metacity. Metacity configuration options let you con-

trol such things as themes, window borders, and controls used on your desktop.

Compiz (window manager)

You can enable this window manager to provide 3D desktop effects.

Panels (application/task launcher)

These panels, which line the top and bottom of the desktop, were designed to make it

convenient for you to launch the applications you use, manage running applications,

and work with multiple virtual desktops. By default, the top panel contained menu

buttons (Applications, Places, and System), desktop application launchers (Evolution

email and Firefox web browser), a workspace switcher (for managing four virtual desk-

tops), and a clock. Icons appeared in the panel with alerts: when you needed software

updates, for instance. The bottom panel had a Show Desktop button, window lists, a

trash can, and workspace switcher.

Desktop area

The windows and icons you use were arranged on the desktop area, which supports

drag-and-drop between applications, a desktop menu (right-click to see it), and icons

for launching applications. A Computer icon consolidates CD drives, floppy drives, the

filesystem, and shared network resources in one place.

There was also a set of Preferences windows that enabled you to configure different aspects

of your desktop. You could change backgrounds, colors, fonts, keyboard shortcuts, and

other features related to the look and behavior of the desktop.

Using the Metacity window manager
The Metacity window manager seems to have been chosen as the default window manager

because of its simplicity. The creator of Metacity refers to it as a “boring window manager

for the adult in you” and then goes on to compare other window managers to colorful, sug-

ary cereal, whereas Metacity is characterized as Cheerios.

NOTE

It’s important to understand how Canonical—Ubuntu’s commercial sponsor—manages version releases. A new full

version of Ubuntu will come out like clockwork every six months: one in April and another in October. One in four of

those releases will be made stable and reliable enough to be considered a “long term support” (LTS) release. 18.04

and 20.04 (released in April 2018 and April 2020, respectively) were LTS versions, as will be 22.04. Such releases

will receive free updates for a full three years. Because of that, LTS versions are recommended for production work-

loads. The other three releases in the cycle will generally include more experimental packages and con�gurations and

will enjoy shorter support periods.

Chapter 2: Creating the Perfect Linux Desktop

39

2

You can use other keyboard shortcuts with the window manager as well. Select System ➪

Preferences ➪ Keyboard Shortcuts to see a list of shortcuts, such as the following:

Run Dialog

To run a command to launch an application from the desktop by command name, press

Alt+F2. From the dialog box that appears, type the command and press Enter. For exam-

ple, type gedit to run a simple graphical text editor.

Lock Screen

If you want to step away from your screen and lock it, press Ctrl+Alt+L. You need to type

your user password to open the screen again. Note: to lock your screen in GNOME 3, press

Windows+L.

Show Main Menu

To open an application from the Applications, Places, or System menu, press Alt+F1.

Then use the up and down arrow keys to select from the current menu or use the right

and left arrow keys to select from other menus.

Another Metacity feature of interest is the Workspace Switcher. Four virtual workspaces appear

in the workspace switcher on the panel. You can do the following with the workspace switcher:

Choose current workspace

Four virtual workspaces appear in the workspace switcher. Click any of the four virtual

workspaces to make it your current workspace.

Move windows to other workspaces

Click any window, each represented by a tiny rectangle in a workspace, to drag and

drop it to another workspace. Likewise, you can drag an application from the Window

list to move that application to another workspace.

Add more workspaces

Right-click the workspace switcher and select Preferences. You can add workspaces

(up to 32).

Name workspaces

Right-click the workspace switcher and select Preferences. Click in the Workspaces

pane to change names of workspaces to any names you choose.

You can view and change information about Metacity controls and settings using the gconf-

editor window (type gconf-editor from a Terminal window). As the window says, it is

not the recommended way to change preferences, so when possible, you should change the

desktop through preferences. However, gconf-editor is a good way to see descriptions of

each Metacity feature.

NOTE

To use 3D effects, your best solution is to use the Compiz window manager. You can’t do much with Metacity (except

get your work done ef�ciently). You assign new themes to Metacity and change colors and window decorations

through the preferences (described later).

Part I: Getting Started

40

From the gconf-editor window, select Apps ➪ Metacity, and choose from general,

global_keybindings, keybindings_commands, window_keybindings, and workspace_names.

Click each key to see its value, along with short and long descriptions of the key.

Changing GNOME’s appearance
You can change the general look of your GNOME desktop by selecting System ➪ Preferences

➪ Appearance. From the Appearance Preferences window, select from three tabs:

Theme

Entire themes are available for the desktop that change the colors, icons, fonts, and

other aspects of the desktop. Several different themes come with the desktop, which

you can simply select from this tab to use. Or click “Get more themes online” to choose

from a variety of available themes.

Background

To change your desktop background, select from a list of backgrounds on this tab to

have the one you choose immediately take effect. To add a different background, put the

background you want on your system (select “Get more backgrounds online” and download

it to your Pictures folder). Then click Add and select the image from your Pictures folder.

Fonts

Different fonts can be selected to use by default with your applications, documents,

desktop, window title bar, and for fixed width.

Using the panels
The panels are placed on the top and bottom of the desktop. From those panels, you can start

applications (from buttons or menus), see what programs are active, and monitor how your

system is running. You can also change the top and bottom panels in many ways—by adding

applications or monitors or by changing the placement or behavior of the panel, for example.

Right-click any open space on either panel to see the Panel menu.

From the Panel menu, you can choose from a variety of functions, including these:

Use the menus.

 ■ The Applications menu displays most of the applications and system tools that you

will use from the desktop.

 ■ The Places menu lets you select places to go, such as the Desktop folder, Home

folder, removable media, or network locations.

 ■ The System menu lets you change preferences and system settings as well as get

other information about your system.

Add to Panel. Add an applet, menu, launcher, drawer, or button.

Properties. Change the panel’s position, size, and background properties.

Delete This Panel. Delete the current panel.

New Panel. Add panels to your desktop in different styles and locations.

Chapter 2: Creating the Perfect Linux Desktop

41

2

You can also work with items on a panel. For example, you can do the following:

Move items. To move an item on a panel, right-click it, select Move, and drag and drop

it to a new position.

Resize items. You can resize some elements, such as the Window list, by clicking an

edge and dragging it to the new size.

Use the Window list. Tasks running on the desktop appear in the Window list area.

Click a task to minimize or maximize it.

The following sections describe some things that you can do with the Panel.

Adding a drawer

A drawer is an icon that you can click to display other icons representing menus, applets, and

launchers; it behaves just like a panel. Essentially, any item that you can add to a panel you

can add to a drawer. By adding a drawer to your GNOME panel, you can include several applets

and launchers that together take up the space of only one icon. Click the drawer to show the

applets and launchers as if they were being pulled out of a drawer icon on the panel.

To add a drawer to your panel, right-click the panel and select Add to Panel ➪ Drawer. A

drawer appears on the panel. Right-click it and add applets or launchers to it as you would

to a panel. Click the icon again to retract the drawer.

Changing panel properties

You can change the orientation, size, hiding policy, and background properties of your

desktop panels. To open the Panel Properties window that applies to a specific panel, right-

click an open space on the panel and choose Properties. The Panel Properties window that

appears includes the following values:

Orientation

Move the panel to a different location on the screen by clicking a new position.

Size

Select the size of your panel by choosing its height in pixels (48 pixels by default).

Expand

Select this check box to have the panel expand to fill the entire side or clear the check

box to make the panel only as wide as the applets it contains.

AutoHide

Select whether a panel is automatically hidden (appearing only when the mouse pointer

is in the area).

Show Hide buttons

Choose whether the Hide/Unhide buttons (with pixmap arrows on them) appear on the

edges of the panel.

Arrows on Hide buttons

If you select Show Hide buttons, you can choose to have arrows on those buttons.

Part I: Getting Started

42

Background

From the Background tab, you can assign a color to the background of the panel,

assign a pixmap image, or just leave the default (which is based on the current system

theme). Click the Background Image check box if you want to select an image for

the background, and then select an image, such as a tile from /usr/share/back-

grounds/tiles or another directory.

Summary
The GNOME desktop environment has become the default desktop environment for many

Linux systems, including Ubuntu. The GNOME 3 desktop is a modern, elegant desktop,

designed to match the types of interfaces available on many of today’s mobile devices. The

Unity graphical shell running on GNOME was, until the release of Ubuntu 18.04, the default

graphical environment for Ubuntu.

Besides GNOME desktops, you can try out other popular and useful desktop environments.

The K Desktop Environment (KDE) offers many more bells and whistles than GNOME and works

with Ubuntu. Ubuntu can also use lightweight desktops such as LXDE or Xfce desktops.

Now that you have a grasp of how to get and use a Linux desktop, it’s time to start digging

into the more professional administrative interfaces. Chapter 3, “Using the Shell,” intro-

duces you to the Linux command-line shell interface.

Exercises
Use these exercises to test your skill in using a GNOME desktop. If you are stuck, solutions

to the tasks are shown in Appendix A.

1. Obtain an Ubuntu system with a graphic desktop. Start the system and log in.

2. Launch the Firefox web browser and go to the GNOME home page (www.gnome.org).

3. Pick a background you like from the GNOME art site (www.gnome-look.org), down-

load it to your Pictures folder, and select it as your current background.

4. Start a Nautilus File Manager window and move it to the second workspace on

your desktop.

5. Find the image that you downloaded to use as your desktop background and open it

in any image viewer.

6. Move back and forth between the workspace with Firefox on it and the one with

the Nautilus file manager.

7. Open a list of applications installed on your system and select an image viewer to

open from that list. Use as few clicks or keystrokes as possible.

8. Change the view of the windows on your current workspace to smaller views you

can step through. Select any window you’d like to make it your current window.

9. From your desktop, using only the keyboard, launch a music player.

http://gnome.org/
http://gnome-look.org

Part II

IN THIS PART

Chapter 3

Using the Shell

Chapter 4

Moving Around the Filesystem

Chapter 5

Working with Text Files

Chapter 6

Managing Running Processes

Chapter 7

Writing Simple Shell Scripts

Becoming a Linux Power User

45

CHAP T ER

3
Using the Shell

IN THIS CHAPTER

Understanding the Linux shell

Using the shell from consoles or terminals

Using commands

Using command history and tab completion

Connecting and expanding commands

Understanding variables and aliases

Making shell settings permanent

Using man pages and other documentation

B
efore icons and windows took over computer screens, you typed commands to interact with

most computers. On UNIX systems, from which Linux was derived, the program used to inter-

pret and manage commands was referred to as the shell.

No matter which Linux distribution you are using, you can always count on the fact that the shell is

still available to you, and Ubuntu is no exception. It provides a way to create executable script files,

run programs, work with filesystems, compile computer code, and manage the computer. Although the

shell is less intuitive than common graphical user interfaces (GUIs), most Linux experts consider the

shell to be much more powerful than GUIs. Shells have been around a long time, and many advanced

features that aren’t available from the desktop can be accessed by running shell commands.

The Linux shell illustrated in this chapter is called the Bash shell, which stands for Bourne Again

Shell. The name is derived from the fact that Bash is compatible with one of the earliest UNIX shells:

the Bourne shell (named after its creator, Stephen Bourne, and represented by the sh command).

Although Bash is included with Ubuntu and considered a standard, other shells are available, includ-

ing the C shell (csh), which is popular among BSD UNIX users, and the Korn shell (ksh), which is

popular among UNIX System V users. Ubuntu uses the dash shell by default at boot time, which is

designed to perform faster than the Bash shell. Linux also has a tcsh shell (an improved C shell) and

an ash shell (another Bourne shell look-alike).

Part II: Becoming a Linux Power User

46

Ubuntu has more than one shell available for your use. This chapter, however, focuses pri-

marily on the Bash shell. That is because Ubuntu uses the Bash shell by default when you

open a Terminal window.

The following are a few major reasons to learn how to use the shell:

 ■ You will learn to get around any Linux or other UNIX-like system. For example, with

strong shell skills, you can be equally productive in just about any Linux server,

home router, or even a Mac computer. You can even log in and run commands on

your Android phone. They’re all running Linux or similar systems on the inside.

 ■ Special shell features enable you to gather data input and direct data output between

commands and Linux filesystems. To save on typing, you can find, edit, and repeat

commands from your shell history. Many power users hardly touch a graphical

interface, doing most of their work from a shell.

 ■ You can gather commands into a file using programming constructs such as conditional

tests, loops, and case statements to quickly perform complex operations, which would

be difficult to retype over and over. Programs consisting of commands that are stored

and run from a file are referred to as shell scripts. Many Linux system administra-

tors use shell scripts to automate tasks such as backing up data, monitoring log

files, or checking system health.

The shell is a command language interpreter. If you have used Microsoft operating systems,

you’ll see that using a shell in Linux is similar to, but generally much more powerful than,

the PowerShell interpreter used to run commands. You can happily use Linux from a graphical

desktop interface, but as you grow into Linux you will surely need to use the shell at some

point to track down a problem or administer some features.

How to use the shell isn’t obvious at first, but with the right help you can quickly learn many

of the most important shell features. This chapter is your guide to working with the Linux

system commands, processes, and filesystem from the shell. It describes the shell environ-

ment and helps you tailor it to your needs.

About Shells and Terminal Windows
There are several ways to get to a shell interface in Linux. Three of the most common are

the shell prompt, Terminal window, and virtual console, which you learn more about in the

following sections.

To start, boot up your Linux system. On your screen, you should see either a graphical login

screen or a plain-text login prompt similar to the following:

Ubuntu 18.04.3 LTS ubuntu tty1
ubuntu login:

In either case, you should log in with a regular user account. If you have a plain-text login

prompt, continue to the next section, “Using the shell prompt.” If you log in through a

graphical screen, go to the section “Using a Terminal window” to see how to access a shell

Chapter 3: Using the Shell

47

3

from the desktop. In either case, you can access more shells as described in the section

“Using virtual consoles,” which appears shortly in this chapter.

Using the shell prompt
If your Linux system has no graphical user interface (or one that isn’t working at the

moment), you will most likely see a shell prompt after you log in. Typing commands from

the shell will probably be your primary means of using the Linux system.

The default prompt for a regular user is simply a dollar sign:

$

The default prompt for the root user is a pound sign (also called a number sign or a

hash tag):

#

In most Linux systems, the $ and # prompts are preceded by your username, system name,

and current directory name. For example, a login prompt for the user named jake on a

computer named pine with /usr/share/ as the current working directory would appear

as follows:

[jake@pine share]$

You can change the prompt to display any characters you like and even read in pieces of

information about your system. For example, you can use the current working directory,

the date, the local computer name, or any string of characters as your prompt. To configure

your prompt, see the section “Setting your prompt” later in this chapter.

Although a tremendous number of features are available with the shell, it’s easy to begin by

just entering a few commands. Try some of the commands shown in the remaining sections

to become familiar with your current shell environment.

In the examples that follow, the dollar ($) and pound (#) symbols indicate a prompt.

A $ indicates that the command can be run by any user, but a # typically means that

you should run the command as the root user; that is, many administrative tools require

root permission to be able to run them. The prompt is followed by the command that

you type (and then press Enter). The lines that follow show the output resulting from

the command.

NOTE

Although we use # to indicate that a command should be run as the root user, you do not need to log in as the root

user to run a command as root. In fact, the most common way to run a command as a root user is to use the sudo

command. See Chapter 8, “Learning System Administration,” for further information about the sudo command.

Part II: Becoming a Linux Power User

48

Using a Terminal window
With the desktop GUI running, you can open a terminal emulator program (sometimes

referred to as a Terminal window) to start a shell. Ubuntu makes it easy for you to get

to a shell from the GUI. Here are some common ways to launch a Terminal window from

the desktop:

Right-click the desktop In the context menu that appears, you should see Open Termi-

nal or something similar. Select it to start a Terminal window.

Select Terminal from the Applications screen You can search for “terminal” within

the GNOME 3 Applications page.

Press Ctrl+Alt+T Ubuntu systems will respond to the Ctrl+Alt+T combination by open-

ing a new terminal shell.

Press Alt+F2 Alt+F2 will open a command prompt into which you can type

gnome-terminal.

The GNOME Terminal supports many features beyond the basic shell. For example, you can

cut and paste text to or from a GNOME Terminal window, change fonts, set a title, choose

colors or images to use as background, and set how much text to save when text scrolls off

the screen.

To try some GNOME Terminal features, open a new terminal and then follow this procedure:

1. Select Edit ➪ Preferences.

2. On the General tab or current profile (depending on your version of GNOME), check

the “Custom font” box.

3. With the Text tab selected and Custom font selected, try a different font and size.

The new font appears in the Terminal window.

4. Return to the Preferences menu and unselect the “Custom font” box. This will

restore the original font.

5. On the Colors tab, clear the “Use colors from system theme” check box. From here,

you can try some different font and background colors.

6. Re-select the “Use colors from system theme” box to go back to the default colors.

7. Go to your Profile window. There are other features with which you may want to

experiment, such as setting how much scrolled data is kept.

8. Close the Profile window when you are finished. You are now ready to use your

 Terminal window.

If you are using Linux from a graphical desktop, you will probably most often access the

shell from a Terminal window.

Chapter 3: Using the Shell

49

3

Using virtual consoles
Most Linux systems that include a desktop interface start multiple virtual consoles running

on the computer. Virtual consoles are a way to have multiple shell sessions open at once in

addition to the graphical interface you are using.

You can switch between virtual consoles by holding the Ctrl and Alt keys and pressing a

function key between F2 and F6. For example, pressing Ctrl+Alt+F2 will open a new virtual

console session. You can return to your initial GUI session by pressing Ctrl+Alt+F1.

Try it right now. Hold down the Ctrl+Alt keys and press F3 (invoking the F keys might

require additional actions on some laptop keyboards). You should see a plain-text login

prompt. Log in using your username and password. Try a few commands. When you are fin-

ished, type exit to exit the shell and then press Ctrl+Alt+F1 to return to your graphical

desktop interface. You can go back and forth between these consoles as much as you like.

Choosing Your Shell
In most Linux systems, your default shell is the Bash shell. To find out your default login

shell, enter the following commands:

$ whoami
chris
$ grep chris /etc/passwd

chris:x:1000:1000:Chris,,,:/home/chris:/bin/bash

Notice that the command-line examples shown here and throughout the book show the

command followed by output from that command. When the command completes, you are

presented with the command prompt again.

The whoami command shows your username, and the grep command (replacing chris

with your username) shows the definition of your user account in the /etc/passwd file.

The last field in that entry shows that the Bash shell (/bin/bash) is your default shell (the

one that starts up when you log in or open a Terminal window).

It’s possible, although not likely, that you might have a different default shell set. To try

a different shell, simply type the name of that shell (like dash and others, assuming that

they’re installed). You can try a few commands in that shell and type exit when you are

finished to return to the Bash shell.

You might choose to use different shells for the following reasons:

 ■ You are used to using UNIX System V systems (often ksh by default) or Sun Micro-

systems and other Berkeley UNIX-based distributions (frequently csh by default),

and you are more comfortable using default shells from those environments.

 ■ You want to run shell scripts that were created for a particular shell environment,

and you need to run the shell for which they were made so that you can test or use

those scripts from your current shell.

Part II: Becoming a Linux Power User

50

 ■ You simply prefer features in one shell over those in another. For example, some

prefer ksh over Bash because they don’t like the way aliases are used with Bash.

Although most Linux users have a preference for one shell or another, when you know how

to use one shell, you can quickly learn any of the others by occasionally referring to the

shell’s man page (for example, type man Bash). The man pages (described later in the sec-

tion “Getting Information about Commands”) provide documentation for commands, file

formats, and other components in Linux. Most people use Bash just because they don’t have

a particular reason for using a different shell.

Bash includes features originally developed for sh and ksh shells in early UNIX systems, as

well as some csh features. Expect Bash to be the default login shell in most Linux systems

that you are using, with the exception of some specialized Linux systems (such as some

that run on embedded devices) that may require a smaller shell that needs less memory and

requires fewer features. Most of the examples in this chapter are based on the Bash shell.

Running Commands
The simplest way to run a command is just to type the name of the command from a shell.

From your desktop, open a Terminal window. Then enter the following command:

$ date
Thu Jun 29 08:14:53 EDT 2019

Entering the date command, with no options or arguments, causes the current day, month,

date, time, time zone, and year to be displayed as just shown.

Here are a few other commands you can try:

$ pwd
/home/chris
$ hostname
mydesktop
$ ls
Desktop Downloads Pictures Templates
Documents Music Public Videos

The pwd command shows your current working directory. Entering hostname shows your

computer’s hostname. The ls command lists the files and directories in your current direc-

tory. Although many commands can be run by just entering command names, it’s more

common to type other characters after the command to modify its behavior. The characters

and words that you can type after a command are called options and arguments.

TIP

The Bash shell is worth knowing not only because it is the default in most installations, but because it is the one you

will use with most Linux certi�cation exams.

Chapter 3: Using the Shell

51

3

Understanding command syntax
Most commands have one or more options that you can add to change the command’s

behavior. Options typically consist of a single letter preceded by a hyphen. However, you

can group single-letter options together or precede each with a hyphen to use more than

one option at a time. For example, the following two uses of options for the ls command

are the same:

$ ls -l -a -t
$ ls -lat

In both cases, the ls command is run with the -l (long listing), -a (show hidden dot

files), and -t options (list by age).

Some commands include options that are represented by a whole word. To tell a command

to use a whole word as an option, you typically precede it with a double hyphen (--). For

example, to use the help option on many commands, you enter --help on the command

line. Without the double hyphen, the letters h, e, l, and p would be interpreted as separate

options. There are some commands that don’t follow the double hyphen convention, using a

single hyphen before a word, but most commands use double hyphens for word options.

Many commands also accept arguments after certain options are entered or at the end

of the entire command line. An argument is an extra piece of information, such as a file-

name, directory, username, device, or other item, that tells the command what to act on.

For example, cat /etc/passwd displays the contents of the /etc/passwd file on your

screen. In this case, /etc/passwd is the argument. Usually, you can have as many argu-

ments as you want on the command line, limited only by the total number of characters

allowed on a command line. Sometimes, an argument is associated with an option. In that

case, the argument must immediately follow the option. With single-letter options, the

argument typically follows after a space. For full-word options, the argument often follows

an equal sign (=). Here are some examples:

$ ls --hide=Desktop
Documents Music Public Videos
Downloads Pictures Templates

In the previous example, the --hide option tells the ls command not to display the file or

directory named Desktop when listing the contents of the directory. Notice that the equal

sign immediately follows the option (no space) and then the argument (again, no space).

Here’s an example of a single-letter option that is followed by an argument:

$ tar -cvf backup.tar /home/chris

NOTE

You can use the --help option with most commands to see the options and arguments that they support. For

example, try typing hostname --help.

Part II: Becoming a Linux Power User

52

In the tar example just shown, the options say to create (c) a file (f) named backup.tar

that includes all of the contents of the /home/chris directory and its subdirectories and

show verbose messages as the backup is created (v). Because backup.tar is an argument

to the f option, backup.tar must immediately follow the option. As it turns out, you

don’t actually need the hyphen to introduce your options (cvf) for the tar command,

although it doesn’t do any harm.

Here are a few commands that you can try out. See how they behave differently with dif-

ferent options:

$ ls
Desktop Documents Downloads Music Pictures Public Templates Videos
$ ls -a
. Desktop .gnome2_private .lesshst Public
.. Documents .gnote .local Templates
.bash_history Downloads .gnupg .mozilla Videos
.bash_logout .emacs .gstreamer-0.10 Music .xsession-errors
.bash_profile .esd_auth .gtk-bookmarks Pictures .zshrc
.bashrc .fsync.log .gvfs Pictures
$ uname
Linux
$ uname -a
Linux workstation 5.3.0-28-generic #30~18.04.1-Ubuntu SMP Fri Jan 17
06:14:09 UTC 2020
x86_64 x86_64 x86_64 GNU/Linux
$ date
Thu Jun 29 08:14:53 EDT 2019
$ date +'%d/%m/%y'
06/29/19
$ date +'%A, %B %d, %Y'
Thursday, June 29, 2019

The ls command, by itself, shows all regular files and directories in the current directory.

By adding the -a, you can also see the hidden files in the directory (those beginning with

a dot). The uname command shows the type of system you are running (Linux). When you

add -a, you also can see the hostname, kernel release, and kernel version.

The date command has some special types of options. By itself, date simply prints the

current day, date, and time as shown in the preceding code. But the date command sup-

ports a special + format option, which lets you display the date in different formats. Enter

date --help to see different format indicators you can use.

Try the id and who commands to get a feel for your current Linux environment, as

described in the following paragraphs.

When you log in to a Linux system, Linux views you as having a particular identity, which

includes your username, group name, user ID, and group ID. Linux also keeps track of your

login session: It knows when you logged in, how long you have been idle, and where you

logged in from.

Chapter 3: Using the Shell

53

3

To find out information about your identity, use the id command as follows:

$ id
uid=1000(chris) gid=1000(chris) groups=1005(sales), 7(lp)

In this example, the username is chris, which is represented by the numeric user ID

(uid) 1000. The primary group for chris also is called chris, which has a group ID (gid)

of 1000. It is normal for Ubuntu users to have the same primary group name as their user-

name. The user chris also belongs to other groups called sales (gid 1005) and lp (gid 7).

These names and numbers represent the permissions that chris has to access computer

resources.

You can see information about your current login session by using the who command. In

the following example, the -u option says to add information about idle time and the pro-

cess ID and -H asks that a header be printed:

$ who -uH
NAME LINE TIME IDLE PID COMMENT
chris tty1 2020-02-17 18:53 00:38 10782

The output from this who command shows that the user chris is logged in on tty1

(which is the first virtual console on the monitor connected to the computer) and his login

session began at 18:53 on February 17. The IDLE time shows how long the shell has been

open without any command being typed. PID shows the process ID of the user’s login shell.

COMMENT would show the name of the remote computer from which the user had logged in,

if that user had logged in from another computer on the network, or the name of the local

X display if that user were using a Terminal window (such as :0.0).

Locating commands
Now that you have typed a few commands, you may wonder where those commands are

located and how the shell finds the commands you type. To find commands you type, the

shell looks in what is referred to as your path. For commands that are not in your path, you

can type the complete identity of the location of the command.

If you know the directory that contains the command that you want to run, one way to run

it is to type the full, or absolute, path to that command. For example, you run the date

command from the /bin directory by entering the following:

$ /bin/date

Of course, this can be inconvenient, especially if the command resides in a directory with a

long pathname. The better way is to have commands stored in well-known directories and

then add those directories to your shell’s PATH environment variable. The path consists of

a list of directories that are checked sequentially for the commands you enter. To see your

current path, enter the following:

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:↩

/home/chris/bin

Part II: Becoming a Linux Power User

54

The results show a common default path for a regular Linux user. Directories in the path list are

separated by colons. Most user commands that come with Linux are stored in the /bin, /usr/
bin, or /usr/local/bin directory. The /sbin and /usr/sbin directories contain administra-

tive commands (some Linux systems don’t put those directories in regular users’ paths). The last

directory shown is the bin directory in the user’s home directory (/home/chris/bin).

Unlike some other operating systems, Linux does not, by default, check the current direc-

tory for an executable before searching the path. It immediately begins searching the path,

and executables in the current directory are run only if they are in the PATH variable or

you give their absolute (such as /home/chris/scriptx.sh) or relative (for example,

./scriptx.sh) location.

The path directory order is important. Directories are checked from left to right. So, in this

example, if there is a command called foo located in both the /usr/bin and /bin direc-

tories, the one in /usr/bin is executed. To have the other foo command run, you either

type the full path to the command or change your PATH variable. (Changing your PATH

and adding directories to it are described later in this chapter.)

Not all of the commands you run are located in directories in your PATH variable. Some

commands are built into the shell. Other commands can be overridden by creating aliases

that define any commands and options that you want the command to run. There are also

ways of defining a function that consists of a stored series of commands. Here is the order

in which the shell checks for the commands you type:

1. Aliases. These are names set by the alias command that represent a particular

command and a set of options. Type alias to see what aliases are set. Often,

aliases enable you to define a short name for a long, complicated command.

(I describe how to create your own aliases later in this chapter.)

2. Shell reserved word. These are words reserved by the shell for special use. Many

of these are words that you would use in programming-type functions, such as

do, while, case, and else. (I cover some of these reserved words in Chapter 7,

“Writing Simple Shell Scripts.”)

3. Function. This is a set of commands that are executed together within the current shell.

4. Built-in command. This is a command built into the shell. As a result, there is no

representation of the command in the filesystem. Some of the most common com-

mands that you will use are shell built-in commands, such as cd (to change direc-

tories), echo (to output text to the screen), exit (to exit from a shell), fg (to

TIP

If you want to add your own commands or shell scripts, place them in the bin directory in your home directory (such

as /home/chris/bin for the user named chris). This directory is automatically added to your path in some

Linux systems, although you may need to create that directory or add it to your PATH on other Linux systems. So,

as long as you add the command to your bin with execute permission, you can begin using it by simply typing the

command name at your shell prompt. To make commands available to all users, add them to /usr/local/bin.

Chapter 3: Using the Shell

55

3

bring a command running in the background to the foreground), history (to see a

list of commands that were previously run), pwd (to list the present working direc-

tory), set (to set shell options), and type (to show the location of a command).

5. Filesystem command. This command is stored in and executed from the computer’s

filesystem. (These are the commands that are indicated by the value of the PATH

variable.)

To determine the location of a particular command, you can use the type command. (If

you are using a shell other than Bash, use the which command instead.) For example, to

find out where the Bash shell command is located, enter the following:

$ type bash
bash is /bin/bash

Try these few words with the type command to see other locations of commands: which,

case, and return. If a command resides in several locations, you can add the -a option

to have all of the known locations of the command printed. For example, the command

type -a ls should show an aliased and filesystem location for the ls command.

If a command is not in your PATH variable, you can use the locate command to try to

find it. Using locate, you can search any part of the system that is accessible to you.

(Some files are only accessible to the root user.) For example, if you wanted to find the loca-

tion of the chage command, you could enter the following:

$ locate chage
/snap/core/8268/usr/bin/chage
/snap/core/8268/usr/share/bash-completion/completions/chage
/snap/core/8592/usr/bin/chage
/snap/core/8592/usr/share/bash-completion/completions/chage
/snap/core18/1650/usr/bin/chage
/snap/core18/1668/usr/bin/chage
/usr/bin/chage
/usr/share/bash-completion/completions/chage
/usr/share/man/de/man1/chage.1.gz
/usr/share/man/fr/man1/chage.1.gz
/usr/share/man/it/man1/chage.1.gz
/usr/share/man/ja/man1/chage.1.gz
/usr/share/man/man1/chage.1.gz
/usr/share/man/pl/man1/chage.1.gz

TIP

Sometimes, you run a command and receive an error message that the command was not found or that permission to

run the command was denied. If the command was not found, check that you spelled the command correctly and that

it is located in your PATH variable. If permission to run the command was denied, the command may be in the PATH

variable but may not be executable. Also remember that case is important, so typing CAT or Cat will not �nd the cat

command.

Continues

Part II: Becoming a Linux Power User

56

/usr/share/man/ru/man1/chage.1.gz
/usr/share/man/sv/man1/chage.1.gz
/usr/share/man/tr/man1/chage.1.gz
/usr/share/man/zh_CN/man1/chage.1.gz
/var/lib/app-info/icons/ubuntu-bionic-universe/64x64/patchage_
patchage.png

Notice that locate not only found the chage command, it also found a variety of man

pages associated with chage for different languages. The locate command looks all over

your filesystem, not just in directories that contain commands. (If locate does not find

files recently added to your system, run updatedb as root to update the locate database.)

In the coming chapters, you’ll learn to use these and additional commands. But for now,

I want you to become more familiar with how the shell itself works. So next I discuss fea-

tures for recalling commands, completing commands, using variables, and creating aliases.

Recalling Commands Using Command History
Being able to repeat a command you ran earlier in a shell session can be convenient. Recall-

ing a long and complex command line that you mistyped can save you some trouble. Fortu-

nately, some shell features enable you to recall previous command lines, edit those lines, or

complete a partially typed command line.

The shell history is a list of the commands that you have entered before. Using the history

command in a Bash shell, you can view your previous commands. Then using various shell

features, you can recall individual command lines from that list and change them however

you please.

The rest of this section describes how to do command-line editing, how to complete parts

of command lines, and how to recall and work with the history list.

Command-line editing
If you type something wrong on a command line, the Bash shell ensures that you don’t

have to delete the entire line and start over. Likewise, you can recall a previous command

line and change the elements to make a new command.

By default, the Bash shell uses command-line editing that is based on the emacs text

 editor. (Type man emacs to read about it, if you care to do so.) If you are familiar with

emacs, you probably already know most of the keystrokes described here.

TIP

If you prefer the vi command for editing shell command lines, you can easily make that happen. Add the following

line to the .bashrc �le in your home directory:

 set -o vi

The next time you open a shell, you can use vi commands to edit your command lines.

Continued

Chapter 3: Using the Shell

57

3

To do the editing, you can use a combination of control keys, Meta keys, and arrow keys.

For example, Ctrl+F means to hold down the Ctrl key, and type f. Alt+F means to hold down

the Alt key, and type f. (Instead of the Alt key, your keyboard may use a Meta key or the

Esc key. On a Windows keyboard, you can use the Windows key.)

To try out a bit of command-line editing, enter the following:

$ ls /usr/bin | sort -f | less

This command lists the contents of the /usr/bin directory, sorts the contents in alpha-

betical order (regardless of case), and pipes the output to less. The less command dis-

plays the first page of output, after which you can go through the rest of the output a line

(press Enter) or a page (press spacebar) at a time. Simply press q when you are finished.

Now, suppose that you want to change /usr/bin to /bin. You can use the following steps

to change the command:

1. Press the up arrow (↑) key. This displays the most recent command from your

shell history.

2. Press Ctrl+A. This moves the cursor to the beginning of the command line.

3. Press Ctrl+F or the right arrow (→) key. Repeat this command a few times to

position the cursor under the first slash (/).

4. Press Ctrl+D. Type this command four times to delete /usr from the line.

5. Press Enter. This executes the command line.

As you edit a command line, at any point you can type regular characters to add those

characters to the command line. The characters appear at the location of your text cursor.

You can use right (→) and left (←) arrows to move the cursor from one end to the other on

the command line. You can also press the up (↑) and down (↓) arrow keys to step through

previous commands in the history list to select a command line for editing. (See the sec-

tion “Command-line recall” for details on how to recall commands from the history list.)

You can use many keystrokes to edit your command lines. Table 3.1 lists the keystrokes

that you can use to move around the command line.

TABLE 3.1 Keystrokes for Navigating Command Lines

keystroke Full Name Meaning

Ctrl+F Character forward Go forward one character.

Ctrl+B Character backward Go backward one character.

Alt+F Word forward Go forward one word.

Alt+B Word backward Go backward one word.

Ctrl+A Beginning of line Go to the beginning of the current line.

Ctrl+E End of line Go to the end of the line.

Ctrl+L Clear screen Clear screen and leave line at the top of the screen.

Part II: Becoming a Linux Power User

58

The keystrokes in Table 3.2 can be used to edit command lines.

Use the keystrokes in Table 3.3 to cut and paste text on a command line.

Command-line completion
To save you a few keystrokes, the Bash shell offers several different ways of completing

partially typed values. To attempt to complete a value, type the first few characters and

press Tab. Here are some of the values you can type partially from a Bash shell:

Command, alias, or function If the text you type begins with regular characters, the

shell tries to complete the text with a command, alias, or function name.

TABLE 3.2 Keystrokes for Editing Command Lines

KEYSTROKE FULL NAME MEANING

Ctrl+D Delete current Delete the current character.

Back-
space

Delete previous Delete the previous character.

Ctrl+T Transpose character Switch positions of current and previous characters.

Alt+T Transpose words Switch positions of current and previous words.

Alt+U Uppercase word Change the current word to uppercase.

Alt+L Lowercase word Change the current word to lowercase.

Alt+C Capitalize word Change the current word to an initial capital.

Ctrl+V Insert special
character

Add a special character. For example, to add a Tab char-
acter, press Ctrl+V+Tab.

TABLE 3.3 Keystrokes for Cutting and Pasting Text from within
Command Lines

KEYSTROKE FULL NAME MEANING

Ctrl+K Cut end of line Cut text to the end of the line.

Ctrl+U Cut beginning of line Cut text to the beginning of the line.

Ctrl+W Cut previous word Cut the word located behind the cursor.

Alt+D Cut next word Cut the word following the cursor.

Ctrl+Y Paste recent text Paste most recently cut text.

Alt+Y Paste earlier text Rotate back to previously cut text and paste it.

Ctrl+C Delete whole line Delete the entire line.

Chapter 3: Using the Shell

59

3

Variable If the text you type begins with a dollar sign ($), the shell completes the text

with a variable from the current shell.

Username If the text you type begins with a tilde (~), the shell completes the text

with a username. As a result, ~username indicates the home directory of the

named user.

Hostname If the text you type begins with the at symbol (@), the shell completes the

text with a hostname taken from the /etc/hosts file.

Here are a few examples of command completion. (When you see <Tab>, it means to press

the Tab key on your keyboard.) Enter the following:

$ echo $OS<Tab>
$ cd ~ro<Tab>
$ userm<Tab>

The first example causes $OS to expand to the $OSTYPE variable. In the next example,

~ro expands to the root user’s home directory (~root/). Next, userm expands to the

usermod command.

Pressing Tab twice offers some wonderful possibilities. Sometimes, several possible comple-

tions for the string of characters you have entered are available. In those cases, you can

check the possible ways that text can be expanded by pressing Tab twice at the point where

you want to do completion.

The following shows the result you would get if you checked for possible comple-

tions on $P:

$ echo $P<Tab><Tab>
$PATH $PPID $PS1 $PS2 $PS4 $PWD
$ echo $P

In this case, there are six possible variables that begin with $P. After possibilities are dis-

played, the original command line returns, ready for you to complete it as you choose. For

example, if you typed another P and hit Tab again, the command line would be completed

with $PPID (the only unique possibility).

Command-line recall
After you type a command, the entire command line is saved in your shell’s history list.

The list is stored in the current shell until you exit the shell. After that, it is written to a

history file, from which any command can be recalled to be run again in your next session.

After a command is recalled, you can modify the command line, as described earlier.

TIP

To add hostnames from an additional �le, you can set the HOSTFILE variable to the name of that �le. The �le must

be in the same format as /etc/hosts.

Part II: Becoming a Linux Power User

60

To view your history list, use the history command. Enter the command without options

or followed by a number to list that many of the most recent commands. For example:

$ history 8
 382 date
 383 ls /usr/bin | sort -a | more
 384 man sort
 385 cd /usr/local/bin
 386 man more

 387 passwd chris
 388 history 7

A number precedes each command line in the list. You can recall one of those commands

using an exclamation point (!). Keep in mind that when an exclamation point is used, the

command runs blind without presenting an opportunity to confirm the command you’re

referencing. There are several ways to run a command immediately from this list, including

the following:

!n Run command number. Replace the n with the number of the command line

and that line is run. For example, here’s how to repeat the date command

shown as command number 382 in the preceding history listing:

$!382
date
Fri Jun 29 15:47:57 EDT 2019

!!—!! Run previous command. Runs the previous command line. Here’s how you

would immediately run that same date command:

$!!
date
Fri Jun 29 15:53:27 EDT 2019

!?string—? Run command containing string. This runs the most recent command that con-

tains a particular string of characters. For example, you can run the date

command again by just searching for part of that command line as follows:

$!?dat?
date
Fri Jun 29 16:04:18 EDT 2019

Instead of just running a history command line immediately, you can recall a particular

line and edit it. You can use the following keys or key combinations to do that, as shown in

Table 3.4.

Another way to work with your history list is to use the fc command. Type fc followed by

a history line number, and that command line is opened in your default text editor. Make

the changes that you want. When you exit the editor, the command runs. You can also give

a range of line numbers (for example, fc 100 105). All of the commands open in your text

editor and then run one after the other when you exit the editor.

Chapter 3: Using the Shell

61

3
After you close your shell, the history list is stored in the .bash _ history file in your

home directory. Up to 1,000 history commands are stored for you by default.

Connecting and Expanding Commands
A truly powerful feature of the shell is the capability to redirect the input and output

of commands to and from other commands and files. To allow commands to be strung

together, the shell uses metacharacters. A metacharacter is a typed character that has spe-

cial meaning to the shell for connecting commands or requesting expansion.

Metacharacters include the pipe character (|), ampersand (&), semicolon (;), right paren-

thesis ()), left parenthesis ((), less than sign (<), and greater than sign (>). The next

sections describe how to use metacharacters on the command line to change how com-

mands behave.

NOTE

Some people disable the history feature for the root user by setting the HISTFILE shell variable to /dev/null

or simply leaving HISTSIZE blank. This prevents information about the root user’s activities from potentially being

exploited. If you are an administrative user with root privileges, you may want to consider emptying your �le upon

exiting as well for the same reasons. Also, because shell history is stored permanently when the shell exits prop-

erly, you can prevent storing a shell’s history by killing a shell. For example, to kill a shell with process ID 1234, type

kill -9 1234 from any shell.

TABLE 3.4 Keystrokes for Using Command History

KEY(S) FUNCTION NAME DESCRIPTION

Arrow
keys (↑ and ↓)

Step Press the up and down arrow keys to step through
each command line in your history list to arrive at
the one you want. (Ctrl+P and Ctrl+N do the same
functions, respectively.)

Ctrl+R Reverse
incremental search

After you press these keys, you enter a search string
to do a reverse search. As you type the string,
a matching command line appears that you can
run or edit.

Ctrl+S Forward
incremental search

This is the same as the preceding function but for
forward search. (It may not work in all instances.)

Alt+P Reverse search After you press these keys, you enter a string to do
a reverse search. Type a string and press Enter to
see the most recent command line that includes
that string.

Alt+N Forward search This is the same as the preceding function but for
forward search. (It may not work in all instances.)

Part II: Becoming a Linux Power User

62

Piping between commands
The pipe (|) metacharacter connects the output from one command to the input of another

command. This lets you have one command work on some data and then have the next

command deal with the results. Here is an example of a command line that includes pipes:

$ cat /etc/passwd | sort | less

This command lists the contents of the /etc/passwd file and pipes the output to the

sort command. The sort command takes the usernames that begin each line of the /
etc/passwd file, sorts them alphabetically, and pipes the output to the less command

(to page through the output).

Pipes are an excellent illustration of how UNIX, the predecessor of Linux, was created as an

operating system made up of building blocks. A standard practice in UNIX was to connect

utilities in different ways to get different jobs done. For example, before the days of graphical

word processors, users created plain-text files that included macros to indicate formatting. To

see how the document really appeared, they would use a command such as the following:

$ gunzip < /usr/share/man/man1/grep.1.gz | nroff -c -man | less

In this example, the contents of the grep man page (grep.1.gz) are directed to the gun-
zip command to be unzipped. The output from gunzip is piped to the nroff command

to format the man page using the manual macro (-man). The output is piped to the less

command to be displayed. Because the file being displayed is in plain text, you could have

substituted any number of options to work with the text before displaying it. You could

sort the contents, change or delete some of the content, or bring in text from other doc-

uments. The key is that, instead of all of those features being in one program, you get

results from piping and redirecting input and output between multiple commands.

Sequential commands
Sometimes, you may want a sequence of commands to run, with one command completing

before the next command begins. You can do this by typing several commands on the same

command line and separating them with semicolons (;):

$ date ; troff -me verylargedocument | lp ; date

In this example, I was formatting a huge document and wanted to know how long it would

take. The first command (date) showed the date and time before the formatting started.

The troff command formatted the document and then piped the output to the printer.

When the formatting was finished, the date and time were printed again (so I knew how

long the troff command took to complete).

Another useful command to add to the end of a long command line is mail. You could add

the following to the end of a command line:

; mail -s "Finished the long command" chris@example.com

Then, for example, a mail message is sent to the user you choose after the command

completes.

Chapter 3: Using the Shell

63

3

Background commands
Some commands can take a while to complete. Sometimes, you may not want to tie up your

shell waiting for a command to finish. In those cases, you can have the commands run in

the background by using the ampersand (&).

Text formatting commands (such as nroff and troff, described earlier) are examples of

commands that can be run in the background to format a large document. You also might

want to create your own shell scripts that run in the background to check continuously for

certain events to occur, such as the hard disk filling up or particular users logging in.

The following is an example of a command being run in the background:

$ troff -me verylargedocument | lp &

Don’t close the shell until the process is completed or that kills the process. Other ways to

manage background and foreground processes are described in Chapter 6, “Managing Running

Processes.”

Expanding commands
With command substitution, you can have the output of a command interpreted by the

shell instead of by the command itself. In this way, you can have the standard output of a

command become an argument for another command. The two forms of command substitu-

tion are $(command) and `command` (backticks, not single quotes).

The command in this case can include options, metacharacters, and arguments. The follow-

ing is an example of using command substitution:

$ nano $(find /home | grep xyzzy)

In this example, the command substitution is done before the nano command is run. First,

the find command starts at the /home directory and prints out all of the files and direc-

tories below that point in the filesystem. The output is piped to the grep command, which

filters out all files except for those that include the string xyzzy in the filename. Finally,

the nano command opens all filenames for editing (one at a time) that include xyzzy.

This particular example is useful if you want to edit a file for which you know the name but

not the location. As long as the string is uncommon, you can find and open every instance

of a filename existing beneath a point you choose in the filesystem. (In other words, don’t

use grep from the root filesystem or you’ll match and try to edit several thousand files.)

Expanding arithmetic expressions
Sometimes, you want to pass arithmetic results to a command using $[expression]. The

following is an example:

$ echo "I am $[2019 - 1957] years old."
I am 62 years old.

The shell interprets the arithmetic expression first [2019 - 1957] and then passes that

information to the echo command. The echo command displays the text with the results

of the arithmetic (58) inserted.

Part II: Becoming a Linux Power User

64

Here’s an example of another way to do this:

$ echo "There are $(ls | wc -w) files in this directory."
There are 14 files in this directory.

This lists the contents of the current directory (ls) and runs the word count command to

count the number of files found (wc -w). The resulting number (14, in this case) is echoed

back with the rest of the sentence shown.

Expanding variables
Variables that store information within the shell can be expanded using the dollar sign ($)

metacharacter. When you expand an environment variable on a command line, the value of

the variable is printed instead of the variable name itself, as follows:

$ ls -l $BASH
-rwxr-xr-x. 1 root root 1219248 Oct 12 17:59 /usr/bin/bash

Using $BASH as an argument to ls -l causes a long listing of the Bash command to be printed.

Using Shell Variables
The shell itself stores information that may be useful to the user’s shell session in what are

called variables. Examples of variables include $SHELL (which identifies the shell you are

using), $PS1 (which defines your shell prompt), and $MAIL (which identifies the location of

your user’s mailbox).

You can see all variables set for your current shell by typing the set command. A subset of

your local variables is referred to as environment variables. Environment variables are var-

iables that are exported to any new shells opened from the current shell. Type env to see

environment variables.

You can type echo $VALUE, where VALUE is replaced by the name of a particular environ-

ment variable you want to list. And because there are always multiple ways to do anything

in Linux, you can also type declare to get a list of the current environment variables and

their values along with a list of shell functions.

Besides those that you set yourself, system files set variables that store things such as

locations of configuration files, mailboxes, and path directories. They can also store values

for your shell prompts, the size of your history list, and type of operating system. You can

refer to the value of any of those variables by preceding it with a dollar sign ($) and plac-

ing it anywhere on a command line. For example:

$ echo $USER
chris

This command prints the value of the USER variable, which holds your username (chris).

Substitute any other value for USER to print its value instead.

Chapter 3: Using the Shell

65

3

When you start a shell (by logging in via a virtual console or opening a Terminal window),

many environment variables are already set. Table 3.5 shows some variables that are either

set when you use a Bash shell or that can be set by you to use with different features.

TABLE 3.5 Common Shell Environment Variables

VARIABLE DESCRIPTION

BASH This contains the full pathname of the bash command. This is usually
/bin/bash.

BASH _
VERSION

This is a number representing the current version of the bash command.

EUID This is the effective user ID number of the current user. It is assigned when
the shell starts, based on the user’s entry in the /etc/passwd �le.

FCEDIT If set, this variable indicates the text editor used by the fc command to edit
history commands. If this variable isn’t set, the default browser is used.

HISTFILE This is the location of your history �le. It is typically located at $HOME/.
bash _ history.

HISTFILESIZE This is the number of history entries that can be stored. After this number is
reached, the oldest commands are discarded. The default value is 1,000.

HISTCMD This returns the number of the current command in the history list.

HOME This is your home directory. It is your current working directory each time
you log in or type the cd command with any options.

HOSTTYPE This is a value that describes the computer architecture on which the Linux
system is running. For most modern PCs, the value is x86 _ 64.

MAIL This is the location of your mailbox �le. The �le is typically your username in
the /var/spool/mail directory.

OLDPWD This is the directory that was the working directory before you changed to
the current working directory.

OSTYPE This name identi�es the current operating system. For Ubuntu, the OSTYPE
value is either linux or linux-gnu, depending on the type of shell you are
using. (Bash can run on other operating systems as well.)

PATH This is the colon-separated list of directories used to �nd commands that you
type. The default value for regular users varies for different distributions but
typically includes the following: /bin:/usr/bin:/usr/local/bin:/usr/
bin/X11:/usr/X11R6/bin:~/bin. You need to type the full path or a rela-
tive path to a command that you want to run which is not in your PATH. For the
root user, the value also includes /sbin, /usr/sbin, and /usr/local/sbin.

PPID This is the process ID of the command that started the current shell (for
example, the Terminal window containing the shell).

PROMPT _
COMMAND

This can be set to a command name that is run each time before your shell
prompt is displayed. Setting PROMPT_COMMAND=date lists the current
date/time before the prompt appears.

Continues

Part II: Becoming a Linux Power User

66

Creating and using aliases
Using the alias command, you can effectively create a shortcut to any command and

options that you want to run later. You can add and list aliases with the alias command.

Consider the following examples of using alias from a Bash shell:

$ alias p='pwd ; ls –CF'
$ alias rm='rm -i'

In the first example, the letter p is assigned to run the command pwd and then to run ls -CF

to print the current working directory and list its contents in column form. The second exam-

ple runs the rm command with the -i option each time you type rm. (This is an alias that is

often set automatically for the root user. Instead of just removing files, you are prompted for

each individual file removal. This prevents you from automatically removing all of the files in a

directory by mistakenly typing something such as rm *.)

While you are in the shell, you can check which aliases are set by typing the alias

command. If you want to remove an alias, use unalias. (Remember that if the alias is

set in a configuration file, it will be set again when you open another shell.)

TABLE 3.5 (continued)

VARIABLE DESCRIPTION

PS1 This sets the value of your shell prompt. There are many items that you can
read into your prompt (date, time, username, hostname, and so on). Some-
times a command requires additional prompts, which you can set with the
variables PS2, PS3, and so on.

PWD This is the directory that is assigned as your current directory. This value
changes each time you change directories using the cd command.

RANDOM Accessing this variable causes a random number to be generated. The
number is between 0 and 99999.

SECONDS This is the number of seconds since the time the shell was started.

SHLVL This is the number of shell levels associated with the current shell session.
When you log in to the shell, the SHLVL is 1. Each time you start a new Bash
command (by, for example, using su to become a new user, or by simply
typing bash), this number is incremented.

TMOUT This can be set to a number representing the number of seconds the shell
can be idle without receiving input. After the number of seconds is reached,
the shell exits. This security feature makes it less likely for unattended shells
to be accessed by unauthorized people. (This must be set in the login shell
for it actually to cause the shell to log out the user.)

Chapter 3: Using the Shell

67

3

Exiting the shell
To exit the shell when you are finished, type exit or press Ctrl+D. If you go to the shell

from a Terminal window and you are using the original shell from that window, exiting

causes the Terminal window to close. If you are at a virtual console, the shell exits and

returns you to a login prompt.

If you have multiple shells open from the same shell session, exiting a shell simply returns

you to the shell that launched the current shell. For example, the su command opens a

shell as a new user. Exiting from that shell simply returns you to the original shell.

Creating Your Shell Environment
You can tune your shell to help you work more efficiently. You can set aliases to create

shortcuts to your favorite command lines and environment variables to store bits of infor-

mation. By adding those settings to shell configuration files, you can have the settings

available every time you open a shell.

Con�guring your shell
Several configuration files support how your shell behaves. Some of the files are executed for

every user and every shell, whereas others are specific to the user who creates the configuration

file. Table 3.6 shows the files that are of interest to anyone using the Bash shell in Linux. (Notice

the use of ~ in the filenames to indicate that the file is located in each user’s home directory.)

TABLE 3.6 Bash Con�guration Files

FILE DESCRIPTION

/etc/profile This sets up user environment information for every user. It is executed
when you �rst log in. This �le provides values for your path in addition
to setting environment variables for such things as the location of your
mailbox and the size of your history �les. Finally, /etc/profile gathers
shell settings from con�guration �les in the /etc/profile.d directory.

/etc/
bash.bashrc

This executes for every user who runs the Bash shell each time a Bash shell is
opened. It sets the default prompt and may add one or more aliases. Values
in this �le can be overridden by information in each user’s ~/.bashrc �le.

~/.profile This is used by each user to enter information that is speci�c to his or her use of
the shell. It is executed only once—when the user logs in. By default, it sets a
few environment variables and executes the user’s .bashrc �le. This is a good
place to add environment variables because, once set, they are inherited by
future shells. This �le will be overruled if a ~/.bash _ profile �le exists.

~/.bashrc This contains the information that is speci�c to your Bash shells. It is read
when you log in and also each time you open a new Bash shell. This is the
best location to add aliases so that your shell picks them up.

~/.bash _
logout

This executes each time you log out (exit the last Bash shell).

Part II: Becoming a Linux Power User

68

To change the /etc/profile or /etc/bashrc files, you must be the root user. It is

better to create a /etc/profile.d/custom.sh file to add system-wide settings instead

of editing those files directly, however. Users can change the information in the $HOME/.
bash _ profile, $HOME/.bashrc, and $HOME/.bash_logout files in their own home

directories.

Until you learn to use the vi editor, described in Chapter 5, “Working with Text Files,” you

can use a simple editor called nano to edit plain-text files. For example, enter the follow-

ing to edit and add stuff to your $HOME/.bashrc file:

$ nano $HOME/.bashrc

With the file open in nano, move the cursor down to the bottom of the file (using the down

arrow key). Type the line you want (for example, you could type alias d='date +%D').

To save the file, press Ctrl+O (the letter O); to quit, press Ctrl+X. The next time you log in

or open a new shell, you can use the new alias (in this case, just type d). To make the new

information you just added to the file available from the current shell right away, type the

following:

$ source $HOME/.bashrc
$ d
06/29/19

The following sections provide ideas about items to add to your shell configuration files. In

most cases, you add these values to the .bashrc file in your home directory. However, if

you administer a system, you may want to set some of these values as defaults for all your

Ubuntu system’s users.

Setting your prompt
Your prompt consists of a set of characters that appear each time the shell is ready to

accept a command. The PS1 environment variable sets what the prompt contains and is

what you will interact with most of the time. If your shell requires additional input, it uses

the values of PS2, PS3, and PS4.

When your Ubuntu system is installed, your prompt is set to include the following informa-

tion: your username, your hostname, and the base name of your current working directory.

That information is followed by a dollar sign (for regular users) or a pound sign (for the root

user). The following is an example of that prompt:

chris@workstation:~/myfiles$

If you change directories, the myfiles name would change to the name of the new direc-

tory. Likewise, if you were to log in as a different user or to a different host, that informa-

tion would change.

You can use several special characters (indicated by adding a backslash to a variety of

letters) to include different information in your prompt. Special characters can be used to

output your terminal number, the date, and the time as well as other pieces of information.

Table 3.7 provides some examples (you can find more on the Bash man page).

Chapter 3: Using the Shell

69

3

To make a change to your prompt permanent, add the value of PS1 to your .bashrc file in

your home directory (assuming that you are using the Bash shell). There may already be a

PS1 value in that file, which you can modify. Refer to the Bash Prompt HOWTO (www.tldp.

org/HOWTO/Bash-Prompt-HOWTO) for information on changing colors, commands, and other

features of your Bash shell prompt.

TIP

If you are setting your prompt temporarily by typing at the shell, you should put the value of PS1 in quotes. For exam-

ple, you could type export PS1=″[\t \w]\$ ″ to see a prompt that looks like this:

 [20:26:32 /var/spool]$.

TABLE 3.7 Characters to Add Information to bash Prompt

SPECIAL CHARACTER DESCRIPTION

\! This shows the current command history number. This includes all previous
commands stored for your username.

\# This shows the command number of the current command. This includes only
the commands for the active shell.

\$ This shows the user prompt ($) or root prompt (#), depending on which type of
user you are.

\W This shows only the current working directory base name. For example,
if the current working directory was /var/spool/mail, this value simply
appears as mail.

\[This precedes a sequence of nonprinting characters. This can be used to add a
terminal control sequence into the prompt for such things as changing colors,
adding blink effects, or making characters bold. (Your terminal determines the
exact sequences available.)

\] This follows a sequence of nonprinting characters.

\\ This shows a backslash.

\d This displays the day name, month, and day number of the current date, for
example, Sat Jan 23.

\h This shows the hostname of the computer running the shell.

\n This causes a new line to occur.

\nnn This shows the character that relates to the octal number replacing nnn.

\s This displays the current shell name. For the Bash shell, the value
would be bash.

\t This prints the current time in hours, minutes, and seconds, for example,
10:14:39.

\u This prints your current username.

\w This displays the full path to the current working directory.

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO
http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO

Part II: Becoming a Linux Power User

70

Adding environment variables
You might want to consider adding a few environment variables to your .bashrc file.

These can help make working with the shell more efficient and effective:

TMOUT This sets how long the shell can be inactive before Bash automatically exits.

The value is the number of seconds for which the shell has not received input. This

can be a nice security feature, in case you leave your desk while you are still logged

in to Linux. To prevent being logged off while you are working, you may want to set

the value to something like TMOUT=1800 (to allow 30 minutes of idle time). You can

use any terminal session to close the current shell after a set number of seconds, for

example, TMOUT=30.

PATH As described earlier, the PATH variable sets the directories that are searched for

the commands that you use. If you often use directories of commands that are not

in your path, you can permanently add them. To do this, add a PATH variable to

your .bashrc file. For example, to add a directory called /getstuff/bin, add the

following:

PATH=$PATH:/getstuff/bin ; export PATH

This example first reads all of the current path directories into the new PATH

($PATH), adds the /getstuff/bin directory, and then exports the new PATH.

Custom environment variables You can create your own environment variables to pro-

vide shortcuts in your work. Choose any name that is not being used and assign a

useful value to it. For example, if you do lots of work with files in the /work/time/
files/info/memos directory, you could set the following variable:

M=/work/time/files/info/memos ; export M

You could make that your current directory by typing cd $M. You could run a pro-

gram from that directory called hotdog by typing $M/hotdog. You could edit a

file from there called bun by typing vi $M/bun.

CAUTION

Some people add the current directory to their PATH by adding a directory identi�ed simply as a dot (.), as follows:

 PATH=.:$PATH ; export PATH

This enables you to run commands in your current directory before evaluating any other command in the path (which

people may be used to if they have used DOS). However, the security risk with this procedure is that you could be in a

directory that contains a command that you don’t intend to run from that directory. For example, a malicious person

could put an ls command in a directory that, instead of listing the content of your directory, does something devi-

ous. Because of this, the practice of adding the dot to your path is highly discouraged.

Chapter 3: Using the Shell

71

3

Getting Information about Commands
When you first start using the shell, it can be intimidating. All that you see is a prompt.

How do you know which commands are available, which options they use, or how to use

advanced features? Fortunately, lots of help is available. Here are some places that you can

look to supplement what you learn in this chapter:

 ■ Check the PATH. Type echo $PATH. You see a list of the directories containing

commands that are immediately accessible to you. Listing the contents of those

directories displays most standard Linux commands. For example:

$ ls /bin
bash fuser networkctl static-sh
brltty fusermount nisdomainname stty
bunzip2 getfacl ntfs-3g su
busybox grep ntfs-3g.probe sync
bzcat gunzip ntfscat systemctl
bzcmp gzexe ntfscluster systemd
bzdiff gzip ntfscmp systemd-ask-password
bzegrep hciconfig ntfsfallocate systemd-escape
bzexe hostname ntfsfix systemd-hwdb
bzfgrep ip ntfsinfo systemd-inhibit
bzgrep journalctl ntfsls systemd-machine-id-setup
bzip2 kbd_mode ntfsmove systemd-notify
bzip2recover kill ntfsrecover systemd-sysusers
bzless kmod ntfssecaudit systemd-tmpfiles
bzmore less ntfstruncate systemd-tty-ask-password-agent
cat lessecho ntfsusermap tar
chacl lessfile ntfswipe tempfile
chgrp lesskey open touch
chmod lesspipe openvt true
chown ln pidof udevadm
chvt loadkeys ping ulockmgr_server
cp login ping4 umount
cpio loginctl ping6 uname
dash lowntfs-3g plymouth uncompress
date ls ps unicode_start
dd lsblk pwd vdir
df lsmod rbash wdctl
dir mkdir readlink which
dmesg mknod red whiptail
dnsdomainname mktemp rm ypdomainname
domainname more rmdir zcat
dumpkeys mount rnano zcmp
echo mountpoint run-parts zdiff
ed mt sed zegrep
efibootdump mt-gnu setfacl zfgrep
efibootmgr mv setfont zforce

Part II: Becoming a Linux Power User

72

egrep nano setupcon zgrep
false nc sh zless
fgconsole nc.openbsd sh.distrib zmore
fgrep netcat sleep znew
findmnt netstat ss

 ■ Use the help command. Some commands are built into the shell, so they do

not appear in a directory. The help command lists those commands and shows

options available with each of them. (Enter help | less to page through the

list.) For help with a particular built-in command, enter help command, replacing

command with the name that interests you. The help command works with the

Bash shell only.

 ■ Use --help with the command. Many commands include a --help option that

you can use to get information about how the command is used. For example, if you

enter date --help | less, the output shows not only options, but also time

formats that you can use with the date command. Other commands simply use a

–h option, like fdisk -h.

 ■ Use the info command. The info command is another tool for displaying infor-

mation about commands from the shell. The info command can move among a

hierarchy of nodes to find information about commands and other items. Not all

commands have information available in the info database, but sometimes more

information can be found there than on a man page.

 ■ Use the man command. To learn more about a particular command, enter man
command. (Replace command with the command name you want.) A description of

the command and its options appears on the screen.

Man pages are the most common means of getting information about commands as well

as other basic components of a Linux system. Each man page falls into one of the categories

listed in Table 3.8. As a regular user, you will be most interested in the man pages in

 section 1. As a system administrator, you will also be interested in sections 5 and 8, and

occasionally section 4. Programmers will be interested in section 2 and 3 man pages.

Options to the man command enable you to search the man page database or display man

pages on the screen. Here are some examples of man commands and options:

$ man -k passwd
...
passwd (1) - update user's authentication tokens
passwd (5) - password file
$ man passwd
$ man 5 passwd

Using the -k option, you can search the name and summary sections of all man pages

installed on the system. There are about a dozen man pages that include “passwd” in the

name or description of a command.

Chapter 3: Using the Shell

73

3

Let’s say that the two man pages in which I am interested are the passwd command (in

section 1 of the man pages) and the passwd file (in section 5) man pages. Because just

typing man passwd displays the section 1 page, I need to request explicitly the section 5

man page if I want to see that instead (man 5 passwd).

While you are displaying a man page, you can view different parts of the file using Page

Down and Page Up keys (to move a page at a time). Use the Enter key or up and down

arrows to move a line at a time. Type a forward slash (/) and type a term to search the

document for that term. Type n to repeat the search forward or N to repeat the search

backward. To quit the man page, type q.

NOTE

If man -k displays no output, it may be that the man page database has not been initialized. Type mandb as root

to initialize the man page database.

TABLE 3.8 Manual Page Sections

SECTION NUMBER SECTION NAME DESCRIPTION

1 User Commands Commands that can be run from the shell by a regular
user (typically no administrative privilege is needed)

2 System Calls Programming functions used within an application to
make calls to the kernel

3 C Library Functions Programming functions that provide interfaces to
speci�c programming libraries (such as those for cer-
tain graphical interfaces or other libraries that oper-
ate in user space)

4 Devices and
Special Files

Filesystem nodes that represent hardware devices
(such as terminals or CD drives) or software devices
(such as random number generators)

5 File Formats and
Conventions

Types of �les (such as a graphics or word processing
�le) or speci�c con�guration �les (such as the passwd
or group �le)

6 Games Games available on the system

7 Miscellaneous Overviews of topics such as protocols, �lesystems,
character set standards, and so on

8 System Administration
Tools and Daemons

Commands that require root or other administrative
privileges to use

Part II: Becoming a Linux Power User

74

Summary
To become an expert Linux user, you must be able to use the shell to type commands. This

chapter focuses on the Bash shell, which is the one that is most commonly used with Linux

systems. You learned how commands are structured and how many special features, such as

variables, command completion, and aliases, are used.

The next chapter describes how to move around the Linux filesystem from the shell

command line.

Exercises
Use these exercises to test your knowledge of using the shell. If you are stuck, solutions

to the tasks are shown in Appendix A (although in Linux, there are often multiple ways to

complete a task).

1. From your desktop, switch to the third virtual console and log in to your user

account. Run a few commands. Then exit the shell and return to the desktop.

2. Open a Terminal window and change the font color to red and the background

to yellow.

3. Find the location of the mount command and the tracepath man page.

4. Type the following three commands, and then recall and change those commands

as described:

$ cat /etc/passwd
$ ls $HOME
$ date

a. Use the command-line recall feature to recall the cat command and change

/etc/passwd to /etc/group.

b. Recall the ls command, determine how to list files by time (using the man

page), and add that option to the ls $HOME command line.

c. Add format indicators to the date command to display the date output as

month/day/year.

5. Run the following command, typing as few characters as possible (using tab

completion):

basename /usr/share/doc/

6. Use the cat command to list the contents of the /etc/services file and pipe

those contents to the less command so that you can page through it (type q to

quit when you are finished).

Chapter 3: Using the Shell

75

3

7. Run the date command in such a way that the output from that command pro-

duces the current day, month, date, and year. Have that read into another

command line, resulting in text that appears like the following (your date, of

course, will be different): Today is Thursday, December 19, 2019.

8. Using variables, find out what your hostname, username, shell, and home direc-

tories are currently set to.

9. Create an alias called mypass that displays the contents of the /etc/passwd file

on your screen in such a way that it is available every time you log in or open a

new shell from your user account.

10. Display the man page for the mount system call.

77

CHAP T ER

4
Moving Around the Filesystem

IN THIS CHAPTER

Learning about the Linux �lesystem

Listing �le and directory attributes

Making �les and directories

Listing and changing permission and ownership

Making copies and moving �les

T
he Linux filesystem is the structure in which all of the information on your computer is stored.

In fact, one of the defining properties of the UNIX systems on which Linux is based is that

nearly everything you need to identify on your system (data, commands, symbolic links,

devices, and directories) is represented by items in the filesystems. Knowing where things are and

understanding how to get around the filesystem from the shell are critical skills in Linux.

In Linux, files are organized within a hierarchy of directories. Each directory can contain files as

well as other directories. You can refer to any file or directory using either a full path (for example,

/home/joe/myfile.txt) or a relative path (for example, if /home/joe were your current direc-

tory, you could simply refer to the file as myfile.txt).

If you were to map out the files and directories in Linux, it would look like an upside-down tree. At

the top is the root directory (not to be confused with the root user), which is represented by a single

slash (/). Below that is a set of common directories in the Linux system, such as bin, dev, home,

lib, and mnt. Each of those directories, as well as directories added to the root directory, can con-

tain subdirectories.

Figure 4.1 illustrates how the Linux filesystem is organized as a hierarchy. To demonstrate how direc-

tories are connected, Figure 4.1 shows a /home directory that contains a subdirectory for the user

joe. Within the joe directory are Desktop, Documents, and other subdirectories. To refer to a file

called memo1.doc in the memos directory, you can type the full path of /home/joe/Documents/
memos/memo1.doc. If your current directory is /home/joe/, refer to the file as Documents/
memos/memo1.doc.

Part II: Becoming a Linux Power User

78

Some of these Linux directories may interest you:

/bin Contains common Linux user commands, such as ls, sort, date,

and chmod.

/boot Has the bootable Linux kernel, initial RAM disk, and bootloader configura-

tion files (GRUB).

/dev Contains files representing access points to devices on your systems. These

include terminal devices (tty*), hard disks (hd* or sd*), RAM (ram*), and CD-ROMs

(cd*). Users can access these devices directly through these device files; however,

applications often hide the actual device names to end users.

/etc Contains administrative configuration files. Most of these files are plain text

files that, given the user has proper permission, can be edited with any text editor.

/home Contains directories assigned to each regular user with a login account. (The

root user is an exception, using /root as its home directory.)

/media Provides a standard location for automounting devices (removable media in

particular). If the medium has a volume name, that name is typically used as the

mount point. For example, a USB drive with a volume name of myusb would be

mounted on /media/myusb.

/lib Contains shared libraries needed by applications in /bin and /sbin to boot

the system.

/mnt A common mount point for many devices before it was supplanted by the

standard /media directory. Some bootable Linux systems still use this directory

to mount hard disk partitions and remote filesystems. Many people still use this

directory to temporarily mount local or remote filesystems, which are not mounted

permanently.

bin dev etc lib misc opt root usr

boot home media mnt proc sbin tmp var

joe

memos plans projects

Desktop Documents Downloads Music Pictures

memo1.doc

FIGURE 4.1

The Linux filesystem is organized as a hierarchy of directories.

Chapter 4: Moving Around the Filesystem

79

4

/opt Directory structure available to store add-on application software.

/proc Contains information about system resources.

/root Represents the root user’s home directory. The home directory for root does

not reside beneath /home for security reasons.

/sbin Contains administrative commands and daemon processes.

/snap The home directory for filesystems used by the snapd package manage-

ment system.

/sys Contains parameters for such things as tuning block storage and

managing cgroups.

/tmp Contains temporary files used by applications.

/usr Contains user documentation, games, graphical files (X11), libraries (lib),

and a variety of other commands and files that are not needed during the boot pro-

cess. The /usr directory is meant for files that don’t change after installation (in

theory, /usr could be mounted read-only).

/var Contains directories of data used by various applications. In particular, this

is where you would place files that you share as an FTP server (/var/ftp) or a

web server (/var/www). It also contains all system log files (/var/log) and spool

files in /var/spool (such as mail, cups, and news). The /var directory con-

tains directories and files that are meant to change often. On server computers, it

is common to create the /var directory as a separate filesystem, using a filesystem

type that can be easily expanded. Previous Ubuntu versions might have kept some

shared files in /srv.

The filesystems in the DOS or Microsoft Windows operating systems differ from Linux’s file

structure, as the sidebar “Linux Filesystems versus Windows-Based Filesystems” explains.

Linux Filesystems versus Windows-Based
Filesystems
Although similar in many ways, the Linux �lesystem has some striking differences when compared to
�lesystems used in MS-DOS and Windows operating systems. Here are a few of these differences:

 ■ In MS-DOS and Windows �lesystems, drive letters represent different storage devices. In
Linux, all storage devices are connected to the �lesystem hierarchy. So, the fact that all of
/usr may be on a separate hard disk or that /mnt/remote1 is a �lesystem from another
computer is invisible to the user.

 ■ Slashes (also known as forward slashes), rather than backslashes, are used to separate direc-
tory names in Linux. So C:\home\joe in a Microsoft system is /home/joe in a Linux system.

Part II: Becoming a Linux Power User

80

Using Basic Filesystem Commands
Let’s explore a few simple commands for moving around the filesystem. If you want to

follow along, log in and open a shell. When you open a Linux shell, you are placed in your

home directory. As a Linux user, most of the files you save and work with will probably be

in that directory or in subdirectories that you create. Table 4.1 shows commands to create

and use files and directories.

One of the most basic commands that you use from the shell is cd. The cd command can

be used with no options (to take you to your home directory) or with full or relative paths.

Consider the following commands:

$ cd /usr/share/
$ pwd
/usr/share
$ cd doc
$ pwd
/usr/share/doc
$ cd
$ pwd
/home/chris

TABLE 4.1 Commands to Create and Use Files

COMMAND RESULT

cd Changes to another directory

pwd Prints the name of the current (or present) working directory

mkdir Creates a directory

chmod Changes the permission on a �le or directory

ls Lists the contents of a directory

 ■ Filenames almost always have suf�xes in DOS (such as .txt for text �les or .docx for word-
processing �les). Although at times you can use that convention in Linux, three-character
suf�xes have no required meaning in Linux. They can be useful for visually identifying a �le
type. Many Linux applications and desktop environments use �le suf�xes to determine the
contents of a �le. In Linux, however, DOS command extensions such as .com, .exe, and
.bat don’t necessarily signify an executable. (Permission �ags make Linux �les executable.)

 ■ Every �le and directory in a Linux system has permissions and ownership associated with it.
Security varies among Microsoft systems. Because DOS and Microsoft Windows began as
single-user systems, �le ownership was not built into those systems when they were designed.
Later releases added features such as �le and folder attributes to address this problem.

Chapter 4: Moving Around the Filesystem

81

4

The /usr/share option represents the absolute path to a directory on the system. Because

it begins with a slash (/), this path tells the shell to start at the root of the filesystem and

take you to the share directory that exists in the usr directory. The doc option to the

cd command looks for a directory called doc that is relative to the current directory. So

that command made /usr/share/doc your current directory.

After that, by typing cd alone, you are returned to your home directory. If you ever

wonder where you are in the filesystem, the pwd command can help you. Here are a few

other interesting cd command options:

$ cd ~
$ pwd
/home/chris
$ cd ~/Music
$ pwd
/home/chris/Music
$ cd ../../../usr
$ pwd
/usr

The tilde (~) represents your home directory. So cd ~ takes you there. You can use the

tilde to refer to directories relative to your home directory as well, such as /home/chris/
Music with ~/Music. Typing a name as an option takes you to a directory below the

current directory, but you can use two dots (..) to go to a directory above the current

directory. The example shown takes you up three directory levels (to /), and then takes

you into the /usr directory.

The following steps lead you through the process of creating directories within your home

directory, moving among your directories, and setting appropriate file permissions:

1. Go to your home directory. To do this, simply type cd in a shell and press Enter.

(For other ways of referring to your home directory, see the sidebar “Identifying

Directories” on page 88.)

2. To make sure that you’re in your home directory, type pwd. When I do this, I get

the following response (yours will reflect your home directory):

$ pwd
/home/joe

3. Create a new directory called test in your home directory, as follows:

$ mkdir test

4. Check the directory’s permissions:

$ ls -ld test
drwxr-xr-x 2 joe joe 4096 Feb 19 09:48 test

This listing shows that test is a directory (d). The d is followed by the permis-

sions (rwxr-xr-x), which are explained later in the section “Understanding File

Permissions and Ownership.” The rest of the information indicates the owner (joe),

Part II: Becoming a Linux Power User

82

the group (joe), and the date that the files in the directory were most recently

modified (Feb 19 at 9:48 a.m.).

NOTE

When you add a new user in Ubuntu, the user is assigned to a group of the same name by default. For example, in the

preceding text, the user joe would be assigned to the group joe. This approach to assigning groups is referred to

as the user private group scheme.

For now, enter the following:

$ chmod 700 test

This step changes the permissions of the directory to give you complete access and

everyone else no access at all. (The new permissions should read rwx------.)

5. Make the test directory your current directory as follows:

$ cd test
$ pwd
/home/joe/test

If you followed along, at this point a subdirectory of your home directory called test is

your current working directory. You can create files and directories in the test directory

along with the descriptions in the rest of this chapter.

Using Metacharacters and Operators
Whether you are listing, moving, copying, removing, or otherwise acting on files in your

Linux system, certain special characters, referred to as metacharacters and operators, help

you to work with files more efficiently. Metacharacters can help you match one or more files

without completely typing each filename. Operators enable you to direct information from

one command or file to another command or file.

Using �le-matching metacharacters
To save you some keystrokes and enable you to refer easily to a group of files, the Bash

shell lets you use metacharacters. Any time you need to refer to a file or directory, such as

to list, open, or remove it, you can use metacharacters to match the files you want. Here

are some useful metacharacters for matching filenames:

* Matches any number of characters.

? Matches any one character.

[...] Matches any one of the characters between the brackets, which can include a

hyphen-separated range of letters or numbers.

Chapter 4: Moving Around the Filesystem

83

4

Try out some of these file-matching metacharacters by first going to an empty direc-

tory (such as the test directory described in the previous section) and creating some

empty files:

$ touch apple banana grape grapefruit watermelon

The touch command updates the modification time stamp of an existing file or, if no file

of that name currently exists, will create an empty file. The commands that follow show

you how to use shell metacharacters with the ls command to match filenames. Try the fol-

lowing commands to see whether you get the same responses:

$ ls a*
apple
$ ls g*
grape grapefruit
$ ls g*t
grapefruit
$ ls *e*
apple grape grapefruit watermelon
$ ls *n*
banana watermelon

The first example matches any file that begins with a (apple). The next example matches

any files that begin with g (grape, grapefruit). Next, files beginning with g and

ending in t are matched (grapefruit). Next, any file that contains e in the name is

matched (apple, grape, grapefruit, watermelon). Finally, any file that contains n is

matched (banana, watermelon).

Here are a few examples of pattern matching with the question mark (?):

$ ls ????e
apple grape
$ ls g???e*
grape grapefruit

The first example matches any five-character file that ends in e (apple, grape). The

second matches any file that begins with g and has e as its fifth character (grape,

grapefruit).

The following examples use braces to do pattern matching:

$ ls [abw]*
apple banana watermelon
$ ls [agw]*[ne]
apple grape watermelon

Part II: Becoming a Linux Power User

84

In the first example, any file beginning with a, b, or w is matched. In the second, any

file that begins with a, g, or w and also ends with either n or e is matched. You can also

include ranges within brackets. For example:

$ ls [a-g]*
apple banana grape grapefruit

Here, any filenames beginning with a letter from a through g are matched.

Using �le-redirection metacharacters
Commands receive data from standard input and send it to standard output. Using pipes

(described earlier), you can direct standard output from one command to the standard

input of another. With files, you can use less than (<) and greater than (>) signs to direct

data to and from files. Here are the file-redirection characters:

< Directs the contents of a file to the command. In most cases, this is the default

action expected by the command and the use of the character is optional; using

less bigfile is the same as less < bigfile.

> Directs the standard output of a command to a file. If the file exists, the content of

that file is overwritten.

2> Directs standard error (error messages) to the file.

&> Directs both standard output and standard error to the file.

>> Directs the output of a command to a file, adding the output to the end of the

existing file.

The following are some examples of command lines where information is directed to and

from files:

$ mail root < ~/.bashrc
$ man chmod | col -b > /tmp/chmod
$ echo "I finished the project on $(date)" >> ~/projects

In the first example, the content of the .bashrc file in the home directory is sent in a

mail message to the computer’s root user. (This example assumes that you’ve installed email

server software—like mailutils—on your system.) The second command line formats the

chmod man page (using the man command), removes extra back spaces (col -b), and

sends the output to the file /tmp/chmod (overwriting the contents of the previous /tmp/
chmod file, if it exists). The final command results in the following text being added to the

user’s project file:

I finished the project on Sat Jun 15 13:46:49 EDT 2019

Another type of redirection, referred to as here text (also called here document), enables you

to type text that can be used as standard input for a command. Here, documents involve

entering two less-than characters (<<) after a command, followed by a word. All typing

Chapter 4: Moving Around the Filesystem

85

4

following that word is taken as user input until the word is repeated on a line by itself.

Here is an example:

$ mail root cnegus rjones bdecker << thetext
> I want to tell everyone that there will be a 10 a.m.
> meeting in conference room B. Everyone should attend.
>
> -- James
> thetext
$

This example sends a mail message to the root, cnegus, rjones, and bdecker usernames.

The text entered between <<thetext and thetext becomes the content of the message.

A common use of here text is to use it with a text editor to create or add to a file from

within a script:

/bin/ed /etc/resolv.conf <<resendit
a
nameserver 100.100.100.100
.
w
q
resendit

With these lines added to a script run by the root user, the ed text editor adds the IP

address of a DNS server to the /etc/resolv.conf file. If, by the way, you take a moment

to read the current contents of /etc/resolv.conf, you’ll see that it’s no longer used to

manually configure your DNS settings. It seems that change happens even to software tools

that have been running successfully for 30 years.

Using brace expansion characters
By using curly braces ({}), you can expand out a set of characters across filenames, direc-

tory names, or other arguments to which you give commands. For example, if you want to

create a set of files such as memo1 through memo5, you can do that as follows:

$ touch memo{1,2,3,4,5}
$ ls
memo1 memo2 memo3 memo4 memo5

The items that are expanded don’t have to be numbers or even single digits. For example,

you could use ranges of numbers or digits. You could also use any string of characters, as

long as you separate them with commas. Here are some examples:

$ touch {John,Bill,Sally}-{Breakfast,Lunch,Dinner}
$ ls
Bill-Breakfast Bill-Lunch John-Dinner Sally-Breakfast Sally-Lunch
Bill-Dinner John-Breakfast John-Lunch Sally-Dinner

Continues

Part II: Becoming a Linux Power User

86

$ rm {John,Bill,Sally}-{Breakfast,Lunch,Dinner}
$ touch {a..f}{1..5}
$ ls
a1 a3 a5 b2 b4 c1 c3 c5 d2 d4 e1 e3 e5 f2 f4
a2 a4 b1 b3 b5 c2 c4 d1 d3 d5 e2 e4 f1 f3 f5

In the first example, the use of two sets of braces means John, Bill, and Sally each have

filenames associated with Breakfast, Lunch, and Dinner. If I had made a mistake, I could

easily recall the command and change touch to rm to delete all of the files. In the next

example, the use of two dots between letters a and f and numbers 1 and 5 specifies the

ranges to be used. Note the files that were created from those few characters.

Listing Files and Directories
The ls command is the most common command used to list information about files and

directories. Many options available with the ls command allow you to gather different sets

of files and directories as well as to view different kinds of information about them.

By default, when you type the ls command, the output shows you all non-hidden files and

directories contained in the current directory. When you type ls, however, many Linux

systems assign an alias ls to add options. To see if ls is aliased, enter the following:

$ alias ls
alias ls='ls --color=auto'

The --color=auto option causes different types of files and directories to be displayed in

different colors. So, return to the $HOME/test directory created earlier in the chapter, add

a couple of different types of files, and then see what they look like with the ls command:

$ cd $HOME/test
$ touch scriptx.sh apple
$ chmod 755 scriptx.sh
$ mkdir Stuff
$ ln -s apple pointer_to_apple
$ ls
apple pointer_to_apple scriptx.sh Stuff

Although you can’t see it in the preceding code example, the directory Stuff shows up in

blue, pointer _ to _ apple (a symbolic link) appears as aqua, and scriptx.sh (which

is an executable file) appears in green. All other regular files show up in black. Typing ls
-l to see a long listing of those files can make these different types of files clearer still:

$ ls -l
total 4
-rw-rw-r--. 1 joe joe 0 Dec 18 13:38 apple
lrwxrwxrwx. 1 joe joe 5 Dec 18 13:46 pointer_to_apple -> apple

Continued

Chapter 4: Moving Around the Filesystem

87

4

-rwxr-xr-x. 1 joe joe 0 Dec 18 13:37 scriptx.sh
drwxrwxr-x. 2 joe joe 4096 Dec 18 13:38 Stuff

As you look at the long listing, notice that the first character of each line shows the

type of file. A hyphen (-) indicates a regular file, d indicates a directory, and l (lower-

case L) indicates a symbolic link. An executable file (a script or binary file that runs as a

command) has execute bits turned on (x). See more on execute bits in the upcoming sec-

tion “Understanding File Permissions and Ownership.”

You should become familiar with the contents of your home directory next. Use the -l and

-a options to ls:

$ ls -la /home/frank
total 32
drwxr-xr-x 3 frank frank 4096 Feb 19 17:09 .
drwxr-xr-x 5 root root 4096 May 30 2019 ..
-rw------- 1 frank frank 311 May 5 2019 .bash_history
-rw-r--r-- 1 frank frank 220 May 5 2019 .bash_logout
-rw-r--r-- 1 frank frank 3771 May 5 2019 .bashrc
drwx------ 3 frank frank 4096 May 5 2019 .gnupg
-rw------- 1 frank frank 34 May 5 2019 .lesshst
-rw-r--r-- 1 frank frank 807 May 5 2019 .profile
-rw-rw-r-- 1 frank frank 0 May 5 2019 letter
^ ^ ^ ^ ^ ^ ^
col 1 col 2 col 3 col 4 col 5 col 6 col 7

Displaying a long list (-l option) of the contents of your home directory shows you more

about file sizes and directories. The total line shows the total amount of disk space used

by the files in the list (32 kilobytes in this example). Adding the all files option (-a) dis-

plays files that begin with a dot (.). Directories such as the current directory (.) and the

parent directory (..)—the directory above the current directory—are noted as directories

by the letter d at the beginning of each entry. Each directory begins with a d and each file

begins with a dash (-).

The file and directory names are shown in column 7. In this example, a dot (.) represents

/home/frank and two dots (..) represent /home—the parent directory of /frank. Most

of the files in this example are dot (.) files that are used to store shell properties (.bash

files). The only non-dot file in this list is the one named letter. Column 3 shows the

directory or file owner. The /home directory is owned by root, and everything else is

owned by the user frank, who belongs to the frank group (groups are listed in column 4).

In addition to the d or -, column 1 on each line contains the permissions set for that file

or directory. Other information in the listing includes the number of hard links to the item

(column 2), the size of each file in bytes (column 5), and the date and time each file was

most recently modified (column 6).

Part II: Becoming a Linux Power User

88

Here are a few other facts about file and directory listings:

 ■ The number of characters shown for a directory (4096 bytes in these examples)

reflects the size of the file containing information about the directory. Although

this number can grow above 4096 bytes for a directory that contains lots of files,

this number doesn’t reflect the size of files contained in that directory.

 ■ On occasion, instead of seeing the execute bit (x) set on an executable file, you may

see an s in that spot instead. With an s appearing within either the owner (-rwsr-
xr-x) or group (-rwxr-sr-x) permissions, or both (-rwsr-sr-x), the application

can be run by any user, but ownership of the running process is assigned to the

application’s user/group instead of that of the user launching the command. This

is referred to as a set UID or set GID program, respectively. For example, the mount

command (/bin/mount) has permissions set as -rwsr-xr-x. This allows any user

to run mount to list mounted filesystems (although you still have to be root to use

mount to actually mount filesystems from the command line, in most cases).

 ■ If a t appears at the end of a directory, it indicates that the sticky bit is set for that

directory (for example, drwxrwxr-t). By setting the sticky bit on a directory,

the directory’s owner can allow other users and groups to add files to the directory

but prevent users from deleting each other’s files in that directory. With a set GID

assigned to a directory, any files created in that directory are assigned the same

group as the directory’s group. (If you see a capital S or T instead of the execute

bits on a directory, it means that the set GID or sticky bit permission, respectively,

was set, but for some reason the execute bit was not also turned on.)

Identifying Directories
When you need to identify your home directory on a shell command line, you can use the following:

 ■ $HOME This environment variable stores your home directory name.

 ■ ~ The tilde (~) represents your home directory on the command line. You can also
use the tilde to identify someone else’s home directory. For example, ~joe would be
expanded to the joe home directory (probably /home/joe). So, if I wanted to go to the
directory/home/joe/test, I could enter cd ~joe/test to get there.

Other special ways of identifying directories in the shell include the following:

 ■ . A single dot (.) refers to the current directory.

 ■ .. Two dots (..) refer to a directory directly above the current directory.

 ■ $PWD This environment variable refers to the current working directory.

 ■ $OLDPWD This environment variable refers to the previous working directory before you
changed to the current one. (Entering cd – returns you to the directory represented
by $OLDPWD.)

Chapter 4: Moving Around the Filesystem

89

4

As I mentioned earlier, there are many useful options for the ls command. Return to

the $HOME/test directory in which you’ve been working. Here are some examples of

ls options. Don’t worry if the output doesn’t exactly match what is in your directory at

this point.

Any file or directory beginning with a dot (.) is considered hidden and is not displayed by

default with ls. These dot files are typically configuration files or directories that need to

be in your home directory but don’t need to be seen in your daily work. The -a lets you see

those files.

The -t option displays files in the order in which they were most recently modified. With

the -F option, a slash (/) appears at the end of directory names, an asterisk (*) is added to

executable files, and an at sign (@) is shown next to symbolic links.

To show hidden and non-hidden files:

$ ls -a
. apple docs grapefruit pointer_to_apple .stuff watermelon
.. banana grape .hiddendir script.sh .tmpfile

To list all files by time most recently modified:

$ ls -at
.tmpfile .hiddendir .. docs watermelon banana script.sh
. .stuff pointer_to_apple grapefruit apple grape

To list files and append file-type indicators:

$ ls -F
apple banana docs/ grape grapefruit pointer_to_apple@ script.sh*
watermelon

To avoid displaying certain files or directories when you use ls, use the --hide= option.

In the next set of examples, any file beginning with g does not appear in the output. Using

a -d option on a directory shows information about that directory instead of showing

the files and directories the directory contains. The -R option lists all files in the current

directory as well as any files or directories that are associated with the original directory.

The -S option lists files by size.

To exclude any files beginning with the letter g in the list:

$ ls --hide=g*
apple banana docs pointer_to_apple script.sh watermelon

To list info about a directory instead of the files it contains:

$ ls -ld $HOME/test/
drwxrwxr-x. 4 joe joe 4096 Dec 18 22:00 /home/joe/test/

To create multiple directory layers (-p is needed):

$ mkdir -p $HOME/test/documents/memos/

Part II: Becoming a Linux Power User

90

To list all files and directories recursively from the current directory down:

$ ls -R
...

To list files by size from the current directory down:

$ ls -S
...

Understanding File Permissions and Ownership
After you’ve worked with Linux for a while, you are almost sure to get a Permission
denied message. Permissions associated with files and directories in Linux were designed

to keep users from accessing other users’ private files and to protect important system files.

The nine bits assigned to each file for permissions define the access that you and others

have to your file. Permission bits for a regular file appear as -rwxrwxrwx. Those bits are

used to define who can read, write, or execute the file.

NOTE

For a regular �le, a dash appears in front of the nine-bit permissions indicator. Instead of a dash, you might see a d

(for a directory), l (for a symbolic link), b (for a block device), c (for a character device), s (for a socket), or p (for a

named pipe).

Of the nine-bit permissions, the first three bits apply to the owner’s permission, the next

three apply to the group assigned to the file, and the last three apply to all others. The r

stands for read, the w stands for write, and the x stands for execute permissions. If a dash

appears instead of the letter, it means that permission is turned off for that associated

read, write, or execute bit.

Because files and directories are different types of elements, read, write, and execute per-

missions on files and directories mean different things. Table 4.2 explains what you can do

with each of them.

TABLE 4.2 Setting Read, Write, and Execute Permissions

PERMISSION FILE DIRECTORY

Read View what’s
in the �le.

See what �les and subdirectories it contains.

Write Change the �le’s
content, rename
it, or delete it.

Add �les or subdirectories to the directory. Remove �les or
directories from the directory.

Execute Run the �le as
a program.

Change to the directory as the current directory, search
through the directory, or execute a program from the direc-
tory. Access �le metadata (�le size, time stamps, and so on) of
�les in that directory.

Chapter 4: Moving Around the Filesystem

91

4

As noted earlier, you can see the permission for any file or directory by typing the ls -ld

command. The named file or directory appears as those shown in this example:

$ ls -ld ch3 test
-rw-rw-r-- 1 joe sales 4983 Jan 18 22:13 ch3
drwxr-xr-x 2 joe sales 1024 Jan 24 13:47 test

The first line shows that the ch3 file has read and write permission for the owner and the

group. All other users have read permission, which means that they can view the file but

cannot change its contents or remove it. The second line shows the test directory (indi-

cated by the letter d before the permission bits). The owner has read, write, and execute

permissions while the group and other users have only read and execute permissions. As a

result, the owner can add, change, or delete files in that directory, and everyone else can

only read the contents, change to that directory, and list the contents of the directory. (If

you had not used the -d options to ls, you would have listed files in the test directory

instead of permissions of that directory.)

Changing permissions with chmod (numbers)
If you own a file, you can use the chmod command to change the permission on it. In one

method of doing this, each permission (read, write, and execute) is assigned a number—

r=4, w=2, and x=1—and you use each set’s total number to establish the permission. For

example, to make permissions wide open for yourself as owner, you would set the first

number to 7 (4+2+1), and then you would give the group and others read-only permis-

sion by setting both the second and third numbers to 4 (4+0+0), so that the final number

is 744. Any combination of permissions can result from 0 (no permission) through 7 (full

permission).

Here are some examples of how to change permission on a file (named file) and what

the resulting permission would be. The following chmod command results in this permis-

sion: rwxrwxrwx

chmod 777 file

The following chmod command results in this permission: rwxr-xr-x

chmod 755 file

The following chmod command results in this permission: rw-r--r--

chmod 644 file

The following chmod command results in this permission: ---------

chmod 000 file

The chmod command also can be used recursively. For example, suppose that you wanted

to give an entire directory structure 755 permissions (rwxr-xr-x), starting at the $HOME/
myapps directory. To do that, you could use the -R option, as follows:

$ chmod -R 755 $HOME/myapps

Part II: Becoming a Linux Power User

92

All files and directories below, and including, the myapps directory in your home directory

will have 755 permissions set.

Changing permissions with chmod (letters)
You can also turn file permissions on and off using plus (+) and minus (–) signs, respec-

tively, along with letters to indicate what changes and for whom. Using letters, for each

file you can change permissions for the user (u), group (g), other (o), and all users (a).

What you would change includes the read (r), write (w), and execute (x) bits. For example,

start with a file that has all permissions open (rwxrwxrwx). Run the following chmod

commands using minus sign options. The resulting permissions are shown to the right of

each command.

The following chmod command results in this permission: r-xr-xr-x

$ chmod a-w file

The following chmod command results in this permission: rwxrwxrw-

$ chmod o-x file

The following chmod command results in this permission: rwx------

$ chmod go-rwx file

Likewise, the following examples start with all permissions closed (---------). The plus

sign is used with chmod to turn permissions on.

The following chmod command results in this permission: rw-------

$ chmod u+rw files

The following chmod command results in this permission: --x--x--x

$ chmod a+x files

The following chmod command results in this permission: r-xr-x---

$ chmod ug+rx files

Using letters to change permission recursively with chmod generally works better than

using numbers because you can change bits selectively instead of changing all permission

bits at once. For example, suppose that you want to remove write permission for “other”

without changing any other permission bits on a set of files and directories. You could do

the following:

$ chmod -R o-w $HOME/myapps

This example recursively removes write permissions for “other” on any files and directories

below the myapps directory. If you had used numbers such as 644, execute permission

would be turned off for directories; using 755, execute permission would be turned on for

regular files. Using o-w, only one bit is turned off and all other bits are left alone.

Chapter 4: Moving Around the Filesystem

93

4

Setting default �le permission with umask
When you create a file as a regular user, it’s given permission rw-rw-r-- by default. A

directory is given the permission rwxrwxr-x. For the root user, file and directory permis-

sion are rw-r--r-- and rwxr-xr-x, respectively. These default values are determined by

the value of umask. Enter umask to see what your umask value is. For example:

$ umask
0022

If you ignore the leading zero for the moment, the umask value masks what is considered

to be fully opened permissions for a file 666 or a directory 777. The umask value of 002

results in permission for a directory of 775 (rwxrwxr-x). That same umask results in a file

permission of 644 (rw-rw-r--). (Execute permissions are off by default for regular files.)

To change your umask value temporarily, run the umask command. Then try creating

some files and directories to see how the umask value affects how permissions are set.

For example:

$ umask 777 ; touch file01 ; mkdir dir01 ; ls -ld file01 dir01
d---------. 2 joe joe 6 Dec 19 11:03 dir01
----------. 1 joe joe 0 Dec 19 11:02 file01
$ umask 000 ; touch file02 ; mkdir dir02 ; ls -ld file02 dir02
drwxrwxrwx. 2 joe joe 6 Dec 19 11:00 dir02/
-rw-rw-rw-. 1 joe joe 0 Dec 19 10:59 file02
$ umask 022 ; touch file03 ; mkdir dir03 ; ls -ld file03 dir03
drwxr-xr-x. 2 joe joe 6 Dec 19 11:07 dir03
-rw-r--r--. 1 joe joe 0 Dec 19 11:07 file03

If you want to change your umask value permanently, add a umask command to the

.bashrc file in your home directory (near the end of that file). The next time you open a

shell, your umask is set to whatever value you chose.

Changing �le ownership
As a regular user, you cannot change ownership of files or directories to have them belong

to another user. You can change ownership as the root user. For example, suppose that you

created a file called memo.txt in the user joe’s home directory while you were root user.

Here’s how you could change it to be owned by joe:

chown joe /home/joe/memo.txt
ls -l /home/joe/memo.txt
-rw-r--r--. 1 joe root 0 Dec 19 11:23 /home/joe/memo.txt

Notice that the chown command changed the user to joe but left the group as root. To

change both user and group to joe, you could enter the following instead:

chown joe:joe /home/joe/memo.txt
ls -l /home/joe/memo.txt
-rw-r--r--. 1 joe joe 0 Dec 19 11:23 /home/joe/memo.txt

Part II: Becoming a Linux Power User

94

The chown command can be use recursively as well. Using the recursive option (-R) is help-

ful if you need to change a whole directory structure to ownership by a particular user. For

example, if you inserted a USB drive, which is mounted on the /media/myusb directory,

and you wanted to give full ownership of the contents of that drive to the user joe, you

could enter the following:

chown -R joe:joe /media/myusb

Moving, Copying, and Removing Files
Commands for moving, copying, and deleting files are fairly straightforward. To change

the location of a file, use the mv command. To copy a file from one location to another, use

the cp command. To remove a file, use the rm command. These commands can be used to

act on individual files and directories or recursively to act on many files and directories at

once. Here are some examples:

$ mv abc def
$ mv ghi ~
$ mv /home/joe/mymemos/ /home/joe/Documents/

The first mv command moves the file abc to the file def in the same directory (essentially

renaming it), whereas the second mv command moves the file ghi to your home

directory (~). The next mv command moves the mymemos directory (and all its contents)

to the /home/joe/Documents directory.

By default, the mv command overwrites any existing files in the target directory using

the same names. However, many Linux systems alias the mv command so that it uses the

-i option (which causes mv to prompt you before overwriting existing files). Here’s how to

check if that is true on your system:

$ alias mv
alias mv='mv -i'

Here are some examples of using the cp command to copy files from one location

to another:

$ cp abc def
$ cp abc ~
$ cp -r /usr/share/doc/bash-completion* /tmp/a/
$ cp -ra /usr/share/doc/bash-completion* /tmp/b/

The first copy command (cp) copies abc to the new name def in the same directory,

whereas the second copies abc to your home directory (~), keeping the name abc. The two

recursive (-r) copies copy the bash-completion directory and all of the files it contains,

first to new /tmp/a/ and /tmp/b/ directories. If you run ls -l on those two directories,

you see that for the cp command run with the archive (-a) option, the date/time stamps

and permissions are maintained by the copy. Without the -a, current date/time stamps are

used, and permissions are determined by your umask.

Chapter 4: Moving Around the Filesystem

95

4

The cp command may also be aliased with the -i option in order to prevent you from inad-

vertently overwriting files.

As with the cp and mv commands, rm is also sometimes aliased to include the -i option.

This can prevent the damage that can come from an inadvertent recursive remove (-r)

option. Here are some examples of the rm command:

$ rm abc
$ rm *

The first remove command deletes the abc file; the second removes all of the files in the

current directory (except that it doesn’t remove directories and/or any files that start

with a dot). If you want to remove a directory, you need to use the recursive (-r) option

to rm or, for an empty directory, you can use the rmdir command. Consider the follow-

ing examples:

$ rmdir /home/joe/nothing/
$ rm -r /home/joe/bigdir/
$ rm -rf /home/joe/hugedir/

The rmdir command in the preceding code only removes the directory (nothing) if it is

empty. The rm -r example removes the directory bigdir and all of its contents (files and

multiple levels of subdirectories).

CAUTION

When you don’t use the -i option on the mv, cp, and rm commands, you risk removing some (or lots) of �les by

mistake. Using wildcards (such as *) and no -i makes mistakes even more likely (and their consequences even more

painful). That said, sometimes you don’t want to be bothered to step through each �le you delete. If you’ve set -i as

the aliased default but want to bypass it for a particular operation, you have other options as follows:

 ■ You can force rm to delete without prompting by adding the -f argument. An alternative is to run rm, cp,

or mv with a backslash in front of it (\rm bigdir). The backslash causes any command to run una-

liased.

 ■ Another alternative with mv is to use the -b option. With -b, if a �le of the same name exists at the desti-

nation, a backup copy of the old �le is made before the new �le is moved there.

Summary
Commands for moving around the filesystem, copying files, moving files, and removing files

are among the most basic commands that you need to work from the shell. This chapter

covers lots of commands for moving around and manipulating files as well as commands for

changing ownership and permission.

The next chapter describes commands for editing and searching for files. These commands

include the vim/vi text editors, the find command, and the grep command.

Part II: Becoming a Linux Power User

96

Exercises
Use these exercises to test your knowledge of efficient ways to get around the Linux file-

system and work with files and directories. When possible, try to use shortcuts to type

as little as possible to get the desired results. If you are stuck, solutions to the tasks are

shown in Appendix A (although in Linux, there are often multiple ways to complete a task).

1. Create a directory in your home directory called projects. In the projects

directory, create nine empty files that are named house1, house2, house3, and

so on up to house9. Assuming that there are lots of other files in that directory,

come up with a single argument to ls that would list just those nine files.

2. Make the $HOME/projects/houses/doors/ directory path. Create the following

empty files within this directory path (try using absolute and relative paths from

your home directory):

$HOME/projects/houses/bungalow.txt
$HOME/projects/houses/doors/bifold.txt
$HOME/projects/outdoors/vegetation/landscape.txt

3. Copy the files house1 and house5 to the $HOME/projects/houses/ directory.

4. Recursively copy the /usr/share/doc/initscripts* directory to the $HOME/
projects/ directory. Maintain the current date/time stamps and permissions.

5. Recursively list the contents of the $HOME/projects/ directory. Pipe the output

to the less command so that you can page through the output.

6. Move house3 and house4 to the $HOME/projects/houses/doors directory.

7. Remove the $HOME/projects/houses/doors directory and its contents.

8. Change the permissions on the $HOME/projects/house2 file so that it can be

read by and written to the user who owns the file, only read by the group, and have

no permission for others.

9. Recursively change permissions of the $HOME/projects/ directory so that

nobody has write permission to any files or directories beneath that point in the

filesystem.

97

CHAP T ER

5
Working with Text Files

IN THIS CHAPTER

Using vim and vi to edit text �les

Searching for �les

Searching in �les

W
hen the UNIX system was created, on which Linux was based, most information was

managed on the system in plain text files. Thus it was critical for users to know how to use

tools for searching for and within plain text files and to be able to change and configure

those files.

Today, configuration of Linux systems can still be done by editing plain text files. Whether you are

modifying files in the /etc directory to configure a local service or editing Ansible inventory files to

configure sets of host computers, plain text files are still commonly used for those tasks.

Before you can become a full-fledged system administrator, you need to be able to use a plain text

editor. The fact that most professional Linux servers don’t even have a graphical interface available

makes the need for editing of plain text configuration files with a non-graphical text editor

necessary.

After you know how to edit text files, you still might find it tough to figure out where the files are

located. With commands such as find, you can search for files based on various attributes (filename,

size, modification date, and ownership to name a few). With the grep command, you can search

inside of text files to find specific search terms.

Editing Files with Vim and Vi
It’s almost impossible to use Linux for any period of time and not need a text editor because, as

noted earlier, most Linux configuration files are plain text files that you will almost certainly need

to change manually at some point.

Part II: Becoming a Linux Power User

98

If you are using a GNOME desktop, you can run gedit from a terminal (or select Gedit from

the Applications screen), which is fairly intuitive for editing text. You can also run a simple

text editor called nano from within the shell. However, many Linux shell users use either

the vi or emacs command to edit text files.

The advantage of vi or emacs over a graphical editor is that you can use the command

from any shell, character terminal, or character-based connection over a network (using

telnet or ssh, for example)—no graphical interface is required. They each also contain

tons of features, so you can continue to grow with them.

The following sections provide a brief tutorial on the vi text editor, which you can use to

manually edit a text file from any shell. It also describes an improved version of vi

called vim. (If vi doesn’t suit you, see the sidebar “Exploring Other Text Editors” for

further options.)

The vi editor is difficult to learn at first, but after you know it you will never have to use a

mouse or a function key—you can edit and move around quickly and efficiently within files

just by using the keyboard.

Exploring Other Text Editors
Dozens of text editors are available for use with Linux. You can try them out if you �nd vi to be too
taxing. Here are some of the options:

nano: This popular, streamlined text editor is used with many bootable Linux systems and other
limited-space Linux environments. nano is included in nearly all Ubuntu images by default.

gedit: The GNOME text editor runs on the desktop.

jed: This screen-oriented editor was made for programmers. Using colors, jed can highlight
code that you create so that you can easily read the code and spot syntax errors. Use the Alt
key to select menus to manipulate your text.

joe: The joe editor is similar to many PC text editors. Use Ctrl and arrow keys to move around.
Press Ctrl+C to exit with no save or Ctrl+X to save and exit.

kate: This nice-looking editor comes in the kdebase package. It has lots of bells and whis-
tles, such as highlighting for different types of programming languages and controls for
managing word wrap.

kedit: This GUI-based text editor comes with the KDE desktop.

nedit: This is an excellent programmer’s editor. You need to install the optional nedit
package to get this editor.

If you use ssh to log in to other Linux computers on your network, you can use any available text edi-

tor to edit �les. If you use ssh -X to connect to the remote system, a GUI-based editor pops up on
your local screen. When no GUI is available, you need a text editor that runs in the shell, such as vi,
jed, or joe.

Chapter 5: Working with Text Files

99

5

Starting with vi
Most often, you start vi to open a particular file. For example, to open a file called /tmp/
test, enter the following command:

$ vi /tmp/test

If this is a new file, you should see something similar to the following:

□

~
~
~
~
~
"/tmp/test" [New File]

A blinking box at the top represents where your cursor is located. The bottom line keeps

you informed about what is going on with your editing (here, you just opened a new file).

In between, there are tildes (~) as filler because there is no text in the file yet. Now here’s

the intimidating part: There are no hints, menus, or icons to tell you what to do. To make

it worse, you can’t just start typing. If you do, the computer is likely to beep at you. (And

some people complain that Linux isn’t friendly.)

First, you need to know the two main operating modes: command and input. The vi editor

always starts in command mode. Before you can add or change text in the file, you have to

type a command (one or two letters, sometimes preceded by an optional number) to tell vi

what you want to do. Case is important, so use uppercase and lowercase exactly as shown in

the examples!

NOTE

On many Ubuntu systems, the vi command will actually run vim. The �rst obvious difference between vi and

vim is that any known text �le type, such as HTML, C code, or a common con�guration �le will, assuming the syntax

option is enabled, appear in color. The colors indicate the structure of the �le. Other features of vim that are not

in vi include features such as visual highlighting and split-screen mode. By default, the root user doesn’t have vi

aliased to vim. If vim is not on your system, try installing the vim-enhanced package.

Adding text

To get into input mode, type an input command letter. To begin, type any of the following

letters. When you are finished inputting text, press the Esc key (sometimes twice) to return

to command mode. Remember the Esc key!

a: The add command. With this command, you can input text that starts to the right of

the cursor.

A: The add at end command. With this command, you can input text starting at the

end of the current line.

Part II: Becoming a Linux Power User

100

i: The insert command. With this command, you can input text that starts to the left

of the cursor.

I: The insert at beginning command. With this command, you can input text that starts

at the beginning of the current line.

o: The open below command. This command opens a line below the current line and

puts you in insert mode.

O: The open above command. This command opens a line above the current line and

puts you in insert mode.

TIP

When you are in insert mode, -- INSERT -- appears at the bottom of the screen.

Type a few words, and press Enter. Repeat that a few times until you have a few lines of

text. When you’re finished typing, press Esc to return to command mode. Now that you

have a file with some text in it, try moving around in your text with the keys or letters

described in the next section.

TIP

Remember the Esc key! It always places you back into command mode. Remember that sometimes you must press

Esc twice. For example, if you type a colon (:) to go into ex mode, you must press Esc twice to return to command

mode.

Moving around in the text

To move around in the text, you can use the up, down, right, and left arrows. However,

many of the keys for moving around are right under your fingertips when they are in typ-

ing position:

Arrow keys: Move the cursor up, down, left, or right in the file one character at a time.

To move left and right, you can also use Backspace and the spacebar, respectively.

If you prefer to keep your fingers on the keyboard, move the cursor with h (left), l

(right), j (down), or k (up).

w: Moves the cursor to the beginning of the next word (delimited by spaces, tabs, or

punctuation).

W: Moves the cursor to the beginning of the next word (delimited by spaces or tabs).

b: Moves the cursor to the beginning of the previous word (delimited by spaces, tabs,

or punctuation).

B: Moves the cursor to the beginning of the previous word (delimited by

spaces or tabs).

0 (zero): Moves the cursor to the beginning of the current line.

Chapter 5: Working with Text Files

101

5

$: Moves the cursor to the end of the current line.

H: Moves the cursor to the upper-left corner of the screen (first line on the screen).

M: Moves the cursor to the first character of the middle line on the screen.

L: Moves the cursor to the lower-left corner of the screen (last line on the screen).

Deleting, copying, and changing text

The only other editing that you need to know is how to delete, copy, or change text. The

x, d, y, and c commands can be used to delete and change text. These can be used along

with movement keys (arrows, PgUp, PgDn, letters, and special keys) and numbers to indi-

cate exactly what you are deleting, copying, or changing. Consider the following examples:

x: Deletes the character under the cursor.

X: Deletes the character directly before the cursor.

d<?>: Deletes some text.

c<?>: Changes some text.

y<?>: Yanks (copies) some text.

The <?> after each letter in the preceding list identifies the place where you can use a

movement command to choose what you are deleting, changing, or yanking. For example:

dw: Deletes (d) a word (w) after the current cursor position.

db: Deletes (d) a word (b) before the current cursor position.

dd: Deletes (d) the entire current line (d).

c$: Changes (c) the characters (actually erases them) from the current character to the

end of the current line ($) and goes into input mode.

c0: Changes (c) (again, erases) characters from the previous character to the beginning

of the current line (0) and goes into input mode.

cl: Erases (c) the current letter (l) and goes into input mode.

cc: Erases (c) the line (c) and goes into input mode.

yy: Copies (y) the current line (y) into the buffer.

y): Copies (y) the current sentence ()), to the right of the cursor, into the buffer.

y}: Copies (y) the current paragraph (}), to the right of the cursor, into the buffer.

Any of the commands just shown can be further modified using numbers, as you can see in

the following examples:

3dd: Deletes (d) three (3) lines (d), beginning at the current line.

3dw: Deletes (d) the next three (3) words (w).

5cl: Changes (c) the next five (5) letters (l) (that is, removes the letters and enters

input mode).

Part II: Becoming a Linux Power User

102

12j: Moves down (j) 12 lines (12).

5cw: Erases (c) the next five (5) words (w) and goes into input mode.

4y): Copies (y) the next four (4) sentences ()).

Pasting (putting) text

After text has been copied to the buffer (by deleting, changing, or yanking it), you can

place that text back in your file using the letter p or P. With both commands, the text most

recently stored in the buffer is put into the file in different ways:

P: Puts the copied text to the left of the cursor if the text consists of letters or words;

puts the copied text above the current line if the copied text contains lines of text.

p: Puts the buffered text to the right of the cursor if the text consists of letters or

words; puts the buffered text below the current line if the buffered text contains

lines of text.

Repeating commands

After you delete, change, or paste text, you can repeat that action by typing a period (.).
For example, with the cursor on the beginning of the name Joe, you type cw and then

type Jim to change Joe to Jim. You search for the next occurrence of Joe in the file,

position the cursor at the beginning of that name, and press a period. The word changes to

Jim, and you can search for the next occurrence. You can go through a file this way, press-

ing n to go to the next occurrence and period (.) to change the word.

Exiting vi

To wrap things up, use the following commands to save or quit the file:

ZZ: Saves the current changes to the file and exits from vi.

:w: Saves the current file but you can continue editing.

:wq: Works the same as ZZ.

:q: Quits the current file. This works only if you don’t have any unsaved changes.

:q!: Quits the current file and doesn’t save the changes you just made to the file.

TIP

If you’ve really trashed the �le by mistake, the :q! command is the best way to exit and abandon your changes. The

�le reverts to the most recently changed version. So, if you just saved with :w, you are stuck with the changes up to

that point. However, despite having saved the �le, you can press u to back out of changes (all the way back to the

beginning of the editing session if you like) and then save again.

You have learned a few vi editing commands. I describe more commands in the following

sections. First, however, consider the following tips to smooth out your first trials with vi:

Chapter 5: Working with Text Files

103

5

Esc: Remember that Esc gets you back to command mode. Esc followed by ZZ gets you

out of command mode, saves the file, and exits.

u: Press u to undo the previous change you made. Continue to press u to undo the

change before that and the one before that.

Ctrl+R: If you decide that you didn’t want to undo the previous undo command, use

Ctrl+R for Redo. Essentially, this command undoes your undo.

Caps Lock: Beware of hitting Caps Lock by mistake. Everything that you type in vi

has a different meaning when the letters are capitalized. You don’t get a warning

that you are typing capitals; things just start acting weird.

:!command: You can run a shell command while you are in vi using :! followed by a

shell command name. For example, type :!date to see the current date and time,

type :!pwd to see what your current directory is, or type :!jobs to see whether

you have any jobs running in the background. When the command completes, press

Enter and you are back to editing the file. You could even use this technique to

launch a shell (:!bash) from vi, run a few commands from that shell, and then

type exit to return to vi. (I recommend doing a save before escaping to the shell,

just in case you forget to go back to vi.)

Ctrl+g: If you forget what you are editing, pressing these keys displays the name of the

file that you are editing and the current line that you are on at the bottom of the

screen. It also displays the total number of lines in the file, the percentage of how

far you are through the file, and the column number the cursor is on. This just helps

you get your bearings after you’ve stopped for a cup of coffee at 3 a.m.

Skipping around in the �le
Besides the few movement commands described earlier, there are other ways of moving

around a vi file. To try these out, open a large file that you can’t damage too much. (Try

copying /var/log/syslog to /tmp and opening it in vi.) Here are some movement com-

mands that you can use:

Ctrl+f: Pages ahead one page at a time.

Ctrl+b: Pages back one page at a time.

Ctrl+d: Pages ahead one-half page at a time.

Ctrl+u: Pages back one-half page at a time.

G: Goes to the last line of the file.

1G: Goes to the first line of the file.

35G: Goes to any line number (35, in this case).

Searching for text
To search for the next or previous occurrence of text in the file, use either the slash (/) or

the question mark (?) character. Follow the slash or question mark with a pattern (string of

Part II: Becoming a Linux Power User

104

text) to search forward or backward, respectively, for that pattern. Within the search, you

can also use metacharacters. Here are some examples:

/hello: Searches forward for the word hello.

?goodbye: Searches backward for the word goodbye.

/The.*foot: Searches forward for a line that has the word The in it and also, after

that at some point, the word foot.

?[pP]rint: Searches backward for either print or Print. Remember that case mat-

ters in Linux, so make use of brackets to search for words that could have different

capitalization.

After you have entered a search term, simply type n or N to search again in the same direc-

tion (n) or the opposite direction (N) for the term.

Using ex mode
The vi editor was originally based on the ex editor, which didn’t let you work in full-

screen mode. However, it did enable you to run commands that let you find and change

text on one or more lines at a time. When you type a colon and the cursor goes to the bot-

tom of the screen, you are essentially in ex mode. The following are examples of some of

those ex commands for searching for and changing text. (I chose the words Local and

Remote to search for, but you can use any appropriate word.)

:g/Local: Searches for the word Local and prints every occurrence of that

line from the file. (If there is more than a screenful, the output is piped to the

more command.)

:s/Local/Remote: Substitutes Remote for the first occurrence of the word Local

on the current line.

:g/Local/s//Remote: Substitutes the first occurrence of the word Local on every

line of the file with the word Remote.

:g/Local/s//Remote/g: Substitutes every occurrence of the word Local with the

word Remote in the entire file.

:g/Local/s//Remote/gp: Substitutes every occurrence of the word Local with the

word Remote in the entire file and then prints each line so that you can see the

changes (piping it through less if output fills more than one page).

Learning more about vi and vim
To learn more about the vi editor, try typing vimtutor. The vimtutor command opens a

tutorial in the vim editor that steps you through common commands and features you can

use in vim. (You may need to install the vim-runtime package before you can load the

document.)

Chapter 5: Working with Text Files

105

5

Finding Files
Even a basic Linux installation can have thousands of files installed on it. To help you find

files on your system, you can use commands such as locate (to find commands by name),

find (to find files based on lots of different attributes), and grep (to search within text

files to find lines in files that contain search text).

Using locate to �nd �les by name
On most Linux systems, the updatedb command runs once per day to gather the names of

files throughout your Linux system into a database. By running the locate command, you

can search that database to find the location of files stored in it.

Here are a few things that you should know about searching for files using the

locate command:

 ■ There are advantages and disadvantages to using locate to find filenames instead

of the find command. A locate command finds files much (much!) faster because

it searches a database instead of having to search the whole filesystem live. A dis-

advantage is that the locate command cannot find any files added to the system

since the previous time the database was updated.

 ■ Not every file in your filesystem is stored in the database. The contents of the

/etc/updatedb.conf file limit which filenames are collected by pruning out

select mount types, filesystem types, file types, and mount points. For example,

filenames are not gathered from remotely mounted filesystems (cifs, nfs, and so

on) or locally mounted CDs or DVDs (iso9660). Paths containing temporary files

(/tmp) and spool files (/var/spool/cups) are also pruned. You can add items

to prune (or remove some items that you don’t want pruned) the locate database

to better fit your needs. In Ubuntu 18.04, the updatedb.conf file contains the

following:

PRUNE_BIND_MOUNTS="yes"
PRUNENAMES=".git .bzr .hg .svn"
PRUNEPATHS="/tmp /var/spool /media /var/lib/os-prober /var/lib/ceph
/home/.ecryptfs /var/lib/schroot"
PRUNEFS="NFS nfs nfs4 rpc_pipefs afs binfmt_misc proc smbfs autofs
iso9660 ncpfs coda devpts ftpfs devfs devtmpfs fuse.mfs shfs sysfs
cifs lustre tmpfs usbfs udf fuse.glusterfs fuse.sshfs curlftpfs
ceph fuse.ceph fuse.rozofs ecryptfs fusesmb"

 ■ As a regular user, you can’t see any files from the locate database that you can’t see

in the filesystem normally. For example, if you can’t type ls to view files in the

/root directory, you can’t locate files stored in that directory.

Part II: Becoming a Linux Power User

106

 ■ When you search for a string, the string can appear anywhere in a file’s path. For

example, if you search for passwd, you could turn up /etc/passwd, /usr/bin/
passwd, /home/chris/passwd/pwdfiles.txt, and many other files with

passwd in the path.

 ■ If you add files to your system after updatedb runs, you can’t locate those files

until updatedb runs again (probably that night). To get the database to con-

tain all files up to the current moment, you can simply run updatedb from the

shell as root.

Here are some examples of using the locate command to search for files:

$ locate .bashrc
/etc/bash.bashrc
/etc/skel/.bashrc
/home/ubuntu/.bashrc
/snap/core/8268/etc/bash.bashrc
/snap/core/8268/etc/skel/.bashrc
/snap/core/8268/usr/share/base-files/dot.bashrc
/snap/core/8592/etc/bash.bashrc
/snap/core/8592/etc/skel/.bashrc
/snap/core/8592/usr/share/base-files/dot.bashrc
/usr/share/base-files/dot.bashrc
/usr/share/doc/adduser/examples/adduser.local.conf.examples/
bash.bashrc
/usr/share/doc/adduser/examples/adduser.local.conf.examples/skel/
dot.bashrc
locate .bashrc
/etc/bash.bashrc
/etc/skel/.bashrc
/home/ubuntu/.bashrc
/root/.bashrc
/snap/core/8268/etc/bash.bashrc
/snap/core/8268/etc/skel/.bashrc
/snap/core/8268/root/.bashrc
/snap/core/8268/usr/share/base-files/dot.bashrc
/snap/core/8592/etc/bash.bashrc
/snap/core/8592/etc/skel/.bashrc
/snap/core/8592/root/.bashrc
/snap/core/8592/usr/share/base-files/dot.bashrc
/usr/share/base-files/dot.bashrc
/usr/share/doc/adduser/examples/adduser.local.conf.examples/
bash.bashrc
/usr/share/doc/adduser/examples/adduser.local.conf.examples/skel/
dot.bashrc

When run as a regular user, locate only finds .bashrc in /etc/skel and the user’s own

home directory. Run as root, the same command locates .bashrc files in the /root direc-

tory (along with that of any other user on the system).

Chapter 5: Working with Text Files

107

5

$ locate dir_color
/usr/share/man/man5/dir_colors.5.gz
...
$ locate -i dir_color
/etc/DIR_COLORS
/etc/DIR_COLORS.256color
/etc/DIR_COLORS.lightbgcolor
/usr/share/man/man5/dir_colors.5.gz

Using locate -i, filenames are found regardless of case. In the previous example, DIR _
COLORS was found with -i whereas it wasn’t found without the -i option.

$ locate services
/etc/services
/etc/avahi/services
[...]
/usr/lib/libreoffice/program/services/pyuno.rdb
[...]

Unlike the find command, which uses the -name option to find filenames, the locate

command locates the string you enter if it exists in any part of the file’s path. In this

example, searching for services using the locate command finds files and directories

containing the “services” text string.

Searching for �les with �nd
The find command is the best one for searching your filesystem when you need to filter

your results by a variety of attributes. After files are found, you can act on those files as

well (using the -exec or -okay option) by running any commands you want on them.

When you run find, it searches your filesystem live, which causes it to run slower than

locate, but it gives you an up-to-the-moment view of the files on your Linux system.

However, you can also tell find to start at a particular point in the filesystem so that the

search can go faster by limiting the area of the filesystem being searched.

Nearly any file attribute that you can think of can be used as a search option. You can

search for filenames, ownership, permission, size, modification times, and other attributes.

You can even use combinations of attributes. Here are some basic examples of using the

find command:

$ find
$ find /etc
find /etc
$ find $HOME -ls

Run on a line by itself, the find command finds all files and directories below the current

directory. If you want to search from a particular point in the directory tree, just add the

name of the directory you want to search (such as /etc). As a regular user, find does not

give you special permission to find files that have permissions that make them readable

Part II: Becoming a Linux Power User

108

only by the root user. So, find produces a bunch of error messages. Run as the root user,

find /etc finds all files under /etc.

A special option to add to the find command is -ls. A long listing (ownership, permis-

sion, size, and so on) is printed with each file when you add -ls to the find command

(similar to output of the ls -l command). This option will help you in later examples

when you want to verify that you have found files that contain the ownership, size, modifi-

cation times, or other attributes that you are trying to find.

NOTE

If, as a regular user, you are searching an area of the �lesystem where you don’t have full permission to access all

of the �les it contains (such as the /etc directory), you might receive lots of error messages when you search with

find. To get rid of those messages, direct standard errors to /dev/null. To do that, add the following to the end

of the command line: 2> /dev/null. The 2> redirects standard errors to the next option (in this case /dev/

null, where the output is discarded).

Finding �les by name

To find files by name, you can use the -name and -iname options. The search is done by

base name of the file; the directory names are not searched by default. To make the search

more flexible, you can use file-matching characters, such as asterisks (*) and question

marks (?), as in the following examples:

find /etc -name passwd
/etc/cron.daily/passwd
/etc/passwd
/etc/pam.d/passwd
find /etc -iname ‘*passwd*'
/etc/cron.daily/passwd
/etc/passwd
/etc/passwd-
/etc/pam.d/passwd
/etc/pam.d/chpasswd
/etc/security/opasswd

Using the -name option and no asterisks, the first example lists any files in the /etc

directory that are named passwd exactly. By using -iname instead, you can match any

combination of upper- and lowercase (meaning that the search will be case-insensitive).

Using asterisks, you can match any filename that includes the word passwd.

Finding �les by size

If your disk is filling up and you want to find out where your biggest files are located,

you can search your system by file size. The -size option enables you to search for files

that are exactly, smaller than, or larger than a selected size, as you can see in the follow-

ing examples:

Chapter 5: Working with Text Files

109

5

$ find /usr/share/ -size +10M
$ find /mostlybig -size -1M
$ find /bigdata -size +500M -size -5G -exec du -sh {} \;
4.1G /bigdata/images/ubuntu-container.img
606M /bigdata/Ubuntu20_04-16-i686-Desktop.iso
560M /bigdata/dance2.avi

The first example in the preceding code finds files larger than 10 MB. The second finds files

less than 1 MB. In the third example, we’re searching for files that are between 500 MB and

5 GB. This includes an example of the -exec option (which we’ll describe later) to run the

du command on each file to see its size.

Finding �les by user

You can search for a particular owner (-user) or group (-group) when you try to find

files. By using -not and -or, you can refine your search for files associated with specific

users and groups, as you can see in the following examples:

$ find /home -user chris -ls
131077 4 -rw-r--r-- 1 chris chris 379 Jun 29 2014 ./.bashrc
find /home \(-user chris -or -user joe \) -ls
131077 4 -rw-r--r-- 1 chris chris 379 Jun 29 2014 ./.bashrc
181022 4 -rw-r--r-- 1 joe joe 379 Jun 15 2014 ./.bashrc
find /etc -group root -ls
14155777 12 drwxr-xr-x 149 root root 12288 Feb 19
08:23 /etc
find /var/spool -not -user root -ls
262100 0 -rw-rw---- 1 rpc mail 0 Jan 27 2014 /var/
spool/mail/rpc
278504 0 -rw-rw---- 1 joe mail 0 Apr 3 2014 /var/
spool/mail/joe
261230 0 -rw-rw---- 1 bill mail 0 Dec 18 14:17 /var/
spool/mail/bill
277373 2848 -rw-rw---- 1 chris mail 8284 Mar 15 2014 /var/
spool/mail/chris

The first example outputs a long listing of all of the files under the /home directory that

are owned by the user chris. The next lists files owned by chris or joe. The find

command of /etc turns up all files that have root as their primary group assignment

(although only one of the many results is actually included in this example). The last exam-

ple shows all files under /var/spool that are not owned by root. You can see files owned

by other users in the sample output.

Finding �les by permission

Searching for files by permission is an excellent way to turn up security issues on your

system or uncover access issues. Just as you changed permissions on files using numbers or

letters (with the chmod command), you can likewise find files based on number or letter

Part II: Becoming a Linux Power User

110

permissions along with the -perm options. (Refer to Chapter 4, “Moving Around the File-

system,” to see how to use numbers and letters with chmod to reflect file permissions.)

If you use numbers for permissions as we will in the following examples, remember that

the three numbers represent permissions for the user, group, and other. Each of those three

numbers varies from no permission (0) to full read/write/execute permission (7) by adding

read (4), write (2), and execute (1) bits together. With a hyphen (-) in front of the number,

all three of the bits indicated must match; with a forward slash (/) in front of it, any of the

numbers can match for the search to find a file. The full, exact numbers must match if nei-

ther a hyphen nor a forward slash is used.

Consider the following examples:

$ find /usr/bin -perm 755 -ls
788884 28 -rwxr-xr-x 1 root root 28176 Mar 10
2014 /bin/echo
[...]

$ find /home/chris/ -perm -222 -type d -ls
144503 4 drwxrwxrwx 8 chris chris 4096 Jun 23 2014 /home/
chris/OPENDIR

By searching for -perm 755, any files or directories with exactly rwxr-xr-x permission

are matched. By using -perm -222, only files that have write permission for user, group,

and other are matched. Notice that, in this case, the -type d is added to match only

directories.

$ find /myreadonly -perm /222 -type f
685035 0 -rw-rw-r-- 1 chris chris 0 Dec 30 16:34 /
myreadonly/abc

$ find . -perm -002 -type f -ls
266230 0 -rw-rw-rw- 1 chris chris 0 Dec 30 16:28 ./
LINUX_BIBLE/abc

Using -perm /222, you can find any file (-type f) that has write permission turned on

for the user, group, or other. You might do that to make sure that all files are read-only in

a particular part of the filesystem (in this case, beneath the /myreadonly directory). The

last example, -perm /002, is very useful for finding files that have open write permission

for “other,” regardless of how the other permission bits are set.

Finding �les by date and time

Date and timestamps are stored for each file when it is created, when it is accessed, when

its content is modified, or when its metadata is changed. Metadata includes owner, group,

Chapter 5: Working with Text Files

111

5

time stamp, file size, permissions, and other information stored in the file’s inode. You

might want to search for file data or metadata changes for any of the following reasons:

 ■ You just changed the contents of a configuration file, and you can’t remember

which one. So, you search /etc to see what has changed in the past 60 minutes:

 # find /etc/ -mmin -60

 ■ You suspect that someone hacked your system three days ago. So, you search the

system to see if any commands have had their ownership or permissions changed in

the past three days:

 $ find /bin /usr/bin /sbin /usr/sbin -ctime -3

 ■ You want to find files in your FTP server (/var/ftp) and web server (/var/www)

that have not been accessed in more than 300 days so that you can see if any need

to be deleted:

 # find /var/ftp /var/www -atime +300

As you can glean from the examples, you can search for content or metadata changes over

a certain number of days or minutes. The time options (-atime, -ctime, and -mtime)

enable you to search based on the number of days since each file was accessed, changed,

or had its metadata changed. The min options (-amin, -cmin, and -mmin) do the same

in minutes.

Numbers that you give as arguments to the min and time options are preceded by a

hyphen (to indicate a time from the current time to that number of minutes or days ago) or

a plus (to indicate time from the number of minutes or days ago and older). With no hyphen

or plus, the exact number is matched.

Using “not” and “or” when �nding �les

With the -not and -or options, you can further refine your searches. There may be times

when you want to find files owned by a particular user but not assigned to a particular

group. You may want files larger than a certain size but smaller than another size. Or you

might want to find files owned by any of several users. The -not and -or options can help

you do that. Consider the following examples:

 ■ There is a shared directory called /var/allusers. This command line enables you

to find files that are owned by either joe or chris:

 $ find /var/allusers \(-user joe -o -user chris \) -ls

 679967 0 -rw-r--r-- 1 chris chris 0 Dec 31 12:57

 /var/allusers/myjoe

Part II: Becoming a Linux Power User

112

 679977 1812 -rw-r--r-- 1 joe joe 4379 Dec 31 13:09

 /var/allusers/dict.dat

 679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 13:02

 /var/allusers/one

 ■ This command line searches for files owned by the user joe, but only those that

are not assigned to the group joe:

 $ find /var/allusers/ -user joe -not -group joe -ls

 679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 13:02 /var/
allusers/one

 ■ You can also add multiple requirements on your searches. Here, a file must be

owned by the user joe and must also be more than 1MB in size:

 $ find /var/allusers/ -user joe -and -size +1M -ls

 679977 1812 -rw-r--r-- 1 joe root 1854379 Dec 31 13:09

 /var/allusers/dict.dat

Finding �les and executing commands

One of the most powerful features of the find command is the capability to execute com-

mands on any files that you find. With the -exec option, the command you use is exe-

cuted on every file found, without stopping to ask if that’s okay. The -ok option stops at

each matched file and asks whether you want to run the command on it.

The advantage of using -ok is that, if you are doing something destructive, you can make

sure that you okay each file individually before the command is run on it. The syntax for

using -exec and -ok is the same:

$ find [options] -exec command {} \;
$ find [options] -ok command {} \;

With -exec or -ok, you run find with any options you like in order to find the files

you are seeking. Then you enter the -exec or -ok option followed by the command you

want to run on each file. The set of curly braces indicates where on the command line to

read in each file that is found. Each file can be included in the command line multiple

times. To end the line, you need to add a backslash and semicolon (\;). Here are

some examples:

 ■ This command finds any file named passwd under the /etc directory and includes

that name in the output of an echo command:

 $ find /etc -iname passwd -exec echo "I found {}" \;
 I found /etc/cron.daily/passwd
 I found /etc/pam.d/passwd
 I found /etc/passwd

Chapter 5: Working with Text Files

113

5

 ■ The following command finds every file under the /usr/share directory that is

more than 5MB in size. Then it lists the size of each file with the du command.

The output of find is then sorted by size, from largest to smallest. With -exec

entered, all entries found are processed, without prompting:

 $ find /usr/share -size +5M -exec du {} \; | sort -nr

 116932 /usr/share/icons/HighContrast/icon-theme.cache

 69048 /usr/share/icons/gnome/icon-theme.cache

 20564 /usr/share/fonts/cjkuni-uming/uming.ttc

 ■ The -ok option enables you to choose, one at a time, whether each file found is

acted upon by the command you enter. For example, you want to find all files that

belong to joe in the /var/allusers directory (and its subdirectories) and move

them to the /tmp/joe directory:

 # find /var/allusers/ -user joe -ok mv {} /tmp/joe/ \;

 < mv ... /var/allusers/dict.dat > ? y

 < mv ... /var/allusers/five > ? y

Notice in the preceding code that you are prompted for each file that is found before it is

moved to the /tmp/joe directory. You would simply type y and press Enter at each line to

move the file, or just press Enter to skip it.

For more information on the find command, enter man find.

Searching in �les with grep
If you want to search for files that contain a certain search term, you can use the grep

command. With grep, you can search a single file or search a whole directory structure of

files recursively.

When you search, you can have every line containing the term printed on your screen

(standard output) or just list the names of the files that contain the search term. By

default, grep searches text in a case-sensitive way, although you can do case-insensitive

searches as well.

Instead of just searching files, you can also use grep to search standard output. So, if a

command turns out lots of text and you want to find only lines that contain certain text,

you can use grep to filter just what you want.

Here are some examples of grep command lines used to find text strings in one or

more files:

$ grep network /etc/services
wipld 1300/tcp # Wipl network monitor
sane-port 6566/tcp sane saned # SANE network
scanner daemon
mandelspawn 9359/udp mandelbrot # network mandelbrot

Continues

Part II: Becoming a Linux Power User

114

$ grep -i network /etc/services
Network services, Internet style
ntp 123/udp # Network Time Protocol
snpp 444/tcp # Simple Network
Paging Protocol
nqs 607/tcp # Network Queuing system
webster 765/tcp # Network dictionary
nfs 2049/tcp # Network File System
nfs 2049/udp # Network File System
nut 3493/tcp # Network UPS Tools
nbd 10809/tcp # Linux Network
Block Device
vnetd 13724/tcp # Veritas
Network Utility
wipld 1300/tcp # Wipl network monitor
sane-port 6566/tcp sane saned # SANE network
scanner daemon
mandelspawn 9359/udp mandelbrot # network mandelbrot

In the first example, a grep for the word network in the /etc/services file turned up

three lines. Searching again, using the -i to be case-insensitive (as in the second example),

there were 13 lines of text produced.

To search for lines that don’t contain a selected text string, use the -v option. In the fol-

lowing example, all lines from the /etc/services file are displayed except those contain-

ing the text tcp (case-insensitive):

$ grep -vi tcp /etc/services

To do recursive searches, use the -r option and a directory as an argument. The following

example includes the -l option, which just lists files that include the search text without

showing the actual lines of text. That search turns up files that contain the text peerdns

(case-insensitive).

$ grep -rli peerdns /usr/share/doc/
/usr/share/doc/dnsmasq-2.66/setup.html
/usr/share/doc/initscripts-9.49.17/sysconfig.txt
...

The next example recursively searches the /etc/sysconfig directory for the term root.

It lists every line in every file beneath the directory that contains that text. To make it

easier to have the term root stand out on each line, the --color option is added. By

default, the matched term appears in red.

$ grep -ri --color root /etc/systemd/

To search the output of a command for a term, you can pipe the output to the grep

command. In this example, I know that IP addresses are listed on output lines from the ip

command that include the string inet, so I use grep to display just those lines:

$ ip addr show | grep inet

Continued

Chapter 5: Working with Text Files

115

5

inet 127.0.0.1/8 scope host lo
inet 192.168.1.231/24 brd 192.168.1.255 scope global wlan0

Summary
Being able to work with plain text files is a critical skill for using Linux. Because so many

configuration files and document files are in plain text format, you need to become profi-

cient with a text editor to use Linux effectively. Finding filenames and content in files is

also a critical skill. In this chapter, you learned to use the locate and find commands

for finding files and grep for searching files.

The next chapter covers a variety of ways to work with processes. There, you learn how

to see what processes are running, run processes in the foreground and background, and

change processes (send signals).

Exercises
Use these exercises to test your knowledge of using the vi (or vim) text editor, commands

for finding files (locate and find), and commands for searching files (grep). If you are

stuck, solutions to the tasks are shown in Appendix A (although in Linux, there are often

multiple ways to complete a task).

1. Copy the /etc/services file to the /tmp directory. Open the /tmp/ser-
vices file in vim, and search for the term WorldWideWeb. Change that to read

World Wide Web.

2. Find the following paragraph in your /tmp/services file (if it is not there,

choose a different paragraph) and move it to the end of that file.

 # Note that it is presently the policy of IANA to assign a
single well-known
 # port number for both TCP and UDP; hence, most entries
here have two entries
 # even if the protocol doesn't support UDP operations.
 # Updated from RFC 1700, "Assigned Numbers" (October 1994).
Not all ports
 # are included, only the more common ones.

3. Using ex mode, search for every occurrence of the term tcp (case-sensitive) in

your /tmp/services file and change it to WHATEVER.

4. As a regular user, search the /etc directory for every file named passwd. Redirect

error messages from your search to /dev/null.

5. Create a directory in your home directory called TEST. Create files in that directory

named one, two, and three that have full read/write/execute permissions for

everyone (user, group, and other). Construct a find command to find those files

and any other files that have write permission open to “others” from your home

directory and below.

Part II: Becoming a Linux Power User

116

6. Find files under the /usr/share/doc directory that have not been modified in

more than 300 days.

7. Create a /tmp/FILES directory. Find all files under the /usr/share directory

that are more than 5 MB and less than 10 MB and copy them to the /tmp/FILES

directory.

8. Find every file in the /tmp/FILES directory and make a backup copy of each file

in the same directory. Use each file’s existing name and just append .mybackup to

create each backup file.

117

CHAP T ER

6
Managing Running Processes

IN THIS CHAPTER

Displaying processes

Running processes in the foreground and background

Killing and renicing processes

I
n addition to being a multiuser operating system, Linux is a multitasking system. Multitasking

means that many programs can be running at the same time. An instance of a running program

is referred to as a process. Linux provides tools for listing running processes, monitoring system

usage, and stopping (or killing) processes when necessary.

From a shell, you can launch processes and then pause, stop, or kill them. You can also put them

in the background and bring them to the foreground. This chapter describes tools such as ps, top,

kill, jobs, and other commands for listing and managing processes.

Understanding Processes
A process is a running instance of a command. For example, there may be one vi command on the

system. But if vi is currently being run by 15 different users, that command is represented by 15

different running processes.

A process is identi�ed on the system by what is referred to as a process ID (PID). That PID is unique

for the current system. In other words, no other process can use that number as its process ID while

that �rst process is still running. However, after a process has ended, another process can reuse

that number.

Along with a PID, other attributes are associated with a process. Each process, when it is run, is

associated with a particular user account and group account. That account information helps deter-

mine what system resources the process can access. For example, a process run as the root user has

much more access to system �les and resources than a process running as a regular user.

Part II: Becoming a Linux Power User

118

The ability to manage processes on your system is critical for a Linux system administra-

tor. Sometimes, runaway processes may be killing your system’s performance. Finding and

dealing with processes, based on attributes such as memory and CPU usage, are covered in

this chapter.

NOTE

Commands that display information about running processes get most of that information from raw data stored in

the /proc �lesystem. Each process stores its information in a subdirectory of /proc, named after the process

ID of that process. You can view some of that raw data by displaying the contents of �les in one of those directories

(using cat or less commands).

Listing Processes
From the command line, the ps command is the oldest and most common command for list-

ing processes currently running on your system. The Linux version of ps contains a variety

of options from old UNIX and BSD systems, some of which are con�icting and implemented

in nonstandard ways. See the ps man page for descriptions of those different options.

The top command provides a more screen-oriented approach to listing processes, and it can

also be used to change the status of processes. If you are using the GNOME desktop, you can

use the System Monitor tool (gnome-system-monitor) to provide a graphical means of

working with processes. These commands are described in the following sections.

Listing processes with ps
The most common utility for checking running processes is the ps command. Use it to see

which programs are running, the resources they are using, and who is running them. The

following is an example of the ps command:

$ ps u
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
jake 2147 0.0 0.7 1836 1020 tty1 S+ 14:50 0:00 -bash
jake 2310 0.0 0.7 2592 912 tty1 R+ 18:22 0:00 ps u

In this example, the u option (equivalent to -u) asks that usernames be shown, as well

as other information such as the time the process started and memory and CPU usage for

processes associated with the current user. The processes shown are associated with the

current terminal (tty1). The concept of a terminal comes from the old days when people

worked exclusively from character terminals, so a terminal typically represented a single

person at a single screen. Nowadays, you can have many “terminals” on one screen by

opening multiple virtual terminals or Terminal windows on the desktop.

In this shell session, not much is happening. The �rst process shows that the user named

jake opened a Bash shell after logging in. The next process shows that jake has run the

ps u command. The terminal device tty1 is being used for the login session. The STAT

Chapter 6: Managing Running Processes

119

6

column represents the state of the process, with R indicating a currently running process

and S representing a sleeping process.

NOTE

Several other values can appear under the STAT column. For example, a plus sign (+) indicates that the process is

associated with the foreground operations.

The USER column shows the name of the user who started the process. Each process is rep-

resented by a unique or PID. You can use the PID if you ever need to kill a runaway process

or send another kind of signal to a process. The %CPU and %MEM columns show the percent-

ages of your system’s processor and random access memory, respectively, that the process is

consuming.

VSZ (virtual set size) shows the size of the image process (in kilobytes), and RSS (resident

set size) shows the size of the program in memory. The VSZ and RSS sizes may be differ-

ent because VSZ is the amount of memory allocated for the process, whereas RSS is the

amount that is actually being used. RSS memory represents physical memory that cannot

be swapped.

START shows the time the process began running, and TIME shows the cumulative

system time used. (Many commands consume very little CPU time, as re�ected by 0:00 for

processes that haven’t yet used a full second of CPU time.)

Many processes running on a computer are not associated with a terminal. A normal Linux

system has many processes running in the background. Background system processes per-

form such tasks as logging system activity or listening for data coming in from the net-

work. They are often started when Linux boots up and run continuously until the system

shuts down. Likewise, logging in to a Linux desktop causes many background processes to

kick off, such as processes for managing audio, desktop panels, authentication, and other

desktop features.

To page through all of the processes running on your Linux system for the current user, add

the pipe (|) and the less command to ps ux:

$ ps ux | less

To page through all processes running for all users on your system, use the ps aux

command as follows:

$ ps aux | less

A pipe (located above the backslash character on the keyboard) enables you to direct the

output of one command to be the input of the next command. In this example, the output

of the ps command (a list of processes) is directed to the less command, which enables

you to page through that information. Use the spacebar to page through and type q to end

the list. You can also use the arrow keys to move one line at a time through the output.

Part II: Becoming a Linux Power User

120

The ps command can be customized to display selected columns of information and to

sort information by one of those columns. Using the -o option, you can use keywords to

indicate the columns you want to list with ps. For example, the next example lists every

running process (-e) and then follows the -o option with every column of information I

want to display, including the process ID (pid), username (user), user ID (uid), group

name (group), group ID (gid), virtual memory allocated (vsz), resident memory used

(rss), and the full command line that was run (comm). By default, output is sorted by pro-

cess ID number.

$ ps -eo pid,user,uid,group,gid,vsz,rss,comm | less
 PID USER UID GROUP GID VSZ RSS COMMAND
 1 root 0 root 0 187660 13296 systemd
 2 root 0 root 0 0 0 kthreadd

If you want to sort by a speci�c column, you can use the sort= option. For example, to see

which processes are using the most memory, I sort by the vsz �eld. That sorts from lowest

memory use to highest. Because I want to see the highest ones �rst, I put a hyphen in front

of that option to sort (sort=-vsz).

$ ps -eo pid,user,group,gid,vsz,rss,comm --sort=-vsz | head
 PID USER GROUP GID VSZ RSS COMMAND
 2366 chris chris 1000 3720060 317060 gnome-shell
 1580 gdm gdm 42 3524304 205796 gnome-shell
 3030 chris chris 1000 2456968 248340 firefox
 3233 chris chris 1000 2314388 316252 Web Content

Refer to the ps man page for information on other columns of information by which you

can display and sort.

Listing and changing processes with top
The top command provides a screen-oriented means of displaying processes running on

your system. With top, the default is to display processes based on how much CPU time

they are currently consuming. However, you can sort by other columns as well. After you

identify a misbehaving process, you can also use top to kill (completely end) or renice

(reprioritize) that process.

If you want to be able to kill or renice any processes, you need to run top as the root user.

If you just want to display processes and possibly kill or change your own processes, you

can do that as a regular user. Figure 6.1 shows an example of the top window.

General information about your system appears at the top of the top output, followed by

information about each running process (or at least as many as will �t on your screen). At

the top, you can see how long the system has been up, how many users are currently logged

in to the system, and how much demand there has been on the system for the past 1, 5,

and 10 minutes.

Chapter 6: Managing Running Processes

121

6

Other general information includes how many processes (tasks) are currently running, how

much CPU is being used, and how much RAM and swap are available and being used. Following

the general information are listings of each process, sorted by what percent of the CPU is being

used by each process. All of this information is redisplayed every 5 seconds, by default.

The following list includes actions that you can do with top to display information in dif-

ferent ways and modify running processes:

■■ Press h to see help options, and then press any key to return to the top display.

■■ Press M to sort by memory usage instead of CPU, and then press P to return to sort-

ing by CPU.

■■ Press the number 1 to toggle showing CPU usage of all your CPUs if you have more

than one on your system.

■■ Press R to reverse sort your output.

■■ Press u and enter a username to display processes only for a particular user.

A common practice is to use top to �nd processes that are consuming too much memory

or processing power and then act on those processes in some way. A process consuming too

much CPU can be reniced to give it less priority to the processors. A process consuming too

much memory can be killed. With top running, here’s how to renice or kill a process:

Renicing a process

Note the process ID of the process you want to renice and press r. When the PID to
renice: message appears, type the process ID of the process you want to renice. When

prompted to Renice PID to value:, type in a number from –20 to 19. (See “Setting

processor priority with nice and renice” later in this chapter for information on the

meanings of different renice values.)

Killing a process

Note the process ID of the process you want to kill and press k. Type 15 to terminate cleanly

or 9 to just kill the process outright. (See “Killing processes with kill and killall” later in this

chapter for more information on using different signals you can send to processes.)

FIGURE 6.1

Displaying running processes with top

Part II: Becoming a Linux Power User

122

Listing processes with System Monitor
If you have GNOME desktop available on your Linux system, System Monitor (gnome-system-
monitor) is available to provide a more graphical way of displaying processes on your

system. You sort processes by clicking columns. You can right-click processes to stop, kill,

or renice them.

To start System Monitor from the GNOME desktop, press the Windows key and then type

System Monitor and press Enter. Then select the Processes tab. Figure 6.2 shows an exam-

ple of the System Monitor window, displaying processes for the current user in order by

memory use.

By default, only running processes associated with your user account are displayed. Those

processes are normally listed alphabetically. You can resort the processes by clicking any of

the �eld headings (forward and reverse). For example, click the %CPU heading to see which

processes are consuming the most processing power. Click the Memory heading to see which

processes consume the most memory.

You can manage your processes in various ways by right-clicking a process name and select-

ing from the menu that appears (see Figure 6.3 for an example).

Here are some of the things you can do to a process from the menu you clicked:

Stop: Pauses the process so that no processing occurs until you select Continue

Process. (This is the same as pressing Ctrl+Z on a process from the shell.)

Continue: Continues running a paused process.

End: Sends a Terminate signal (15) to a process. In most cases, this terminates the

process cleanly.

FIGURE 6.2

Use the System Monitor window to view and change running processes.

Chapter 6: Managing Running Processes

123

6

Kill: Sends a Kill signal (9) to a process. This should kill a process immediately, regard-

less of whether it can be done cleanly.

Change Priority: Presents a list of priorities from Very Low to Very High. Select

Custom to see a slider bar from which you can renice a process. Normal priority is

0. To get better processor priority, use a negative number from –1 to –20. To have

a lower processor priority, use a positive number (0 to 19). Only the root user can

assign negative priorities, so when prompted you need to provide the sudo password

to set a negative nice value.

Memory Maps: Lets you view the system memory map to see which libraries and other

components are being held in memory for the process.

Open Files: Lets you view which �les are currently being held open by the process.

Properties: Lets you see other settings associated with the process (such as security

context, memory usage, and CPU use percentages).

You can display running processes associated with users other than yourself. To do that,

highlight any process in the display (just click it). Then, from the menu button (the button

with three bars on it), select All Processes. You can modify processes you don’t own only

if you are the root user or if you can provide the root password when prompted after you

try to change a process. Sometimes you won’t have the luxury of working with a graphical

interface. To change processes without a graphical interface, you can use a set of com-

mands and keystrokes to change, pause, or kill running processes. Some of those are

described next.

FIGURE 6.3

Renice, kill, or pause a process from the System Monitor window.

Part II: Becoming a Linux Power User

124

Managing Background and Foreground Processes
If you are using Linux over a network or from a dumb terminal (a monitor that allows only

text input with no GUI support), your shell may be all that you have. You may be used to a

graphical environment in which you have lots of programs active at the same time so that

you can switch among them as needed. This shell thing can seem pretty limited.

Although the Bash shell doesn’t include a GUI for running many programs at once, it does

let you move active programs between the background and foreground. In this way, you

can have lots of stuff running and selectively choose the one you want to deal with at

the moment.

You can place an active program in the background in several ways. One is to add an amper-

sand (&) to the end of a command line when you �rst run the command. You can also use

the at command to run commands in such a way that they are not connected to the shell.

To stop a running command and put it in the background, press Ctrl+Z. After the command

is stopped, you can either bring it back into the foreground to run (the fg command) or

start it running in the background (the bg command). Keep in mind that any command

running in the background might spew output during commands that you run subsequently

from that shell. For example, if output appears from a command running in the background

during a vi session, simply press Ctrl+L to redraw the screen to get rid of the output.

TIP

To avoid having the output appear, you should have any process running in the background send its output to a �le or

to null (add 2> /dev/null to the end of the command line).

Starting background processes
If you have programs that you want to run while you continue to work in the shell, you can

place the programs in the background. To place a program in the background at the time

you run the program, type an ampersand (&) at the end of the command line, like this:

$ find /usr > /tmp/allusrfiles &
[3] 15971

This example command �nds all �les on your Linux system (starting from /usr), prints

those �lenames, and puts those names in the �le /tmp/allusrfiles. The ampersand (&)

runs that command line in the background. Notice that the job number, [3], and process ID

number, 15971, are displayed when the command is launched. To check which commands

you have running in the background, use the jobs command, as follows:

$ jobs
[1] Stopped (tty output) vi /tmp/myfile
[2] Running find /usr -print > /tmp/allusrfiles &
[3] Running nroff -man /usr/man2/* >/tmp/man2 &
[4]- Running nroff -man /usr/man3/* >/tmp/man3 &
[5]+ Stopped nroff -man /usr/man4/* >/tmp/man4

Chapter 6: Managing Running Processes

125

6

The �rst job shows a text-editing command (vi) that I placed in the background and

stopped by pressing Ctrl+Z while I was editing. Job 2 shows the find command I just ran.

Jobs 3 and 4 show nroff commands currently running in the background. Job 5 had been

running in the shell (foreground) until I decided too many processes were running and

pressed Ctrl+Z to stop job 5 until a few processes had completed.

The plus sign (+) next to number 5 shows that it was most recently placed in the

background. The minus sign (−) next to number 4 shows that it was placed in the

background just before the most recent background job. Because job 1 requires terminal

input, it cannot run in the background. As a result, it is Stopped until it is brought to the

foreground again.

TIP

To see the process ID for the background job, add a -l (the lowercase letter L) option to the jobs command. If you

type ps, you can use the process ID to �gure out which command is for a particular background job.

Using foreground and background commands
Continuing with the example, you can bring any of the commands on the jobs list to the

foreground. For example, to edit myfile again, enter the following:

$ fg %1

As a result, the vi command opens again. All text is as it was when you stopped

the vi job.

CAUTION

Before you put a text processor, word processor, or similar program in the background, make sure that you save your

�le. It’s easy to forget that you have a program in the background, and you will lose your data if you log out or the

computer reboots.

To refer to a background job (to cancel or bring it to the foreground), use a percent sign (%)

followed by the job number. You can also use the following to refer to a background job:

% Refers to the most recent command put into the background (indicated by the

plus sign when you type the jobs command). This action brings the command to

the foreground.

%string Refers to a job where the command begins with a particular string of charac-

ters. The string must be unambiguous. (In other words, typing %vi when there are two

vi commands in the background results in an error message.)

%?string Refers to a job where the command line contains a string at any point. The

string must be unambiguous or the match fails.

%-- Refers to the job stopped before the one most recently stopped.

Part II: Becoming a Linux Power User

126

If a command is stopped, you can start it running again in the background using the bg

command. For example, take job 5 from the jobs list in the previous example:

[5]+ Stopped nroff -man /usr/man4/* >/tmp/man4

Enter the following:

$ bg %5

After that, the job runs in the background. Its jobs entry appears as follows:

[5] Running nroff -man /usr/man4/* >/tmp/man4 &

Killing and Renicing Processes
Just as you can change the behavior of a process using graphical tools such as System

 Monitor (described earlier in this chapter), you can also use command-line tools to kill a

process or change its CPU priority. The kill command can send a kill signal to any process

to end it, assuming you have permission to do so. It can also send different signals to a

process to otherwise change its behavior. The nice and renice commands can be used to

set or change the processor priority of a process.

Killing processes with kill and killall
Although usually used for ending a running process, the kill and killall commands

can actually be used to send any valid signal to a running process. Besides telling a process

to end, a signal might tell a process to reread con�guration �les, pause (stop), or continue

after being paused, just to name a few possibilities.

Signals are represented by both numbers and names. Signals that you might send most

commonly from a command include SIGKILL (9), SIGTERM (15), and SIGHUP (1). The

default signal is SIGTERM, which tries to terminate a process cleanly. To kill a process

immediately, you can use SIGKILL. The SIGHUP signal can, depending on the program,

tell a process to restart and reread its con�guration �les. SIGSTOP (19) pauses a process,

while SIGCONT (18) continues a stopped process.

Different processes respond to different signals. Processes cannot block SIGKILL and SIG-
STOP signals, however. Table 6.1 shows examples of some signals (enter man 7 signal to

read about other available signals).

Notice that there are multiple possible signal numbers for SIGCONT and SIGSTOP because

different numbers are used in different computer architectures. For most _64 and POWER

architectures, use the middle value. The �rst value usually works for Alpha and SPARC,

while the last one is for MIPS architecture.

Chapter 6: Managing Running Processes

127

6

Using kill to signal processes by PID

Using commands such as ps and top, you can �nd processes to which you want to send a

signal. Then you can use the process ID of that process as an option to the kill command,

along with the signal you want to send.

For example, you run the top command and see that the bigcommand process is con-

suming most of your processing power:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
10432 chris 20 0 471m 121m 18m S 99.9 3.2 77:01.76
bigcommand

Here, the bigcommand process is consuming 99.9 percent of the CPU. You decide that you

want to kill it so that other processes have a shot at the CPU. If you use the process ID of

the running bigcommand process, here are some examples of the kill command that you

can use to kill that process:

$ kill 10432
$ kill -15 10432
$ kill -SIGKILL 10432

The default signal sent by kill is 15 (SIGTERM), so the �rst two examples have exactly

the same results. On occasion, a SIGTERM doesn’t kill a process, so you may need a

 SIGKILL to kill it. Instead of SIGKILL, you can use –9 to get the same result.

Another useful signal is SIGHUP. If, for example, something on your GNOME desktop were

corrupted, you could send the gnome-shell a SIGHUP signal to reread its con�guration

�les and restart the desktop. If the process ID for gnome-shell were 1833, here are two

ways you could send it a SIGHUP signal:

kill -1 1833
kill -HUP 1833

TABLE 6.1 Signals Available in Linux

SIGNAL NUMBER DESCRIPTION

SIGHUP 1 Hang-up detected on controlling terminal or death of control-
ling process.

SIGINT 2 Interrupt from keyboard.

SIGQUIT 3 Quit from keyboard.

SIGABRT 6 Abort signal from abort(3).

SIGKILL 9 Kill signal.

SIGTERM 15 Termination signal.

SIGCONT 19,18,25 Continue if stopped.

SIGSTOP 17,19,23 Stop process.

Part II: Becoming a Linux Power User

128

Using killall to signal processes by name

With the killall command, you can signal processes by name instead of by process ID.

The advantage is that you don’t have to look up the process ID of the process that you want

to kill. The potential downside is that you can kill more processes than you mean to if you

are not careful. (For example, typing killall bash may kill a bunch of shells that you

don’t mean to kill.)

Like the kill command, killall uses SIGTERM (signal 15) if you don’t explicitly enter

a signal number. Also as with kill, you can send any signal you like to the process you

name with killall. For example, if you see a process called testme running on your

system and you want to kill it, you can simply enter the following:

$ killall -9 testme

The killall command can be particularly useful if you want to kill a bunch of commands

of the same name. For that same reason, it’s also potentially the most destructive command

because it will also kill any other instances of that software running—even those of which

you’re unaware.

Setting processor priority with nice and renice
When the Linux kernel tries to decide which running processes get access to the CPUs on

your system, one of the things it takes into account is the nice value set on the process.

Every process running on your system has a nice value between –20 and 19. By default, the

nice value is set to 0. Here are a few facts about nice values:

■■ The lower the nice value, the more access to the CPUs the process has. In other

words, the nicer a process is, the less CPU attention it gets. So, a –20 nice value gets

more attention than a process with a 19 nice value (which is very nice, indeed).

■■ A regular user can set nice values only from 0 to 19. No negative values are allowed.

So a regular user can’t ask for a value that gives a process more attention than most

processes get by default.

■■ A regular user can set the nice value higher, not lower. So, for example, if a user

sets the nice value on a process to 10 and then later wants to set it back to 5, that

action will fail. Likewise, any attempt to set a negative value will fail.

■■ A regular user can set the nice value only on the user’s own processes.

■■ The root user can set the nice value on any process to any valid value, up or down.

You can use the nice command to run a command with a particular nice value. When a

process is running, you can change the nice value using the renice command, along with

the process ID of the process, as in the example that follows:

nice -n +5 updatedb &

The updatedb command is used to generate the locate database manually by gathering

names of �les throughout the �lesystem. In this case, I just wanted updatedb to run in

Chapter 6: Managing Running Processes

129

6

the background (&) and not interrupt work being done by other processes on the system. I

ran the top command to make sure that the nice value was set properly:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20284 root 25 5 98.7m 932 644 D 2.7 0.0 0:00.96 updatedb

Notice that under the NI column, the nice value is set to 5. Because the command was

run as the root user, the root user can lower the nice value later by using the renice

command. (Remember that a regular user can’t reduce the nice value or ever set it to a neg-

ative number.) Here’s how you would change the nice value for the updatedb command

just run to –5:

renice -n -5 20284

If you ran the top command again, you might notice that the updatedb command is now

at or near the top of the list of processes consuming CPU time because you gave it priority

to get more CPU attention.

Limiting Processes with cgroups
You can use a feature like “nice” to give a single process more or less access to CPU time.

Setting the nice value for one process, however, doesn’t apply to child processes that a pro-

cess might start up or any other related processes that are part of a larger service. In other

words, “nice” doesn’t limit the total amount of resources a particular user or application

can consume from a Linux system.

As cloud computing takes hold, many Linux systems will be used more as hypervisors than

as general-purpose computers. Their memory, processing power, and access to storage will

become commodities to be shared by many users. In that model, more needs to be done to

control the amount of system resources to which a particular user, application, container,

or virtual machine running on a Linux system has access.

That’s where cgroups come in.

Cgroups can be used to identify a process as a task, belonging to a particular control group.

Tasks can be set up in a hierarchy where, for example, there may be a task called daemons

that sets default limitations for all daemon server processes, then subtasks that may set

speci�c limits on a web server daemon (apache2) or FTP service daemon (vsftpd).

As a task launches a process, other processes that the initial process launches (called child

processes) inherit the limitations set for the parent process. Those limitations might say

that all the processes in a control group only have access to particular processors and cer-

tain sets of RAM. Or they may only allow access to up to 30 percent of the total processing

power of a machine.

Part II: Becoming a Linux Power User

130

The types of resources that can be limited by cgroups include the following:

Storage (blkio): Limits total input and output access to storage devices (such as

hard disks, USB drives, and so on).

Processor scheduling (cpu): Assigns the amount of access a cgroup has to be

scheduled for processing power.

Process accounting (cpuacct): Reports on CPU usage. This information can be

leveraged to charge clients for the amount of processing power they use.

CPU assignment (cpuset): On systems with multiple CPU cores, assigns a task to

a particular set of processors and associated memory.

Device access (devices): Allows tasks in a cgroup to open or create (mknod)

selected device types.

Suspend/resume (freezer): Suspends and resumes cgroup tasks.

Memory usage (memory): Limits memory usage by task. It also creates reports on

memory resources used.

Network bandwidth (net _ cls): Limits network access to selected cgroup tasks.

This is done by tagging network packets to identify the cgroup task that originated

the packet and having the Linux traf�c controller monitor and restrict packets com-

ing from each cgroup.

Network traffic (net _ prio): Sets priorities of network traf�c coming from

selected cgroups and lets administrators change these priorities on the �y.

Name spaces (ns): Separates cgroups into namespaces, so processes in one cgroup

can only see the namespaces associated with the cgroup. Namespaces can include

separate process tables, mount tables, and network interfaces.

At its most basic level, creating and managing cgroups is generally not a job for new

Linux system administrators. It can involve editing con�guration �les to create your own

cgroups (/etc/cgconfig.conf) or setting up limits for particular users or groups (/etc/
cgrules.conf). Or you can use the cgreate command to create cgroups, which results

in those groups being added to the /sys/fs/cgroup hierarchy. Setting up cgroups can be

tricky and, if done improperly, can make your system unbootable.

The reason we’re talking about the concept of cgroups here is to help you understand some

of the underlying features in Linux that can be used to limit and monitor resource usage.

In the future, you will probably run into these features from controllers that manage your

cloud infrastructure. You will be able to set rules like “Allow the Marketing department’s

virtual machines to consume up to 40 percent of the available memory” or “Pin the data-

base application to a particular CPU and memory set.”

Knowing how Linux can limit and contain the resource usage by the set of processes

assigned to a task will ultimately help you manage your computing resources better.

Chapter 6: Managing Running Processes

131

6

Summary
Even on a Linux system where there isn’t much activity, typically dozens or even hundreds

of processes are running in the background. Using the tools described in this chapter, you

can view and manage the processes running on your system.

Managing processes includes viewing processes in different ways, running them in the fore-

ground or background, and killing or renicing them. More advanced features for limiting

resource usage by selected processes are available using the cgroups feature.

In the next chapter, you learn how to combine commands and programming functions into

�les that can be run as shell scripts.

Exercises
Use these exercises to test your knowledge of viewing running processes and then chang-

ing them later by killing them or changing processor priority (nice value). If you are stuck,

solutions to the tasks are shown in Appendix A (although in Linux, you can often use mul-

tiple ways to complete a task).

1. List all processes running on your system, showing a full set of columns. Pipe that

output to the less command so that you can page through the list of processes.

2. List all processes running on the system and sort those processes by the name of

the user running each process.

3. List all processes running on the system and display the following columns of

information: process ID, username, group name, virtual memory size, resident mem-

ory size, and the command.

4. Run the top command to view processes running on your system. Go back and

forth between sorting by CPU usage and memory consumption.

5. Start the gedit process from your desktop. Make sure that you run it as the user

you are logged in as. Use the System Monitor window to kill that process.

6. Run the gedit process again. This time, using the kill command, send a signal

to the gedit process that causes it to pause (stop). Try typing some text into the

gedit window and make sure that no text appears yet.

7. Use the killall command to tell the gedit command that you paused in the

 previous exercise to continue working. Make sure that the text you type after

gedit was paused now appears on the window.

8. As a regular user, run the gedit command so that it starts with a nice value of 5.

9. Using the renice command, change the nice value of the gedit command you

just started to 7. Use any command you like to verify that the current nice value

for the gedit command is now set to 7.

133

CHAP T ER

7
Writing Simple Shell Scripts

IN THIS CHAPTER

Working with shell scripts

Doing arithmetic in shell scripts

Running loops and cases in shell scripts

Creating simple shell scripts

Y
ou’d never get any work done if you typed every command that needs to be run on your Linux

system when it starts. Likewise, you could work more efficiently if you grouped together sets

of commands that you run all the time. Shell scripts can handle these tasks.

A shell script is a group of commands, functions, variables, or just about anything else you can use

from a shell. These items are typed into a plain text file. That file can then be run as a command.

Linux systems have traditionally used system initialization shell scripts during system startup to run

commands needed to get services going. You can create your own shell scripts to automate the tasks

that you need to do regularly.

For decades, building shell scripts was the primary skill needed to join sets of tasks in UNIX and

Linux systems. As demands for configuring Linux systems grew beyond single-system setups to com-

plex, automated cluster configurations, more structured methods have arisen. These methods include

Ansible playbooks and Kubernetes YAML files, described later in cloud-related chapters. That said,

writing shell scripts is still a hugely important tool for automating repeatable tasks in Linux systems.

This chapter provides a rudimentary overview of the inner workings of shell scripts and how they can

be used. You’ll learn how simple scripts can be harnessed for a scheduling facility (such as cron or

at) to simplify administrative tasks or just run on demand as they are needed.

Understanding Shell Scripts
Have you ever had a task that you needed to do over and over that took lots of typing on the

command line? Do you ever think to yourself, “Wow, I wish I could just type one command to do all

this”? Maybe a shell script is what you’re after.

Part II: Becoming a Linux Power User

134

Shell scripts are the equivalent of batch files in Windows and can contain long lists of com-

mands, complex flow control, arithmetic evaluations, user-defined variables, user-defined

functions, and sophisticated condition testing. Shell scripts are capable of handling every-

thing from simple one-line commands to something as complex as starting up a Linux

system. Although dozens of different shells are available in Linux, the default shell for

most Linux systems is called Bash, the Bourne Again SHell.

Executing and debugging shell scripts
One of the primary advantages of shell scripts is that you can read the code by simply

opening it in any text editor. A big disadvantage is that large or complex shell scripts often

execute more slowly than compiled programs.

You can execute a shell script in two basic ways:

 ■ The filename is used as an argument to the shell (as in bash myscript). In this

method, the file does not need to be executable; it just contains a list of shell com-

mands. The shell specified on the command line is used to interpret the commands

in the script file. This is most common for quick, simple tasks.

 ■ The shell script may also have the name of the interpreter placed in the first line

of the script preceded by #! (as in #!/bin/bash) and have the execute bit of the

file containing the script set (using chmod +x filename). You can then run your

script just as you would any other program in your path simply by typing the name

of the script on the command line.

When scripts are executed in either manner, options for the program may be specified on

the command line. Anything following the name of the script is referred to as a command-

line argument.

As with writing any software, there is no substitute for clear and thoughtful design and

lots of comments. The pound sign (#) prefaces comments that can take up an entire line or

exist on the same line after script code. It is best to implement more complex shell scripts

in stages, making sure that the logic is sound at each step before continuing. Here are a

few good, concise tips to make sure that things are working as expected during testing:

 ■ In some cases, you can place an echo statement at the beginning of lines within

the body of a loop and surround the command with quotes. That way, rather than

executing the code, you can see what will be executed without making any perma-

nent changes.

 ■ To achieve the same goal, you can place dummy echo statements throughout the

code. If these lines get printed, you know the correct logic branch is being taken.

 ■ You can use set -x near the beginning of the script to display each command that

is executed or launch your scripts using

$ bash -x myscript

 ■ Because useful scripts have a tendency to grow over time, keeping your code read-

able as you go along is extremely important. Do what you can to keep the logic of

your code clean and easy to follow.

Chapter 7: Writing Simple Shell Scripts

135

7

Understanding shell variables
Often within a shell script, you want to reuse certain items of information. During the

course of processing the shell script, the name or number representing this information

may change. To store information used by a shell script in such a way that it can be easily

reused, you can set variables. Variable names within shell scripts are case sensitive and can

be defined in the following manner:

NAME=value

The first part of a variable is the variable name, and the second part is the value set for

that name. Be sure that the NAME and value touch the equal sign, without any spaces.

Variables can be assigned from constants, such as text, numbers, and underscores. This

is useful for initializing values or saving lots of typing for long constants. The following

examples show variables set to a string of characters (CITY) and a numeric value (PI):

CITY="Springfield"
PI=3.14159265

Variables can contain the output of a command or command sequence. You can accomplish

this by preceding the command with a dollar sign and open parenthesis, following it with

a closing parenthesis. For example, MYDATE=$(date) assigns the output from the date

command to the MYDATE variable. Enclosing the command in back-ticks (̀) can have the

same effect. In this case, the date command is run when the variable is set and not each

time the variable is read.

Escaping Special Shell Characters
Keep in mind that characters such as the dollar sign ($), back-tick (̀), asterisk (*), exclamation point (!),
and others have special meaning to the shell, which you will see as you proceed through this chapter.
On some occasions, you want the shell to use these characters’ special meaning and other times you
don’t. For example, if you typed echo $HOME, the shell would think that you meant to display the name
of your home directory (stored in the $HOME variable) to the screen (such as /home/chris) because
a $ indicates a variable name follows that character.

If you wanted literally to show $HOME, you would need to escape the $. Typing echo ’$HOME' or echo
\$HOME would show $HOME on the screen. So, if you want to have the shell interpret a single character
literally, precede it with a backslash (\). To have a whole set of characters interpreted literally, surround
those characters with single quotes (').

Using double quotes is a bit trickier. Surround a set of text with double quotes if you want all but a few
characters used literally. For example, for text surrounded with double quotes, dollar signs ($), back-
ticks (̀), and exclamation points (!) are interpreted specially, but other characters (such as an asterisk)
are not. Type these three lines to see the different output (shown on the right):

 echo '$HOME * `date`' $HOME * `date`
 echo ″$HOME * `date`″ /home/chris * Tue Jan 21 16:56:52 EDT 2020
 echo $HOME * `date` /home/chris file1 file2 Tue Jan 21
16:56:52 EDT 2020

Part II: Becoming a Linux Power User

136

Using variables is a great way to get information that can change from computer to

computer or from day to day. The following example sets the output of the uname -n

command to the MACHINE variable. Then I use parentheses to set NUM_FILES to the

number of files in the current directory by piping (|) the output of the ls command to the

word count command (wc -l):

MACHINE=`uname -n`
NUM_FILES=$(/bin/ls | wc -l)

Variables can also contain the value of other variables. This is useful when you have to pre-

serve a value that will change so that you can use it later in the script. Here, BALANCE is

set to the value of the CurBalance variable:

BALANCE="$CurBalance"

NOTE

When assigning variables, use only the variable name (for example, BALANCE). When you reference a variable,

meaning that you want the value of the variable, precede it with a dollar sign (as in $CurBalance). The result of

the latter is that you get the value of the variable, not the variable name itself.

Special shell positional parameters

There are special variables that the shell assigns for you. One set of commonly used vari-

ables is called positional parameters or command-line arguments, and it is referenced as $0,

$1, $2, $3. . .${10}, ${11}, ${12}.... $0 is special, and it is assigned the name used to invoke

your script; the others are assigned the values of the parameters passed on the command

line in the order they appeared. For instance, let’s say that you had a shell script named

myscript that contained the following:

#!/bin/bash
Script to echo out command-line arguments
echo "The first argument is $1, the second is $2."
echo "The command itself is called $0."
echo "There are $# parameters on your command line"
echo "Here are all the arguments: $@"

Assuming that the script is executable and located in a directory in your $PATH, the

following shows what would happen if you ran that command with foo and bar as

arguments:

$ chmod 755 /home/chris/bin/myscript
$ myscript foo bar
The first argument is foo, the second is bar.
The command itself is called /home/chris/bin/myscript.
There are 2 parameters on your command line
Here are all the arguments: foo bar

As you can see, the positional parameter $0 is the full path or relative path to myscript,

$1 is foo, and $2 is bar.

Chapter 7: Writing Simple Shell Scripts

137

7

Another variable, $#, tells you how many parameters your script was given. In the exam-

ple, $# would be 2. The $@ variable holds all of the arguments entered at the command

line. Another particularly useful special shell variable is $?, which receives the exit status

of the last command executed. Typically, a value of zero means that the command exited

successfully, and anything other than zero indicates an error of some kind. For a complete

list of special shell variables, refer to the bash man page.

Reading in parameters

Using the read command, you can prompt the user for information and store that informa-

tion to use later in your script. Here’s an example of a script that uses the read command:

#!/bin/bash
read -p "Type in an adjective, noun and verb (past tense): " adj1
noun1 verb1
echo "He sighed and $verb1 to the elixir. Then he ate the
$adj1 $noun1."

This script, after prompting for an adjective, noun, and verb, expects the user to enter

words that are then assigned to the adj1, noun1, and verb1 variables. Those three var-

iables are then included in a silly sentence, which is displayed on the screen. If the script

were called sillyscript, here’s an example of how it might run:

$ chmod 755 /home/chris/bin/sillyscript
$ sillyscript
Type in an adjective, noun and verb (past tense): hairy football
danced
He sighed and danced to the elixir. Then he ate the hairy football.

Parameter expansion in Bash

As mentioned earlier, if you want the value of a variable, you precede it with a $ (for exam-

ple, $CITY). This is really just shorthand for the notation ${CITY}; curly braces are used

when the value of the parameter needs to be placed next to other text without a space.

Bash has special rules that allow you to expand the value of a variable in different ways.

Going into all of the rules is overkill for a quick introduction to shell scripts, but the fol-

lowing list presents some common constructs you’re likely to see in Bash scripts that you

find on your Linux system:

${var:-value}: If variable is unset or empty, expand this to value.

${var#pattern}: Chop the shortest match for pattern from the front of

var ’s value.

${var##pattern}: Chop the longest match for pattern from the front of

var ’s value.

${var%pattern}: Chop the shortest match for pattern from the end of var ’s value.

${var%%pattern}: Chop the longest match for pattern from the end of var ’s value.

Part II: Becoming a Linux Power User

138

Try typing the following commands from a shell to test how parameter expansion works:

$ THIS="Example"
$ THIS=${THIS:-"Not Set"}
$ THAT=${THAT:-"Not Set"}
$ echo $THIS
Example
$ echo $THAT
Not Set

In the examples here, the THIS variable is initially set to the word Example. In the next

two lines, the THIS and THAT variables are set to their current values or to Not Set,

if they are not currently set. Notice that because I just set THIS to the string Example,

when I echo the value of THIS it appears as Example. However, because THAT was not set,

it appears as Not Set.

NOTE

For the rest of this section, I show how variables and commands may appear in a shell script. To try out any of those

examples, however, you can simply type them into a shell, as shown in the previous example.

In the following example, MYFILENAME is set to /home/digby/myfile.txt. Next, the

FILE variable is set to myfile.txt and DIR is set to /home/digby. In the NAME vari-

able, the filename is cut down simply to myfile; then, in the EXTENSION variable, the file

extension is set to txt. (To try these out, you can type them at a shell prompt as in the

previous example and echo the value of each variable to see how it is set.) Type the code on

the left. The material on the right side describes the action.

MYFILENAME=/home/digby/myfile.txt: Sets the value of MYFILENAME

FILE=${MYFILENAME##*/}: FILE becomes myfile.txt

DIR=${MYFILENAME%/*}: DIR becomes /home/digby

NAME=${FILE%.*}: NAME becomes myfile

EXTENSION=${FILE##*.}: EXTENSION becomes txt

Performing arithmetic in shell scripts
Bash uses untyped variables, meaning that you are not required to specify whether a vari-

able is text or numbers. It normally treats variables as strings or text, so unless you tell it

otherwise with declare, your variables are just a bunch of letters to bash. However, when

you start trying to do arithmetic with them, bash converts them to integers if it can. This

makes it possible to do some fairly complex arithmetic in bash.

Integer arithmetic can be performed using the built-in let command or through the

external expr or bc commands. After setting the variable BIGNUM value to 1024, the

three commands that follow would all store the value 64 in the RESULT variable. The bc

Chapter 7: Writing Simple Shell Scripts

139

7

command is a calculator application that is available in most Linux distributions. The last

command gets a random number and echoes the results back to you.

BIGNUM=1024
let RESULT=$BIGNUM/16
RESULT=`expr $BIGNUM / 16`
RESULT=`echo "$BIGNUM / 16" | bc`
let foo=$RANDOM; echo $foo

Another way to grow a variable incrementally is to use $(()) notation with ++I added to

increment the value of I. Try typing the following:

$ I=0
$ echo "The value of I after increment is $((++I))"
The value of I after increment is 1

$ echo "The value of I before and after increment is $((I++)) and $I"
The value of I before and after increment is 1 and 2

Repeat either of those commands to continue to increment the value of $I.

NOTE

Although most elements of shell scripts are relatively freeform (where white space, such as spaces or tabs, is insig-

ni�cant), both let and expr are particular about spacing. The let command insists on no spaces between each

operand and the mathematical operator, whereas the syntax of the expr command requires white space between

each operand and its operator. In contrast to those, bc isn’t picky about spaces, but it can be trickier to use

because it does �oating-point arithmetic.

To see a complete list of the kinds of arithmetic that you can perform using the let

command, type help let at the bash prompt.

Using programming constructs in shell scripts
One of the features that makes shell scripts so powerful is that their implementation of

looping and conditional execution constructs is similar to those found in more complex

scripting and programming languages. You can use several different types of loops, depend-

ing on your needs.

The “if. . .then” statements

The most commonly used programming construct is conditional execution, or the if state-

ment. It is used to perform actions only under certain conditions. There are several varia-

tions of if statements for testing various types of conditions.

Part II: Becoming a Linux Power User

140

The first if...then example tests if VARIABLE is set to the number 1. If it is, then the

echo command is used to say that it is set to 1. The fi statement then indicates that the

if statement is complete, and processing can continue.

VARIABLE=1
if [$VARIABLE -eq 1] ; then
echo "The variable is 1"
fi

Instead of using -eq, you can use the equal sign (=), as shown in the following example.

The = works best for comparing string values, while -eq is often better for comparing num-

bers. Using the else statement, different words can be echoed if the criterion of the if

statement isn’t met ($STRING = ″Friday″). Keep in mind that it’s good practice to put

strings in double quotes.

STRING="Friday"
if [$STRING = "Friday"] ; then
echo "WhooHoo. Friday."
else
echo "Will Friday ever get here?"
fi

You can also reverse tests with an exclamation mark (!). In the following example, if

STRING is not Monday, then ″At least it's not Monday″ is echoed.

STRING="FRIDAY"
if ["$STRING" != "Monday"] ; then
 echo "At least it's not Monday"
fi

In the following example, elif (which stands for “else if”) is used to test for an additional

condition (for example, whether filename is a file or a directory).

filename="$HOME"
if [-f "$filename"] ; then
 echo "$filename is a regular file"
elif [-d "$filename"] ; then
 echo "$filename is a directory"
else
 echo "I have no idea what $filename is"
fi

As you can see from the preceding examples, the condition you are testing is placed

between square brackets []. When a test expression is evaluated, it returns either a value

of 0, meaning that it is true, or a 1, meaning that it is false. Notice that the echo lines are

indented. The indentation is optional and done only to make the script more readable.

Table 7.1 is a handy reference list of the conditions that are testable. (If you’re in a hurry,

you can type help test on the command line to get the same information.)

Chapter 7: Writing Simple Shell Scripts

141

7

TABLE 7.1 Operators for Test Expressions

OPERATOR WHAT IS BEING TESTED?

-a file Does the �le exist? (same as -e)

-b file Is the �le a block special device?

-c file Is the �le character special (for example, a character device)? Used to
identify serial lines and terminal devices.

-d file Is the �le a directory?

-e file Does the �le exist? (same as -a)

-f file Does the �le exist, and is it a regular �le (for example, not a directory,
socket, pipe, link, or device �le)?

-g file Does the �le exist and have the set-group-id (SGID) bit set?

-h file Is the �le a symbolic link? (same as -L)

-k file Does the �le have the sticky bit set?

-L file Is the �le a symbolic link?

-n string Is the length of the string greater than 0 bytes?

-O file Do you own the �le?

-p file Is the �le a named pipe?

-r file Is the �le readable by you?

-s file Does the �le exist, and is it larger than 0 bytes?

-S file Does the �le exist, and is it a socket?

-t fd Is the �le descriptor connected to a terminal?

-u file Does the �le have the set-user-id (SUID) bit set?

-w file Is the �le writable by you?

-x file Is the �le executable by you?

-z string Is the length of the string 0 (zero) bytes?

expr1 -a expr2 Are both the �rst expression and the second expression true?

expr1 -o expr2 Is either of the two expressions true?

file1 -nt file2 Is the �rst �le newer than the second �le (using the modi�cation
time stamp)?

file1 -ot file2 Is the �rst �le older than the second �le (using the modi�cation
time stamp)?

file1 -ef file2 Are the two �les associated by a link (a hard link or a symbolic link)?

var1 = var2 Is the �rst variable equal to the second variable?

var1 -eq var2 Is the �rst variable equal to the second variable?

var1 -ge var2 Is the �rst variable greater than or equal to the second variable?

(Continues)

Part II: Becoming a Linux Power User

142

There is also a special shorthand method of performing tests that can be useful for simple

one-command actions. In the following example, the two pipes (||) indicate that if the

directory being tested for doesn’t exist (-d dirname), then make the directory (mkdir
$dirname):

[test] || action
Perform simple single command if test is false
dirname="/tmp/testdir"
[-d "$dirname"] || mkdir "$dirname"

Instead of pipes, you can use two ampersands to test if something is true. In the follow-

ing example, a command is being tested to see if it includes at least three command-line

arguments:

[test] && {action}
Perform simple single action if test is true
[$# -ge 3] && echo "There are at least 3 command line arguments."

You can combine the && and || operators to make a quick, one-line if-then-else state-

ment. The following example tests that the directory represented by $dirname already

exists. If it does, a message says the directory already exists. If it doesn’t, the statement

creates the directory:

dirname=mydirectory
[-e $dirname] && echo $dirname already exists || mkdir $dirname

The case command

Another frequently used construct is the case command. Similar to a switch statement

in programming languages, this can take the place of several nested if statements. The

following is the general form of the case statement:

case "VAR" in
 Result1)
 { body };;

OPERATOR WHAT IS BEING TESTED?

var1 -gt var2 Is the �rst variable greater than the second variable?

var1 -le var2 Is the �rst variable less than or equal to the second variable?

var1 -lt var2 Is the �rst variable less than the second variable?

var1 != var2 Is the �rst variable not equal to the second variable?

var1 -ne var2 Is the �rst variable not equal to the second variable?

TABLE 7.1 (continued)

Chapter 7: Writing Simple Shell Scripts

143

7

 Result2)
 { body };;
 *)
 { body } ;;
esac

Among other things, you can use the case command to help with your backups. The fol-

lowing case statement tests for the first three letters of the current day (case 'date
+%a' in). Then, depending on the day, a particular backup directory (BACKUP) and tape

drive (TAPE) are set.

Our VAR doesn't have to be a variable,
it can be the output of a command as well
Perform action based on day of week
case `date +%a` in
 "Mon")
 BACKUP=/home/myproject/data0
 TAPE=/dev/rft0
Note the use of the double semi-colon to end each option
 ;;
Note the use of the "|" to mean "or"
 "Tue" | "Thu")
 BACKUP=/home/myproject/data1
 TAPE=/dev/rft1
 ;;
 "Wed" | "Fri")
 BACKUP=/home/myproject/data2
 TAPE=/dev/rft2
 ;;
Don't do backups on the weekend.
 *)

BACKUP="none"
 TAPE=/dev/null
 ;;
esac

The asterisk (*) is used as a catchall, similar to the default keyword in the C program-

ming language. In this example, if none of the other entries are matched on the way down

the loop, the asterisk is matched and the value of BACKUP becomes none. Note the use of

esac, or case spelled backwards, to end the case statement.

The “for. . .do” loop

Loops are used to perform actions over and over again until a condition is met or until all

data has been processed. One of the most commonly used loops is the for...do loop. It

iterates through a list of values, executing the body of the loop for each element in the list.

The syntax and a few examples are presented here:

for VAR in LIST
do

Continues

Part II: Becoming a Linux Power User

144

 { body }
done

The for loop assigns the values in LIST to VAR one at a time. Then, for each value, the

body in braces between do and done is executed. VAR can be any variable name, and

LIST can be composed of pretty much any list of values or anything that generates a list.

for NUMBER in 0 1 2 3 4 5 6 7 8 9
do
 echo The number is $NUMBER
done

for FILE in `/bin/ls`
do
 echo $FILE
done

You can also write it this way, which is somewhat cleaner:

for NAME in John Paul Ringo George ; do
 echo $NAME is my favorite Beatle
done

Each element in the LIST is separated from the next by white space. This can cause trouble

if you’re not careful because some commands, such as ls -l, output multiple fields per

line, each separated by white space. The string done ends the for statement.

If you’re a die-hard C programmer, bash allows you to use C syntax to control your loops:

LIMIT=10
Double parentheses, and no $ on LIMIT even though it's a variable!
for ((a=1; a <= LIMIT ; a++)) ; do
 echo "$a"
done

The “while. . .do” and “until. . .do” loops

Two other possible looping constructs are the while...do loop and the until...do loop.

The structure of each is presented here:

while condition until condition
do do
 { body } { body }
done done

The while statement executes while the condition is true. The until statement executes

until the condition is true—in other words, while the condition is false.

Here is an example of a while loop that outputs the number 0123456789:

N=0
while [$N -lt 10] ; do
 echo -n $N

Continued

Chapter 7: Writing Simple Shell Scripts

145

7

 let N=$N+1
done

Another way to output the number 0123456789 is to use an until loop as follows:

N=0
until [$N -eq 10] ; do
 echo -n $N
 let N=$N+1
done

Trying some useful text manipulation programs
Bash is great and has lots of built-in commands, but it usually needs some help to do any-

thing really useful. Some of the most common useful programs you’ll see used are grep,

cut, tr, awk, and sed. As with all of the best UNIX tools, most of these programs are

designed to work with standard input and output, so you can easily use them with pipes

and shell scripts.

The global regular expression print

The name global regular expression print (grep) sounds intimidating, but grep is just a way

to find patterns in files or text. Think of it as a useful search tool. Gaining expertise with

regular expressions is quite a challenge, but after you master it, you can accomplish many

useful things with just the simplest forms.

For example, you can display a list of all regular user accounts by using grep to search for

all lines that contain the text /home in the /etc/passwd file as follows:

$ grep /home /etc/passwd

Or you could find all environment variables that begin with HO using the follow-

ing command:

$ env | grep ^HO

NOTE

The ^ in the preceding code is the actual caret character, ,̂ not what you’ll commonly see for a backspace, ^H. Type

grep with ^, H, and O (the uppercase letter) to see what items start with the uppercase characters HO.

To find a list of options to use with the grep command, type man grep.

Remove sections of lines of text (cut)

The cut command can extract fields from a line of text or from files. It is very useful for

parsing system configuration files into easy-to-digest chunks. You can specify the field sep-

arator you want to use and the fields you want, or you can break up a line based on bytes.

The following example lists all home directories of users on your system. This grep

command line pipes a list of regular users from the /etc/passwd file and displays the

Part II: Becoming a Linux Power User

146

sixth field (-f6) as delimited by a colon (-d':'). The hyphen at the end tells cut to read

from standard input (from the pipe).

$ grep /home /etc/passwd | cut -d':' -f6 -
/home/syslog
/home/chris
/home/joe

Translate or delete characters (tr)

The tr command is a character-based translator that can be used to replace one character

or set of characters with another or to remove a character from a line of text.

The following example translates all uppercase letters to lowercase letters and displays the

words mixed upper and lower case as a result:

$ FOO="Mixed UPpEr aNd LoWeR cAsE"
$ echo $FOO | tr [A-Z] [a-z]
mixed upper and lower case

In the next example, the tr command is used on a list of filenames to rename any files

in that list so that any tabs or spaces (as indicated by the [:blank:] option) contained

in a filename are translated into underscores. Try running the following code in a test

directory:

for file in * ; do
 f=`echo $file | tr [:blank:] [_]`
 ["$file" = "$f"] || mv -i -- "$file" "$f"
done

The stream editor (sed)

The sed command is a simple scriptable editor, so it can only perform simple edits, such as

removing lines that have text matching a certain pattern, replacing one pattern of charac-

ters with another, and so on. To get a better idea of how sed scripts work, there’s no sub-

stitute for the online documentation, but here are some examples of common uses.

You can use the sed command essentially to do what I did earlier with the grep example:

search the /etc/passwd file for the word home. Here the sed command searches the

entire /etc/passwd file, searches for the word home, and prints any line containing the

word home:

$ sed -n '/home/p' /etc/passwd
chris:x:1000:1000:Chris Negus:/home/chris:/bin/bash
joe:x:1001:1001:Joe Smith:/home/joe:/bin/bash

In this next example, sed searches the file somefile.txt and replaces every instance

of the string Mac with Linux. Notice that the letter g (meaning “global”) is needed at

the end of the substitution command to cause every occurrence of Mac on each line to be

changed to Linux. (Otherwise, only the first instance of Mac on each line is changed.) The

Chapter 7: Writing Simple Shell Scripts

147

7

output is then sent to the fixed _ file.txt file. The output from sed goes to stdout,

so this command redirects the output to a file for safekeeping.

$ sed 's/Mac/Linux/g' somefile.txt > fixed_file.txt

You can get the same result using a pipe:

$ cat somefile.txt | sed 's/Mac/Linux/g' > fixed_file.txt

By searching for a pattern and replacing it with a null pattern, you delete the original

pattern. This example searches the contents of the somefile.txt file and replaces extra

blank spaces at the end of each line (s/ *$) with nothing (//). Results go to the fixed _
file.txt file.

$ cat somefile.txt | sed 's/ *$//' > fixed_file.txt

Using simple shell scripts
Sometimes, the simplest of scripts can be the most useful. If you type the same sequence

of commands repetitively, it makes sense to store those commands (once!) in a file. The fol-

lowing sections offer a couple of simple, but useful, shell scripts.

Telephone list

This idea has been handed down from generation to generation of old UNIX hacks. It’s

really quite simple, but it employs several of the concepts just introduced.

#!/bin/bash
(@)/ph
A very simple telephone list
Type "ph new name number" to add to the list, or
just type "ph name" to get a phone number

PHONELIST=~/.phonelist.txt

If no command line parameters ($#), there
is a problem, so ask what they're talking about.
if [$# -lt 1] ; then
 echo "Whose phone number did you want? "
 exit 1
fi

Did you want to add a new phone number?
if [$1 = "new"] ; then
 shift
 echo $* >> $PHONELIST
 echo $* added to database
 exit 0
fi

Continues

Part II: Becoming a Linux Power User

148

Nope. But does the file have anything in it yet?
This might be our first time using it, after all.
if [! -s $PHONELIST] ; then
 echo "No names in the phone list yet! "
 exit 1
else
 grep -i -q "$*" $PHONELIST # Quietly search the file
 if [$? -ne 0] ; then # Did we find anything?
 echo "Sorry, that name was not found in the phone list"
 exit 1
 else
 grep -i "$*" $PHONELIST
 fi
fi
exit 0

So, if you created the telephone list file as ph in your current directory, you could type the

following from the shell to try out your ph script:

$ chmod 755 ph
$./ph new "Mary Jones" 608-555-1212
Mary Jones 608-555-1212 added to database
$./ph Mary
Mary Jones 608-555-1212

The chmod command makes the ph script executable. The ./ph command runs the ph

command from the current directory with the new option. This adds Mary Jones as the

name and 608-555-1212 as the phone number to the database ($HOME/.phonelist.txt).

The next ph command searches the database for the name Mary and displays the phone

entry for Mary. If the script works, add it to a directory in your path (such as $HOME/bin).

Backup script

Because nothing works forever and mistakes happen, backups are just a fact of life when

dealing with computer data. This simple script backs up all of the data in the home direc-

tories of all of the users on your system:

#!/bin/bash
(@)/my_backup
A very simple backup script
#

Change the TAPE device to match your system.
Check /var/log/messages to determine your tape device.

TAPE=/dev/rft0

Rewind the tape device $TAPE
mt $TAPE rew

Continued

Chapter 7: Writing Simple Shell Scripts

149

7

Get a list of home directories
HOMES=`grep /home /etc/passwd | cut -f6 -d':'`
Back up the data in those directories
tar cvf $TAPE $HOMES
Rewind and eject the tape.
mt $TAPE rewoffl

Summary
Writing shell scripts gives you the opportunity to automate many of your most common

system administration tasks. This chapter covered common commands and functions that

you can use in scripting with the Bash shell. It also provided some concrete examples of

scripts for doing backups and other procedures.

In the next chapter, you transition from learning about user features into examining

system administration topics. Chapter 8, “Learning System Administration,” covers how

to become the root user, as well as how to use administrative commands, monitor log files,

and work with configuration files.

Exercises
Use these exercises to test your knowledge of writing simple shell scripts. If you are stuck,

solutions to the tasks are shown in Appendix A (although in Linux, there are often multiple

ways to complete a task).

1. Create a script in your $HOME/bin directory called myownscript. When the

script runs, it should output information that appears as follows:

Today is Sat Jan 4 15:45:04 EST 2020.
You are in /home/joe and your host is abc.example.com.

Of course, you need to read in your current date/time, current working directory,

and hostname. Also, include comments about what the script does and indicate

that the script should run with the /bin/bash shell.

2. Create a script that reads in three positional parameters from the command line,

assigns those parameters to variables named ONE, TWO, and THREE, respectively,

and outputs that information in the following format:

There are X parameters that include Y.
The first is A, the second is B, the third is C.

Replace X with the number of parameters and Y with all parameters entered. Then

replace A with the contents of variable ONE, B with variable TWO, and C with vari-

able THREE.

Part II: Becoming a Linux Power User

150

3. Create a script that prompts users for the name of the street and town where they

grew up. Assign town and street to variables called mytown and mystreet, and

output them with a sentence that reads as shown in the following example (of

course, $mystreet and $mytown will appear with the actual town and street the

user enters):

The street I grew up on was $mystreet and the town was $mytown

4. Create a script called myos that asks the user, “What is your favorite operating

system?” Output an insulting sentence if the user types “Windows” or “Mac.”

Respond “Great choice!” if the user types “Linux.” For anything else, say “Is <what

is typed in> an operating system?”

5. Create a script that runs through the words moose, cow, goose, and sow through a

for loop. Have each of those words appended to the end of the line “I have a. . ..”

Part III

IN THIS PART

Chapter 8

Learning System Administration

Chapter 9

Installing Linux

Chapter 10

Getting and Managing Software

Chapter 11

Managing User Accounts

Chapter 12

Managing Disks and Filesystems

Becoming a Linux System

Administrator

153

CHAP T ER

8
Learning System Administration

IN THIS CHAPTER

Doing graphical administration

Invoking administration privileges

Understanding administrative commands, con�g �les, and log �les

Working with devices and �lesystems

L
inux, like other UNIX-based systems, was intended for use by more than one person at a time.

Multiuser features enable many people to have accounts on a single Linux system with their

data kept secure from others. Multitasking enables many people to run many programs on the

computer at the same time, with each person able to run more than one program. Sophisticated

networking protocols and applications make it possible for a Linux system to extend its capabilities

to network users and computers around the world. The person assigned to manage all of a Linux

system’s resources is called the system administrator.

Even if you are the only person using a Linux system, system administration is still set up to be

separate from other computer use. To do most administrative tasks, you need to be logged in as the

root user (also called the superuser) or to get root permission temporarily (usually using the sudo

command). Regular users who don’t have root permission cannot change, or in some cases cannot

even see, some of the con�guration information for a Linux system. Even the encrypted versions of

stored passwords are protected from general view.

Because Linux system administration is such a huge topic, this chapter focuses on the general prin-

ciples of Linux system administration. In particular, it examines some of the basic tools that you

need to administer a Linux system for a personal desktop or on a small server. Beyond the basics,

this chapter also teaches you how to work with �lesystems and monitor the setup and performance of

your Linux system.

Understanding System Administration
Separating the role of system administrator from that of other users has several effects. For a

system that has many people using it, limiting who can manage it enables you to keep it more

Part III: Becoming a Linux System Administrator

154

secure. A separate administrative role also prevents others from casually harming your

system when they are just using it to write a document or browse the Internet.

If you are the system administrator of a Linux system, you generally log in using a regular

user account and then invoke administrative privileges when you need them. This is often

done with one of the following:

su command: Often, su is used to open a shell as root user. After the shell is

open, the administrator can run multiple commands and then exit to return as a

regular user.

sudo command: With sudo, a regular user is given root privileges, but only when

that user runs the sudo command to run another command. After running that

one command with sudo, the user is immediately returned to a shell and acts as

the regular user again. Ubuntu by default assigns sudo privilege to the �rst user

account created when the system is installed.

Cockpit browser-based administration: Like many newer releases of other Linux

distributions, Ubuntu has committed to Cockpit as its primary browser-based system

administration facility. With Cockpit enabled, you can monitor and change your sys-

tem’s general activities, storage, networking, accounts, services, and other features.

Tasks that can be done only by the root user tend to be those that affect the system as a

whole or impact the security or health of the system. Following is a list of common features

that a system administrator is expected to manage:

Filesystems: When you �rst install Linux, the directory structure is set up to make

the system usable. However, if users later want to add extra storage or change the

�lesystem layout outside of their home directory, they need administrative priv-

ileges to do that. Also, the root user has permission to access �les owned by any

user. As a result, the root user can copy, move, or change any other user’s �les—a

privilege needed to make backup copies of the �lesystem for safekeeping.

Software installation: Because malicious software can harm your system or make

it insecure, you need root privilege to install software using a primary software

package manager (like APT or Snap) so that it’s available to all users. Regular users

can still install some software in their own directories and can list information

about installed system software.

User accounts: Only the root user can add and remove user and group accounts.

Network interfaces: In the past, the root user had to con�gure and stop and start

network interfaces. Now, many Linux desktops allow regular users to start and stop

WiFi connections—something whose absence would make day-to-day life dif�cult

for users of mobile devices.

Servers: Con�guring web servers, �le servers, domain name servers, mail servers, and

dozens of other servers requires root privilege, as does starting and stopping those

services. Content, such as web pages, can be added to servers by non-root users if

Chapter 8: Learning System Administration

155

8

you con�gure your system to allow that. Services are often run as special adminis-

trative user accounts, such as apache (for the httpd service) and rpc (for the DNS

server rpcbind service). This means that, even if someone breaks into one service,

they can’t get root privilege to other services or system resources.

Security features: Setting up security features, such as �rewalls and user access lists,

is usually done with root privilege. It’s also up to the root user to monitor how the

services are being used and to make sure that server resources are not exhausted

or abused.

The easiest way to begin system administration is to use some graphical administra-

tion tools.

Using Graphical Administration Tools
Most system administration for the �rst Linux systems was done from the command line.

As Linux became more popular, however, both graphical and command-line interfaces began

to be offered for most common Linux administrative tasks.

The following sections describe some of the point-and-click types of interfaces that are

available for doing system administration in Linux.

Using Cockpit browser-based administration
Cockpit brings together a range of Linux administrative activities into one interface and

taps into a diverse set of Linux APIs using cockpit-bridge. As someone doing Linux admin-

istration, however, you just need to know that Cockpit is a consistent and stable way of

administering your systems.

Getting started is as simple as enabling the cockpit socket and pointing a web browser at

the Cockpit service. Because of Cockpit’s plug-in design, there are new tools being created

all the time that you can add to your system’s Cockpit interface.

If you are starting with the latest Ubuntu system, performing the following procedure lets

you enable and start using Cockpit on your system:

NOTE

No con�guration is required to start this procedure. However, you can con�gure Cockpit to use your own OpenSSL

certi�cate instead of the self-signed one used by default. This lets you avoid having to accept the unveri�ed self-

signed certi�cate when you open the Cockpit interface from your browser.

1. If Cockpit is not already installed, do the following:

 # apt install cockpit

Part III: Becoming a Linux System Administrator

156

2. Open your web browser to port 9090 on the system where you just enabled Cockpit.

You can use the server’s hostname or IP address. You can run ip addr on the

server to retrieve its IP address. Port 9090 is con�gured for https by default,

although you can recon�gure that if you like to use http. Here are examples of

addresses to type into your browser’s address bar:

 https://host1.example.com:9090/
 https://192.168.122.114:9090/

3. Assuming you didn’t replace the self-signed certi�cate for Cockpit, you are warned

that the connection is not safe. To accept it anyway, and depending on your

browser, you must select Advanced and agree to an exception to allow the browser

to use the Cockpit service.

4. Enter your username and password. Log in as a user with sudo privileges if you

expect to change your system con�guration. A regular user can see but not change

most settings. Figure 8.1 shows an example of the login window.

5. Begin using Cockpit. The Cockpit dashboard contains a good set of features by

default (you can add more later). Figure 8.2 shows an example of the System area of

the Cockpit dashboard.

FIGURE 8.1

Logging in to Cockpit

Chapter 8: Learning System Administration

157

8

Immediately after logging in to Cockpit, you see system activity related to CPU usage,

memory, disk input/output, and network traf�c. Selections in the left navigation pane let

you begin working with logs, storage, networking, user and group accounts, services, and

many other features on your system.

As you proceed through the rest of this book, you will see descriptions of how to use the

different features of Cockpit in the appropriate section. To dive deeper into any of the

topics that you encounter with Cockpit, I recommend checking out the Cockpit project web-

site: www.cockpit-project.org.

Using other browser-based admin tools
To simplify the management of many enterprise-quality open source projects, those pro-

jects have begun offering browser-based graphical management tools. In most cases, com-

mand-line tools are offered for managing these projects as well.

Kubernetic (www.kubernetic.com/), for instance, is a GUI tool for administrating Kuber-

netes container workloads. Webmin (www.webmin.com/) is a time-tested interface for

managing complex web hosting operations. And many infrastructure deployment environ-

ments like OpenStack (www.ubuntu.com/openstack/install) come out of the box with their

own browser GUIs. All of those will happily get along with Ubuntu operations.

FIGURE 8.2

View system activity and other topics from the Cockpit dashboard.

http://cockpit-project.org
https://kubernetic.com/
http://www.webmin.com/
https://ubuntu.com/openstack/install

Part III: Becoming a Linux System Administrator

158

Invoking Administration Privileges
The Ubuntu installation process prompts you to create a primary user account that will, by

default, be given membership in the sudo user group. A root user exists, but it won’t have

a password and Ubuntu doesn’t recommend you ever log in to that account.

When you become the root user by invoking sudo, you will have complete control of the

operation of your Linux system. You’ll be able to open any �le, run any program, install

software packages, and add accounts for other people who use the system.

Even though you won’t normally log in as root, the root account will have its own home

directory: /root. The home directory and other information associated with the root user

account are located in the /etc/passwd �le. Here’s what the root entry looks like in the

/etc/passwd �le:

root:x:0:0:root:/root:/bin/bash

This shows that for the user named root, the user ID is set to 0 (root user), the group ID

is set to 0 (root group), the home directory is /root, and the shell for that user is /bin/
bash. (Linux uses the /etc/shadow �le to store encrypted password data, so the pass-

word �eld here contains only a single x to represent the password. For root, of course, there

normally is no password.) You can change the home directory or the shell used by editing

the values in this �le. A better way to change these values, however, is to use the user-
mod command (see the section “Modifying users with usermod” in Chapter 11, “Managing

User Accounts,” for further information).

When actually logged in as root (using, say, the sudo su command), any command that

you run from your shell is run with root privilege. So be careful. You have much more

power to change (and damage) the system than you did as a regular user. Type exit when

you are �nished to leave the root environment.

NOTE

It’s good to be aware that other distributions like Red Hat Enterprise Linux (RHEL) expect that you will use the root

account for active operations. In fact, the password you create when installing distros of the RHEL family will be

meant for use with root.

Becoming root from the shell
Although you shouldn’t normally spend a lot of time playing around in the root account, it

can be done using sudo su. When prompted, you’ll enter your user’s password. This will

only work if your user is a member in good standing of the sudo group.

david@workstation:~$ sudo su
[sudo] password for david:
root@workstation:/home/david#

Chapter 8: Learning System Administration

159

8

After successfully entering your password, note that your prompt will now read “root”

rather than your username. From this point until you exit the shell, you are the root user.

You can also use the su command (which, after all, stands for “switch user”) to become a

user other than root. This is useful for troubleshooting a problem that is being experienced

by a particular user but not by others on the computer (such as an inability to access a par-

ticular system resource). For example, to have the permissions of a user named jsmith, you’d

type the following:

$ su jsmith

Even if you were the root user when you typed this command, afterward you would have

only the permissions to open �les and run programs that are available to jsmith. As root

user, however (if you had previously opened a shell using sudo su), after you type the su

command to become another user, you won’t need a password. If you type that command as

a regular user, you must type the new user’s password.

When you are �nished using superuser permissions, return to the previous shell by exiting

the current shell. Do this by pressing Ctrl+D or by typing exit. If you are the adminis-

trator for a computer that is accessible to multiple users, don’t leave a root shell open on

someone else’s screen unless you want to give that person freedom to do anything he or she

wants to the computer!

Gaining temporary admin access with sudo
Regular users can also be given administrative permissions for individual tasks by typing

sudo followed by the command they want to run. The quick and simple way to provide this

authority is by adding an existing user to the sudo group (other Linux distributions have

a wheel group that services a similar function). Someone using an existing admin account

can do that by running this usermod command:

 # usermod -aG sudo joe

You could also edit the /etc/group and add the username to the sudo line. That line

might look like this:

 sudo:x:27:david,joe

Be careful not to leave any spaces between commas and names.

The thing about the quick and simple way is that the results are sometimes not quite as

precise as you might prefer. Adding a user to the sudo group provides full admin access,

while not adding the user provides no admin access at all. It’s either all or nothing. If you

want a user to get more nuanced access, you’ll need to use the of�cial method: editing the

/etc/sudoers �le. Using the sudoers system for any users or groups, you can do the

following:

■■ Assign root privilege for any command they run with sudo.

■■ Assign root privilege for a select set of commands.

Part III: Becoming a Linux System Administrator

160

■■ Give users root privilege without telling them a root password, because they only

have to provide their own user password to gain root privilege.

■■ Allow users, if you choose, to run sudo without entering a password at all.

■■ Track which users have run administrative commands on your system.

With the sudoers facility, giving full or limited root privileges to any user simply entails

adding the user to /etc/sudoers and de�ning what privilege you want that user to have.

Then the user can run any command they are privileged to use by preceding that command

with the sudo command.

Here’s an example of how to use the sudo facility to give the user joe full root privilege:

1. As the root user, edit the /etc/sudoers �le by running the visudo command:

 # /usr/sbin/visudo

By default, the �le opens in vi, unless your EDITOR variable happens to be set to

some other editor acceptable to visudo (for example, export EDITOR=gedit).

The reason for using visudo is that the command locks the /etc/sudoers �le

and does some basic sanity checking of the �le to ensure that it has been edited

correctly.

NOTE

If you are stuck here, try running the vimtutor command for a quick tutorial on using vi and vim.

2. Add the following line to allow joe to have full root privileges on the computer:

 joe ALL=(ALL) ALL

This line requires joe to provide a password (his own password, not a root pass-

word) in order to use administrative commands. To allow joe to have that privilege

without using a password, type the following line instead:

 joe ALL=(ALL) NOPASSWD: ALL

3. Save the changes to the /etc/sudoers �le (in vi, type Esc and then :wq).

Even after joe has entered the password to run a command, he must still use the sudo

command to run subsequent administrative commands as root. Nevertheless, after enter-

ing his password successfully, he can enter as many sudo commands as he wants for

the duration of the current shell. You can change the time-out value from �ve minutes

to any length of time you want by setting the passwd_timeout value in the /etc/
sudoers �le.

The preceding example grants a simple all-or-nothing administrative privilege to joe.

However, the /etc/sudoers �le gives you an incredible amount of �exibility in permit-

ting individual users and groups to use individual applications or groups of applications.

Chapter 8: Learning System Administration

161

8

Refer to the sudoers and sudo man pages for information about how to tune your

sudo facility.

Exploring Administrative Commands, Con�guration

Files, and Log Files
You can expect to �nd many commands, con�guration �les, and log �les in the same places

in the �lesystem in Ubuntu as you would in other distributions. The following sections

give you some pointers on where to look for these important elements.

NOTE

If GUI administrative tools for Linux have become so good, why do you need to know about administrative �les? For

one thing, while GUI tools differ among Linux versions, many underlying con�guration �les are the same. So if you

learn to work with them, you can work with almost any Linux system. Also, if a feature is broken or you need to do

something that’s not supported by the GUI, when you ask for help, Linux experts almost always tell you how to run

commands or change the con�guration �le directly.

Administrative commands
Only the root user is intended to use many administrative commands. When you’re acting

as root, your $PATH variable is set to include some directories that contain commands for

the root user. In the past, these have included the following:

/sbin: Contains commands needed to boot your system, including commands for

checking �lesystems (fsck) and turning on swap devices (swapon).

/usr/sbin: Contains commands for such things as managing user accounts (such as

adduser) and checking processes that are holding �les open (such as lsof). Com-

mands that run as daemon processes are also contained in this directory. Daemon

processes are processes that run in the background, waiting for service requests

such as those to access a printer or a web page. (Look for commands that end in d,

such as sshd, pppd, and cupsd.)

Some administrative commands are contained in regular user directories (such as /bin and

/usr/bin). This is especially true of commands that have some options available to every-

one. An example is the /bin/mount command, which anyone can use to list mounted

�lesystems but only root can use to mount �lesystems. (Some desktops, however, are con-

�gured to let regular users use mount to mount CDs, DVDs, or other removable media.)

NOTE

See the section “Mounting Filesystems” in Chapter 12, “Managing Disks and Filesystems,” for instructions on how to

mount a �lesystem.

Part III: Becoming a Linux System Administrator

162

To �nd commands intended primarily for the system administrator, check out the section 8

man pages (usually in /usr/share/man/man8). They contain descriptions and options for

most Linux administrative commands.

If you want to add commands to your system, consider adding them to directories such as

/usr/local/bin or /usr/local/sbin. Ubuntu automatically adds those directories to

your PATH, usually before your standard bin and sbin directories. In that way, commands

installed to those directories are not only accessible, but can also override commands of the

same name in other directories. Some third-party applications that are not included with

your Ubuntu distribution are sometimes placed in the /usr/local/bin, /opt/bin or

/usr/local/sbin directory.

Administrative con�guration �les
Con�guration �les are another mainstay of Linux administration. Almost everything

that you set up for your particular computer—user accounts, network addresses, or GUI

preferences—results in settings being stored in plain text �les. This has advantages and

 disadvantages.

The advantage of plain text �les is that it’s easy to read and change them. Any text editor

will do. The downside, however, is that as you edit con�guration �les, no error checking

is done. You sometimes have to run the program that reads these �les (such as a network

daemon or the X desktop) to �nd out whether you set up the �les correctly.

While some con�guration �les use standard structures, such as XML for storing informa-

tion, many do not. So, you need to learn the speci�c structure rules for each con�guration

�le. A comma or a quote in the wrong place can sometimes cause an entire interface to fail.

Some software packages offer a command to test the sanity of the con�guration �le tied

to a package before you start a service. For example, the testparm command is used with

Samba to check the sanity of your smb.conf �le. Other times, the daemon process provid-

ing a service offers an option for checking your con�g �le. For example, run apache2 -t

to check your Apache web server con�guration before starting your web server.

NOTE

Some text editors, such as the vim command (not vi), understand the structure of some types of con�guration

�les. If you open such a con�guration �le in vim, notice that different elements of the �le are shown in different

colors. In particular, you can see comment lines in a different color than data.

Throughout this book, you’ll �nd descriptions of the con�guration �les that you need to

set up the different features that make up Linux systems. The two major locations of con-

�guration �les are your home directory (where your personal con�guration �les are kept)

and the /etc directory (which holds system-wide con�guration �les).

Following are descriptions of directories (and subdirectories) that contain useful con�gu-

ration �les—assuming the underlying software is actually installed on your system. The

Chapter 8: Learning System Administration

163

8

descriptions are followed by some individual con�guration �les in /etc that are of par-

ticular interest. Viewing the contents of Linux con�guration �les can teach you a lot about

administering Linux systems.

$HOME: In their home directories, all users store information that directs how their

login accounts behave. Many con�guration �les are stored directly in each user’s

home directory (such as /home/joe) and begin with a dot (.), so they don’t appear

in a user’s directory when you use a standard ls command (you need to type ls -a

to see them). Likewise, dot �les and directories won’t show up in most �le manager

windows by default. There are dot �les that de�ne the behavior of each user’s shell,

the desktop look and feel, and options used with your text editor. There are even

�les such as those in each user’s $HOME/.ssh directory that con�gure permissions

for logging in to remote systems. (To see the name of your home directory, type

echo $HOME from a shell.)

/etc: This directory contains most of the basic Linux system con�guration �les.

/etc/cron*: Directories in this set contain �les that de�ne how the crond util-

ity runs applications on an hourly (cron.hourly), daily (cron.daily), weekly

(cron.weekly), or monthly (cron.monthly) schedule.

/etc/cups: Contains �les used to con�gure the CUPS printing service.

/etc/default: Contains �les that set default values for various utilities. For example,

the ufw �le for the adduser contains default values for the Uncomplicated Fire-

wall service.

/etc/apache2: Contains a variety of �les used to con�gure the behavior of your

Apache web server (speci�cally, the apache2 daemon process).

/etc/mail: Contains �les used to con�gure your sendmail mail transport agent.

/etc/postfix: Contains con�guration �les for the postfix mail transport agent.

/etc/ppp: Contains several con�guration �les used to set up Point-to-Point Protocol

(PPP) so that you can have your computer dial out to the Internet. (PPP was more

commonly used when dial-up modems were popular.)

/etc/rc?.d: There is a separate rc?.d directory for each valid system state: rc0.d

(shutdown state), rc1.d (single-user state), rc2.d (multiuser state), rc3.d (mul-

tiuser plus networking state), rc4.d (user-de�ned state), rc5.d (multiuser, net-

working, plus GUI login state), and rc6.d (reboot state). These directories are

maintained for compatibility with old UNIX SystemV init services but, since the

broad adoption of systemd process management, are rarely used.

/etc/security: Contains �les that set a variety of default security conditions for

your computer, basically de�ning how authentication is done. These �les are part of

the pam (Pluggable Authentication Modules) package.

/etc/skel: Any �les contained in this directory are automatically copied to a user’s

home directory when that user is added to the system. By default, most of these

�les are dot (.) �les, such as .kde (a directory for setting KDE desktop defaults) and

.bashrc (for setting default values used with the Bash shell).

Part III: Becoming a Linux System Administrator

164

/etc/systemd: Contains �les associated with the systemd facility, for managing

the boot process and system services. In particular, when you run systemctl com-

mands to enable and disable services, �les that make that happen are stored in sub-

directories of the /etc/systemd system directory.

The following are some interesting con�guration �les in /etc:

bash.bashrc: Sets system-wide defaults for Bash shell users.

crontab: Sets times for running automated tasks and variables associated with the

cron facility (such as the SHELL and PATH associated with cron).

fstab: Identi�es the devices for common storage media (hard disk, DVD, CD-ROM,

and so on) and locations where they are mounted in the Linux system. This is used

by the mount command to choose which �lesystems to mount when the system

�rst boots.

group: Identi�es group names and group IDs (GIDs) that are de�ned on the system.

Group permissions in Linux are de�ned by the second of three sets of rwx (read,

write, execute) bits associated with each �le and directory.

gshadow: Contains shadow passwords for groups.

host.conf: Used by older applications to set the locations in which domain names

(for example, www.ubuntu.com) are searched for on TCP/IP networks (such as the

Internet). By default, the local hosts �le is searched and then any name server

entries in resolv.conf.

hostname: Contains the hostname for the local system.

hosts: Contains IP addresses and hostnames that you can reach from your computer.

(Usually this �le is used just to store names of computers on your LAN or small pri-

vate network.)

mtab: Contains a list of �lesystems that are currently mounted.

mtools.conf: Contains settings used by DOS tools in Linux.

nsswitch.conf: Contains name service switch settings, for identifying where criti-

cal system information (user accounts, hostname-to-address mappings, and so on)

comes from (local host or via network services).

ntp.conf: Includes information needed to run the Network Time Protocol (NTP).

passwd: Stores account information for all valid users on the local system. Also

includes other information, such as the home directory and default shell. (Rarely

includes the user passwords themselves, which are typically stored in the /etc
/shadow �le.)

printcap: Contains de�nitions for the printers con�gured for your computer. (The

printcap �le is actually automatically generated by the cupsd service based on the

contents of the /etc/cups/printers.conf �le.)

http://ubuntu.com

Chapter 8: Learning System Administration

165

8

profile: Sets system-wide environment and startup programs for all users. This �le is

read when the user logs in.

protocols: Sets protocol numbers and names for a variety of Internet services.

rpc: De�nes remote procedure call names and numbers.

services: De�nes TCP/IP and UDP service names and their port assignments.

shadow: Contains encrypted passwords for users who are de�ned in the passwd �le.

(This is viewed as a more secure way to store passwords than the original encrypted

password in the passwd �le since, unlike the shadow �le, the passwd �le needs

to be publicly readable.)

shells: Lists the shell command-line interpreters (bash, sh, csh, and so on) that

are available on the system as well as their locations.

sudoers: Sets commands that can be run by users, who may not otherwise have per-

mission to run the command, using the sudo command. In particular, this �le is

used to provide selected users with root permission.

rsyslog.conf: De�nes what logging messages are gathered by the rsyslogd

daemon and in which �les they are stored. (Typically, log messages are stored in

�les contained in the /var/log directory.)

Another directory, /etc/X11, includes subdirectories that each contain system-wide con-

�guration �les used by X and different X window managers available for Linux.

Administrative log �les and systemd journal

One of the things that Linux does well is keep track of itself. This is a good thing when you

consider how much is going on in a complex operating system.

Sometimes you are trying to get a new facility to work, and it fails without giving you the

foggiest reason why. Other times, you want to monitor your system to see whether people

are trying to access your computer illegally. In any of those cases, you want to be able to

refer to messages coming from the kernel and services running on the system.

For Linux systems that don’t use the systemd facility, the main utility for logging error

and debugging messages is the rsyslogd daemon. (Some older Linux systems use sys-
logd and syslogd daemons.) Although you can still use rsyslogd with systemd

systems, systemd has its own method of gathering and displaying messages called the

systemd journal and uses the journalctl command.

Using journalctl to view the systemd journal

The primary command for viewing messages from the systemd journal is the journalctl

command. The boot process, the kernel, and all systemd-managed services direct their

status and error messages to the systemd journal.

Part III: Becoming a Linux System Administrator

166

Using the journalctl command, you can display journal messages in many different

ways. Here are some examples:

journalctl
journalctl --list-boots | head -3
-2 93bdb6164... Sat 2020-01-04 21:07:28 EST—Sat 2020-01-04
21:19:37 EST
-1 7336cb823... Sun 2020-01-05 10:38:27 EST—Mon 2020-01-06
09:29:09 EST
 0 eaebac25f... Sat 2020-01-18 14:11:41 EST—Sat 2020-01-18
16:03:37 EST
journalctl -b 488e152a3e2b4f6bb86be366c55264e7
journalctl -k

In these examples, the journalctl command with no options lets you page through

all messages in the systemd journal. To list the boot IDs for each time the system was

booted, use the --list-boots option. To view messages associated with a particular boot

instance, use the -b option with one of the boot instance IDs. To see only kernel messages,

use the -k option. Here are some more examples:

journalctl _SYSTEMD_UNIT=ssh.service
journalctl PRIORITY=0
journalctl -a -f

Use the _ SYSTEMD _ UNIT= options to show messages for speci�c services (here, the ssh

service) or for any other systemd unit �le (such as other services or mounts). Specifying

PRIORITY=0 will return only messages associated with the particular syslog log level 0

(any value from 0 to 7 is available). In this case, only emergency (0) messages are shown.

To follow messages as they come in, use the -f option; to show all �elds, use the -a option.

Managing log messages with rsyslogd

The rsyslogd facility and its predecessor syslogd gather log messages and direct them

to log �les or remote log hosts. Logging is done according to information in the /etc/
rsyslog.conf �le. Messages are typically directed to log �les that are usually in the

/var/log directory, but they can also be directed to log hosts for additional security. Here

are a few common log �les:

boot.log: Contains boot messages about services as they start up.

syslog: Contains all log messages generated by the system except those categorized

as “auth.”

dpkg.log: Contains logs involving package managing events.

Refer to Chapter 13, “Understanding Server Administration,” for information on con�g-

uring the rsyslogd facility.

Chapter 8: Learning System Administration

167

8

Using Other Administrative Accounts
You don’t hear much about logging in to administrative user accounts on Linux systems.

It was a fairly common practice in UNIX systems to have several different administrative

accounts that allowed administrative tasks to be split among several users. For example,

people sitting near a shared printer could have lp permissions to move print jobs to

another printer if they knew a printer wasn’t working.

In any case, administrative accounts are available with Linux; however, logging in directly

as those users is disabled by default. The accounts are maintained primarily to pro-

vide ownership for �les and processes associated with particular services. When daemon

processes are run under separate administrative logins, having one of those processes

cracked does not give the cracker root permission and the ability to access other processes

and �les. Consider the following examples:

lp: User owns printing-related objects like the /etc/cups/cupsd.conf �le.

www-data: User can manage content �les and directories on an Apache web server. It

is primarily used to run the web server processes (Apache2).

avahi: User runs the avahi daemon process to provide networking and DNS services

on your network.

chrony: User runs the chronyd daemon, which is used to maintain accurate com-

puter clocks.

postfix: User owns various mail server spool directories and �les. The user runs the

daemon processes used to provide the post�x service (master).

By default, the administrative logins in the preceding list are disabled. You would need to

change the default shell from its current setting (usually /usr/sbin/nologin or /bin/
false) to a real shell (typically /bin/bash) to be able to log in as these users. However,

they are really not intended for interactive logins.

Checking and Con�guring Hardware
In a perfect world, after installing and booting Linux, all of your hardware is detected and

available for access. Although Linux systems have become quite good at detecting hard-

ware, sometimes you must take special steps to get your computer hardware working. Also,

the growing use of removable USB devices (including USB-based CDs and DVDs, �ash drives,

digital cameras, and removable hard drives) has made it important for Linux to do the

following:

■■ Ef�ciently manage hardware that comes and goes.

■■ Look at the same piece of hardware in different ways (For example, it should

be able to see a printer as a fax machine, scanner, and storage device as well as

a printer.)

Part III: Becoming a Linux System Administrator

168

Linux kernel features added in the past few years have made it possible to drastically

change the way that hardware devices are detected and managed. The Udev subsystem

dynamically names and creates devices as hardware comes and goes.

If this sounds confusing, don’t worry. It’s designed to make your life as a Linux user much

easier. The result of features built on the kernel is that device handling in Linux has

become more automatic and more �exible:

More automatic

For most common hardware, when a hardware device is connected or disconnected, it is

automatically detected and identi�ed. Interfaces to access the hardware are added so it

is accessible to Linux. Then the fact that the hardware is present (or removed) is passed

to the user level, where applications listening for hardware changes are ready to mount

the hardware and/or launch an application (such as an image viewer or music player).

More �exible

If you don’t like what happens automatically when a hardware item is connected or

disconnected, you can change it. For example, features built into GNOME and KDE desk-

tops let you choose what happens when a music CD or data DVD is inserted or when

a digital camera is connected. If you prefer that a different program be launched to

handle it, you can easily make that change.

The following sections cover several issues related to getting your hardware working prop-

erly in Linux. First, it describes how to check information about the hardware compo-

nents of your system. It then covers how to con�gure Linux to deal with removable media.

Finally, it describes how to use tools for manually loading and working with drivers for

hardware that is not detected and loaded properly.

Checking your hardware
When your system boots, the kernel detects your hardware and loads drivers that allow

Linux to work with that hardware. Because messages about hardware detection scroll

quickly off the screen when you boot, to view potential problem messages you have to

redisplay those messages after the system comes up.

There are a few ways to view kernel boot messages after Linux comes up. Any user can run

the dmesg command to see what hardware was detected and which drivers were loaded by

the kernel at boot time. As new messages are generated by the kernel, those messages are

also made available to the dmesg command.

A second way to see boot messages is the journalctl command to show the messages

associated with a particular boot instance.

NOTE

After your system is running, many kernel messages are sent to the /var/log/syslog �le. So, for example, if you

want to see what happens when you plug in a USB drive, you can type tail -f /var/log/syslog and watch

as devices and mount points are created. Likewise, you could use the journalctl -f command to follow mes-

sages as they come into the systemd journal.

Chapter 8: Learning System Administration

169

8

The following is an example of some output from the dmesg command that was trimmed

down to show some interesting information:

$ dmesg | less
[0.000000] Linux version 5.3.0-40-generic (buildd@lcy01-
amd64-024) (gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1))
#32~18.04.1-Ubuntu SMP Mon Feb 3 14:05:59 UTC 2020 (Ubuntu
5.3.0-40.32~18.04.1-generic 5.3.18)
[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-5.3.0-40-
generic root=UUID=c0e513f0-f840-4174-912d-241d30fd2e26 ro quiet
splash vt.handoff=1
[0.000000] KERNEL supported cpus:
[0.000000] Intel GenuineIntel
[0.000000] AMD AuthenticAMD
[0.000000] Hygon HygonGenuine
[0.000000] Centaur CentaurHauls
[0.000000] zhaoxin Shanghai
[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating
point registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE
registers'
[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX
registers'
[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
[0.000000] x86/fpu: Enabled xstate features 0x7, context size is
832 bytes, using 'compacted' format.
[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-
0x000000000009ffff] usable
[0.000000] BIOS-e820: [mem 0x00000000000a0000-
0x00000000000fffff] reserved

From this output, you �rst see the Linux kernel version, followed by kernel command-

line options.

If something goes wrong detecting your hardware or loading drivers, you can refer to this

information to see the name and model number of hardware that’s not working. Then you

can search Linux forums or documentation to try to solve the problem. After your system

is up and running, some other commands let you look at detailed information about your

computer’s hardware. The lspci command lists PCI buses on your computer and devices

connected to them. Here’s a snippet of output:

$ lspci
00:00.2 IOMMU: Advanced Micro Devices, Inc. [AMD] Device 15d1
00:01.1 PCI bridge: Advanced Micro Devices, Inc. [AMD] Device 15d3
00:14.0 SMBus: Advanced Micro Devices, Inc. [AMD] FCH SMBus
Controller (rev 61)
00:14.3 ISA bridge: Advanced Micro Devices, Inc. [AMD] FCH LPC
Bridge (rev 51)

Continues

Part III: Becoming a Linux System Administrator

170

00:18.0 Host bridge: Advanced Micro Devices, Inc. [AMD] Device 15e8
01:00.0 VGA compatible controller: NVIDIA Corporation GT218 [GeForce
210] (rev a2)
01:00.1 Audio device: NVIDIA Corporation High Definition Audio
Controller (rev a1)
02:00.0 USB controller: Advanced Micro Devices, Inc. [AMD] Device
43d5 (rev 01)
02:00.1 SATA controller: Advanced Micro Devices, Inc. [AMD] Device
43c8 (rev 01)
08:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd.
RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 15)
09:00.0 VGA compatible controller: Advanced Micro Devices, Inc.
[AMD/ATI] Raven Ridge [Radeon Vega Series / Radeon Vega Mobile
Series] (rev c8)
09:00.1 Audio device: Advanced Micro Devices, Inc. [AMD/ATI]
Device 15de
09:00.2 Encryption controller: Advanced Micro Devices, Inc. [AMD]
Device 15df
0a:00.0 SATA controller: Advanced Micro Devices, Inc. [AMD] FCH SATA
Controller [AHCI mode] (rev 61)

The host bridge connects the local bus to the other components on the PCI bridge. I cut

down the output to show information about the different devices on the system that

handle various features: sound (Audio device), �ash drives and other USB devices (USB
controller), the video display (VGA compatible controller), and wired network

cards (Ethernet controller). If you are having trouble getting any of these devices to

work, noting the model names and numbers gives you something to feed into your favorite

search engine.

To get more verbose output from lspci, add one or more -v options. For example, using

lspci -vvv, I received information about my Ethernet controller, including latency and

capabilities of the controller.

If you are speci�cally interested in USB devices, try the lsusb command. By default,

lsusb lists information about the computer’s USB hubs along with any USB devices con-

nected to the computer’s USB ports:

$ lsusb
Bus 006 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 005 Device 006: ID 04f9:0249 Brother Industries, Ltd
Bus 005 Device 005: ID 093a:2510 Pixart Imaging, Inc. Optical Mouse
Bus 005 Device 004: ID 046d:c31c Logitech, Inc. Keyboard K120
Bus 005 Device 003: ID b58e:9e84 Blue Microphones Yeti Stereo
Microphone
Bus 005 Device 002: ID 1a40:0101 Terminus Technology Inc. Hub
Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 003 Device 002: ID 046d:081a Logitech, Inc.
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Continued

Chapter 8: Learning System Administration

171

8

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 002: ID 0cf3:9271 Atheros Communications, Inc.
AR9271 802.11n
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

From the preceding output, you can see the model of a keyboard (Logitech, Inc.
Keyboard K120), mouse (Pixart Imaging, Inc. Optical Mouse), and printer

(Brother Industries, Ltd) connected to the computer. As with lspci, you can add

one or more -v options to see more details.

To see details about your processor, run the lscpu command. That command gives basic

information about your computer’s processors:

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
...

From the sampling of output of lscpu, you can see that this is a 64-bit system (x86-64), it

can operate in 32-bit or 64-bit modes, and there are four CPUs.

Managing removable hardware
Linux systems which support full GNOME desktop environments include simple graphical

tools for con�guring what happens when you attach popular removable devices to the com-

puter. So, with a GNOME desktop running, you simply plug in a USB device or insert a CD or

DVD and a window may pop up to deal with that device.

Although different desktop environments share many of the same underlying mechanisms

(in particular, Udev) to detect and name removable hardware, they offer different tools for

con�guring how they are mounted or used. Udev (using the udevd daemon) creates and

removes devices (/dev directory) as hardware is added and removed from the computer.

Settings that are of interest to someone using a desktop Linux system, however, can be

con�gured with easy-to-use desktop tools.

The Nautilus �le manager used with the GNOME desktop lets you de�ne what happens when

you attach removable devices or insert removable media into the computer from the File

Management Preferences window.

From the GNOME 3 desktop, select Activities and type Removable Media. You can also get

there by opening the Settings dialog and clicking Devices.

The settings managed in this window relate to how removable media is handled when it

is inserted or plugged in. You can control the default behavior when the system detects

audio CDs, DVDs, data devices containing audio �les, photos, or software. You’ll be asked to

choose between installed media playing software (like Rhythmbox for music or Shotwell for

Part III: Becoming a Linux System Administrator

172

photos). There’s also an Other Media button for devices—like e-book readers—that don’t �t

into the main categories.

Note that the settings described here are only for the user who is currently logged

in. If multiple users have login accounts, each can have their own way of handling

 removable media.

NOTE

The Totem movie player does not play movie DVDs unless you add extra software to decrypt the DVD. You should look

into legal issues and other movie player options (like the popular VLC software) if you want to easily play commercial

DVD movies from Linux.

The options to connect regular USB �ash drives or hard drives are not listed on this

window. If you connect one of those drives to your computer, however, devices are

automatically created when you plug them in (named /dev/sda, /dev/sdb, and so

on). Any �lesystems found on those devices are automatically mounted on /run/
media/username, and you are prompted if you want to open a Nautilus window to view

�les on those devices. This is done automatically, so you don’t have to do any special con-

�guration to make this happen.

When you are �nished with a USB drive, right-click the device’s name in the Nautilus �le

manager window and select Safely Remove Drive. This action unmounts the drive and

removes the mount point in the /media/username directory. After that, you can safely

unplug the USB drive from your computer.

Working with loadable modules
If you have added hardware to your computer that isn’t properly detected, you might need

to load a module manually for that hardware. Linux comes with a set of commands for

loading, unloading, and getting information about hardware modules.

Kernel modules are installed in /lib/modules/ subdirectories. The name of each sub-

directory is based on the release number of the kernel. For example, if the kernel were

5.3.0-40, the /lib/modules/5.3.0-40 directory would contain drivers for that kernel.

Modules in those directories can then be loaded and unloaded as they are needed.

Commands for listing, loading, unloading, and getting information about modules are

available with Linux. The following sections describe how to use those commands.

Listing loaded modules

To see which modules are currently loaded into the running kernel on your computer, use

the lsmod command. Consider the following partial example:

lsmod
Module Size Used by

Chapter 8: Learning System Administration

173

8

nls_utf8 16384 0
isofs 49152 0
uas 24576 0
usb:storage 73728 1 uas
veth 28672 0
ebtable_filter 16384 0
ebtables 36864 1 ebtable_filter
ip6table_nat 16384 0
ip6table_filter 16384 0
ip6_tables 32768 2 ip6table_filter,ip6table_nat
iptable_mangle 16384 1
iptable_filter 16384 1
uvcvideo 94208 0
ath9k_htc 77824 0
eeepc_wmi 16384 0
asus_wmi 32768 1 eeepc_wmi

This output shows a variety of modules that have been loaded on a Linux system, including

one for a network interface card (ath9k_htc).

To �nd information about any of the loaded modules, use the modinfo command. For

example, you can enter the following:

/sbin/modinfo -d ath9k_htc
Atheros driver 802.11n HTC based wireless devices

Not all modules have descriptions available and, if nothing is available, no data are

returned. In this case, however, the ath9k _ htc module is described as an Atheros driver

802.11n HTC based wireless device. You can also use the -a option to see the author of the

module or -n to see the object �le representing the module. The author information often

has the email address of the driver’s creator, so you can contact the author if you have

problems or questions about it.

Loading modules

You can (as root user) load any module that has been compiled and installed (to a /
lib/modules subdirectory) into your running kernel using the modprobe command.

A common reason for loading a module is to use a feature temporarily (such as loading

a module to support a special �lesystem on some removable media you want to access).

Another reason to load a module is to identify that module as one that will be used by a

particular piece of hardware that could not be autodetected.

Here is an example of the modprobe command being used to load the parport module,

which provides the core functions to share parallel ports with multiple devices:

modprobe parport

After parport is loaded, you can load the parport_pc module to de�ne the PC-style

ports available through the interface. The parport_pc module lets you optionally de�ne

Part III: Becoming a Linux System Administrator

174

the addresses and IRQ numbers associated with each device sharing the parallel port, as in

the following example:

modprobe parport_pc io=0x3bc irq=auto

In this example, a device is identi�ed as having an address of 0x3bc, and the IRQ for the

device is autodetected.

The modprobe command loads modules temporarily—they disappear at the next reboot.

To add the module to your system permanently, add the modprobe command line to one of

the startup scripts run at boot time.

Removing modules

Use the rmmod command to remove a module from a running kernel. For example, to

remove the module parport _ pc from the current kernel, type the following:

rmmod parport_pc

If it’s not currently busy, the parport_pc module is removed from the running kernel.

If it is busy, try killing any process that might be using the device. Then run rmmod

again. Sometimes, the module you are trying to remove depends on other modules that

may be loaded. For instance, the usbcore module cannot be unloaded because it is a

built-in module:

rmmod usbcore
rmmod: ERROR: Module usbcore is builtin.

Instead of using rmmod to remove modules, you could use the modprobe -r command.

With modprobe -r, instead of just removing the module you request, you can also remove

dependent modules that are not being used by other modules.

Summary
Many features of Linux, especially those that can potentially damage the system or impact

other users, require that you gain root privilege. This chapter describes different ways of

obtaining root privilege using the sudo or sudo su commands. It also covers some of the

key responsibilities of a system administrator and components (con�guration �les, browser-

based tools, and so on) that are critical to a system administrator’s work.

The next chapter describes how to install a Linux system. Approaches to installing

Linux that are covered in that chapter include how to install from live media and from

installation media.

Chapter 8: Learning System Administration

175

8

Exercises
Use these exercises to test your knowledge of system administration and to explore infor-

mation about your system hardware. If you are stuck, solutions to the tasks are shown in

Appendix A (although in Linux, there are often multiple ways to complete a task).

1. From a shell as root user (or using sudo), enable Cockpit (cockpit.socket) using

the systemctl command.

2. Open your web browser to the Cockpit interface (9090) on your system.

3. Find all �les under the /var/spool directory that are owned by users other than

root and display a long listing of them.

4. Become the root user using the sudo su command. To prove that you have root

privilege, create an empty or plain text �le named /etc/test.txt. Exit the shell

when you are �nished.

5. Log in as a regular user and become root using sudo su. Edit the /etc/sudoers

�le to allow a regular user account you’ve created to have full root privilege via the

sudo command.

6. As the user to whom you just gave sudoers privilege, use the sudo command to

create a �le called /etc/test2.txt. Verify that the �le is there and owned by the

root user.

7. Run the journalctl -f command and plug a USB drive into a USB port on your

computer. If it doesn’t mount automatically, mount it on /mnt/test. In a second

terminal, unmount the device and remove it, continuing to watch the output from

journalctl -f.

8. Run a command to see what USB devices are connected to your computer.

9. Pretend that you added a TV card to your computer, but the module needed to use it

(bttv) was not properly detected and loaded. Load the bttv module yourself, and

then look to see that it was loaded. Were other modules loaded with it?

10. Remove the bttv module along with any other modules that were loaded with it.

List your modules to make sure that this was done.

177

CHAP T ER

9
Installing Linux

IN THIS CHAPTER

Choosing an installation method

Installing a single- or multi-boot system

Performing a live media installation of Ubuntu

Understanding cloud-based installations

Partitioning the disk for installation

Understanding the GRUB boot loader

T
he basic installation process for Linux desktops has become a fairly easy thing to navigate—if

you’re starting with a computer that is up to spec (hard disk, RAM, CPU, and so on) and you

don’t mind totally erasing your hard drive. With cloud computing and virtualization, installa-

tion can be even simpler. It allows you to bypass traditional installation and spin a Linux system

up or down within a few minutes by adding metadata to prebuilt images.

But peeking just a little bit below the surface will reveal vast layers of complexity for installing to

alternative architectures like 32-bit or ARM chipsets, multi-boot con�gurations, or network-based

installations. It wouldn’t make sense to try to cover all the possible permutations and combinations

here. The screen shot from Ubuntu’s website displayed in Figure 9.1 shows just how many ways there

are to consume the OS.

Instead, we’ll start off with a simple desktop installation on a physical computer using removable

media and then see how it works for a straightforward server installation. We’ll then introduce, in

more general terms, each of the installation options that can get you going for each category out of

the vast Linux functionality spectrum.

In Chapters 27, “Deploying Linux to the Public Cloud,” and 28, “Automating Apps and Infrastructure

with Ansible,” I’ll also describe ways of installing or deploying a virtual machine on a Linux KVM

host or in a cloud environment.

Part III: Becoming a Linux System Administrator

178

To try all this along with me, you should have a computer in front of you that you don’t mind

totally erasing. You could also create a virtual machine using software like Oracle’s Virtual-

Box. When prompted for a startup disk for your new VM, point VirtualBox to the Ubuntu ISO

image you’ve downloaded. A third alternative would be to use a computer that has another

operating system such as Windows already installed, as long as there is enough unused disk

space available outside of that operating system. That method would, however, require you

to accept the risk of losing all your existing data should the installation process go wrong.

If you’re successful with this third method, on the other hand, you’ll �nd yourself with a

machine that can boot to either Ubuntu or the original OS anytime you like.

Choosing a Computer
You can get a Linux distribution that runs on handheld devices or an old PC in your closet

with as little as 24MB of RAM and a 486 processor. To have a good desktop PC experience

with Linux, however, you should consider what you want to be able to do with Linux when

you are choosing your computer.

Be sure to consider the basic speci�cations that you need for a PC-type computer to

run Ubuntu.

FIGURE 9.1

A list of the many architectures on which Ubuntu can be installed

Chapter 9: Installing Linux

179

9

A 2GHz dual-core processor is the minimum for a desktop installation. For older applica-

tions, a 32-bit processor is �ne (x86). But to ensure compatibility in the modern application

world—and make full use of systems with more than 3GB of RAM installed—you should

look for 64-bit (X86_64) architectures.

RAM

Ubuntu recommends at least 4GB of RAM for desktop installations.

DVD or USB drive

You need to be able to boot up the installation process from a DVD or USB drive. If you

can’t boot from a DVD or USB drive, there are ways to start the installation from a hard

disk or by using a PXE install. After the installation process is started, more software

can sometimes be retrieved from different locations (over the network or from hard

disk, for example).

NOTE

PXE (pronounced pixie) stands for Preboot eXecution Environment . You can boot a client computer from a Network

Interface Card (NIC) that is PXE-enabled. If a PXE boot server is available on the network, it can provide everything a

client computer needs to boot. What it boots can be an installer. So, with a PXE boot, it is possible to do a complete

Linux installation without a CD, DVD, or any other physical medium.

Disk space

Ubuntu recommends at least 25GB of disk space for an average desktop installation,

although installations can range (depending on which packages you choose to install)

from 600MB (for a minimal server with no GUI install) to 7GB (to install all pack-

ages from the installation DVD). Consider the amount of data that you need to store.

Although documents can consume very little space, videos can consume massive

amounts of space.

If you’re not sure about your computer hardware, there are a few ways to check what you

have. If you are running Windows, the System Properties window can show you the pro-

cessor you have as well as the amount of RAM that’s installed. As an alternative, with a live

session running, open a shell and type dmesg | less to see a listing of hardware as it is

detected on your system.

With your hardware in place, you can now install Linux, as described in the following

section.

NOTE

If you have a less powerful computer than the minimum described here, consider using a lightweight Linux

distribution. Lightweight Ubuntu distributions include Peppermint OS (www.peppermintos.com/) and Lubuntu

(www.lubuntu.net/).

http://peppermintos.com
http://lubuntu.net

Part III: Becoming a Linux System Administrator

180

Installing Ubuntu Desktop
Users of Ubuntu and many of its derivative distros have been able to enjoy a clear and

intuitive installation process for some years now. The wizard—of�cially called Ubiquity—

does a great job getting the basic con�guration details out of the way quickly, so the actual

installation can begin before you �nish setting up your account and location details.

Figure 9.2 shows how a live Ubuntu session presents the initial choice between trying and

installing Ubuntu. Note how it includes the option of choosing the language with which

you want to interact with your computer.

You’ll then choose the keyboard layout you prefer. This setting, shown in Figure 9.3, will

also determine some elements of system functionality, like the spell checkers used by

of�ce tools.

You’ll then see the dialog shown in Figure 9.4 asking you how much software you’d like

included in the initial installation process. If you’re working with limited storage capac-

ity and haven’t any need for games and a full of�ce suite (like LibreOf�ce), then you’ll

probably go with the Minimal installation. Checking “Download updates while installing

Ubuntu” can save time later.

FIGURE 9.2

The initial dialog for starting your installation

Chapter 9: Installing Linux

181

9

FIGURE 9.3

Select the keyboard layout you’ll use.

FIGURE 9.4

Choose the software you want installed.

Part III: Becoming a Linux System Administrator

182

The “Installation type” page (shown in Figure 9.5) confronts you with some tough

decisions. For a simple desktop environment on brand new hardware, you’re safe going with

“Erase disk and install Ubuntu.” You can choose to enhance the security of your data by

encrypting the �lesystem or add �exibility by including LVM virtual disk management. You

can, by the way, always change your mind and add encryption later, but applying LVM to

an existing �lesystem may not be possible. Ubuntu will often automatically detect other

operating systems that are already installed on your system—including Windows—and ask

you if you’d like to install Ubuntu alongside them, letting you choose which to run each

time you boot your computer. That’s a popular and (normally) successful option.

The manual options presented by selecting “Something else,” however, can get really com-

plicated. Figure 9.6 shows you the list of attached drives that are available to work with.

There’s only a single 21GB drive (called /dev/sda) in this case. Note the Revert button that

can get you out of trouble if you’re afraid you’ve done anything wrong. No changes will

be written to your actual drive until you click the Install Now button at the bottom of

the dialog.

FIGURE 9.5

Choose how you want your storage drives configured.

Chapter 9: Installing Linux

183

9

The New Partition Table button in the menu that’ll appear if you go with “Something else”

will let you edit your drive by dividing it into smaller partitions and assigning each parti-

tion a �lesystem mount point and type. The example shown in Figure 9.7 will use the Ext4

type (a popular choice that’s often used by default) and have the partition mounted at run

time as the /boot directory. In the past, it was fairly common to keep /boot separate

within its own partition, but larger disk sizes and, in particular, larger kernel images, have

made this less attractive.

Figure 9.8 shows how a completed partition con�guration may look. /boot is on a rela-

tively small partition (1.5GB or so), while both the root (/) and /var partitions share the

rest of the disk space evenly. If the applications you plan to use extensively are likely to

generate a lot of data—saving it to directories within the /var hierarchy—then it can

make sense to protect your root �lesystem from being overwhelmed by disk bloat from

/var by maintaining them in separate partitions.

Of course, in our age of cheap and available storage space, you’re not likely to ever need

to work with a 21GB drive, but this example does illustrate the principle. We’ll talk a bit

more about partitions later in this chapter. Note that Ubuntu will automatically create a

system partition mounted to /boot/efi using the vfat �lesystem to accommodate for

UEFI �rmware.

FIGURE 9.6

The main dialog where you can manually edit your disks and partitions

Part III: Becoming a Linux System Administrator

184

FIGURE 9.7

Creating a separate /boot partition

FIGURE 9.8

A complete manual partition configuration

Chapter 9: Installing Linux

185

9

Once you pull the trigger on your partition setup, the installation will leap into life. The

remaining account and location information Ubuntu needs will be entered within a couple

of dialogs as all that happens. But you can trust me: the way things work these days is

exponentially simpler and more relaxing than the typical desktop installation experience of

a decade or more ago.

Installing Ubuntu Server
The biggest difference between the image used to install Ubuntu desktop and the one used

for Ubuntu server is the GUI and GUI-based applications (like web browsers and LibreOf-

�ce): desktop comes with them and server does not. This makes the server image a great

deal smaller and, consequently, allows it to get its work done much faster. But because

server doesn’t come with all those fancy graphic drivers, we won’t have our familiar user

interface to help us through the installation process.

Still, it’ll be the differences between the con�guration details used by server as opposed

to desktop that’ll interest us the most right now. For instance, as you can see in Figure 9.9,

you’ll often be asked to choose between a regular server installation and either one of two

versions of the MaaS cloud infrastructure server.

FIGURE 9.9

Select a regular or MaaS server configuration.

Part III: Becoming a Linux System Administrator

186

I can already hear you asking: “What’s MaaS?” After all, at this point at least, it’s not

exactly a widely used acronym like IaaS (Infrastructure as a Service) or PaaS (Platform as a

Service). So MaaS stands for Metal as a Service and, as Ubuntu’s corporate sponsor Canoni-

cal explains it (on its www.maas.io site), it’s a tool for automating the provisioning of

physical servers in much the same way as a cloud platform might provision �eets of vir-

tual machines.

MaaS comes in two �avors:

■■ Region (regiond) controllers that are con�gured to provide high-availability net-

working and provisioning services by way of a tiered system of rack controllers.

■■ Rack (rackd) controllers, using resources provided from the upstream region con-

trollers, respond to requests for managing the servers in their care.

MaaS lets you fully automate the management of Ubuntu, CentOS, RHEL, and Windows

servers in your system. If you have no clue what that’s all about, then you can safely

assume you don’t need it and go with the Ubuntu option in this dialog.

Subsequent pages in the server installation process will offer you the chance to con�gure

a network interface—including how Ubuntu will acquire an IP address (meaning, either

through a local DHCP server or a manually de�ned static address). Figure 9.10 shows the

drop-down menu allowing you to toggle between DHCP and static IP addressing.

FIGURE 9.10

Choosing Manual IPv4 configurations lets you define a static IP address.

Chapter 9: Installing Linux

187

9

The archive mirror menu—shown in Figure 9.11—lets you tell Ubuntu where you’d prefer

your software downloads to originate. Ubuntu will try to �nd a repository that’s geographi-

cally close to you, but you might have, say, a repo that’s managed by your organization that

you need to use instead.

Con�guration pages that follow will let you set up your drives and partitions just as you

would using the desktop GUI. What is shown in Figure 9.12, however, is speci�c to servers.

Ubuntu offers you an exhaustive list of packages that can be installed right from the start

through the Snap software package management system. These choices include Canonical’s

version of the Kubernetes (“microk8s”) container management system, a Nextcloud doc-

ument collaboration server, Docker, and even public cloud command-line interfaces (like

Amazon’s AWS-CLI). These options can really shorten the setup process once your server is

running. You use the up and down arrow keys to highlight an item and press the Space key

to select or deselect it.

When that’s done, you’ll be all set to �nish your installation.

FIGURE 9.11

Selecting a mirror for downloading software archives.

Part III: Becoming a Linux System Administrator

188

Understanding Cloud-Based Installations
When you install a Linux system on a physical computer, the installer can see the com-

puter’s hard drive, network interfaces, CPUs, and other hardware components. When you

install Linux in a cloud environment, those physical components are abstracted into a pool

of resources. So, to install a Linux distribution in an Amazon EC2, Google Compute Engine,

or OpenStack cloud platform, you need to go about things differently.

The common way of installing Linux in a cloud is to start with a �le that is an image of

an installed Linux system. Typically, that image includes all of the �les needed by a basic,

running Linux system. Metadata is added to that image from a con�guration �le or by

�lling out a form from a cloud controller that creates and launches the operating system as

a virtual machine.

The kind of information added to the image might include a particular hostname, root

password, and new user account. You might also want to choose to have a speci�c amount

of disk space, a particular network con�guration, and a certain number of CPU proces-

sors and RAM.

Methods for installing Linux in a cloud environment are discussed in Chapter 27, “Deploy-

ing Linux to the Public Cloud.”

FIGURE 9.12

Select software packages for popular server workloads.

Chapter 9: Installing Linux

189

9

Installing Linux in the Enterprise
If you were managing dozens, hundreds, even thousands of Linux systems in a large enter-

prise, it would be terribly inef�cient to have to go to each computer to type and click

through each installation. Fortunately, you can automate installation in such a way that

all you need to do is to turn on a computer and boot from the computer’s network interface

card to get your desired Linux installation.

There are many other ways to launch a Linux installation and many ways to complete an

installation. The following descriptions brie�y step through the installation process and

describe ways of changing that process along the way:

Launch the installation medium.

You can launch an installation from any medium that you can boot from a computer:

CD, DVD, USB drive, hard disk, or network interface card with PXE support. The com-

puter goes through its boot order and looks at the master boot record on the physical

medium or looks for a PXE server on the network.

Automate remote server provisioning.

Boot options (described later in this chapter) can be executed remotely using systems

like Canonical’s MaaS (described earlier). Automated control systems can closely man-

age the full lifecycle of physical server or desktop machines, allowing administrators

to de�ne, provision, allocate, and, when necessary, decommission machines.

Find software packages.

Software packages don’t have to be on the installation medium. This allows you to

launch an installation from a boot medium that contains only a kernel and initial RAM

disk. From scripts or from an option you add manually to an installer/provisioner, you

can identify the location of the repository holding the packages. That location can be a

local CD (cdrom), website (https), FTP site (ftp), NFS share (nfs), NFS ISO (nfsiso),

or local disk (hd).

Exploring Common Installation Topics
Some of the installation topics touched upon earlier in this chapter require further expla-

nation for you to be able to implement them fully. Read through the following sections to

get a greater understanding of speci�c installation topics.

Upgrading or installing from scratch
If you have an earlier version of Ubuntu already installed on your computer, Ubuntu can,

in some cases, offer a direct upgrade option—in particular between long-term support

(LTS) releases.

Upgrading lets you move a Linux system from one major release to the next.

Part III: Becoming a Linux System Administrator

190

Dual booting
It is possible to have multiple operating systems installed on the same computer. One way

to do this is by having multiple partitions on a hard disk and/or multiple hard disks and

then installing different operating systems on different partitions. As long as the boot

loader contains boot information for each of the installed operating systems, you can

choose which one to run at boot time.

CAUTION

Although tools for resizing Windows partitions and setting up multi-boot systems have improved in recent years, there

is still some risk of losing data on Windows/Linux dual-boot systems. Different operating systems often have differ-

ent views of partition tables and master boot records that can cause your machine to become unbootable (at least

temporarily) or lose data permanently. Always back up your data before you try to resize a Windows �lesystem to

make space for Linux.

If the computer you are using already has a Windows system on it, quite possibly the entire

hard disk is devoted to Windows. Although you can always run a live Linux session without

touching the hard disk, to do a more permanent installation, you’ll want to �nd disk space

outside of the Windows installation. There are a few ways to do this:

Add a hard disk. Instead of messing with your Windows partition, you can simply

add a hard disk and devote it to Linux.

Resize your Windows partition. If you have available space on a Windows parti-

tion, you can shrink that partition so that free space is available on the disk to

devote to Linux. Commercial tools such as Acronis Disk Director (www.acronis.com/

en-us/personal/disk-manager) are available to resize your disk partitions and set

up a workable boot manager. Some Linux distributions (particularly bootable Linux

distributions used as rescue media) include a tool called GParted (which includes

software from the Linux-NTFS project for resizing Windows NTFS partitions).

NOTE

Type apt-get install gparted to install GParted. Run gparted as root to start it.

Before you try to resize your Windows partition, you might need to defragment it. To

defragment your disk on some Windows systems so that all your used space is put in order

TIP

Installing Linux from scratch goes faster than an upgrade. It also results in a cleaner Linux system. So, if you don’t

need the data on your system (or if you have a backup of your data), it often makes more sense to do a fresh installa-

tion. Then you can restore your data to a freshly installed system.

http://www.acronis.com/
http://www.acronis.com/
http://www.acronis.com/en-us/personal/disk-manager

Chapter 9: Installing Linux

191

9

on the disk, open My Computer, right-click your hard disk icon (typically C:), select Prop-

erties, click Tools, and select Defragment Now.

Defragmenting your disk can be a fairly long process. The result of defragmentation is that

all of the data on your disk are contiguous, creating lots of contiguous free space at the

end of the partition. Sometimes, you have to complete the following special tasks to make

this true:

■■ If the Windows swap �le is not moved during defragmentation, you must remove it.

Then, after you defragment your disk again and resize it, you need to restore the

swap �le. To remove the swap �le, open the Control Panel, open the System icon,

click the Performance tab, and select Virtual Memory. To disable the swap �le, click

Disable Virtual Memory.

■■ If your DOS partition has hidden �les that are on the space you are trying to free

up, you need to �nd them. In some cases, you can’t delete them. In other cases,

such as swap �les created by a program, you can safely delete those �les. This is

a bit tricky because some �les should not be deleted, such as DOS system �les.

You can use the attrib -s -h command from the root directory to deal with

hidden �les.

After your disk is defragmented, you can use commercial tools described earlier (Acronis

Disk Director) to repartition your hard disk to make space for Linux. Or, you can use the

Open source alternative GParted.

After you have cleared enough disk space to install Linux (see the disk space requirements

described earlier in this chapter), you can install Ubuntu. As you set up your boot loader

during installation, you can identify Windows, Linux, and any other bootable partitions so

that you can select which one to boot when you start your computer.

Installing Linux to run virtually
Using virtualization technology such as KVM, VMware, VirtualBox, or Xen, you can con-

�gure your computer to run multiple operating systems simultaneously. Typically, you have

a host operating system running (such as your Linux or Windows desktop), and then you

con�gure guest operating systems to run within that environment.

If you have a Windows system, you can use commercial VMware products to run Linux on

your Windows desktop. Get a trial of VMware Workstation (www.vmware.com/try-vmware)

to see if you like it. Then run your installed virtual guests with the free VMware Player.

With a full-blown version of VMware Workstation, you can run multiple distributions at the

same time.

Open source virtualization products that are available with Linux systems include Virtu-

alBox (www.virtualbox.org), Xen (www.xenproject.org), and KVM (www.linux-kvm.org).

See Chapter 28, “Automating Apps and Infrastructure with Ansible,” for information on

installing Linux as a virtual machine on a Linux KVM host.

http://www.vmware.com/try-vmware
http://www.virtualbox.org
http://xenproject.org
http://www.linux-kvm.org

Part III: Becoming a Linux System Administrator

192

And don’t forget that Windows 10 allows you to run Linux shell sessions on the Windows

desktop through the Windows Subsystem for Linux without the need for external virtual-

ization software. See docs.microsoft.com/en-us/windows/wsl/install-win10.

Using installation boot options
When the Linux kernel launches at boot time, boot options provided on the kernel

command line modify the behavior of the installation process. By typing “e” within the

GRUB boot menu with a particular Linux image selected, you can edit the default boot

options to direct how the installation behaves. Figure 9.13 shows a GRUB menu with

options to boot from one of two kernel versions and from a recovery mode version of each.

You can force the GRUB menu to appear by pressing the Shift key early in the boot process.

The line identifying the kernel might look something like the following:

vmlinuz initrd=initrd.img ...

vmlinuz is the compressed kernel and initrd.img is the initial RAM disk (containing

modules and other tools needed to start the installer). To add more options, just type them

at the end of that line and press Enter.

Boot options for disabling features

Sometimes, a Linux installation fails because the computer has some nonfunctioning or

unsupported hardware. Often, you can get around those issues by passing options at

boot time (through the GRUB menu, as in the previous section) that do such things as

disable selected hardware when you need to select your own driver. Table 9.1 provides

some examples.

FIGURE 9.13

A typical GRUB menu accessible at boot time

https://docs.microsoft.com/en-us/windows/wsl/install-win10

Chapter 9: Installing Linux

193

9

Boot options for video problems

If you are having trouble with your video display, you can specify video settings as noted

in Table 9.2.

Boot options for special installation types

By default, installation runs in graphical mode with you sitting at the console answering

questions. If you have a text-only console, or if the GUI isn’t working properly, you can run

an installation in plain-text mode: by typing text, you cause the installation to run in

text mode.

TABLE 9.1 Boot Options for Disabling Features

INSTALLER OPTION TELLS SYSTEM

nofirewire Not to load support for Firewire devices

nodma Not to load DMA support for hard disks

noide Not to load support for IDE devices

nompath Not to enable support for multipath devices

noparport Not to load support for parallel ports

nopcmcia Not to load support for PCMCIA controllers

noprobe Not to probe hardware; instead prompt user for drivers

noscsi Not to load support for SCSI devices

nousb Not to load support for USB devices

noipv6 Not to enable IPV6 networking

nonet Not to probe for network devices

numa-off To disable the Non-Uniform Memory Access (NUMA) for AMD64 architecture

acpi=off To disable the Advanced Con�guration and Power Interface (ACPI)

TABLE 9.2 Boot Options for Video Problems

BOOT OPTION TELLS SYSTEM

xdriver=vesa Use standard vesa video driver

resolution=1024x768 Choose exact resolution to use

nofb Don’t use the VGA 16 framebuffer driver

skipddc Don’t probe DDC of the monitor (the probe can hang the installer)

graphical Force a graphical installation

Part III: Becoming a Linux System Administrator

194

If you want to start installation on one computer, but answer the installation questions from

another computer, you can enable a VNC (virtual network computing) installation. After

you start this type of installation, you can go to another system and open a vnc viewer,

giving the viewer the address of the installation machine (such as 192.168.0.99:1).

Table 9.3 provides the necessary commands, along with what they tell the system to do.

Using specialized storage
In large enterprise computing environments, it is common to store the operating system

and data outside of the local computer. Instead, some special storage device beyond the

local hard disk is identi�ed to the installer, and that storage device (or devices) can be

used during installation.

Once identi�ed, the storage devices that you indicate during installation can be used the

same way that local disks are used. You can partition them and assign a structure (�lesys-

tem, swap space, and so on) or leave them alone and simply mount them where you want

the data to be available.

The following types of specialized storage devices can be con�gured to work with Ubuntu

installations:

Firmware RAID

A �rmware RAID device is a type of device that has hooks in the BIOS, allowing it to be

used to boot the operating system, if you choose.

Multipath devices

As the name implies, multipath devices provide multiple paths between the computer

and its storage devices. These paths are aggregated, so these devices look like a single

device to the system using them, while the underlying technology provides improved

performance, redundancy, or both. Connections can be provided by iSCSI or Fibre

Channel over Ethernet (FCoE) devices.

Other SAN devices

Any device representing a Storage Area Network (SAN).

While con�guring these specialized storage devices is beyond the scope of this book, know

that if you are working in an enterprise where iSCSI and FCoE devices are available, you can

TABLE 9.3 Boot Options for VNC Installations

BOOT OPTION TELLS SYSTEM

vnc Run installation as a VNC server

vncconnect=host

name[:port]
Connect to VNC client hostname and optional port

vncpassword=password Client uses password (at least 8 characters) to connect
to installer

Chapter 9: Installing Linux

195

9

con�gure your Linux system to use them at installation time. You need the following types

of information to do this:

iSCSI devices

Have your storage administrator provide you with the target IP address of the iSCSI

device and the type of discovery authentication needed to use the device. The iSCSI

device may require credentials.

Fibre Channel over Ethernet Devices (FCoE) For FCoE, you need to know the net-

work interface that is connected to your FCoE switch. You can search that interface for

available FCoE devices.

Partitioning hard drives
The hard disk (or disks) on your computer provide the permanent storage area for your

data �les, applications programs, and the operating system itself. Partitioning is the act of

dividing a disk into logical areas that can be worked with separately. With Linux there are

several reasons you may want to have multiple partitions:

Multiple operating systems

If you install Linux on a PC that already has a Windows operating system, you may

want to keep both operating systems on the computer. For all practical purposes, each

operating system must exist on a completely separate partition. When your computer

boots, you can choose which system to run.

Multiple partitions within an operating system

To protect their entire operating system from running out of disk space, people often

assign separate partitions to different areas of the Linux �lesystem. For example, if /

home and /var were assigned to separate partitions, then a gluttonous user who �lls

up the /home partition wouldn’t prevent logging daemons from continuing to write to

log �les in the /var/log directory.

Multiple partitions also make doing certain kinds of backups (such as an image backup)

easier. For example, an image backup of /home would be much faster (and probably

more useful) than an image backup of the root �lesystem (/).

Different �lesystem types

Different kinds of �lesystems have different structures. Filesystems of different types

must be on their own partitions. Also, you might need different �lesystems to have

different mount options for special features (such as read-only or user quotas). In most

Linux systems, you need at least one �lesystem type for the root of the �lesystem (/)

and one for your swap area. Filesystems on DVD use the iso9660 �lesystem type.

TIP

When you create partitions for Linux, you usually assign the �lesystem type as Linux native (using the ext2, ext3,

ext4, or xfs type on most Linux systems). If the applications that you are running require particularly long �lenames,

large �le sizes, or many inodes (each �le consumes an inode), you may want to choose a different �lesystem type.

Part III: Becoming a Linux System Administrator

196

Ubuntu lets you partition your hard disk during the installation process using graphical

partitioning tools. Here are some quick insights into the dark art of Linux partitioning.

Understanding different partition types

Ubuntu gives you the option of selecting different partition types when you partition your

hard disk during installation. Partition types include the following:

Linux partitions

Use this option to create a partition for an ext2, ext3, or ext4 �lesystem type that is

added directly to a partition on your hard disk (or other storage medium). The xfs �le-

system type can also be used on a Linux partition.

LVM partitions

Create an LVM partition if you plan to create or add to an LVM volume group. LVMs give

you more �exibility in growing, shrinking, and moving partitions later than regular

partitions do.

RAID partitions

Create two or more RAID partitions to create a RAID array. These partitions should be on

separate disks to create an effective RAID array. RAID arrays can help improve performance,

reliability, or both as those features relate to reading, writing, and storing your data.

Swap partitions

Create a swap partition to extend the amount of virtual memory available on

your system.

Refer to Chapter 12, “Managing Disks and Filesystems,” for further information on con�g-

uring disk partitions.

Tips for creating partitions

Changing your disk partitions to handle multiple operating systems can be very tricky, in part

because each operating system has its own ideas about how partitioning information should be

handled as well as different tools for doing it. Here are some tips to help you get it right:

■■ If you are creating a dual-boot system, particularly for a Windows system, try to

install the Windows operating system �rst after partitioning your disk. Otherwise,

the Windows installation may make the Linux partitions inaccessible.

■■ The fdisk man page recommends that you use partitioning tools that come with

an operating system to create partitions for that operating system. For example, the

Windows fdisk knows how to create partitions that Windows will like, and the Linux

fdisk will happily make your Linux partitions. After your hard disk is set up for dual

boot, however, you should probably not go back to Windows-only partitioning tools. Use

Linux fdisk or a product made for multi-boot systems (such as Acronis Disk Director).

■■ A master boot record (MBR) partition table can contain four primary partitions,

one of which can be marked to contain 184 logical drives. On a GPT partition table,

you can have a maximum of 128 primary partitions on most operating systems,

Chapter 9: Installing Linux

197

9

including Linux. You typically won’t need nearly that many partitions. If you need

more partitions, use LVM and create as many logical volumes as you like.

If you are using Linux as a desktop system, you probably don’t need lots of different parti-

tions. However, some very good reasons exist for having multiple partitions for Linux systems

that are shared by lots of users or are public web servers or �le servers. These can include:

Protection from attacks

Denial-of-service attacks sometimes take actions that try to �ll up your hard disk. If

public areas, such as /var, are on separate partitions, a successful attack can �ll up

a partition without shutting down the whole computer. Because /var is the default

location for web and FTP servers, and is expected to hold lots of data, entire hard disks

often are assigned to the /var �lesystem alone.

Protection from corrupted �lesystems

If you have only one �lesystem (/), its corruption can cause the whole Linux system to

be damaged. Corruption of a smaller partition can be easier to �x and often allows the

computer to stay in service while the correction is made.

Table 9.4 lists some directories that you may want to consider making into separate �lesys-

tem partitions.

TABLE 9.4 Assigning Partitions to Particular Directories

DIRECTORY EXPLANATION

/boot Sometimes, the BIOS in older PCs can access only the �rst 1024 cylinders of your
hard disk. To make sure that the information in the /boot directory is accessible to
the BIOS, many older systems created a separate disk partition for /boot. This is no
longer a common design practice.

/usr This directory structure contains most of the applications and utilities available
to Linux users. The original theory was that if /usr were on a separate partition,
you could mount that �lesystem as read-only after the operating system had been
installed. This would prevent attackers from replacing or removing important system
applications with their own versions that may cause security problems. A separate /
usr partition is also useful if you have diskless workstations on your local network.
Using NFS, you can share /usr over the network with those workstations.

/var Your FTP (/var/ftp) and web server (/var/www) directories are, by default in many
Linux systems, stored under /var. Having a separate /var partition can prevent an
attack on those facilities from corrupting or �lling up your entire hard disk.

/home Because your user account directories are located in this directory, having a separate
/home account can prevent a reckless user from �lling up the entire hard disk. It also
conveniently separates user data from your operating system (for easy backups or
new installs). Often, /home is created as an LVM logical volume, so it can grow in size
as user demands increase. It may also be assigned user quotas to limit disk use.

/tmp Protecting /tmp from the rest of the hard disk by placing it on a separate partition
can ensure that applications that need to write to temporary �les in /tmp can com-
plete their processing, even if the rest of the disk �lls up.

Part III: Becoming a Linux System Administrator

198

Although people who use Linux systems rarely see a need for lots of partitions, those who

maintain and occasionally have to recover large systems are thankful when the system

they need to �x has several partitions. Multiple partitions can limit the effects of deliber-

ate damage (such as denial-of-service attacks), problems from errant users, and accidental

�lesystem corruption.

Using the GRUB 2 boot loader
We saw GRUB in action earlier in the chapter when discussing passing instructions as the

Linux kernel loaded at boot time. Here we’ll spend just a moment or two taking a deeper

look at the way it works. First of all, GRUB stands for “GNU GRand Uni�ed Bootloader.”

Next, GRUB’s primary job is to �nd and start the operating system you want. If you’re using

GRUB 2, then it stands to reason that there must once have been a GRUB version 1. That, of

course, is correct. But these days you’ll have to look far and wide to �nd a modern system

that starts up with the help of that legacy version of GRUB.

NOTE

SYSLINUX is another boot loader that you will encounter with Linux systems. The SYSLINUX boot loaders are not typ-

ically used for installed Linux systems. However, SYSLINUX is commonly used as the boot loader for bootable Linux

CDs and DVDs. SYSLINUX is particularly good for booting ISO9660 CD images (isolinux) and USB sticks (syslinux)

and for working on older hardware or for PXE booting (pxelinux) a system over the network.

GRUB’s con�guration �le is named /boot/grub/grub.cfg or /etc/grub-efi.cfg (for

systems booted with EFI).

Here are some things you should know about the grub.cfg �le:

■■ Instead of editing grub.cfg by hand, grub.cfg is generated automatically from

the contents of the /etc/default/grub �le and the /etc/grub.d/ directory.

You should modify or add to those �les to con�gure GRUB yourself.

■■ The grub.cfg �le can contain scripting syntax, including such things as

functions, loops, and variables.

■■ Device names needed to identify the location of kernels and initial RAM disks can

be more reliably identi�ed using labels or universally unique identi�ers (UUIDs).

This prevents the possibility of a disk device such as /dev/sda being changed

to /dev/sdb when you add a new disk (which would result in the kernel not

being found).

There are many, many more features of GRUB that you can learn about if you want to dig

deeper into your system’s boot loader. The best documentation for GRUB is available by

typing info grub at the shell. The info entry for GRUB provides lots of information

for booting different operating systems, writing your own con�guration �les, working

with GRUB image �les, setting GRUB environment variables, and working with other

GRUB features.

Chapter 9: Installing Linux

199

9

Summary
When you install Ubuntu, you need to deal with issues of disk partitioning, boot options,

and con�guring boot loaders.

In this chapter, you stepped through installation procedures for Ubuntu desktop and server

deployments. You learned how deploying Linux in cloud environments can differ from tra-

ditional installation methods by combining metadata with prebuilt base operating system

image �les to run on large pools of compute resources.

The chapter also covered special installation topics, including using boot options and disk

partitioning. With your Linux system now installed, Chapter 10, “Getting and Managing

Software,” describes how to begin managing the software on your Linux system.

Exercises
Use these exercises to test your knowledge of installing Linux. I recommend that you do

these exercises on a computer that has no operating system or data on it that you would

fear losing (in other words, one you don’t mind erasing). If you have a computer that allows

you to install virtual systems, that is a safe way to do these exercises as well. If you are

stuck, solutions to the tasks are shown in Appendix A (although in Linux, there are often

multiple ways to complete a task).

1. Start installing Ubuntu desktop from an Ubuntu ISO on VirtualBox using as many

of the default options as possible.

2. After you have completely installed Ubuntu, update all of the packages on

the system.

3. Start installing an Ubuntu server image. Complete the installation in any way

you choose.

4. Start installing from an Ubuntu server image (using VirtualBox if you like) and set

the disk partitioning as follows: a 1024MB /boot, / (6G), /var (2G), and /home

(2G). Leave the rest as unused space. But before beginning, read the related caution

that is described here.

CAUTION

Completing Exercise 4 on a physical device ultimately deletes all content on your existing hard disk. If you just want

to use this exercise to practice partitioning, you can reboot your computer before clicking Accept Changes at the very

end of this procedure without harming your hard disk. If you go forward and partition your disk, assume that all data

that you have not explicitly changed has been deleted.

201

CHAP T ER

10
Getting and Managing Software

IN THIS CHAPTER

Installing software from the desktop

Installing and managing software using the APT system

Installing and managing software using the dpkg system

Installing software in the enterprise

I
n Ubuntu, you don’t need to know much about how software is packaged and managed to get

the software you want. It has excellent software installation tools that automatically point to

huge software repositories. Just a few clicks and you’re using the software in little more time

than it takes to download it.

The fact that Linux software management is so easy these days is a credit to the Linux community,

which has worked diligently to create packaging formats, complex installation tools, and high-quality

software packages. Not only is it easy to get the software, but after it’s installed, it’s easy to manage,

query, update, and remove it.

This chapter begins by describing how to install software in Ubuntu using the new software graphical

installation tool. If you are just installing a few desktop applications on your own desktop system,

you may not need much more than that and occasional security updates.

To dig deeper into managing Linux software, next we’ll describe what makes up Linux software

packages, the underlying software management components, and commands (apt and dpkg) for

managing software.

Managing Software on the Desktop
The Ubuntu Software window offers an intuitive way of choosing and installing desktop applica-

tions that does not align with typical Linux installation practices. With the Software window, the

smallest software component you install is an application.

Figure 10.1 shows an example of the Software window.

Part III: Becoming a Linux System Administrator

202

To get to the Software window in Ubuntu, select Activities, then type ubuntu soft-
ware, and press Enter. Using the Software window is the best way to install desktop-

oriented applications, such as word processors, games, graphics editors, and educational

applications.

From the Software window, you can select the applications that you want to install from

the Editor’s Picks group (a handful of popular applications), choose from categories of appli-

cations (Audio & Video, Games, Graphics & Photography, and so on), or search by application

name or description. Select the Install button to have the Software window download and

install all of the software packages needed to make the application work.

Other features of this window let you see all installed applications (Installed tab) or view

a list of applications that have updated packages available for you to install (Updates tab).

If you want to remove an installed application, simply click the Remove button next to the

package name.

FIGURE 10.1

Install and manage software packages from the Software window.

Chapter 10: Getting and Managing Software

203

10

If you are using Linux purely as a desktop system where you can write documents, play

music, and do other common desktop tasks, the Software window might be all you need

to get the basic software you want. By default, your system connects to the main Ubuntu

software repository and gives you access to hundreds of software applications. You also

have the option of accessing third-party applications that are still free for you to use but

not redistribute.

Although the Software window lets you download and install some applications from the

Ubuntu software repository, that repository actually contains tens of thousands of software

packages. What packages can you not see from that repository? When might you want those

other packages? And how can you gain access to those packages (as well as packages from

other software repositories)?

Going Beyond the Software Window
If you are managing a single desktop system, you might be quite satisfied with the hun-

dreds of packages that you can find through the Software window. Open-source versions of

the most common types of desktop applications are available to you through the Software

window after you have a connection to the Internet.

However, these are some of the reasons you might want to go beyond what you can do with

the Software window:

More repositories The repositories enabled by default contain only open source,

freely distributable software. You may want to install some commercial software

(such as Microsoft’s Skype communication software) or software with restrictive

licenses (like the latest build of the Chromium web browser).

Beyond desktop applications Tens of thousands of software packages in the Ubuntu

repository are not available through the Software window. Most of these packages

are not associated with graphical applications at all. For example, some packages

contain pure command-line tools, system services, programming tools, or documen-

tation that doesn’t show up in the Software window.

Flexibility Although you may not know it, when you install an application through

the Software window, you may actually be installing multiple Debian packages.

This set of packages may just be a default package set that includes documenta-

tion, extra fonts, additional software plug-ins, or multiple language packs that you

may or may not want. With the apt and dpkg commands, you have more flexibility

on exactly which packages related to an application or other software feature are

installed on your system.

More complex queries Using commands such as apt and dpkg, you can get detailed

information about packages, package groups, and repositories.

Part III: Becoming a Linux System Administrator

204

Software validation Using apt and other tools, you can check whether a signed

package has been modified before you installed it or whether any of the components

of a package have been tampered with since the package was installed.

Managing software installation Although the Software window works well if you

are installing desktop software on a single system, it doesn’t scale well for managing

software on multiple systems. Other tools are built on top of the apt facility for

doing that.

Before we discuss some of the command-line tools for installing and managing software in

Linux, the next section describes how the underlying packaging and package management

systems in Linux work. In particular, we focus on Deb packages, which are associated with

Debian, Ubuntu, Linux Mint, and related distributions.

Understanding Linux Software Packaging
On the first Linux systems, if you wanted to add software, you would grab the source code

from a project that produced it, compile it into executable binaries, and drop it onto your

computer. If you were lucky, someone would have already compiled it into a form that

would run on your computer.

The package format could be a Tarball containing executable files (commands), documenta-

tion, configuration files, and libraries. (A Tarball is a single file in which multiple files are

gathered together for convenient storage or distribution.) When you install software from a

Tarball, the files from that Tarball might be spread across your Linux system in appropriate

directories (/usr/share/man, /etc, /bin, and /lib, to name just a few). Although it is

easy to create a Tarball and just drop a set of software onto your Linux system, this method

of installing software makes it difficult to do these things:

Satisfy software dependencies You would need to know if the software you were

installing depended on other software being installed for your software to work.

Then you would have to track down that software and install it (which might have

some of its own dependencies).

List the software Even if you knew the name of the command, you might not

know where its documentation or configuration files were located when you looked

for it later.

Remove the software Unless you kept the original Tarball, or a list of files, you

wouldn’t know where all the files were when it came time to remove them. Even if

you knew, you would have to manually remove each one individually.

Update the software Tarballs are not designed to hold metadata about the contents

that they contain. After the contents of a Tarball are installed, you may not have a

way to tell what version of the software you are using, making it difficult to track

down bugs and get new versions of your software.

Chapter 10: Getting and Managing Software

205

10

To deal with these problems, packages progressed from simple Tarballs to more complex

packaging. With only a few notable exceptions (such as Gentoo, Slackware, and a few

others), the majority of Linux distributions went to one of two packaging formats—

DEB and RPM:

DEB (.deb) packaging The Debian GNU/Linux project created .deb packaging,

which is used by Debian and other distributions based on Debian (Ubuntu, Linux

Mint, KNOPPIX, and so on). Using tools such as apt-get, apt, and dpkg, Linux

distributions could install, manage, upgrade, and remove software.

RPM (.rpm) packaging Originally named Red Hat Package Manager, but later recur-

sively renamed RPM Package Manager, RPM is the preferred package format for SUSE,

Red Hat distributions (RHEL and Fedora), and those based on Red Hat distributions

(CentOS, Oracle Linux, and so on). The rpm command was the first tool to manage

RPMs. Later, yum was added to enhance the RPM facility, and now dnf has become

the default tool for many releases instead of yum.

This chapter will focus on DEB packaging and software management.

Working with Debian Packaging
Debian software packages hold multiple files and metadata related to some set of software

in the format of an ar archive file. The files can be executables (commands), configura-

tion files, documentation, and other software items. The metadata includes such things as

dependencies, licensing, package sizes, descriptions, and other information. Multiple com-

mand-line and graphical tools are available for working with DEB files in Ubuntu, Debian,

and other Linux distributions. Some of these include the following:

Ubuntu Software Center Select the Ubuntu Software application from the GNOME

Activities menu. The window that appears lets you search for applications and pack-

ages that you want by searching for keywords or navigating categories.

aptitude The aptitude command is a package installation tool that provides a

screen-oriented menu that runs in the shell. After you run the command, use arrow

keys to highlight the selection you want, and press Enter to select it. You can

upgrade packages, get new packages, or view installed packages.

apt* There is a set of apt* commands (apt-get, apt, apt-config, apt-cache,

and so on) that can be used to manage package installation.

APT basics
The Ubuntu Software Center is fairly intuitive for finding and installing packages. By com-

parison APT might seem less intuitive, but it actually is pretty handy as well. The following

note lists a few examples of commands that can help you install and manage packages with

apt* commands. In this case, you are looking for and installing the vsftpd package.

Part III: Becoming a Linux System Administrator

206

The most basic of all commands within the Debian universe is apt update. This command

polls remote repositories for any recent changes to their software indexes and updates the

local index. Without this update, your local system could never be sure it’s installing the

latest versions of the software you need. Run it yourself; it’ll do you good:

$ sudo apt update

To apply the latest updates to all the packages currently installed on your system using a

single command, run apt upgrade. If there are any updates, you’ll be shown the files

that could be changed and asked to confirm that’s what you want. If you accept, APT

will get to work applying the updates—including installing new versions of the Linux

kernel itself.

$ sudo apt upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages were automatically installed and are no
longer required:
 kde-cli-tools kde-cli-tools-data libfakekey0 libkf5su-bin
libkf5su-data
 libkf5su5 sshfs
Use 'sudo apt autoremove' to remove them.
The following packages will be upgraded:

NOTE

Notice that the apt* commands are preceded by the sudo command in these examples. That’s because package

management is a system-wide process that requires admin privileges.

 $ sudo apt update Get the latest package versions
 $ sudo apt-get update Get the latest package versions (alternate)
 $ sudo apt-cache search vsftpd Find package by key word (such as vsftpd)
 $ sudo apt-cache show vsftpd Display information about a package
 $ sudo apt install vsftpd Install the vsftpd package
 $ sudo apt-get install vsftpd Install the vsftpd package (alternate)
 $ sudo apt-get upgrade Update installed packages if upgrade ready
 $ sudo apt-cache pkgnames List all packages that are installed

Note how, in some cases, you can use either apt or apt-get. apt is a more modern toolset designed to �t the

basic day-to-day needs of most users, most of the time, while leaving out some obscure and seldom-used functions.

There are many other uses of apt commands that you can try out. I recommend that you run man apt to get an

understanding of what the apt and related commands can do.

Chapter 10: Getting and Managing Software

207

10

 bsdutils fdisk gir1.2-ibus-1.0 ibus ibus-gtk ibus-gtk3 libasound2
 libasound2-data libblkid1 libfdisk1 libglib2.0-0 libglib2.0-bin
 libglib2.0-data libibus-1.0-5 libmount1 libsmartcols1 libuuid1
linux-base
 mount rfkill teamviewer util-linux uuid-runtime vim-common
vim-tiny xxd
26 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 16.8 MB/23.4 MB of archives.
After this operation, 147 kB of additional disk space will be used.
Do you want to continue? [Y/n]

NOTE

Some updates—especially kernel updates—will require a system reboot before they’re active. Since it can be dif�cult

to reboot production servers, Canonical makes its Livepatch software available that can apply deep system changes

even without the need for a reboot. If you’re running server workloads, you can use Livepatch for free for up to three

machines. You can learn more about Livepatch on its website: ubuntu.com/livepatch.

In the market for some new software but don’t know what it’s called? Suppose you’re wor-

ried about heat building up inside your computer’s case and want something to monitor

temperature changes. You can search through the repositories using—you guessed it—

apt search:

$ apt search sensor

That command will probably return way too many choices. You can always filter your results

using grep. This example will return any result containing the words “sensor” and “tem-

perature” along with the two lines preceding and following the reference. (Try running

that without -B 2 -A 2 to see the difference.)

$ apt search sensor | grep -B 2 -A 2 temperature
digitemp/bionic 3.7.1-2build1 amd64
 read temperature sensors in a 1-Wire net

dispcalgui/bionic 3.5.0.0-1 amd64
--
libsensors4/bionic 1:3.4.0-4 amd64
 library to read temperature/voltage/fan sensors
libsensors4-dev/bionic 1:3.4.0-4 amd64
--
lm-sensors/bionic 1:3.4.0-4 amd64
 utilities to read temperature/voltage/fan sensors
logdata-anomaly-miner/bionic 0.0.7-1 all
--
psensor/bionic 1.1.5-1ubuntu3 amd64
 display graphs for monitoring hardware temperature
psensor-common/bionic 1.1.5-1ubuntu3 all
--

Continues

http://ubuntu.com/livepatch

Part III: Becoming a Linux System Administrator

208

wmtemp/bionic 0.0.6-3.3build1 amd64
 WM dock applet displaying lm_sensors temperature values
xfce4-goodies/bionic 4.12.4 amd64

psensor looks like the one we’re after, but we’d like to learn a bit more. Now that we know

the package name, that’ll be easy:

$ apt show psensor
Package: psensor
Version: 1.1.5-1ubuntu3
Priority: optional
Section: universe/utils
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Jean-Philippe Orsini <jeanfi@gmail.com>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 367 kB
Depends: psensor-common (= 1.1.5-1ubuntu3), dconf-gsettings-backend
| gsettings-backend, libappindicator3-1 (>= 0.2.92), libatasmart4
(>= 0.13), libc6 (>= 2.14), libcairo2 (>= 1.2.4), libcurl3-gnutls
(>= 7.16.2), libglib2.0-0 (>= 2.30.0), libgtk-3-0 (>= 3.3.16),
libgtop-2.0-11 (>= 2.22.3), libjson-c3 (>= 0.10), libnotify4 (>=
0.7.0), libsensors4 (>= 1:3.0.0), libudisks2-0 (>= 2.0.0), libunity9
(>= 3.4.6), libx11-6, libxnvctrl0
Homepage: http://wpitchoune.net/psensor
Download-Size: 58.4 kB
APT-Sources: http://us-east-1.ec2.archive.ubuntu.com/ubuntu bionic/
universe amd64 Packages
Description: display graphs for monitoring hardware temperature
 Psensor is a GTK+ application for monitoring hardware sensors,
 including temperatures and fan speeds.
 .
 It displays a curve for each sensor, alerts user using Desktop
Notification
 and Application Indicator when a temperature is too high.
 .
 It can monitor:
 * the temperature of the motherboard and CPU sensors (using
lm-sensors).
 * the temperature of the NVidia GPUs (using XNVCtrl).
 * the temperature of the Hard Disk Drives (using hddtemp or
atasmart lib).
 * the rotation speed of the fans (using lm-sensors).
 * the sensors of a remote computer (using psensor-server).

The Description section is where you’ll usually see helpful context information. Here’s how

you can display a list of the dependencies required by a package:

$ apt depends psensor
psensor

Continued

Chapter 10: Getting and Managing Software

209

10

 Depends: psensor-common (= 1.1.5-1ubuntu3)
 |Depends: dconf-gsettings-backend
 Depends: <gsettings-backend>
 dconf-gsettings-backend
 Depends: libappindicator3-1 (>= 0.2.92)
 Depends: libatasmart4 (>= 0.13)
 Depends: libc6 (>= 2.14)
 Depends: libcairo2 (>= 1.2.4)
 Depends: libcurl3-gnutls (>= 7.16.2)
 Depends: libglib2.0-0 (>= 2.30.0)
 Depends: libgtk-3-0 (>= 3.3.16)
 Depends: libgtop-2.0-11 (>= 2.22.3)
 Depends: libjson-c3 (>= 0.10)
 Depends: libnotify4 (>= 0.7.0)
 Depends: libsensors4 (>= 1:3.0.0)
 Depends: libudisks2-0 (>= 2.0.0)
 Depends: libunity9 (>= 3.4.6)
 Depends: libx11-6
 Depends: libxnvctrl0

When you’re ready to pull the trigger and install a package, it’ll be apt install you run:

$ sudo apt install psensor

Should you ever need to remove software, you’ll want apt remove:

$ sudo apt remove psensor

apt remove will delete all the related program files that had been installed, but it’ll leave

behind any configuration files. If you don’t want anything remaining from the program—

which would let you reinstall from scratch later—then you’d run apt purge:

$ sudo apt purge psensor

Working with APT repositories
You can control which repositories various apt commands will use through configuration

files in the /etc/apt directory. The primary resource used by APT to determine where to

look for software is the sources.list file. While there will normally be commented-out

lines describing the contents and, perhaps, some optional repositories, here’s what it looks

like with only active repositories listed. Feel free to take a look at the version on your

own machine.

$ cat /etc/apt/sources.list
deb http://ca.archive.ubuntu.com/ubuntu/ bionic main restricted
deb http://ca.archive.ubuntu.com/ubuntu/ bionic-updates main
restricted
deb http://ca.archive.ubuntu.com/ubuntu/ bionic universe
deb http://ca.archive.ubuntu.com/ubuntu/ bionic-updates universe
deb http://ca.archive.ubuntu.com/ubuntu/ bionic multiverse
deb http://ca.archive.ubuntu.com/ubuntu/ bionic-updates multiverse

Continues

Part III: Becoming a Linux System Administrator

210

deb http://ca.archive.ubuntu.com/ubuntu/ bionic-backports main
restricted universe multiverse
deb http://security.ubuntu.com/ubuntu bionic-security main restricted
deb http://security.ubuntu.com/ubuntu bionic-security universe
deb http://security.ubuntu.com/ubuntu bionic-security multiverse

Third parties can, should you permit it, install their own repository information as files

within the /etc/apt/sources.list.d directory. Here’s how those contents might look:

$ ls /etc/apt/sources.list.d/
brave-browser-release.list google-chrome.list skype-stable.list
teamviewer.list

And here’s the contents of the list file used by the Brave browser:

$ cat /etc/apt/sources.list.d/brave-browser-release.list
deb [arch=amd64] https://brave-browser-apt-release.s3.brave.com/
stable main

You may sometimes want to manually add a private repository to your APT configuration.

This might be to manage your own software project, or because there’s software you need

that isn’t part of the regular repositories. You can do this using Personal Package Archives

(PPAs). Just make very sure that you trust the sources you add, as they’re not scanned for

malware or curated the way the mainstream repositories are.

You can add a PPA through the Software & Updates GUI dialog (from Activities, type soft-
ware to open the dialog). Just select the Other Software tab, click the Add button, and

enter the appropriate APT line. Running apt update will tell APT to add the new source

to your repository list. From that point, you’ll be able to install packages the normal way

using APT.

Of course, it will be faster and more Linux-y to do this from the command line using the

apt-add-repository command:

$ sudo apt-add-repository ppa:ansible/ansible
 Ansible is a radically simple IT automation platform that makes your
applications and systems easier to deploy. Avoid writing scripts or
custom code to deploy and update your applications— automate in a
language that approaches plain English, using SSH, with no agents to
install on remote systems.

http://ansible.com/
 More info: https://launchpad.net/~ansible/+archive/ubuntu/ansible
Press [ENTER] to continue or Ctrl-c to cancel adding it.

gpg: unknown option `import-export'
gpg: invalid import options
Failed to add key.

That example worked, but you’ll notice the warning about the encryption keys. This is

important, since we trust APT to ensure that packages that reach our computers are the

Continued

Chapter 10: Getting and Managing Software

211

10

same ones that left the repository. If the keys can’t be confirmed, then there is no guar-

antee and you really shouldn’t use the software.

In this case, you can blame it on the fact that that repository is old and outdated. We just

used it for illustration. Nevertheless, it would be a good idea to remove the source from our

configuration. One quick way to do that is by removing the source file from the /etc/apt/
sources.list.d/ directory and then running apt update again:

$ ls /etc/apt/sources.list.d/
alexlarsson-ubuntu-flatpak-bionic.list ansible-ubuntu-ansible-
bionic.list
alexlarsson-ubuntu-flatpak-bionic.list.save
$
$ sudo rm /etc/apt/sources.list.d/ansible-ubuntu-ansible-bionic.list
$ sudo apt update

Working with dpkg
If APT is the Debian system’s tool for dealing with software that lives in repositories, then

dpkg is the way you deal directly with packages that happen to be lying around your local

machine (although many dpkg tasks can also be run through the more user-friendly apt).

Say, for instance, you were browsing the Internet and downloaded a .deb package contain-

ing some software that you’d like to try. Assuming that you trust the package’s source, and

are comfortable that it hasn’t been altered in transit, you won’t be able to use some apt
install command to install it. Instead, installing, removing, building, and managing

.deb packages is the job of dpkg. Here’s how it works.

Let’s assume your package is called brscan4-0.4.2-1.amd64.deb—which happens to be

the name of a package of Linux printer drivers provided by the Brother company. Installing

the package would be as simple as running dpkg -i followed by the package name. In this

example, the package is in the current directory, so I don’t need to provide a full path:

$ sudo dpkg -i brscan4-0.4.2-1.amd64.deb
(Reading database ... 58215 files and directories currently
installed.)
Preparing to unpack brscan4-0.4.2-1.amd64.deb ...
Unpacking brscan4 (0.4.2-1) over (0.4.2-1) ...
Setting up brscan4 (0.4.2-1) ...
This software is based in part on the work of the Independent
JPEG Group.

You can use dpkg to list all the packages that are currently installed on your system—even

those packages that were installed by APT. Here’s a truncated version of the output:

$ dpkg -l
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-
aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description

Continues

Part III: Becoming a Linux System Administrator

212

+++-==============-============-============-
=================================
ii accountsservic 0.6.45-1ubun amd64 query and manipulate
user account
ii acl 2.2.52-3buil amd64 Access control
list utilities
ii acpid 1:2.0.28-1ub amd64 Advanced Configuration
and Power
ii adduser 3.116ubuntu1 all add and remove users
and groups
ii adwaita-icon-t 3.28.0-1ubun all default icon theme of
GNOME (smal
ii alsa-utils 1.1.3-1ubunt amd64 Utilities for
configuring and usi
ii apache2 2.4.29-1ubun amd64 Apache HTTP Server
ii apache2-bin 2.4.29-1ubun amd64 Apache HTTP Server
(modules and o
ii apache2-data 2.4.29-1ubun all Apache HTTP Server
(common files)
ii apache2-utils 2.4.29-1ubun amd64 Apache HTTP Server
(utility progr
ii apparmor 2.12-4ubuntu amd64 user-space parser
utility for App
ii apport 2.20.9-0ubun all automatically generate
crash repo
ii apport-symptom 0.20 all symptom scripts
for apport
[...]

There are a lot of packages on the system. Why not pipe that command to wc to see

just how many?

$ dpkg -l | wc
 938 9444 122386

There are 938 packages (whose descriptions comprise 9,444 words and 122,386 characters),

to be precise. How many are on your system?

You can narrow that output down if you know the name of the package you’re looking for:

$ dpkg -l apache2
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-
aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-============-============-
=================================
ii apache2 2.4.29-1ubun amd64 Apache HTTP Server

Continued

Chapter 10: Getting and Managing Software

213

10

You can scan the inner workings of a package using -c, which will give us a list of all the

included files and the filesystem locations where they’ll be installed. This can be useful for

administrating the software once it’s installed. This output is only a small portion of what I

got from this command:

$ dpkg -c brscan4-0.4.2-1.amd64.deb
drwxr-xr-x root/root 0 2013-09-25 05:35 ./
drwxr-xr-x root/root 0 2013-09-25 05:35 ./opt/
drwxr-xr-x root/root 0 2013-09-25 05:35 ./opt/brother/
drwxr-xr-x root/root 0 2013-09-25 05:35 ./opt/brother/scanner/
drwxr-xr-x root/root 0 2013-09-25 05:35 ./opt/brother/
scanner/brscan4/
drwxr-xr-x root/root 0 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/
-rw-r--r-- root/root 103 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_5.ini
-rw-r--r-- root/root 141 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_9.ini
-rw-r--r-- root/root 541 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_4.ini
-rw-r--r-- root/root 426 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_8.ini
-rw-r--r-- root/root 676 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_3.ini
-rw-r--r-- root/root 213 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_6.ini
-rw-r--r-- root/root 667 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_7.ini
-rw-r--r-- root/root 79 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_2.ini
-rw-r--r-- root/root 578 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/models4/ext_1.ini
-rw-rw-rw- root/root 2 2013-09-25 05:35 ./opt/brother/scanner/
brscan4/brsanenetdevice4.cfg
[...]

Knowing everything you now know, removing a package is straightforward. But you’ll first

need the name Linux uses to describe it. Our brscan4-0.4.2-1.amd64.deb package has a

dpkg name—and it’s not brscan4-0.4.2-1.amd64.deb. One quick trick to get the infor-

mation we’re after is to run dkpg and filter the results for a minimal subset of that name:

$ dpkg -l | grep brscan
ii brscan4 0.4.2-1 amd64 Brother Scanner Driver

Success. The package is known as brscan4. Now let’s remove it:

$ sudo dpkg -r brscan4
(Reading database ... 58215 files and directories currently
installed.)
Removing brscan4 (0.4.2-1) ...

Part III: Becoming a Linux System Administrator

214

Finally, if any installed Debian package somehow becomes corrupted, you can recon-

figure it using:

$ sudo dpkg --configure <package-name>

Summary
Software packaging in Ubuntu and related systems relies on DEB files. You can try easy-to-

use graphical tools such as Ubuntu Software for finding and installing packages. The pri-

mary command-line tools include aptitude, apt, and dpkg.

Using these software management tools, you can install, query, verify, update, and remove

packages. You can also do maintenance tasks.

With your system installed and the software packages that you need added, it’s time to

configure your system further. If you expect to have multiple people using your system,

your next task could be to add and otherwise manage user accounts on your system. Chap-

ter 11, “Managing User Accounts,” describes user management in Ubuntu.

Exercises
These exercises test your knowledge of working with APT software packages. To do the

exercises, I recommend that you have an Ubuntu system in front of you that has an Inter-

net connection.

You need to be able to reach the Debian repositories (which should be set up automatically).

If you are stuck, solutions to the tasks are shown in Appendix A (although in Linux, there

are often multiple ways to complete a task).

1. Search the APT repository for the package that provides the pdftoppm command.

2. Display information about the package that provides the pdftoppm command, and

determine that package’s home page (URL).

3. Install the package containing the pdftoppm command.

4. Delete the pdftoppm command from your system and verify its package against

the APT database to see that the command is indeed missing.

5. Reinstall the package that provides the pdftoppm command, and make sure that

the entire package is intact again.

215

CHAP T ER

11
Managing User Accounts

IN THIS CHAPTER

Working with user accounts

Working with group accounts

Con�guring centralized user accounts

A
dding and managing users are common tasks for Linux system administrators. User accounts

keep boundaries between the people who use your systems and between the processes that

run on your systems. Groups are a way of assigning rights to your system that can be assigned

to multiple users at once.

This chapter describes not only how to create a new user, but also how to create prede�ned settings

and �les to con�gure the user’s environment. Using tools such as the adduser and usermod com-

mands, you can assign settings such as the location of a home directory, a default shell, a default

group, and speci�c user ID and group ID values. With Cockpit, you can add and manage user accounts

through a web UI.

Creating User Accounts
Every person who uses your Linux system should have a separate user account. Having a user

account provides you with an area in which to store �les securely as well as a means of tailoring

your user interface (GUI, path, environment variables, and so on) to suit the way that you use

the computer.

You can add user accounts to most Linux systems in several ways. Cockpit is a browser-based moni-

toring and administration tool that includes an Account selection for creating and managing user

accounts. If Cockpit is not yet installed and enabled, do that as follows:

apt install cockpit
systemctl enable --now cockpit.socket

Part III: Becoming a Linux System Administrator

216

To create a user account through Cockpit, do the following:

1. Open the Cockpit interface from your web browser (localhost:9090). If you’d

prefer to install and try Cockpit on a VM or remote machine and access it locally,

you would use that machine’s IP address instead of localhost. Note that, since

you won’t be using an encryption certi�cate from a certi�cate authority (CA), you

will have to click past your browser’s privacy warning to enter the site.

2. Log in as an existing user with sudo authority and select the “Reuse my password

for privileged tasks” check box.

3. Select the Accounts link on the left side of the page and then Create New Account.

Figure 11.1 shows an example of the Create New Account pop-up window.

4. Begin adding a new user account to your Linux system. Here are the �elds you need

to �ll in:

Full Name Use the user’s real name, typically used with uppercase and lowercase

letters, as the user would write it in real life. Technically, this information is stored

in the comment �eld of the passwd �le, but by convention, most Linux and UNIX

systems expect this �eld to hold each user’s full name.

FIGURE 11.1

Add and modify user accounts from Cockpit.

Chapter 11: Managing User Accounts

217

11

User Name This is the name used to log in as this user. When you choose a user-

name, don’t begin with a number (for example, 26jsmith). Also, it’s best to use all

lowercase letters, no control characters or spaces, and a maximum of eight char-

acters, by convention. Having users named Jsmith and jsmith can cause confusion

with programs (such as sendmail) that don’t distinguish case.

Password, Con�rm Enter the password you want the user to have in the Pass-

word and Con�rm �elds. The password should be at least eight characters long and

contain a mixture of uppercase and lowercase letters, numbers, and punctuation. It

should not contain real words, repeated letters, or letters in a row on the keyboard.

Through this interface, you must set a password that meets the preceding criteria.

(If you want to add a password that doesn’t meet these criteria, you can use the

adduser command, described later in this chapter.) Bars underneath the password

�elds turn from red to green as you improve the strength of your password.

Access To create an account that you are not quite ready to use, select the Lock

Account check box. That prevents anyone from logging in to the account until you

uncheck that box or change that information in the passwd �le.

5. Select Create to add the user to the system. An entry for the new user account is

added to the /etc/passwd �le and the new group account to the /etc/group

�le. (I will describe those later in this chapter.)

The Cockpit Accounts screen lets you modify a small set of information about a regular user

after it has been created. To modify user information later, do the following:

1. Select the user account that you want to change. A screen appears with available

selections for that user account.

2. You can delete the user but not modify the username, but you can change the fol-

lowing information:

Full Name Because the user’s full name is just a comment, you can change that as

you please.

Roles By default, you have the opportunity to select check boxes that allow the

user to be added to the role of Server Administrator (giving the user root privilege

by being added to the sudo group). Other roles might be added to this list by other

Cockpit components. If the user is logged in, that user must log out to obtain those

privileges.

Access You can choose Lock Account to lock the account. The “Never lock

account” link lets you choose a speci�c date beyond which the account will be

locked, or to never lock the account (setting no account expiration date).

Password You can choose Set Password to set a new password for that user or

Force Change to force the user to change their password the next time they log

in. By default, passwords never expire. You can change that to have the password

expire every set number of days.

Part III: Becoming a Linux System Administrator

218

Authorized Public SSH Keys If you have a public SSH key for the user, you can

select the plus sign (+) for this �eld, paste that key into the text box, and select

Add key. With that key in place, the user with the associated private key is allowed

to log in to that user account via SSH without needing to enter a password.

3. Changes take effect immediately, so you can simply leave the window when you are

done modifying the user account.

The Accounts area of the Cockpit web UI was designed to simplify the process of creating

and modifying user accounts. More features associated with user accounts can be added

or modi�ed from the command line. The next section of this chapter describes how to add

user accounts from the command line with adduser and change them with the usermod

command.

Adding users with adduser
Sometimes, a Linux system doesn’t have a desktop tool or web UI available for adding

users. Other times, you might �nd it more convenient to add lots of users at once with a

shell script or change user account features that are not available from Cockpit. For those

cases, commands are available to enable you to add and modify user accounts from the

command line.

The most straightforward method for creating a new user from the shell is the adduser

command. After opening a Terminal window and gaining root authority, you simply invoke

adduser at the command prompt, with details of the new account as parameters.

The only required parameter is the login name of the user, but you’ll sometimes want to

include some additional information. Each item of account information is preceded by a

single-letter option code with a dash in front of it. The following options are available

with adduser:

--home home_dir: Manually set the home directory to use for the account. By

default, a directory using the same as the login name will be created in /home. The

–home argument can create that directory wherever you’d like.

--ingroup group: Place the new user in an existing group. In any case, a new

group is created that is the same as the username and is used as that user’s pri-

mary group.

--uid ID: Assign a speci�c UID for this user. By default, adduser will assign the

user a new UID within the range de�ned in the /etc/adduser.conf �le.

--shell shell: Specify a non-default command shell to use for this account. Replace

shell with the command shell (for example, --shell /bin/csh).

NOTE

Ubuntu recommends you use the adduser and deluser scripts rather than the useradd and userdel native

binary commands that are more common for other distributions like Fedora. While they’re similar from a feature per-

spective, adduser was built to be more user friendly and interactive. Both commands are available on Ubuntu.

Chapter 11: Managing User Accounts

219

11

Let’s create an account for a new user. The user’s full name is Sara Green, with a login name

of sara. To begin, become root user and type the following command:

$ sudo adduser sara
Adding user `sara' ...
Adding new group `sara' (1001) ...
Adding new user `sara' (1001) with group `sara' ...
Creating home directory `/home/sara' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for sara
Enter the new value, or press ENTER for the default
 Full Name []: Sara Green
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n]

The command creates the new user and assigns it group and user IDs for the new user and

group that it creates. It will then create the user’s new home directory (in /home/sara/)

and copy �les from the /etc/skel directory. (Any �les you save to the skel directory

will be automatically added to home directories of new users as their accounts are created.)

You’ll then be prompted to enter a new password for the user and may, optionally, add a full

name and other contact information. When you’re done, the account will be created.

In creating the account for sara, the adduser command performs several actions:

■■ Reads the /etc/login.defs and /etc/adduser.conf �les to get default values

to use when creating accounts.

■■ Checks command-line parameters to �nd out which default values to override.

■■ Creates a new user entry in the /etc/passwd and /etc/shadow �les based on the

default values and command-line parameters.

■■ Creates any necessary entries for new groups in the /etc/group �le.

■■ Creates a home directory based on the user’s name in the /home directory.

■■ Copies any �les located within the /etc/skel directory to the new home direc-

tory. This usually includes login and application startup scripts.

The preceding example uses only a few of the available adduser options. Most account

settings are assigned using default values. You can set more values explicitly if you want

to. Here’s an example that uses a few more options to do so:

NOTE

Keep in mind that creating new passwords as root user lets you add short or blank passwords that regular users

cannot add themselves.

Part III: Becoming a Linux System Administrator

220

adduser -g users -G wheel,apache -s /bin/tcsh -c "Sara Green" sara

This command line results in the following line being added to the /etc/passwd �le:

sara:x:1001:1001:Sara Green,,,:/home/sara:/bin/bash

Each line in the /etc/passwd �le represents a single user account record. Each �eld is

separated from the next by a colon (:). The �eld’s position in the sequence determines what

it is. As you can see, the login name is �rst. The password �eld contains an x because, in

this example, the shadow password �le is used to store actual encrypted password data (in

/etc/shadow).

The user ID selected by adduser is 1001. The primary group ID is also 1001, which cor-

responds to a new private sara group in the /etc/group �le. The comment �eld was

correctly set to Sara Green, the home directory was automatically assigned as /home/
sara, and the command shell was assigned as /bin/bash.

The /etc/group �le holds information about the different groups on your Linux system and

the users who belong to them. Groups are useful for enabling multiple users to share access to

the same �les while denying access to others. Here is the /etc/group entry created for sara:

sara:x:1001:

Each line in the group �le contains the name of a group, a group password (usually �lled

with an x), the group ID number associated with it, and a list of users in that group. By

default, each user is added to their own group, beginning with the next available GID,

starting with 1000.

Setting user defaults
The adduser command determines the default values for new accounts by reading the /
etc/login.defs and /etc/adduser.conf �les. You can modify those defaults by edit-

ing the �les manually with a standard text editor. Here is an example containing many of

the settings that you might �nd in a typical login.defs �le:

MAIL_DIR /var/mail
FAILLOG_ENAB yes
LOG_UNKFAIL_ENAB no
LOG_OK_LOGINS no
SYSLOG_SU_ENAB yes
SYSLOG_SG_ENAB yes
FTMP_FILE /var/log/btmp
SU_NAME su
HUSHLOGIN_FILE .hushlogin
ENV_SUPATH PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/bin
ENV_PATH PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
TTYGROUP tty
TTYPERM 0600
ERASECHAR 0177
KILLCHAR 025

Chapter 11: Managing User Accounts

221

11

UMASK 022
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_WARN_AGE 7
UID_MIN 1000
UID_MAX 60000
GID_MIN 1000
GID_MAX 60000
LOGIN_RETRIES 5
LOGIN_TIMEOUT 60
CHFN_RESTRICT rwh
DEFAULT_HOME yes
USERGROUPS_ENAB yes

All uncommented lines contain keyword/value pairs. For example, the keyword PASS_MAX_DAYS

is followed by some white space and the value 99999. This tells adduser that the user pass-

word needs to be updated after no more than 99,999 days. Or, in other words, there is currently

no limit on how long users can keep their old passwords. Other lines let you customize the valid

range of automatically assigned user ID numbers or group ID numbers. (This example starts at

1,000 and goes up to 60,000.)

A comment section that explains that keyword’s purpose precedes each keyword (which

I edited out here to save space). Altering a default value is as simple as editing the value

associated with a keyword and saving the �le before running the adduser command.

If you want to view other default settings, you can �nd them in the /etc/adduser.conf �le.

Here’s how that �le can look:

DSHELL=/bin/bash
DHOME=/home
GROUPHOMES=no
LETTERHOMES=no
SKEL=/etc/skel
FIRST_SYSTEM_UID=100
LAST_SYSTEM_UID=999
FIRST_SYSTEM_GID=100
LAST_SYSTEM_GID=999
FIRST_UID=1000
LAST_UID=59999
FIRST_GID=1000
LAST_GID=59999
USERGROUPS=yes
USERS_GID=100
DIR_MODE=0755
SETGID_HOME=no
QUOTAUSER=""
SKEL_IGNORE_REGEX="dpkg-(old|new|dist|save)"

Other commands that are useful for working with user accounts include usermod (to mod-

ify settings for an existing account) and deluser (to delete an existing user account).

Part III: Becoming a Linux System Administrator

222

Modifying users with usermod
The usermod command provides a simple and straightforward method for changing

account parameters. Many of the options available with it mirror those found in adduser.

The options that can be used with this command include the following:

-c username: Change the description associated with the user account. Replace

username with the name of the user account (-c jake). Use quotes to enter mul-

tiple words (for example, -c ″Jake Jackson″).

-d home_dir: Change the home directory to use for the account. The default is to

name it the same as the login name and to place it in /home. Replace home_dir

with the directory name to use (for example, -d /mnt/homes/jake).

-e expire_date: Assign a new expiration date for the account in YYYY-MM-DD

format. Replace expire_date with a date you want to use. (For October 15, 2022,

use -e 2022-10-15.)

-f -1: Change the number of days after a password expires until the account is permanently

disabled. The default, -1, disables the option. Setting this to 0 disables the account

immediately after the password has expired. Replace -1 with the number to use.

-g group: Change the primary group (as listed in the /etc/group �le) the user will

be in. Replace group with the group name (for example, -g sudo).

-G grouplist: Set the user’s secondary groups to the supplied comma-separated

list of groups. If the user is already in at least one group besides the user’s private

group, you must add the -a option as well (-Ga). If not, the user belongs to only the

new set of groups and loses membership to any previous groups.

-l login_name: Change the login name of the account.

-L: Lock the account by putting an exclamation point at the beginning of the

encrypted password in /etc/shadow. This locks the account while still allowing

you to leave the password intact (the -U option unlocks it).

-m: Available only when –d is used. This causes the contents of the user’s home direc-

tory to be copied to the new directory.

-o: Use only with -u uid to remove the restriction that UIDs must be unique.

-s shell: Specify a different command shell to use for this account. Replace shell

with the command shell (for example, -s bash).

-u user_id: Change the user ID number for the account. Replace user_id with the

ID number (for example, -u 1474).

-U: Unlock the user account (by removing the exclamation mark at the beginning of

the encrypted password).

The following are examples of the usermod command:

usermod -s /bin/csh chris
usermod -Ga sales,marketing, chris

Chapter 11: Managing User Accounts

223

11

The �rst example changes the shell to the csh shell for the user named chris. In the

second example, supplementary groups are added for the user chris. The -a option (-Ga)

makes sure that the supplementary groups are added to any existing groups for the user

chris. If the -a is not used, existing supplementary groups for chris are erased and the

new list of groups includes the only supplementary groups assigned to that user.

Deleting users with deluser
Just as usermod is used to modify user settings and adduser is used to create users,

deluser is used to remove users. The following command removes the user chris:

deluser --remove-home chris

Here, the user chris is removed from the /etc/passwd �le. The –-remove-home option

removes the user’s home directory as well. If you choose not to use --remove-home, the

home directory for chris is not removed:

deluser chris

Keep in mind that simply removing the user account does not change anything about

the �les that user leaves around the system (except those that are deleted when you use

--remove-home). However, ownership of �les left behind appear as belonging to the pre-

vious owner’s user ID number when you run ls -l on the �les.

Before you delete the user, you may want to run a find command to �nd all �les that

would be left behind by the user. After you delete the user, you could search on user ID to

�nd �les left behind. Here are two find commands to do those things:

find / -user chris -ls
find / -uid 504 -ls

Because �les that are not assigned to any username are considered to be a security risk, it

is a good idea to �nd those �les and assign them to a real user account. Here’s an example

of a find command that �nds all �les in the �lesystem that are not associated with any

user (the �les are listed by UID):

find / -nouser -ls

Understanding Group Accounts
Group accounts are useful if you want to share a set of �les with multiple users. You can

create a group and con�gure the set of �les to be associated with that group. The root user

can assign users to that group so they can all have access to �les based on that group’s per-

mission. Consider the following �le and directory:

$ ls -ld /var/salesdocs /var/salesdocs/file.txt
drwxrwxr-x. 2 root sales 4096 Jan 14 09:32 /var/salesstuff/
-rw-rw-r--. 1 root sales 0 Jan 14 09:32 /var/salesstuff/file.txt

Part III: Becoming a Linux System Administrator

224

Looking at permissions on the directory /var/salesdocs (rwxrwxr-x), you see the sec-

ond set of rwx shows that any member of the group (sales) has permission to read �les

in that directory (r is read), create and delete �les from that directory (w is write), and

change to that directory (x is execute). The �le named file.txt can be read and changed

by members of the sales group (based on the second rw-).

Using group accounts
Every user is assigned to a primary group. In Ubuntu, by default, that group is a new group

with the same name as the user. So, if the user were named sara, the group assigned to

her would also be sara. The primary group is indicated by the number in the third �eld of

each entry in the /etc/passwd �le; for example, the group ID 1001 here:

sara:x:1001:1001:Sara Green:/home/sara:/bin/tcsh

That entry points to an entry in the /etc/group �le:

sara:x:1001:

Let’s turn to the sara user and group accounts for examples. Here are a few facts about

using groups:

■■ When sara creates a �le or directory, by default, that �le or directory is assigned

to sara’s primary group (also called sara).

■■ The user sara can belong to zero or more supplementary groups. If sara were a

member of groups named sales and marketing, those entries could look like the

following in the /etc/group �le:

 sales:x:1302:joe,bill,sally,sara

 marketing:x:1303:mike,terry,sara

■■ The user sara can’t add herself to a supplementary group. She can’t even add

another user to her sara group. Only someone with root privilege can assign users

to groups.

■■ Any �le assigned to the sales or marketing group is accessible to sara with

group and other permissions (whichever provides the most access). If sara wants

to create a �le with the sales or marketing groups assigned to it, she could use

the newgrp command. In this example, sara uses the newgrp command to have

sales become her primary group temporarily and creates a �le:

[sara]$ touch file1

[sara]$ newgrp sales

[sara]$ touch file2

[sara]$ ls -l file*

-rw-rw-r--. 1 sara sara 0 Jan 18 22:22 file1

-rw-rw-r--. 1 sara sales 0 Jan 18 22:23 file2

[sara]$ exit

Chapter 11: Managing User Accounts

225

11

It is also possible to allow users to become a member of a group temporarily with the new-
grp command without actually being a member of that group. To do that, someone with

root permission can use gpasswd to set a group password (such as gpasswd sales).

After that, any user can type newgrp sales into a shell and temporarily use sales as

their primary group by simply entering the group password when prompted.

Creating group accounts
As the root user, you can create new groups from the command line with the addgroup

command. Also, groups are created automatically when a user account is created.

Group ID numbers from 0 through 999 are assigned to special administrative groups. For

example, the root group is associated with GID 0. Regular groups begin at 1000 for Ubuntu.

On the �rst UNIX systems, GIDs went from 0 to 99. Other Linux systems reserve GIDs

between 0 and 500 for administrative groups.

Here are some examples of creating a group account with the addgroup command:

addgroup kings
addgroup --gid 1325 jokers

In the examples just shown, the group named kings is created with the next available

group ID. After that, the group jokers is created using the 1325 group ID. Some adminis-

trators like using an unde�ned group number above 200 and under 1000 so that the group

they create doesn’t intrude on the group designations above 1000 (so UID and GID numbers

can go along in parallel).

To change a group later, use the groupmod command, as in the following example:

groupmod -g 330 jokers
groupmod -n jacks jokers

In the �rst example, the group ID for jokers is changed to 330. In the second, the name

jokers is changed to jacks. If you then wanted to assign any of the groups as supple-

mentary groups to a user, you can use the usermod command (as described earlier in

this chapter).

Managing Users in the Enterprise
The basic Linux method of handling user and group accounts has not changed since the

�rst UNIX systems were developed decades ago. However, as Linux systems have become

used in more complex ways, features for managing users, groups, and the permissions asso-

ciated with them have been added on to the basic user/group model so that it could be

more �exible and more centralized:

More �exible In the basic model, only one user and one group can be assigned to

each �le. Also, regular users have no ability to assign speci�c permissions to dif-

ferent users or groups and very little �exibility setting up collaborative �les/

directories. Enhancements to this model allow regular users to set up special

Part III: Becoming a Linux System Administrator

226

collaborative directories (using features such as sticky bit and set GID bit direc-

tories). Using Access Control Lists (ACLs), any user can also assign speci�c permis-

sions to �les and directories to any users and groups they like.

More centralized When you have only one computer, storing user information for

all users in the /etc/passwd �le is probably not a big deal. However, if you need

to authenticate the same set of users across thousands of Linux systems, central-

izing that information can save lots of time and heartache. Linux includes features

that enable you to authenticate users from LDAP servers or Microsoft Active Direc-

tory servers.

The following sections describe how to use features such as ACLs and shared directories

(sticky bit and set GID bit directories) to provide powerful ways to share �les and direc-

tories selectively.

Setting permissions with Access Control Lists
The Access Control List (ACL) feature was created so that regular users could share their �les

and directories selectively with other users and groups. With ACLs, a user can allow others

to read, write, and execute �les and directories without leaving those �lesystem elements

wide open or requiring the root user to change the user or group assigned to them.

Here are a few things to know about ACLs:

■■ For ACLs to be used, they must be enabled on a �lesystem when that �lesystem

is mounted.

■■ If you create a �lesystem after installation (such as when you add a hard disk),

you need to make sure that the acl mount option is used when the �lesystem is

mounted (more on that later).

■■ To add ACLs to a �le, you use the setfacl command; to view ACLs set on a �le,

you use the getfacl command.

■■ To set ACLs on any �le or directory, you must be the actual owner (user) assigned

to it. In other words, being assigned user or group permissions with setfacl does

not give you permission to change ACLs on those �les yourself.

■■ Because multiple users and groups can be assigned to a �le/directory, the actual

permission a user has is based on a union of all user/group designations to which

they belong. For example, if a �le has read-only permission (r--) for the sales

group and read/write/execute (rwx) for the market group, and mary belonged to

both, mary would have rwx permission.

NOTE

If ACLs are not enabled on the �lesystem you are trying to use with setfacl, see the section “Enabling ACLs” later

in this chapter for information on how to mount a �lesystem with ACLs enabled.

Chapter 11: Managing User Accounts

227

11

Setting ACLs with setfacl

Using the setfacl command, you can modify permissions (-m) or remove ACL permissions

(-x). The following is an example of the syntax of the setfacl command:

setfacl -m u:username:rwx filename

In the example just shown, the modify option (-m) is followed by the letter u, indicating

that you are setting ACL permissions for a user. After a colon (:), you indicate the user-

name, followed by another colon and the permissions that you want to assign. As with the

chmod command, you can assign read (r), write (w), and/or execute (x) permissions to the

user or group (in the example, full rwx permission is given). The last argument is replaced

by the actual �lename you are modifying.

The following are some examples of the user mary using the setfacl command to add

permission for other users and groups on a �le:

[mary]$ touch /tmp/memo.txt
[mary]$ ls -l /tmp/memo.txt
-rw-rw-r--. 1 mary mary 0 Jan 21 09:27 /tmp/memo.txt
[mary]$ setfacl -m u:bill:rw /tmp/memo.txt
[mary]$ setfacl -m g:sales:rw /tmp/memo.txt

In the preceding example, mary created a �le named /tmp/memo.txt. Using the setfacl

command, she modi�ed (-m) permissions for the user named bill so that he now has read/

write (rw) permissions to that �le. Then she modi�ed permissions for the group sales so

that anyone belonging to that group would also have read/write permissions. Look at ls
-l and getfacl output on that �le now:

[mary]$ ls -l /tmp/memo.txt
-rw-rw-r--+ 1 mary mary 0 Jan 21 09:27 /tmp/memo.txt
[mary]$ getfacl /tmp/memo.txt
file: tmp/memo.txt
owner: mary
group: mary
user::rw-
user:bill:rw-
group::rw-
group:sales:rw-
mask::rw-
other::r--

From the ls -l output, notice the plus sign (+) in the rw-rw-r--+ output. The plus sign

indicates that ACLs are set on the �le, so you know to run the getfacl command to see

how ACLs are set. The output shows mary as owner and group (same as what you see with

ls -l), the regular user permissions (rw-), and permissions for ACL user bill (rw-). The

same is true for group permissions and permissions for the group sales. Other permis-

sions are r--.

Part III: Becoming a Linux System Administrator

228

The mask line (near the end of the previous getfacl example) requires some special dis-

cussion. As soon as you set ACLs on a �le, the regular group permission on the �le sets a

mask of the maximum permission an ACL user or group can have on a �le. So, even if you

provide an individual with more ACL permissions than the group permissions allow, the

individual’s effective permissions do not exceed the group permissions as in the following

example:

[mary]$ chmod 644 /tmp/memo.txt
[mary]$ getfacl /tmp/memo.txt
file: tmp/memo.txt
owner: mary
group: mary
user::rw-
user:bill:rw- #effective:r--
group::rw- #effective:r--
group:sales:rw- #effective:r--
mask::r--
other::r--

Notice in the preceding example that even though the user bill and group sales have

rw- permissions, their effective permissions are r--. So, bill or anyone in sales would

not be able to change the �le unless mary were to open permissions again (for example, by

typing chmod 664 /tmp/memo.txt).

Setting default ACLs

Setting default ACLs on a directory enables your ACLs to be inherited. This means that

when new �les and directories are created in that directory, they are assigned the same

ACLs. To set a user or group ACL permission as the default, you add a d: to the user or

group designation. Consider the following example:

[mary]$ mkdir /tmp/mary
[mary]$ setfacl -m d:g:market:rwx /tmp/mary/
[mary]$ getfacl /tmp/mary/
file: tmp/mary/
owner: mary
group: mary
user::rwx
group::rwx
other::r-x
default:user::rwx
default:group::rwx
default:group:sales:rwx
default:group:market:rwx
default:mask::rwx
default:other::r-x

Chapter 11: Managing User Accounts

229

11

To make sure that the default ACL worked, create a subdirectory. Then run getfacl again.

You will see that default lines are added for user, group, mask, and other, which are

inherited from the directory’s ACLs:

[mary]$ mkdir /tmp/mary/test
[mary]$ getfacl /tmp/mary/test
file: tmp/mary/test
owner: mary
group: mary
user::rwx
group::rwx
group:sales:rwx
group:market:rwx
mask::rwx
other::r-x
default:user::rwx
default:group::rwx
default:group:sales:rwx
default:group:market:rwx
default:mask::rwx
default:other::r-x

Notice that when you create a �le in that directory, the inherited permissions are differ-

ent. Because a regular �le is created without execute permission, the effective permission is

reduced to rw-:

[mary@cnegus ~]$ touch /tmp/mary/file.txt
[mary@cnegus ~]$ getfacl /tmp/mary/file.txt
file: tmp/mary/file.txt
owner: mary
group: mary
user::rw-
group::rwx #effective:rw-
group:sales:rwx #effective:rw-
group:market:rwx #effective:rw-
mask::rw-
other::r--

Enabling ACLs

In recent Ubuntu systems, xfs and ext �lesystem types (ext2, ext3, and ext4) are automat-

ically created with ACL support. On other Linux systems, or on �lesystems created on other

Linux systems, you can add the acl mount option in several ways:

■■ Add the acl option to the �fth �eld in the line in the /etc/fstab �le that auto-

matically mounts the �lesystem when the system boots up.

■■ Implant the acl line in the Default mount options �eld in the �lesystem’s

super block, so that the acl option is used whether the �lesystem is mounted

automatically or manually.

■■ Add the acl option to the mount command line when you mount the �lesystem

manually with the mount command.

Part III: Becoming a Linux System Administrator

230

To check that the acl option has been added to an ext �lesystem, determine the device

name associated with the �lesystem, and run the tune2fs -l command to view the

implanted mount options, as in this example:

$ mount | grep sda
/dev/sda2 on / type ext4 (rw,relatime,errors=remount-ro)
tune2fs -l /dev/sda2 | grep mount
Last mounted on: /
Default mount options: user_xattr acl
Last mount time: Wed Mar 25 07:50:52 2020

First, I typed the mount command to see a list of all �lesystems that are currently

mounted, limiting the output by grepping for the string sda (because I wanted to con-

�rm the existence of the �lesystem mounted on /dev/sda2). I used that as an option to

tune2fs -l to �nd the default mount options line. There, I �ltered for the string mount

and saw that both user_xattr (for controlling extended �le system attributes) and acl

were implanted in the �lesystem super block so that they would be used when the �lesystem

was mounted.

If the Default mount options �eld is blank (such as when you have just created a

new �lesystem), you can add the acl mount option using the tune2fs -o command. For

example, on a different Linux system, I created a �lesystem on a removable USB drive that

was assigned as the /dev/sdc1 device. To implant the acl mount option and check that it

is there, I ran the following commands:

tune2fs -o acl /dev/sdc1
tune2fs -l /dev/sdc1 | grep "mount options"
Default mount options: acl

You can test that this worked by remounting the �lesystem and trying to use the setfacl

command on a �le in that �lesystem.

A second way to add acl support to a �lesystem is to add the acl option to the line in the

/etc/fstab �le that automatically mounts the �lesystem at boot time. The following is

an example of what a line would look like that mounts the ext4 �lesystem located on the /
dev/sdc1 device to the /var/stuff directory:

/dev/sdc1 /var/stuff ext4 acl 1 2

Instead of the defaults entry in the fourth �eld, I added acl. If there were already

options set in that �eld, add a comma after the last option and add acl. The next time the

�lesystem is mounted, ACLs are enabled. If the �lesystem were already mounted, I could

type the following mount command as root to remount the �lesystem using acl or any

other values added to the /etc/fstab �le:

mount -o remount /dev/sdc1

A third way that you can add ACL support to a �lesystem is to mount the �lesystem by

hand and speci�cally request the acl mount option. So, if there were no entry for the

Chapter 11: Managing User Accounts

231

11

�lesystem in the /etc/fstab �le, after creating the mount point (/var/stuff), type the

following command to mount the �lesystem and include ACL support:

mount -o acl /dev/sdc1 /var/stuff

Keep in mind that the mount command only mounts the �lesystem temporarily. When the

system reboots, the �lesystem is not mounted again, unless you add an entry to the /etc/
fstab �le.

Adding directories for users to collaborate

A special set of three permission bits are typically ignored when you use the chmod

command to change permissions on the �lesystem. These bits can set special permissions

on commands and directories. The focus of this section is setting the bits that help you

create directories to use for collaboration.

As with read, write, and execute bits for user, group, and other, these special �le per-

mission bits can be set with the chmod command. If, for example, you run chmod 775 /
mnt/xyz, the implied permission is actually 0775. To change permissions, you can replace

the number 0 with any combination of those three bits (4, 2, and 1), or you can use letter

values instead. (Refer to Chapter 4, “Moving Around the Filesystem,” if you need to be

reminded about how permissions work.) The letters and numbers are shown in Table 11.1.

The bits in which you are interested for creating collaborative directories are the set group

ID bit (2) and sticky bit (1). If you are interested in other uses of the set user ID and set

group ID bits, refer to the sidebar “Using Set UID and Set GID Bit Commands.”

Creating group collaboration directories (set GID bit)

When you create a set GID directory, any �les created in that directory are assigned to the

group assigned to the directory itself. The idea is to have a directory where all members of

a group can share �les but still protect them from other users. Here’s a set of steps for cre-

ating a collaborative directory for all users in the group I created called sales:

1. Create a group to use for collaboration:

 # addgroup --gid 301 sales

2. Add to the group some users with which you want to be able to share �les

(I used mary):

 # usermod -aG sales mary

TABLE 11.1 Commands to Create and Use Files

NAME NUMERIC VALUE LETTER VALUE

Set user ID bit 4 u+s

Set group ID bit 2 g+s

Sticky bit 1 o+t

Part III: Becoming a Linux System Administrator

232

3. Create the collaborative directory:

 # mkdir /mnt/salestools

4. Assign the group sales to the directory:

 # chgrp sales /mnt/salestools

5. Change the directory permission to 2775. This turns on the set group ID bit (2),

full rwx for the user (7), rwx for group (7), and r-x (5) for other:

 # chmod 2775 /mnt/salestools

6. Become mary (run su - mary). As mary, create a �le in the shared directory and

look at the permissions. When you list permissions, you can see that the directory

is a set GID directory because a lowercase s appears where the group execute per-

mission should be (rwxrwsr-x):

 # su - mary
 [mary]$ touch /mnt/salestools/test.txt
 [mary]$ ls -ld /mnt/salestools/ /mnt/salestools/test.txt
 drwxrwsr-x. 2 root sales 4096 Jan 22 14:32 /mnt/salestools/
 -rw-rw-r--. 1 mary sales 0 Jan 22 14:32 /mnt/salestools/test.txt

Typically, a �le created by mary would have the group mary assigned to it. But because

test.txt was created in a set group ID bit directory, the �le is assigned to the sales

group. Now, anyone who belongs to the sales group can read from or write to that �le,

based on group permissions.

Using Set UID and Set GID Bit Commands
The set UID and set GID bits are used on special executable �les that allow commands to be run dif-
ferently than most. Normally, when a user runs a command, that command runs with that user’s per-
missions. In other words, if I run the vi command as chris, that instance of the vi command would
have the permissions to read and write �les that the user chris could read and write.

Commands with the set UID or set GID bits set are different. It is the owner and group assigned to
the command, respectively, that determines the permissions the command has to access resources
on the computer. So, a set UID command owned by root would run with root permissions; a set GID
command owned by Apache would have Apache group permissions.

Examples of applications that have set UID bits turned on are the su and newgrp commands. In both
of those cases, the commands must be able to act as the root user to do their jobs. However, to actu-
ally get root permissions, a user must provide a password. You can tell su is a set UID bit command
because of the s where the �rst execute bit (x) usually goes:

 $ ls -l /bin/su
 -rwsr-xr-x. 1 root root 30092 Jan 30 07:11 su

Chapter 11: Managing User Accounts

233

11

Creating restricted deletion directories (sticky bit)

A restricted deletion directory is created by turning on a directory’s sticky bit. What makes a

restricted deletion directory different than other directories? Normally, if write permission

is open to a user on a �le or directory, that user can delete that �le or directory. However,

in a restricted deletion directory, unless you are the root user or the owner of the direc-

tory, you can never delete another user’s �les.

Typically, a restricted deletion directory is used as a place where lots of different users can

create �les. For example, the /tmp directory is a restricted deletion directory:

$ ls -ld /tmp
drwxrwxrwt. 116 root root 36864 Jan 22 14:18 /tmp

You can see that the permissions are wide open, but instead of an x for the execute bit for

other, the t indicates that the sticky bit is set. The following is an example of creating a

restricted deletion directory with a �le that is wide open for writing by anyone:

[mary]$ mkdir /tmp/mystuff
[mary]$ chmod 1777 /tmp/mystuff
[mary]$ cp /etc/services /tmp/mystuff/
[mary]$ chmod 666 /tmp/mystuff/services
[mary]$ ls -ld /tmp/mystuff /tmp/mystuff/services
drwxrwxrwt. 2 mary mary 4096 Jan 22 15:28 /tmp/mystuff/
-rw-rw-rw-. 1 mary mary 640999 Jan 22 15:28 /tmp/mystuff/services

With permissions set to 1777 on the /tmp/mystuff directory, you can see that all per-

missions are wide open, but a t appears instead of the last execute bit. With the /tmp/
mystuff/services �le open for writing, any user could open it and change its contents.

However, because the �le is in a sticky bit directory, only root and mary can delete

that �le.

Centralizing User Accounts
Although the default way of authenticating users in Linux is to check user information

against the /etc/passwd �le and passwords from the /etc/shadow �le, you can authen-

ticate in other ways as well. In most large enterprises, user account information is stored in

a centralized authentication server, so each time you install a new Linux system, instead of

adding user accounts to that system, you have the Linux system query the authentication

server when someone tries to log in.

As with local passwd/shadow authentication, con�guring centralized authentication

requires that you provide two types of information: account information (username, user/

group IDs, home directory, default shell, and so on) and authentication method (different

types of encrypted passwords, smart cards, retinal scans, and so on). Linux provides ways

of con�guring those types of information.

Authentication domains that are supported in Linux include LDAP, NIS, and Windows

Active Directory.

Part III: Becoming a Linux System Administrator

234

Supported centralized database types include the following:

LDAP The Lightweight Directory Access Protocol (LDAP) is a popular protocol for pro-

viding directory services (such as phone books, addresses, and user accounts). It is

an open standard that is con�gured in many types of computing environments.

NIS The Network Information Service (NIS) was originally created by Sun Microsys-

tems to propagate information such as user accounts, host con�guration, and other

types of system information across many UNIX systems. Because NIS passes infor-

mation in clear text, most enterprises now use the more secure LDAP or Winbind

protocols for centralized authentication.

Winbind Selecting Winbind from the Authentication Con�guration window enables

you to authenticate your users against a Microsoft Active Directory (AD) server.

Many large companies extend their desktop authentication setup to do server con-

�guration as well as using an AD server.

If you are looking into setting up your own centralized authentication services and you

want to use an open-source project, check out the OpenLDAP implementation. The ldap-
utils package can be installed through the regular APT repos.

Summary
Having separate user accounts is the primary method of setting secure boundaries between

the people who use your Linux system. Regular users typically can control the �les and

directories within their own home directories but very little outside of those directories.

In this chapter, you learned how to add user and group accounts, how to modify them, and

even how to extend user and group accounts beyond the boundaries of the local /etc/
passwd �le. You also learned that authentication can be done by accessing centralized

LDAP servers.

The next chapter introduces another basic topic needed by Linux system administrators:

how to manage disks. In that chapter, you learn how to partition disks, add �lesystems,

and mount them so the contents of the disk partitions are accessible to those using your

system.

Exercises
Use these exercises to test your knowledge of adding and managing user and group

accounts in Linux. These tasks assume that you are running an Ubuntu system (although

some tasks work on other Linux systems as well). If you are stuck, solutions to the tasks

are shown in Appendix A (although in Linux, you often have multiple ways to com-

plete a task).

Chapter 11: Managing User Accounts

235

11

1. Add a local user account to your Linux system that has a username of jbaxter

and a full name of John Baxter and that uses /bin/sh as its default shell. Let the

UID be assigned by default. Set the password for jbaxter to: My1N1te0ut!

2. Create a group account named testing that uses group ID 315.

3. Add jbaxter to the testing group and the bin group.

4. Open a shell as jbaxter (either a new login session or using a current shell) and

temporarily have the testing group be your default group so that when you

type touch /home/jbaxter/file.txt, the testing group is assigned as the

�le’s group.

5. Note what user ID has been assigned to jbaxter, and delete the user account

without deleting the home directory assigned to jbaxter.

6. Find any �les in the /home directory (and any subdirectories) that are assigned to

the user ID that recently belonged to the user named jbaxter.

7. Copy the /etc/services �le to the default skeleton directory so that it shows

up in the home directory of any new user. Then add a new user to the system

named mjones, with a full name of Mary Jones and a home directory of /home/
maryjones.

8. Find all �les under the /home directory that belong to mjones. Are there any �les

owned by mjones that you didn’t expect to see?

9. Log in as mjones, and create a �le called /tmp/maryfile.txt. Using ACLs,

assign the bin user read/write permission to that �le. Then assign the lp group

read/write permission to that �le.

10. Still as mjones, create a directory named /tmp/mydir. Using ACLs, assign default

permissions to that directory so that the adm user has read/write/execute permis-

sion to that directory and any �les or directories created in it. Create the /tmp/
mydir/testing/ directory and /tmp/mydir/newfile.txt �le, and make sure

that the adm user was also assigned full read/write/execute permissions. (Note

that despite rwx permission being assigned to the adm user, the effective permis-

sion on newfile.txt is only rw. What could you do to make sure that adm gets

execute permission as well?)

237

CHAP T ER

12
Managing Disks and Filesystems

IN THIS CHAPTER

Creating disk partitions

Creating logical volumes with LVM

Adding �lesystems

Mounting �lesystems

Unmounting �lesystems

Y
our operating system, applications, and data need to be kept on some kind of permanent

storage so that when you turn your computer off and then on again, it is all still there. Tra-

ditionally, that storage has been provided by a hard disk in your computer. To organize the

information on that disk, the disk is usually divided into partitions, with most partitions given a

structure referred to as a �lesystem.

This chapter describes how to work with hard drives. Hard drive tasks include partitioning, adding

�lesystems, and managing those �lesystems in various ways. Storage devices that are attached to the

systems such as removable devices, including hard disk drives (HDDs) and solid-state drives (SSDs),

and network devices can be partitioned and managed in the same ways.

After covering basic partitions, I describe how Logical Volume Manager (LVM) can be used to make it

easier to grow, shrink, and otherwise manage �lesystems more ef�ciently.

Understanding Disk Storage
The basics of how data storage works are the same in most modern operating systems. When you

install the operating system, the disk is divided into one or more partitions. Each partition is for-

matted with a �lesystem. In the case of Linux, some of the partitions may be specially formatted

for elements such as swap area or LVM physical volumes. Disks are used for permanent storage;

random access memory (RAM) and swap partitions are used for temporary storage. For example,

when you run a command, that command is copied from the hard disk into RAM so that your

computer processor (CPU) can access it more quickly.

Part III: Becoming a Linux System Administrator

238

Your CPU can access data much faster from RAM than it can from a hard disk, although

SSDs are becoming more like RAM than HDDs. However, a disk is usually much larger than

RAM, RAM is much more expensive, and RAM is erased when the computer reboots. Think

of your of�ce as a metaphor for RAM and disk. A disk is like a �le cabinet where you store

folders of information you need. RAM is like the top of your desk, where you put the

folder of papers while you are using it but put it back in the �le cabinet when you are not.

(Warning: this metaphor doesn’t work for people with permanently messy desks!)

If RAM �lls up by running too many processes or a process that doesn’t return its unused

memory (called a “memory leak”), new processes will fail—unless your system can �nd a

way to extend system memory. That’s where a swap area comes in. A swap space is a hard

disk swap partition or a swap �le where your computer can “swap out” data from RAM that

isn’t being used at the moment and then “swap in” the data back to RAM when it is needed

again. Although it is better never to exceed your RAM (performance takes a hit when you

swap), swapping out is better than having processes just fail.

Another special partition is a Logical Volume Manager (LVM) physical volume. LVM physi-

cal volumes enable you to create pools of storage space called volume groups. From those

volume groups, you have much more �exibility for growing and shrinking logical volumes

than you have resizing disk partitions directly.

For Linux, at least one disk partition is required, assigned to the root (/) of the entire

Linux �lesystem. However, it is more common to have separate partitions that are assigned

to particular directories, such as /home, /var, and/or /tmp. Each of the partitions is con-

nected to the larger Linux �lesystem by mounting it to a point in the �lesystem where you

want that partition to be used. Any �le added to the mount point directory of a partition,

or a subdirectory, is stored on that partition.

The business of connecting disk partitions to the Linux �lesystem is done automatically

and is invisible to the end user. How does this happen? Each regular disk partition created

when you install Linux is associated with a device name. An entry in the /etc/fstab

�le tells Linux each partition’s device name and where to mount it (as well as other bits of

information). The mounting is done when the system boots.

Most of this chapter focuses on understanding how your computer’s disk is partitioned and

connected to form your Linux �lesystem as well as how to partition disks, format �lesys-

tems and swap space, and have those items used when the system boots. The chapter then

covers how to do partitioning and �lesystem creation manually.

NOTE

The word mount refers to the action of connecting a �lesystem from a hard disk, USB drive, or network storage

device to a particular point in the �lesystem. This action is done using the mount command, along with options to

tell the command where the storage device is located and to which directory in the �lesystem to connect it.

Chapter 12: Managing Disks and Filesystems

239

12

Partitioning Hard Disks
Linux provides several tools for managing your hard disk partitions. You need to know how

to partition your disk if you want to add a disk to your system or change your existing disk

con�guration.

The following sections demonstrate disk partitioning using a removable USB �ash drive and

a �xed hard disk. To be safe, I use a USB �ash drive that doesn’t contain any data that I

want to keep in order to practice partitioning.

Understanding partition tables
PC architecture computers have traditionally used master boot record (MBR) partition

tables to store information about the sizes and layouts of the hard disk partitions. There

are many tools for managing MBR partitions that are stable and reliable. A few years ago,

Coming from Windows
Filesystems are organized differently in Linux than they are in Microsoft Windows operating systems.
Instead of drive letters (for example, A:, B:, C:) for each local disk, network �lesystem, CD-ROM, or
other type of storage medium, everything �ts neatly into the Linux directory structure.

Some drives are connected (mounted) automatically into the �lesystem when you insert removable media.
For example, a CD might be mounted on /media/cdrom. If the drive isn’t mounted automatically, it is
up to an administrator to create a mount point in the �lesystem and then connect the disk to that point.

Linux can understand VFAT �lesystems, which are often the default format when you buy a USB �ash
drive. A VFAT and exFAT USB �ash drive provides a good way to share data between Linux and Windows
systems. Linux kernel support is available for NTFS �lesystems, which are usually used with Windows these
days. However, NTFS, and sometimes exFAT, require that you install additional kernel drivers in Linux.

VFAT �lesystems are often used when �les need to be exchanged between different types of operating
systems. Because VFAT was used in MS-DOS and early Windows operating systems, it offers a good
lowest common denominator for sharing �les with many types of systems (including Linux). NTFS is
the �lesystem type most commonly used with modern Microsoft Windows systems.

Changing partitioning can make a system
unbootable!
I don’t recommend using your system’s primary hard disk to practice editing partitions because a
mistake can make your system unbootable. Even if you use a separate USB �ash drive to practice, a
bad entry in /etc/fstab can hang your system on reboot.

Part III: Becoming a Linux System Administrator

240

however, a new standard called Globally Unique Identi�er (GUID) partition tables was intro-

duced as part of the UEFI computer architecture to replace the older BIOS method of boot-

ing systems.

Many Linux partitioning tools have been updated to handle GUID partition tables (GPTs).

Other tools for handling GUID partition tables have been added. Because the popular

fdisk command has not always supported GPT partitions, the parted command is used to

illustrate partitioning in this chapter.

Limitations imposed by the MBR speci�cation brought about the need for GUID partitions.

In particular, MBR partitions are limited to 2TB in size. GUID partitions can create parti-

tions up to 9.4ZB (zettabytes).

Viewing disk partitions
To view disk partitions, use the parted command with the -l option. The following is an

example of partitioning on a 160GB �xed hard drive:

parted -l /dev/sda
Disk /dev/sda: 160.0 GB, 160000000000 bytes, 312500000 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: dos
Disk identifier: 0x0008870c
 Device Boot Start End Blocks Id System
/dev/sda1 * 2048 1026047 512000 83 Linux
/dev/sda2 1026048 304281599 151627776 8e Linux LVM

When a USB �ash drive is inserted, it is assigned to the next available sd device. The fol-

lowing (truncated) example shows the two partitions on a 500GB SSD drive (/dev/sda) and

a USB drive where /dev/sdb is assigned as the USB device name (the second disk on the

system). This USB drive is a 4GB USB �ash drive:

fdisk -l | less

Device Start End Sectors Size Type
/dev/sda1 2048 1050623 1048576 512M EFI System
/dev/sda2 1050624 976771071 975720448 465.3G Linux filesystem

Device Boot Start End Sectors Size Id Type
/dev/sdb1 * 2048 7811071 7809024 3.7G c W95 FAT32 (LBA)

Although this USB drive was assigned to/dev/sdb, your drive might be assigned to a dif-

ferent device name. Here are some things to look for:

■■ A SCSI or USB storage device, represented by an sd? device (such as sda, sdb,

sdc, and so on) can have up to 16 minor devices (for example, the main /dev/
sdc device and /dev/sdc1 through /dev/sdc15). So, there can be 15 parti-

tions total. An NVMe SSD storage device, represented by a nvme device (such as

Chapter 12: Managing Disks and Filesystems

241

12

nvme0, nvme1, nvme2, and so on) can be divided into one or more namespaces

(most devices just use the �rst namespace) and partitions. For example, /
dev/nvme0n1p1 represents the �rst partition in the �rst namespace on the

�rst NVMe SSD.

■■ For x86 computers, disks can have up to four primary partitions. So, to have more

than four total partitions, one must be an extended partition. Any partitions

beyond the four primary partitions are logical partitions that use space from the

extended partition.

■■ The type �eld indicates the type of partition. Notice that there is a Linux �lesys-

tem partition in the �rst example, and FAT32 in the second.

The �rst partition on the system described by the following lsblk command is roughly

512MB and is mounted on the /boot/efi directory. The second partition (465GB) is

mounted on the / (root) partition.

$ lsblk
sda 8:0 0 465.8G 0 disk
└sda1 8:1 0 512M 0 part /boot/efi
└sda2 8:2 0 465.3G 0 part /
sdb 8:16 1 3.7G 0 disk
└sdb1 8:17 1 3.7G 0 part /media/local/LUBUNTU 19_

For the moment, I recommend that you leave the hard disk alone and �nd a USB �ash drive

that you do not mind erasing. You can try the commands I demonstrate on that drive.

Creating a single-partition disk
To add a new storage medium (hard disk, USB �ash drive, or similar device) to your com-

puter so that it can be used by Linux, you �rst need to connect the disk device to your

computer and then partition the disk. Here’s the general procedure:

1. Install the new hard drive or insert the new USB �ash drive.

2. Partition the new disk.

3. Create the �lesystems on the new disk.

4. Mount the �lesystems.

The easiest way to add a disk or �ash drive to Linux is to have the entire disk devoted to a

single Linux partition. You can have multiple partitions, however, and assign them each to

different types of �lesystems and different mount points if you like.

The following process takes you through partitioning a USB �ash drive to be used for

Linux that has only one partition. If you have a USB �ash drive (any size) that you don’t

mind erasing, you can work through this procedure as you read. The section following this

describes how to partition a disk with multiple partitions.

Part III: Becoming a Linux System Administrator

242

1. For a USB �ash drive, just plug it into an available USB port. Going forward, I use a

128GB USB �ash drive, but you can get a USB �ash drive of any size.

2. Determine the device name for the USB drive. Using sudo, type the following

journalctl command, and then insert the USB �ash drive. Messages appear,

indicating the device name of the drive you just plugged in (press Ctrl+C to exit the

tail command when you are �nished):

journalctl -f
kernel: usb 4-1: new SuperSpeed Gen 1 USB device number 3
using xhci_hcd
kernel: usb 4-1: New USB device found, idVendor=0781,
 idProduct=5581, bcdDevice= 1.00
kernel: usb 4-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
kernel: usb 4-1: Product: Ultra
kernel: usb 4-1: Manufacturer: SanDisk
...
kernel: sd 6:0:0:0: Attached scsi generic sg2 type 0
kernel: sdb: sdb1
kernel: sd 6:0:0:0: [sdb] Attached SCSI removable disk
udisksd[809]: Mounted /dev/sdb1 at /run/media/chris/7DEB-B010
 on behalf of uid 1000

3. From the output, you can see that the USB �ash drive was found and assigned to

/dev/sdb. (Your device name may be different.) It also contains a single formatted

partition: sdb1. Be sure you identify the correct disk or you could lose all data

from disks you may want to keep!

4. If the USB �ash drive mounts automatically, unmount it. Here is how to �nd the

USB partitions in this example and unmount them:

mount | grep sdb
/dev/sdb1 on /media/local/...
umount /dev/sdb1

5. Use the parted command to create partitions on the USB drive. For example, if

you are formatting the second USB, SATA, or SCSI disk (sdb), you can type the

following:

parted /dev/sdb
GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)

WARNING

If you make a mistake partitioning your disk with parted, make sure that you correct that change. Unlike fdisk,

where you could just type q to exit without saving your changes, parted makes your changes immediately, so you

are not able just to quit to abandon changes.

Chapter 12: Managing Disks and Filesystems

243

12

Now you are in parted command mode, where you can use the parted single-

letter command set to work with your partitions.

6. If you start with a new USB �ash drive, it may have one partition that is entirely

devoted to a Windows-compatible �lesystem (such as VFAT or fat32). Use p to

view all partitions and rm to delete the partition. Here’s what it looked like when

I did that:

(parted) p
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 123GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 16.4kB 123GB 123GB primary fat32 lba
(parted) rm
Partition number? 1

7. Relabel the disk as having a GPT partition table:

(parted) mklabel gpt
Warning: The existing disk label on /dev/sdb will be destroyed
and all data
on this disk will be lost. Do you want to continue?
Yes/No? Yes
(parted)

8. To create a new partition, type mkpart. You are prompted for the �lesystem

type, then the start and end of the partition. This example names the parti-

tion alldisk, uses xfs as the �le system type, starts the partition at 1M and

ends at 123GB:

(parted) mkpart
Partition name? []? alldisk
File system type? [ext2]? xfs
Start? 1
End? 123GB

9. Double-check that the drive is partitioned the way you want by pressing p. (Your

output will differ, depending on the size of your drive.)

(parted) p
Model: SanDisk Ultra (scsi)
Disk /dev/sdb: 123GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags
 1 1049kB 123GB 123GB xfs alldisk

Part III: Becoming a Linux System Administrator

244

10. Although the partitioning is done, the new partition is not yet ready to use. For

that, you have to create a �lesystem on the new partition. To create a �lesystem on

the new disk partition, use the mkfs command. By default, this command creates

an ext2 �lesystem, which is usable by Linux. However, in most cases you want to

use a journaling �lesystem (such as ext3, ext4, or xfs). To create an xfs �lesystem

on the �rst partition of the second hard disk, type the following:

mkfs -t xfs /dev/sdb1

11. To be able to use the new �lesystem, you need to create a mount point and mount

it to the partition. Here is an example of how to do that. You then check to make

sure that the mount succeeded.

mkdir /mnt/test
mount /dev/sdb1 /mnt/test
df -h /mnt/sdb1
Filesystem Size Used Avail Use% Mounted on
/dev/sdb1 115G 13M 115G 1% /mnt/test

The df command shows that /dev/sdb1 is mounted on /mnt/test and that it

offers about 115GB of disk space. The mount command shows all mounted �lesys-

tems, but here I just list sdb1 to show that it is mounted.

Any �les or directories that you create later in the /mnt/test directory, and any

of its subdirectories, are stored on the /dev/sdb1 device.

12. When you are �nished using the drive, you can unmount it with the umount

command, after which you can safely remove the drive (see the description of the

umount command later if this command fails):

umount /dev/sdb1

13. You don’t usually set up a USB �ash drive to mount automatically every time the

system boots because it mounts automatically when you plug it in. But if you

decide that you want to do that, edit /etc/fstab and add a line describing what

and where to mount. Here is an example of a line you might add:

/dev/sdb1 /mnt/test xfs defaults 0 1

In this example, the partition (/dev/sdb1) is mounted on the /mnt/test

directory as an xfs �lesystem. The defaults keyword causes the partition

to be mounted at boot time. The number 0 tells the system not to back up �les

TIP

You can use different commands or options to this command to create other �lesystem types. For example, use

mkfs.exfat to create a VFAT �lesystem, mkfs.msdos for DOS, or mkfs.ext4 for the ext4 �lesystem type.

You may want a VFAT or exFAT (available with Ubuntu) �lesystem if you want to share �les among Linux, Windows, and

Mac systems.

Chapter 12: Managing Disks and Filesystems

245

12

automatically from this �lesystem with the dump command (dump is rarely used

anymore, but the �eld is here). The 1 in the last column tells the system to check

the partition for errors after a certain number of mounts.

At this point, you have a working, permanently mounted disk partition. The next section

describes how to partition a disk that has multiple partitions.

Creating a multiple-partition disk
Now that you understand the basic process of partitioning a disk, adding a �lesystem, and

making that �lesystem available (temporarily and permanently), it is time to try a more

complex example. Taking that same 128GB USB �ash drive, I ran the procedure described

later in this section to create multiple partitions on one disk.

In this procedure, I con�gure a master boot record (MBR) partition to illustrate how

extended partitions work and to use the older fdisk command. I create two partitions of

5GB (sdb1 and sdb2), two 3GB (sdb3 and sdb5), and one 4GB (sdb6). The sdb4 device is

an extended partition, which consumes all remaining disk space. Space from the sdb5 and

sdb6 partitions is taken from the extended partition. This leaves plenty of space to create

new partitions.

As before, insert the USB �ash drive and determine the device name (in my case, /dev/
sdb). Also, be sure to unmount any partitions that mount automatically when you insert

the USB �ash drive.

1. I started this procedure by overwriting the USB drive with the dd command (dd
if=/dev/zero of=/dev/sdb bs=1M count=100). This allowed me to start with

a fresh master boot record. Please be careful to use the right drive number, or you

could erase your operating system!

2. Create six new partitions as follows:

fdisk /dev/sdb
Welcome to fdisk (util-linux 2.33.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x8933f665.

Command (m for help): n
Partition type

TIP

When you indicate the size of each partition, type the plus sign and the number of megabytes or gigabytes you want

to assign to the partition. For example, +1024M to create a 1024-megabyte partition or +10G for a 10-gigabyte

partition. Be sure to remember the plus sign (+) and the M or G! If you forget the M or G, fdisk thinks you mean

sectors and you get unexpected results.

Continues

Part III: Becoming a Linux System Administrator

246

 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-240254975, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-240254975,
default 240254975): +5G

Created a new partition 1 of type 'Linux' and of size 5 GiB.

Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (10487808-240254975, default 10487808):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (10487808-240254975,
default 240254975): +5G

Created a new partition 2 of type 'Linux' and of size 5 GiB.

Command (m for help): n
Partition type
 p primary (2 primary, 0 extended, 2 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (3,4, default 3): 3
First sector (20973568-240254975, default 20973568):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (20973568-240254975,
default 240254975): +3G

Created a new partition 3 of type 'Linux' and of size 3 GiB.

Command (m for help): n
Partition type
 p primary (3 primary, 0 extended, 1 free)
 e extended (container for logical partitions)
Select (default e): e

Selected partition 4
First sector (27265024-240254975, default 27265024):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (27265024-240254975,
default 240254975): <ENTER>

Created a new partition 4 of type 'Extended' and of size 101.6 GiB.

Command (m for help): n
All primary partitions are in use.

Continued

Chapter 12: Managing Disks and Filesystems

247

12

Adding logical partition 5
First sector (27267072-240254975, default 27267072):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (27267072-240254975, default
240254975): +3G

Created a new partition 5 of type 'Linux' and of size 3 GiB.

Command (m for help): n
All primary partitions are in use.
Adding logical partition 6
First sector (33560576-240254975, default 33560576):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (33560576-240254975, default
240254975): +4G

Created a new partition 6 of type 'Linux' and of size 4 GiB.

3. Check the partitioning before saving by typing p. Notice that there are �ve usable

partitions (sdc1, sdc2, sdc3, sdc5, and sdc6) and that the sectors between the

Start and End for sdc4 are being consumed by sdc5 and sdc6.

Command (m for help): p
...
Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 10487807 10485760 5G 83 Linux
/dev/sdb2 10487808 20973567 10485760 5G 82 Linux
/dev/sdb3 20973568 27265023 6291456 3G 83 Linux
/dev/sdb4 27265024 240254975 212989952 101.6G 5 Extended
/dev/sdb5 27267072 33558527 6291456 3G 83 Linux
/dev/sdb6 33560576 41949183 8388608 4G 83 Linux

4. The default partition type is Linux. But now I think I want to use some of the par-

titions for swap space (type 82), FAT32 (type x), and Linux LVM (type 8e). To

do that, I type t and indicate which partition type to use. Type L to see a list of

partition types.

Command (m for help): t
Partition number (1-6): 2
Hex code (type L to list codes): 82
Changed type of partition 'Linux' to 'Linux swap / Solaris'.

Command (m for help): t
Partition number (1-6): 5
Hex code (type L to list codes): c
Changed type of partition 'Linux' to 'W95 FAT32 (LBA)'.

Command (m for help): t
Partition number (1-6): 6
Hex code (type L to list codes): 8e
Changed type of partition 'Linux' to 'Linux LVM'.

Part III: Becoming a Linux System Administrator

248

5. I check that the partition table is the way I want it and then write the changes:

Command (m for help): p
...
Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 10487807 10485760 5G 83 Linux
/dev/sdb2 10487808 20973567 10485760 5G 82 Linux
swap / Solaris
/dev/sdb3 20973568 27265023 6291456 3G 83 Linux
/dev/sdb4 27265024 240254975 212989952 101.6G 5 Extended
/dev/sdb5 27267072 33558527 6291456 3G c W95 FAT32
(LBA)
/dev/sdb6 33560576 41949183 8388608 4G 8e Linux LVM

Command (m for help): w
The partition table has been altered!
The kernel still uses the old partitions. The new table will be
used at the next reboot.
Syncing disks

6. After the write is completed, check that the kernel knows about the changes to the

partition table. To do that, search the /proc/partitions for sdb. If the new

devices are not there, run the partprobe /dev/sdb command on the drive or

reboot your computer.

grep sdb /proc/partitions
 8 16 120127488 sdb
 8 17 120125440 sdb1
partprobe /dev/sdb
grep sdb /proc/partitions
 8 16 120127488 sdb
 8 17 5242880 sdb1
 8 18 5242880 sdb2
 8 19 3145728 sdb3
 8 20 1 sdb4
 8 21 3145728 sdb5
 8 22 4194304 sdb6

7. While the partitions are now set for different types of content, other commands are

needed to structure the partitions into �lesystems or swap areas. Here’s how to do

that for the partitions just created:

sdb1: To make this into a regular Linux ext4 �lesystem, type the following:

mkfs -t ext4 /dev/sdb1

sdb2: To format this as a swap area, type the following:

mkswap /dev/sdb2

Chapter 12: Managing Disks and Filesystems

249

12

sdb3: To make this into an ext2 �lesystem (the default), type the following:

mkfs /dev/sdb3

sdb5: To make this into a VFAT �lesystem (the default), type the following:

mkfs -t vfat /dev/sdb5

sdb6: To make this into an LVM physical volume, type the following:

pvcreate /dev/sdb6

These partitions are now ready to be mounted, used as swap area, or added to an LVM volume

group. See the next section, “Using Logical Volume Manager Partitions,” to see how LVM physical

volumes are used to ultimately create LVM logical volumes from volume groups. See the section

“Mounting Filesystems” for descriptions of how to mount �lesystems and enable swap areas.

Using Logical Volume Manager Partitions
Basic disk partitioning in Linux has its shortcomings. What happens if you run out of disk

space? In the old days, a common solution was to copy data to a bigger disk, restart the

system with the new disk, and hope that you don’t run out of space again anytime soon.

This process meant downtime and inef�ciency.

Logical Volume Manager (LVM) offers lots of �exibility and ef�ciency in dealing with con-

stantly changing storage needs. With LVM, physical disk partitions are added to pools of

space called volume groups. Logical volumes are assigned space from volume groups as

needed. This gives you these abilities:

■■ Add more space to a logical volume from the volume group while the volume is

still in use.

■■ Add more physical volumes to a volume group if the volume group begins to run

out of space.

■■ Move data from one physical volume to another so you can remove smaller disks

and replace them with larger ones while the �lesystems are still in use—again,

without downtime.

With LVM, it is also easier to shrink �lesystems to reclaim disk space, although shrinking

does require that you unmount the logical volume (but no reboot is needed). LVM also sup-

ports advanced features, such as mirroring and working in clusters.

Checking an existing LVM
Let’s start by looking at an existing LVM example. The following command displays the par-

titions on my �rst hard disk:

fdisk -l /dev/sda | grep /dev/sda
Disk /dev/sda: 160.0 GB, 160000000000 bytes
/dev/sda1 * 2048 1026047 512000 83 Linux
/dev/sda2 * 1026048 312498175 155736064 8e Linux LVM

Part III: Becoming a Linux System Administrator

250

On this system, the 160GB hard drive is divided into one 500MB Linux partition (sda1) and

a second (Linux LVM) partition that consumes the rest of the disk (sda2). Next, I use the

pvdisplay command to see if that partition is being used in an LVM group:

pvdisplay /dev/sda2
 --- Physical volume ---
 PV Name /dev/sda2
 VG Name vg_abc
 PV Size 148.52 GiB / not usable 2.00 MiB
 Allocatable yes (but full)
 PE Size 4.00 MiB
 Total PE 38021
 Free PE 0
 Allocated PE 38021
 PV UUID wlvuIv-UiI2-pNND-f39j-oH0X-9too-AOII7R

You can see that the LVM physical volume represented by /dev/sda2 has 148.52GiB of

space, all of which has been totally allocated to a volume group named vg_abc. The small-

est unit of storage that can be used from this physical volume is 4.0MiB, which is referred

to as a Physical Extent (PE).

Next, you want to see information about the volume group:

vgdisplay vg_abc
 --- Volume group ---
 VG Name vg_abc
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 4
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 3
 Open LV 3
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 148.52 GiB
 PE Size 4.00 MiB

NOTE

Notice that LVM tools show disk space in MiB and GiB. One MB is 1,000,000 bytes (10^6), while a MiB is 1,048,576

bytes (2^20). An MiB is a more accurate way to re�ect how data are stored on a computer. But marketing people

tend to use MB because it makes the hard disks, CDs, and DVDs they sell look like they have more capacity than they

do. Keep in mind that most tools in Linux display storage data in MiB and GiB, although some can display MB and GB

as well.

Chapter 12: Managing Disks and Filesystems

251

12

 Total PE 38021
 Alloc PE / Size 38021 / 148.52 GiB
 Free PE / Size 0 / 0
 VG UUID c2SGHM-KU9H-wbXM-sgca-EtBr-UXAq-UnnSTh

You can see that all of the 38,021 PEs have been allocated. Using lvdisplay as follows,

you can see where they have been allocated (I have snipped some of the output):

lvdisplay vg_abc
 --- Logical volume ---
 LV Name /dev/vg_abc/lv_root
 VG Name vg_abc
 LV UUID 33VeDc-jd0l-hlCc-RMuB-tkcw-QvFi-cKCZqa
 LV Write Access read/write
 LV Status available
 # open 1
 LV Size 50.00 GiB
 Current LE 12800
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:0
 --- Logical volume ---
 LV Name /dev/vg_abc/lv_home
 VG Name vg_abc
 ...
 LV Size 92.64 GiB
 --- Logical volume ---
 LV Name /dev/vg_abc/lv_swap
 VG Name vg_abc
 ...
 LV Size 5.88 GiB

There are three logical volumes drawing space from vg_abc. Each logical volume is asso-

ciated with a device name that includes the volume group name and the logical volume

name: /dev/vg_abc/lv_root (50GB), /dev/vg_abc/lv_home (92.64GB), and /dev/
vg_abc/lv_swap (5.88GB). Other devices linked to these names are located in the /dev/
mapper directory: vg_abc-lv_home, vg_abc-lv_root, and vg_abc-lv_swap. Either

set of names can be used to refer to these logical volumes.

The root and home logical volumes are formatted as ext4 �lesystems, whereas the swap

logical volume is formatted as swap space. Let’s look in the /etc/fstab �le to see how

these logical volumes are used:

grep vg_ /etc/fstab
/dev/mapper/vg_abc-lv_root / ext4 defaults 1 1
/dev/mapper/vg_abc-lv_home /home ext4 defaults 1 2
/dev/mapper/vg_abc-lv_swap swap swap defaults 0 0

Part III: Becoming a Linux System Administrator

252

Figure 12.1 illustrates how the different partitions, volume groups, and logical volumes

relate to the complete Linux �lesystem. The sda1 device is formatted as a �lesystem and

mounted on the /boot directory. The sda2 device provides space for the vg_abc volume

group. Then logical volumes lv_home and lv_root are mounted on the /home and /

directories, respectively.

If you run out of space on any of the logical volumes, you can assign more space from the

volume group. If the volume group is out of space, you can add another hard drive or net-

work storage drive and add space from that drive to the volume group so more is available.

Now that you know how LVM works, the next section shows you how to create LVM logical

volumes from scratch.

Creating LVM logical volumes
LVM logical volumes are used from the top down, but they are created from the bottom up.

As illustrated in Figure 12.1 in the previous section, �rst you create one or more physical

volumes (pv), use the physical volumes to create volume groups (vg), and then create logical

volumes (lv) from the volume groups.

Commands for working with each LVM component begin with the letters pv, vg, and lv.

For example, pvdisplay shows physical volumes, vgdisplay shows volume groups, and

lvdisplay shows logical volumes.

FIGURE 12.1

LVM logical volumes can be mounted like regular partitions on a Linux filesystem.

Chapter 12: Managing Disks and Filesystems

253

12

The following procedure takes you through the steps of creating LVM volumes from scratch.

To do this procedure, you could use the USB �ash drive and partitions that I described ear-

lier in this chapter.

1. Obtain a disk with some spare space on it and create a disk partition on it of the

LVM type (8e). Then use the pvcreate command to identify this partition as an

LVM physical volume. The process of doing this is described in the section “Creating

a multiple-partition disk” using the /dev/sdb6 device in that example.

2. To add that physical volume to a new volume group, use the vgcreate command.

The following command shows you how to create a volume group called myvg0

using the /dev/sdb6 device:

vgcreate myvg0 /dev/sdc6
 Volume group "myvg0" successfully created

3. To see the new volume group, type the following:

vgdisplay myvg0
 --- Volume group ---
 VG Name myvg0
 ...
 VG Size <4.00 GiB
 PE Size 4.00 MiB
 Total PE 1023
 Alloc PE / Size 0 / 0
 Free PE / Size 1023 / <4.00 MiB

4. All of the 1023 physical extents (PEs, 4.00 MiB each) are available. Here’s how to

create a logical volume from some of the space in that volume group and then check

that the device for that logical volume exists:

lvcreate -n music -L 1G myvg0
 Logical volume "music" created
ls /dev/mapper/myvg0*
/dev/mapper/myvg0-music

5. As you can see, the procedure created a device named /dev/mapper/myvg0-
music. That device can now be used to put a �lesystem on and mount it, just as

you did with regular partitions in the �rst part of this chapter. For example:

mkfs -t ext4 /dev/mapper/myvg0-music
mkdir /mnt/mymusic
mount /dev/mapper/myvg0-music /mnt/mymusic
df -h /mnt/mymusic
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg0-music 976M 2.6M 987M 1% /mnt/mymusic

6. As with regular partitions, logical volumes can be mounted permanently by adding

an entry to the /etc/fstab �le, such as:

/dev/mapper/myvg0-music /mnt/mymusic ext4 defaults 1 2

Part III: Becoming a Linux System Administrator

254

The next time you reboot, the logical volume is automatically mounted on /mnt/mymusic.

(Be sure to unmount the logical volume and remove this line if you want to remove the USB

�ash drive from your computer.)

Growing LVM logical volumes
If you run out of space on a logical volume, you can add more without even unmounting

it. To do that, you must have unused space available in the volume group, grow the logical

volume, and grow the �lesystem to �ll it. Building on the procedure in the previous sec-

tion, here’s how to do that:

1. Note how much space is currently on the logical volume, and then check that space

is available in the logical volume’s volume group:

vgdisplay myvg0
...
 VG Size <4.00 MiB
 PE Size 4.00 MiB
 Total PE 1023
 Alloc PE / Size 256 / 1.00 GiB
 Free PE / Size 767 / <3.00 GiB
df -h /mnt/mymusic/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg0-music 976M 2.6M 987M 1% /mnt/mymusic

2. Expand the logical volume using the lvextend command:

lvextend -L +1G /dev/mapper/myvg0-music
 Size of logical volume myvg0/music changed
 from 1.00GiB to 2.00 GiB (512 extents).
 Logical volume myvg0/music successfully resized

3. Resize the �lesystem to �t the new logical volume size:

resize2fs -p /dev/mapper/myvg0-music

4. Check to see that the �lesystem is now resized to include the additional disk space:

df -h /mnt/mymusic/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/myvg0-music 2.0G 3.0M 1.9G 1% /mnt/mymusic

You can see that the �lesystem is now about 1G larger.

Mounting Filesystems
Now that you’ve had a chance to play with disk partitioning and �lesystems, I’m going

to step back and talk about how �lesystems can be connected permanently to your

Linux system.

Chapter 12: Managing Disks and Filesystems

255

12

Most of the hard disk partitions created when you install Linux are mounted automatically

for you when the system boots. But you could also manually create partitions yourself and

indicate the mount points for those partitions.

When you boot Linux, usually all of the Linux partitions on your hard disk are listed in

your /etc/fstab �le and are mounted. For that reason, the following sections describe

what you might expect to �nd in that �le. It also describes how you can mount other parti-

tions so that they become part of your Linux �lesystem.

The mount command is used not only to mount local storage devices, but also to mount

other kinds of �lesystems on your Linux system. For example, mount can be used to mount

directories (folders) over the network from NFS or Samba servers. It can be used to mount

�lesystems from a new hard drive or USB �ash drive that is not con�gured to automount. It

can also mount �lesystem image �les using loop devices.

Supported �lesystems
To see �lesystem types that are currently loaded in your kernel, type cat /proc/file-

systems. The list that follows shows a sample of �lesystem types that are currently sup-

ported in Linux, although they may not be in use at the moment or even available on the

Linux distribution you are using:

befs: Filesystem used by the BeOS operating system.

btrfs: A copy-on-write �lesystem that implements advanced �lesystem features. It

offers fault tolerance and easy administration. The btrfs �lesystem has recently

grown in popularity for enterprise applications.

cifs: Common Internet Filesystem (CIFS), the virtual �lesystem used to access servers

that comply with the SNIA CIFS speci�cation. CIFS is an attempt to re�ne and stan-

dardize the SMB protocol used by Samba and Windows �le sharing.

ext4: Successor to the popular ext3 �lesystem. It includes many improvements over

ext3, such as support for volumes up to 1 exbibyte and �le sizes up to 16 tebibytes.

(This has replaced ext3 as the default �lesystem used in Ubuntu.)

ext3: Ext �lesystems are the most common in most Linux systems. Compared ext2,

the ext3 �lesystem, also called the third extended �lesystem, includes journal-

ing features that, compared to ext2, improve a �lesystem’s capability to recover

from crashes.

NOTE

With the addition of automatic mounting features and changes in how removable media are identi�ed, since the

release of the Linux 2.6 kernel (using features such as Udev and Hardware Abstraction Layer), you no longer need

to mount removable media manually for many Linux desktop systems. Understanding how to mount and unmount

�lesystems manually on a Linux server, however, can be a very useful skill if you want to mount remote �lesystems or

temporarily mount partitions in particular locations.

Part III: Becoming a Linux System Administrator

256

ext2: The default �lesystem type for earlier Linux systems. Features are the same as

ext3, except that ext2 doesn’t include journaling features.

ext: This is the �rst version of ext3. It is not used very often anymore.

iso9660: Evolved from the High Sierra �lesystem (the original standard for CD-ROMs).

Extensions to the High Sierra standard (called Rock Ridge extensions) allow iso9660

�lesystems to support long �lenames and UNIX-style information (such as �le per-

missions, ownership, and links). Data CD-ROMs typically use this �lesystem type.

kafs: AFS client �lesystem. Used in distributed computing environments to share �les

with Linux, Windows, and Macintosh clients.

minix: Minix �lesystem type, used originally with the Minix version of UNIX. It sup-

ports �lenames of up to only 30 characters.

msdos: An MS-DOS �lesystem. You can use this type to mount media that comes from

old Microsoft operating systems.

vfat: Microsoft extended FAT (VFAT) �lesystem.

exfat: Extended FAT (exFAT) �lesystem that has been optimized for SD cards, USB

drives, and other �ash memory.

umsdos: An MS-DOS �lesystem with extensions to allow features that are similar to

UNIX (including long �lenames).

proc: Not a real �lesystem, but rather a �lesystem interface to the Linux kernel. You

probably won’t do anything special to set up a proc �lesystem. However, the /proc

mount point should be a proc �lesystem. Many utilities rely on /proc to gain access

to Linux kernel information.

reiserfs: ReiserFS journaled �lesystem. ReiserFS was once a common default �lesystem

type for several Linux distributions. However, ext and xfs �lesystems are by far

more common �lesystem types used with Linux today.

swap: Used for swap partitions. Swap areas are used to hold data temporarily when

RAM is used up. Data is swapped to the swap area and then returned to RAM when it

is needed again.

squashfs: Compressed, read-only �lesystem type. Squashfs is popular on live CDs,

where there is limited space and a read-only medium (such as a CD or DVD).

nfs: Network Filesystem (NFS) type of �lesystem. NFS is used to mount �lesystems on

other Linux or UNIX computers.

hpfs: Filesystem is used to do read-only mounts of an OS/2 HPFS �lesystem.

ncpfs: A �lesystem used with Novell NetWare. NetWare �lesystems can be mounted

over a network.

ntfs: Windows NT �lesystem. Depending upon the distribution you have, it may be sup-

ported as a read-only �lesystem (so that you can mount and copy �les from it).

ufs: Filesystem popular on Sun Microsystems’s operating systems (that is, Solaris

and SunOS).

Chapter 12: Managing Disks and Filesystems

257

12

jfs: A 64-bit journaling �lesystem by IBM that is relatively lightweight for the many

features it has.

xfs: A high-performance �lesystem originally developed by Silicon Graphics that works

extremely well with large �les.

gfs2: A shared disk �lesystem that allows multiple machines to all use the same shared

disk without going through a network �lesystem layer such as CIFS, NFS, and so on.

To see the list of �lesystems that come with the kernel you are using, type ls /lib/

modules/`uname -r̀ /kernel/fs/. The actual modules are stored in subdirectories of

that directory. Mounting a �lesystem of a supported type causes the �lesystem module to

be loaded, if it is not already loaded.

Type man fs to see descriptions of Linux �lesystems.

Enabling swap areas
A swap area is an area of the disk that is made available to Linux if the system runs out of

memory (RAM). If your RAM is full and you try to start another application without a swap

area, that application will fail.

With a swap area, Linux can temporarily swap out data from RAM to the swap area and

then get it back when needed. You take a performance hit, but it is better than having

processes fail.

To create a swap area from a partition or a �le, use the mkswap command. To enable that

swap area temporarily, you can use the swapon command. For example, here’s how to check

your available swap space, create a swap �le, enable the swap �le, and then check that the

space is available on your system:

free -m

 total used free shared buffers cached
Mem: 1955 663 1291 0 42 283
-/+ buffers/cache: 337 1617
Swap: 819 0 819

dd if=/dev/zero of=/var/tmp/myswap bs=1M count=1024
mkswap /var/opt/myswap
swapon /var/opt/myswap
free -m

 total used free shared buffers cached
Mem: 1955 1720 235 0 42 1310
-/+ buffers/cache: 367 1588
Swap: 1843 0 1843

The free command shows the amount of swap before and after creating, making, and

enabling the swap area with the swapon command. That amount of swap is available

Part III: Becoming a Linux System Administrator

258

immediately and temporarily to your system. To make that swap area permanent, you need

to add it to your /etc/fstab �le. Here is an example:

/var/opt/myswap swap swap defaults 0 0

This entry indicates that the swap �le named /var/opt/myswap should be enabled at

boot time. Because there is no mount point for swap area, the second �eld is just set to

swap, as is the partition type. To test that the swap �le works before rebooting, you can

enable it immediately (swapon -a) and check that the additional swap area appears:

swapon -a

Disabling swap area
If at any point you want to disable a swap area, you can do so using the swapoff

command. You might do this, in particular, if the swap area is no longer needed and you

want to reclaim the space being consumed by a swap �le or remove a USB drive that is pro-

viding a swap partition.

First, make sure that there aren’t any applications using space on the swap device (using

the free command), and then use swapoff to turn off the swap area so that you can

reuse the space. Here is an example:

free -m
 total used free shared buffers cached
Mem: 1955 1720 235 0 42 1310
-/+ buffers/cache: 367 1588
Swap: 1843 0 1843
swapoff /var/opt/myswap
free -m
Mem: 1955 1720 235 0 42 1310
-/+ buffers/cache: 367 1588
Swap: 819 0 819

Notice that the amount of available swap was reduced after running the swapoff

command.

Using the fstab �le to de�ne mountable �lesystems
The hard disk partitions on your local computer and the remote �lesystems that you use

every day are probably set up to mount automatically when you boot Linux. The /etc/
fstab �le contains de�nitions for each partition, along with options describing how the

partition is mounted. Here’s an example of an /etc/fstab �le:

$ cat /etc/fstab
/etc/fstab: static file system information.
Use 'blkid' to print the universally unique identifier for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5).
#

Chapter 12: Managing Disks and Filesystems

259

12

<file system> <mount point> <type> <options> <dump> <pass>
/ was on /dev/sda2 during installation
UUID=c0e513f0-f840-4174-912d-241d30fd2e26 / ext4 errors=remount-ro
0 1
/boot/efi was on /dev/sda1 during installation
UUID=15C2-F100 /boot/efi vfat umask=0077 0 1
/swapfile none swap sw 0 0
/dev/sdb1 /win vfat ro 1 2
192.168.0.27:/nfsstuff /remote nfs users,_netdev 0 0
//192.168.0.28/myshare /share cifs guest,_netdev 0 0

The /etc/fstab �le just shown is from a default Ubuntu install.

In general, the �rst column of /etc/fstab shows the device or share (what is mounted),

while the second column shows the mount point (where it is mounted). That is followed by

the type of �lesystem, any mount options (or defaults), and two numbers (used to tell com-

mands such as dump and fsck what to do with the �lesystem).

The �rst two entries represent the disk partitions assigned to the root of the �lesystem

(/) and the /boot/efi directory. The �rst is an ext4 �lesystem, while the boot partition

uses vfat. The third line is a swap device (used to store data when RAM over�ows).

The /boot partition is on its own physical partition, /dev/sda1. Instead of using /dev/
sda1, however, a unique identi�er (UUID) identi�es the device. Why use a UUID instead of

/dev/sda1 to identify the device? Suppose you plugged another disk into your computer

and booted up. Depending on how your computer iterates through connected devices on

boot, it is possible that the new disk might be identi�ed as /dev/sda, causing the system

to look for the contents of /boot on the �rst partition of that disk.

To see all of the UUIDs assigned to storage devices on your system, type the blkid

command, as follows:

blkid
/dev/sda1: UUID="15C2-F100" TYPE="vfat" PARTLABEL="EFI System
Partition" PARTUUID="5277724a-b124-4030-85cb-d80d430f8edb"
/dev/sda2: UUID="c0e513f0-f840-4174-912d-241d30fd2e26" TYPE="ext4"
PARTUUID="addb5440-c9ce-4d29-b50c-8cdba8cd60e0"
/dev/sdb1: LABEL="LUBUNTU 19_" UUID="4C35-A5E6" TYPE="vfat" PARTUUID="00262d60-01"

Any of the device names can be replaced by the UUID designation in the left column of an

/etc/fstab entry.

I added the next three entries in /etc/fstab to illustrate some different kinds of entries.

I connected a hard drive from an old Microsoft Windows system and had it mounted on the

/win directory. I added the ro option so it would mount read-only.

/dev/sdb1 /win vfat ro 1 2
192.168.0.27:/nfsstuff /remote nfs users,_netdev 0 0
//192.168.0.28/myshare /share cifs guest,_netdev 0 0

The next two entries represent remote �lesystems. On the /remote directory, the /nfs-
stuff directory is mounted read/write (rw) from the host at address 192.168.0.27 as an

Part III: Becoming a Linux System Administrator

260

NFS share. On the /share directory, the Windows share named myshare is mounted from

the host at 192.168.0.28. In both cases, I added the _netdev option, which tells Linux to

wait for the network to come up before trying to mount the shares. For more information

on mounting CIFS and NFS shares, refer to Chapters 19, “Con�guring a Windows File Sharing

(Samba) Server,” and 20, “Con�guring an NFS File Server,” respectively.

To help you understand the contents of the /etc/fstab �le, here is what is in each �eld

of that �le:

Field 1: Name of the device representing the �lesystem. This �eld can include the

LABEL or UUID option with which you can indicate a volume label or universally

unique identi�er (UUID) instead of a device name. The advantage to this approach

is that because the partition is identi�ed by volume name, you can move a volume

to a different device name and not have to change the fstab �le. (See the descrip-

tion of the mkfs command in the section “Using the mkfs Command to Create a

Filesystem” for information on creating and using labels.)

Field 2: Mount point in the �lesystem. The �lesystem contains all data from the mount

point down the directory tree structure unless another �lesystem is mounted at

some point beneath it.

Field 3: Filesystem type. Valid �lesystem types are described in the section “Supported

�lesystems” earlier in this chapter (although you can only use �lesystem types for

which drivers are included for your kernel).

Field 4: Use defaults or a comma-separated list of options (no spaces) that you want

to use when the entry is mounted. See the mount command manual page (under the

-o option) for information on other supported options.

Field 5: The number in this �eld indicates whether the �lesystem needs to be dumped

(that is, have its data backed up). A1 means that the �lesystem needs to be

dumped, and a 0 means that it doesn’t. (This �eld is no longer particularly useful

because most Linux administrators use more sophisticated backup options than the

dump command. Most often, a 0 is used.)

Field 6: The number in this �eld indicates whether the indicated �lesystem should be

checked with fsck when the time comes for it to be checked: 1 means it needs to

be checked �rst, 2 means to check after all those indicated by 1 have already been

checked, and 0 means don’t check it.

If you want to �nd out more about mount options as well as other features of the /etc/
fstab �le, there are several man pages to which you can refer, including man 5 nfs and

man 8 mount.

TIP

Typically, only the root user is allowed to mount a �lesystem using the mount command. However, to allow any user

to mount a �lesystem (such as a �lesystem on a CD), you could add the user option to Field 4 of /etc/fstab.

Chapter 12: Managing Disks and Filesystems

261

12

Using the mount command to mount �lesystems
Linux systems automatically run mount -a (mount all �lesystems from the /etc/
fstab �le) each time you boot. For that reason, you generally use the mount command

only for special situations. In particular, the average user or administrator uses mount

in two ways:

■■ To display the disks, partitions, and remote �lesystems currently mounted

■■ To mount a �lesystem temporarily

Any user can type mount (with no options) to see what �lesystems are currently mounted

on the local Linux system. The following is an example of the mount command. It shows

a single hard disk partition (/dev/sda1) containing the root (/) �lesystem and proc and

devpts �lesystem types mounted on /proc and /dev, respectively.

$ mount
/dev/sda3 on / type ext4 (rw)
/dev/sda2 on /boot type ext4 (rw)
/dev/sda1 on /mnt/win type vfat (rw)
/dev/proc on /proc type proc (rw)
/dev/sys on /sys type sysfs (rw)
/dev/devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/shm on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/dev/cdrom on /media/MyOwnDVD type iso9660 (ro,nosuid,nodev)

Traditionally, the most common devices to mount by hand are removable media, such as

DVDs or CDs. However, depending on the type of desktop you are using, CDs and DVDs

may be mounted for you automatically when you insert them. (In some cases, appli-

cations are launched as well when media is inserted. For example, a music player or

photo editor may be launched when your inserted USB medium has music or digital

images on it.)

Occasionally, however, you may �nd it useful to mount a �lesystem manually. For example,

you want to look at the contents of an old hard disk, so you install it as a second disk on

your computer. If the partitions on the disk did not automount, you could mount partitions

from that disk manually. For example, to mount as read-only a disk partition sdb1 that has

an older ext3 �lesystem, you could type this:

mkdir /mnt/temp
mount -t ext3 -o ro /dev/sdb1 /mnt/temp

Another reason to use the mount command is to remount a partition to change its mount

options. Suppose that you want to remount /dev/sdb1 as read/write, but you do not

want to unmount it (maybe someone is using it). You could use the remount option

as follows:

mount -t ext3 -o remount,rw /dev/sdb1

Part III: Becoming a Linux System Administrator

262

Mounting a disk image in loopback
Another valuable way to use the mount command has to do with disk images. If you down-

load an SD card or DVD ISO image �le from the Internet and you want to see what it con-

tains, you can do so without burning it to DVD or other medium. With the image on your

hard disk, create a mount point and use the -o loop option to mount it locally. Here’s

an example:

mkdir /mnt/mydvdimage
mount -o loop whatever-i686-disc1.iso /mnt/mydvdimage

In this example, the /mnt/mydvdimage directory is created, and then the disk image �le

(whatever-i686-disc1.iso) residing in the current directory is mounted on it. You can

now cd to that directory, view the contents of it, and copy or use any of its contents. This is

useful for downloaded DVD images from which you want to install software without having to

burn the image to DVD. You could also share that mount point over NFS, so you could install

the software from another computer. When you are �nished, just type umount /mnt/
mydvdimage to unmount it.

Other options to mount are available only for speci�c �lesystem types. See the mount

manual page for those and other useful options.

Using the umount command
When you are �nished using a temporary �lesystem, or you want to unmount a permanent

�lesystem temporarily, use the umount command. This command detaches the �lesystem

from its mount point in your Linux �lesystem. To use umount, you can give it either a

directory name or a device name, as shown in this example:

umount /mnt/test

This unmounts the device from the mount point /mnt/test. You can also unmount using

this form:

umount /dev/sdb1

In general, it’s better to use the directory name (/mnt/test) because the umount

command will fail if the device is mounted in more than one location. (Device names all

begin with /dev.)

If you get the message device is busy, the umount request has failed because either

an application has a �le open on the device or you have a shell open with a directory on

the device as a current directory. Stop the processes or change to a directory outside the

device you are trying to unmount for the umount request to succeed.

An alternative for unmounting a busy device is the -l option. With umount -l (a lazy

unmount), the unmount happens as soon as the device is no longer busy. To unmount a

remote NFS �lesystem that’s no longer available (for example, the server went down), you

can use the umount -f option to forcibly unmount the NFS �lesystem.

Chapter 12: Managing Disks and Filesystems

263

12

Using the mkfs Command to Create a Filesystem
You can create a �lesystem for any supported �lesystem type on a disk or partition that

you choose. You do so with the mkfs command. Although this is most useful for creating

�lesystems on hard disk partitions, you can create �lesystems on USB �ash drives or

rewritable DVDs as well.

Before you create a new �lesystem, make sure of the following:

■■ You have partitioned the disk as you want (using the fdisk command).

■■ You get the device name correct, or you may end up overwriting your hard disk by

mistake. For example, the �rst partition on the second SCSI or USB �ash drive on

your system is /dev/sdb1 and the third disk is /dev/sdc1.

■■ To unmount the partition if it’s mounted before creating the �lesystem.

The following are two examples of using mkfs to create a �lesystem on two partitions on

a USB �ash drive located as the �rst and second partitions on the third SCSI disk (/dev/
sdc1 and /dev/sdc2). The �rst creates an xfs partition, while the second creates an ext4

partition:

mkfs -t xfs /dev/sdc1
meta-data=/dev/sda3 isize=256 agcount=4, agsize=256825 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=0
data = bsize=4096 blocks=1027300, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=0
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

mkfs -t ext4 /dev/sdc2
mke2fs 1.44.6 (5-Mar-2019)
Creating filesystem with 524288 4k blocks and 131072 inodes
Filesystem UUID: 6379d82e-fa25-4160-8ffa-32bc78d410eee
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912
Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

TIP

A really useful tool for discovering what’s holding open a device you want to unmount is the lsof command. Type

lsof with the name of the partition that you want to unmount (such as lsof /mnt/test). The output shows you

what commands are holding �les open on that partition. The fuser -v /mnt/test command can be used in

the same way.

Part III: Becoming a Linux System Administrator

264

You can now mount either of these �lesystems (for example, mkdir /mnt/myusb ;
mount /dev/sdc1 /mnt/myusb), change to /mnt/myusb as your current directory (cd
/mnt/myusb), and create �les on it as you please.

Managing Storage with Cockpit
Most of the features described in this chapter for working with disk partitions and �lesys-

tems using command-line tools can be accomplished using the Cockpit web user interface.

With Cockpit running on your system, open the Web UI (hostname:9090) and select the

Storage tab. Figure 12.2 shows an example of the Cockpit Storage tab on an Ubuntu system:

The Storage tab provides a solid overview of your system’s storage. It charts read and write

activity of your storage devices every minute. It displays the local �lesystems and storage

(including RAID devices and LVM volume groups) as well as remotely mounted NFS shares

and iSCSI targets. Each hard disk, DVD, and other physical storage device is also displayed

on the Storage tab.

Select a mounted �lesystem, and you can see and change partitioning for that �lesystem.

For example, by selecting the entry for an attached USB drive, you can see all of the par-

titions for the device it is on (/dev/sdb1 in this case). Figure 12.3 shows that partition’s

page and the options available for deleting it or creating a new partition table.

FIGURE 12.2

View storage devices, filesystems, and activities from the Cockpit Storage page.

Chapter 12: Managing Disks and Filesystems

265

12

With the storage device information displayed, you could reformat the entire storage device

(Create partition table) or, assuming that space is available on the device, add a new parti-

tion (Create partition).

If you decide that you want to format the disk or USB drive, change the Erase setting to

allow all of the data on the drive to be overwritten and then choose the type of partition-

ing. Select Format to unmount any mounted partitions from the drive and create a new

partition table. After that, you can add partitions to the storage device, choosing the size,

�lesystem type, and whether or not to encrypt data. You can even choose where in the

operating system’s �lesystem to mount the new partition. With just a few selections, you

can quickly create the disk layouts that you want in ways that are more intuitive than

methods for doing comparable steps from the command line.

Summary
Managing �lesystems is a critical part of administering a Linux system. Using commands

such as fdisk, you can view and change disk partitions. Filesystems can be added to

partitions using the mkfs command. Once created, �lesystems can be mounted and

unmounted using the mount and umount commands, respectively.

FIGURE 12.3

View and change disk partitions for a select storage device.

Part III: Becoming a Linux System Administrator

266

Logical Volume Manager (LVM) offers a more powerful and �exible way of managing disk

partitions. With LVM, you create pools of storage, called volume groups, which can allow

you to grow and shrink logical volumes as well as extend the size of your volume groups by

adding more physical volumes.

For a more intuitive way of working with storage devices, Cockpit offers an intuitive, Web-based

interface for viewing and con�guring storage on your Linux system. Using the Web UI, you can

see both local and networked storage as well as reformat disks and modify disk partitions.

With most of the basics needed to become a system administrator covered at this point

in the book, Chapter 13, “Understanding Server Administration,” introduces concepts for

extending those skills to manage network servers. Topics in that chapter include informa-

tion on how to install, manage, and secure servers.

Exercises
Use these exercises to test your knowledge of creating disk partitions, Logical Volume Man-

ager, and working with �lesystems. You need a USB �ash drive that is at least 1GB, which

you can erase for these exercises.

These tasks assume that you are running Ubuntu (although some tasks work on other Linux

systems as well). If you are stuck, solutions to the tasks are shown in Appendix A (although

in Linux, there are often multiple ways to complete a task).

1. Run a command as root to watch the system journal in a Terminal as fresh data comes

in, and insert your USB �ash drive. Determine the device name of the USB �ash drive.

2. Run a command to list the partition table for the USB �ash drive.

3. Delete all the partitions on your USB �ash drive, save the changes, and make sure

the changes were made both on the disk’s partition table and in the Linux kernel.

4. Add three partitions to the USB �ash drive: 100MB Linux partition, 200MB swap

partition, and 500MB LVM partition. Save the changes.

5. Put an ext4 �lesystem on the Linux partition.

6. Create a mount point called /mnt/mypart and mount the Linux partition on it.

7. Enable the swap partition and turn it on so that additional swap space is immedi-

ately available.

8. Create a volume group called abc from the LVM partition, create a 200MB logical

volume from that group called data, add a VFAT partition, and then temporarily

mount the logical volume on a new directory named /mnt/test. Check that it was

successfully mounted.

9. Grow the logical volume from 200MB to 300MB.

10. Do what you need to do to remove the USB �ash drive safely from the computer:

unmount the Linux partition, turn off the swap partition, unmount the logical

volume, and delete the volume group from the USB �ash drive.

Part IV

IN THIS PART

Chapter 13

Understanding Server Administration

Chapter 14

Administering Networking

Chapter 15

Starting and Stopping Services

Chapter 16

Con�guring a Print Server

Chapter 17

Con�guring a Web Server

Chapter 18

Con�guring an FTP Server

Chapter 19

Con�guring a Windows File Sharing (Samba) Server

Chapter 20

Con�guring an NFS File Server

Chapter 21

Troubleshooting Linux

Becoming a Linux Server

Administrator

269

CHAP T ER

13
Understanding Server

Administration

IN THIS CHAPTER

Administering Linux servers

Communicating with servers over networks

Setting up logging locally and remotely

Monitoring server systems

Managing servers in the enterprise

A
lthough some system administration tasks are needed even on a desktop system (installing

software, setting up printers, and so on), many new tasks appear when you set up a Linux

system to act as a server. That’s especially true if the server that you con�gure is made public

to anyone on the Internet, where you can be overloaded with requests from good guys while need-

ing to be constantly on guard against attacks from bad guys.

Dozens of different kinds of servers are available for Linux systems, and it’s often possible for a

single machine to play multiple server roles. Most servers serve up data to remote clients, but others

serve the local system (such as those that gather logging messages or kick off maintenance tasks at

set times using the cron facility). Many servers are represented by processes that run continuously

in the background and respond to requests. These processes are referred to as daemon processes.

As the name implies, servers exist to serve. The data that they serve can include web pages, �les,

database information, email, and lots of other types of content. As a server administrator, some of

the additional challenges to your system administration skills include the following:

Remote access To use a desktop system, you typically sit at its console. Server systems, by

contrast, tend to be housed in racks in climate-controlled environments under lock and key.

More often than not, after the physical computers are in place, most administration of those

machines is done using remote access tools. Often, no graphical interface is available, so you

must rely on command-line tools or browser-based interfaces to do things such as remote

login, remote copying, and remote execution. The most common of these tools are built on

the Secure Shell (SSH) facility.

Part IV: Becoming a Linux Server Administrator

270

Diligent security To be useful, a server must be able to accept requests for content

from remote users and systems. Unlike desktop systems, which can simply close

down all network ports that allow incoming requests for access, a server must make

itself vulnerable by allowing some access to its ports. That’s why as a server admin-

istrator, it is important to open ports to services that are needed and lock down

ports that are not needed. You can secure services using iptables and other �re-

wall tools and kernel security controls like AppArmor (to limit the resources a

service can access from the local system).

Continuous monitoring Although you typically turn off your laptop or desktop

system when you are not using it, servers usually stay on 24/7, 365 days a year.

Because you don’t want to sit next to each server without taking your eyes off it,

you can con�gure tools to automate monitoring, gather log messages, and even for-

ward suspicious messages to an email account of your choice. You can enable system

activity reporters to gather data around the clock on CPU usage, memory usage, net-

work activity, and disk access.

In this chapter, I lay out some of the basic tools and techniques that you need to know to

administer remote Linux servers. You’ll learn to use SSH tools to access your server securely,

transfer data back and forth, and even launch remote desktops or graphical applications and

have them appear on your local system. You’ll also learn to use remote logging and system

activity reports to monitor system activities continuously.

Getting Started with Server Administration
Whether you are installing a �le server, web server, or any of the other server facil-

ities available with Linux systems, many of the steps required for getting the server up

and running are the same. Where server setup diverges is in the areas of con�guration

and tuning.

In later chapters, I describe speci�c servers and how they differ. In each of the server-

related chapters that follow, you’ll go through these same basic steps for getting that

server started and available to be used by your clients.

Step 1: Install the server
Although most server software is not preinstalled on the typical Linux system, any general-

purpose Linux system offers access to the software packages needed to supply every major

type of server available. Here are some widely used server con�gurations that can be easily

installed on an Ubuntu machine:

System logging server The rsyslog service allows a local system to gather and

organize log messages delivered from a variety of active system processes. It can

also act as a remote logging server, gathering logging messages sent from other

servers. (The rsyslog service is described later in this chapter.) On systemd

machines, log messages are gathered in a binary journal, which can be viewed and

Chapter 13: Understanding Server Administration

271

13

managed locally through the journalctl command, or picked up and redirected

by the rsyslog service. rsyslog is installed by default on Debian-based systems.

Print server The Common UNIX Printing System (cups package) is used most

often to provide print server features on Linux systems. Packages that provide

graphical administration of CUPS (system-config-printer) and printer drivers

(foomatic and others) are also available when you install CUPS. (See Chapter 16,

“Con�guring a Print Server.”)

Web server The Apache web server (available through the apache2 package) is the

software used most often to serve web pages (HTTP content). Related packages include

modules to help serve particular types of content (Perl, Python, PHP, and SSL

connections). Likewise, there are packages for monitoring web data (webalizer)

and tools for providing web proxy services (squid). (See Chapter 17, “Con�guring a

Web Server.”)

FTP server The Very Secure FTP daemon (vsftpd package) provides FTP services

that include encryption—as the original FTP protocol is highly insecure. (See

Chapter 18, “Con�guring an FTP Server.”)

Windows �le server Samba (samba package) allows a Linux system to act as a Win-

dows �le and print server. (See Chapter 19, “Con�guring a Windows File Sharing

[Samba] Server.”)

NFS �le server Network File System (NFS) is the standard Linux and UNIX protocol

for providing shared directories to other systems over a network. The nfs-kernel-
server package provides NFS services and related commands. (See Chapter 20,

“Con�guring an NFS File Server.”)

Mail server Mail server packages let you con�gure Mail Transport Agent (MTA)

servers. You have several choices of email servers, including sendmail and

postfix. Related packages, such as dovecot, allow the mail server to deliver

email to clients.

Directory server Packages in this category provide remote and local authentication

services. These include Kerberos (krb5-server), LDAP (openldap-servers), and

NIS (ypserv).

DNS server The Berkeley Internet Name Domain service (bind 9) provides the soft-

ware needed to con�gure a server to resolve hostnames into IP addresses.

Network Time Protocol server The ntpd or chronyd package provides a service

that you can enable to sync your system clock with clocks from public or private

NTP servers.

SQL server The PostgreSQL (postgresql and postgresql-server packages)

service is an object-relational database management system. Related packages pro-

vide PostgreSQL documentation and related tools. The MySQL (mysql and mysql-
server packages) service is another popular open source SQL database server.

A community-developed branch of MySQL called MariaDB has recently gained

popularity over MySQL for many workloads.

Part IV: Becoming a Linux Server Administrator

272

Step 2: Con�gure the server
Most server software packages are installed with a default con�guration that leans more

toward security than immediate full use. Here are some things to think about when you set

out to con�gure a server.

Using con�guration �les

Traditionally, Linux server software was con�gured by editing plain-text �les in the /etc

directory (or subdirectories). Often, there is a primary con�guration �le, although there

could also be a related con�guration directory in which �les ending in .conf can be incor-

porated into the main con�guration.

The apache2 package (Apache web server) is an example of a server package that has a

primary con�guration �le and a directory where other con�guration �les can be dropped in

and be included with the service. The main con�guration �le in Ubuntu is /etc/apache2/
apache2.conf, while con�guration directories exist within the /etc/apache2/

directory.

$ ls /etc/apache2
apache2.conf conf-enabled magic mods-enabled sites-available
conf-available envvars mods-available ports.conf sites-enabled

The one downside to plain-text con�guration �les is that you don’t get the kind of immedi-

ate error checking you get when you use graphical administration tools. You either have to

run a test command (if the service includes one) or actually try to start the service to see if

there is any problem with your con�guration �le.

Checking the default con�guration

Most server software packages are installed with a minimal and locked-down con�guration.

Some packages prompt you to create authentication credentials during the installation

process, but others just do their work and leave it up to you to �gure out the details—

including where associated �les have been saved and how to get the program running.

Two examples of servers that are installed with limited functionality are mail servers

(sendmail or postfix packages) and DNS servers (bind 9 package). Both of these

servers come with default con�gurations and will start up on reboot. However, both also

only listen for requests on your localhost. So, until you con�gure them, people who are

not logged in to your local server cannot send you mail or use your computer as a public

DNS server.

Step 3: Start the server
Most services that you install in Linux are con�gured to start up when the system boots

and then run continuously, listening for requests, until the system is shut down. These

days, nearly all Linux systems manage services through systemd.

It’s your job to do things such as set whether you want the service to automatically launch

when the system boots and to manually start, stop, and reload it as needed (possibly to

Chapter 13: Understanding Server Administration

273

13

load new con�guration �les or temporarily stop access to the service). Commands for doing

these tasks are described in Chapter 15, “Starting and Stopping Services.”

Most, but not all, services are implemented as daemon processes. Here are a few things that

you should know about those processes:

User and group permissions Daemon processes often run as users and groups other

than root. For example, an Apache server often runs as www-data and an NTP server

runs as the ntp user. The reason for this is that if someone cracks these daemons,

they would not have permissions to access �les beyond what the services can access.

Daemon con�guration �les Often, a service has a con�guration �le for the daemon

stored in the /lib/systemd/system directory. This is different than the service

con�guration �le in that its job is often just to pass arguments to the server pro-

cess itself rather than con�gure the service. For example, options you set in the /
lib/systemd/system/apache2.service �le are passed to the apache daemon

when it starts up. You can tell the daemon, for example, what to do in the event of

an unexpected abort.

Port numbers Packets of data go to and from your system over network interfaces

through ports for each supported protocol (usually UDP or TCP). Most standard ser-

vices have speci�c port numbers to which daemons listen and to which clients

connect. Unless you are trying to hide the location of a service, you typically don’t

change the ports on which a daemon process listens. When you go to secure a ser-

vice, you must make sure that the port to the service is open on the �rewall (see

Chapter 25, “Securing Linux on a Network,” for information on iptables and UFW

�rewalls).

Not all services run continuously as daemon processes. Some older UNIX services ran on

demand using the xinetd super server. Other services just run once on startup and exit.

Still others run only a set number of times, being launched when the crond daemon sees

that the service was con�gured to run at the particular time.

In recent years, older xinetd services such as telnet and tftp, have been converted

to systemd sockets. Many newer services, including cockpit, use systemd sockets to

achieve the same results.

NOTE

One reason for changing port numbers on a service is “security by obscurity.” For example, the sshd service is a

well-known target for people trying to break into a system by guessing logins and passwords on TCP port 22.

Some admins change their Internet-facing sshd service to listen on some other port number (perhaps some

unused, very high port number). Then they tell their contacts to log in to their machine from SSH by pointing to this

other port. The idea is that port scanners looking to break into a system might be less likely to scan the normally

unused port.

The problem is that, using port scanners, experienced hackers could detect the port you’re actually using in seconds.

Part IV: Becoming a Linux Server Administrator

274

Step 4: Secure the server
Opening your system to allow remote users to access it over the network is not a decision

to be taken lightly. Crackers all over the world run programs to scan for vulnerable servers

that they can take over for their data or their processing power. Luckily, there are mea-

sures that you can put in place on Linux systems to protect your servers and services from

attacks and abuse.

Some common security techniques are described in the following sections. These and other

topics are covered in more depth in Part V, “Learning Linux Security Techniques.”

Password protection

Good passwords and password policies are the �rst line of defense in protecting a Linux

system. If someone can log in to your server via SSH as the root user with a password of

pa$$word, expect to be cracked. A good technique is to disallow direct login by root and

require every user to log in as a regular user and then use su or sudo to become root.

You can also use the Pluggable Authentication Module (PAM) facility to adjust the number

of times that someone can have failed login attempts before blocking access to that person.

PAM also includes other features for locking down authentication to your Linux server. For

a description of PAM, see Chapter 23, “Understanding Advanced Linux Security.”

Of course, you can bypass passwords altogether by requiring public key authentication. To

use that type of authentication, you must make sure that any user you want to have access

to your server has their public key copied to the server (such as through ssh-copy-id).

Then they can use ssh, scp, or related commands to access that server without typing

their password. See the section “Using key-based (passwordless) authentication” later in

this chapter for further information.

Firewalls

The iptables �rewall service can track and respond to every packet coming from and

going to network interfaces on your computer. Using iptables, you can drop or reject

every packet making requests for services on your system except for those few that you

have enabled. Further, you can tell iptables to allow service requests only from certain

IP addresses (good guys) or not allow requests from other addresses (bad guys).

In recent Ubuntu versions, the Uncomplicated Firewall (UFW) feature adds a layer of func-

tionality to Linux �rewall rules. With UFW, you can insert �rewall rules into the kernel

through a much more user-friendly CLI interface.

In each of the server chapters coming up, I describe what ports need to be open to

allow access to services. Descriptions of how iptables and UFW work are included in

Chapter 25.

TCP Wrappers

TCP Wrappers, which use /etc/hosts.allow and /etc/hosts.deny �les to allow and

deny access in a variety of ways to selected services, was used primarily to secure older

Chapter 13: Understanding Server Administration

275

13

UNIX services, and it is no longer considered to be very secure. While the use of the TCP

Wrapper program (/usr/sbin/tcpd) is only common on systems that use xinetd, the

/etc/hosts.allow and /etc/hosts.deny �les that the TCP Wrapper program checked

before granting access to network services are often checked by daemons that are con�g-

ured to do so. The con�guration option within the con�guration �les for these daemons is

often labeled as TCP Wrapper support.

AppArmor

Ubuntu comes with the mandatory access control (MAC) AppArmor kernel security module.

Although the default targeted mode doesn’t have much impact on most applications that

you run in Linux, it has a major impact on most major services.

A major function of AppArmor is to protect the contents of your Linux system from the

processes running on the system. In other words, AppArmor makes sure a web server, FTP

server, Samba server, or DNS server can access the appropriate system �les and allows only

appropriate system behavior.

Details about how to use AppArmor are contained in Chapter 24, “Enhancing Linux Security

with AppArmor.”

Security settings in con�guration �les

Within the con�guration �les of most services are values that you can set to secure the ser-

vice further. For example, for �le servers and web servers, you can restrict access to certain

�les or data based on username, hostname, IP address of the client, or other attributes.

Step 5: Monitor the server
Because you can’t be there to monitor every service, every minute, you need to put mon-

itoring tools in place to watch your servers for you and make it easy for you to �nd out

when something needs attention. Some of the tools that you can use to monitor your

servers are described in the sections that follow.

Con�gure logging

Using the rsyslog service, you can gather critical information and error conditions into

log �les about many different services. By default, log messages from applications are

directed into log �les in the /var/log directory. For added security and convenience, log

messages can also be directed to a centralized server, providing a single location to view

and manage logging for a group of systems. For example, journalctl manages logs in

parallel with rsyslog on most systems these days.

Several different software packages are available to work with rsyslog and manage log

messages. The logwatch feature scans your log �les each night and sends critical informa-

tion gathered from those �les to an email account of your choice. The logrotate feature

backs up log �les into compressed archives when the logs reach a certain size or pass a set

amount of time since the previous backup.

Part IV: Becoming a Linux Server Administrator

276

The features for con�guring and managing system logging are described in the section

“Con�guring System Logging” later in this chapter.

Run system activity reports

The sar facility (which is enabled by the sysstat package) can be con�gured to watch

activities on your system such as memory usage, CPU usage, disk latency, network activ-

ities, and other resource drains. By default, the sar facility launches the sadc program

every few minutes, day and night, to gather data. Viewing that data later can help you go

back and �gure out where and when demand is spiking on your system. The sar facility is

described in the section “Checking System Resources with sar” later in this chapter.

Watch activity live with Cockpit

With Cockpit running on your system, you can watch system activity in real time. To see

what’s happening on your own, local system, open your web browser to display the Cockpit

console (localhost:9090). In real time, you can watch percentage of CPU use, memory

and swap consumption, how much data is written to and from disk (disk I/O), and network

traf�c as it is gathered and displayed across the screen. Figure 13.1 shows an example of

the System area of the Cockpit console, displaying activity data.

FIGURE 13.1

The System page of Cockpit

Chapter 13: Understanding Server Administration

277

13

Keep system software up to date

As security holes are discovered and patched, you must make sure that the updated soft-

ware packages containing those patches are installed on your servers. With mission-critical

servers—as for all Ubuntu computers—the safest and most ef�cient solution is to apply

APT updates immediately to all of your servers. And the best way to do that is to automate

those updates using a tool like unattended-upgrades (apt install unattended-
upgrades). Of course, if you’re worried that unattended updates might break an important

application, then you’ll have no choice but to watch carefully during patches.

To ensure that your personal server and desktop systems remain up to date, there are var-

ious graphical tools to add software and to check for updates. Running apt update &&
apt upgrade will keep things honest.

Check the �lesystem for signs of crackers

To check your �lesystem for possible intrusion, you can run commands such like debsums
-c (after installing with apt install debsums) to check for any commands, document

�les, or con�guration �les that have been tampered with.

Now that you have an overview of how Linux server con�guration is done, the next sec-

tions of this chapter focus on the tools that you need to access, secure, and maintain your

Linux server systems.

Checking and Setting Servers
If you’re tasked with managing a Linux server, the following sections include a bunch of

items that you can check. Keep in mind that nowadays many servers in large data cen-

ters are deployed and managed by larger platforms. So, know how the server is managed

before you make any changes to it. Your changes might be overwritten automatically if you

changed the de�ned state of that system.

Managing Remote Access with the Secure

Shell Service
The Secure Shell tools are a set of client and server applications that allow you to do basic

communications between client computers and your Linux server. The tools include ssh,

scp, sftp, and many others. Because communication is encrypted between the server

and the clients, these tools are more secure than similar, older tools. For example, instead

of using older remote login commands such as telnet or rlogin, you could use ssh.

The ssh command can also replace older remote execution commands, such as rsh.

Remote copy commands, such as rcp, can be replaced with secure commands such as scp

and rsync.

Part IV: Becoming a Linux Server Administrator

278

With Secure Shell tools, both the authentication process and all communications that

follow are encrypted. Communications from telnet and the older r commands expose

passwords and all data to someone snif�ng the network. Today, telnet and similar com-

mands should be used only for testing access to remote ports, providing public services

such as PXE booting, or doing other tasks that don’t expose your private data.

Most Linux systems include secure shell clients, and many include the secure shell server as

well. The client and server software packages that contain the ssh tools are found in the

openssh-client and openssh-server packages.

By default, Ubuntu usually comes with only the openssh-client package installed. If

you need the server installed so clients can log in to your system using SSH, use the sudo
apt install openssh-server command.

Starting the openssh-server service
Linux systems that come with the openssh-server package already installed are some-

times not con�gured for it to start automatically. Running systemctl start ssh will

cure you of that problem.

Although Ubuntu usually installs without any running �rewalls, if any network restrictions

do exist, you’ll need to allow the openssh-client to access port 22 (�rewalls are covered

in Chapter 25). After the service is up and running and the �rewall is properly con�gured,

you should be able to use ssh client commands to access your system via the ssh server.

Any further server-side con�gurations for what the sshd daemon is allowed to do are han-

dled in the /etc/ssh/sshd_config �le. At a minimum, set the PermitRootLogin

setting to no. This stops anyone from remotely logging in as root.

grep PermitRootLogin /etc/ssh/sshd_config
PermitRootLogin no

After you have changed the sshd_config �le, restart the ssh service. After that point, if

you use ssh to log in to that system from a remote client, you must do so as a regular user

and then use su or sudo to become the root user.

Using SSH client tools
Many tools for accessing remote Linux systems have been created to make use of the SSH

service. The most frequently used of those tools is the ssh command, which can be used

for remote login, remote execution, and other tasks. Commands such as scp and rsync

can copy one or more �les at a time between SSH client and server systems. The sftp

command provides an FTP-like interface for traversing a remote �lesystem and getting and

putting �les between the systems interactively.

NOTE

For a deeper discussion of encryption techniques, refer to Chapter 23.

Chapter 13: Understanding Server Administration

279

13

By default, all of the SSH-related tools authenticate using standard Linux usernames and

passwords, all done over encrypted connections. However, SSH also supports key-based

authentication, which can be used to con�gure key-based and possibly passwordless

authentication between clients and SSH servers, as described in the section “Using key-

based (passwordless) authentication” later in this chapter.

Using ssh for remote login

Use the ssh command from another Linux computer to test that you can log in to the

Linux system running your ssh service. The ssh command is one that you will use often

to access a shell on the servers you are con�guring.

Try logging in to your Linux server from another Linux system using the ssh command. (If

you don’t have another Linux system, you can simulate this by typing localhost instead

of the IP address and logging in as a local user.) The following is an example of remotely

logging in to johndoe’s account on 10.140.67.23:

$ ssh johndoe@10.140.67.23
The authenticity of host '10.140.67.23 (10.140.67.23)'
 can't be established.
RSA key fingerprint is
 a4:28:03:85:89:6d:08:fa:99:15:ed:fb:b0:67:55:89.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.140.67.23' (RSA) to the
 list of known hosts.
johndoe@10.140.67.23's password: *********

If this is the very �rst time that you have logged in to that remote system using the ssh

command, the system asks you to con�rm that you want to connect. Type yes (the full

word: not just “y”), and press Enter. When prompted, enter the user’s password.

When you type yes to continue, you accept the remote host’s public key. At that point, the

remote host’s public key is downloaded to the client in the client’s ~/.ssh/known_hosts

�le. Now data exchanged between these two systems can be encrypted and decrypted using

RSA asymmetric encryption (see Chapter 23). After you are logged in to the remote system,

you can begin typing shell commands. The connection functions like a normal login. The

only difference is that the data is encrypted as it travels over the network.

When you are �nished, type exit to end the remote connection. The connection is closed,

and you are returned to the command prompt on your local system. (If the local shell

doesn’t return after you exit the remote shell, typing ~. usually closes the connection.)

$ exit
logout
Connection to 10.140.67.23 closed

After you have remotely connected to a system, a �le in your local system subdirectory,

~.ssh/known_hosts, will exist. This �le contains the public key of the remote host along

with its IP address. Your server’s public and private keys are stored in the /etc/ssh directory.

Part IV: Becoming a Linux Server Administrator

280

$ ls .ssh
known_hosts
$ cat .ssh/known_hosts
10.140.67.23 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEAoyfJK1YwZhNmpHE4yLPZAZ9ZNEdRE7I159f3I
yGiH21Ijfqs
NYFR10ZlBLlYyTQi06r/9O19GwCaJ753InQ8FWHW+OOYOG5pQmghhn
/x0LD2uUb6egOu6zim1NEC
JwZf5DWkKdy4euCUEMSqADh/WYeuOSoZ0pp2IAVCdh6
w/PIHMF1HVR069cvdv+OTL4vD0X8llSpw
0ozqRptz2UQgQBBbBjK1RakD7fY1TrWv
NQhYG/ugt gPaY4JDYeY6OBzcadpxZmf7EYUw0ucXGVQ1a
NP/erIDOQ9rA0YNzCRv
y2LYCm2/9adpAxc+UYi5UsxTw4ewSBjmsXYq//Ahaw4mjw==

Using SSH for remote execution

Besides logging in to a remote shell, the ssh command can be used to execute a

command on the remote system and have the output returned to the local system. Here is

an example:

$ ssh johndoe@10.140.67.23 hostname
johndoe@10.140.67.23's password: **********
host01.example.com

In the example just shown, the hostname command runs as the user johndoe on the

Linux system located at IP address 10.140.67.23. The output of the command is the name

of the remote host (in this case, host01.example.com), which appears on the local screen.

If you run a remote execution command with ssh that includes options or arguments, be

sure to surround the whole remote command line in quotes. Keep in mind that if you refer

to �les or directories in your remote commands, relative paths are interpreted in relation to

the user’s home directory, as shown here:

$ ssh johndoe@10.140.67.23 "cat myfile"
johndoe@10.140.67.23's password: **********
Contents of the myfile file located in johndoe's home directory.

The ssh command just shown goes to the remote host located at 10.140.67.23 and runs

the cat myfile command as the user johndoe. This causes the contents of the myfile

�le from that system to be displayed on the local screen.

TIP

Any later attempts by this user to contact the server at 10.140.67.23 are authenticated using this stored key. If the

server should change its key (which happens if the operating system is reinstalled or if keys are rotated), attempts to

ssh to that system result in a refused connection and dire warnings that you may be under attack. If you know that

the key has indeed changed, in order to be able to ssh to that address again, just remove the host’s key (the whole

line) from your known_hosts �le and you can copy over the new key. The warning message will probably include a

command suitable for cutting and pasting that will get this done for you.

http://host01.example.com

Chapter 13: Understanding Server Administration

281

13

Another type of remote execution that you can do with ssh is X11 forwarding. If X11 for-

warding is enabled on the server (X11Forwarding yes is set in the host’s /etc/sshd/
sshd_config �le), you can run graphical applications from the server securely over the

SSH connection using ssh -X. For a new server administrator, this means that if there are

graphical administration tools installed on a server, you can run those tools without hav-

ing to sit at the console, as in this example:

$ ssh -X johndoe@10.140.67.23 system-config-printer
johndoe@10.140.67.23's password: **********

After running this command, you are prompted for the remote user’s sudo password.

After that, the Printers window appears, ready for you to con�gure a printer. Just close

the window when you are �nished, and the local prompt returns. You can do this for any

graphical administration tool or just regular X applications (such as the gedit graphical

editor, so that you don’t have to use vi).

If you want to run several X commands and don’t want to have to reconnect each time, you

can use X11 forwarding directly from a remote shell as well. Put them in the background

and you can have several remote X applications running on your local desktop at once.

Here’s an example:

$ ssh -X johndoe@10.140.67.23
johndoe@10.140.67.23's password: **********
$ system-config-printer &
$ gedit &
$ exit

After you have �nished using the graphical applications, close them as you would normally.

Then type exit, as shown in the preceding code, to leave the remote shell and return to

your local shell.

Copying �les between systems with scp and rsync

The scp command is similar to the old UNIX rcp command for copying �les to and from

Linux systems, except that all communications are encrypted. Files can be copied from the

remote system to the local system or local to remote. You can also copy �les recursively

through a whole directory structure if you choose.

The following is an example of using the scp command to copy a �le called memo from the home

directory of the user chris to the /tmp directory on a remote computer as the user johndoe:

$ scp /home/chris/memo johndoe@10.140.67.23:/tmp
johndoe@10.140.67.23's password: ***************
memo 100%|****************| 153 0:00

You must enter the password for johndoe. After the password is accepted, the �le is

copied to the remote system successfully.

You can do recursive copies with scp using the -r option. Instead of a �le, pass a directory

name to the scp command and all �les and directories below that point in the �lesystem

are copied to the other system.

Part IV: Becoming a Linux Server Administrator

282

$ scp -r johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/
johndoe@10.140.67.23's password: ***************
volname.1.gz 100% 543 0.5KB/s 00:00
mtools.1.gz 100% 6788 6.6KB/s 00:00
roqet.1.gz 100% 2496 2.4KB/s 00:00
...

As long as the user johndoe has access to the �les and directories on the remote system

and the local user can write to the target directory (both are true in this case), the direc-

tory structure from /usr/share/man/man1 down is copied to the local /tmp directory.

The scp command can be used to back up �les and directories over a network. However, if

you compare scp to the rsync command, you see that rsync (which also works over SSH

connections) is a better backup tool. Try running the scp command shown previously to

copy the man1 directory (you can simulate the command using localhost instead of the

IP address if you only have one accessible Linux system). Now enter the following on the

system to which you copied the �les:

$ ls -l /usr/share/man/man1/batch* /tmp/man1/batch*
-rw-r--r--.1 johndoe johndoe 2628 Apr 15 15:32 /tmp/man1/batch.1.gz
lrwxrwxrwx.1 root root 7 Feb 14 17:49 /usr/share/man/man1/batch.1.gz
 -> at.1.gz

Next, run the scp command again and list the �les once more:

$ scp johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/
johndoe@10.140.67.23's password: ***************
$ ls -l /usr/share/man/man1/batch* /tmp/man1/batch*
-rw-r--r--.1 johndoe johndoe 2628 Apr 15 15:40 /tmp/man1/batch.1.gz
lrwxrwxrwx.1 root root 7 Feb 14 17:49 /usr/share/man/man1/batch.1.gz
 -> at.1.gz

The output of those commands tells you a few things about how scp works:

Attributes lost Permissions or date/time stamp attributes were not retained when the

�les were copied. If you were using scp as a backup tool, you would probably want to

keep permissions and time stamps on the �les if you needed to restore the �les later.

Symbolic links lost The batch.1.gz �le is actually a symbolic link to the at.1.gz

�le. Instead of copying the link, scp follows the link and actually copies the �le.

Again, if you were to restore this directory, batch.1.gz would be replaced by the

actual at.1.gz �le instead of a link to it.

Copy repeated unnecessarily If you watched the second scp output, you would

notice that all �les were copied again, even though the exact �les being copied were

already on the target. The updated modi�cation date con�rms this. By contrast, the

rsync command can determine that a �le has already been copied and not copy the

�le again.

Chapter 13: Understanding Server Administration

283

13

The rsync command is a better network backup tool because it can overcome some of the

shortcomings of scp just listed. Try running an rsync command to do the same action

that scp just did, but with a few added options:

$ rm -rf /tmp/man1/
$ rsync -avl johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/
johndoe@10.140.67.23's password: ***************
sending incremental file list
man1/
man1/HEAD.1.gz
man1/Mail.1.gz -> mailx.1.gz
...
$ rsync -avl johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/
johndoe@10.140.67.23's password: ***************
sending incremental file list
sent 42362 bytes received 13 bytes 9416.67 bytes/sec
total size is 7322223 speedup is 172.80
$ ls -l /usr/share/man/man1/batch* /tmp/man1/batch*
lrwxrwxrwx.1 johndoe johndoe 7 Feb 14 17:49 /tmp/man1/batch.1.gz
 -> at.1.gz
lrwxrwxrwx.1 root root 7 Feb 14 17:49 /usr/share/man/man1/batch.1.gz
 -> at.1.gz

After removing the /tmp/man1 directory, you run an rsync command to copy all of the

�les to the /tmp/man1 directory, using -a (recursive archive), -v (verbose), and -l (copy

symbolic links). Then run the command immediately again and notice that nothing is

copied. The rsync command knows that all of the �les are there already, so it doesn’t copy

them again. This can be a tremendous savings of network bandwidth for directories with

gigabytes of �les where only a few megabytes change.

Also notice from the output of ls -l that the symbolic links have been preserved on the

batch.1.gz �le and so has the date/time stamp on the �le. If you need to restore those

�les later, you can put them back exactly as they were.

This use of rsync is good for backups. But what if you wanted to mirror two directories,

making the contents of two directory structures exactly the same on two machines? The

following commands illustrate how to create an exact mirror of the directory structure on

both machines using the directories shown with the previous rsync commands.

First, on the remote system, copy a new �le into the directory being copied:

cp /etc/services /usr/share/man/man1

Next, on the local system, run rsync to copy across any new �les (in this case, just the

directory and the new �le, services):

$ rsync -avl johndoe@10.140.67.23:/usr/share/man/man1 /tmp
johndoe@10.140.67.23's password:

Continues

Part IV: Becoming a Linux Server Administrator

284

sending incremental file list
man1/
man1/services

After that, go back to the remote system and remove the new �le:

$ sudo rm /usr/share/man/man1/services

Now, on the local system, run rsync again and notice that nothing happens. At this point,

the remote and local directories are different because the local system has the services �le

and the remote doesn’t. That is correct behavior for a backup directory. (You want to have

�les on the backup in case something was removed by mistake.) However, if you want the

remote and local directories to be mirrored, you would have to add the --delete option.

The result is that the services �le is deleted on the local system, making the remote and

local directory structures in sync.

$ rsync -avl /usr/share/man/man1 localhost:/tmp
johndoe@10.140.67.23's password: ***************
sending incremental file list
man1/
$ rsync -avl --delete johndoe@10.140.67.23:/usr/share/man/man1 /tmp
johndoe@10.140.67.23's password: ***************
sending incremental file list
deleting man1/services

Interactive copying with sftp

If you don’t know exactly what you want to copy to or from a remote system, you can use

the sftp command to create an interactive FTP-style session over the SSH service. Using

sftp, you can connect to a remote system over SSH, change directories, list directory con-

tents, and then (given proper permission) get �les from and put �les on the server. Keep in

mind that, despite its name, sftp has nothing to do with the FTP protocol and doesn’t use

FTP servers. It simply uses an FTP style of interaction between a client and a sshd server.

The following example shows the user johndoe connecting to jd.example.com:

$ sftp johndoe@jd.example.com
Connecting to jd.example.com
johndoe@jd.example.com's password: ***************
sftp>

At this point, you can begin an interactive FTP session. You can use get and put commands

on �les as you would with any FTP client, but with the comfort of knowing that you are

working on an encrypted and secure connection. Because the FTP protocol passes usernames,

passwords, and data in clear text, using sftp over SSH, if possible, is a much better alterna-

tive for allowing your users to copy �les interactively from the system.

Continued

http://jd.example.com

Chapter 13: Understanding Server Administration

285

13

Using key-based (passwordless) authentication
If you are using SSH tools to connect to the same systems throughout the day, you might

�nd it inconvenient to be entering your password over and over again. Instead of using

password-based authentication, SSH allows you to set up key-based authentication to use

instead. Here’s how it works:

■■ You create a public key and a private key.

■■ You guard the private key but copy the public key across to the user account on the

remote host to which you want to do key-based authentication.

■■ With your key copied to the proper location, you use any SSH tools to connect to

the user account on the remote host, but instead of asking you for a password, the

remote SSH service compares the public key and the private key and allows you

access if the two keys match.

When you create the keys, you are given the option to add a passphrase to your private

key. If you decide to add a passphrase, even though you don’t need to enter a password to

authenticate to the remote system, you still need to enter your passphrase to unlock your

private key. If you don’t add a passphrase, you can communicate using your public/private

key pairs in a way that is completely passwordless. However, if someone should get ahold of

your private key, they could act as you in any communication that required that key.

The following procedure demonstrates how a local user named chris can set up key-based

authentication to a remote user named johndoe at IP address 10.140.67.23. If you don’t

have two Linux systems, you can simulate this by using two user accounts on your local

system. I start by logging in as the local user named chris and typing the following to

generate my local public/private key pair:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/chris/.ssh/id_rsa): ENTER
Enter passphrase (empty for no passphrase): ENTER
Enter same passphrase again: ENTER
Your identification has been saved in /home/chris/.ssh/id_rsa.
Your public key has been saved in /home/chris/.ssh/id_rsa.pub.
The key fingerprint is:
bf:06:f8:12:7f:f4:c3:0a:3a:01:7f:df:25:71:ec:1d chris@abc.example.com
The key's randomart image is:
 ...

I accepted the default RSA key (DSA keys are also allowed) and pressed Enter twice to have

a blank passphrase associated with the key. As a result, my private key (id_rsa) and

public key (id_rsa.pub) are copied to the .ssh directory in my local home directory. The

next step is to copy that key over to a remote user so that I can use key-based authentica-

tion each time I connect to that user account with ssh tools:

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub johndoe@10.140.67.23
johndoe@10.140.67.23's password:

Part IV: Becoming a Linux Server Administrator

286

When prompted, I entered johndoe’s password. With that accepted, the public key

belonging to chris is copied to the authorized_keys �le in johndoe’s .ssh directory

on the remote system. Now, the next time chris tries to connect to johndoe’s account,

the SSH connection is authenticated using those keys. Because no passphrase is put on the

private key, no passphrase is required to unlock that key when it is used.

Log in to the machine with ssh johndoe@10.140.67.23, and check in $HOME/.ssh/
authorized_keys to make sure that you haven’t added extra keys that you weren’t

expecting:

[chris]$ ssh johndoe@10.140.67.23
Last login: Sun Apr 17 10:12:22 2016 from 10.140.67.22
[johndoe]$ cat .ssh/authorized_keys

With the keys in place, chris could now use ssh, scp, rsync, or any other SSH-enabled

command to do key-based authentication. Using these keys, for example, an rsync

command could go into a cron script and automatically back up johndoe’s home directory

every night.

Want to secure your remote system further? After you have the keys in place on your

remote system for everyone you want to allow to log in to that system, you can set the

sshd service on the remote system to not allow password authentication by changing the

PasswordAuthentication setting in the /etc/ssh/sshd_config �le to no, so that it

appears as follows:

PasswordAuthentication no

Then restart the ssh service (systemctl restart ssh). After that, anyone with a

valid key is still accepted. Anyone who tries to log in without a key gets the following

failure message and doesn’t even get a chance to enter a username and password:

Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

Con�guring System Logging
With the knowledge of how to access your remote server using SSH tools, you can log in to

the server and set up some of the services needed to make sure that it’s running smoothly.

System logging is one of the basic services con�gured for Linux to keep track of what is

happening on the system.

The rsyslog service provides the features to gather log messages from software running on

the Linux system and direct those messages to local log �les, devices, or remote logging hosts.

Con�guration of rsyslog is similar to the con�guration of its predecessor, syslog. However,

rsyslog allows you to add modules to manage and direct log messages more speci�cally.

In recent Ubuntu releases, the rsyslog facility leverages messages that are gathered and

stored in the systemd journal. To display journal log messages directly from the systemd

journal, instead of viewing them from �les in the /var/log directory, use the journalctl

command.

Chapter 13: Understanding Server Administration

287

13

Enabling system logging with rsyslog
Most of the �les in the /var/log directory are populated with log messages directed to

them from the rsyslog service. The rsyslogd daemon is the system logging daemon. It

accepts log messages from a variety of other programs and writes them to the appropriate

log �les. This is better than having every program write directly to its own log �le because

it enables you to manage centrally how log �les are handled.

Con�guring rsyslogd to record varying levels of detail in the log �les is possible. It can

be told to ignore all but the most critical messages, or it can record every detail.

The rsyslogd daemon can even accept messages from other computers on your network.

This remote logging feature is particularly handy because it enables you to centralize the

management and review of the log �les from many systems on your network. There is also a

major security bene�t to this practice.

With remote logging, if a system on your network is broken into, the cracker cannot delete

or modify the log �les because those �les are stored on a separate computer. It is important

to remember, however, that those log messages are not, by default, encrypted (though

encryption can be enabled). Anyone tapping into your local network can eavesdrop on

those messages as they pass from one machine to another. Also, although crackers may not

be able to change old log entries, they can affect the system such that any new log mes-

sages should not be trusted.

Running a dedicated loghost, a computer that serves no purpose other than to record log

messages from other computers on the network, is not uncommon. Because this system

runs no other services, it is unlikely that it will be broken into. This makes it nearly impos-

sible for crackers to erase their tracks completely.

Understanding the rsyslog.conf �le

The /etc/rsyslog.conf �le is the primary con�guration �le for the rsyslog service.

In the /etc/rsyslog.conf �le, a modules section lets you include or not include speci�c

features in your rsyslog service. The following is an example of the modules section of

/etc/rsyslog.conf:

module(load="imuxsock") # provides support for local system logging
#module(load="immark") # provides --MARK-- message capability

provides UDP syslog reception
#module(load="imudp")
#input(type="imudp" port="514")

provides TCP syslog reception
#module(load="imtcp")
#input(type="imtcp" port="514")

provides kernel logging support and enable non-kernel klog messages
module(load="imklog" permitnonkernelfacility="on")

Part IV: Becoming a Linux Server Administrator

288

Entries beginning with module(load= load the modules that follow. Modules that are

currently disabled are preceded by a pound sign (#). The imuxsock module is needed

to accept messages from the local system. (It should not be commented out—preceded

by a pound sign—unless you have a speci�c reason to do so.) The imklog module logs

kernel messages.

Modules not enabled by default include the immark module, which allows --MARK--

messages to be logged (used to indicate that a service is alive). The imudp and imtcp

modules and related port number entries are used to allow the rsyslog service to accept

remote logging messages and are discussed in more detail in the section “Setting up and

using a loghost with rsyslogd.”

Most of the work done by rsyslog is based on rules found in �les in the /etc/rsyslog.d

directory:

$ ls /etc/rsyslog.d/
20-ufw.conf 50-default.conf postfix.conf

Rules entries come in two columns. In the left column are designations of what messages

are matched; the right column shows where matched messages go. Messages are matched

based on facility (mail, cron, kern, and so on) and priority (starting at debug, info,

notice, and up to crit, alert, and emerg), separated by a dot (.). So mail.info

matches all messages from the mail service that are info level and above. An asterisk

(*) means that all priority levels are to be logged. Here’s a sample from a typical /etc/
rsyslog.d/50-default.conf �le:

First some standard log files. Log by facility.
#
auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
#daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
#lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
#user.* -/var/log/user.log

#mail.info -/var/log/mail.info
#mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

As for where the messages go, most messages are directed to �les in the /var/log direc-

tory. You can, however, direct messages to a device (such as /dev/console) or a remote

loghost (such as @loghost.example.com). The at sign (@) indicates that the name that

follows is the name of the loghost.

The mail, authpriv (authentication messages), and cron (cron facility messages) ser-

vices each has its own log �les, as listed in the columns to their right. To understand

the format of those and other log �les, the format of the /var/log/messages �le is

described next.

http://mail.info
http://loghost.example.com

Chapter 13: Understanding Server Administration

289

13

Understanding log messages

Because of the many programs and services that record information to log �les, under-

standing their format is important. You can get a good early warning of problems devel-

oping on your system by examining some examples. Each line is a single message recorded

by some program or service. Here is a snippet of an actual messages log �le:

Feb 25 11:04:32 toys network: Bringing up loopback: succeeded
Feb 25 11:04:35 toys network: Bringing up interface eth0: succeeded
Feb 25 13:01:14 toys vsftpd(pam_unix)[10565]: authentication failure;
 logname= uid=0 euid=0 tty= ruser= rhost=10.0.0.5 user=chris
Feb 25 14:44:24 toys su(pam_unix)[11439]: session opened for
 user root by chris(uid=500)

The default message format is divided into �ve main parts.

When you view messages in �les from the /var/log directory, from left to right, message

parts are as follows:

■■ The date and time that the message was logged

■■ The name of the computer from which the message came

■■ The program or service name to which the message pertains

■■ The process number (enclosed in square brackets) of the program sending the message

■■ The actual text message

Take another look at the preceding �le snippet. In the �rst two lines, you can see that the

network was restarted. The next line shows that the user named chris tried and failed to get

to the FTP server on this system from a computer at address 10.0.0.5. (He typed the wrong

password and authentication failed.) The last line shows chris using the su command to

become root user.

By occasionally reviewing the /var/log/auth.log �le, you could catch a cracking attempt

before it is successful. If you see an excessive number of connection attempts for a particular

service, especially if they are coming from systems on the Internet, you may be under attack.

Setting up and using a loghost with rsyslogd

To redirect your computer’s log �les to another computer’s rsyslogd, you must make

changes to both the local and remote rsyslog con�guration �le, /etc/rsyslog.conf.

Become root using the su – command, and then open the /etc/rsyslog.conf �le in a

text editor (such as vi).

On the client side

To send the messages to another computer (the loghost) instead of a �le, start by replacing

the log �le name with the @ character followed by the name of the loghost. For example, to

direct the output of messages that are being sent to the syslog and mail.log log �les to

a loghost as well, add the lines in bold to the messages �le:

authpriv.* @10.0.3.24:514

mail.* @10.0.3.24:514

Part IV: Becoming a Linux Server Administrator

290

The messages are now sent to the rsyslogd running on the computer named loghost. The

name loghost was not an arbitrary choice. Creating such a hostname and making it an

alias to the actual system acting as the loghost is customary. That way, if you ever need to

switch the loghost duties to a different machine, you need to change only the loghost alias;

you do not need to re-edit the syslog.conf �le on every computer.

On the loghost side

The loghost that is set to accept the messages must listen for those messages on standard

ports (514 UDP, although it can be con�gured to accept messages on 514 TCP as well). Here

is how you would con�gure the Linux loghost that is also running the rsyslog service:

■■ Edit the /etc/rsyslog.conf �le on the loghost system and uncomment the lines

that enable the rsyslogd daemon to listen for remote log messages. Uncomment

the �rst two lines to enable incoming UDP log messages on port 514 (default);

uncomment the two lines after that to allow messages that use TCP protocol (also

port 514):

 module(load="imudp") # needs to be done just once

 input(type="imudp" port="514")

 module(load="imtcp") # needs to be done just once

 input(type="imtcp" port="514")

■■ If there’s a �rewall running, you’ll need to open port 514 to allow new messages to

be directed to your loghost. (See Chapter 25 for a description of how to open spe-

ci�c ports to allow access to your system.)

■■ Restart the rsyslog service (systemctl restart rsyslog).

■■ If the service is running, you should be able to see that the service is listening on

the ports that you enabled (UDP and/or TCP ports 514). Run the netstat command

as follows to see that the rsyslogd daemon is listening on IPv4 and IPv6 ports

514 for both UDP and TCP services:

 # netstat -tupln | grep 514

 tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN 25341/rsyslogd

 tcp 0 0 :::514 :::* LISTEN 25341/rsyslogd

 udp 0 0 0.0.0.0:514 0.0.0.0:* 25341/rsyslogd

 udp 0 0 :::514 :::* 25341/rsyslogd

Watching logs with logwatch
The logwatch service runs in most Linux systems that do system logging with rsyslog.

Because logs on busy systems can become very large over time, it doesn’t take long for

there to be too many messages for a system administrator to watch every message in every

log. To install the logwatch facility, enter the following:

apt install logwatch

Chapter 13: Understanding Server Administration

291

13

What logwatch does is gather messages once each night that look like they might repre-

sent a problem, put them in an email message, and send it to any email address the admin-

istrator chooses. To enable logwatch, all you have to do is install the logwatch package.

The logwatch service runs from a cron job (0logwatch) placed in /etc/cron.daily.
The /etc/logwatch/conf/logwatch.conf �le holds local settings. The default options

used to gather log messages are available in the /usr/share/logwatch/default.
conf/logwatch.conf �le (which you can easily copy to your /etc/logwatch/conf/

directory).

Some of the default settings de�ne the location of log �les (/var/log), location of the

temporary directory (/var/cache/logwatch), and the recipient of the daily logwatch

email (the local root user). Unless you expect to log in to the server to read logwatch

messages, you probably want to change the MailTo setting in the /etc/logwatch/conf/
logwatch.conf �le:

MailTo = chris@example.com

When the service is enabled (which is done by simply installing the logwatch package),

you will see a message each night in the root user’s mailbox (you may need to install the

mailutils package to make this work: apt install mailutils. When you are logged

in as root, you can use the old mail command to view the root user’s mailbox:

 # mail
 Heirloom Mail version 12.5 7/5/10. Type ? for help.
 "/var/spool/mail/root": 2 messages 2 new
 >N 1 logwatch@abc.ex Sun Feb 15 04:02 45/664 "Logwatch for abc"
 2 logwatch@abc.ex Mon Feb 16 04:02 45/664 "Logwatch for abc"
 & 1
 & x

In mail, you should see email messages from logwatch run each day (here at 4:02 a.m.).

Type the number of the message that you want to view and page through it with the space-

bar or line by line by pressing Enter. Type x to exit when you are �nished.

The kind of information that you see includes kernel errors, installed packages, authen-

tication failures, and malfunctioning services. Disk space usage is reported, so you can

see if your storage is �lling up. Just by glancing through this logwatch message, you

should get an idea whether sustained attacks are underway or if some repeated failures are

taking place.

Checking System Resources with sar
The System Activity Reporter (sar) is one of the oldest system monitoring facilities created

for early UNIX systems—predating Linux by years. The sar command itself can display

system activity continuously, at set intervals (every second or two), and display it on the

screen. It can also display system activity data that was gathered earlier.

Part IV: Becoming a Linux Server Administrator

292

The sar command is part of the sysstat package. When you install sysstat you

might need to edit the /etc/default/sysstat �le, changing ENABLED="false" to

ENABLED="true" and then enabling the sysstat service. Your system should immedi-

ately begin gathering system activity data that can be reviewed later using certain options

to the sar command.

systemclt enable sysstat
systemctl start sysstat

To read the data in the /var/log/sa/sa?? �les, you can use some of the following sar

commands (it may take time before the data is populated):

sar -u
Linux 5.3.8-200.fc30.x86_64 (ubuntu) 11/28/2019 _x86_64_ (1 CPU)

23:27:46 LINUX RESTART (1 CPU)

11:30:05 PM CPU %user %nice %system %iowait %steal %idle
11:40:06 PM all 0.90 0.00 1.81 1.44 0.28 95.57
Average: all 0.90 0.00 1.81 1.44 0.28 95.57

The -u option shows CPU usage. By default, the output starts at midnight on the current

day and then shows how much processing time is being consumed by different parts of the

system. The output continues to show the activity every 10 minutes until the current time

is reached.

To see disk activity output, run the sar -d command. Again, output comes in 10-minute

intervals starting at midnight.

sar -d
Linux 5.3.8-200.fc30.x86_64 (ubuntu) 11/28/2019 _x86_64_ (1 CPU)

23:27:46 LINUX RESTART (1 CPU)

11:30:05 PM DEV tps rkB/s wkB/s areq-sz aqu-sz await...
11:40:06 PM dev8-0 49.31 5663.94 50.38 115.89 0.03 1.00
11:40:06 PM dev253-0 48.99 5664.09 7.38 115.78 0.05 0.98
11:40:06 PM dev253-1 10.84 0.01 43.34 4.00 0.04 3.29
Average: dev8-0 49.31 5663.94 50.38 115.89 0.03 1.00
Average: dev253-0 48.99 5664.09 7.38 115.78 0.05 0.98
Average: dev253-1 10.84 0.01 43.34 4.00 0.04 3.29

If you want to run sar activity reports live, you can do that by adding counts and time

intervals to the command line, as shown here:

sar -n DEV 5 2
Linux 5.3.8-200.fc30.x86_64 (ubuntu) 11/28/2019 _x86_64_ (1 CPU)
11:19:36 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s...
11:19:41 PM lo 5.42 5.42 1.06 1.06 0.00 0.00...
11:19:41 PM ens3 0.00 0.00 0.00 0.00 0.00 0.00...
...

Chapter 13: Understanding Server Administration

293

13

Average: IFACE rxpck/s txpck/s rxkB/s txkB/ rxcmp/s txcmp/s rxmcst/s
Average: lo 7.21 7.21 1.42 1.42 0.00 0.00 0.00
Average: ens3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average: wlan0 4.70 4.00 4.81 0.63 0.00 0.00 0.00

Average: pan0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average: tun0 3.70 2.90 4.42 0.19 0.00 0.00 0.00

With the -n Dev example just shown, you can see how much activity came across the dif-

ferent network interfaces on your system. You can see how many packets were transmitted

and received and how many KB of data were transmitted and received. In that example,

samplings of data were taken every �ve seconds and repeated twice.

Refer to the sar, sadc, sa1, and sa2 man pages for more information on how sar data

can be gathered and displayed.

Checking System Space
Although logwatch can give you a daily snapshot of space consumption on your system

disks, the df and du commands can help you immediately see how much disk space is

available. The following sections show examples of those commands.

Displaying system space with df
You can display the space available in your �lesystems using the df command. To see the

amount of space available on all of the mounted �lesystems on your Linux computer, type

df with no options:

$ df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda3 30645460 2958356 26130408 11% /
/dev/sda2 46668 8340 35919 19% /boot
...

This example output shows the space available on the hard disk partition mounted on the

/ (root) directory (/dev/sda1) and /boot partition (/dev/sda2). Disk space is shown in

1KB blocks. To produce output in a more human-readable form, use the -h option:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 29G 2.9G 24G 11% /
/dev/sda2 46M 8.2M 25M 19% /boot
...

With the df -h option, output appears in a friendlier megabyte or gigabyte listing. Other

options with df enable you to do the following:

■■ Print only �lesystems of a particular type (-t type).

■■ Exclude �lesystems of a particular type (-x type). For example, type df -x
tmpfs -x devtmpfs to exclude temporary �lesystem types (limiting output to

�lesystems that represent real storage areas).

Part IV: Becoming a Linux Server Administrator

294

■■ Include �lesystems that have no space, such as /proc and /dev/pts (-a).

■■ List only available and used inodes (-i).

■■ Display disk space in certain block sizes (--block-size=#).

Checking disk usage with du
To �nd out how much space is being consumed by a particular directory (and its subdirec-

tories), use the du command. With no options, du lists all directories below the current

directory, along with the space consumed by each directory. At the end, du produces total

disk space used within that directory structure.

The du command is a good way to check how much space is being used by a particular user

(du /home/jake) or in a particular �lesystem partition (du /var). By default, disk space

is displayed in 1KB block sizes. To make the output friendlier (in kilobytes, megabytes, and

gigabytes), use the -h option as follows:

$ du -h /home/jake
114k /home/jake/httpd/stuff
234k /home/jake/httpd
137k /home/jake/uucp/data
701k /home/jake/uucp
1.0M /home/jake

The output shows the disk space used in each directory under the home directory of the

user named jake (/home/jake). Disk space consumed is shown in kilobytes (k) and mega-

bytes (M). The total space consumed by /home/jake is shown on the last line. Add the –s

option to see total disk space used for a directory and its subdirectories.

Finding disk consumption with �nd
The find command is a great way to �nd �le consumption of your hard disk using a vari-

ety of criteria. You can get a good idea of where disk space can be recovered by �nding �les

that are over a certain size or were created by a particular person.

In the following example, the find command searches the root �lesystem (/) for any �les

owned by the user named jake (-user jake) and prints the �lenames. The output of the

find command is organized in a long listing in size order (ls -ldS). Finally, that output

is sent to the �le /tmp/jake. When you view the �le /tmp/jake (for example, less /
tmp/jake), you will �nd all of the �les that are owned by the user jake listed in size

order. Here is the command line:

find / -xdev -user jake -print | xargs ls -ldS > /tmp/jake

NOTE

You must be the root user to run this command effectively, unless you are just checking your personal �les. If you

are not the root user, there are many places in the �lesystem for which you do not have permission to check. Reg-

ular users can usually check their own home directories but not those of others.

Chapter 13: Understanding Server Administration

295

13

Here’s another example, except that instead of looking for a user’s �les, we’re looking for

�les larger than 100 kilobytes (-size +100M):

find / -xdev -size +100M | xargs ls -ldS > /tmp/size

You can save yourself lots of disk space just by removing some of the largest �les that are

no longer needed. In this example, you can see that large �les are sorted by size in the /
tmp/size �le.

Managing Servers in the Enterprise
Most of the server con�gurations covered in this book describe how to install systems man-

ually and work directly on host computers. Having to set up each host individually would

be far too inef�cient for modern data centers consisting of dozens, hundreds, or even thou-

sands of computers. To make the process of setting up Linux servers in a large data center

more ef�cient, some of the following are employed:

Automated deployments One way to install systems without having to step through

a manual install process is with PXE booting. By setting up a PXE server and boot-

ing a computer on that network from a PXE-enabled network interface card, you can

start a full install of that system simply by booting the system. Once the install is

done, the system can reboot to run from the installed system.

Generic host systems By making your host systems as generic as possible, indi-

vidual installation, con�guration, and upgrades can be greatly simpli�ed. This can

be automated in layers, where the base system is installed by PXE booting, con�gu-

ration is done through features such as cloud-int, and applications can bring along

their own dependencies when they run. On the application level, this can be done

by running an application from inside a virtual machine or container. When the

application is done running, it can be discarded without leaving its dependent soft-

ware on the host.

Separation of management and worker systems Instead of individually managing

host systems, a separate platform can offer a way to manage large sets of systems.

To do this, a platform such as OpenStack or OpenShift can have management nodes

(in some cases called control plane or master nodes) to manage the machines where

the workload actually runs (sometimes called workers, slaves, or just nodes). This

separation of tasks by host type makes it possible to have applications deployed

on any available worker that meets the needs of the application (such as available

memory or CPU).

TIP

The -xdev option prevents �lesystems other than the selected �lesystem from being searched. This is a good way to

cut out lots of junk that may be output from the /proc �lesystem. It can also keep large, remotely mounted �lesys-

tems from being searched.

Part IV: Becoming a Linux Server Administrator

296

Keep in mind that understanding how individual applications are con�gured and services

are run is still the foundation for these more advanced ways of managing data center

resources. Although in-depth coverage of enterprise deployment and monitoring tools is

outside the scope of this book, refer to Part VI, “Engaging with Cloud Computing,” for an

introduction to how different Linux-based cloud platforms manage these issues.

Summary
Although many different types of servers are available with Linux systems, the basic pro-

cedure for installing and con�guring a server is essentially the same. The normal course

of events is to install, con�gure, start, secure, and monitor your servers. Basic tasks that

apply to all servers include using networking tools (particularly SSH tools) to log in, copy

�les, or execute remote commands.

Because an administrator can’t be logged in watching servers all the time, tools for gath-

ering data and reviewing the log data later are very important when administering Linux

servers. The rsyslog facility can be used for local and remote logging. The sar facility

gathers live data or plays back data gathered earlier at 10-minute intervals. Cockpit lets

you watch CPU, memory, disk, and networking activity live from a web user interface. To

watch disk space, you can run df and du commands.

The skills described in this chapter are designed to help you build a foundation to do

enterprise-quality system administration in the future. Although these skills are useful,

to manage many Linux systems at the same time, you need to extend your skills by using

automating deployment and monitoring tools, as described in the cloud computing section

of this book.

Although it is easy to set up networking to reach your servers in simple, default cases,

more complex network con�guration requires a knowledge of networking con�guration �les

and related tools. The next chapter describes how to set up and administer networking in

Linux.

Exercises
The exercises in this section cover some of the basic tools for connecting to and watching

over your Linux servers. As usual, you can accomplish the tasks here in several ways. So,

don’t worry if you don’t go about the exercises in the same way as shown in the answers,

as long as you get the same results. If you are stuck, solutions to the tasks are shown in

Appendix A.

Some of the exercises assume that you have a second Linux system available that you can

log in to and try different commands. On that second system, you need to make sure that

the sshd service is running, that the �rewall is open, and that ssh is allowed for the user

account that you are trying to log in to (root is often blocked by sshd).

Chapter 13: Understanding Server Administration

297

13

If you have only one Linux system, you can create an additional user account and simply

simulate communications with another system by connecting to the name localhost

instead, as shown in this example:

adduser joe
passwd joe
ssh joe@localhost

1. Using the ssh command, log in to another computer (or the local computer) using

any account to which you have access. Enter the password when prompted.

2. Using remote execution with the ssh command, display the output from a remote

command on the local system.

3. Use the ssh command to use X11 forwarding to display a gedit window on your

local system; then save a �le in the remote user’s home directory.

4. Recursively copy all of the �les from the /etc/apt/ directory on a remote system

to the /tmp directory on your local system in such a way that all of the modi�-

cation times on the �les are updated to the time on the local system when they

are copied.

5. Recursively copy all of the �les from the /usr/share/logwatch directory on a

remote system to the /tmp directory on your local system in such a way that all of

the modi�cation times on the �les from the remote system are maintained on the

local system.

6. Create a public/private key pair to use for SSH communications (no passphrase on

the key), copy the public key �le to a remote user’s account with ssh-copy-id,

and use key-based authentication to log in to that user account without having to

enter a password.

7. Create an entry in /etc/rsyslog.d/50-default.conf that stores all authen-

tication messages (authpriv) info level and higher into a �le named /var/log/
myauth. From one terminal, watch the �le as data comes into it, and in another

terminal, try to ssh into your local machine as any valid user with a bad password.

8. Use the du command to determine the largest directory structures under /usr/
share, sort them from largest to smallest, and list the top 10 of those directories

in terms of size.

9. Use the df command to show the space that is used and available from all of the

�lesystems currently attached to the local system but exclude any tmpfs or devt-
mpfs �lesystems.

10. Find any �les in the /usr directory that are more that 10MB in size.

299

CHAP T ER

14
Administering Networking

IN THIS CHAPTER

Automatically connecting Linux to a network

Using NetworkManager for simple network connectivity

Con�guring networking from the command line

Working with network con�guration �les

Con�guring routing, DHCP, DNS, and other networking infrastructure features for the enterprise

C
onnecting a single desktop system or laptop to a network, particularly one that connects to

the Internet, is easy. If you are trying to connect your Ubuntu desktop system to the Inter-

net, here’s what you can try given an available wired or wireless network interface:

Wired network If your home or of�ce has a wired Ethernet port that provides a path to the

Internet and your computer has an Ethernet port, use an Ethernet cable to connect the two

ports. After you turn on your computer, boot up Linux and log in. Clicking the NetworkMan-

ager icon on the desktop should show you that you are connected to the Internet or allow

you to connect with a single click.

Wireless network For a wireless computer running Linux, log in and click the NetworkMan-

ager icon on the desktop. From the list of wireless networks that appear, select the one you

want and, when prompted, enter the required password. Each time you log in from that com-

puter from the same location, it automatically connects to that wireless network.

If either of those types of network connections works for you, and you are not otherwise curious

about how networking works in Linux, that may be all you need to know. However, what if your

Linux system doesn’t automatically connect to the Internet? What if you want to con�gure your desk-

top to talk to a private network at work (VPN)? What if you want to lock down network settings on

your server or con�gure your Linux system to work as a router?

Part IV: Becoming a Linux Server Administrator

300

In this chapter, topics related to networking are divided into networks for desktops, servers,

and enterprise computing. The general approach to con�guring networking in these three

types of Linux systems is as follows:

Desktop/laptop networking On desktop or laptop systems, NetworkManager runs by

default in order to manage network interfaces. With NetworkManager, you can automati-

cally accept the address and server information that you need to connect to the Internet.

However, you can also set address information manually. You can con�gure things such

as proxy servers or virtual private network connections to allow your desktop to work

from behind an organization’s �rewall or to connect through a �rewall, respectively.

Server networking Although NetworkManager originally worked best on desktop

and laptop network con�gurations, it now works extremely well on servers. Today,

features that are useful for con�guring servers, such as Ethernet channel bonding

and con�guring aliases, can be found in NetworkManager.

Enterprise networking Explaining how to con�gure networking in a large enter-

prise can �ll several volumes itself. However, to give you a head start using Linux

in an enterprise environment, I discuss basic networking technologies, such as

DHCP and DNS servers, which make it possible for desktop systems to connect to the

Internet automatically and �nd systems based on names and not just IP addresses.

Con�guring Networking for Desktops
Whether you connect to the Internet from Linux, Windows, a smartphone, or any other

kind of network-enabled device, certain things must be in place for that connection to

work. The computer must have a network interface (wired or wireless), a unique IP address,

an assigned DNS server, and a route to the Internet (identi�ed by a gateway device).

Before I discuss how to change your networking con�guration in Linux, let’s look at what

happens when Linux tries to connect to the Internet automatically with NetworkManager:

Activate network interfaces NetworkManager looks to see what network interfaces

(wired or wireless) are available. By default, external interfaces are usually set to

start automatically using DHCP, although static names and addresses can be de�ned

at install time instead.

Request DHCP service The Linux system acts as a DHCP client to send out a request

for DHCP service on each enabled interface. It uses the MAC address of the network

interface to identify itself in the request.

NOTE

The software running networking on your Ubuntu machine will depend on your particular release. The Linux community has

been adopting and rejecting networking tools at an alarming rate over the past few years. This chapter will assume you’re

using NetworkManager, but older environments might have instead (or additionally) used ifupdown or the /etc/

network/interfaces �le. And newer releases are likely to use an entirely different tool: Netplan—perhaps on top of

systemd-networkd. Be prepared for change. We’ll see an example of Netplan in action a bit later in this chapter.

Chapter 14: Administering Networking

301

14

Get response from DHCP server A DHCP server, possibly running on a wireless

router, cable modem, or other device providing a route to the Internet from your

location, responds to the DHCP request with necessary information. That informa-

tion probably contains at least the following:

IP address The DHCP server typically has a range of Internet Protocol (IP)

addresses that it can hand out to any system on the network that requests

an address. In more secure environments, or one in which you want to be

sure that machines get speci�c addresses, the DHCP server provides a static

IP address to requests from speci�c MAC addresses. (MAC addresses are made

to be unique among all network interface cards and are assigned by the

manufacturer of each card.)

Subnet mask When the DHCP client is assigned an IP address, the accompa-

nying subnet mask tells that client which part of the IP address identi�es

the subnet and which identi�es the host. For example, an IP address of

192.168.0.100 and subnet mask of 255.255.255.0 tell the client that the net-

work is 192.168.0 and the host part is 100.

Lease time When an IP address is dynamically allocated to the DHCP client,

that client is assigned a lease time. The client doesn’t own that address but

must lease it again when the time expires and request it once again when

the network interface restarts. Usually, the DHCP server remembers the

client and assigns the same address when the system starts up again or asks

to renew the lease—but that isn’t guaranteed. The default lease time is typ-

ically 86,400 seconds (24 hours) for IPV4 addresses. The more plentiful IPV6

addresses are assigned for 2,592,000 seconds (30 days) by default.

Domain name server Because computers like to think in numbers (such as IP

addresses like 192.168.0.100) and people tend to think in names (such as the

hostname www.example.com), computers need a way to translate hostnames

into IP addresses and sometimes the reverse as well. The Domain Name System

(DNS) was designed to handle that problem by providing a hierarchy of servers

to perform name-to-address mapping on the Internet. The location of one or

more DNS servers is usually assigned to the DHCP client from the DHCP host.

Default gateway Although the Internet has one unique namespace, it is actu-

ally organized as a series of interconnected subnetworks. In order for a network

request to leave your local network, it must know what node on your network

provides a route to addresses outside of your local network. The DHCP server usu-

ally provides the default gateway IP address. By having network interfaces on

both your subnet and the next network on the way to the ultimate destination of

your communication, a gateway can route your packets to their destination.

Other information A DHCP server can be con�gured to provide all kinds of

information to help the DHCP client. For example, it can provide the location

of an NTP server (to sync time between clients), font server (to get fonts for

your X display), IRC server (for online chats), or print server (to designate

available printers).

http://www.example.com

Part IV: Becoming a Linux Server Administrator

302

Update local network settings After the settings are received from the DHCP server,

they are implemented as appropriate on the local Linux system. For example, the IP

address is set on the network interface, the DNS server entries are added to the local

/etc/resolv.conf �le (by NetworkManager), and the lease time is stored by the

local system so it knows when to request that the lease be renewed.

All of the steps just described typically happen without your having to do anything but

turn on your Linux system and log in. Now suppose that you want to be able to verify

your network interfaces or change some of those settings. You can do that using the tools

described in the next sections.

Checking your network interfaces
There are both graphical and command-line tools for viewing information about your net-

work interfaces in Linux. From the desktop, NetworkManager tools and the Cockpit web

user interface are good places to start.

Checking your network from NetworkManager

The easiest way to check the basic setting for a network interface is to open the pull-down

menu at the upper-right corner of your desktop and select your active network interface.

Figure 14.1 shows the WiFi settings for an active network on a GNOME 3 desktop.

FIGURE 14.1

Checking network interfaces with NetworkManager

Chapter 14: Administering Networking

303

14

As you can see in Figure 14.1, both IPv4 and IPv6 addresses are assigned to the interface.

The IP address 192.168.1.1 offers both a DNS service and a route to external networks.

To see more about how your Linux system is con�gured, click one of the tabs at the top

of the window. For example, Figure 14.2 shows the Security tab, where you can select the

type of security connection to the network and set the password needed to connect to

that network.

Checking your network from Cockpit

Provided you have enabled Cockpit, you can see and change information about your

network interfaces through your web browser. On your local system, you open https://

localhost:9090/network to go directly to the Cockpit Networking page for your local

system. Figure 14.3 shows an example of this.

From the Cockpit Networking page, you can see information about all of your network

interfaces at once. In this case, there are three network managed interfaces: enp8s0 (an

inactive wired interface), wlxec086b1ef0b3 (an active wireless interface), and lxdbr0

(an active bridge to local LXD containers).

At the top of the Cockpit Networking page, you can see data being sent from and received

on the local system. Select a network interface to see a page displaying activities for that

particular interface.

FIGURE 14.2

Viewing security for a wireless network using NetworkManager

https://localhost:9090/network
https://localhost:9090/network

Part IV: Becoming a Linux Server Administrator

304

More advanced features available from the Cockpit Networking page allow you to add bonds,

teams, bridges, and VLANs to your local network interfaces.

Checking your network from the command line

To get more detailed information about your network interfaces, try running some com-

mands. There are commands that can show you information about your network interfaces,

routes, hosts, and traf�c on the network.

Viewing network interfaces

To see information about each network interface on your local Linux system, enter the

following:

ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
state UP group default qlen 1000

FIGURE 14.3

Viewing and changing network settings from Cockpit

Chapter 14: Administering Networking

305

14

 link/ether 08:00:27:45:24:e1 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.13/24 brd 192.168.1.255 scope global
dynamic enp0s3
 valid_lft 86342sec preferred_lft 86342sec
 inet6 fe80::a00:27ff:fe45:24e1/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
default qlen 1000
 link/ether 08:00:27:f1:5e:a9 brd ff:ff:ff:ff:ff:ff
4: enp0s9: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
default qlen 1000
 link/ether 08:00:27:2d:a8:ba brd ff:ff:ff:ff:ff:ff

The ip addr show output displays information about your network interfaces. The lo

entry in the �rst line of the output shows the loopback interface, which is used to allow

network commands to run on the local system to connect to the local system. The IP

address for localhost is 127.0.0.1/8 (the /8 is CIDR notation, indicating that 127. is the net-

work number and 0.0.1 is the host number). Add a -s option (ip -s addr show) to see

statistics of packet transmissions and errors associated with each interface.

In this case, the wired Ethernet interfaces (enp0s8 and enp0s9) are down (no cable),

but enp0s3 is up. The MAC address on that interface is 08:00:27:45:24:e1 and the Internet

(IPv4) address is 192.168.1.13. An IPv6 address is also enabled.

Older versions of Linux used to assign more generic network interface names, such as eth0

and wlan0. Now interfaces are given predictable names based on their locations on the

computer’s bus.

An older (and now deprecated) command for seeing network interface information was

ifconfig. By default, ifconfig shows similar information to that of ip addr, but

ifconfig also shows the number of packets received (RX) and transmitted (TX) by

default, as well as the amount of data and any errors or dropped packets.

ifconfig wlp2s0
wlp2s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.1.83 netmask 255.255.255.0
 broadcast 192.168.1.255
 inet6 2600:1700:722:a10:b55a:fca6:790d:6aa6
 prefixlen 64 scopeid 0x0<global>
 inet6 fe80::25ff:8129:751b:23e3
 prefixlen 64 scopeid 0x20<link>
 inet6 2600:1700:722:a10::489
 prefixlen 128 scopeid 0x0<global>
 ether e0:06:e6:83:ac:c7 txqueuelen 1000 (Ethernet)
 RX packets 208402 bytes 250962570 (239.3 MiB)
 RX errors 0 dropped 4 overruns 0 frame 0
 TX packets 113589 bytes 13240384 (12.6 MiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
Checking connectivity to remote systems

Part IV: Becoming a Linux Server Administrator

306

To make sure that you can reach systems that are available on the network, you can use

the ping command. As long as the computer responds to ping requests (not all do), you

can use ping to send packets to that system in a way that asks them to respond. Here is

an example:

$ ping host1
PING host1 (192.168.1.15) 56(84) bytes of data.
64 bytes from host1 (192.168.1.15): icmp_seq=1 ttl=64 time=0.062 ms
64 bytes from host1 (192.168.1.15): icmp_seq=2 ttl=64 time=0.044 ms
^C
--- host1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1822ms
rtt min/avg/max/mdev = 0.044/0.053/0.062/0.009 ms

The ping command shown here continuously pings the host named host1. After a few

pings, press Ctrl+C to end the pings, and the last few lines show you how many of the ping

requests succeeded.

You could have used the IP address (192.168.1.15, in this case) to see that you could reach

the system. However, using the hostname gives you the additional advantage of knowing

that your name-to-IP-address translation (being done by your DNS server or local hosts

�le) is working properly as well. In this case, however, host1 appeared in the local /etc/
hosts �le.

Checking routing information

Routing is the next thing that you can check with respect to your network interfaces. The

following snippets show you how to use the ip and route commands to do that:

ip route show
default via 192.168.1.1 dev enp0s3 proto dhcp src 192.168.1.13
metric 100
192.168.1.0/24 dev enp0s3 proto kernel scope link src 192.168.1.13
192.168.1.1 dev enp0s3 proto dhcp scope link src 192.168.1.13 metric 100

The ip route show command example illustrates that the 192.168.1.13 address pro-

vides the route to the host from a local network interface (enp0s3). Communication to any

address in the 192.168.1.0/24 range from that machine (192.168.1.13) goes over that inter-

face. The route command can provide similar information:

route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default _gateway 0.0.0.0 UG 100 0 0 enp0s3
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 enp0s3
_gateway 0.0.0.0 255.255.255.255 UH 100 0 0 enp0s3

Chapter 14: Administering Networking

307

14

Here’s a more complex routing table:

route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default gateway 0.0.0.0 UG 600 0 0 wlp3s0
10.0.0.0 vpn.example. 255.0.0.0 U 50 0 0 tun0
10.10.135.0 0.0.0.0 255.255.217.0 U 50 0 0 tun0
vpn.example. gateway 255.255.255.255 UGH 600 0 0 wlp3s0
172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 docker0
192.168.1.0 * 255.255.255.0 U 600 0 0 wlp3s0

In the route example just shown, there is a wireless interface (wlp3s0) as well as an inter-

face representing a virtual private network (VPN) tunnel. A VPN provides a way to have

encrypted, private communications between a client and a remote network over an insecure

network (such as the Internet). Here the tunnel goes from the local system over the wlan0

interface to a host named vpn.example.com (some of the name is truncated).

All communication to the 192.168.1.0/24 network still goes directly over the wireless

LAN. However, packets destined for the 10.10.135.0/24 and 10.0.0.0/8 networks are routed

directly to vpn.example.com for communication with hosts on the other side of the VPN

connection over the tunneled interface (tun0).

A special route is set up for communications to containers (docker0) running on the local

system on network 172.17.0.0. All other packets go to the default route via the address

192.168.1.0. As for the �ags shown in the output, a U says the route is up, a G identi�es

the interface as a gateway, and an H says the target is a host (as is the case with the VPN

connection).

So far, I have shown you the routes to leave the local system. If you want to follow the

entire route to a host from beginning to end, you can use the traceroute command (apt
install traceroute). For example, to trace the route a packet takes from your local

system to the www.google.com site, type the following traceroute command:

traceroute google.com
traceroute to google.com (74.125.235.136), 30 hops max, 60 byte pkts
...
 7 rrcs-70-62-95-197.midsouth.biz.rr.com (70.62.95.197) ...
 8 ge-2-1-0.rlghncpop-rtr1.southeast.rr.com (24.93.73.62) ...
 9 ae-3-0.cr0.dca10.tbone.rr.com (66.109.6.80) ...
10 107.14.19.133 (107.14.19.133) 13.662 ms ...
11 74.125.49.181 (74.125.49.181) 13.912 ms ...
12 209.85.252.80 (209.85.252.80) 61.265 ms ...
13 66.249.95.149 (66.249.95.149) 18.308 ms ...
14 66.249.94.22 (66.249.94.22) 18.344 ms ...
15 72.14.239.83 (72.14.239.83) 85.342 ms ...
16 64.233.174.177 (64.233.174.177) 167.827 ms ...
17 209.85.255.35 (209.85.255.35) 169.995 ms ...
18 209.85.241.129 (209.85.241.129) 170.322 ms ...
19 nrt19s11-in-f8.1e100.net (74.125.235.136) 169.360 ms ...

http://vpn.example.com
http://vpn.example.com
http://google.com

Part IV: Becoming a Linux Server Administrator

308

I truncated part of the output to drop off some of the initial routes and the amount of time

(in milliseconds) that the packets were taking to traverse each route. Using traceroute,

you can see where the bottlenecks are along the way if your network communication

is stalling.

Viewing the host and domain names

To see the hostname assigned to the local system, type hostname. To just see the domain

portion of that name (assuming a DNS name has been assigned), use the dnsdomainname

command:

hostname
spike.example.com
dnsdomainname
example.com

Con�guring network interfaces
If you don’t want to have your network interfaces assigned automatically from a DHCP

server (or if there is no DHCP server), you can con�gure network interfaces manually. This

can include assigning IP addresses, the locations of DNS servers and gateway machines, and

routes. This basic information can be set up using NetworkManager.

Setting IP addresses manually

To change the network con�guration for your wired network interface through Network-

Manager, do the following:

1. Select the Settings icon from the drop-down menu in the upper-right corner of the

desktop and select Network.

2. Assuming that you have a wired NIC that is not yet in use, select the settings

button (small gear icon) next to the interface that you want to change.

3. Choose IPv4 and change the IPv4 Method setting from Automatic (DHCP) to Manual.

4. Fill in the following information (only Address and Netmask are required):

a. Address: The IP address that you want to assign to your local network interface.

For example, 192.168.100.100.

b. Netmask: The subnetwork mask that de�nes which part of the IP address rep-

resents the network and which part identi�es the host. For example, a netmask

of 255.255.255.0 would identify the network portion of the previous address as

192.168.100 and the host portion as 100.

c. Gateway: The IP address of the computer or device on the network that acts

as the default route. The default route will route packets from the local net-

work to any address that is not available on the local network or via some other

custom route.

d. DNS servers: Fill in the IP addresses for the system providing DNS service to

your computer. If there is more than one DNS server, add the others in a comma-

separated list of servers.

Chapter 14: Administering Networking

309

14

5. Click the Apply button. The new information is saved, and the network is

restarted using the new information. Figure 14.4 shows an example of those net-

work settings.

Setting IP address aliases

You can attach multiple IP addresses to a single network interface. In the same NetworkMan-

ager screen, this is done by simply �lling in a subsequent Addresses box and adding the new

IP address information. Here are a few things you should know about adding address aliases:

■■ A netmask is required for each address, but a gateway is not required.

■■ The Apply button stays grayed out until you include valid information in the �elds.

■■ The new address does not have to be on the same subnetwork as the original

address, although it is listening for traf�c on the same physical network.

After adding the address 192.168.100.103 to my wired interface, running ip addr show
enp4s0 displays the following indication of the two IP addresses on the interface:

2: enp4s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
state UP group default qlen 1000
 link/ether 30:85:a9:04:9b:f9 brd ff:ff:ff:ff:ff:ff
 inet 192.168.100.100/24 brd 192.168.100.255 scope
 global noprefixroute enp4s0
 valid_lft forever preferred_lft forever
 inet 192.168.100.103/24 brd 192.168.100.255 scope
 global secondary noprefixroute enp4s0
 valid_lft forever preferred_lft forever

FIGURE 14.4

Changing network settings with NetworkManager

Part IV: Becoming a Linux Server Administrator

310

For information on setting up aliases directly in con�guration �les, refer to the section

“Setting alias network interfaces” later in this chapter.

Setting routes

When you request a connection to an IP address, your system looks through your routing

table to determine the path on which to connect to that address. Information is sent in

the form of packets. A packet is routed in the following different ways, depending on its

destination:

■■ The local system is sent to the lo interface.

■■ A system on your local network is directed through your NIC directly to the

intended recipient system’s NIC.

■■ Any other system is sent to the gateway (router) that directs the packet on to its

intended address on the Internet.

Of course, what I have just described here is one of the simplest cases. You may, in fact,

have multiple NICs with multiple interfaces connected to different networks. You may also

have multiple routers on your local network that provide access to other private networks.

For example, suppose you have a router (or other system acting as a router) on your local

network; you can add a custom route to that router via NetworkManager. Using the Net-

workManager example shown previously, scroll down the page to view the Routes section.

Then add the following information:

Address The network address of the subnet you route to. For example, if the router

(gateway) will provide you access to all systems on the 192.168.200 network, add the

address 192.168.200.0.

Netmask Add the netmask needed to identify the subnet. For example, if the

router provides access to the address 192.168.200, you could use the netmask

255.255.255.0.

Gateway Add the IP address for the router (gateway) that provides access to the new

route. For example, if the router has an IP address on your 192.168.1 network of

192.168.1.199, add that address in this �eld.

Click Apply to apply the new routing information. You may have to restart the interface for

this to take effect (for example, ifup enp4s0). Enter route -n to make sure the new

routing information has been applied.

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.100.1 0.0.0.0 UG 1024 0 0 p4p1
192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 p4p1

192.168.200.0 192.168.1.199 255.255.255.0 UG 1 0 0 p4p1

Chapter 14: Administering Networking

311

14

In the example just shown, you can see that the default gateway is 192.168.100.1. How-

ever, any packets destined for the 192.168.200 network are routed through the gateway

host at IP address 192.168.1.199. Presumably that host has a network interface that faces

the 192.168.200 network, and it is set up to allow other hosts to route through it to

that network.

See the section “Setting custom routes” later in this chapter for information on how to set

routes directly in con�guration �les.

Con�guring a network proxy connection
If your desktop system is running behind a corporate �rewall, you might not have direct

access to the Internet. Instead, you might have to reach the Internet via a proxy server.

Instead of allowing you full access to the Internet, a proxy server lets you make requests

only for certain services outside of the local network. The proxy server then passes those

requests on to the Internet or another network.

Proxy servers typically provide access to web servers (http:// and https://) and FTP

servers (ftp://). However, a proxy server that supports SOCKS can provide a proxy ser-

vice for different protocols outside of the local network. (SOCKS is a network protocol

that allows client computers to access the Internet through a �rewall.) You can identify

a proxy server in NetworkManager and have communications for selected protocols go

through that server (from the Settings window, select Network and then select Net-

work Proxy).

Instead of identifying a proxy server to your network interfaces (via NetworkMan-

ager), you can con�gure your browser to use a proxy server directly by changing your

Firefox preferences to use a proxy server. Here’s how to de�ne a proxy server from the

Firefox window:

1. From Firefox, select Preferences. The Firefox Preferences window appears.

2. From the Firefox Preferences window, scroll down to Network Settings and

select Settings.

3. From the Connection Settings window that appears, you can try to autodetect the

proxy settings or, if you set the proxy in NetworkManager, you can choose to use

system proxy settings. You can also select Manual Proxy Con�guration, �ll in the

following information, and click OK.

a. HTTP Proxy: The IP address of the computer providing the proxy service. This

causes all requests for web pages (http:// protocol) to be forwarded to the

proxy server.

b. Port: The port associated with the proxy service. By default, the port number is

3128, but it can differ.

Part IV: Becoming a Linux Server Administrator

312

c. Use this proxy server for all protocols: Select this box to use the same proxy

server and port associated with the HTTP proxy for all other service requests.

This causes other proxy settings to be grayed out. (Instead of selecting this box,

you can set those proxy services separately.)

d. No Proxy for: Add the hostname or IP address for any system that you want to

be able to contact with Firefox directly without going through the proxy server.

You don’t need to add localhost and the local IP address (127.0.0.1) in this box,

since those addresses are already set not to redirect.

After you click OK, all requests from the Firefox browser to locations outside of the local

system are directed to the proxy server, which forwards those requests on to the appropri-

ate server.

Con�guring Networking from the Command Line
While NetworkManager does a great job of autodetecting wired networks or presenting you

with lists of wireless networks, sometimes you need to abandon the NetworkManager GUI

and use the terminal or Cockpit to con�gure the features that you need. These are some of

the networking features described in the coming sections:

Basic con�guration: See how to use nmtui to con�gure basic networking with a

menu-based interface from a shell. This tool provides an intuitive interface for con-

�guring networking on servers that have no graphical interface for running GUI-

based tools.

Con�guration �les: Understand con�guration �les associated with Linux networking

and how to con�gure them directly.

Ethernet channel bonding: Set up Ethernet channel bonding (multiple network cards

listening on the same IP address).

Con�gure networking with nmtui
Many servers don’t have graphical interfaces available. So, if you want to con�gure net-

working, you must be able to do so from the shell. One way to do that is to edit networking

con�guration �les directly. Another method is to use menu-based commands that let

you press arrow and Tab keys to navigate and forms you �ll in to con�gure your network

interface.

The nmtui command provides a menu-based interface that runs in the shell. As root, enter

nmtui to see a screen similar to the one presented in Figure 14.5.

Use arrow keys and the Tab key to move around the interface. With the item you want to

select highlighted, press Enter to select it. The interface is limited to modifying the follow-

ing kinds of information: Edit or Activate a connection (network interface cards) and Set

system hostname (hostname and DNS con�guration).

Chapter 14: Administering Networking

313

14

Editing a NetworkManager TUI connection
From the NetworkManager TUI screen displayed, here is how to edit an existing connection:

1. Edit a connection: With “Edit a connection” highlighted, press Enter. A list of net-

work devices (usually wired or wireless Ethernet cards) is displayed, along with any

wireless networks to which you have connected in the past.

2. Network devices: Highlight one of the network devices (in my case, I chose a wired

Ethernet interface) and press Enter.

3. IPv4 Con�guration: Move to the IPv4 Con�guration Show button and press Enter.

The Edit Connection window that appears lets you change information relating to

the selected network device.

4. Change to Manual: You can leave the Pro�le Name and Device �elds as they are.

By default, Automatic is enabled. Automatic is what allows the network interface

to come up automatically on the network if a DHCP service is available. To enter

address and other information yourself, use the Tab key to highlight the Automatic

�eld and press the spacebar; then use the arrow keys to highlight Manual and

press Enter.

FIGURE 14.5

Configuring networking with NetworkManager TUI

Part IV: Becoming a Linux Server Administrator

314

5. Addresses: Now �ll in the address information (IP address and netmask).

For example, 192.168.0.150/24 (where 24 is the CIDR equivalent for the

255.255.255.0 netmask).

6. Gateway: Type in the IP address for the computer or router that is supplying the

route to the Internet.

7. DNS servers: Type in the IP addresses of either one or two DNS servers to tell the

system where to go to translate hostnames you request into IP addresses.

8. Search domains: The Search domains entries are used when you request a host

from an application without using a fully quali�ed domain name. For example, if

you type ping host1 with an example.com search path, the command would try

to send ping packets to host1.example.com.

9. Routing: You can set custom routes by highlighting Edit in the Routing �eld and

pressing Enter. Fill in the Destination/Pre�x and Next Hop �elds and select OK to

save the new custom route.

10. Other selections: Of the other selections on the screen, consider setting “Never use

this network for default route” if the network doesn’t connect to wider networks

and “Ignore automatically obtained routes” if you don’t want those features to be

set automatically from the network. Tab to the OK button and press the spacebar.

Then click Quit to exit.

Understanding networking con�guration �les
Whether you change your network setup using NetworkManager or nmtui, most of the

same con�guration �les are updated. In Ubuntu, network interfaces and custom routes are

set in �les in the /etc/NetworkManager/system-connections directory. However,

you’ll need to be sure that interfaces (besides lo) aren’t already being de�ned in the /etc/
network/interfaces �le.

Here’s how a typical WiFi interface connection is described by a �le within /etc/
NetworkManager/system-connections:

[connection]
id=BackRoom
uuid=39cea31a-9582-40b7-9fc6-f74c23e2fd9d
type=wifi
permissions=

[wifi]
mac-address=EC:00:6F:1E:F0:B3
mac-address-blacklist=
mode=infrastructure
ssid=BackRoom

[wifi-security]
auth-alg=open
key-mgmt=wpa-psk
psk=L87theQQ3ww

http://example.com
http://host1.example.com

Chapter 14: Administering Networking

315

14

[ipv4]
dns-search=
method=auto

[ipv6]
addr-gen-mode=stable-privacy
dns-search=
method=auto

Bear in mind that those �les might include plain-text copies of your passwords. For

this reason, they’re only readable using sudo. And, no, the password in that example

is not real.

Other networking �les

In addition to the network interface �les, there are other network con�guration �les that

you can edit directly to con�gure Linux networking. Here are some of those �les.

/etc/hostname �le

Your system’s hostname is stored in the /etc/hostname �le. For example, if the �le

included the hostname host1.example.com, that hostname would be set each time the

system booted up. You can check how the current hostname is set at any time by typing

the hostname command.

/etc/hosts �le

Before DNS was created, translating hostnames to IP addresses was done by passing around

a single hosts �le. While there were only a few dozen and then a few hundred hosts on the

Internet, this approach worked pretty well. But as the Internet grew, the single hosts �le

became unscalable and DNS was invented.

The /etc/hosts �le still exists on Linux systems. It can still be used to map IP addresses

to hostnames. The /etc/hosts �le is a way to set up names and addresses for a small local

network or just create aliases in order to make it easier to access the systems that you use

all the time.

Here’s an example of an /etc/hosts �le:

127.0.0.1 localhost localhost.localdomain
::1 localhost localhost.localdomain
192.168.0.201 node1.example.com node1 joe
192.168.0.202 node2.example.com node2 sally

The �rst two lines (127.0.0.1 and ::1) set addresses for the local system. The IPv4 address

for the local host is 127.0.0.1; the IPv6 address for the local host is ::1. There are also

entries for two IP addresses. You could reach the �rst IP address (192.168.0.201) by the

names node1.example.com, node1, or joe. For example, typing ping joe results in

packets being sent to 192.168.0.201.

http://host1.example.com
http://node1.example.com

Part IV: Becoming a Linux Server Administrator

316

/etc/resolv.conf �le

DNS servers and search domains are set in the /etc/resolv.conf �le. If NetworkManager

is enabled and running, you should not edit this �le directly. Using the DNS servers spec-

i�ed in the nameservers section in /etc/netplan/*.yaml �les, NetworkManager over-

writes the /etc/resolv.conf �le so that you would lose any entries you add to that �le.

Here’s an example of the /etc/resolv.conf �le that was modi�ed by NetworkManager:

Generated by NetworkManager
nameserver 192.168.0.2
nameserver 192.168.0.3

Each nameserver entry identi�es the IP address of a DNS server. The order de�nes the order

in which the DNS servers are checked. It’s normal to have two or three nameserver entries,

in case the �rst is not available. More than that and it can take too long for an unresolv-

able hostname to get checked for each server.

Another type of entry that you can add to this �le is a search entry. A search entry lets you

indicate domains to be searched when a hostname is requested by its base name instead of

its entire fully quali�ed domain name. You can have multiple search entries by identifying

one or more domain names after the search keyword, as in this example:

search example.com example.org example.net

The search options are separated by spaces or tabs.

/etc/nsswitch.conf and systemd

Unlike in earlier releases, name service switch functionality (which controls available DNS

sources) is managed by systemd rather than the /etc/nsswitch.conf �le on its own.

Here’s an example of an /etc/nsswitch.conf �le that’s properly con�gured for systemd:

passwd: compat systemd
group: compat systemd
shadow: compat
gshadow: files

hosts: files mdns4_minimal [NOTFOUND=return] dns myhostname
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files

netgroup: nis

If you want to check that your DNS servers are being queried properly, you can use the

host or dig commands, as in, for example:

Chapter 14: Administering Networking

317

14

$ host ubuntu.com

ubuntu.com has address 91.189.88.180
ubuntu.com has address 91.189.88.181
ubuntu.com has address 91.189.91.44
ubuntu.com has address 91.189.91.45
ubuntu.com has IPv6 address 2001:67c:1360:8001::2b
ubuntu.com has IPv6 address 2001:67c:1360:8001::2c
ubuntu.com has IPv6 address 2001:67c:1562::1f
ubuntu.com has IPv6 address 2001:67c:1562::20
ubuntu.com mail is handled by 10 mx.canonical.com.
$ dig ubuntu.com

; <<>> DiG 9.11.3-1ubuntu1.11-Ubuntu <<>> ubuntu.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55254
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;ubuntu.com. IN A

;; ANSWER SECTION:
ubuntu.com. 55 IN A 91.189.91.45
ubuntu.com. 55 IN A 91.189.91.44
ubuntu.com. 55 IN A 91.189.88.181
ubuntu.com. 55 IN A 91.189.88.180

;; Query time: 0 msec
;; SERVER: 127.0.0.53#53(127.0.0.53)
;; WHEN: Sun Mar 29 14:55:42 EDT 2020
;; MSG SIZE rcvd: 103

By default, the host command produces simpler output for DNS queries. It shows the IP

address for ubuntu.com and the names of the mail servers (MX records) that serve ubuntu

.com. The dig command shows information similar to what appears in the �les that hold

DNS records. The QUESTION SECTION part of the output shows that the address section

asked for the address of ubuntu.com and the ANSWER SECTION part shows the answer

(91.189.91.45). You can also see the address of the DNS server that was queried.

The host and dig commands are only used to query DNS servers. To identify other places

to query, such as the local hosts �le you would have to use the getent command:

getent hosts node1
192.168.0.201 node1

This getent example �nds a host named node1 that was entered into my local /etc/
hosts �le. The getent command can be used to query any information settings. For

example, typing getent passwd root shows the entry for the root user account in the

http://ubuntu.com
http://ubuntu.com
http://ubuntu.com
http://ubuntu.com

Part IV: Becoming a Linux Server Administrator

318

local �le, but it can also query a remote LDAP database for user information if you have

con�gured that feature.

Setting alias network interfaces
Sometimes you might want your network interface card listening on multiple IP addresses.

For example, if you were setting up a web server that was serving secure content (https)

for multiple domains (example.com, example.org, and so on), each domain would require a

separate IP address (associated with a separate certi�cate). In that case, instead of adding

multiple network interface cards to the computer, you could simply create multiple aliases

on a single NIC.

To create an alias network interface using the ip tool, you could specify the new IP address

and subnet and then apply it to the appropriate interface. Here’s how that might look:

sudo ip addr add 192.168.1.77/24 dev enp0s3
ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
state UP group default qlen 1000
 link/ether 08:00:27:45:24:e1 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.13/24 brd 192.168.1.255 scope global dynamic enp0s3
 valid_lft 79131sec preferred_lft 79131sec
 inet 192.168.1.77/24 scope global secondary enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe45:24e1/64 scope link
 valid_lft forever preferred_lft forever

Note how the enp0s3 interface now has two IP addresses (192.168.1.13 and

192.168.1.77) associated with it. Removing the alias is as simple as running ip addr
del 192.168.1.77/24 dev enp0s3.

The problem with the ip tool is that changes won’t survive a system reboot. To create

permanent interface con�gurations, you can use the Netplan tool. Netplan is installed by

default on Ubuntu 18.04 but the renderer: NetworkManager line in the 01-network-
manager-all.yaml �le that might be in the /etc/netplan/ directory hands control

over the NetworkManager. If you want to use Netplan to manage your networks, simply

remove that line.

To add multiple static IP addresses to an interface, edit your .yaml �le in /etc/netplan/

to look something like this:

http://example.com
http://example.org

Chapter 14: Administering Networking

319

14

network:
 ethernets:
 enp0s3:
 addresses:
 - 192.168.1.75/24
 - 10.1.0.5/16
 gateway4: 192.168.1.1
 dhcp4: false
 version: 2

Make sure the interface (enp0s3 in this example) is the one you want to edit. When you’re

done, run sudo netplan apply.

Setting up Ethernet channel bonding
Ethernet channel bonding allows you to have more than one network interface card on a

computer associated with a single IP address. There are several reasons you might want

to do this:

High availability Multiple NICs on the same IP address can ensure that if one subnet

goes down or one NIC breaks, the address can still be reached on a NIC connected to

another subnet.

Performance If there is too much network traf�c to be handled by one NIC, you can

spread that traf�c across multiple NICs.

You’ll �rst need to make sure the bonding kernel module is active. These commands will

add the module (if necessary) and con�rm it’s active:

$ sudo modprobe bonding
$ lsmod | grep bond
bonding 163840 0

Once again, the ip command will do all the heavy lifting for us.

This series of commands will start by creating a new bond called bond0. I’ll then set each

of two existing interfaces to join bond0 and con�rm it all happened by running ip addr:

$ sudo ip link add bond0 type bond mode 802.3ad
$ sudo ip link set enp0s8 master bond0
$ sudo ip link set enp0s9 master bond0
$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

Continues

Part IV: Becoming a Linux Server Administrator

320

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
state UP group default qlen 1000
 link/ether 08:00:27:45:24:e1 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.13/24 brd 192.168.1.255 scope global
dynamic enp0s3
 valid_lft 78563sec preferred_lft 78563sec
 inet6 fe80::a00:27ff:fe45:24e1/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc
fq_codel master bond0 state UP group default qlen 1000
 link/ether 08:00:27:f1:5e:a9 brd ff:ff:ff:ff:ff:ff
4: enp0s9: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc
fq_codel master bond0 state UP group default qlen 1000
 link/ether 08:00:27:f1:5e:a9 brd ff:ff:ff:ff:ff:ff
5: bond0: <BROADCAST,MULTICAST,MASTER> mtu 1500 qdisc noop state DOWN
group default qlen 1000
 link/ether 08:00:27:f1:5e:a9 brd ff:ff:ff:ff:ff:ff

If you prefer to leave NetworkManager active on your machine, and you want this to persist

across multiple boots, you can use the nmcli tool:

$ sudo nmcli con add type bond ifname bond0
Connection 'bond-bond0' (29765620-fe97-4c34-9866-c7650bb2161c)
successfully added.
$ sudo nmcli con add type ethernet ifname enp0s8 master bond0
Connection 'bond-slave-enp0s8' (4a6d107e-df4b-4431-aeb3-af37cb5a4697)
successfully added.
$ sudo nmcli con add type ethernet ifname enp0s9 master bond0
Connection 'bond-slave-enp0s9' (815e0e80-b24f-461c-b3fb-b8d646921a83)
successfully added.

Feel free to reboot your system to con�rm that the changes have persisted.

Setting custom routes
On a simple network con�guration, communications that are destined for the local network

are directed to the appropriate interface on your LAN, while communications for hosts out-

side of your LAN go to a default gateway to be sent on to remote hosts. As an alternative,

you can set custom routes to provide alternative paths to speci�c networks.

You can view the routes that are currently con�gured on your system using ip route:

$ ip route
default via 192.168.1.1 dev wlp3s0 proto dhcp metric 600
169.254.0.0/16 dev wlp3s0 scope link metric 1000
192.168.1.0/24 dev wlp3s0 proto kernel scope link src 192.168.1.6
metric 600

If you’d like to connect your network connection to work through a different server whose

gateway address is, say, 192.168.4.1/24, then you’ll �rst have to bring down the current

route (192.168.1.0/24 in our example) and the default route setting, too:

Continued

Chapter 14: Administering Networking

321

14

ip route delete 192.168.1.0/24 dev enp0s3
#
ip route delete default dev enp0s3
#
$ ip route

10.1.46.0/24 dev cni0 proto kernel scope link src 10.1.46.1
192.168.1.1 dev enp0s3 proto dhcp scope link src 192.168.1.14
metric 100

Finally, you can add a new route pointing to your new gateway address, and then set it

as default:

sudo ip route add 192.168.4.0/24 dev enp0s3
sudo ip route add default dev enp0s3
$ ip route
default dev enp0s3 scope link
10.1.46.0/24 dev cni0 proto kernel scope link src 10.1.46.1
192.168.4.1 dev enp0s3 proto dhcp scope link src 192.168.4.5
metric 100

The standard warnings about ensuring you’ve got physical access to your machine before

playing around with network con�gurations apply.

Con�guring Networking in the Enterprise
So far, the network con�guration described in this chapter has centered on setting up

single systems to connect to a network. Features available in Linux can go well beyond that

by providing software that supports the actual network infrastructure needed by host com-

puters to communicate.

The following sections introduce you to a few of the network infrastructure types of ser-

vices available in Linux. Full implementation of these features is beyond the scope of

this book, but know that if you �nd yourself needing to manage network infrastructure

features, the following sections will give you a sense of how those features are imple-

mented in Linux.

Con�guring Linux as a router
If you have more than one network interface on a computer (typically two or more NICs),

you can con�gure Linux as a router. To make this happen, all that is needed is a change to

one kernel parameter that allows packet forwarding. To turn on the ip _ forward param-

eter immediately and temporarily, enter the following as root:

cat /proc/sys/net/ipv4/ip_forward
0
echo 1 > /proc/sys/net/ipv4/ip_forward
cat /proc/sys/net/ipv4/ip_forward
1

Part IV: Becoming a Linux Server Administrator

322

Packet forwarding (routing) is disabled by default, with the value of ip_forward set to 0.

By setting it to 1, packet forwarding is immediately enabled. To make this change perma-

nent, you must add that value to the /etc/sysctl.conf �le, so that it appears as follows:

net.ipv4.ip_forward = 1

With that �le modi�ed as shown, each time the system reboots, the value for ip_forward

is reset to 1. (Notice that net.ipv4.ip _ forward re�ects the actual location of the

ip_forward �le, minus /proc/sys, and with dots replacing slashes. You can change any

kernel parameters set in the /proc/sys directory structure in this way.)

When a Linux system is used as a router, it is often also used as a �rewall between a pri-

vate network and a public network, such as the Internet. If that is the case, you might

also want to use that same system for network address translation (NAT) and DHCP service,

so the systems on the private network can route through the Linux system using private

IP addresses. (See Chapter 25, “Securing Linux on a Network,” for information on working

with Linux �rewall rules using the iptables utility.)

Con�guring Linux as a DHCP server
Not only can a Linux system use a DHCP server to get its IP address and other information, it can

also be con�gured to act as a DHCP server itself. In its most basic form, a DHCP server can hand

out IP addresses from a pool of addresses to any system that requests an IP address. Usually,

however, the DHCP server also distributes the locations of DNS servers and the default gateway.

Con�guring a DHCP server is not something that should be done without some thought.

Don’t add a DHCP server on a network that is not under your control and that already has

a working DHCP server. Many clients are set up to get address information from any DHCP

server that will hand it out.

DHCP service is provided by the isc-dhcp-server package in Ubuntu. The service is

named dhcpd. The primary con�guration �le is /etc/dhcp/dhcpd.conf for IPv4 net-

works (there is a dhcpd6.conf �le in the same directory to provide DHCP service for IPv6

networks). By default, the dhcpd daemon listens on UDP port 67, so remember to keep that

port open on your �rewall.

When you install some virtualization and cloud services on a Linux system, a DHCP server

is set up by default for you within that system. When you launch virtual machines, they

are given IP addresses in that range. When you install and start the Docker service on

those Linux distributions, it likewise sets up a private network and hands out IP addresses

to Docker containers launched on that system.

Con�guring Linux as a DNS server
In Linux, most professional Domain Name System (DNS) servers are implemented using

the Berkeley Internet Name Domain (BIND) service. This is implemented in Ubuntu by

installing the bind9 and bind9utils packages.

Chapter 14: Administering Networking

323

14

By default, bind9 is con�gured by editing the /etc/named.conf �le. Hostname-to-IP-

address mapping is done in zone �les located in the /var/named directory.

If you are interested in trying out bind9, I recommend that you �rst try it out by con�g-

uring DNS for a small home network behind a �rewall as a way to make it easier for the peo-

ple in your household to communicate with each other. You can lock down the IP addresses

of the machines in your home by attaching MAC addresses of each computer’s network

interface card to speci�c IP addresses on a DHCP server and then mapping those names to

addresses in a DNS server.

Con�guring Linux as a proxy server
A proxy server provides a means of restricting network traf�c from a private network to a

public one, such as the Internet. Such servers provide an excellent way to lock down a com-

puter lab at a school or restrict websites that employees can visit from work.

By physically setting up Linux as a router but con�guring it as a proxy server, all of the

systems on your home or business network can be con�gured to access the Internet using

only certain protocols and only after you �lter the traf�c.

Using the Squid Proxy Server, which comes with most Linux systems (squid package in

Ubuntu), you can enable the system to accept requests to web servers (HTTP and HTTPS),

�le servers (FTP), and other protocols. You can restrict which systems can use your proxy

server (by hostname or IP address) and even limit which sites they can visit (by speci�c

address, range of addresses, hostname, or domain names).

Con�guring a squid proxy server can be as simple as installing the squid package, editing

the /etc/squid/squid.conf �le, and starting the squid service. The �le comes with a

recommended minimal con�guration. However, you might want to de�ne the hosts (based

on IP address or name) that you want to allow to use the service. There are blacklists avail-

able with squid that allow you to deny access to whole sets of sites that might be inappro-

priate for children to visit.

Summary
Most network connections from a Linux desktop or laptop system can be made with little or

no user intervention. If you use NetworkManager over a wired or wireless Ethernet connec-

tion, address and server information needed to start up can be automatically obtained from

a DHCP server.

OTHER

Before you create a public DNS server, keep in mind that it is very important to secure it properly. A cracked public

DNS server can be used to redirect traf�c to any server the bad guys choose. So, if you are using that server, you are

in danger of being presented with sites that are not the sites you think they are.

Part IV: Becoming a Linux Server Administrator

324

With NetworkManager’s graphical interface, you can do some network con�guration, if you

like. You can set static IP addresses and select the name server and gateway computers to

use. To do more manual and complex network con�guration, consider working more directly

with network con�guration �les.

Network con�guration �les in Linux can be used to set up more advanced features such as

Ethernet channel bonding.

Beyond the basics of network connectivity in Linux, features are available that enable you

to provide network infrastructure types of services. This chapter introduced services and

features such as routing, DHCP, and DNS that you need to know when working with more

advanced networking features in Linux.

With your networking con�gured, you can now begin con�guring services to run over your

networks. Chapter 15, “Starting and Stopping Services,” describes the tools that you need

to enable, disable, start, stop, and check the status of the services that are con�gured for

your Linux system.

Exercises
The exercises in this section help you to examine and change the network interfaces on

your Linux system as well as understand how to con�gure more advanced networking fea-

tures. Start these exercises on a Linux system that has an active network connection but

that is not in the middle of some critical network activity.

I recommend that you do these exercises directly from your computer console (in other

words, don’t SSH into the computer to do them). Some of the commands that you run may

interrupt your network connectivity, and some of the con�guration you do, if you make a

mistake, can result in your computer being temporarily unavailable from the network.

There are often multiple ways to complete the tasks described in these exercises. If you are

stuck, refer to the task solutions that are provided in Appendix A.

1. Use the desktop to check that NetworkManager has successfully started your net-

work interface (wired or wireless) to the network. If it has not, then try to start

your network interface.

2. Run a command to check the active network interfaces available on your computer.

3. Try to contact google.com from the command line in a way that ensures that DNS is

working properly.

4. Run a command to check the routes being used to communicate outside of your

local network.

5. Trace the route being taken to connect to google.com.

6. View the network activity of your Linux system from the Cockpit web user

interface.

http://google.com
http://google.com

Chapter 14: Administering Networking

325

14

7. Create a host entry that allows you to communicate with your local host system

using the name myownhost.

8. Determine the addresses of the DNS name servers that are being used to resolve

hostnames to IP addresses on your system, then check which is queried from your

system to �nd the IP address for google.com.

9. Check to see if your system has been con�gured to allow IPv4 packets to be routed

between network interfaces on your system.

http://google.com

327

CHAP T ER

15
Starting and Stopping Services

IN THIS CHAPTER

Understanding the various Linux init services

Auditing Linux daemon-controlled services

Stopping and starting services

Changing the Linux server’s default runlevel

Removing services

T
he primary job of a Linux server system is to offer services to local or remote users. A server

can provide access to web pages, files, database information, streaming music, or other types

of content. Name servers can provide access to lists of host computer or usernames. Hundreds

of these and other types of services can be configured on your Linux systems.

Ongoing services offered by a Linux system, such as access to a printer service or login service, are

typically implemented by what is referred to as a daemon process. Most Linux systems have a method

of managing each daemon process as a service using one of several popular initialization systems (also

referred to as init systems). Advantages of using init systems include the ability to do the following:

 ■ Identify runlevels: Put together sets of services in what are referred to as runlevels

or targets.

 ■ Establish dependencies: Set service dependencies so, for example, a service that requires

network interfaces won’t start until all network startup services have started successfully.

 ■ Set the default runlevel: Select which runlevel or target starts up when the system boots

(a default runlevel).

 ■ Manage services: Run commands that tell individual services to start, stop, pause, restart,

or even reload configuration files.

Part IV: Becoming a Linux Server Administrator

328

Several different init systems are in use with Linux systems today. The one you use depends

on the Linux distribution and release that you are using. In this chapter, I cover the follow-

ing init systems that have been used in Ubuntu and many other Linux distributions:

 ■ SysVinit: This traditional init system was created for UNIX System V systems in

the early 1980s. It offers an easy-to-understand method of starting and stopping

services based on runlevel. Most UNIX and Linux systems up until a few years ago

used SysVinit.

 ■ Systemd: The latest versions of Ubuntu use the systemd init system. It is the

most complex of the init systems, but it also offers much more flexibility. systemd

offers not only features for starting and working with services, but also lets you

manage sockets, devices, mount points, swap areas, and other unit types.

NOTE

If you are using an older version of Ubuntu, you probably used Upstart (a modi�cation of SysVinit) as your initializa-

tion system. Beginning with Ubuntu 15.04 (released April 28, 2015), Upstart was replaced by the systemd initiali-

zation daemon. Thus, Upstart will not be described in this book.

This chapter describes the sysVinit and systemd init systems. In the process of using the

init system that matches your Linux distribution, you learn how the boot process works to

start services, how you can start and stop services individually, and how you enable and dis-

able services.

Understanding the Initialization Daemon (init

or systemd)
In order to understand service management, you need to understand the initialization

daemon. The initialization daemon can be thought of as the “mother of all processes.”

This daemon is the first process to be started by the kernel on the Linux server. For Linux

distributions that use SysVinit, the init daemon is literally named init. For systemd, the

init daemon is named systemd.

The Linux kernel has a process ID (PID) of 0. Thus, the initialization process (init or

systemd) daemon has a parent process ID (PPID) of 0, and a PID of 1. Once started, init

is responsible for spawning (launching) processes configured to be started at the server’s

boot time, such as the login shell (agetty or mingetty process). It is also responsible for

managing services.

The Linux init daemon was based on the UNIX System V init daemon. Thus, it is called

the SysVinit daemon. However, it was not the only classic init daemon. The init daemon

is not part of the Linux kernel. Therefore, it can come in different flavors, and Linux

distributions can choose which flavor to use. Another classic init daemon was based on

Berkeley UNIX, also called BSD. Therefore, the two original Linux init daemons were BSD

init and SysVinit.

Chapter 15: Starting and Stopping Services

329

15

The classic init daemons worked without problems for many years. However, these dae-

mons were created to work within a static environment. As new hardware, such as USB

devices, came along, the classic init daemons had trouble dealing with these and other

hot-plug devices. Computer hardware had changed from static to event based. New init

daemons were needed to deal with these fluid environments.

In addition, as new services came along, the classic init daemons had to deal with

starting more and more services. Thus, the entire system initialization process was less

efficient and ultimately slower.

The modern initialization daemons have tried to solve the problems of inefficient system

boots and non-static environments. The most popular of the new initialization daemons is

systemd. Like other modern Linux systems, Ubuntu has made the move to the systemd

daemon while maintaining backward compatibility to the classic SysVinit, Upstart, or BSD

init daemons.

The systemd daemon was written primarily by Lennart Poettering, a Red Hat developer.

However, it is also currently used by Ubuntu and other distributions. The official documen-

tation is available from docs.fedoraproject.org/en-US/quick-docs/understanding-and-

administering-systemd.

In order to manage your services properly, you need to know which initialization daemon

your server has. Figuring that out can be a little tricky. The initialization process running

on a SysVinit or Upstart is named init. For the first systemd systems, it was also called

init but is now named systemd. Running ps -e can immediately tell you if yours is a

systemd system:

ps -e | head
 PID TTY TIME CMD
 PID TTY TIME CMD
 1 ? 00:00:18 systemd
 2 ? 00:00:00 kthreadd
 3 ? 00:00:00 rcu_gp
 4 ? 00:00:00 rcu_par_gp
 6 ? 00:00:00 kworker/0:0H-kb
 9 ? 00:00:00 mm_percpu_wq
 10 ? 00:00:00 ksoftirqd/0
 11 ? 00:00:13 rcu_sched
 12 ? 00:00:00 migration/0

If PID 1 is the init daemon for your system, try looking on the init Wikipedia page

 (wikipedia.org/wiki/Init) under “Other implementations.” This will help you understand

if your init daemon is SysVinit, Upstart, or some other initialization system.

Understanding the classic init daemons
The classic init daemons, SysVinit and BSD init, are worth understanding, even if your

Linux server has a different init daemon. Not only is backward compatibility to the clas-

sics often used in the newer init daemons, but many are based upon them.

http://fedoraproject.org/wiki/Systemd
http://fedoraproject.org/wiki/Systemd
http://wikipedia.org/wiki/Init

Part IV: Becoming a Linux Server Administrator

330

The classic SysVinit and BSD init daemons operate in a very similar fashion. Although

in the beginning they may have been rather different, over time very few significant dif-

ferences remained. For example, the older BSD init daemon would obtain configuration

information from the /etc/ttytab file. Now, like the SysVinit daemon, the BSD init

daemon’s configuration information is taken at boot time from the /etc/inittab file.

The following is a classic SysVinit /etc/inittab file:

cat /etc/inittab
inittab This file describes how the INIT process should set up
Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, no NFS (Same as 3, if you do not have networking)
3 - Full multiuser mode
4 - unused
5 - X11
6 - reboot (Do NOT set initdefault to this)
#
id:5:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now
pf::powerfail:/sbin/shutdown -f -h +2
"Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c
"Power Restored; Shutdown Cancelled"

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Chapter 15: Starting and Stopping Services

331

15

Run xdm in runlevel 5
x:5:respawn:/etc/X11/prefdm -nodaemon

The /etc/inittab file tells the init daemon which runlevel is the default runlevel.

A runlevel is a categorization number that determines what services are started and what

services are stopped. In the preceding example, a default runlevel of 5 is set with the line

id:5:initdefault:. Table 15.1 shows the standard seven Linux runlevels.

Linux distributions can differ slightly on the definition of each runlevel as well as which

runlevels are offered.

TABLE 15.1 Standard Linux Runlevels

RUNLEVEL # NAME DESCRIPTION

0 Halt All services are shut down, and the server is stopped.

1 or S Single User Mode The root account is automatically logged in to the server.
Other users cannot log in to the server. Only the command-
line interface is available. Network services are not started.

2 Multi-user Mode Users can log in to the server, but only the command-line
interface is available. On some systems, network interfaces
and services are started; on others they are not. Originally, this
runlevel was used to start dumb terminal devices so that users
could log in (but no network services were started).

3 Extended
Multi-user Mode

Users can log in to the server, but only the command-line
interface is available. Network interfaces and services are
started. This is a common runlevel for servers.

4 User De�ned Users can customize this runlevel.

5 Graphical Mode Users can log in to the server. Command-line and graphical
interfaces are available. Network services are started. This is a
common runlevel for desktop systems.

6 Reboot The server is rebooted.

OTHER

The only runlevels that should be used in the /etc/inittab �le are 2 through 5. The other runlevels could cause

problems. For example, if you put runlevel 6 in the /etc/inittab �le as the default, when the server reboots, it

would go into a loop and continue to reboot over and over again.

Part IV: Becoming a Linux Server Administrator

332

The runlevels are not only used as a default runlevel in the /etc/inittab file. They can

also be called directly using the init daemon itself. Thus, if you want to halt your server

immediately, you type init 0 at the command line:

init 0
...
System going down for system halt NOW!

The init command accepts any of the runlevel numbers in Table 15.1, allowing you to

switch your server quickly from one runlevel category to another. For example, if you need

to perform troubleshooting that requires the graphical interface to be down, you can type

init 3 at the command line:

init 3
INIT: Sending processes the TERM signal
starting irqbalance: [OK]
Starting setroubleshootd:
Starting fuse: Fuse filesystem already available.
...
Starting console mouse services: [OK]

To see your Linux server’s current runlevel, simply type in the command runlevel. The

first item displayed is the server’s previous runlevel, which in the following example is 5.

The second item displayed shows the server’s current runlevel, which in this example is 3.

$ runlevel
5 3

In addition to the init command, you can use the telinit command, which is

functionally the same. In the example that follows, the telinit command is used to

reboot the server by taking it to runlevel 6:

telinit 6
INIT: Sending processes the TERM signal
Shutting down smartd: [OK]
Shutting down Avahi daemon: [OK]
Stopping dhcdbd: [OK]
Stopping HAL daemon: [OK]
...
Starting killall:
Sending all processes the TERM signal... [OK]
Sending all processes the KILL signal... [OK]
...
Unmounting filesystems [OK]
Please stand by while rebooting the system
...

On a freshly booted Linux server, the current runlevel number should be the same as the

default runlevel number in the /etc/inittab file. However, notice that the previous run-

level in the example that follows is N. The N stands for “Nonexistent” and indicates that

the server was freshly booted to the current runlevel.

Chapter 15: Starting and Stopping Services

333

15

$ runlevel
N 5

How does the server know which services to stop and which ones to start when a particular

runlevel is chosen? When a runlevel is chosen, the scripts located in the /etc/rc.d/rc#.d

directory (where # is the chosen runlevel) are run. These scripts are run whether the run-

level is chosen via a server boot using the /etc/inittab initdefault setting or the

init or telinit command is used. For example, if runlevel 5 is chosen, then all of the

scripts in the /etc/rc.d/rc5.d directory are run; your list will be different, depending

on what services you have installed and enabled.

ls /etc/rc.d/rc5.d
K01smolt K88wpa_supplicant S22messagebus
K02avahi-dnsconfd K89dund S25bluetooth
K02NetworkManager K89netplugd S25fuse
K02NetworkManagerDispatcher K89pand S25netfs
K05saslauthd K89rdisc S25pcscd
K10dc_server K91capi S26hidd
K10psacct S00microcode_ctl S26udev-post
K12dc_client S04readahead_early S28autofs
K15gpm S05kudzu S50hplip
K15httpd S06cpuspeed S55cups
K20nfs S08ip6tables S55sshd
K24irda S08iptables S80sendmail
K25squid S09isdn S90ConsoleKit
K30spamassassin S10network S90crond
K35vncserver S11auditd S90xfs
K50netconsole S12restorecond S95anacron
K50tux S12syslog S95atd
K69rpcsvcgssd S13irqbalance S96readahead_later
K73winbind S13mcstrans S97dhcdbd
K73ypbind S13rpcbind S97yum-updatesd
K74nscd S13setroubleshoot S98avahi-daemon
K74ntpd S14nfslock S98haldaemon
K84btseed S15mdmonitor S99firstboot
K84bttrack S18rpcidmapd S99local
K87multipathd S19rpcgssd S99smartd

Notice that some of the scripts within the /etc/rc.d/rc5.d directory start with a K and

some start with an S. The K refers to a script that will kill (stop) a process. The S refers to

a script that will start a process. Also, each K and S script has a number before the name of

the service or daemon that they control. This allows the services to be stopped or started in

a particular controlled order. You would not want your Linux server’s network services to be

started before the network itself was started.

An /etc/rc.d/rc#.d directory exists for all the standard Linux runlevels. Each one con-

tains scripts to start and stop services for its particular runlevel.

ls -d /etc/rc.d/rc?.d
/etc/rc.d/rc0.d /etc/rc.d/rc2.d /etc/rc.d/rc4.d /etc/rc.d/rc6.d
/etc/rc.d/rc1.d /etc/rc.d/rc3.d /etc/rc.d/rc5.d

Part IV: Becoming a Linux Server Administrator

334

Actually, the files in the /etc/rc.d/rc#.d directories are not scripts but instead symbolic

links to scripts in the /etc/rc.d/init.d directory. Thus, there is no need to have multiple

copies of particular scripts.

ls -l /etc/rc.d/rc5.d/K15httpd
lrwxrwxrwx 1 root root 15 Oct 10 08:15
 /etc/rc.d/rc5.d/K15httpd -> ../init.d/httpd
ls /etc/rc.d/init.d
anacron functions multipathd rpcidmapd
atd fuse netconsole rpcsvcgssd
auditd gpm netfs saslauthd
autofs haldaemon netplugd sendmail
avahi-daemon halt network setroubleshoot
avahi-dnsconfd hidd NetworkManager single
bluetooth hplip NetworkManagerDispatcher smartd
btseed hsqldb nfs smolt
bttrack httpd nfslock spamassassin
capi ip6tables nscd squid
ConsoleKit iptables ntpd sshd
cpuspeed irda pand syslog
crond irqbalance pcscd tux
cups isdn psacct udev-post
cups-config-daemon killall rdisc vncserver
dc_client kudzu readahead_early winbind
dc_server mcstrans readahead_later wpa_supplicant
dhcdbd mdmonitor restorecond xfs
dund messagebus rpcbind ypbind
firstboot microcode rpcgssd yum-updatesd

Notice that each service has a single script in /etc/rc.d/init.d. There aren’t separate

scripts for stopping and starting a service. These scripts will stop or start a service depend-

ing upon what parameter is passed to them by the init daemon.

Each script in /etc/rc.d/init.d takes care of all that is needed for starting or stopping a

particular service on the server. The following is a partial example of the httpd script on a

Linux system that uses the SysVinit daemon. It contains a case statement for handling the

parameter ($1) that was passed to it, such as start, stop, status, and so on.

cat /etc/rc.d/init.d/httpd
#!/bin/bash
#
httpd Startup script for the Apache HTTP Server
#
chkconfig: - 85 15
description: Apache is a World Wide Web server.
It is used to serve \
HTML files and CGI.
processname: httpd
config: /etc/httpd/conf/httpd.conf

Chapter 15: Starting and Stopping Services

335

15

config: /etc/sysconfig/httpd
pidfile: /var/run/httpd.pid

Source function library.
. /etc/rc.d/init.d/functions
...
See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 status)
 status $httpd
 RETVAL=$?
 ;;
...
esac

exit $RETVAL

After the runlevel scripts linked from the appropriate /etc/rc.d/rc#.d directory are

executed, the SysVinit daemon’s process spawning is complete. The final step the init pro-

cess takes at this point is to do anything else indicated in the /etc/inittab file (such as

spawn mingetty processes for virtual consoles and start the desktop interface, if you are

in runlevel 5).

Understanding systemd initialization
The systemd initialization daemon is the newer replacement for the SysVinit and the

Upstart init daemons. It is backward compatible with both SysVinit and Upstart. System

initialization time is reduced by systemd because it can start services in a parallel manner.

Learning systemd basics

With the SysVinit daemon, services are stopped and started based upon runlevels. The

systemd service is concerned with runlevels, but it implements them in a different way

with what are called target units. Although the main job of systemd is to start and stop

services, it can manage other types of things referred to as units. A unit is a group con-

sisting of a name, type, and configuration file, and it is focused on a particular service or

action. There are 12 systemd unit types:

 ■ automount

 ■ device

 ■ mount

Part IV: Becoming a Linux Server Administrator

336

 ■ path

 ■ service

 ■ snapshot

 ■ socket

 ■ target

 ■ timer

 ■ swap

 ■ slice

 ■ scope

The two primary systemd units with which you need to be concerned for dealing with

services are service units and target units. A service unit is for managing daemons on your

Linux server. A target unit is simply a group of other units.

The example that follows shows several systemd service units and target units. The ser-

vice units have familiar daemon names, such as cups and ssh. Note that each service

unit name ends with .service. The target units shown have names like sysinit. (sys-
init is used for starting up services at system initialization.) The target unit names end

with .target.

systemctl list-units | grep .service
...
accounts-daemon.service loaded active running
Accounts Service
acpid.service loaded active running ACPI
event daemon
alsa-restore.service loaded active exited Save/Restore
Sound Card State
apparmor.service loaded active exited AppArmor
initialization
apport.service loaded active exited LSB:
automatic crash report generation
atd.service loaded active running Deferred
execution scheduler
avahi-daemon.service loaded active running Avahi mDNS/
DNS-SD Stack
binfmt-support.service loaded active exited Enable
support for additional executable binary formats
bolt.service loaded active running Thunderbolt
system service
colord.service loaded active running Manage,
Install and Generate Color Profiles
console-setup.service loaded active exited Set console
font and keymap
cron.service loaded active running Regular
background program processing daemon

Chapter 15: Starting and Stopping Services

337

15

cups-browsed.service loaded active running Make remote
CUPS printers available locally
cups.service loaded active running CUPS Scheduler
dbus.service loaded active running D-Bus System
Message Bus
ddclient.service loaded active running LSB: Update
dynamic domain name service entries
...
systemctl list-units | grep .target
basic.target loaded active active Basic System
cryptsetup.target loaded active active Local
Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File
Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network-pre.target loaded active active Network (Pre)
network.target loaded active active Network
nss-lookup.target loaded active active Host and Network
Name Lookups
nss-user-lookup.targetloaded active active User and Group
Name Lookups
paths.target loaded active active Paths
printer.target loaded active active Printer
remote-fs.target loaded active active Remote File Systems
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sound.target loaded active active Sound Card
swap.target loaded active active Swap
sysinit.target loaded active active System
Initialization
time-sync.target loaded active active System Time
Synchronized
timers.target loaded active active Timers

The Linux system unit configuration files are located in the /lib/systemd/system and /
etc/systemd/system directories. You could use the ls command to look through those

directories, but the preferred method is to use an option on the systemctl command

as follows:

systemctl list-unit-files --type=service
UNIT FILE STATE
...
cups.service enabled
...

Continues

Part IV: Becoming a Linux Server Administrator

338

dbus.service static
...
NetworkManager.service enabled
...
poweroff.service static
...
sshd.service enabled
sssd.service disabled
...
276 unit files listed.

The unit configuration files shown in the preceding code are all associated with a service

unit. Configuration files for target units can be displayed via the following method:

systemctl list-unit-files --type=target
UNIT FILE STATE VENDOR PRESET
basic.target static enabled
blockdev@.target static enabled
bluetooth.target static enabled
boot-complete.target static enabled
cloud-config.target static enabled
cloud-init.target static enabled
cryptsetup-pre.target static disabled
cryptsetup.target static enabled
ctrl-alt-del.target disabled enabled
default.target static enabled
emergency.target static enabled
exit.target disabled disabled
final.target static enabled
friendly-recovery.target static enabled
getty-pre.target static disabled
getty.target static enabled
graphical.target static enabled
[...]
time-sync.target static disabled
timers.target static enabled
umount.target static enabled

68 unit files listed.

Notice that both of the configuration units’ file examples display units with a status of

static, enabled, or disabled. The enabled status means that the unit is currently enabled

(meaning that it will load automatically on system boot). The disabled status means that

the unit is currently disabled. The next status, static, is slightly confusing. It stands

for “statically enabled,” and it means that the unit is enabled by default and cannot be

 disabled, even by root.

Continued

Chapter 15: Starting and Stopping Services

339

15

The service unit configuration files contain lots of information, such as what other services

must be started, when this service can be started, which environmental file to use, and so

on. The following example shows the ssh daemon’s unit configuration file:

$ cat /lib/systemd/system/ssh.service
[Unit]
Description=OpenBSD Secure Shell server
After=network.target auditd.service
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

[Service]
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartPreventExitStatus=255
Type=notify
RuntimeDirectory=sshd
RuntimeDirectoryMode=0755

[Install]
WantedBy=multi-user.target
Alias=sshd.service

This basic service unit configuration file includes the following options:

Description: A free-form description (comment line) of the service.

After: Configures ordering. In other words, it lists which units should be activated

before this service is started.

Environment File: The service’s configuration files.

ExecStart: The command used to start this service.

ExecReload: The command used to reload this service.

WantedBy: The target unit to which this service belongs.

Notice that the target unit, multi-user.target, is used in the sshd service unit config-

uration file. The sshd service unit is wanted by the multi-user.target. In other words,

when the multi-user.target unit is activated, the sshd service unit is started.

You can view the various units that a target unit will activate by using the follow-

ing command:

Part IV: Becoming a Linux Server Administrator

340

systemctl show --property "Wants" multi-user.target
Wants=binfmt-support.service plymouth-quit.service getty.target
snapd.seeded.service NetworkManager.service dns-clean.service snap-
gnome\x2dsy

Unfortunately, the systemctl command does not format the output for this well. It runs

off the right edge of the screen so you cannot see the full results. Also, you must enter q to

return to the command prompt. To fix this problem, pipe the output through some format-

ting commands to produce a nice, alphabetically sorted display, as shown in the example

that follows:

systemctl show --property "Wants" multi-user.target \
 | fmt -10 | sed 's/Wants=//g' | sort
anacron.service
apport.service
atd.service
avahi-daemon.service
binfmt-support.service
console-setup.service
cron.service
...

This display shows all of the services and other units that will be activated (started),

including sshd, when the multi-user.target unit is activated. Remember that a target

unit is simply a grouping of other units, as shown in the preceding example. Also notice

that the units in this group are not all service units. There are path units and other target

units as well.

A target unit has both Wants and requirements, called Requires. A Wants means that all

of the units listed are triggered to activate (start). If they fail or cannot be started, no

problem—the target unit continues on its merry way. The preceding example is a display of

Wants only.

A Requires is much more stringent than a Wants and potentially catastrophic. A Requires

means that all of the units listed are triggered to activate (start). If they fail or cannot be

started, the entire unit (group of units) is deactivated.

You can view the various units a target unit Requires (must activate or the unit will fail),

using the command in the example that follows. Notice that the Requires output is much

shorter than the Wants for the multi-user.target. Thus, no special formatting of the

output is needed.

systemctl show --property "Requires" multi-user.target
Requires=basic.target

The target units also have configuration files, as do the service units. The following

example shows the contents of the multi-user.target configuration file:

cat /lib/systemd/system/multi-user.target
This file is part of systemd.
#
...

Chapter 15: Starting and Stopping Services

341

15

[Unit]
Description=Multi-User
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes

This basic target unit configuration file has the following options:

Description: This is just a free-form description of the target.

Documentation: Lists the appropriate systemd man page.

Requires: If this multi-user.target gets activated, the listed target unit is also

activated. If the listed target unit is deactivated or fails, then multi-user.target

is deactivated. If there are no After and Before options, then both multi-user
.target and the listed target unit activate simultaneously.

Conflicts: This setting avoids conflicts in services. Starting multi-user.target

stops the listed targets and services, and vice versa.

After: This setting configures ordering. In other words, it determines which units

should be activated before starting this service.

AllowIsolate: This option is a Boolean setting of yes or no. If this option set to

yes, then this target unit, multi-user.target, is activated along with its depen-

dencies and all others are deactivated.

To get more information on these configuration files and their options, enter man systemd

.service, man systemd.target, and man systemd.unit at the command line.

For the Linux server using systemd, the boot process is easier to follow now that you

understand systemd target units. At boot, systemd activates the default.target

unit. This unit is aliased either to multi-user.target or graphical.target. Thus,

depending upon the alias set, the services targeted by the target unit are started.

If you need more help understanding the systemd daemon, you can enter man -k

systemd at the command line to get a listing of the various systemd utilities’

documentation in the man pages.

Learning systemd’s backward compatibility to SysVinit

The systemd daemon has maintained backward compatibility to the SysVinit daemon. This

allows Linux distributions time to migrate slowly to systemd.

While runlevels are not truly part of systemd, the systemd infrastructure has been cre-

ated to provide compatibility with the concept of runlevels. There are seven target unit

configuration files specifically created for backward compatibility to SysVinit:

 ■ runlevel0.target

Part IV: Becoming a Linux Server Administrator

342

 ■ runlevel1.target

 ■ runlevel2.target

 ■ runlevel3.target

 ■ runlevel4.target

 ■ runlevel5.target

 ■ runlevel6.target

As you probably have already figured out, there is a target unit configuration file for each

of the seven classic SysVinit runlevels. These target unit configuration files are symboli-

cally linked to target unit configuration files that most closely match the idea of the origi-

nal runlevel. In the example that follows, the symbolic links are shown for runlevel target

units. Notice that the runlevel target units for runlevel 2, 3, and 4 are all symbolically

linked to multi-user.target. The multi-user.target unit is similar to the legacy

extended multi-user mode.

ls -l /lib/systemd/system/runlevel*.target
lrwxrwxrwx. 1 root root 15 Apr 9 04:25 /lib/systemd/system/
runlevel0.target
 -> poweroff.target
lrwxrwxrwx. 1 root root 13 Apr 9 04:25 /lib/systemd/system/
runlevel1.target
 -> rescue.target
lrwxrwxrwx. 1 root root 17 Apr 9 04:25 /lib/systemd/system/
runlevel2.target
 -> multi-user.target
lrwxrwxrwx. 1 root root 17 Apr 9 04:25 /lib/systemd/system/
runlevel3.target
 -> multi-user.target
lrwxrwxrwx. 1 root root 17 Apr 9 04:25 /lib/systemd/system/
runlevel4.target
 -> multi-user.target
lrwxrwxrwx. 1 root root 16 Apr 9 04:25 /lib/systemd/system/
runlevel5.target
 -> graphical.target
lrwxrwxrwx. 1 root root 13 Apr 9 04:25 /lib/systemd/system/
runlevel6.target
 -> reboot.target

The old /etc/inittab file hasn’t existed on Ubuntu systems for many years. But wherever

you do still find copies (on RHEL, for instance), here’s what it’ll look like:

cat /etc/inittab
inittab is no longer used.
#
ADDING CONFIGURATION HERE WILL HAVE NO EFFECT ON YOUR SYSTEM.
#
Ctrl-Alt-Delete is handled by
/etc/systemd/system/ctrl-alt-del.target

Chapter 15: Starting and Stopping Services

343

15

#
systemd uses 'targets' instead of runlevels.
By default, there are two main targets:
#
multi-user.target: analogous to runlevel 3
graphical.target: analogous to runlevel 5
#
To view current default target, run:
systemctl get-default
#
To set a default target, run:
systemctl set-default TARGET.target

The capability to switch runlevels using the init or telinit command is still available.

When issued, either of the commands is translated into a systemd target unit activation

request. Therefore, typing init 3 at the command line really issues the command sys-
temctl isolate multi-user.target. Also, you can still use the runlevel command

to determine the current legacy runlevel, but it is strongly discouraged.

The classic SysVinit /etc/inittab handled spawning the getty or mingetty processes.

The systemd init handles this via the getty.target unit. The getty.target is

activated by the multi-user.target unit. You can see how these two target units are

linked by executing the following command:

systemctl show --property "WantedBy" getty.target
WantedBy=multi-user.target

Now that you have a basic understanding of classic and modern init daemons, it’s time to

do some practical server administrator actions that involve the initialization daemon.

Checking the Status of Services
As a Linux administrator, you need to check the status of the services being offered

on your server. For security reasons, you should disable and remove any unused system

services discovered through the process. Most important for troubleshooting purposes,

you need to be able to know quickly what should and should not be running on your

Linux server.

Of course, knowing which initialization service is being used by your Linux server is the

first piece of information to obtain. How to determine this was covered in the section

“Understanding the Initialization Daemon” earlier in this chapter. The following sections

are organized into subsections on the various initialization daemons.

Checking services for SysVinit systems
To see all of the services that are being offered by a Linux server using the classic SysVinit

daemon, use the chkconfig command. The example that follows shows the services avail-

able on a classic SysVinit Linux server. Note that each runlevel (0–6) is shown for each

Part IV: Becoming a Linux Server Administrator

344

service with a status of on or off. The status denotes whether a particular service is started

(on) or not (off) for that runlevel.

chkconfig --list
ConsoleKit 0:off 1:off 2:off 3:on 4:on 5:on 6:off
NetworkManager 0:off 1:off 2:off 3:off 4:off 5:off 6:off
...
crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off
cups 0:off 1:off 2:on 3:on 4:on 5:on 6:off
...
sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
tux 0:off 1:off 2:off 3:off 4:off 5:off 6:off
udev-post 0:off 1:off 2:off 3:on 4:on 5:on 6:off
vncserver 0:off 1:off 2:off 3:off 4:off 5:off 6:off
winbind 0:off 1:off 2:off 3:off 4:off 5:off 6:off
wpa_supplicant 0:off 1:off 2:off 3:off 4:off 5:off 6:off
xfs 0:off 1:off 2:on 3:on 4:on 5:on 6:off
ypbind 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Some services in the example are never started, such as vncserver. Other services, such

as the cups daemon, are started on runlevels 2 through 5.

Using the chkconfig command, you cannot tell if a service is currently running. To do

that, you need to use the service command. To help isolate only those services that are

currently running, the service command is piped into the grep command and then

sorted, as follows:

service --status-all | grep running... | sort
anacron (pid 2162) is running...
atd (pid 2172) is running...
auditd (pid 1653) is running...
automount (pid 1952) is running...
console-kit-daemon (pid 2046) is running...
crond (pid 2118) is running...
cupsd (pid 1988) is running...
...
sshd (pid 2002) is running...
syslogd (pid 1681) is running...
xfs (pid 2151) is running...

You can also use both the chkconfig and the service commands to view an individual

service’s settings. Using both commands in the example that follows, you can view the

cups daemon’s settings:

chkconfig --list cups
cups 0:off 1:off 2:on 3:on 4:on 5:on 6:off
#
service cups status
cupsd (pid 1988) is running...

Chapter 15: Starting and Stopping Services

345

15

You can see that the cupsd daemon is set to start on every runlevel but 0, 1, and 6, and

from the service command, you can see that it is currently running. Also, the process ID

(PID) number is given for the daemon.

To see all of the services that are being offered by a Linux server using systemd, use the

following command:

systemctl list-unit-files --type=service | grep -v disabled
UNIT FILE STATE VENDOR PRESET
accounts-daemon.service enabled enabled
alsa-restore.service static enabled
alsa-state.service static enabled
alsa-utils.service masked enabled
anacron.service enabled enabled
apparmor.service enabled enabled
apport-autoreport.service static enabled
apport-forward@.service static enabled
apport.service generated enabled
apt-daily-upgrade.service static enabled
apt-daily.service static enabled
autovt@.service enabled enabled
avahi-daemon.service enabled enabled
[...]
wpa_supplicant.service enabled enabled
x11-common.service masked enabled

219 unit files listed.

Remember that the three status possibilities for a systemd service are enabled, disabled,

or static. There’s no need to include disabled to see which services are set to be active,

which is effectively accomplished by using the -v option on the grep command, as

shown in the preceding example. The state of static is essentially enabled and thus should

be included.

To see if a particular service is running, use the following command:

systemctl status cups.service
• cups.service - CUPS Scheduler
 Loaded: loaded (/lib/systemd/system/cups.service; enabled; vendor
preset: ena
 Active: active (running) since Mon 2020-03-30 07:49:16 EDT; 9h ago
 Docs: man:cupsd(8)
 Main PID: 986 (cupsd)
 Tasks: 4 (limit: 4915)
 CGroup: /system.slice/cups.service
 986 /usr/sbin/cupsd -l
 /usr/lib/cups/notifier/dbus dbus://
 /usr/lib/cups/notifier/dbus dbus://

Mar 30 07:49:16 workstation systemd[1]: Started CUPS Scheduler.

Part IV: Becoming a Linux Server Administrator

346

The systemctl command can be used to show the status of one or more services. In the

preceding example, the printing service was chosen. Notice that the name of the service is

cups.service. A great deal of helpful information about the service is given here, such

as the fact that it is enabled and active, its start time, and its process ID (PID).

Now that you can check the status of services and determine some information about them,

you need to know how to accomplish starting, stopping, and reloading the services on your

Linux server.

Stopping and Starting Services
The tasks of starting, stopping, and restarting services typically refer to immediate

needs—in other words, managing services without a server reboot. For example, if you

want to stop a service temporarily, then you are in the right place. However, if you want to

stop a service and not allow it to be restarted at server reboot, then you actually need to

disable the service, which is covered in the section “Enabling Persistent Services” later in

this chapter.

Stopping and starting SysVinit services
The primary command for stopping and starting SysVinit services is the service command.

With the service command, the name of the service that you want to control comes

second in the command line. The last option is what you want to do to the service: stop,

start, restart, and so on. The following example shows how to stop the cups service.

Notice that an OK is given, which lets you know that cupsd has been successfully stopped:

service cups status
cupsd (pid 5857) is running...
service cups stop
Stopping cups: [OK]
service cups status
cupsd is stopped

To start a service, you simply use a start option instead of a stop option on the end of

the service command, as follows:

service cups start
Starting cups: [OK]
service cups status
cupsd (pid 6860) is running...

To restart a SysVinit service, the restart option is used. This option stops the service and

then immediately starts it again:

service cups restart
Stopping cups: [OK]
Starting cups: [OK]

Chapter 15: Starting and Stopping Services

347

15

service cups status
cupsd (pid 7955) is running...

When a service is already stopped, a restart generates a FAILED status on the attempt to

stop it. However, as shown in the example that follows, the service is successfully started

when a restart is attempted:

service cups stop
Stopping cups: [OK]
service cups restart
Stopping cups: [FAILED]
Starting cups: [OK]
service cups status
cupsd (pid 8236) is running...

Reloading a service is different from restarting a service. When you reload a service, the

service itself is not stopped. Only the service’s configuration files are loaded again. The fol-

lowing example shows how to reload the cups daemon:

service cups status
cupsd (pid 8236) is running...
service cups reload
Reloading cups: [OK]
service cups status
cupsd (pid 8236) is running...

If a SysVinit service is stopped when you attempt to reload it, you get a FAILED status. This

is shown in the following example:

service cups status
cupsd is stopped
service cups reload
Reloading cups: [FAILED]
Stopping and starting systemd services

For the systemd daemon, the systemctl command works for stopping, starting, reload-

ing, and restarting services. The options to the systemctl command should look familiar.

Stopping a service with systemd

In the example that follows, the status of the cups daemon is checked and then stopped

using the systemctl stop cups.service command:

systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: active (running) since Mon, 20 Apr 2020 12:36:3...
 Main PID: 1315 (cupsd)
 CGroup: name=systemd:/system/cups.service
 1315 /usr/sbin/cupsd -f
systemctl stop cups.service
systemctl status cups.service

Continues

Part IV: Becoming a Linux Server Administrator

348

cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: inactive (dead) since Tue, 21 Apr 2020 04:43:4...
 Process: 1315 ExecStart=/usr/sbin/cupsd -f
 (code=exited, status=0/SUCCESS)
 CGroup: name=systemd:/system/cups.service

Notice that when the status is taken, after stopping the cups daemon, the service is inac-

tive (dead) but still considered enabled. This means that the cups daemon is still started

upon server boot.

Starting a service with systemd

Starting the cups daemon is just as easy as stopping it. The example that follows demon-

strates this ease:

systemctl start cups.service
systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: active (running) since Tue, 21 Apr 2020 04:43:5...
 Main PID: 17003 (cupsd)
 CGroup: name=systemd:/system/cups.service
 └ 17003 /usr/sbin/cupsd -f

After the cups daemon is started, using systemctl with the status option shows the ser-

vice is active (running). Also, its process ID (PID) number, 17003, is shown.

Restarting a service with systemd

Restarting a service means that a service is stopped and then started again. If the service

was not currently running, restarting it simply starts the service.

systemctl restart cups.service
systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: active (running) since Tue, 21 Apr 2020 04:45:2...
 Main PID: 17015 (cupsd)
 CGroup: name=systemd:/system/cups.service
 └ 17015 /usr/sbin/cupsd -f

You can also perform a conditional restart of a service using systemctl. A conditional

restart only restarts a service if it is currently running. Any service in an inactive state is

not started.

systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: inactive (dead) since Tue, 21 Apr 2020 06:03:32...
 Process: 17108 ExecStart=/usr/sbin/cupsd -f

Continued

Chapter 15: Starting and Stopping Services

349

15

 (code=exited, status=0/SUCCESS)
 CGroup: name=systemd:/system/cups.service
systemctl condrestart cups.service
systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: inactive (dead) since Tue, 21 Apr 2020 06:03:32...
 Process: 17108 ExecStart=/usr/sbin/cupsd -f
 (code=exited, status=0/SUCCESS)
 CGroup: name=systemd:/system/cups.service

Notice in the example that the cups daemon was in an inactive state. When the condi-

tional restart was issued, no error messages were generated! The cups daemon was not

started because conditional restarts affect active services. Thus, it is always a good prac-

tice to check the status of a service after stopping, starting, conditionally restarting,

and so on.

Reloading a service with systemd

Reloading a service is different from restarting a service. When you reload a service, the

service itself is not stopped. Only the service’s configuration files are loaded again. Note

that not all services are implemented to use the reload feature.

systemctl status sshd.service
sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)
 Active: active (running) since Wed 2019-09-18 17:32:27 EDT; 3
days ago
 Main PID: 1675 (sshd)
 CGroup: /system.slice/sshd.service
 1675 /usr/sbin/sshd -D
systemctl reload sshd.service
systemctl status sshd.service
sshd.service - OpenSSH server daemon
 Loaded: loaded (/lib/systemd/system/sshd.service; enabled)
 Active: active (running) since Wed 2019-09-18 17:32:27 EDT; 3
days ago
 Process: 21770 ExecReload=/bin/kill -HUP $MAINPID (code=exited,
status=0/SUCCESS)
 (code=exited, status=0/SUCCESSd)
 Main PID: 1675 (sshd)
 CGroup: /system.slice/sshd.service
 1675 /usr/sbin/sshd -D ...

Doing a reload of a service, instead of a restart, prevents any pending service opera-

tions from being aborted. A reload is a better method for a busy Linux server.

Now that you know how to stop and start services for troubleshooting and emergency purposes,

you can learn how to enable and disable services.

Part IV: Becoming a Linux Server Administrator

350

Enabling Persistent Services
You use stop and start for immediate needs, not for services that need to be persistent.

A persistent service is one that is started at server boot time or at a particular runlevel.

Services that need to be set as persistent are typically new services that the Linux server

is offering.

Con�guring persistent services for SysVinit
One of the nice features of the classic SysVinit daemon is that making a particular service

persistent or removing its persistence is very easy to do. Consider the following example:

chkconfig --list cups
cups 0:off 1:off 2:off 3:off 4:off 5:off 6:off

On this Linux server, the cups service is not started at any runlevel, as shown with the

chkconfig command. You can also check and see if any start (S) symbol links are set up

in each of the seven runlevel directories, /etc/rc.d/rc?.d. Remember that SysVinit keeps

symbolic links here for starting and stopping various services at certain runlevels. Each

directory represents a particular runlevel; for example, rc5.d is for runlevel 5. Notice that

only files starting with a K are listed, so there are links for killing off the cups daemon.

None are listed with S, which is consistent with chkconfig because the cups daemon

does not start at any runlevel on this server.

ls /etc/rc.d/rc?.d/*cups
/etc/rc.d/rc0.d/K10cups /etc/rc.d/rc3.d/K10cups
/etc/rc.d/rc1.d/K10cups /etc/rc.d/rc4.d/K10cups
/etc/rc.d/rc2.d/K10cups /etc/rc.d/rc5.d/K10cups
/etc/rc.d/rc6.d/K10cups

To make a service persistent at a particular runlevel, the chkconfig command is used again.

Instead of the --list option, the --level option is used, as shown in the following code:

chkconfig --level 3 cups on
chkconfig --list cups
cups 0:off 1:off 2:off 3:on 4:off 5:off 6:off
ls /etc/rc.d/rc3.d/S*cups
/etc/rc.d/rc3.d/S56cups

The service’s persistence at runlevel 3 is verified by using both the chkconfig --list

command and looking at the rc3.d directory for any files starting with the letter S.

To make a service persistent on more than one runlevel, you can do the following:

chkconfig --level 2345 cups on
chkconfig --list cups
cups 0:off 1:off 2:on 3:on 4:on 5:on 6:off
ls /etc/rc.d/rc?.d/S*cups

Chapter 15: Starting and Stopping Services

351

15

/etc/rc.d/rc2.d/S56cups /etc/rc.d/rc4.d/S56cups
/etc/rc.d/rc3.d/S56cups /etc/rc.d/rc5.d/S56cups

Disabling a service is just as easy as enabling one with SysVinit. You just need to change

the on in the chkconfig command to off. The following example demonstrates using the

chkconfig command to disable the cups service at runlevel 5:

chkconfig --level 5 cups off
chkconfig --list cups
cups 0:off 1:off 2:on 3:on 4:on 5:off 6:off
ls /etc/rc.d/rc5.d/S*cups
ls: cannot access /etc/rc.d/rc5.d/S*cups: No such file or directory

As expected, there is now no symbolic link, starting with the letter S, for the cups service

in the /etc/rc.d/rc5.d directory.

For the systemd daemon, again the systemctl command is used. With it, you can disable

and enable services on the Linux server.

Enabling a service with systemd

Using the enable option on the systemctl command sets a service to always start at

boot (be persistent). The following shows exactly how to accomplish this:

systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; disabled)
 Active: inactive (dead) since Tue, 21 Apr 2020 06:42:38 ...
 Main PID: 17172 (code=exited, status=0/SUCCESS)
 CGroup: name=systemd:/system/cups.service
systemctl enable cups.service
Created symlink /etc/systemd/system/printer.target.wants/cups.service
 /usr/lib/systemd/system/cups.service.
Created symlink /etc/systemd/system/sockets.target.wants/cups.socket
 /usr/lib/systemd/system/cups.socket.
Created symlink /etc/systemd/system/multi-user.target.wants/cups.path
 /usr/lib/systemd/system/cups.path.
systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: inactive (dead) since Tue, 21 Apr 2020 06:42:38...
 Main PID: 17172 (code=exited, status=0/SUCCESS)
 CGroup: name=systemd:/system/cups.service

Notice that the status of cups.service changes from disabled to enabled after using the

enable option on systemctl. Also, notice that the enable option simply creates a few

symbolic links. You may be tempted to create these links yourself. However, the preferred

method is to use the systemctl command to accomplish this.

Part IV: Becoming a Linux Server Administrator

352

Disabling a service with systemd

You can use the disable option on the systemctl command to keep a service from

starting at boot. However, it does not immediately stop the service. You need to use the

stop option discussed in the section “Stopping a service with systemd.” The following

example shows how to disable a currently enabled service:

systemctl disable cups.service
rm '/etc/systemd/system/printer.target.wants/cups.service'
rm '/etc/systemd/system/sockets.target.wants/cups.socket'
rm '/etc/systemd/system/multi-user.target.wants/cups.path'
systemctl status cups.service
cups.service - CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; disabled)
 Active: active (running) since Tue, 21 Apr 2020 06:06:41...
 Main PID: 17172 (cupsd)
 CGroup: name=systemd:/system/cups.service
 17172 /usr/sbin/cupsd -f

The disable option simply removes a few files via the preferred method of the system-
ctl command. Notice also in the preceding example that although the cups service is now

disabled, the cups daemon is still active (running) and needs to be stopped manually. With

systemd, some services cannot be disabled. These services are static services. Consider the

following service, dbus.service:

systemctl status dbus.service
dbus.service - D-Bus System Message Bus
 Loaded: loaded (/lib/systemd/system/dbus.service; static)
 Active: active (running) since Mon, 20 Apr 2020 12:35:...
 Main PID: 707 (dbus-daemon)
...
systemctl disable dbus.service
systemctl status dbus.service
dbus.service - D-Bus System Message Bus
 Loaded: loaded (/lib/systemd/system/dbus.service; static)
 Active: active (running) since Mon, 20 Apr 2020 12:35:...
 Main PID: 707 (dbus-daemon)
...

When the systemctl disable command is issued on dbus.service, it is simply

ignored. Remember that static means that the service is enabled by default and cannot be

disabled, even by root. Sometimes, disabling a service is not enough to make sure that it

does not run. For example, you might want network.service to replace networkMan-
ager.service for starting network interfaces on your system. Disabling NetworkManager

would keep the service from starting on its own. However, if some other service listed

NetworkManager as a dependency, that service would try to start NetworkManager when

it started.

Chapter 15: Starting and Stopping Services

353

15

To disable a service in a way that prevents it from ever running on your system, you can

use the mask option. For example, to set the NetworkManager service so that it never runs,

type the following:

systemctl mask NetworkManager.service
ln -s '/dev/null' '/etc/systemd/system/NetworkManager.service'

As the output shows, the networkManager.service file in /etc is linked to /dev/
null. So even if someone tried to run that service, nothing would happen. To be able to

use the service again, you could type systemctl unmask networkManager.service.

Now that you understand how to enable individual services to be persistent (and how to

disable or mask individual services), you need to look at service groups as a whole. Next, I

cover how to start groups of services at boot time.

Con�guring a Default Runlevel or Target Unit
Whereas a persistent service is one that is started at server boot time, a persistent (default)

runlevel or target unit is a group of services that are started at boot time. Both classic Sys-

Vinit and Upstart define these groups of services as runlevels, while systemd calls them

target units.

Con�guring the SysVinit default runlevel
You set the persistent runlevel for a Linux server using SysVinit in the /etc/inittab file.

A portion of this file is shown here:

cat /etc/inittab
#
inittab This file describes how the INIT process should
set up the system in a certain run-level.
...
id:5:initdefault:
...

The initdefault line in the example shows that the current default runlevel is runlevel

5. To change this, simply edit the /etc/inittab file using your favorite editor and change

the 5 to one of the following runlevels: 2, 3, or 4. Do not use the runlevels 0 or 6 in this

file! This would cause your server either to halt or reboot when it is started up.

For systemd, the term target units refers to groups of services to be started. The following

shows the various target units that you can configure to be persistent and their equivalent

backward-compatible, runlevel-specific target units:

Part IV: Becoming a Linux Server Administrator

354

 ■ multi-user.target =

 ■ runlevel2.target

 ■ runlevel3.target

 ■ runlevel4.target

 ■ graphical.target = runlevel5.target

The persistent target unit is set via a symbolic link to the default.target unit file. Con-

sider the following:

ls -l /etc/systemd/system/default.target
lrwxrwxrwx. 1 root root 36 Mar 13 17:27
 /etc/systemd/system/default.target ->
 /lib/systemd/system/runlevel5.target
ls -l /lib/systemd/system/runlevel5.target
lrwxrwxrwx. 1 root root 16 Mar 27 15:39
 /lib/systemd/system/runlevel5.target ->
 graphical.target

The example shows that the current persistent target unit on this server is runlevel5
.target because default.target is a symbolic link to the runlevel5.target

unit file. However, notice that runlevel5.target is also a symbolic link and it

points to graphical.target. Thus, this server’s current persistent target unit is

graphical.target.

To set a different target unit to be persistent, you simply need to change the symbolic link

for default.target. To be consistent, stick with the runlevel target units if they are

used on your server.

The following systemctl example changes the server’s persistent target unit from

graphical.target to multi-user.target:

systemctl get-default
graphical.target
#
 systemctl set-default runlevel3.target
Removed /etc/systemd/system/default.target.
Created symlink /etc/systemd/system/default.target → /usr/lib/
systemd/system/multi-user.target.
systemctl get-default
multi-user.target

When the server is rebooted, the multi-user.target is the persistent target unit. Any

services in the multi-user.target unit are started (activated) at that time.

Adding New or Customized Services
Occasionally, you need to add a new service to your Linux server. Also, you may have to

customize a particular service. When these needs arise, you must follow specific steps

for your Linux server’s initialization daemon to either take over the management of the

 service or recognize the customization of it.

Chapter 15: Starting and Stopping Services

355

15

Adding new services to SysVinit
When adding a new or customized service to a Linux SysVinit server, you must complete

four steps in order to have the service managed by SysVinit:.

1. Create a new or customized service script file.

2. Move the new or customized service script to the proper location for SysVinit

management.

3. Set appropriate permission on the script.

4. Add the service to a specific runlevel.

Step 1: Create a new or customized service script �le

If you are customizing a service script, simply make a copy of the original unit file from

/etc/rc.d/init.d and add any desired customizations.

If you are creating a new script, you need to make sure you handle all of the various

options that you want the service command to accept for your service, such as start,

stop, restart, and so on.

For a new script, especially if you have never created a service script before, it would be

wise to make a copy of a current service script from /etc/rc.d/init.d and modify it to

meet your new service’s needs. Consider the following partial example of the cupsd ser-

vice’s script:

cat /etc/rc.d/init.d/cups
#!/bin/sh
#
...
chkconfig: 2345 25 10

...
start () {
 echo -n $"Starting $prog: "
 # start daemon
 daemon $DAEMON
 RETVAL=$?
 echo
 [$RETVAL = 0] && touch /var/lock/subsys/cups
 return $RETVAL
}

stop () {
 # stop daemon
 echo -n $"Stopping $prog: "
 killproc $DAEMON
 RETVAL=$?
 echo [$RETVAL = 0] && rm -f /var/lock/subsys/cups
}

Continues

Part IV: Becoming a Linux Server Administrator

356

restart() {
 stop
 start
}

case $1 in
...

The cups service script starts out by creating functions for each of the start, stop, and

restart options. If you feel uncomfortable with shell script writing, review Chapter 7,

“Writing Simple Shell Scripts,” to improve your skills.

One line you should be sure to check and possibly modify in your new script is the chk-
config line that is commented out; for example:

chkconfig: 2345 25 10

When you add the service script in a later step, the chkconfig command reads that line

to set runlevels at which the service starts (2, 3, 4, and 5), its run order when the script is

set to start (25), and its kill order when it is set to stop (10).

Check the boot order in the default runlevel before adding your own script, as shown in

this example:

ls /etc/rc5.d
...
/etc/rc5.d/S22messagebus
/etc/rc5.d/S23NetworkManager
/etc/rc5.d/S24nfslock
/etc/rc5.d/S24openct
/etc/rc5.d/S24rpcgssd
/etc/rc5.d/S25blk-availability
/etc/rc5.d/S25cups
/etc/rc5.d/S25netfs
/etc/rc5.d/S26acpid
/etc/rc5.d/S26haldaemon
/etc/rc5.d/S26hypervkvpd
/etc/rc5.d/S26udev-post

...

In this case, the chkconfig line in the S25my_new_service script will cause the script

to be added after S25cups and before S25netfs in the boot order. You can change the

chkconfig line in the service script if you want the service to start earlier (use a smaller

number) or later (use a larger number) in the list of service scripts.

Step 2: Add the service script to /etc/rc.d/init.d

After you have modified or created and tested your service’s script file, you can move it to

the proper location, /etc/rc.d/init.d:

Continued

Chapter 15: Starting and Stopping Services

357

15

cp My_New_Service /etc/rc.d/init.d
ls /etc/rc.d/init.d/My_New_Service
/etc/rc.d/init.d/My_New_Service

Step 3: Set appropriate permission on the script

The script should be executable:

chmod 755 /etc/rc.d/init.d/My_New_Service

Step 4: Add the service to runlevel directories

This final step sets up the service script to start and stop at different runlevels and checks

that the service script works.

1. To add the script based on the chkconfig line in the service script, type the

following:

chkconfig --add My_New_Service
ls /etc/rc?.d/*My_New_Service
/etc/rc0.d/K10My_New_Service /etc/rc4.d/S25My_New_Service
/etc/rc1.d/K10My_New_Service /etc/rc5.d/S25My_New_Service
/etc/rc2.d/S25My_New_Service /etc/rc6.d/K10My_New_Service
/etc/rc3.d/S25My_New_Service

Based on the previous example (chkconfig: 2345 25 10), symbolic links to the

script set the service to start in the position 25 (s25) for runlevels 2, 3, 4, and 5.

Also, links are set to stop (or not start) at runlevels 0, 1, and 6.

2. After you have made the symbolic link(s), test that your new or modified service

works as expected before performing a server reboot:

service My_New_Service start
Starting My_New_Service: [OK]
service My_New_Service stop

After everything is in place, your new or modified service starts at every runlevel that

you have selected on your system. Also, you can start or stop it manually using the ser-
vice command.

Adding new services to systemd
When adding a new or customized service to a Linux systemd server, you have to com-

plete three steps in order to have the service managed by systemd:

1. Create a new or customized service configuration unit file for the new or custom-

ized service.

2. Move the new or customized service configuration unit file to the proper location

for systemd management.

3. Add the service to a specific target unit’s Wants to have the new or customized

 service start automatically with other services.

Part IV: Becoming a Linux Server Administrator

358

Step 1: Create a new or customized service con�guration unit �le

If you are customizing a service configuration unit file, simply make a copy of the original

unit file from /lib/systemd/system and add any desired customizations.

For new files, obviously, you are creating a service unit configuration file from scratch. Con-

sider the following basic service unit file template. At bare minimum, you need descrip-
tion and execStart options for a service unit configuration file:

cat My_New_Service.service
[Unit]
Description=My New Service
[Service]
ExecStart=/usr/bin/My_New_Service

For additional help on customizing or creating a new configuration unit file and the various

needed options, you can use the man pages. At the command line, type man systemd.

service to find out more about the various service unit file options.

Step 2: Move the service con�guration unit �le

Before you move the new or customized service configuration unit file, you need to be

aware that there are two potential locations to store service configuration unit files. The

one you choose determines whether the customizations take effect and if they remain per-

sistent through software upgrades.

You can place your system service configuration unit file in one of the following two

locations:

 ■ /etc/systemd/system

 ■ This location is used to store customized local service configuration unit files.

 ■ Files in this location are not overwritten by software installations or upgrades.

Files here are used by the system even if there is a file of the same name in the
/lib/systemd/system directory.

 ■ /lib/systemd/system

 ■ This location is used to store system service configuration unit files.

 ■ Files in this location are overwritten by software installations and upgrades.

Files here are used by the system only if there is no file of the same name in the
/etc/systemd/system directory.

Thus, the best place to store your new or customized service configuration unit file is in

/etc/systemd/system.

TIP

When you create a new or customized service, in order for the change to take effect without a server reboot, you need

to issue a special command. At the command line, type systemctl daemon-reload.

Chapter 15: Starting and Stopping Services

359

15

Step 3: Add the service to the Wants directory

This final step is optional. It needs to be done only if you want your new service to start

with a particular systemd target unit. For a service to be activated (started) by a particu-

lar target unit, it must be in that target unit’s wants directory.

First, add the line wantedBy=desired.target to the bottom of your service configura-

tion unit file. The following example shows that the desired target unit for this new service

is multi-user.target:

cat /etc/systemd/system/My_New_Service.service
[Unit]
Description=My New Fake Service
[Service]
ExecStart=/usr/bin/My_New_Service
[Install]
WantedBy=multi-user.target

To add a new service unit to a target unit, you need to create a symbolic link. The following

example shows the files located in the multi-user.target unit’s wants directory. Pre-

viously, in the section “Understanding systemd initialization,” the systemctl command

was used to list Wants, and it is still the preferred method. Notice that in this directory,

the files are symbolic links pointing to service unit configuration files in the /lib/sys-
temd/system directory.

ls /etc/systemd/system/multi-user.target.wants
abrt-ccpp.service cups.path remote-fs.target
abrtd.service fcoe.service rsyslog.service
abrt-oops.service irqbalance.service sendmail.service
abrt-vmcore.service lldpad.service sm-client.service
atd.service mcelog.service sshd-keygen.service
auditd.service mdmonitor.service sshd.service
...
ls -l /etc/systemd/system/multi-user.target.wants
total 0
lrwxrwxrwx. 1 root root 37 Nov 2 22:29 abrt-ccpp.service ->
 /lib/systemd/system/abrt-ccpp.service
lrwxrwxrwx. 1 root root 33 Nov 2 22:29 abrtd.service ->
 /lib/systemd/system/abrtd.service
...
lrwxrwxrwx. 1 root root 32 Apr 26 20:05 sshd.service ->
 /lib/systemd/system/sshd.service

The following illustrates the process of adding a symbolic link file for my_new_service:

ln -s /etc/systemd/system/My_New_Service.service
 /etc/systemd/system/multi-user.target.wants/My_New_Service.service

Part IV: Becoming a Linux Server Administrator

360

A symbolic link is created in the multi-user.target.wants directory. Now the new

service, my_new_service, is activated (started) when the multi-user.target unit is

activated.

TIP

If you want to change the systemd target unit for a service, you need to change the symbolic link to point to a new

target Wants directory location. Use the ln -sf command to force any current symbolic link to be broken and the

new designated symbolic link to be enforced.

Together, the three steps get your new or customized service added to a Linux systemd

server. Remember that at this point, a new service is not running until a server reboot. To

start the new service before a reboot, review the commands in the section “Stopping and

Starting Services.”

Summary
How you start and stop services is dependent upon what initialization daemon is used by

your Linux server: SysVinit, Upstart, or Systemd. Before you do any service management,

be sure to use the examples in this chapter to help you determine your Linux server’s

initialization daemon.

The concepts of starting and stopping services go along with other service management

concepts, such as making a service persistent, starting certain services at server boot time,

reloading a service, and restarting a service. Understanding these concepts is very helpful

as you learn about configuring and managing a Linux print server in the next chapter.

Exercises
Refer to the material in this chapter to complete the tasks that follow. If you are stuck,

solutions to the tasks are shown in Appendix A (although in Linux, there are often multiple

ways to complete a task). Try each of the exercises before referring to the answers. These

tasks assume that you are running an Ubuntu Linux system (although some tasks work on

other Linux systems as well).

1. Determine which initialization daemon your server is currently using.

2. What command can you use to check the status of the sshd daemon, depending on

the initialization daemon in use on your Linux server?

3. Determine your server’s previous and current runlevel.

4. How can you change the default runlevel or target unit on your Linux server?

5. For each initialization daemon, what commands list services running (or active) on

your server?

Chapter 15: Starting and Stopping Services

361

15

6. List the running (or active) services on your Linux server.

7. For each initialization daemon, what commands show a particular service’s

current status?

8. Show the status of the cups daemon on your Linux server.

9. Attempt to restart the cups daemon on your Linux server.

10. Attempt to reload the cups daemon on your Linux server.

363

CHAP T ER

16
Con�guring a Print Server

IN THIS CHAPTER

Understanding printing in Linux

Setting up printers

Using printing commands

Managing document printing

Sharing printers

Y
ou can configure your Linux system to use printers that are connected directly to it (via a USB

port) or that are available for printing over the network. Likewise, any printer that you con-

figure on your local system can be shared with users on other Linux, Windows, or Mac systems

by opening up your printer as a print server.

You configure a printer as a native Linux printer in Linux systems with the Common UNIX Printing

System (CUPS). To configure a printer to work as a Microsoft Windows style of print server, you can

use the Samba service in Linux.

This chapter focuses on CUPS. In particular, it shows you the graphical front end to CUPS, called the

Print Settings window, which comes with Ubuntu right out of the box. Using Print Settings, you can

also configure your printers as print servers so that people can access your printer from their own

computers.

If you don’t have a desktop or you want to print from within a shell script, this chapter shows you

how to use printing commands. From the command line, print commands such as lpr are available.

Commands also exist for querying print queues (lpstat), manipulating print queues (cupsenable,

cupsdisable, and cupsreject), and removing print jobs (cancel). Note that an older set of print

commands are also available for backward compatibility that includes lpr, lpq, and lprm.

Common UNIX Printing System
Common UNIX Printing System (CUPS) has become the standard for printing from Linux and other

UNIX-like operating systems. It was designed to meet today’s needs for standardized printer

Part IV: Becoming a Linux Server Administrator

364

definitions and sharing on Internet Protocol–based networks (as most computer networks

are today). Like nearly every Linux distribution today, Ubuntu comes with CUPS as its

printing service. Here are some of the service’s features:

IPP CUPS is based on the Internet Printing Protocol (www.pwg.org/ipp), a standard

that was created to simplify how printers are shared over IP networks. In the IPP

model, printer servers and clients who want to print can exchange information

about the model and features of a printer using the HTTP (that is, web content)

protocol. A server can also broadcast the availability of a printer so that a printing

client can easily find a list of locally available printers without configuration.

Drivers CUPS also standardized how printer drivers are created. The idea was to have

a common format that could be used by printer manufacturers so that a driver could

work across all types of UNIX systems. That way, a manufacturer had to create the

driver only once to work for Linux, macOS, and a variety of UNIX derivatives.

Printer classes You can use printer classes to create multiple print server entries

that point to the same printer or one print server entry that points to multiple

printers. In the first case, multiple entries can each allow options (such as pointing

to a particular paper tray or printing with certain character sizes or margins). In

the second case, you can have a pool of printers so that printing is distributed.

In this instance, a malfunctioning printer, or a printer that is dealing with very

large documents, won’t bring all printing to a halt. CUPS also supports implicit

classes, which are print classes that form by merging identical network printers

automatically.

Printer browsing With printer browsing, client computers can see any CUPS printers

on your local network with browsing enabled. As a result, clients can simply select

the printers that they want to use from the printer names broadcast on the net-

work, without needing to know in advance what the printers are named and where

they are connected. You can turn off the feature to prevent others on the local net-

work from seeing a printer.

UNIX print commands To integrate into Linux and other UNIX environments, CUPS

offers versions of standard commands for printing and managing printers that have

been traditionally offered with UNIX systems.

Instead of using the Print Settings window, you can configure CUPS printing in other

ways as well:

Configuring CUPS from a browser The CUPS project itself offers a web-based inter-

face for adding and managing printers. With the cupsd service running, type

localhost:631 from a web browser on the computer running the CUPS service to

manage printing. (See the section “Using web-based CUPS administration” later in

this chapter.)

http://www.pwg.org/ipp

Chapter 16: Con�guring a Print Server

365

16

Configuring CUPS manually You can also edit the CUPS configuration files and

start the cupsd daemon from the command line. Configuration files for CUPS are

contained in the /etc/cups directory. In particular, you might be interested in the

cupsd.conf file, which identifies permissions, authentication, and other infor-

mation for the printer daemon; and printers.conf, which identifies addresses

and options for configured printers. Use the classes.conf file to define local

printer classes.

To use CUPS, you must have the cups package installed. If for some reason it’s not

installed, install it by typing the following:

apt install cups cups-client

Setting Up Printers
Although using the printer administration tools specifically built for Linux is usually best,

many Linux systems—including Ubuntu—simply rely on the tools that come with the CUPS

software package.

The following sections explore how to use CUPS web-based administration tools that come

with Ubuntu. Then it examines the Print Settings tool system-config-printer, which

you can use to set up your printers. In most cases, no installation or configuration will be

necessary, because connected printers are automatically detected and configured. If neces-

sary, you can install the tool using:

apt install system-config-printer

Adding a printer automatically
CUPS printers can be configured to broadcast their availability on the network automat-

ically so that a client system can detect and use them without configuration. Connect a

USB printer to your computer, and the printer can be automatically detected and made

Printing Directly from Windows to CUPS
You can print to CUPS from non-UNIX systems as well. For example, you can use a PostScript printer
driver to print directly from a Windows system to your CUPS server. You can use CUPS without modi�-
cation by con�guring the Windows computer with a PostScript driver that uses http://printserver-
name:631/printers/targetPrinter as its printing port.

You may also be able to use the native Windows printer drivers for the printer instead of the PostScript
driver. If the native Windows driver does not work right out of the box on your CUPS print queue, you
can create a Raw Print Queue under CUPS and use that instead. The Raw Print Queue directly passes
through the data from the Windows native print driver to the printer.

http://printservername:631/printers/targetPrinter
http://printservername:631/printers/targetPrinter

Part IV: Becoming a Linux Server Administrator

366

available. If the print driver is not yet installed, you’ll be prompted to install the necessary

software packages.

The first time you go to print a document or view your Print Settings tool, the printers are

ready to use. Further configuration can be done using the web-based CUPS administration

tool or the Print Settings window.

Using web-based CUPS administration
CUPS offers its own web-based administrative tool for adding, deleting, and modifying

printer configurations on your computer. The CUPS print service (using the cupsd daemon)

listens on port 631 to provide access to the CUPS web-based administrative interface and

share printers.

If CUPS is already running on your computer, you can immediately use CUPS web-based

administration from your web browser. To see whether CUPS is running and to start setting

up your printers, open a web browser on the local computer and type this into its location

box: localhost:631.

A prompt for a valid login name and password may appear when you request functions that

require it. If so, type the login name and password of an account with sudo access and

click OK. A screen similar to the one shown in Figure 16.1 appears.

FIGURE 16.1

CUPS provides a web-based administration tool.

Chapter 16: Con�guring a Print Server

367

16

Allow remote printing administration

By default, web-based CUPS administration is available only from the local host. To access

web-based CUPS administration from another computer, from the main CUPS page:

1. Select the Administration tab.

2. Select the check box next to “Allow remote administration.”

3. Select the Change Settings button.

If you’re behind a firewall you’ll need to allow connections to TCP port 631. After that, from

any browser that has access to your local network, you can access the CUPS Administration

page by going to port 631 on the CUPS server (for example, host.example.com:631).

You may need to restart CUPS for the change to take effect: systemctl restart
cups.service.

Add a printer not automatically detected

To configure a printer that is not automatically detected, you can add a printer from the

Administration screen. With the Administration screen displayed, you can add a printer

as follows:

1. Click the Add Printer button. The Add New Printer screen appears.

2. Your printer may be displayed on the list. If it is, select it and click Continue.

Otherwise, select the device to which the printer is connected. The printer can

be connected locally to a parallel, SCSI, serial, or USB port directly on the com-

puter. Alternatively, you can select a network connection type for Apple printers

(AppSocket or HP JetDirect), Internet Printing Protocol (http, https, ipps, or

ipp), or a Windows printer (using Samba or SMB).

3. If prompted for more information, you may need to describe the connection to the

printer further. For example, you might be asked for the network address for an IPP

or Samba printer.

4. Type a name, location, and description for the printer; select if you want to share

this printer and click Continue.

5. Select the make of the print driver. If you don’t see the manufacturer of your

printer listed, choose PostScript for a PostScript printer or HP for a PCL printer. For

the manufacturer you choose, you can select a specific model.

6. Set options. If you are asked to set options for your printer, you may do so. Then

select Set Printer Options to continue.

7. Your printer should be available. If the printer is added successfully, click the name

of your printer to have the new printer page appear; from the printer page, you can

select Maintenance or Administration to print a test page or modify the printer

configuration.

http://host.example.com

Part IV: Becoming a Linux Server Administrator

368

With the basic printer configuration done, you can now do further work with your printers.

Here are a few examples of what you can do:

List print jobs Click Show All Jobs to see completed or pending print jobs on any of

the printers configured for this server. Click Show Completed Jobs to see informa-

tion about only jobs that are already printed.

Create a printer class Click the Administration tab, choose Add Class, and identify

a name, description, and location for a printer class. From the list of Printers (Mem-

bers) configured on your server, select the ones to go into this class.

Cancel or move a print job If you print a 100-page job by mistake, or if the printer

is spewing out junk, the Cancel feature can be very handy. Likewise, if you sent a

print job to the wrong printer, the Manage Jobs selection can be useful. From the

Administration tab, click Manage Jobs; then click Show Active Jobs to see what

print jobs are currently in the queue for the printer. Select the Cancel Job button

next to the print job that you want to cancel or select Move Job to move the print

job to a different printer.

View printers You can click the Printers tab from the top of any of the CUPS web-

based administration pages to view the printers that you have configured. For each

printer that appears, you can select Maintenance or Administrative tasks. Under

Maintenance, click Pause Printer (to stop the printer from printing but still accept

print jobs for the queue), Reject Jobs (to not accept any further print jobs for the

moment), Move All Jobs (to move them to another printer), Cancel All Jobs (to delete

all print jobs), or Print Test Page (to print a page). Figure 16.2 shows the information

on the Printers tab for a specific printer.

Using the Print Settings window
You can also use the Print Settings window to set up your printers. In fact, I recommend

that you use it instead of CUPS web administration because the resulting printer configu-

ration files are tailored to work with the way the CUPS service is started on those systems.

After the package is installed (apt install system-config-printer if neces-
sary), to install a printer from your GNOME desktop, start the Printers window by clicking

Additional Printer Settings in the Printers section of GNOME Settings, or as root user by

typing system-config-printer. This tool enables you to add and delete printers and

edit printer properties.

The key here is that you are configuring printers that are managed by your print daemon

(cupsd for the CUPS service). After a printer is configured, users on your local system can

use it. You can refer to the section “Configuring Print Servers” to learn how to make the

server available to users from other computers on your network.

The printers that you set up can be connected directly to your computer (as on a USB port)

or to another computer on the network (for example, from another UNIX system or Win-

dows system).

Chapter 16: Con�guring a Print Server

369

16

Con�guring local printers with the Print Settings window

Add a local printer (in other words, a printer connected directly to your computer) with the

Printers window using the procedure that follows.

TIP

Even if Ubuntu doesn’t successfully install your printer on its own, some printer manufacturers make Ubuntu-friendly

scripts and drivers available on their websites that can prove easier to work with than the process that follows. It’s

worth looking for those before going further.

Adding a local printer

To add a local printer from a GNOME desktop, follow these steps:

1. Type the following to open the Print Settings window:

 # system-config-printer &

The Printing window appears.

2. Click Add. (If asked, click the Adjust Firewall button to allow access to the printer

port 631.) A New Printer window appears.

FIGURE 16.2

You can do administration tasks from the Printers tab.

Part IV: Becoming a Linux Server Administrator

370

3. If the printer that you want to configure is detected, simply select it and click For-

ward. If it is not detected, choose the device to which the printer is connected (LPT

#1 and Serial Port #1 are the first parallel and serial ports, respectively) and click

Forward. (Type /usr/sbin/lpinfo -v | less in a shell to see printer connec-

tion types.) You are asked to identify the printer’s driver.

4. To use an installed driver for your printer, choose Select Printer From Database, and

then choose the manufacturer of your printer. As an alternative, you could select

Provide PPD File and supply your own PPD file (for example, if you have a printer

that is not supported in Linux and you have a driver that was supplied with the

printer). (PPD stands for PostScript Printer Description.) Select Forward to see a list

of printer models from which you can choose.

TIP

If your printer doesn’t appear on the list but supports PCL (HP’s Printer Control Language), try selecting one of the HP

printers (such as HP LaserJet). If your printer supports PostScript, select the PostScript printer from the list. Select-

ing Raw Print Queue enables you to send documents that are already formatted for a particular printer type to a

speci�c printer.

5. With your printer model selected, click the driver that you want to use with it and

then click Forward to continue.

6. Add the following information, and click Forward:

a. Printer Name: Add the name that you want to give to identify the printer. The

name must begin with a letter, but after the initial letter, it can contain a com-

bination of letters, numbers, dashes (-), and underscores (_). For example, an

HP printer on a computer named maple could be named hp-maple.

b. Description: Add a few words describing the printer, such as its features (for

example, an HP LaserJet 2100M with PCL and PS support).

c. Location: Add some words that describe the printer’s location (for example, “In

Room 205 under the coffee maker”).

7. When the printer is added, click No or Yes if you’re prompted to print a test page.

The new printer entry appears in the Print Settings window. Double-click the

printer to see the Properties window for that printer.

8. If you want the printer to be your default printer, right-click the printer and select

Set As Default. As you add other printers, you can change the default printer by

selecting the one you want and selecting Set As Default again.

9. Make sure that the printer is working. Open a Terminal window and use the lp

command to print a file (such as lp /etc/hosts). (If you want to share this

printer with other computers on your network, refer to the section “Configuring

Print Servers” later in this chapter.)

Chapter 16: Con�guring a Print Server

371

16

Editing a local printer

After double-clicking the printer that you want to configure, choose from the following

menu options to change its configuration:

Settings: The Description, Location, Device URI, and Make and Model information you

created earlier are displayed in this dialog box.

Policies: Click Policies to set the following items:

State: Select check boxes to indicate whether the printer will print jobs that are

in the queue (Enabled), accept new jobs for printing (Accepting Jobs), and be

available to be shared with other computers that can communicate with your

computer (Shared). You also must select Server Settings and click the “Share

Published printers connected to this system” check box before the printer will

accept print jobs from other computers.

Policies: In case of error, the stop-printer selection causes all printing to that

printer to stop. You can also select to have the job discarded (abort-job) or

retried (retry-job) in the event of an error condition.

Banner: There are no starting or ending banner pages by default for the printer.

Choose starting or ending banner pages that include text such as Classified, Con-

fidential, Secret, and so on.

Access Control: If your printer is a shared printer, you can select this window to create

a list that either allows users access to the printer (with all others denied) or denies

users access to the printer (with all others allowed).

Printer Options: Click Printer Options to set defaults for options related to the printer

driver. The available options are different for different printers. Many of these

options can be overridden when someone prints a document. Here are examples of a

few of the options that you might (or might not) have available:

Watermark: Several Watermark settings are available to enable you to add and

change watermarks on your printed pages. By default, Watermark and Overlay

are off (None). By selecting Watermark (behind the text) or Overlay (over the

text), you can set the other Watermark settings to determine how watermarks

and overlays are done. Watermarks can go on every page (All) or only the first

page (First Only). Select Watermark Text to choose what words are used for the

watermark or overlay (Draft, Copy, Confidential, Final, and so on). You can then

select the font type, size, style, and intensity of the watermark or overlay.

Resolution Enhancement: You can use the printer’s current settings or choose to

turn resolution enhancement on or off.

Page Size: The default is US letter size, but you can also ask the printer to print

legal size, envelopes, ISO A4 standard, or several other page sizes.

Media Source: Choose which tray to print from. Select Tray 1 to insert

pages manually.

Part IV: Becoming a Linux Server Administrator

372

Levels of Gray: Choose to use the printer’s current levels of gray or have enhanced

or standard gray levels turned on.

Resolution: Select the default printing resolution (such as 300, 600, or 1,200 dots

per inch). Higher resolutions result in better quality but take longer to print.

EconoMode: Either use the printer’s current setting or choose a mode where you

save toner or one where you have the highest possible quality.

Job Options: Click Job Options to set common default options that will be used for this

printer if the application printing the job doesn’t already set them. These include

Common Options (number of copies, orientation, scale to fit, and pages per side),

Image Options (scaling, saturation, hue, and gamma), and Text Options (characters/

inch, lines/inch, and margin settings).

Ink/Toner Levels: Click Ink/Toner Levels to see information on how much ink or toner

your printer has left. (Not all printers report these values.)

Click Apply when you are satisfied with the changes you made to the local printer.

Con�guring remote printers

To use a printer that’s available on your network, you must identify that printer to

your Linux system. Supported remote printer connections include Networked CUPS (IPP)

printers, Networked UNIX (LPD) printers, Networked Windows (Samba) printers, and JetDi-

rect printers. (Of course, both CUPS and UNIX print servers can be run from Linux systems

as well as other UNIX systems.)

In each case, you need a network connection from your Linux system to the servers to

which those printers are connected. To use a remote printer requires that someone set up

that printer on the remote server computer. See the section “Configuring Print Servers”

later in this chapter for information on how to do that on your Linux server.

Use the Print Settings window (system-config-printer) to configure each of the

remote printer types. This is how it is done:

1. From GNOME Settings, select Devices, Printers, and then Additional

Printer Settings.

2. Click Add. The New Printer window appears.

3. Depending on the type of ports that you have on your computer, select one of the

following:

a. LPT #1: Use this for a printer connected to your parallel port.

b. Serial Port #1: Use this for a printer connected to your serial port.

c. Network Printer: Under this heading, you can search for network printers (by

hostname or IP address) or type in the URI for several different printer types:

i. Find Network Printer: Instead of entering a printer URI, you can provide a

hostname or IP address for the system that has the printer to which you want

to print. Any printers found on that host appear on the window, ready for

you to add.

Chapter 16: Con�guring a Print Server

373

16

ii. AppleSocket/HP JetDirect: Use this for a JetDirect printer.

iii. Internet Printing Protocol (IPP): Use this for a CUPS or other IPP printer.

Most Linux and macOS printers fall into this category.

iv. Internet Printing Protocol (HTTPS): Use this for a CUPS or other IPP printer

being shared over a secure connection (valid certificates required).

v. LPD/LPR Host or Printer: Use this for a UNIX printer.

vi. Windows Printer via SAMBA: Use this for a Windows system printer.

Continue with the steps in whichever of the following sections is appropriate.

Adding a remote CUPS printer

If you chose to add a CUPS (IPP) printer that is accessible over your local network from

the Print Settings window, you must add the following information to the window

that appears:

Host This is the hostname of the computer to which the printer is attached (or

otherwise accessible). This can be an IP address or TCP/IP hostname for the com-

puter. The TCP/IP name is accessible from your /etc/hosts file or through a DNS

name server.

Queue This is the printer name on the remote CUPS print server. CUPS supports

printer instances, which allows each printer to have several sets of options. If the

remote CUPS printer is configured this way, you can choose a particular path to a

printer, such as hp/300dpi or hp/1200dpi. A slash character separates the print

queue name from the printer instance.

Complete the rest of the procedure as you would for a local printer (see the section “Adding

a local printer” earlier in this chapter).

Adding a remote UNIX (LDP/LPR) printer

If you chose to add a UNIX printer (LPD/LPR) from the Print Settings window, you must add

the following information to the window that appears:

Host This is the hostname of the computer to which the printer is attached (or oth-

erwise accessible). This is the IP address or hostname for the computer (the host-

name is accessible from your /etc/hosts file or through a DNS name server). Select

the Probe button to search for the host.

Queue This is the printer name on the remote UNIX computer.

Complete the rest of the procedure as you would for a local printer (see the section “Adding

a local printer” earlier in this chapter).

TIP

If the print job you send to test the printer is rejected, the print server computer may not have allowed you access to

the printer. Ask the remote computer’s administrator to add your hostname to the /etc/lpd.perms �le. (Enter

lpstat -d printer to see the status of your print job.)

Part IV: Becoming a Linux Server Administrator

374

Adding a Windows (SMB) printer

Enabling your computer to access an SMB printer (the Windows printing service) involves

adding an entry for the printer in the Select Connection window.

When you choose to add a Windows printer to the Print Settings window (Windows Printer

via Samba), select Browse to see a list of computers on your network that have been

detected as offering SMB services (file and/or printing service). You can configure the

printer from this window as follows:

1. Type the URI of the printer, excluding the leading smb:/. For example, you might

type /host1/myprinter or /mygroup/host1/myprinter.

2. Select either “Prompt user if authentication is required” or “Set authentication

details now.”

3. If you chose “Set authentication details now,” fill in the username and password

needed to access the SMB printer; then click Verify to check that you can authenti-

cate to the server.

4. Click Forward to continue.

Alternatively, you can identify a server that does not appear on the list of servers. Type the

information needed to create an SMB URI that contains the following information:

Workgroup This is the workgroup name assigned to the SMB server. Using the work-

group name isn’t necessary in all cases.

Server This is the NetBIOS name or IP address for the computer, which may or may

not be the same as its TCP/IP name. To translate this name into the address needed

to reach the SMB host, Samba checks several places where the name may be assigned

to an IP address. Samba checks the following (in the order shown) until it finds a

match: the local /etc/hosts file, the local /etc/samba/lmhosts file, a WINS

server on the network, and responses to broadcasts on each local network interface

to resolve the name.

Share This is the name under which the printer is shared with the remote computer.

It may be different from the name by which local users of the SMB printer know

the printer.

User A username is required by the SMB server system to give you access to the SMB

printer. A username is not necessary if you are authenticating the printer based on

share-level rather than user-level access control. With share-level access, you can

add a password for each shared printer or file system.

Password Use the password associated with the SMB username or the shared

resource, depending on the kind of access control being used.

CAUTION

When you enter a username and password for SMB, the information is stored unencrypted in the /etc/cups/

printers.conf �le. Be sure that the �le remains readable only by root.

Chapter 16: Con�guring a Print Server

375

16

The following is an example of the SMB URI that you could add to the SMB:// box:

jjones:my9passswd@FSTREET/NS1/hp

The URI shown here identifies the username (jjones), the user’s password (my9passswd),

the workgroup (FSTREET), the server (NS1), and the printer queue name (hp).

Complete the rest of the procedure as you would for a local printer (see the section “Adding

a local printer” earlier in this chapter).

If everything is set up properly, you can use the standard lp command to print the file to

the printer. Using this example, employ the following form for printing:

$ cat file1.ps | lp -P NS1-PS

TIP

If you are receiving failure messages, make sure that the computer to which you are printing is accessible. For

the Printer NS1 hp example, you can type smbclient -L NS1 -U jjones. Then type the password

(my9passswd, in this case). The –L asks for information about the server; the –U jjones says to log in the

user jjones. If you get a positive name query response after you enter a password, you should see a list of shared

printers and �les from that server. Check the names and try printing again.

Working with CUPS Printing
Tools such as CUPS web-based administration and the Printers window effectively hide the

underlying CUPS facility. Sometimes, however, you want to work directly with the tools and

configuration files that come with CUPS. The following sections describe how to use some

special CUPS features.

Con�guring the CUPS server (cupsd.conf)
The cupsd daemon process listens for requests to your CUPS print server and responds to

those requests based on settings in the /etc/cups/cupsd.conf file. The configuration

variables in the cupsd.conf file are in the same form as those in the Apache configura-

tion file (apache2.conf). Type man cupsd.conf to see details on any of the settings.

The Printers window adds access information to the cupsd.conf file. For other Linux sys-

tems, or if you don’t have a desktop on your server, you may need to configure the cupsd.
conf file manually. You can step through the cupsd.conf file to tune your CUPS server

further. Most of the settings are optional or can just be left as the default. Let’s look at

some of the settings that you can use in the cupsd.conf file.

The term browsing refers to the act of broadcasting information about your printer on your

local network and listening for other print servers’ information. The BrowseLocalPro-
tocols setting is used to control browsing of shared, remote printers. Browsing is on by

Part IV: Becoming a Linux Server Administrator

376

default for all local networks (@LOCAL). Browsing information is broadcast, by default, on

address 255.255.255.255. Here are some browsing settings:

Browsing On
BrowseLocalProtocols dnssd

<Location />
 # Allow shared printing...
 Order allow,deny
 Allow @LOCAL
</Location>

Port 631

To enable web-based CUPS administration and to share printers with others on the net-

work, the cupsd daemon can be set to listen on port 631 for all network interfaces to your

computer. By default, it listens on the local interface only on many Linux systems.

This is a good way to enable users on several connected LANs to discover and use printers

on other nearby LANs.

As you can see from the following lines from the file, administration tasks will require

sudo password authentication:

<Location /admin/conf>
 AuthType Default
 Require user @SYSTEM
 Order allow,deny
</Location>

Starting the CUPS server
For Linux systems that use System V–style startup scripts, starting and shutting down the

CUPS print service is done via the chkconfig command. Run the cups startup script to

have the CUPS service start immediately.

chkconfig cups on
service cups start

If the CUPS service was already running, you should use restart instead of start. Using

the restart option is also a good way to reread any configuration options that you may

have changed in the cupsd.conf file (although, if CUPS is already running, service
cups reload rereads configuration files without restarting).

In systemd, you use the systemctl command instead of service to start and

stop services:

systemctl status cups.service

* cups.service - CUPS Printing Service
 Loaded: loaded (/usr/lib/systemd/system/cups.service; enabled)

Chapter 16: Con�guring a Print Server

377

16

 Active: active (running) since Sat 2016-07-23 22:41:05 EDT; 18h ago
 Main PID: 20483 (cupsd)
 Status: "Scheduler is running..."
 CGroup: /system.slice/cups.service
 ├─20483 /usr/sbin/cupsd -f

You can tell the CUPS service is running because the status shows the cupsd daemon

active with PID 20483. If that service were not running, you could start the CUPS service

as follows:

systemctl start cups.service

See Chapter 15, “Starting and Stopping Services,” for more information on the systemctl

and service commands for working with services.

Con�guring CUPS printer options manually
If your Ubuntu machine doesn’t have a graphical means of configuring CUPS, you can edit

configuration files directly. For example, when a new printer is created from the Print Set-

tings window, it is defined in the /etc/cups/printers.conf file. This is what a printer

entry looks like:

Printer configuration file for CUPS v2.2.7
Written by cupsd
DO NOT EDIT THIS FILE WHEN CUPSD IS RUNNING
<Printer DCP-7060D>
UUID urn:uuid:33579cfe-b80b-356d-5a92-f2aa6513fb32
Info Brother DCP-7060D
MakeModel Brother DCP-7065DN, using brlaser v4
DeviceURI usb://Brother/DCP-7060D?serial=U62711H3N846958
State Idle
StateTime 1558972243
ConfigTime 1553624304
Type 4180
Accepting Yes
Shared Yes
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
OpPolicy default
ErrorPolicy retry-job
</Printer>

This is an example of a local printer that serves as the default printer for the local system.

The Shared Yes value is set because the printer is currently available across the network.

The most interesting information relates to DeviceURI, which shows that the printer is

connected to a USB port usb://. The state is Idle (ready to accept printer jobs), and the

Accepting value is Yes (the printer is accepting print jobs by default).

Part IV: Becoming a Linux Server Administrator

378

The DeviceURI has several ways to identify the device name of a printer, reflecting where

the printer is connected. Here are some examples listed in the printers.conf file:

DeviceURI parallel:/dev/plp
DeviceURI serial:/dev/ttyd1?baud=38400+size=8+parity=none+flow=soft
DeviceURI scsi:/dev/scsi/sc1d6l0
DeviceURI usb://hostname:port
DeviceURI socket://hostname:port
DeviceURI tftp://hostname/path
DeviceURI ftp://hostname/path
DeviceURI http://hostname[:port]/path
DeviceURI ipp://hostname/path
DeviceURI smb://hostname/printer

The first four examples show the form for local printers (parallel, serial, scsi,

and usb). The other examples are for remote hosts. In each case, hostname can be the

host’s name or IP address. Port numbers or paths identify the locations of each printer on

the host. For example, hostname could be myhost.example.com:631 and path could be

replaced by any name you like, such as printers/myprinter.

Using Printing Commands
To remain backward compatible with older UNIX and Linux printing facilities, CUPS sup-

ports many of the old commands for working with printing. Most command-line printing

with CUPS can be performed with the lp command. Word processing applications such as

LibreOffice, OpenOffice, and AbiWord are set up to use this facility for printing.

You can use the Print Settings window to define the filters needed for each printer so that

the text can be formatted properly. Options to the lp command can add filters to process

the text properly. Other commands for managing printed documents include lpstat (for

viewing the contents of print queues), cancel (for removing print jobs from the queue),

and lpstat -t (for controlling printers).

Printing with lp
You can use the lp command to print documents to both local and remote printers (pro-

vided the printers are configured locally). Document files can be either added to the end of

the lp command line or directed to the lp command using a pipe (|). Here’s an example of

a simple lp command:

$ lp doc1.ps

When you specify just a document file with lp, output is directed to the default printer. As

an individual user, you can change the default printer by setting the value of the PRINTER

variable. Typically, you add the PRINTER variable to one of your startup files, such as

http://myhost.example.com

Chapter 16: Con�guring a Print Server

379

16

$HOME/.bashrc. Adding the following line to your .bashrc file, for example, sets your

default printer to lp3:

export PRINTER=lp3

To override the default printer, specify a particular printer on the lp command line. The

following example uses the -d option to select a different printer:

$ lp -d canyonps doc1.ps

The lp command has a variety of options that enable lp to interpret and format several

different types of documents. These include -n num, where num is replaced by the number

of copies to print (from 1 to 100) and -o (which causes a document to be sent in raw mode,

presuming that the document has already been formatted). To learn more options to lp,

type man lp.

Listing status with lpstat -t
Use the lpstat -t command to list the status of your printers. Here is an example:

$ lpstat -t

scheduler is running
no system default destination
device for DCP-7060D: usb://Brother/DCP-7060D?serial=U62711H3N846958
DCP-7060D accepting requests since Mon 27 May 2019 11:50:43 AM EDT
printer DCP-7060D is idle. enabled since Mon 27 May 2019
11:50:43 AM EDT

This output shows one active printer: the Brother DCP-7060D.

Removing print jobs with cancel
Users can remove their own print jobs from the queue with the cancel command. Used

alone on the command line, cancel removes all of the user’s print jobs from the default

printer. To remove jobs from a specific printer, use the -P option, as follows:

$ cancel -P lp0

To remove all print jobs for the current user, type the following:

$ cancel -a

The root user can remove all of the print jobs for a specific user by indicating that user on

the cancel command line. For example, to remove all print jobs for the user named mike,

the root user types the following:

cancel –u mike

To remove an individual print job from the queue, indicate its job number on the cancel

command line. To find the job number, type the lpstat command.

Part IV: Becoming a Linux Server Administrator

380

Con�guring Print Servers
You’ve configured a printer so that you and the other users on your computer can print to

it. Now you want to share that printer with other people in your home, school, or office.

Basically, that means configuring the printer as a print server.

The printers configured on your Linux system can be shared in different ways with other

computers on your network. Not only can your computer act as a Linux print server (by

configuring CUPS), but it can also appear as an SMB (Windows) print server to client com-

puters. After a local printer is attached to your Linux system and your computer is con-

nected to your local network, you can use the procedures in the following sections to share

the printer with client computers using a Linux (UNIX) or SMB interface.

Con�guring a shared CUPS printer
Making the local printer added to your Linux computer available to other computers on

your network is fairly easy. If a TCP/IP network connection exists between the computers

sharing the printer, you simply grant permission to all hosts, individual hosts, or users

from remote hosts to access your computer’s printing service.

To configure a printer entry manually in the /etc/cups/printers.conf file to accept

print jobs from all other computers, make sure that the Shared Yes line is set. The fol-

lowing example from a printers.conf entry earlier in this chapter demonstrates what

the new entry would look like:

<DefaultPrinter printer>
Info HP LaserJet 2100M
Location HP LaserJet 2100M in hall closet
DeviceURI parallel:/dev/lp0
State Idle
Accepting Yes
Shared Yes
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
</Printer>

On Linux systems that use the Print Settings window described earlier in this chapter, it’s

best to set up your printer as a shared printer using that window. Here’s how to do that

using Ubuntu:

1. From the Printers window (accessible through GNOME Settings) click the Additional

Printer Settings button.

2. Select Server ➪ Settings. The Basic Server Settings pop-up appears.

3. Select the check box next to “Publish shared printers connected to this system”

and click OK. You may be asked to modify your firewall to open the necessary ports

for remote systems to access your printers.

Chapter 16: Con�guring a Print Server

381

16

4. To allow or restrict printing for a particular printer further, double-click the name

of the printer that you want to share. (If the printer is not yet configured, refer to

the section “Setting Up Printers” earlier in this chapter.)

5. Choose the Policies heading and select Shared so that a check mark appears

in the box.

6. If you want to restrict access to the printer to selected users, select the Access Con-

trol heading and choose one of the following options:

a. Allow Printing for Everyone Except These Users. With this selected, all users

are allowed access to the printer. By typing usernames into the Users box and

clicking Add, you exclude selected users.

b. Deny Printing for Everyone Except These Users. With this selected, all users

are excluded from using the printer. Type usernames into the Users box, and

click Add to allow access to the printer for only those names that you enter.

Now you can configure other computers to use your printer, as described in the

section “Setting Up Printers” earlier in this chapter. If you try to print from

another computer and it doesn’t work, try these troubleshooting tips:

a. Open your firewall. If you have a restrictive firewall, it may not permit

printing. You must enable access to TCP port 631 to allow access to printing

on your computer.

b. Check names and addresses. Make sure that you entered your computer’s

name and print queue properly when you configured it on the other computer.

Try using the IP address instead of the hostname. (If that works, it indicates

a DNS name resolution problem.) Running a tool such as tcpdump enables

you to see where the transaction failed.

c. Check which addresses cupsd is listening on. The cupsd daemon must be

listening outside of the localhost for remote systems to print to it. Use the

netstat command (as the root user) as follows to check this. The first exam-

ple shows cupsd only listening on local host (127.0.0.1:631); the second

shows cupsd listening on all network interfaces (0 0.0.0.0:631):

 # netstat -tupln | grep 631
 tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 6492/cupsd
 # netstat -tupln | grep 631

 tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN 6492/cupsd

Access changes to your shared printer are made in the cupsd.conf and printers.conf

files in your /etc/cups directory.

Con�guring a shared Samba printer
Your Linux printers can be configured as shared SMB printers so that they appear to be

available from Windows systems. To share your printer as if it were a Samba (SMB) printer,

simply configure basic Samba server settings as described in Chapter 19, “Configuring a

Part IV: Becoming a Linux Server Administrator

382

Windows File Sharing (Samba) Server.” All your printers should be shared on your local net-

work by default. The next section shows what the resulting settings look like and how you

might want to change them.

Understanding smb.conf for printing

When you configure Samba, the /etc/samba/smb.conf file is constructed to enable all

of your configured printers to be shared. Here are a few lines from the smb.conf file that

relate to printer sharing:

[global]
 workgroup = WORKGROUP
 server string = %h server (Samba, Ubuntu)
; wins server = w.x.y.z
 dns proxy = no
; interfaces = 127.0.0.0/8 eth0
; bind interfaces only = yes
 log file = /var/log/samba/log.%m
 max log size = 1000
 syslog = 0

You can read the comment lines to learn more about the file’s contents. Lines beginning

with a semicolon (;) indicate the default setting for the option on a comment line. Remove

the semicolon to change the setting.

The last few lines are the actual printers’ definition. By changing the browseable option

from no to yes, you give users the ability to print to all printers (printable = yes).

You can also store Windows native print drivers on your Samba server. When a Windows

client uses your printer, the driver automatically becomes available. You do not need to

download a driver from the vendor’s website. To enable the printer driver share, add a

Samba share called print$ that looks like the following:

[print$]
 comment = Printer Drivers
 path = /var/lib/samba/printers
 browseable = yes
 read only = yes
 guest ok = no
 write list = root, @lpadmin

After you have the share available, you can start copying Windows print drivers to the

/var/lib/samba/drivers directory.

Setting up SMB clients

Chances are good that if you are configuring a Samba printer on your Linux computer, you

want to share it with Windows clients. If Samba is set up properly on your computer and

the client computers can reach you over the network, users should have no trouble finding

and using your printer.

Chapter 16: Con�guring a Print Server

383

16

For many Windows 10 systems, click Start ➪ Printers and Scanners and select the printer

from the list to configure it.

After your shared printer appears in the window, configure a pointer to that printer by

opening (double-clicking) the printer icon. A message tells you that you must set up the

printer before you can use it. Click Yes to proceed to configure the printer for local use. The

Add Printer Wizard appears. Answer the questions that ask you how you intend to use the

printer and add the appropriate drivers. When you are finished, the printer appears in your

printer window.

Summary
Providing networked printing services is essential on today’s business networks. With the

use of a few network-attached devices, you can focus your printer spending on a few high-

quality devices that multiple users can share instead of numerous lower-cost devices. In

addition, a centrally located printer can make it easier to maintain the printer while still

enabling everyone to get their printing jobs done.

The default printing service in Ubuntu is the Common UNIX Printing System (CUPS), and

Ubuntu offers the CUPS web-based administrative interface for configuring CUPS printing.

It also offers configuration files in the /etc/cups directory for configuring printers and

the CUPS service (cupsd daemon).

You can configure your printer with the printing configuration windows available in both

KDE and GNOME desktops. A variety of drivers makes it possible to print to different kinds

of printers as well as to printers that are connected to computers on the network.

You can set up your computer as a Linux print server, and you can also have your computer

emulate an SMB (Windows) print server. After your network is configured properly and a

local printer is installed, sharing that printer over the network as a UNIX or SMB print

server is not very complicated.

Exercises
Use these exercises to test your knowledge of configuring printers in Linux. These tasks

assume that you are running an Ubuntu system (although some tasks work on other Linux

systems as well). If you are stuck, solutions to the tasks are shown in Appendix A (although

in Linux, you can often complete a task in multiple ways).

1. Use the Printers window (system-config-printer package) to add a new

printer called myprinter to your system. (The printer does not have to be con-

nected to set up a print queue for the new printer.) Make it a generic PostScript

printer connected to a local serial, LPT, or other port.

2. Use the lpstat -t command to see the status of all of your printers.

Part IV: Becoming a Linux Server Administrator

384

3. Use the lp command to print the /etc/hosts file to that printer.

4. Check the print queue for that printer to see that the print job is there.

5. Remove the print job from the queue (cancel it).

6. Using the Printers window, set the basic server setting that publishes your printers

so that other systems on your local network can print to your printers.

7. Allow remote administration of your system from a web browser.

8. Demonstrate that you can do remote administration of your system by opening a

web browser to port 631 from another system to the Linux system running your

print server.

9. Use the netstat command to see on which addresses the cupsd daemon is listen-

ing (the printing port is 631).

10. Delete the myprinter printer entry from your system.

385

CHAP T ER

17
Con�guring a Web Server

IN THIS CHAPTER

Installing an Apache web server

Con�guring Apache

Securing Apache with iptables and AppArmor

Creating virtual hosts

Building a secure (HTTPS) website

Checking Apache for errors

W
eb servers are responsible for serving up the content you view on the Internet every day.

The most popular web server is the Apache HTTP web server, which is sponsored by the

Apache Software Foundation (www.apache.org). Apache is an open source project that is

available with Ubuntu.

You can configure a basic web server to run in Linux in just a few minutes. However, there’s no end of

customization you can apply to it. You can configure an Apache web server to serve content for mul-

tiple domains (virtual hosting), provide encrypted communications (HTTPS), and secure some or all of

a website using different kinds of authentication.

This chapter takes you through the steps to install and configure an Apache web server. These steps

include procedures for securing your server as well as using a variety of modules so that you can

incorporate different authentication methods and scripting languages into your web server. Then I

describe how to generate certificates to create an HTTPS Transport Layer Security (TLS) website.

Understanding the Apache Web Server
Apache HTTPD Server provides the service with which the client web browsers communicate. The

daemon process (apache2) runs in the background on your server and waits for requests from web

clients. Web browsers provide those connections to the HTTP daemon and send requests, which the

daemon interprets, sending back the appropriate data (such as a web page or other content).

http://apache.org

Part IV: Becoming a Linux Server Administrator

386

Apache HTTP Server includes an interface that allows modules to tie into the process to

handle specific portions of a request. Among other things, modules are available to handle

the processing of scripting languages, such as Perl or PHP, within web documents and to

add encryption to connections between clients and the server.

Apache began as a collection of patches and improvements from the National Center for

Supercomputing Applications (NCSA), University of Illinois, Urbana-Champaign, to the HTTP

daemon. The NCSA HTTP daemon was the most popular HTTP server at the time, but it had

started to show its age after its author, Rob McCool, left NCSA in mid-1994.

NOTE

Another project that came from NCSA is Mosaic. Most modern web browsers can trace their origins to Mosaic.

In early 1995, a group of developers formed the Apache Group and began making extensive

modifications to the NCSA HTTPD code base. Apache soon replaced NCSA HTTPD as the most

popular web server, a title it still holds today.

The Apache Group later formed the Apache Software Foundation (ASF) to promote the

development of Apache and other free software. With the start of new projects at ASF, the

Apache server became known as The Apache HTTP Server Project although the two terms

are still used interchangeably. Currently, ASF has more than 350 open source initiatives,

including Tomcat (which includes open source Java Servlet and JavaServer Pages technol-

ogies), Hadoop (a project providing highly available, distributed computing), and SpamAs-

sassin (an email filtering program).

Getting and Installing Your Apache Web Server
All you need to start a simple Apache web server is the package containing the Apache

daemon itself (/usr/sbin/apache2) and its related files. The Apache web server comes in

the apache2 package.

Installing Apache is simple:

apt install apache2
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following package was automatically installed and is no longer required:
 libfreetype6
Use 'apt autoremove' to remove it.
The following additional packages will be installed:
 apache2-bin apache2-data apache2-utils libapr1 libaprutil1 libaprutil1-dbd-
sqlite3 libaprutil1-ldap liblua5.2-0 ssl-cert

Chapter 17: Con�guring a Web Server

387

17

Suggested packages:
 www-browser apache2-doc apache2-suexec-pristine | apache2-suexec-
custom openssl-blacklist
The following NEW packages will be installed:
 apache2 apache2-bin apache2-data apache2-utils libapr1 libaprutil1
libaprutil1-dbd-sqlite3 libaprutil1-ldap liblua5.2-0 ssl-cert
0 upgraded, 10 newly installed, 0 to remove and 26 not upgraded.
Need to get 1409 kB/1729 kB of archives.
After this operation, 6986 kB of additional disk space will be used.
Do you want to continue? [Y/n]

On Ubuntu, that’ll be all it takes to get the server up and running. You can confirm every-

thing is working by loading the new site’s home page using curl:

curl localhost

You’ll see the contents of the index.html file that Apache saved to the web document

root directory, /var/www/html/. If you want to see how that file is meant to be viewed,

open a browser and point it to the address used by the host. If your browser is on the same

machine, that could be localhost. Otherwise, use the host’s IP address. Figure 17.1 shows

you part of what you’ll see.

FIGURE 17.1

The Ubuntu version of the Apache2 introduction page

Part IV: Becoming a Linux Server Administrator

388

Take a look in that /var/www/html/ directory. Right now there’s only a single file: the

index.html file you just viewed in your browser. But you can edit that file or add new

files and directories to create a website that fits your needs.

$ ls /var/www/html
index.html

By default, browsers will look for and load any file in your document root that’s named

either default.html or default.php. You can also load specific files by simply including

them in the uniform resource locator (URL) you type into your browser. Let’s create a new

file called myfile.html and save it to the web root:

nano /var/www/html/myfile.html

You could enter some text like this into the file:

<h1>Hello!</h1>
<h3>Welcome to my web site.</h3>

Now, when you add /myfile.html to the address in your browser, you’ll see what’s shown

in Figure 17.2.

FIGURE 17.2

A custom HTML page within a simple Apache website

Chapter 17: Con�guring a Web Server

389

17

Naturally, you’ll want to replace the default index.html page to fit your needs, but it

does contain some useful information. That includes the helpful document tree showing

you where, within the /etc/apache2/ directory hierarchy, the key configuration files

are kept. The main configuration is done at the top level, particularly in the apache2.
conf file. Module add-on configurations are in the mods-enabled/ directory, and virtual

domain hosting information is kept in the sites-enabled/ directory.

Controlling Apache
You stop, start, and enable Apache using the regular systemctl tools:

systemctl status apache2
• apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/apache2.service; enabled;
vendor preset:
 Drop-In: /lib/systemd/system/apache2.service.d
 └─apache2-systemd.conf
 Active: active (running) since Wed 2020-04-01 13:52:04 UTC; 59min ago
 Main PID: 1113 (apache2)
 Tasks: 54 (limit: 4915)
 CGroup: /system.slice/apache2.service
 └─1113 /usr/sbin/apache2 -k start
 └─1115 /usr/sbin/apache2 -k start
 └─1116 /usr/sbin/apache2 -k start

Apr 01 13:52:04 apache systemd[1]: Starting The Apache HTTP Server...
Apr 01 13:52:04 apache systemd[1]: Started The Apache HTTP Server.

Securing Apache
To secure Apache, you need to be aware of standard Linux security features (permis-

sions, ownership, firewalls, and AppArmor) as well as security features that are specific to

Apache. The following sections describe security features that relate to Apache.

Apache �le permissions and ownership

The apache2 daemon process runs as the user www-data and group www-data. By

default, HTML content is stored in the /var/www/html directory (as determined by the

value of DocumentRoot in the sites-available/000-default.conf file).

For the apache2 daemon to be able to access that content, standard Linux permissions

apply: if read permission is not on for other users, it must be on for the apache user or

group for the files to be read and served to clients. Likewise, any directory the apache2

daemon must traverse to get to the content must have execute permission on for the www-
data user, www-data group, or other user.

Part IV: Becoming a Linux Server Administrator

390

Although you cannot log in as the www-data user (/usr/sbin/nologin is the default

shell), you can create content as root and change its ownership (chown command) or per-

mission (chmod command). Often, however, separate user or group accounts are added

to create content that is readable by everyone (other) but only writable by that special

user or group.

Apache and �rewalls

If you’ve locked down access to your computer using a firewall, you’ll need to open network

ports for clients to be able to talk to Apache through the firewall. Standard web service

(HTTP) is accessible over TCP port 80; secure web service (HTTPS) is accessible via TCP port

443. (Port 443 only appears if you have configured encryption, as described later.)

To verify which ports are being used by the httpd server, use the netstat command:

$ netstat -tupln | grep apache2
tcp6 0 0 :::80 :::* LISTEN 1113/apache2

The output shows that the apache2 daemon (process ID 1113) is listening on all addresses

for port 80 (:::80). The port is associated with the TCP protocol (tcp6). You’ll need to open

that port with a new rule if you’ve got a firewall running.

Out of the box, Ubuntu servers will generally not activate a firewall, so this won’t be

a problem.

Naturally, if your computer is part of a private network sitting behind a router, clients

won’t be able to access your website unless you configure port forwarding on the router.

Similarly, if the computer is a virtual machine running on a public cloud platform like

Amazon Web Services, you’ll need to create a security group rule permitting incoming

traffic on port 80 and, for encrypted traffic, port 443.

We’ll talk about firewalls in Chapter 25, “Securing Linux on a Network.”

Apache and AppArmor

AppArmor is a mandatory access control (MAC) kernel security module that permits care-

fully defined controls over who and what can access individual Linux programs. AppArmor

is the Ubuntu equivalent of RHEL’s Security Enhanced Linux (SELinux). When configured to

manage access to Apache resources, AppArmor provides an additional layer of security.

We’ll discuss AppArmor in greater detail in Chapter 24, “Enhancing Linux Security with

AppArmor.”

Here, we’ll just dig deeply enough into AppArmor to make sure it’s protecting Apache. The

policy command will confirm that AppArmor is installed and active:

apt policy apparmor
apparmor:
 Installed: 2.12-4ubuntu5.1
 Candidate: 2.12-4ubuntu5.1
 Version table:

Chapter 17: Con�guring a Web Server

391

17

 *** 2.12-4ubuntu5.1 500
 500 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages
 500 http://security.ubuntu.com/ubuntu bionic-security/main amd64 Packages
 100 /var/lib/dpkg/status
 2.12-4ubuntu5 500
 500 http://archive.ubuntu.com/ubuntu bionic/main amd64 Packages

There’s an apparmor_status command just bursting with helpful information about the

tool’s current settings:

apparmor_status
apparmor module is loaded.
15 profiles are loaded.
15 profiles are in enforce mode.
 /sbin/dhclient
 /usr/bin/lxc-start
 /usr/bin/man
 /usr/lib/NetworkManager/nm-dhcp-client.action
 /usr/lib/NetworkManager/nm-dhcp-helper
 /usr/lib/connman/scripts/dhclient-script
 /usr/lib/snapd/snap-confine
 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper
 /usr/sbin/tcpdump
 lxc-container-default
 lxc-container-default-cgns
 lxc-container-default-with-mounting
 lxc-container-default-with-nesting
 man_filter
 man_groff
0 profiles are in complain mode.
0 processes have profiles defined.
0 processes are in enforce mode.
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.

Note that there’s no reference to Apache and, there are currently no processes set to

 “complain” (meaning: issue alerts for non-compliant activities) or “enforce” policies.

To get Apache on board with all this, we will need to install a couple of packages:

apt install apparmor-utils libapache2-mod-apparmor

That will add a file to the /etc/apparmor.d/ directory called usr.sbin.apache2.

That’ll include some helpful instructions for getting everything set up along with con-

figuration settings. Next, I’ll shut down the Apache service and make some changes.

In this case, I’ll have to disable the mpm_event module so I can successfully enable

Part IV: Becoming a Linux Server Administrator

392

mpm _ prefork. Next, I’ll enable the apparmor module and run aa-enforce to enable

protection for Apache and restart Apache.

systemctl stop apache2
a2dismod mpm_event
Module mpm_event disabled.
To activate the new configuration, you need to run:
 systemctl restart apache2
a2enmod mpm_prefork
Considering conflict mpm_event for mpm_prefork:
Considering conflict mpm_worker for mpm_prefork:
Enabling module mpm_prefork.
To activate the new configuration, you need to run:
 systemctl restart apache2
a2enmod apparmor
Enabling module apparmor.
To activate the new configuration, you need to run:
 systemctl restart apache2
systemctl restart apache2
aa-enforce /etc/apparmor.d/usr.sbin.apache2
Setting /etc/apparmor.d/usr.sbin.apache2 to enforce mode.
systemctl start apache2

Now, if we run apparmor_status once again, we can see that Apache is a big part

of the mix:

apparmor_status
apparmor module is loaded.
18 profiles are loaded.
18 profiles are in enforce mode.
 /sbin/dhclient
 /usr/bin/lxc-start
 /usr/bin/man
 /usr/lib/NetworkManager/nm-dhcp-client.action
 /usr/lib/NetworkManager/nm-dhcp-helper
 /usr/lib/connman/scripts/dhclient-script
 /usr/lib/snapd/snap-confine
 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper
 /usr/sbin/apache2
 /usr/sbin/apache2//DEFAULT_URI
 /usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT
 /usr/sbin/tcpdump
 lxc-container-default
 lxc-container-default-cgns
 lxc-container-default-with-mounting
 lxc-container-default-with-nesting
 man_filter
 man_groff

Chapter 17: Con�guring a Web Server

393

17

0 profiles are in complain mode.
6 processes have profiles defined.
6 processes are in enforce mode.
 /usr/sbin/apache2 (2096)
 /usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (2097)
 /usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (2098)
 /usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (2099)
 /usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (2100)
 /usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (2101)
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.

Understanding the Apache con�guration �les
The configuration files for Apache are incredibly flexible, meaning that you can configure

the server to behave in almost any manner you want. This flexibility comes at the cost

of increased complexity in the form of a large number of configuration options (called

directives). In practice, however, you need to be familiar with only a few directives in

most cases.

NOTE

See httpd.apache.org/docs/current/mod/directives.html for a complete list of directives supported by

Apache.

In Ubuntu, the Apache configuration is stored in text files read by the Apache server,

beginning with /etc/apache2/apache2.conf. Configuration is read from start to finish,

with most directives being processed in the order in which they are read.

Using directives

The scope of many configuration directives can be altered based on context. In other words,

some parameters may be set on a global level and then changed for a specific file, directory,

or virtual host. Other directives are always global in nature, such as those specifying on

which IP addresses the server listens. Still others are valid only when applied to a spe-

cific location.

Locations are configured in the form of a start tag containing the location type and a

resource location, followed by the configuration options for that location, and finishing

with an end tag. This form is often called a configuration block, and it looks very similar to

HTML code. A special type of configuration block, known as a location block, is used to limit

the scope of directives to specific files or directories. These blocks take the following form:

<locationtag specifier>

(options specific to objects matching the specifier go within this

block)

</locationtag>

http://httpd.apache.org/docs/current/mod/directives.html

Part IV: Becoming a Linux Server Administrator

394

Different types of location tags exist and are selected based on the type of resource loca-

tion that is being specified. The specifier included in the start tag is handled based on the

type of location tag. The location tags that you generally use and encounter are Direc-
tory, Files, and Location, which limit the scope of the directives to specific direc-

tories, files, or locations, respectively.

 ■ Directory tags are used to specify a path based on the location on the filesys-

tem. For instance, <Directory /> refers to the root directory on the computer.

Directories inherit settings from directories above them, with the most specific

Directory block overriding less specific ones, regardless of the order in which

they appear in the configuration files.

 ■ Files tags are used to specify files by name. Files tags can be contained within

a Directory block to limit them to files under that directory. Settings within a

Files block override the ones in Directory blocks.

 ■ Location tags are used to specify the URI used to access a file or directory. This

is different from Directory in that it relates to the address contained within the

request and not to the real location of the file on the drive. Location tags are

processed last and override the settings in Directory and Files blocks.

Match versions of these tags—DirectoryMatch, FilesMatch, and LocationMatch—

have the same function but can contain regular expressions in the resource specification.

FilesMatch and LocationMatch blocks are processed at the same time as Files and

Location, respectively. DirectoryMatch blocks are processed after Directory blocks.

Apache can also be configured to process configuration options contained within files

with the name specified in the AccessFileName directive (which is generally set to

.htaccess). Directives in access configuration files are applied to all objects under the

directory they contain, including subdirectories and their contents. Access configuration

files are processed at the same time as Directory blocks, using a similar “most specific

match” order.

NOTE

Access control �les are useful for allowing users to change speci�c settings without having access to the server

con�guration �les. The con�guration directives permitted within an access con�guration �le are determined by the

AllowOverride setting on the directory in which they are contained. Some directives do not make sense at that

level and generally result in a “server internal error” message when trying to access the URI. The AllowOverride

option is covered in detail at httpd.apache.org/docs/mod/core.html#allowoverride.

Three directives commonly found in location blocks and access control files are Directo-
ryIndex, Options, and ErrorDocument:

 ■ DirectoryIndex tells Apache which file to load when the URI contains a direc-

tory but not a filename. This directive doesn’t work in Files blocks.

http://httpd.apache.org/docs/current/mod/core.html#allowoverride

Chapter 17: Con�guring a Web Server

395

17

 ■ Options is used to adjust how Apache handles files within a directory. The Exec-
CGI option tells Apache that files in that directory can be run as CGI scripts, and

the Includes option tells Apache that server-side includes (SSIs) are permitted.

Another common option is the Indexes option, which tells Apache to generate

a list of files if one of the filenames found in the DirectoryIndex setting is

missing. An absolute list of options can be specified, or the list of options can be

modified by adding + or - in front of an option name. See httpd.apache.org/docs/

mod/core.html#options for more information.

 ■ ErrorDocument directives can be used to specify a file containing messages to

send to web clients when a particular error occurs. The location of the file is rela-

tive to the /var/www directory. The directive must specify an error code and the

full URI for the error document. Possible error codes include 403 (access denied),

404 (file not found), and 500 (server internal error). You can find more informa-

tion about the ErrorDocument directive at httpd.apache.org/docs/mod/core.

html#errordocument. As an example, when a client requests a URL from the server

that is not found, the following ErrorDocument line causes the 404 error code

to send the client an error message that is listed in the /var/www/error/HTTP_
NOT_FOUND.html.var file:

ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var

Another common use for location blocks and access control files is to limit or expand

access to a resource. The Allow directive can be used to permit access to matching hosts,

and the Deny directive can be used to forbid it. Both of these options can occur more

than once within a block and are handled based on the Order setting. Setting Order to

Deny,Allow permits access to any host that is not listed in a Deny directive. A setting of

Allow,Deny denies access to any host not allowed in an Allow directive.

As with most other options, the most specific Allow or Deny option for a host is used,

meaning that you can Deny access to a range and Allow access to subsets of that range.

By adding the Satisfy option and some additional parameters, you can add password

authentication. For more information on Allow or Deny, Satisfy, or other directives, refer

to the Apache Directive Index: httpd.apache.org/docs/current/mod/directives.html.

Understanding default settings

The reason you can start using your Apache web server as soon as you install it is that the

apache2.conf file includes default settings that tell the server where to find web content,

scripts, log files, and other items that the server needs to operate. It also includes settings

that tell the server how many server processes to run at a time and how directory contents

are displayed.

If you want to host a single website (such as for the www.example.com domain), you can

simply add content to the /var/www/html directory and add the address of your website

to a DNS server so that others can browse to it. You can then change directives, such as

those described in the previous section, as needed.

http://httpd.apache.org/docs/mod/core.html#ptions
http://httpd.apache.org/docs/mod/core.html#ptions
http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/current/mod/directives.html
http://example.com

Part IV: Becoming a Linux Server Administrator

396

To help you understand the settings that come in the default apache2.conf file, I’ve dis-

played some of those settings with descriptions in the following examples. I have removed

comments and rearranged some of the settings for clarity.

The following settings show locations where the apache server is getting and putting con-

tent by default:

ServerRoot "/etc/apache2"
IncludeOptional conf-enabled/*.conf
IncludeOptional sites-enabled/*.conf
ErrorLog ${APACHE_LOG_DIR}/error.log

The ServerRoot directive identifies /etc/apache2 as the location where configuration

files are stored.

At the point in the file where the Include line appears, any files ending in .conf from

the /conf-enabled and /sites-enabled subdirectories are included in the apache2.
conf file. Configuration files are often associated with Apache modules (and are often

included in the software package with a module) or with virtual host blocks (which you

might add yourself to virtual host configurations in separate files). See the section “Adding

a virtual host to Apache” later in this chapter.

As errors are encountered and content is served, messages about those activities are placed

in files indicated by the ErrorLog and CustomLog entries. From the entries shown

here (based on the contents of the envars file), those logs are stored in the /var/log/
apache2 directory. Here are some settings found in other configuration files, specifically,

sites-available/000-default.conf and conf-available/serve-cgi-bin.conf:

DocumentRoot /var/www/html
ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

The DocumentRoot and ScriptAlias directives determine where content that is served

by your Apache server is stored. Traditionally, you would place an index.html file in the

DocumentRoot directory (/var/www/html, by default) as the home page and add other

content as needed. The ScriptAlias directive tells the httpd daemon that any scripts

requested from the cgi-bin directory should be found in the /usr/lib/cgi-bin direc-

tory. For example, a client could access a script located in /usr/lib/cgi-bin/script.cgi

by entering a URL such as http://www.example.com/cgi-bin/script.cgi.

In addition to file locations, you can find other information in the apache2.conf file.

Here are some examples:

User ${APACHE_RUN_USER}
Group ${APACHE_RUN_GROUP}
AccessFileName .htaccess

The User and Group directives tell Apache to run as www-data for both the user

and group (again: based on the APACHE_RUN_USER=www-data and APACHE_RUN_
GROUP=www-data values in the envars file).

http://index.html
http://example.com/cgi-bin/script.cgi

Chapter 17: Con�guring a Web Server

397

17

An AccessFileName directive can be added to tell Apache to use the contents of the

.htaccess file if it exists in a directory to read in settings that apply to access to that

directory. For example, the file could be used to require password protection for the direc-

tory or to indicate that the contents of the directory should be displayed in certain ways.

For this file to work, however, a Directory container (described next) would have to have

AllowOverride opened. (By default, the AllowOverride None setting prevents the

.htaccess file from being used for any directives.)

The following Directory containers define behavior when the root directory (/), /var/
www, and /var/www/html directories are accessed:

<Directory />
 AllowOverride none
 Require all denied
</Directory>
<Directory "/var/www">
 AllowOverride None
 # Allow open access:
 Require all granted
</Directory>
<Directory "/var/www/html">
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>

The first Directory container (/) indicates that if Apache tries to access any files in the

Linux filesystem, access is denied. The AllowOverride none directive prevents .htac-
cess files from overriding settings for that directory. Those settings apply to any subdi-

rectories that are not defined in other Directory containers.

Content access is relaxed within the /var/www directory. Access is granted to content

added under that directory, but overriding settings is not allowed.

The /var/www/html Directory container follows symbolic links and does not allow

overrides. With Require all granted set, httpd doesn’t prevent any access to

the server.

If all of the settings just described work for you, you can begin adding the content that you

want to the /var/www/html and /var/www/cgi-bin html directories. One reason you

might not be satisfied with the default setting is that you might want to serve content for

multiple domains (such as www.example.com, www.example.org, and www.example.net). To

do that, you need to configure virtual hosts. Virtual hosts, which are described in greater

detail in the next section, are a convenient (and almost essential) tool for serving different

content to clients based on the server address or name to which a request is directed. Most

global configuration options are applied to virtual hosts, but they can be overridden by

directives within the VirtualHost block.

http://example.com
http://example.org
http://example.net

Part IV: Becoming a Linux Server Administrator

398

Adding a virtual host to Apache
Apache supports the creation of separate websites within a single server to keep content

separate. Individual sites are configured on the same server in what are referred to as

virtual hosts.

Virtual hosts are really just a way to have the content for multiple domain names avail-

able from the same Apache server. Instead of needing to have one physical system to

serve content for each domain, you can serve content for multiple domains from the same

operating system.

An Apache server that is doing virtual hosting may have multiple domain names that

resolve to the IP address of the server. The content that is served to a web client is based

on the name used to access the server.

For example, if a client got to the server by requesting the name www.example.com, the

client would be directed to a virtual host container that had its ServerName (found in

the sites-available/000-default.conf file) set to respond to www.example.com.

The container would provide the location of the content and possibly different error logs

or Directory directives from the global settings. This way, each virtual host could be

managed as if it were on a separate machine.

To use name-based virtual hosting, add as many VirtualHost containers as you like.

Here’s how to configure a virtual host:

NOTE

After you enable your �rst VirtualHost, your default DocumentRoot (/var/www/html) is no longer used

if someone accesses the server by IP address or some name that is not set in a VirtualHost container. Instead,

the �rst VirtualHost container is used as the default location for the server.

While you could create a new *.conf file for each domain, the “Ubuntu” way of

doing things involves adding new definition blocks to the /etc/apache2/sites-
available/000-default.conf file. Here’s what two domain definitions on a single

server might look like:

<VirtualHost *:80>
 ServerName example1.com
 DocumentRoot /var/www/html/example1/
 ServerAlias www.example1.com
</VirtualHost>

<VirtualHost *:80>
 ServerName example2.com
 DocumentRoot /var/www/html/example2/
 ServerAlias www.example2.com
</VirtualHost>

http://www.example.com
http://www.example.com

Chapter 17: Con�guring a Web Server

399

17

This example includes the following settings:

 ■ The *:80 specification in each VirtualHost block indicates to what address and

port this virtual host applies. With multiple IP addresses associated with your

Linux system, the * can be replaced by a specific IP address. The port is optional

for VirtualHost specifications but should always be used to prevent interference

with SSL virtual hosts (which use port 443 by default).

 ■ The ServerName and ServerAlias lines tell Apache which names this virtual

host should be recognized as, so replace them with names appropriate to your site.

You can leave out the ServerAlias line if you do not have any alternate names

for the server, and you can specify more than one name per ServerAlias line or

have multiple ServerAlias lines if you have several alternate names. Believe it

or not, www is an alias and is not considered the same as the domain name itself.

 ■ The DocumentRoot specifies where the web documents (content served for this

site) are stored. Although our examples show a subdirectory that was created under

the default DocumentRoot (/var/www/html), you could point the configura-

tion to any other location in your filesystem. Often, sites are attached to the home

directories of specific users (such as /home/chris/public_html) so that each

site can be managed by a different user.

With the host enabled, use apachectl to check the configuration, and then do a grace-
ful restart:

apachectl configtest
Syntax OK
apachectl graceful

Provided that you have registered the system with a DNS server, a web browser should be

able to access this website using either www.example1.com or www.example2.com. If that

works, you can start adding other virtual hosts to the system as well.

Another way to extend the use of your website is to allow multiple users to share their

own content on your server. You can enable users to add content that they want to

share via your web server in a subdirectory of their home directories, as described in the

next section.

NOTE

Keeping individual virtual hosts in separate �les is a convenient way to manage them. However, you should be care-

ful to keep your primary virtual host in a �le that will be read before the others because the �rst virtual host receives

requests for site names that don’t match any in your con�guration. In a commercial web-hosting environment, it is

common to create a special default virtual host that contains an error message indicating that no site by that name

has been con�gured.

http://www.example1.com
http://www.example2.com

Part IV: Becoming a Linux Server Administrator

400

Allowing users to publish their own web content
In situations where you do not have the ability to set up a virtual host for every user

for whom you want to provide web space, you can easily make use of the mod_userdir

module in Apache. With this module enabled (which it is not by default), the public_
html directory under every user’s home directory is available to the web at http://

servername/~username/.

For example, a user named wtucker on www.example.org stores web content in /home/
wtucker/public_html. That content would be available from http://www.example

.org/~wtucker.

Make these changes to the /etc/apache2/mods-available/userdir.conf file to

allow users to publish web content from their own home directories. Not all versions of

Apache have these blocks in their httpd.conf file, so you might have to create them

from scratch:

1. Edit the IfModule block and edit the Options and Require lines in the

Directory block so that they look like this:

<IfModule mod_userdir.c>
 UserDir public_html
 UserDir disabled root
 <Directory /home/*/public_html>
 AllowOverride All
 Options MultiViews Indexes SymLinksIfOwnerMatch
 <Limit GET POST OPTIONS>
 Require all granted
 </Limit>
 <LimitExcept GET POST OPTIONS>
 Require all denied
 </LimitExcept>
 </Directory>
</IfModule>

2. Have your users create their own public_html directories in their own home

directories:

$ mkdir $HOME/public_html

3. Set the execute permission (as root user) to allow the Apache daemon to access

the home directory:

chmod +x /home /home/*

4. Enable the usermod module:

a2enmod userdir
Enabling module userdir.
To activate the new configuration, you need to run:
 systemctl restart apache2

http://servername/~username/
http://servername/~username/
http://www.example.org
http://www.example.org/~wtucker
http://www.example.org/~wtucker

Chapter 17: Con�guring a Web Server

401

17

5. Restart or reload Apache.

At this point, you should be able to access content placed in a user’s public_
html directory by pointing a web browser to http://hostname/~chris.

Securing your web traf�c with TLS
Any data that you share from your website using standard HTTP protocol is sent in clear

text. This means that anyone who can watch the traffic on a network between your server

and your client can view your unprotected data. To secure that information, you can add

certificates to your site (so a client can validate who you are) and encrypt your data (so

nobody can sniff your network and see your data).

Electronic commerce applications, such as online shopping and banking, must always be

encrypted using the Transport Layer Security (TLS) specification. TLS is based on version

3.0 of the Secure Sockets Layer (SSL) specifications, so they are very similar in nature.

Because of this similarity—and because SSL is older—the SSL acronym is often used to

refer to either variety. For web connections, the SSL connection is established first, and

then normal HTTP communication is tunneled through it.

NOTE

Because SSL negotiation takes place before any HTTP communication, name-based virtual hosting (which occurs at

the HTTP layer) does not work easily with SSL. As a consequence, every SSL virtual host you con�gure should have a

unique IP address. (See the Apache site for more information: httpd.apache.org/docs/vhosts/name-based

.html.)

While you are establishing a connection between an SSL client and an SSL server, asym-

metric (public key) cryptography is used to verify identities and establish the session

parameters and the session key. A symmetric encryption algorithm is then used with the

negotiated key to encrypt the data that are transmitted during the session. The use of

asymmetric encryption during the handshaking phase allows safe communication without

the use of a preshared key, and the symmetric encryption is faster and more practical for

use on the session data.

For the client to verify the identity of the server, the server must have a previously gen-

erated private key as well as a certificate containing the public key and information

about the server. This certificate must be verifiable using a public key that is known to

the client.

Certificates are generally digitally signed by a third-party certificate authority (CA) that has

verified the identity of the requester and the validity of the request to have the certifi-

cate signed. In most cases, the CA is a company that has made arrangements with the web

browser vendor to have its own certificate installed and trusted by default client installa-

tions. The CA then charges the server operator for its services.

http://hostname/~chris
http://httpd.apache.org/docs/vhosts/name-based.html
http://httpd.apache.org/docs/vhosts/name-based.html

Part IV: Becoming a Linux Server Administrator

402

Commercial certificate authorities vary in price, features, and browser support, but remember that

price is not always an indication of quality. Some popular CAs are InstantSSL (www.instantssl

.com), Let’s Encrypt (www.letsencrypt.org), and DigiCert (www.digicert.com).

You also have the option of creating self-signed certificates, although these should be used

only for testing or when a very small number of people will be accessing your server, and

you do not plan to have certificates on multiple machines. Directions for generating a self-

signed certificate are included in the section “Generating an SSL key and self-signed certif-

icate” later in this chapter.

The last option is to run your own certificate authority. This is probably practical only if

you have a small number of expected users and the means to distribute your CA certificate

to them (including assisting them with installing it in their browsers). The process for cre-

ating a CA is too elaborate to cover in this book, but it is a worthwhile alternative to gener-

ating self-signed certificates.

The following section describes how HTTPS communications are configured when you install

the mod_ssl package. After that, I describe how to configure SSL communications better

by generating your own SSL keys and certificates to use with the web server configured in

this chapter.

Understanding how SSL is con�gured

It’s important to understand how all this works, but for most people, as you’ll soon see, you

won’t need to actually do this yourself any more.

If you have installed the mod_ssl package, a self-signed certificate and private key are

created when the package is installed. This allows you to use HTTPS protocol immediately

to communicate with the web server.

Although the default configuration of mod_ssl allows you to have encrypted communica-

tions between your web server and clients, because the certificate is self-signed, a client

accessing your site is warned that the certificate is untrusted. To begin exploring the

SSL configuration for your Apache web server, make sure that the mod_ssl package is

installed on the server running your Apache (httpd) service:

a2enmod ssl
Considering dependency setenvif for ssl:
Module setenvif already enabled
Considering dependency mime for ssl:
Module mime already enabled
Considering dependency socache_shmcb for ssl:
Enabling module socache_shmcb.
Enabling module ssl.
See /usr/share/doc/apache2/README.Debian.gz on how to configure SSL
and create self-signed certificates.
To activate the new configuration, you need to run:
 systemctl restart apache2

http://www.instantssl.com
http://www.instantssl.com
http://letsencrypt.org
http://digicert.com

Chapter 17: Con�guring a Web Server

403

17

After installing the mod_ssl package and reloading the configuration file, you can test

that the default certificate is working by following these steps:

1. Open a connection to the website from a web browser, using the HTTPS protocol.

For example, if you are running Firefox on the system where the web server is

running, type https://localhost into the location box and press Enter. This

page warns you that there is no way of verifying the authenticity of this site.

That is because there is no way to know who created the certificate that you are

accepting.

2. Because you are accessing the site via a browser on the local host, click Advanced

and then View to see the certificate that was generated. It includes your hostname,

information on when the certificate was issued and when it expires, and other

organization information.

3. Select Accept the Risk and Continue to allow connections to this site.

4. Close that window, and then select Confirm Security Exception to accept the con-

nection. You should now see your default web page using HTTPS protocol. From now

on, your browser will accept HTTPS connections to the web server using that certif-

icate and encrypt all communications between the server and browser.

Because you don’t want your website to scare off users, the best thing to do is to get a valid

certificate to use with your site. The next best thing to do is to create a self-signed certifi-

cate that at least includes better information about your site and organization. The follow-

ing section describes how to do that.

Generating an SSL key and self-signed certi�cate

To begin setting up SSL, use the openssl command, which is part of the openssl

package, to generate your public and private key. After that, you can generate your own

self-signed certificate to test the site or to use internally.

1. If the openssl package is not already installed, install it as follows:

apt install openssl

2. Generate a 2048-bit RSA private key and save it to a file. You’ll be asked to provide

a passphrase. When that’s done, you’ll set the key filenames.

$ openssl genrsa -des3 -out server.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
...+++++
........+++++
e is 65537 (0x010001)
Enter pass phrase for server.key:
140238233633216:error:28078065:UI routines:UI_set_result_ex:result
too small:../crypto/ui/ui_lib.c:903:You must type in 4 to 1023
characters
Enter pass phrase for server.key:

Continues

Part IV: Becoming a Linux Server Administrator

404

Verifying - Enter pass phrase for server.key:
$ openssl rsa -in server.key -out server.key.insecure
Enter pass phrase for server.key:
writing RSA key
$ mv server.key server.key.secure
$ mv server.key.insecure server.key

NOTE

You can use a �lename other than server.key and should do so if you plan to have more than one SSL host on

your machine (which requires more than one IP address). Just make sure that you specify the correct �lename in the

Apache con�guration later.

3. If you want to request a certificate from a traditional certificate authority (CA), you

can generate the request file using the openssl req command. You’ll answer the

questions so OpenSSL can populate the request file with the appropriate values that

reflect your organization.

$ openssl req -new -key server.key -out server.csr
139789130899904:error:2406F079:random number generator:RAND_load_file:
Cannot open file:../crypto/rand/randfile.c:88:Filename=/root/.rnd
You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:CA
State or Province Name (full name) [Some-State]:Ontario
Locality Name (eg, city) []:Toronto
Organization Name (eg, company) [Internet Widgits Pty
Ltd]:Bootstrap IT
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:info@bootstrap-it.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

4. As our goal here is to create a self-signed certificate, you’ll run this command,

which will generate a .csr file:

Continued

Chapter 17: Con�guring a Web Server

405

17

$ openssl x509 -req -days 365 -in server.csr -signkey server.key
-out server.crt
Signature ok
subject=C = CA, ST = Ontario, L = Toronto, O = Bootstrap IT,
emailAddress = info@bootstrap-it.com
Getting Private key

5. The final step is to install that certificate on your local server (as the root user):

cp server.crt /etc/ssl/certs
cp server.key /etc/ssl/private

You’ll need to tell Apache about the new certificate. You do that by editing the /etc/
apache2/sites-available/default-ssl.conf file so that the SSLCertificate-
File and SSLCertificateKeyFile lines look like this:

SSLCertificateFile /etc/ssl/certs/server.crt
SSLCertificateKeyFile /etc/ssl/private/server.key

Don’t forget to restart Apache. For internal use or testing, a self-signed certificate might

work for you. However, for public websites, you should use a certificate that is validated by

a certificate authority (CA). The procedure for doing that is covered next.

Generating a certi�cate signing request

Once upon a time, CAs would issue you valid certificates when you manually sent them

a request—and some money. However some years ago, the tech industry–supported Let’s

Encrypt project (www.letsencrypt.org) was created to convince as many website owners

as possible to add valid encryption to their site configurations. Since then, things have

become much simpler. And adding encryption won’t cost you anything.

To make it all happen, the Electronic Frontier Foundation created a tool called Certbot that

will manage all the configuration heavy lifting for you. You get started by going to the

Certbot instructions page (certbot.eff.org/instructions). You’ll be asked what software

and OS you’re using; you’ll choose Apache and the appropriate release of Ubuntu. As you

can see in Figure 17.3, the appropriate instructions will appear below on the page.

Those instructions will show you how to add the Certbot PPA to your repositories and then

install the certbot and python-cerbot-apache packages:

apt-get update
apt-get install software-properties-common
add-apt-repository universe
add-apt-repository ppa:certbot/certbot
apt-get update
apt-get install certbot python-certbot-apache

All that will remain for you is to run the certbot tool specifying Apache as your web

server and answering the questions you’re asked. The tool will create and configure any

http://letsencrypt.org
http://certbot.eff.org/instructions

Part IV: Becoming a Linux Server Administrator

406

Apache files that need updating. When you’re done—and assuming you’ve configured your

domain to correctly point to your server—you’ll have an enterprise-strength HTTPS server.

certbot --apache

Troubleshooting Your Web Server
In any complex environment, you occasionally run into problems. The following sections

include tips for isolating and resolving the most common errors that you may encounter.

Checking for con�guration errors
You may occasionally run into configuration errors or script problems that prevent Apache

from starting or that prevent specific files from being accessible. Most of these problems

can be isolated and resolved using two Apache-provided tools: the apachectl program

and the system error log.

FIGURE 17.3

The Certbot instructions page

Chapter 17: Con�guring a Web Server

407

17

When encountering a problem, first use the apachectl program with the configtest

parameter to test the configuration. In fact, it’s a good idea to develop the habit of running

this every time you make a configuration change:

apachectl configtest
Syntax OK
apachectl graceful
/usr/sbin/apachectl graceful: httpd gracefully restarted

In the event of a syntax error, apachectl indicates where the error occurs and also does

its best to give a hint about the nature of the problem. You can then use the graceful

restart option (apachectl graceful) to instruct Apache to reload its configuration

without disconnecting any active clients.

NOTE

The graceful restart option in apachectl automatically tests the con�guration before sending the reload

signal to apache, but getting in the habit of running the manual con�guration test after making any con�guration

changes is still a good idea.

Some configuration problems pass the syntax tests performed by apachectl but cause the

HTTP daemon to exit immediately after reloading its configuration. If this happens, use

the tail command to check Apache’s error log for useful information. The error log is in /
var/log/apache2/error.log.

You might encounter an error message that looks something like this:

[crit] (98)Address already in use: make_sock: could not bind to port 80

This error often indicates that something else is bound to port 80, that another Apache

process is already running (apachectl usually catches this), or that you have told Apache

to bind the same IP address and port combination in more than one place.

You can use the netstat command to view the list of programs (including Apache) with

TCP ports in the LISTEN state:

netstat -nltp
Active Internet connections (only servers)
Proto Local Address Foreign Address State PID/Program name
tcp6 :::80 :::* LISTEN 2105/httpd

The output from netstat (which was shortened to fit here) indicates that an instance

of the httpd process with a process ID of 2105 is listening (as indicated by the LISTEN

state) for connections to any local IP address (indicated by :::80) on port 80 (the standard

HTTP port). If a different program is listening to port 80, it is shown there. You can use

the kill command to terminate the process, but if it is something other than httpd, you

should also find out why it is running.

Part IV: Becoming a Linux Server Administrator

408

If you don’t see any other processes listening on port 80, it could be that you have acci-

dentally told Apache to listen on the same IP address and port combination in more than

one place. Three configuration directives can be used for this: BindAddress, Port,

and Listen.

 ■ BindAddress enables you to specify a single IP address on which to listen, or you

can specify all IP addresses using the * wildcard. You should never have more than

one BindAddress statement in your configuration file.

 ■ Port specifies on which TCP port to listen, but it does not enable you to specify

the IP address. Port is generally not used more than once in the configuration.

 ■ Listen enables you to specify both an IP address and a port to bind to. The IP

address can be in the form of a wildcard, and you can have multiple Listen state-

ments in your configuration file.

To avoid confusion, it is generally a good idea to use only one of these directive types. Of

the three, Listen is the most flexible, so it is probably the one you want to use the most.

A common error when using Listen is to specify a port on all IP addresses (*:80) as well

as that same port on a specific IP address (1.2.3.4:80), which results in the error from

make_sock.

Configuration errors relating to SSL commonly result in Apache starting improperly. Make

sure that all key and certificate files exist and that they are in the proper format (use

openssl to examine them).

For other error messages, try doing a web search to see whether somebody else has encoun-

tered the problem. In most cases, you can find a solution within the first few matches.

If you aren’t getting enough information in the ErrorLog, you can configure it to log

more information using the LogLevel directive. The options available for this directive,

in increasing order of verbosity, are emerg, alert, crit, error, warn, notice, info,

and debug. Select only one of these.

Any message that is at least as important as the LogLevel that you select is stored in the

ErrorLog. On a typical server, LogLevel is set to warn. You should not set it to any

value lower than crit, and you should avoid leaving it set to debug because that can slow

down the server and result in a very large ErrorLog.

As a last resort, you can also try running apache2 -X manually to check for crashes or

other error messages. The -X runs Apache so that it displays debug and higher messages on

the screen.

Access forbidden and server internal errors
The two common types of errors that you may encounter when attempting to view specific

pages on your server are permission errors and server internal errors. Both types of errors

can usually be isolated using the information in the error log. After making any of the

changes described in the following list to attempt to solve one of these problems, try the

Chapter 17: Con�guring a Web Server

409

17

request again and check the error log to see whether the message has changed (for example,

to show that the operation completed successfully).

NOTE

“File not found” errors can be checked in the same way as “access forbidden” and “server internal errors.” You may

sometimes �nd that Apache is not looking where you think it is for a speci�c �le. Generally, the entire path to the �le

shows up in the error log. Make sure that you are accessing the correct virtual host, and check for any Alias set-

tings that might be directing your location to a place you don’t expect.

File permissions A “File permissions prevent access” error indicates that the

apache2 process is running as a user that is unable to open the requested file.

By default, apache2 is run by the www-data user and group. Make sure that the

account has execute permissions on the directory and every directory above it as

well as read permissions on the files themselves. Read permissions on a directory

are also necessary if you want Apache to generate an index of files. See the manual

page for chmod for more information about how to view and change permissions.

NOTE

Read permissions are not necessary for compiled binaries, such as those written in C or C++, but they can be safely

added unless a need exists to keep the contents of the program secret.

Access denied A “Client denied by server configuration” error indicates that Apache

was configured to deny access to the object. Check the configuration files for Loca-
tion and Directory sections that might affect the file that you are trying to

access. Remember that settings applied to a path are also applied to any paths below

it. You can override these by changing the permissions only for the more specific

path to which you want to allow access.

Index not found The “Directory index forbidden by rule” error indicates that

Apache could not find an index file with a name specified in the DirectoryIn-
dex directive and was configured not to create an index containing a list of files

in a directory. Make sure that your index page, if you have one, has one of the

names specified in the relevant DirectoryIndex directive, or add an Options
Indexes line to the appropriate Directory or Location section for that object.

Script crashed “Premature end of script headers” errors can indicate that a script is

crashing before it finishes. On occasion, the errors that caused this also show up in

the error log. When using suexec or suPHP, this error may also be caused by a file

ownership or permissions error. These errors appear in log files in the /var/log/
apache2 directory

Part IV: Becoming a Linux Server Administrator

410

Summary
The open source Apache project is the world’s most popular web server. Although Apache

offers tremendous flexibility, security, and complexity, a basic Apache web server can be

configured in just a few minutes.

The chapter described the steps for installing, configuring, securing, and troubleshooting

a basic Apache web server. You learned how to configure virtual hosting and secure SSL

hosts. You also learned how to configure Apache to allow any user account on the system to

publish content from their own public_html directory.

Continuing on the topic of server configuration, in Chapter 18, “Configuring an FTP Server,”

you will learn how to set up an FTP server in Linux. The examples illustrate how to con-

figure an FTP server using the vsftpd package.

Exercises
The exercises in this section cover topics related to installing and configuring an Apache

web server. As usual, I recommend that you use a spare system to do the exercises. Don’t do

these exercises on a production machine because these exercises modify the Apache con-

figuration files and service, and they could damage services that you have currently config-

ured. Try to use a virtual machine or find a computer where it will do no harm to interrupt

services on the system.

These exercises assume that you are starting with an Ubuntu installation on which the

Apache server (apache2 package) is not yet installed.

If you are stuck, solutions to the tasks are shown in Appendix A. These show you one

approach to each task, although Linux may offer multiple ways to complete a task.

1. From an Ubuntu machine, install Apache.

2. Create a file called index.html in the directory assigned to DocumentRoot in

the main Apache configuration file. The file should have the words “My Own Web

Server” inside.

3. Start the Apache web server and set it to start up automatically at boot time. Check

that it is available from a web browser on your local host.

4. Use the netstat command to see on which ports the httpd server is listening.

5. Try to connect to your Apache web server from a web browser that is outside of the

local system. If it fails, correct any problems that you encounter by investigating

the firewall and other security features.

6. Using the openssl or similar command, create your own private RSA key and self-

signed SSL certificate.

Chapter 17: Con�guring a Web Server

411

17

7. Configure your Apache web server to use your key and self-signed certificate to

serve secure (HTTPS) content.

8. Use a web browser to create an HTTPS connection to your web server and view the

contents of the certificate that you created.

9. Add the text joe.example.org to the end of the localhost entry in your /etc/
hosts file on the machine that is running the web server. Then type http://joe

.example.org into the location box of your web browser. You should see “Welcome

to the House of Joe” when the page is displayed.

http://joe.example.org
http://joe.example.org
http://joe.example.org

413

CHAP T ER

18
Con�guring an FTP Server

IN THIS CHAPTER

Learning how FTP works

Getting a vsftpd server installed

Choosing security settings for vsftpd

Setting up vsftpd con�guration �les

Running FTP clients

T
he File Transfer Protocol (FTP) is one of the oldest protocols in existence for sharing files over

networks. Although there are more secure protocols for network file sharing, FTP is still some-

times used for making files available on the Internet.

Several FTP server projects are available with Linux today. However, the one often used with Ubuntu

and other Linux distributions is the Very Secure FTP Daemon (vsftpd package). This chapter

describes how to install, configure, use, and secure an FTP server using the vsftpd package.

Understanding FTP
FTP operates in a client/server model. An FTP server daemon listens for incoming requests on TCP

port 21 from FTP clients. The client presents a login and password. If the server accepts the login

information, the client can interactively traverse the filesystem, list files and directories, and then

download (and sometimes upload) files.

What makes FTP insecure is that everything sent between the FTP client and server is done in clear

text. The FTP protocol was created at a time when most computer communication was done on

private lines or over dial-up, where encryption was not thought to be critical. If you use FTP over

a public network, someone sniffing the line anywhere between the client and server would be able

to see not only the data being transferred but also the authentication process (login and password

information).

Part IV: Becoming a Linux Server Administrator

414

So, FTP is not good for sharing files privately (use SSH commands such as sftp, scp, or

rsync if you need private, encrypted file transfers). However, if you are sharing public

documents, open source software repositories, or other openly available data, FTP is a good

choice. Regardless of the operating system people use, they surely have an FTP file transfer

application available to get files that you offer from your FTP server.

When users authenticate to an FTP server in Linux, their usernames and passwords are

authenticated against the standard Linux user accounts and passwords. There is also a spe-

cial, non-authenticated account used by the FTP server called anonymous. The anonymous

account can be accessed by anyone because it does not require a valid password. In fact,

the term anonymous FTP server is often used to describe a public FTP server that does not

require (or even allow) authentication of a legitimate user account.

After the authentication phase (on the control port, TCP port 21), a second connection

is made between the client and server. FTP supports both active and passive connection

types. With an active FTP connection, the server sends data from its TCP port 20 to some

random port the server chooses above port 1023 on the client. With a passive FTP connec-

tion, the client requests the passive connection and requests a random port from the server.

Many browsers support passive FTP mode so that if the client has a firewall, it doesn’t

block the data port that the FTP server might use in active mode. Supporting passive mode

requires some extra work on the server’s firewall to allow random connections to ports

above 1023 on the server.

After the connection is established between the client and server, the client’s current

directory is established. For the anonymous user, the /srv/ftp directory is the home

directory. The anonymous user cannot go outside of the /srv/ftp directory structure. If

a regular user, let’s say joe, logs in to the FTP server, /home/joe is joe’s current directory,

but joe can change to any part of the filesystem for which he has permission.

Command-oriented FTP clients (such as lftp and ftp commands) go into an interactive

mode after connecting to the server. From the prompt, you can run many commands that

are similar to those that you would use from the shell. You could use pwd to see your

current directory, ls to list directory contents, and cd to change directories. When you

see a file that you want, you use the get and put commands to download files from or

upload them to the server, respectively.

With graphical tools for accessing FTP servers (such as a web browser), you type the URL of

the site that you want to visit (such as ftp://docs.example.com) into the location box of

the browser. If you don’t add a username or password, an anonymous connection is made,

and the contents of the home directory of the site are displayed. Click links to directories

to change to those directories. Click links to files to display or download those files to your

local system.

Armed with some understanding of how FTP works, you are now ready to install an FTP

server (vsftpd package) on your Linux system.

http://ftp://docs.example.com

Chapter 18: Con�guring an FTP Server

415

18

Installing the vsftpd FTP Server
Setting up the Very Secure FTP server requires only one package in Ubuntu: vsftpd.

Assuming you have a connection to your software repository, just type the follow-

ing as root:

apt install vsftpd

If you want to get more information about vsftpd, follow the URL listed to the related

website (security.appspot.com/vsftpd.html). You can get additional documentation and

information about the latest revisions of vsftpd.

To see the documentation files in the vsftpd package, visit the /usr/share/doc/
vsftpd directory:

$ ls /usr/share/doc/vsftpd
AUDIT NEWS.Debian.gz README.ssl SPEED copyright
BENCHMARKS README REWARD TODO examples
BUGS README.Debian SECURITY TUNING
FAQ.gz README.security SIZE changelog.Debian.gz

In the /usr/share/doc/vsftpd/examples directory structure, there are sample con-

figuration files included to help you configure vsftpd in ways that are appropriate for

an Internet site, multiple IP address site, and virtual hosts. The main /usr/share/doc/
vsftpd directory contains an FAQ (frequently asked questions), installation tips, and ver-

sion information.

The man pages might have the most useful information when you set out to configure the

vsftpd server. Type man vsftpd.conf to read about the configuration file and man

vsftpd to read about the daemon process and how to manage it as a systemd service.

To list the configuration files, type the following:

$ cat /var/lib/dpkg/info/vsftpd.conffiles
/etc/ftpusers
/etc/init.d/vsftpd
/etc/logrotate.d/vsftpd
/etc/pam.d/vsftpd
/etc/vsftpd.conf

The main configuration file is /etc/vsftpd.conf. The ftpusers file in the same direc-

tory stores information about user accounts that are restricted from accessing the server.

The /etc/pam.d/vsftpd file sets how authentication is done to the FTP server. The

/etc/logrotate.d/vsftpd file configures how log files are rotated over time.

Now you have vsftpd installed and have taken a quick look at its contents. The next step

is to start up and test the vsftpd service.

https://security.appspot.com/vsftpd.html

Part IV: Becoming a Linux Server Administrator

416

Controlling the vsftpd Service
No configuration or manual launch is required to start the vsftpd service if you just want

to use the default settings. This is what the default values will give you:

 ■ The vsftpd service starts the vsftpd daemon, which runs in the background.

 ■ The standard port on which the vsftpd daemon listens is TCP port 21. By default,

data is transferred to the user, after the connection is made, on TCP port 20. TCP

port 21 must be open in the firewall to allow new connections to access the service.

Both IPv4 and IPv6 connections are available by default. This procedure changes to

the TCP IPv4 service.

 ■ The vsftpd daemon reads vsftpd.conf to determine what features the service

allows.

 ■ Linux user accounts (excluding administrative users) can access the FTP server. The

anonymous user account (no password required) can be enabled.

 ■ The anonymous user has access only to the /srv/ftp directory and its subdirec-

tories. A regular user starts with their home directory as the current directory but

can access any directory to which the user would be able to gain access via a reg-

ular login or SSH session. Lists of users in the /etc/ftpusers file define some

administrative and special users who do not have access to the FTP server (root,

bin, daemon, and others).

 ■ By default, the anonymous user can neither download files from the server nor

upload them. A regular user can upload or download files, based on regular Linux

permissions.

 ■ Log messages detailing file uploads or downloads are written in the /var/log/
vsftpd.log file. Those log messages are stored in a standard xferlog format.

Once you’re happy with your configurations, you control the vsftp life cycle the usual

 systemd way, using systemctl start, stop, enable, and status:

$ systemctl status vsftpd
• vsftpd.service - vsftpd FTP server
 Loaded: loaded (/lib/systemd/system/vsftpd.service; enabled;
vendor preset: e
 Active: active (running) since Thu 2020-04-02 20:17:34 UTC; 25min ago
 Main PID: 3294 (vsftpd)
 Tasks: 1 (limit: 4915)
 CGroup: /system.slice/vsftpd.service
 ⌙3294 /usr/sbin/vsftpd /etc/vsftpd.conf

Apr 02 20:17:34 apache systemd[1]: Starting vsftpd FTP server...
Apr 02 20:17:34 apache systemd[1]: Started vsftpd FTP server.

Chapter 18: Con�guring an FTP Server

417

18

You could check that the service is running using the netstat command:

netstat -tupln | grep vsftpd
tcp6 0 0 :::21 :::* LISTEN 3294/vsftpd

From the netstat output, you can see that the vsftpd process (process ID of 3294) is

listening (LISTEN) on all IP addresses for incoming connections on port 21 (0.0.0.0:21) for

the TCP (tcp6) protocol.

You’ll need to enable anonymous access. To do that, edit the anonymous_enable line in

the /etc/vsftpd.conf file to read:

anonymous_enable=YES

You’ll then need to restart the service using systemctl. A quick way to check that

vsftpd is working is to put a file in the /srv/ftp directory and try to open it from your

web browser on the local host:

echo "Hello From Your New FTP Server" > /srv/ftp/hello.txt

From a web browser on the local system, type the following into the location box of Brave

or another browser:

ftp://localhost/hello.txt

If the text Hello From Your New FTP Server appears in the web browser (or you

get a prompt to download it), the vsftpd server is working and accessible from your

local system. Next, try this again from a web browser on another system on your network,

replacing localhost with your host’s IP address or fully qualified hostname. If that

works, the vsftpd server is publicly accessible. If it doesn’t, which it quite possibly may

not, you need to open firewalls and modify other security features to allow access and oth-

erwise secure your FTP server.

Securing your FTP server
Even though it is easy to get a vsftpd FTP server started, that doesn’t mean that it is

immediately fully accessible. If you have a firewall in place on your Linux system, it is

probably blocking access to all services on your system except for those that you have

explicitly allowed.

If you decide that the default vsftpd configuration works for you as described in the

previous section, you can set to work allowing the appropriate access and providing secu-

rity for your vsftpd service. To help you secure your vsftpd server, the next section

describes how to configure your system to prevent unauthorized resource access.

Consult Chapter 24, “Enhancing Linux Security with AppArmor,” and Chapter 25, “Securing

Linux on a Network,” for more details about safely controlling access to your services.

Part IV: Becoming a Linux Server Administrator

418

Integrating Linux �le permissions with vsftpd
The vsftpd server relies on standard Linux file permissions to allow or deny access to files

and directories. As you would expect, for an anonymous user to view or download a file, at

least read permission must be open for other (------r--). To access a directory, at least

execute permission must be on for other (--------x).

For regular user accounts, the general rule is that if a user can access a file from the shell,

that user can access the same file from an FTP server. So, typically, regular users should at

least be able to get (download) and put (upload) files to and from their own home direc-

tories, respectively. After permissions and other security provisions are in place for your

FTP server, you may want to consider other configuration settings for your FTP server.

Con�guring Your FTP Server
Most of the configuration for the vsftpd service is done in the /etc/vsftpd.conf file.

Examples of vsftpd.conf for different types of sites are included in the /usr/share/
doc/vsftpd directory. Depending on how you want to use your FTP site, the following

sections discuss a few ways to configure your FTP server.

Remember to restart the vsftpd service after making any configuration changes.

Setting up user access
The vsftpd server comes with all local Linux users (those listed in the /etc/passwd file)

configured to access the server and the anonymous user prevented. This is based on the fol-

lowing vsftpd.conf settings:

anonymous_enable=NO
local_enable=YES

Some web server hosts let users use FTP to upload the content for their own web servers. In

some cases, the users have FTP-only accounts, meaning that they cannot log in to a shell,

but they can log in via FTP to manage their content. Creating a user account that has no

default shell (actually, /usr/sbin/nologin) is how you can keep a user from logging in

to a shell but still allow FTP access. For example, the /etc/passwd entry for the FTP-only

user account bill might look something like the following:

bill:x:1000:1000:Bill Jones:/home/bill:/usr/sbin/nologin

With the user account set with /usr/sbin/nologin as the default shell, any attempts to

log in from a console or via ssh as the user bill are denied. However, as long as bill has

a password and local account access to the FTP server is enabled, bill should be able to log

in to the FTP server via an FTP client.

Not every user with an account on the Linux system has access to the FTP server. You

can add the setting userlist_enable=YES to the end of vsftpd.conf to deny access

to the FTP server to all accounts listed in the /etc/ftpusers file. That list includes

Chapter 18: Con�guring an FTP Server

419

18

administrative users root, bin, daemon, adm, lp, and others. You can add to that list

other users to whom you would like to deny access.

If you change userlist_enable to NO, the user_list file becomes a list of only those

users who do have access to the server. In other words, setting userlist_enable=NO,

removing all usernames from the user_list file, and adding the usernames chris,

joe, and mary to that file cause the server to allow only those three users to log in to

the server.

No matter how the value of userlist_enable is set, the /etc/ftpusers file always

includes users who are denied access to the server. Like the userlist_enable file, the

ftpusers file includes a list of administrative users. You can add more users to that file if

you want them to be denied FTP access.

One way to limit access to users with regular user accounts on your system is to use

chroot settings. Here are examples of some chroot settings:

chroot_local_user=YES
chroot_list_enable=YES
chroot_list_file=/etc/chroot_list

With the settings just shown uncommented, you could create a list of local users and add

them to a /etc/vsftpd.chroot_list file. After one of those users logged in, that user

would be prevented from going to places in the system that were outside of that user’s

home directory structure.

If uploads to your FTP server are allowed, the directories a user tries to upload to must be

writeable by that user. However, uploads can be stored under a username other than that

of the user who uploaded the file. This is one of the features discussed next, in the section

“Allowing uploading.”

Allowing uploading
To allow any form of writing to the vsftpd server, you must have write_enable=YES

set in the vsftpd.conf file (which it is, by default). Because of that, if local accounts are

enabled, users can log in and immediately begin uploading files to their own home direc-

tories. However, anonymous users are denied the ability to upload files by default.

To allow anonymous uploads with vsftpd, you must have the first option in the following

code example, and you may want the second line of code as well (both can be enabled by

uncommenting them from the vsftpd.conf file). The first allows anonymous users to

upload files; the second allows them to create directories:

anon_upload_enable=YES
anon_mkdir_write_enable=YES

The next step is to create a directory where anonymous users can write. Any directory

under the /srv/ftp directory that has write permissions for the user ftp, the ftp group,

or other can be written to by an anonymous user. A common thing is to create an uploads

Part IV: Becoming a Linux Server Administrator

420

directory with permission open for writing. The following are examples of commands to run

on the server:

mkdir /srv/ftp/uploads
chown ftp:ftp /srv/ftp/uploads
chmod 775 /srv/ftp/uploads

As long as the firewall is open, an anonymous user can cd to the uploads directory and put

a file from the user’s local system into the uploads directory. On the server, the file would

be owned by the ftp user and ftp group. The permissions set on the directory (775) would

allow you to see the files that were uploaded but not change or overwrite them.

One reason for allowing anonymous FTP, and then enabling it for anonymous uploads, is to

allow people you don’t know to drop files into your uploads folder. Because anyone who can

find the server can write to this directory, some form of security needs to be in place. You

want to prevent an anonymous user from seeing files uploaded by other users, taking files,

or deleting files uploaded by other anonymous FTP users. One form of security is the chown

feature of FTP.

By setting the following two values, you can allow anonymous uploads. The result of these

settings is that when an anonymous user uploads a file, that file is immediately assigned

ownership of a different user. The following is an example of some chown settings that you

could put in your vsftpd.conf file to use with your anonymous upload directory:

chown_uploads=YES
chown_username=joe

If an anonymous user were to upload a file after vsftpd was restarted with these settings,

the uploaded file would be owned by the user joe and the ftp group. Permissions would be

read/write for the owner and nothing for anyone else (rw-------).

So far, you have seen configuration options for individual features on your vsftpd server.

Some sets of vsftp.conf variables can work together in ways that are appropriate for

certain kinds of FTP sites. The next section contains one of these examples, represented by

a sample vsftpd.conf configuration file that comes with the vsftpd package. That file

can be copied from a directory of sample files to the /etc/vsftpd.conf file to use for an

FTP server that is available on the Internet.

Setting up vsftpd for the Internet
To share files from your FTP server safely to the Internet, you can lock down your server

by limiting it only to allow downloads and only from anonymous users. To start with a con-

figuration that is designed to share vsftpd files safely over the Internet, back up your

current /etc/vsftpd.conf file and copy this file to overwrite your vsftpd.conf:

/usr/share/doc/vsftpd/examples/INTERNET_SITE/vsftpd.conf

Chapter 18: Con�guring an FTP Server

421

18

The following paragraphs describe the contents of that vsftpd.conf. Settings in the first

section set the access rights for the server:

Access rights
anonymous_enable=YES
local_enable=NO
write_enable=NO
anon_upload_enable=NO
anon_mkdir_write_enable=NO
anon_other_write_enable=NO

Turning on anonymous_enable (YES)and turning off local_enable (NO)ensures

that no one can log in to the FTP server using a regular Linux user account. Everyone must

come in through the anonymous account. No one can upload files (write_enable=NO).

Then, the anonymous user cannot upload files (anon_upload_enable=NO), create

 directories (anon_mkdir_write_enable=NO), or otherwise write to the server

(anon_other_write_enable=NO). Here are the security settings:

Security
anon_world_readable_only=YES
connect_from_port_20=YES
hide_ids=YES
pasv_min_port=50000
pasv_max_port=60000

Because the vsftpd daemon can read files assigned to the ftp user and group, setting

anon_world_readable_only=YES ensures that anonymous users can see files where

the read permission bit is turned on for other (------r--) but not write files.

The connect_from_port_20=YES setting gives the vsftpd daemon slightly more

permission to send data the way a client might request by allowing PORT-style data com-

munications.

Using hide_ids=YES hides the real permissions set on files, so to the user accessing the

FTP site, everything appears to be owned by the ftp user. The two pasv settings restrict

the range of ports that can be used with passive FTP (where the server picks a higher

number port on which to send data) to between 50000 and 60000.

The next section contains features of the vsftpd server:

Features
xferlog_enable=YES
ls_recurse_enable=NO
ascii_download_enable=NO
async_abor_enable=YES

With xferlog_enable=YES, all file transfers to and from the server are logged to the

/var/log/vsftpd.log file. Setting ls_recurse_enable=NO prevents users from

recursively listing the contents of an FTP directory (in other words, it prevents the type of

Part IV: Becoming a Linux Server Administrator

422

listing that you could get with the ls -R command) because on a large site, that could

drain resources. Disabling ASCII downloads forces all downloads to be in binary mode

(preventing files from being translated in ASCII, which is inappropriate for binary files).

The async_abor_enable=YES setting ensures that some FTP clients, which might hang

when aborting a transfer, will not hang.

The following settings have an impact on performance:

Performance
one_process_model=YES
idle_session_timeout=120
data_connection_timeout=300
accept_timeout=60
connect_timeout=60
anon_max_rate=50000

With one_process_model=YES set, performance can improve because vsftpd launches

one process per connection. Reducing the idle_session_timeout from the default 300

seconds to 120 seconds causes FTP clients that are idle more than 2 minutes to be discon-

nected. Thus, less time is spent managing FTP sessions that are no longer in use. If a data

transfer stalls for more than data_connection_timeout seconds (300 seconds here), the

connection to the client is dropped.

The accept_timeout setting of 60 seconds allows 1 minute for a PASV connection to be

accepted by the remote client. The connect_timeout sets how long a remote client has

to respond to a request to establish a PORT-style data connection. Limiting the transfer

rate to 50000 (bytes per second) with anon_max_rate can improve overall performance

of the server by limiting how much bandwidth each client can consume.

Using FTP Clients to Connect to Your Server
Many client programs come with Linux, which you can use to connect to your FTP server. If

you simply want to do an anonymous download of some files from an FTP server, any modern

web browser will provide an easy interface to do that. For more complex interactions

between your FTP client and server, you can use command-line FTP clients. The following

sections describe some of these tools.

Accessing an FTP server from a browser
A web browser provides a quick and easy way to test access to your FTP server or to access

any public FTP server. On your own system, type ftp://localhost into the location box. You

are prompted to log in, which you can do as a regular user or the anonymous user if your

server is accessible via anonymous FTP. As the anonymous user, you should see something

similar to the example shown in Figure 18.1.

Chapter 18: Con�guring an FTP Server

423

18

To log in to an FTP server as a particular user from your browser, you can precede the host-

name with a username:password@ notation, as shown in the following example of log-

ging in to a local server:

ftp://chris:MypassWd5@localhost

If you provide the correct username and password, you should immediately see the

contents of your home directory. Click a folder to open it. Click a file to download or

view the file.

Accessing an FTP server with the lftp command
To test your FTP server from the command line, you can use the lftp command. To install

the lftp command in Ubuntu, enter the following from the command line:

apt install lftp

If you use the lftp command with just the name of the FTP server you’re trying to access,

the command tries to connect to the FTP server as the anonymous user. This example logs

in to a local server as anonymous:

$ lftp localhost
lftp localhost:~> ls

FIGURE 18.1

Accessing a remote FTP server from the Brave browser

Continues

Part IV: Becoming a Linux Server Administrator

424

-rwxrwxrwx 1 0 0 31 Apr 02 20:48 Hello.txt
lftp localhost:/>

By adding the -u username, you can enter the user’s password when prompted and gain

access to the FTP server as the user you logged in as.

After you have added your user and password information, you get an lftp prompt, ready

for you to start typing commands:

$ lftp localhost -u ubuntu
Password:
lftp ubuntu@localhost:~> ls
drwxrwxr-x 4 1000 1000 4096 Apr 02 13:40 my-ca
drwxr-xr-x 2 1000 1000 4096 Apr 01 23:49 public_html
lftp ubuntu@localhost:~>

The connection is made to the server when you type your first command. You can use the

commands to move around the FTP server and then use the get and put commands to

download and upload files.

The following example shows how to use commands as just described. It assumes that the

FTP server (and associated security measures) has been configured to allow local users to

connect and to read and write files:

$ lftp -u ubuntu localhost
Password:
lftp ubuntu@localhost:~> pwd
ftp://ubuntu@localhost
lftp ubuntu@localhost:~> !pwd
/home/ubuntu
lftp ubuntu@localhost:~> ls
drwxr-xr-x 3 1000 1000 4096 Apr 27 23:36 aws
-rw-rw-r-- 1 1000 1000 32738339 May 05 13:46 awscliv2.zip
drwxrwxr-x 3 1000 1000 4096 May 01 21:18 cloud
-rw-rw-r-- 1 1000 1000 101 May 05 15:09 my_script.txt
-r-------- 1 1000 1000 1671 May 05 14:23
newcluster.pem
-rw-rw-r-- 1 1000 1000 368 May 05 14:45 script.yaml
lftp ubuntu@localhost:~> !ls
aws awscliv2.zip cloud my_script.txt newcluster.pem script.yaml

After providing the username (-u ubuntu), lftp prompts for the ubuntu user’s pass-

word. Typing !pwd shows that ubuntu is logged in to the local host and that /home/
ubuntu is the current directory. Just as you would from a regular Linux command-line

shell, you can use cd to change to another directory and ls to list that directory’s con-

tents. The ! character runs your command on the client system. As this example is run

locally, the remote and client directories are the same.

This is good to know because if you get a file from the server without specifying its desti-

nation, it goes to the client’s current directory (in this case, /root). Other commands you

Continued

Chapter 18: Con�guring an FTP Server

425

18

might run so that they are interpreted by the client system include !cd (to change direc-

tories) and !ls (to list files).

Assuming that you have read permission for a file on the server and write permission from

the current directory on the initiating system, you can use the get command to download

a file from the server (get survey-20141023.txt). If you have write and upload per-

mission on the current directory on the server, you can use put to copy a file to the server

(put /etc/hosts).

Running an ls command shows that the /etc/hosts file was uploaded to the server.

Running the !ls command lets you see that the survey-20141023.txt file was down-

loaded from the server to the initiating system.

Using the gFTP client
Many other FTP clients are available with Linux as well. Another FTP client that you could

try is gFTP. The gFTP client provides an interface that lets you see both the local and

remote sides of your FTP session. To install gFTP in Ubuntu, run the following command to

install the gftp package:

apt install gftp

To start gFTP, launch it from the applications menu or run gftp & from the shell. To use

it, type the URL of the FTP server to which you wish to connect, enter the username you

want to use (such as anonymous), and press Enter. Figure 18.2 shows an example of gFTP

being used to connect to an FTP site on my network.

FIGURE 18.2

The gFTP FTP client lets you see both sides of an FTP session.

Part IV: Becoming a Linux Server Administrator

426

To traverse the FTP site from gFTP, just double-click folders (as you would from a file

 manager window). The full paths to the local directory (on the left) and remote directory

(on the right) are shown above the listings of files and folders below.

To transfer a file from the remote side to the local side, select the file that you want from

the right and click the arrow in the middle of the screen pointing to the left. Watch the

progress of the file transfer from messages on the bottom of the screen. When the transfer

completes, the file appears in the left pane.

You can bookmark the address information that you need to connect to an FTP site. That

address is added to a set of bookmarks already stored under the Bookmarks menu. You can

select sites from the list to try out the gFTP. Most of the sites are for Linux distributions

and other open source software sites.

Summary
Setting up an FTP server is an easy way to share files over a TCP network. The Very Secure

FTP Daemon (vsftpd package) is available for Ubuntu and other Linux systems.

A default vsftpd server allows anonymous users to download files from the server and

regular Linux users to upload or download files (provided the correct security settings are

applied). Moving around on an FTP server is similar to moving around a Linux filesystem.

You move up and down the directory structure to find the content that you want.

There are both graphical and text-based FTP clients. A popular text-based client for Linux

is lftp. As for graphical FTP clients, you can use a regular web browser, such as Brave, or

dedicated FTP clients, such as gFTP.

FTP servers are not the only way to share files over a network from Linux. The Samba ser-

vice provides a way to share files over a network so that the shared Linux directory looks

like a shared directory from a Windows system. Chapter 19, “Configuring a Windows File

Sharing (Samba) Server,” describes how to use Samba to offer Windows-style file sharing.

Exercises
The exercises in this section describe tasks related to setting up an FTP server in Ubuntu

and connecting to that server using an FTP client. If you are stuck, solutions to the tasks

are shown in Appendix A. Keep in mind that the solutions shown in Appendix A are usually

just one of multiple ways to complete a task.

Don’t do these exercises on a Linux system running a public FTP server because they almost

certainly interfere with that server.

1. Determine which package provides the Very Secure FTP Daemon service.

2. Install the Very Secure FTP Daemon package on your system, and search for the

configuration files in that package.

Chapter 18: Con�guring an FTP Server

427

18

3. Enable anonymous FTP and disable local user login for the Very Secure FTP

Daemon service.

4. Start the Very Secure FTP Daemon service and set it to start when the system boots.

5. On the system running your FTP server, create a file named test in the anonymous

FTP directory that contains the words “Welcome to your vsftpd server.”

6. From a web browser on the system running your FTP server, open the test

file from the anonymous FTP home directory. Be sure that you can see that

file’s contents.

7. From a web browser outside of the system that is running the FTP server, try to

access the test file in the anonymous FTP home directory.

8. Configure your vsftpd server to allow file uploads by anonymous users to a direc-

tory named in.

9. Install the lftp FTP client (if you don’t have a second Linux system, install lftp

on the same host running the FTP server). If you cannot upload files to the in

directory, check that your firewall and TCP wrappers are configured to allow access

to that file.

10. Using any FTP client you choose, visit the /pub/debian-meetings directory on

the ftp.gnome.org site and list the contents of that directory.

http://ftp.gnome.org

429

CHAP T ER

19
Con�guring a Windows File

Sharing (Samba) Server

IN THIS CHAPTER

Getting and installing Samba

Using Samba security features

Editing the smb.conf con�guration �le

Accessing Samba from Linux and Windows clients

Using Samba in the enterprise

S
amba is the project that implements open source versions of protocols used to share files

and printers among Windows systems as well as authenticate users and restrict hosts. Samba

offers a number of ways to share files among Windows, Linux, and macOS systems that are

well known and readily available to users of those systems.

This chapter steps you through the process of installing and configuring a Samba server. It describes

the security features that you need to know to share your file and printer resources and describes

how to access those resources from Linux and Windows systems.

Understanding Samba
Samba (www.samba.org) is a suite of programs that allows Linux, UNIX, and other systems to inter-

operate with Microsoft Windows file and printer sharing protocols. Windows, macOS, and other

client systems can access Samba servers to share files and printers in the same ways that they

would from Windows file and print servers.

With Samba, you can use standard TCP/IP networking to communicate with clients. For name service,

Samba supports regular TCP/IP hostnames as well as NetBIOS names. For that reason, Samba doesn’t

require the NetBEUI (Microsoft Raw NetBIOS frame) protocol. File sharing is done using Server Message

Block (SMB) protocol, which is sometimes referred to as the Common Internet File System (CIFS).

The Samba project has gone to great lengths to make its software secure and robust. In fact,

many people prefer using Samba servers over Windows file servers because of the added secu-

rity that is inherent in running Windows-style file sharing services on Linux or other UNIX-like

operating systems.

http://samba.org

Part IV: Becoming a Linux Server Administrator

430

Beyond all of the technical mumbo-jumbo, however, the end result is that Samba makes

it easy to share files and printers between Linux servers and Windows desktop systems.

For the server, only a few configuration files and tools are needed to manage Samba. For

the clients, shared resources just show up under the Network selection in the File Explorer

(formerly Windows Explorer) application or in the Network Neighborhood on older Win-

dows systems.

To configure the Samba service, you directly edit Samba configuration files (particu-

larly smb.conf) and run a few commands. Graphical and web-based interfaces, such

as system-config-samba and Samba SWAT, are no longer included with the latest

Linux systems.

To begin using Samba on Ubuntu, you need to install a few software packages, as described

in the next section.

Installing Samba
To configure a Samba file and print server, installing the samba package gets you every-

thing you need to start. Among other components, the samba package includes the Samba

service daemon (/usr/sbin/smbd) and NetBIOS name server daemon (/usr/sbin/nmbd).

There’s also an optional samba-common package that contains server configuration files

(smb.conf, lmhosts, and others) and commands for adding passwords and testing config-

uration files, along with other Samba features.

Features from other packages are referenced in this chapter, so I describe those as well.

Those include the following:

smbclient: Contains command-line tools such as smbclient (for connecting to

Samba or Windows shares), nmblookup (for looking up host addresses), and finds

mb (to find SMB hosts on the network).

winbind: Includes components that allow your Samba server in Linux to become a

complete member of a Windows domain, including using Windows user and group

accounts in Linux.

Go ahead and install those packages:

apt install samba smbclient winbind

After that’s done, look at the configuration files. Go ahead and install those packages.

The /etc/logrotate.d/samba file is usually not modified. It sets how files in /var/

log/samba log files are rotated (copied to other files and removed) over time.

Most configuration files that you would modify for Samba are in the /etc/samba direc-

tory. The smb.conf file is the primary configuration file where you put global settings

for the Samba server as well as individual file and printer share information (more on

that later).

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

431

19

Although it doesn’t exist by default, you can create a file named /etc/samba/smbusers

to map Linux usernames into Windows usernames. As you configure your Samba server,

you can refer to the smb.conf man page (man smb.conf). There are also man pages for

Samba commands, such as smbpasswd (to change passwords), smbclient (to connect to

a Samba server), and nmblookup (to look up NetBIOS information).

After you have installed Samba packages and completed a quick survey of what they con-

tain, try starting up the Samba service and see what you get in a default configuration.

Controlling Samba
With samba and samba-common installed, you can start the server and investigate how

it runs in the default configuration. Two main services are associated with a Samba server,

each of which has its own service daemon:

smb: This service controls the smbd daemon process, which provides the file and print

sharing services that can be accessed by Windows clients.

nmb: This service controls the nmbd daemon. By providing NetBIOS name service

name-to-address mapping, nmbd can map requests from Windows clients for NetBIOS

names so that they can be resolved into IP addresses.

To share files and printers with other Linux systems with Samba, only the smb service is

required. The next section describes how to start and enable the smb service.

Viewing Samba processes
Samba is controlled by the smbd daemon, which makes files and printers available from

your local system to other computers on the network.

The usual systemctl commands will manage smdb:

$ systemctl status smbd

∙ smbd.service - Samba SMB Daemon

 Loaded: loaded (/lib/systemd/system/smbd.service; enabled; vendor preset: ena

 Active: active (running) since Fri 2020-04-03 13:20:42 UTC; 43min ago

 Docs: man:smbd(8)

 man:samba(7)

 man:smb.conf(5)

 Main PID: 1230 (smbd)

 Status: "smbd: ready to serve connections..."

 Tasks: 4 (limit: 4915)

 CGroup: /system.slice/smbd.service

 ⌙230 /usr/sbin/smbd --foreground --no-process-group

 ⌙1232 /usr/sbin/smbd --foreground --no-process-group

 ⌙1233 /usr/sbin/smbd --foreground --no-process-group

 ⌙1235 /usr/sbin/smbd --foreground --no-process-group

Part IV: Becoming a Linux Server Administrator

432

The first nmb daemon is controlled through nmbd:

$ systemctl status nmbd

∙ nmbd.service - Samba NMB Daemon

 Loaded: loaded (/lib/systemd/system/nmbd.service; enabled; vendor

preset: ena

 Active: active (running) since Fri 2020-04-03 13:20:42 UTC; 44min ago

 Docs: man:nmbd(8)

 man:samba(7)

 man:smb.conf(5)

 Main PID: 1297 (nmbd)

 Status: "nmbd: ready to serve connections..."

 Tasks: 1 (limit: 4915)

 CGroup: /system.slice/nmbd.service

 ⌙1297 /usr/sbin/nmbd --foreground --no-process-group

When you look at the smdb.service file (as shown in the following code snippet), you’ll see

that the Samba daemon process (smbd) must start up only after the network, nmbd, and

winbind processes. The WantedBy line indicates that smb.service should start when the

system boots up into multi-user mode (multi-user.target), which it does by default.

$ cat /lib/systemd/system/smbd.service

[Unit]

Description=Samba SMB Daemon

Documentation=man:smbd(8) man:samba(7) man:smb.conf(5)

After=network.target nmbd.service winbind.service

[Service]

Type=notify

NotifyAccess=all

PIDFile=/var/run/samba/smbd.pid

LimitNOFILE=16384

EnvironmentFile=-/etc/default/samba

ExecStart=/usr/sbin/smbd --foreground --no-process-group $SMBDOPTIONS

ExecReload=/bin/kill -HUP $MAINPID

LimitCORE=infinity

[Install]

WantedBy=multi-user.target

Similarly, the NetBIOS (nmbd) name service file (/lib/systemd/system/nmbd.ser-

vice) requires that the network-online.target be true before it can load and is con-

trolled by the environment file /etc/default/samba:

$ cat /lib/systemd/system/nmbd.service

[Unit]

Description=Samba NMB Daemon

Documentation=man:nmbd(8) man:samba(7) man:smb.conf(5)

After=network-online.target

Wants=network-online.target

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

433

19

[Service]

Type=notify

NotifyAccess=all

PIDFile=/var/run/samba/nmbd.pid

EnvironmentFile=-/etc/default/samba

ExecStart=/usr/sbin/nmbd --foreground --no-process-group $NMBDOPTIONS

ExecReload=/bin/kill -HUP $MAINPID

LimitCORE=infinity

[Install]

WantedBy=multi-user.target

You can check access to the Samba server using the smbclient command. You can get

basic information about the local resources available to a Samba server using -L:

smbclient -L localhost

Enter SAMBA\root's password: <ENTER>

Anonymous login successful

 Sharename Type Comment

 --------- ---- -------

 print$ Disk Printer Drivers

 IPC$ IPC IPC Service

 (Samba Server Version 4.10.10)

 deskjet Printer deskjet

Reconnecting with SMB1 for workgroup listing.

Anonymous login successful

 Server Comment

 --------- -------

 Workgroup Master

 --------- -------

The smbclient output allows you see what services are available from the server. By

default, anonymous login is allowed when querying the server (so I just pressed Enter when

prompted for a password).

You can discern a number of things about the default Samba server setup from this output:

 ■ All printers that are shared via the CUPS server on your Linux system are, by

default, also made available from the Samba server running on that same system.

 ■ No directories are shared yet from the server.

 ■ There is no NetBIOS name service running yet from the Samba server.

Next, you can decide whether you want to run the NetBIOS name service on your

Samba server.

If no Windows domain server is running on the network, as is the case here, you use sys-

temctl to start the nmb service on the Samba host to provide that service. This nmplo-

okup command displays the IP addresses and status of all available Samba servers–there’s

only the one on our local machine available on this network.

Part IV: Becoming a Linux Server Administrator

434

$ nmblookup -S '*'

10.0.3.79 *<00>

Looking up status of 10.0.3.79

 APACHE <00> - B <ACTIVE>

 APACHE <03> - B <ACTIVE>

 APACHE <20> - B <ACTIVE>

 WORKGROUP <00> - <GROUP> B <ACTIVE>

 WORKGROUP <1e> - <GROUP> B <ACTIVE>

 MAC Address = 00-00-00-00-00-00

Normally there would be one or more Windows printer or file server available on the net-

work–after all, that is why you’re installing Samba, right? But for now we’ll have to make

do with just this Linux server.

Another way to canvass Samba servers and their resources is through the smbtree

command:

$ smbtree

WORKGROUP

 \\WORKSTATION workstation server (Samba, Ubuntu)

 \\WORKSTATION\vpn-videos

 \\WORKSTATION\DCP-7060D Brother DCP-7060D

 \\WORKSTATION\IPC$ IPC Service (workstation server

(Samba, Ubuntu))

 \\WORKSTATION\print$ Printer Drivers

 \\APACHE apache server (Samba, Ubuntu)

 \\APACHE\IPC$ IPC Service (apache server

(Samba, Ubuntu))

 \\APACHE\print$ Printer Drivers

Securing Samba

If you have an active firewall protecting your network or computer, you’ll need to make

sure these ports are open:

TCP port 445: This is the primary port on which the Samba smbd daemon listens. Your

firewall must support incoming packet requests on this port for Samba to work.

TCP port 139: The smbd daemon also listens on TCP port 139 in order to handle

sessions associated with NetBIOS hostnames. It is possible to use Samba over TCP

without opening this port, but it is not recommended.

UDP ports 137 and 138: The nmbd daemon uses these two ports for incoming NetBIOS

requests. If you are using the nmbd daemon, these two ports must be open for new

packet requests for NetBIOS name resolution.

You’ll learn more about firewalls in Chapter 25, “Securing Linux on a Network.”

Within the smb.conf file itself, you can allow or restrict access to the entire Samba server

or to specific shares based on the hosts or users trying to gain access.

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

435

19

You can do this by adding a valid users entry to a section of your smb.conf file. This

example will permit the user steve and all members of the admins group access:

[printers]

 comment = All Printers

 browseable = no

 path = /var/spool/samba

 printable = yes

 valid users = steve @admins

 guest ok = no

 read only = yes

 create mask = 0700

The next section describes how to configure Samba, including how to identify which hosts,

users, or network interfaces can access your Samba server.

Con�guring Samba
Inside the /etc/samba/smb.conf file are settings for configuring your Samba server,

defining shared printers, configuring how authentication is done, and creating shared

directories. The file consists of the following predefined sections:

[global]: Settings that apply to the Samba server as a whole are placed in this sec-

tion. This is where you set the server’s description, its workgroup (domain), the

location of log files, the default type of security, and other settings.

[homes]: This section determines whether users with accounts on the Samba server

can see their home directories (browseable) or write to them.

[printers]: In this section, settings tell Samba whether to make printers available

through Samba that are configured for Linux printing (CUPS).

[print$]: This section configures a directory as a shared printer drivers folder.

Inside the smb.conf file, lines beginning with pound signs (#) or semicolons (;) are com-

ments. Removing the semicolons enables you to set up different kinds of shared informa-

tion quickly. The # sign can also be used to comment out a line.

When you begin editing your smb.conf file, make a backup that you can revert to if

 something goes wrong. You can start by copying the smb.conf.example file to smb

.conf, if you want to start with some examples.

Con�guring the [global] section
Here is an example of a [global] section of the smb.conf file:

[global]

 workgroup = WORKGROUP

 server string = %h server (Samba, Ubuntu)

; wins server = w.x.y.z

Continues

Part IV: Becoming a Linux Server Administrator

436

 dns proxy = no

; interfaces = 127.0.0.0/8 eth0

; bind interfaces only = yes

 log file = /var/log/samba/log.%m

 max log size = 1000

 syslog = 0

 panic action = /usr/share/samba/panic-action %d

 server role = standalone server

 passdb backend = tdbsam

 obey pam restrictions = yes

 unix password sync = yes

 passwd program = /usr/bin/passwd %u

 passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\

spassword:* %n\n *password\supdated\ssuccessfully* .

 pam password change = yes

 map to guest = bad user

; logon path = \\%N\profiles\%U

; logon drive = H:

; logon script = logon.cmd

; add user script = /usr/sbin/adduser --quiet --disabled-password

--gecos "" %u

; add machine script = /usr/sbin/useradd -g machines -c "%u machine

account" -d /var/lib/samba -s /bin/false %u

; add group script = /usr/sbin/addgroup --force-badname %g

; include = /home/samba/etc/smb.conf.%m

; idmap uid = 10000-20000

; idmap gid = 10000-20000

; template shell = /bin/bash

; usershare max shares = 100

 usershare allow guests = yes

The workgroup (also used as the domain name) is set to WORKGROUP in this example.

When a client communicates with the Samba server, this name tells the client which work-

group the Samba server is in.

The passdb backend = tdbsam specifies to use a Samba backend database to

hold passwords. You can use the smbpasswd command to set each user’s password (as

described later).

If you want to restrict access to the Samba server so that it only responds on certain inter-

faces, you can uncomment the interfaces line and add either the IP address or name

(lo, eth0, eth1, and so on) of the network interfaces you want.

By default, your server’s DNS hostname (enter hostname to see what it is) is used as your

Samba server’s NetBIOS name as well. You can override that and set a separate NetBIOS

name by uncommenting the include = /home/samba/etc/smb.conf.%m line and add-

ing the server name you want. For example, netbios name = myownhost. localhost

is used as your NetBIOS name if it has not otherwise been set.

Continued

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

437

19

Con�guring the [homes] section
The [homes] section is configured, by default, to allow any Samba user account to be able

to access its own home directory via the Samba server. Here is what the default homes

entry looks like:

;[homes]

; comment = Home Directories

; browseable = no

; read only = yes

; create mask = 0700

; directory mask = 0700

; valid users = %S

Setting valid users to %S substitutes the current service name, which allows any valid

users of the service to access their home directories. The valid users are also identified by

domain or workgroup (%D), winbind separator (%w), and name of current service (%S).

The browseable = No setting prevents the Samba server from displaying the avail-

ability of the shared home directories. Users who can provide their own Samba usernames

and passwords can read and write in their own home directories (read only = no). With

inherit acls set to Yes, access control lists can be inherited to add another layer of

security on the shared files.

Con�guring the [printers] section
Any printer that you configure for CUPS printing on your Linux system is automatically

shared to others over Samba, based on the [printers] section that is added by default.

Here’s what the default printers section looks like in the smb.conf file:

[printers]

 comment = All Printers

 browseable = no

 path = /var/spool/samba

 printable = yes

 guest ok = no

 read only = yes

 create mask = 0700

The path tells Samba to store temporary print files in /var/spool/samba. The print-

able = Yes line causes all of your CUPS printers on the local system to be shared by

Samba. Printers are writeable and allow guest printing by default. The create mask =

0700 setting used here has the effect of removing write and execute bits for groups and

others, within the ACL, when files are created in the path directory.

To see that local printers are available, you could run the smbclient -L command from a

Linux system, as shown earlier. On a Windows system, you can select Network from the File

Explorer window and select the icon representing your Samba server. All shared printers

and folders appear in that window. (See the section “Accessing Samba Shares” later in this

chapter for details on viewing and using shared printers.)

Part IV: Becoming a Linux Server Administrator

438

Creating a Samba shared folder

Before you can create a shared folder, that folder (directory) must exist and have the proper

permissions set. In this example, the /var/salesdata directory is shared. You want the

data to be writeable by the user named chris but visible to anyone on your network. To

create that directory:

mkdir /var/salesdata

chmod 775 /var/salesdata

chown chris:chris /var/salesdata

touch /var/salesdata/test

Here’s how we’ll add the shared folder to Samba. With the /var/salesdata directory cre-

ated and properly configured to be shared by Samba, here is what the shared folder (called

salesdata) might look like in the smb.conf file:

[salesdata]

 comment = Sales data for current year

 path = /var/salesdata

 read only = no

 browseable = yes

 valid users = chris

Before this share was created, the /var/salesdata directory was created, with chris

assigned as the user and group, and the directory was set to be readable and writeable by

chris. The Samba username chris must be presented along with the associated pass-

word to access the share. After chris is connected to the share, chris has read and write

access to it (read only = no).

Now that you have seen the default settings for Samba and an example of a simple shared

directory (folder), read the next few sections to see how to configure shares even further.

In particular, the examples demonstrate how to make shares available to particular users,

hosts, and network interfaces.

Checking the Samba share

Before our user Chris will be able to log in to a Samba share, he’ll need a password. You

can create this password by running the smbpasswd -a chris command.

For the changes to your Samba configuration to take effect, you need to restart the smb

service. After that’s done, check that the Samba share you created is available and that any

user you assigned to the share can access it. To do those things, enter the following as root

user from a shell on the Samba server:

systemctl restart smbd

smbclient -L localhost -U chris

Enter WORKGROUP\chris's password:

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

439

19

 Sharename Type Comment

 --------- ---- -------

 homes Disk Home Directories

 print$ Disk Printer Drivers

 salesdata Disk Sales data for current year

 IPC$ IPC IPC Service (apache server

(Samba, Ubuntu))

Reconnecting with SMB1 for workgroup listing.

 Server Comment

 --------- -------

 Workgroup Master

 --------- -------

 WORKGROUP

Here you can see the share name (salesdata), the domain, and the description entered

earlier (Sales data for current year). Next, a quick way to test access to the share

is to use the smbclient command. You can use the hostname or IP address with smbcli-

ent to access the share. Because I am on the local system in this example, I just use the

name localhost and the user I added (chris):

$ smbclient -U chris //localhost/salesdata

WARNING: The "syslog" option is deprecated

Enter WORKGROUP\chris's password:

Try "help" to get a list of possible commands.

smb: \> ls

 . D 0 Fri Apr 3

18:48:20 2020

 .. D 0 Fri Apr 3

18:47:37 2020

 test N 0 Fri Apr 3

18:48:20 2020

 479152840 blocks of size 1024. 278637884 blocks available

smb: \> quit

$

A Samba share is in the form //host/share or \\host\share. However, when you

identify a Samba share from a Linux shell in the latter case, the backslashes need to be

escaped. So, as an argument, the first example of the share would have to appear as \\\\

localhost\\salesdata. Thus, the first form is easier to use.

NOTE

Escaping a character that you type from the shell is done by putting a backslash (\) in front of that character. It tells the

shell to use the character following the backslash literally, instead of giving the character a special meaning to the shell.

(The * and ? characters are examples of characters with special meaning.) Because the backslash itself has special

meaning to the shell, if you want to use a backslash literally, you need to precede it with a backslash. That is why when

you want to type a Samba address that includes two backslashes, you actually have to enter four backslashes.

Part IV: Becoming a Linux Server Administrator

440

When prompted, enter the Samba password for that user (it may be different from the

Linux user’s password). The Samba user’s password was set earlier with smbpasswd in this

example. You see the smb: \> prompt after that.

At this point, you have a session open to the Samba host that is similar to an ftp session

for traversing an FTP server. The lcd /etc command makes /etc the current directory

on the local system. The put hosts command uploads the hosts file from the local system

to the shared directory. Typing ls shows that the file exists on the server. The quit

command ends the session.

Restricting Samba access by network interface

To restrict access to all of your shares, you can set the global interfaces setting in the smb.

conf file. Samba is designed more for local file sharing than for sharing over wide area

networks. If your computer has a network interface connected to a local network and one

connected to the Internet, consider allowing access only to the local network.

To set which interfaces Samba listens on, uncomment the interfaces line shown in an

earlier example in the [global] section of the smb.conf file. Then add the interface

names or IP address ranges of those computers that you want to allow access to your com-

puter. Here is an example:

interfaces = lo 192.168.22.15/24

This interface entry allows access to the Samba service to all users on the local system (lo).

It also allows access to any systems on the 192.168.22 network. See the smb.conf man

page’s description of different ways of identifying hosts and network interfaces.

Restricting Samba access by host

Host access to the Samba server can be set for the entire service or for single shares.

Here are some examples of hosts allow and hosts deny entries that can be added to

the networking section of smb.conf:

hosts allow = 192.168.22. EXCEPT 192.168.22.99

hosts allow = 192.168.5.0/255.255.255.0

hosts allow = .example.com market.example.net

hosts deny = evil.example.org 192.168.99.

The first example allows access to any host in the 192.168.22. network except for

192.168.22.99, which is denied. Note that a dot is required at the end of the network

number. The 192.168.5.0/255.255.255.0 example uses netmask notation to identify 192.168.5

as the set of addresses that are allowed.

In the third line of the sample code, any host from the .example.com network is allowed,

as is the individual host market.example.net. The hosts deny example shows that you

can use the same form to identify names and IP addresses in order to prevent access from

certain hosts.

http://example.com
http://market.example.net

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

441

19

Restricting Samba access by user

Particular Samba users and groups can be allowed access to specific Samba shares by identi-

fying those users and groups within a share in the smb.conf file. Aside from guest users,

which you may or may not allow, the default user authentication for Samba requires you to

add a Samba (Windows) user account that maps into a local Linux user account.

As we’ve seen, to allow a user to access the Samba server, you need to create a password for

the user. Here is an example of how to add a Samba password for the user jim:

smbpasswd -a jim

New SMB password: *******

Retype new SMB password: *******

After running that smbpasswd command, jim can use that username and password to

access the Samba server. The /var/lib/samba/private/passdb.tdb file holds the

password just entered for jim. After that, the user jim can change the password by simply

typing smbpasswd when he is logged in. The root user can change the password by rerun-

ning the command shown in the example but dropping the -a option.

If you wanted to give jim access to a share, you could add a valid users line to that

shared block in the smb.conf file. For example, to provide both chris and jim access to

a share, you could add the following line:

valid users = jim, chris

If the read only option is set to no for the share, both users could potentially write files

to the share (depending on file permissions). If read only is set to yes, you could still

allow access to jim and chris to write files by adding a write list line as follows:

write list = jim, chris

The write list can contain groups (that is, Linux groups contained in the /etc/group file)

to allow write permission to any Linux user that belongs to a particular Linux group. You

can add write permission for a group by putting a plus (+) character in front of a name. For

example, the following adds write access for the market group to the share with which

this line is associated:

write list = jim, chris, +market

There are many ways to change and extend the features of your shared Samba resources.

For further information on configuring Samba, be sure to examine the smb.conf file itself

(which includes many useful comments) and the smb.conf man page.

Accessing Samba Shares
After you have created some shared directories in Samba, many client tools are available in

both Linux and Windows for accessing those shares. Command-line tools in Linux include

the smbclient command, demonstrated earlier in this chapter. For a graphical means of

accessing shares, you can use the file managers available in both Windows (File Explorer)

and Linux (Nautilus, with the GNOME desktop).

Part IV: Becoming a Linux Server Administrator

442

Accessing Samba shares in Linux
Once a Samba share is available, it can be accessed from remote Linux and Windows systems

using file managers or remote mount commands.

Accessing Samba shares from a Linux �le manager

Opening a file manager in Linux can provide you with access to the shared directories from

Linux (Samba) and Windows (SMB). How you access the file manager is different on differ-

ent Linux desktops. In GNOME 3, you can click the Files icon. In other desktops, open the

Home folder.

With the Nautilus window manager displayed, select Other Locations in the left naviga-

tion bar. Available networks (such as Windows Network) should appear. Look to the box at

the bottom of the window identified as Connect to Server, and then enter the location of

an available Samba share. Given the previous examples, you would be able to use either of

these shares:

smb://10.0.3.79/chris

smb://10.0.3.79/salesdata

Click to connect. From the window that appears, you can select to connect as a registered

user. If you do that, you can enter your username, Samba domain name, and the password

for your user. You can also select whether or not to save that password.

Click Connect. If the user and password are accepted, you should see the contents of the

remote directory. If you have write access to the share, you can open another Nautilus

window and drag and drop files between the two systems.

You can also access your remote share from the command line. This command will drop

you into a Samba shell session from a remote Samba client (with the cifs-utils package

installed):

smbclient -U chris //10.0.3.79/salesdata

Enter WORKGROUP\chris's password:

Try "help" to get a list of possible commands.

smb: \> ls

 . D 0 Fri Apr 3 18:48:20 2020

 .. D 0 Fri Apr 3 18:47:37 2020

 test N 0 Fri Apr 3 18:48:20 2020

 479152840 blocks of size 1024. 278680468 blocks available

smb: \>

Mounting a Samba share from a Linux command line

Because a Samba shared directory can be viewed as a remote filesystem, you can use

common Linux tools to connect a Samba share (temporarily or permanently) to your Linux

system. Using the standard mount command, you can mount a remote Samba share as a

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

443

19

CIFS filesystem in Linux. This example mounts the salesdata share on the host at IP

address 10.0.3.79 on the local directory /mnt/sales:

apt install cifs-utils

mkdir /mnt/sales

mount -t cifs -o user=chris \

 //10.0.3.79/salesdata /mnt/sales

Password for chris@//192.168.122.119/salesdata: *******

ls /mnt/sales

hosts memos test whitepapers

When prompted, enter the Samba password for chris. Given that the user chris in this

example has read-write permission to the shared directory, users on your system should be

able to read and write to the mounted directory. Regardless of who saves files on the shared

directory, on the server those files are owned by the user chris. This mount lasts until

the system is rebooted or you run the umount command on the directory. If you want the

share to be mounted permanently (that is, every time the system boots up) in the same

location, you can do some additional configuration. First, open the /etc/fstab file and

add an entry similar to the following:

//192.168.0.119/salesdata /mnt/sales cifs credentials=/root/cif.txt 0 0

Next, create a credentials file (in this example, /root/cif.txt). In that file, put the name

of the user and the user’s password that you want to present when the system tries to

mount the filesystem. Here is an example of the contents of that file:

user=chris

pass=mypass

Before you reboot to check that the entry is correct, try mounting it from the command

line. A mount -a command tries to mount any filesystem listed in the /etc/fstab file

that is not already mounted. The df command shows information about disk space for the

mounted directory, as in the following example:

mount -a

df -h /mnt/sales

Filesystem Size Used Avail Ues% Mounted on

//192.168.0.119/salesdata 20G 5.7G 14G 30% /mnt/sales

You should now be able to use the shared Samba directory as you do any directory on the

local system.

NOTE

For security reasons, by default, mounting remote Samba shares is not allowed in containers (which we’ll discuss in

Chapter 26, “Shifting to Clouds and Containers”). If you want a Linux container to access the contents of a remote

Samba share, you will need to run the container as a privileged container, as well as ensure that AppArmor is con�g-

ured to allow the execution of privileged containers.

Part IV: Becoming a Linux Server Administrator

444

Accessing Samba shares in Windows
As with Linux, you can access Samba shares from the file manager window, in this case

Windows File Explorer. To do this, open any folder in Windows and select Network from

the left panel. An icon representing the Samba server should appear on the screen. Click

that icon and enter a password if prompted for one. You should see all shared printers and

folders from that server.

There should be two shared folders (directories): chris and salesdata. There are also

several shared printers. To use the folders, double-click them and enter the required

authentication information. Because printers are set up to use raw drivers by default, you

need to obtain Windows drivers to use any of the Samba printers.

Using Samba in the Enterprise
Although it’s beyond the scope of this book, Windows file and printer sharing via Samba

servers is a very popular application in large enterprises. Despite the fact that Linux has

begun to dominate the enterprise-quality server market, Microsoft Windows systems are

still the predominant systems used on the desktop.

The major features needed to integrate Samba servers into a large enterprise with many

Microsoft Windows desktops are related to authentication. Most large enterprises use Micro-

soft Active Directory Services (ADS) servers for authentication. On the Linux side, that

means configuring Kerberos on the Linux system and using ADS (instead of user) for the

type of security in the smb.conf file.

The advantage of central authentication is that users only have to remember one set of

 credentials throughout the enterprise, and system administrators need to manage fewer

user accounts and passwords.

Summary
Because of the popularity of Windows desktops, Samba servers have become popular for

sharing files and printers among Windows and Linux systems. Samba provides a way to

interoperate with Windows systems by implementing the Server Message Block (SMB) or

Common Internet File System (CIFS) protocol for sharing resources over a network.

This chapter stepped through the process of installing, starting, securing, configuring, and

accessing Samba servers on a Linux system. Using command-line tools, I demonstrated how

NOTE

To access Samba shares from macOS, in the Finder app, select Connect to Server from the Go menu. In the Connect

to Server window, you can type smb://host/share and click Connect.

Chapter 19: Con�guring a Windows File Sharing (Samba) Server

445

19

to set up a Samba server. I showed you both command-line and desktop tools for getting to

Samba shares from Linux and Windows systems.

The next chapter describes the Network File System (NFS) facility. NFS is the native Linux

facility for sharing and mounting filesystems over networks with other Linux and UNIX

systems.

Exercises
The exercises in this section describe tasks related to setting up a Samba server in Linux

and accessing that server using a Samba client. As usual, there are often several ways to

accomplish some of the tasks here. So don’t worry if you don’t go about the exercises in

exactly the same way as shown in the answers, as long as you get the same results. See

Appendix A for suggested solutions.

Don’t do these exercises on a Linux system running a Samba server because they will

almost certainly interfere with that server. These exercises were tested on an Ubuntu

system. Some of the steps might be slightly different on another Linux system.

1. Install the samba and samba-client packages.

2. Start and enable the smb and nmb services.

3. Set the Samba server’s workgroup to TESTGROUP and the server string to Samba

Test System.

4. Add a Linux user named phil to your system, and add a Linux password and

Samba password for phil.

5. Set the [homes] section so that home directories are browseable (yes) and write-

able (yes) and phil is the only valid user.

6. From the local system, use the smbclient command to list that the homes share

is available.

7. From a Nautilus (file manager) window on the local system, connect to the homes

share for the user phil on the local Samba server in a way that allows you to drag

and drop files to that folder.

447

CHAP T ER

20
Con�guring an NFS File Server

IN THIS CHAPTER

Getting NFS server software

Enabling and starting NFS

Exporting NFS directories

Setting security features for NFS

Mounting remote NFS shared directories

I
nstead of representing storage devices as drive letters (A:, B:, C:, and so on), as they are in

 Microsoft operating systems, Linux systems invisibly connect �lesystems from multiple hard

disks, USB drives, CD-ROMs, and other local devices to form a single Linux �lesystem. The Net-

work File System (NFS) facility enables you to extend your Linux �lesystem to connect �lesystems

on other computers to your local directory structure.

An NFS �le server provides an easy way to share large amounts of data among the users and com-

puters in an organization. An administrator of a Linux system that is con�gured to share its �lesys-

tems using NFS has to perform the following tasks to set up NFS:

1. Set up the network. NFS is typically used on private networks as opposed to public net-

works, such as the Internet.

2. Start the NFS service. Several service daemons need to start up and run to have a fully

operational NFS service. On Ubuntu, you can start up the nfs-server service.

3. Choose what to share from the server. Decide which directories (folders) on your Linux

NFS server to make available to other computers. You can choose any point in the �lesys-

tem and make all �les and directories below that point accessible to other computers.

4. Set up security on the server. You can use several different security features to apply the

level of security with which you are comfortable. Mount-level security enables you to restrict

the computers that can mount a resource and, for those allowed to mount it, enables you

to specify whether it can be mounted read/write or read-only. In NFS, user-level security is

implemented by mapping users from the client systems to users on the NFS server (based on

UID and not username) so that they can rely on standard Linux read/write/execute permis-

sions, �le ownership, and group permissions to access and protect �les.

Part IV: Becoming a Linux Server Administrator

448

5. Mount the �lesystem on the client. Each client computer that is allowed access

to the server’s NFS shared �lesystem can mount it anywhere the client chooses. For

example, you may mount a �lesystem from a computer called oak on the /mnt/

oak directory in your local �lesystem. After it is mounted, you can view the con-

tents of that directory by typing ls /mnt/oak.

Although it is often used as a �le server (or other type of server), Linux is a general-purpose

operating system, so any Linux system can share, or export, �lesystems as a server or use

another computer’s �lesystems (mount) as a client.

If you already have the NFS and Cockpit services running on your system, you can mount NFS

shares and view mounted shares from the Cockpit Web UI. Here’s how to do that:

1. Log in to your Cockpit interface (port 9090) through your web browser and select

Storage. The URL to get to storage in the Cockpit service on your local system

should be something like https://host1.example.com:9090/storage.

2. If there are mounted NFS shares on your system, they should appear under the NFS

Mounts section.

3. To mount a remote NFS share, select the plus (+) sign on the NFS Mounts line. Fill in

the address or hostname of the NFS server, the shared directory on the NFS share,

and the point on the local �lesystem where you will mount that share. Then select

Add, as shown in Figure 20.1.

At this point, you should be able to access the content from the remote NFS share from the

mount point on your local �lesystem. By default, the NFS mount information is added to the

/etc/fstab �le, so the NFS share will be made available each time the system reboots. Now

that you have seen the easy way to use NFS, the rest of the chapter describes how to use NFS

from the ground up.

Installing an NFS Server
To run an NFS server, you need a set of kernel modules (which are delivered with the kernel

itself) plus some user-level tools to con�gure the service, run daemon processes, and query

the service in various ways. Everything you’ll need will be included with the nfs-kernel-

server package:

apt install nfs-kernel-server

NOTE

A filesystem is usually a structure of �les and directories that exists on a single device (such as a hard disk partition

or CD-ROM). The term Linux filesystem refers to the entire directory structure (which may include �lesystems

from several disk partitions, NFS, or a variety of network resources), beginning from root (/) on a single computer.

A shared directory in NFS may represent all or part of a computer’s �lesystem, which can be attached (from the shared

directory down the directory tree) to another computer’s �lesystem.

https://host1.example.com:9090/storage

Chapter 20: Con�guring an NFS File Server

449

20

Besides a few documents in the /usr/share/doc/nfs-common and /usr/share/doc/

nfs-kernel-server directories, most documentation for the package comes with the

man pages for its various components.

There are tools and man pages for both the NFS server side (for sharing a directory with

others) and the client side (for mounting a remote NFS directory locally). To con�gure a

server, you can refer to the exports man page (to set up the /etc/exports �le to share

your directories). The man page for the exportfs command describes how to share and

view the list of directories that you share from the /etc/exports �le.

Man pages on the client side include the mount.nfs man page (to see what mount options

you can use when mounting remote NFS directories on your local system). There is also an

nfsmount.conf man page, which describes how to use the /etc/nfsmount.conf �le to

con�gure how your system behaves when you mount remote resources locally. The show-

mount man page describes how to use the showmount command to see what shared direc-

tories are available from NFS servers.

Starting the NFS Service
As with other systemd services, you control your NFS server using systemctl running

against nfs-server:

FIGURE 20.1

Add a new NFS mount using Cockpit Web UI.

Part IV: Becoming a Linux Server Administrator

450

$ systemctl status nfs-server
∙ nfs-server.service - NFS server and services
 Loaded: loaded (/lib/systemd/system/nfs-server.service; enabled;
vendor prese
 Active: active (exited) since Sun 2020-04-05 14:25:12 UTC; 35min ago
 Main PID: 15282 (code=exited, status=0/SUCCESS)
 Tasks: 0 (limit: 1108)
 CGroup: /system.slice/nfs-server.service

Apr 05 14:25:12 ubuntu systemd[1]: Starting NFS server and services...
Apr 05 14:25:12 ubuntu systemd[1]: Started NFS server and services.

You can see from the status that the nfs-server service is enabled and active. Peeking

inside the /etc/systemd/system/multi-user.target.wants/nfs-server.ser-

vice �le shows us that the NFS service also requires that the RPC service be running

(rpcbind). The nfs-server service automatically starts the rpcbind service, if it is not

already running.

$ cat /etc/systemd/system/multi-user.target.wants/nfs-server.service
[Unit]
Description=NFS server and services
DefaultDependencies=no
Requires=network.target proc-fs-nfsd.mount
Requires=nfs-mountd.service
Wants=rpcbind.socket
Wants=nfs-idmapd.service
[...]

Sharing NFS Filesystems
To share an NFS �lesystem from your Linux system, you need to export it from the server

system. Exporting is done in Linux by adding entries into the /etc/exports �le. Each

entry identi�es a directory in your local �lesystem that you want to share with other com-

puters. The entry also identi�es the other computers that can access the resource (or opens

it to all computers) and includes other options that re�ect permissions associated with the

directory.

Remember that when you share a directory, you are sharing all �les and subdirectories

below that directory as well (by default). You need to be sure that you want to share every-

thing in that directory structure. You can still restrict access within that directory struc-

ture in many ways; those are discussed later in this chapter.

Con�guring the /etc/exports �le
To make a directory from your Linux system available to other systems, you need to export

that directory. Exporting is done on a permanent basis by adding information about an

exported directory to the /etc/exports �le.

Chapter 20: Con�guring an NFS File Server

451

20

Here’s the format of the /etc/exports �le:

Directory Host(Options...) Host(Options...) # Comments

In this example, Directory is the name of the directory that you want to share, and

Host indicates the client computer to which the sharing of this directory is restricted.

Options can include a variety of options to de�ne the security measures attached to the

shared directory for the host. (You can repeat Host and Option pairs.) Comments are any

optional comments that you want to add (following the # sign).

The exports man page (man exports) contains details about the syntax of the /etc/

exports �le. In particular, you can see the options that you can use to limit access and

secure each shared directory.

As root user, you can use any text editor to con�gure /etc/exports to modify shared

directory entries or add new ones. Here’s an example of an /etc/exports �le:

/cal *.linuxtoys.net(rw) # Company events
/pub *(ro,insecure,all_squash) # Public dir
/home maple(rw,root_squash) spruce(rw,root_squash)

The /cal entry represents a directory that contains information about events related to

the company. Any computer in the company’s domain (*.linuxtoys.net) can mount that

NFS share. Users can write �les to the directory as well as read them (indicated by the rw

option). The comment (# Company events) simply serves to remind you of what the

directory contains.

The /pub entry represents a public directory. It allows any computer and user to read

�les from the directory (indicated by the ro option) but not to write �les. The insecure

option enables any computer, even one that doesn’t use a secure NFS port, to access the

directory. The all_squash option causes all users (UIDs) and groups (GIDs) to be mapped

to the nobody user (UID 65534), giving them minimal permission to �les and directories.

The /home entry enables a set of users to have the same /home directory on different

computers. Suppose, for example, that you are sharing /home from a computer named oak.

The computers named maple and spruce could each mount that directory on their own /

home directories. If you gave all users the same username/UID on all machines, you could

have the same /home/user directory available for each user, regardless of which computer

they are logged in to. The root_squash is used to exclude the root user from another

computer from having root privilege to the shared directory.

These are just examples; you can share any directories that you choose, including the

entire �lesystem (/). Of course, there are security implications of sharing the whole �lesys-

tem or sensitive parts of it (such as /etc). Security options that you can add to your /etc/

exports �le are described throughout the sections that follow.

Hostnames in /etc/exports

You can use the /etc/exports �le to de�ne which host computers can have access to

your shared directory. If you want to associate multiple hostnames or IP addresses with a

http://linuxtoys.net

Part IV: Becoming a Linux Server Administrator

452

particular shared directory, be sure to leave a space before each hostname. However, add no

spaces between a hostname and its options. Here’s an example:

/usr/local maple(rw) spruce(ro,root_squash)

Notice that there is a space after (rw) but none after maple. You can identify hosts in

several ways:

Individual host Enter one or more TCP/IP hostnames or IP addresses. If the host is

in your local domain, you can simply indicate the hostname. Otherwise, use the full

host.domain format. These are valid ways to indicate individual host computers:

 maple
 maple.handsonhistory.com
 10.0.0.11

IP network Allow access to all hosts from a particular network address by indicating

a network number and its netmask, separated by a slash (/). Here are valid ways to

designate network numbers:

 10.0.0.0/255.0.0.0 172.16.0.0/255.255.0.0
 192.168.18.0/255.255.255.0
 192.168.18.0/24

TCP/IP domain Using wildcards, you can include all or some host computers from a

particular domain level. Here are some valid uses of the asterisk and question mark

wildcards:

 *.handsonhistory.com
 *craft.handsonhistory.com
 ???.handsonhistory.com

The �rst example matches all hosts in the handsonhistory.com domain. The second

example matches woodcraft, basketcraft, or any other hostnames ending in

craft in the handsonhistory.com domain. The �nal example matches any three-

letter hostnames in the domain.

NIS groups You can allow access to hosts contained in an NIS group. To indicate an

NIS group, pre�x the group name with an at (@) sign (for example, @group).

Access options in /etc/exports

You don’t have to just give away your �les and directories when you export a directory with

NFS. In the options part of each entry in /etc/exports, you can add options that allow or

limit access by setting read/write permission. These options, which are passed to NFS, are

as follows:

ro: Client can mount this exported �lesystem read-only. The default is to mount the

�lesystem read/write.

rw: Explicitly asks that a shared directory be shared with read/write permissions. (If

the client chooses, it can still mount the directory as read-only.)

http://handsonhistory.com
http://handsonhistory.com

Chapter 20: Con�guring an NFS File Server

453

20

User mapping options in /etc/exports

In addition to options that de�ne how permissions are handled generally, you can use

options to set the permissions that speci�c users have to NFS shared �lesystems.

One method that simpli�es this process is to have each user with multiple user accounts

have the same username and UID on each machine. This makes it easier to map users so

they have the same permissions on a mounted �lesystem as they do on �les stored on their

local hard disks. If that method is not convenient, user IDs can be mapped in many other

ways. Here are some methods of setting user permissions and the /etc/exports option

that you use for each method:

root user The client’s root user is mapped by default into the nobody username

(UID 65534). This prevents a client computer’s root user from being able to change

all �les and directories in the shared �lesystem. If you want the client’s root user

to have root permission on the server, use the no_root_squash option.

nfsnobody or nobody user/group By using the 65534 user ID and group ID, you

essentially create a user/group with permissions that do not allow access to �les

that belong to any real users on the server, unless those users open permission to

everyone. However, �les created by the 65534 user or group are available to any-

one assigned as the 65534 user or group. To set all remote users to the 65534 user/

group, use the all_squash option.

The 65534 UIDs and GIDs are used to prevent the ID from running into a valid user

or group ID. Using anonuid or anongid options, you can change the 65534 user

or group, respectively. For example, anonuid=175 sets all anonymous users to UID

175, and anongid=300 sets the GID to 300. (Only the number is displayed when you

list �le permissions unless you add entries with names to /etc/passwd and /etc/

group for the new UIDs and GIDs.)

User mapping If a user has login accounts for a set of computers (and has the

same ID), NFS, by default, maps that ID. This means that if the user named mike

(UID 110) on maple has an account on pine (mike, UID 110), he can use his own

remotely mounted �les on either computer from either computer.

If a client user who is not set up on the server creates a �le on the mounted NFS

directory, the �le is assigned to the remote client’s UID and GID. (Running ls -l

on the server shows the UID of the owner.)

TIP

Keep in mind that even though root is squashed, the root user from the client can still become any other user

account and access �les for those user accounts on the server. So, be sure that you trust root with all of your user

data before you share it read/write with a client.

Part IV: Becoming a Linux Server Administrator

454

Exporting the shared �lesystems
After you have added entries to your /etc/exports �le, run the exportfs command

to have those directories exported (made available to other computers on the network).

Updates will also be applied whenever you reboot your computer or restart the NFS ser-

vice—the exportfs command will run automatically to export your directories.

Here’s an example of the exportfs command:

/usr/sbin/exportfs -a -r -v
exporting maple:/pub
exporting spruce:/pub
exporting maple:/home
exporting spruce:/home
exporting *:/mnt/win

The -a option indicates that all directories listed in /etc/exports should be exported.

The -r resyncs all exports with the current /etc/exports �le (disabling those exports no

longer listed in the �le). The -v option says to print verbose output. In this example, the /

pub and /home directories from the local server are immediately available for mounting by

those client computers that are named (maple and spruce). The /mnt/win directory is

available to all client computers.

Securing Your NFS Server
The NFS facility was created at a time when encryption and other security measures were not

routinely built into network services (such as remote login, �le sharing, and remote execu-

tion). Therefore, NFS (even up through version 3) suffers from some rather glaring secu-

rity issues.

NFS security issues made it an inappropriate facility to use over public networks and even

made it dif�cult to use securely within an organization. These are some of the issues:

Remote root users Even with the default root_squash (which prevents root

users from having root access to remote shares), the root user on any machine to

which you share NFS directories can gain access to any other user account. There-

fore, if you are doing something like sharing home directories with read/write per-

mission, the root user on any box to which you are sharing has complete access to

the contents of those home directories.

Unencrypted communications Because NFS traf�c is unencrypted, anyone snif�ng

your network can see the data that is being transferred.

TIP

Running the exportfs command after you change the exports �le is a good idea. If any errors are in the �le,

exportfs identi�es them for you.

Chapter 20: Con�guring an NFS File Server

455

20

User mapping Default permissions to NFS shares are mapped by user ID. So, for

example, a user with UID 1000 on an NFS client has access to �les owned by UID

1000 on the NFS server. This is regardless of the usernames used.

Filesystem structure exposed Up to NFSv3, if you shared a directory over NFS, you

exposed the location of that directory on the server’s �lesystem. (In other words, if

you shared the /var/stuff directory, clients would know that /var/stuff was

its exact location on your server.)

That’s the bad news. The good news is that most of these issues are addressed in NFSv4 but

require some extra con�guration. By integrating Kerberos support, NFSv4 lets you con�gure

user access based on each user obtaining a Kerberos ticket. For you, the extra work is con-

�guring a Kerberos server. As for exposing NFS share locations, with NFSv4 you can bind

shared directories to an /exports directory, so when they are shared, the exact location

of those directories is not exposed.

Visit help.ubuntu.com/community/NFSv4Howto for details on NFSv4 features in Ubuntu.

As for standard Linux security features associated with NFS, iptables �rewalls, and

TCP wrappers can all play a role in securing and providing access to your NFS server from

remote clients. In particular, getting �rewall features working with NFS can be particularly

challenging. We’ll be discussing �rewalls in Chapter 25, “Securing Linux on a Network.” But

we’ll talk about TCP wrappers right here.

For network services such as vsftpd, sshd, and NFS, TCP wrappers in Linux enable you

to add information to /etc/hosts.allow and /etc/hosts.deny �les to indicate which

hosts can or cannot access the service. Although the nfsd server daemon itself is not

enabled for TCP wrappers, the rpcbind service is.

For NFSv3 and earlier versions, simply adding a line such as the following to the /etc/

hosts.deny �le would deny access to the rpcbind service, but it would also deny access

to your NFS service:

rpcbind: ALL

For servers running NFSv4 by default, however, the rpcbind: ALL line just shown prevents

outside hosts from getting information about RPC services (such as NFS) using commands like

showmount. However, it does not prevent you from mounting an NFS shared directory.

Using NFS Filesystems
After a server exports a directory over the network using NFS, a client computer connects

that directory to its own �lesystem using the mount command. That’s the same command

used to mount �lesystems from local hard disks, DVDs, and USB drives, but with slightly

different options.

The mount command enables a client to mount NFS directories added to the /etc/fstab

�le automatically, just as it does with local disks. NFS directories can also be added to the

http://help.ubuntu.com/community/NFSv4Howto

Part IV: Becoming a Linux Server Administrator

456

/etc/fstab �le in such a way that they are not automatically mounted (so you can mount

them manually when you choose). With a noauto option, an NFS directory listed in /etc/

fstab is inactive until the mount command is used, after the system is up and running,

to mount the �lesystem.

In addition to the /etc/fstab �le, you can set mount options using the /etc/nfs-

mount.conf �le. Within that �le, you can set mount options that apply to any NFS direc-

tory you mount or only those associated with speci�c mount points or NFS servers.

Before you set about mounting NFS shared directories, however, you probably want to check

out what shared directories are available via NFS using the showmount command.

Viewing NFS shares
From a client Linux system, you can use the showmount command to see what shared

directories are available from a selected computer, such as in this example:

$ showmount -e server.example.com
/export/myshare client.example.com
/mnt/public *

The showmount output shows that the shared directory named /export/myshare is

available only to the host client.example.com. The /mnt/public shared directory, however,

is available to anyone.

Manually mounting an NFS �lesystem
After you know that the directory from a computer on your network has been exported

(that is, made available for mounting), you can mount that directory manually using the

mount command. This is a good way to make sure that it is available and working before

you set it up to mount permanently. The following is an example of mounting the /stuff

directory from a computer named maple on your local computer:

mkdir /mnt/maple
mount maple:/stuff /mnt/maple

The �rst command (mkdir) creates the mount point directory. (/mnt is a common place to

put temporarily mounted disks and NFS �lesystems.) The mount command identi�es the

remote computer and shared �lesystem, separated by a colon (maple:/stuff), and the

local mount point directory (/mnt/maple) follows.

NOTE

If the mount fails, make sure that the NFS service is running on the server and that the server’s �rewall rules don’t

deny access to the service. From the server, type ps ax | grep nfsd to see a list of nfsd server processes.

If you don’t see the list, try to start your NFS daemons as described earlier in this chapter. Check your �rewall set-

tings if you’re worried that might be the problem. By default, the nfsd daemon listens for NFS requests on port

number 2049. Your �rewall must accept udp requests on ports 2049 (nfs) and 111 (rpc).

http://client.example.com

Chapter 20: Con�guring an NFS File Server

457

20

To ensure that the NFS mount occurred, type mount -t nfs4. This command lists all

mounted NFS �lesystems. Here is an example of the mount command and its output (with

�lesystems not pertinent to this discussion edited out):

mount -t nfs4
192.168.1.15:/nfsshare on /home/nfs type nfs4 (rw,relatime,vers=4.2,
rsize=131072,wsize=131072,namlen=255,hard,proto=tcp,timeo=600,retrans
=2,sec=sys,clientaddr=192.168.1.11,local_lock=none,addr=192.168.1.15)

The output from the mount -t nfs4 command shows only those �lesystems mounted

from NFS �le servers. The NFS �lesystem is the /nfsshare directory from 192.168.1.15. It’s

mounted on /home/nfs, and its mount type is nfs4. The �lesystem was mounted read/

write (rw). Many other settings related to the mount are shown as well, such as the read

and write sizes of packets and the NFS version number.

The mount operation just shown temporarily mounts an NFS �lesystem on the local system.

The next section describes how to make the mount more permanent (using the /etc/

fstab �le) and how to select various options for NFS mounts.

Mounting an NFS �lesystem at boot time
To set up an NFS �lesystem to mount automatically on a speci�ed mount point each time

you start your Linux system, you need to add an entry for that NFS �lesystem to the /etc/

fstab �le. That �le contains information about all different kinds of mounted (and avail-

able to be mounted) �lesystems for your system.

Here’s the format for adding an NFS �lesystem to your local system:

host:directory mountpoint nfs options 0 0

The �rst item (host:directory) identi�es the NFS server computer and shared direc-

tory. mountpoint is the local mount point on which the NFS directory is mounted. It is

followed by the �lesystem type (nfs). Any options related to the mount appear next in a

comma-separated list. (The last two zeros con�gure the system not to dump the contents of

the �lesystem and not to run fsck on the �lesystem.)

The following are examples of NFS entries in /etc/fstab:

maple:/stuff /mnt/maple nfs bg,rsize=8192,wsize=8192 0 0
oak:/apps /oak/apps nfs noauto,ro 0 0

In the �rst example, the remote directory /stuff from the computer named maple

(maple:/stuff) is mounted on the local directory /mnt/maple (the local directory must

already exist). If the mount fails because the share is unavailable, the bg causes the mount

attempt to go into the background and retry again later.

The �lesystem type is nfs, and read (rsize) and write (wsize) buffer sizes (discussed

in the section “Using mount options,” later in this chapter) are set at 8192 to speed data

transfer associated with this connection. In the second example, the remote directory is

/apps on the computer named oak. It is set up as an NFS �lesystem (nfs) that can be

Part IV: Becoming a Linux Server Administrator

458

mounted on the /oak/apps directory locally. This �lesystem is not mounted automati-

cally (noauto), however, and it can be mounted only as read-only (ro) using the mount

command after the system is already running.

Mounting noauto �lesystems

Your /etc/fstab �le may also contain devices for other �lesystems that are not mounted

automatically. For example, you might have multiple disk partitions on your hard disk or an

NFS shared �lesystem that you want to mount only occasionally. A noauto �lesystem can

be mounted manually. The advantage is that when you type the mount command, you can

type less information and have the rest �lled in by the contents of the /etc/fstab �le.

So, for example, you could type

mount /oak/apps

With this command, mount knows to check the /etc/fstab �le to get the �lesystem to

mount (oak:/apps), the �lesystem type (nfs), and the options to use with the mount (in

this case ro, for read-only). Instead of typing the local mount point (/oak/apps), you

could have typed the remote �lesystem name (oak:/apps) and had other information

�lled in.

Using mount options

You can add several mount options to the /etc/fstab �le (or to a mount command line

itself) to in�uence how the �lesystem is mounted. When you add options to /etc/fstab,

they must be separated by commas. For example, here the noauto, ro, and hard options

are used when oak:/apps is mounted:

oak:/apps /oak/apps nfs noauto,ro,hard 0 0

The following are some options that are valuable for mounting NFS �lesystems. You can

read about these and other NFS mount options you can put in the /etc/fstab �le from

the nfs man page (man 5 nfs):

hard If this option is used, and the NFS server disconnects or goes down while a pro-

cess is waiting to access it, the process hangs until the server comes back up. This

is helpful if it is critical that the data with which you are working stay in sync with

the programs that are accessing it. (This is the default behavior.)

TIP

The default is to mount an NFS �lesystem as read/write. However, the default for exporting a �lesystem is read-only.

If you are unable to write to an NFS �lesystem, check that it was exported as read/write from the server.

TIP

When naming mount points, incorporating the name of the remote NFS server into that name can help you remember

where the �les are actually being stored. For example, you might mount a �lesystem from a machine called duck on

the directory /mnt/duck.

Chapter 20: Con�guring an NFS File Server

459

20

soft If the NFS server disconnects or goes down, a process trying to access data from

the server times out after a set period when this option is on. An input/output error

is delivered to the process trying to access the NFS server.

rsize This is the size of the blocks of data (in bytes) that the NFS client will request

be used when it is reading data from an NFS server. The default is 1024. Using a

larger number (such as 8192) gets you better performance on a network that is fast

(such as a LAN) and is relatively error-free (that is, one that doesn’t have lots of

noise or collisions).

wsize This is the size of the blocks of data (in bytes) that the NFS client will request

to be used when it is writing data to an NFS server. The default is 1024. Performance

issues are the same as with the rsize option.

timeo=# This sets the time after an RPC time-out occurs that a second transmission

is made, where # represents a number in tenths of a second. The default value is

seven-tenths of a second. Each successive time-out causes the time-out value to be

doubled (up to 60 seconds maximum). Increase this value if you believe that time-

outs are occurring because of slow response from the server or a slow network.

retrans=# This sets the number of minor time-outs and retransmissions that need to

happen before a major time-out occurs.

retry=# This sets how many minutes to continue to retry failed mount requests,

where # is replaced by the number of minutes to retry. The default is 10,000 minutes

(which is about one week).

bg If the �rst mount attempt times out, try all subsequent mounts in the

background. This option is very valuable if you are mounting a slow or sporadically

available NFS �lesystem. When you place mount requests in the background, your

system can continue to mount other �lesystems instead of waiting for the current

one to complete.

fg If the �rst mount attempt times out, try subsequent mounts in the foreground.

This is the default behavior. Use this option if it is imperative that the mount be

successful before continuing (for example, if you were mounting /usr).

Not all NFS mount options need to go into the /etc/fstab �le. On the client side, the

/etc/nfsmount.conf �le can be created or edited to con�gure the MountPoint,

Server, and NFSMount_Global_Options sections. In the Mount section, you can

indicate which mount options are used when an NFS �lesystem is mounted to a particular

NOTE

If a nested mount point is missing, a time-out to allow for the needed mount point to be added occurs. For example,

if you mount /usr/trip and /usr/trip/extra as NFS �lesystems and /usr/trip is not yet mounted when

/usr/trip/extra tries to mount, /usr/trip/extra times out. If you’re lucky, /usr/trip comes up and /

usr/trip/extra mounts on the next retry.

Part IV: Becoming a Linux Server Administrator

460

mount point. The Server section lets you add options to any NFS �lesystem mounted from a

particular NFS server. Global options apply to all NFS mounts from this client.

The following entry in the /etc/nfsmount.conf �le sets a 32KB read and write block

size for any NFS directories mounted from the system named thunder.example.com:

[Server "thunder.example.com"]
 rsize=32k
 wsize=32k

Here are the contents of a typical /etc/nfsmount.conf �le:

[NFSMount_Global_Options]
 Proto=Tcp

[Server “nfsserver.foo.com”]
 rsize=32k
 wsize=32k
 proto=udp6

 [MountPoint “/export/home”]
 Background=True

Using autofs to mount NFS �lesystems on demand
Improvements to autodetecting and mounting removable devices have meant that you can

simply insert or plug in those devices to have them detected, mounted, and displayed.

However, to make the process of detecting and mounting remote NFS �lesystems more

automatic, you still need to use a facility such as autofs (short for automatically mounted

�lesystems).

The autofs facility mounts network �lesystems on demand when someone tries to use the

�lesystems. With the autofs facility con�gured and turned on, you can cause any avail-

able NFS shared directories to mount on demand. To use the autofs facility, you need

to have the autofs package installed. (apt install autofs will get that package

installed.)

Automounting to the /net directory

Even once autofs is enabled, you’ll need to set up a default mount directory in the /etc/

auto.master �le. You can uncomment this line to de�ne /net as the default host:

#/net -hosts

Now, simply change (cd) to the autofs mount directory (/net in this case). This causes

the shared resource to be automatically mounted and made accessible to you.

You should then restart the service using systemctl restart autofs.

Believe it or not, that’s all you have to do. If you have a network connection to the NFS

servers from which you want to share directories, try to access a shared NFS directory.

http://thunder.example.com

Chapter 20: Con�guring an NFS File Server

461

20

For example, if you know that the /usr/local/share directory is being shared from the

computer on your network named shuttle, you can do the following:

$ cd /net/shuttle/

If that computer has any shared directories that are available to you, you can successfully

change to that directory.

You also can type the following:

$ ls
usr

You should be able to see that the usr directory is part of the path to a shared directory. If

there were shared directories from other top-level directories (such as /var or /tmp), you

would see those as well. Of course, seeing any of those directories depends on how security

is set up on the server.

Try going straight to the shared directory as well, as shown in this example:

$ cd /net/shuttle/usr/local/share
$ ls
info man music television

At this point, the ls should reveal the contents of the /usr/local/share directory on

the computer named shuttle. What you can do with that content depends on how it was

con�gured for sharing by the server.

This can be a bit disconcerting because you don’t see any �les or directories until you actu-

ally try to use them, such as changing to a network-mounted directory. The ls command,

for example, doesn’t show anything under a network-mounted directory until the direc-

tory is mounted, which may lead to a sometimes-it’s-there-and-sometimes-it’s-not impres-

sion. Just change to a network-mounted directory, or access a �le on such a directory, and

autofs takes care of the rest.

In the example shown, the hostname shuttle is used. However, you can use any

name or IP address that identi�es the location of the NFS server computer. For example,

instead of shuttle, you might have used shuttle.example.com or an IP address such as

192.168.1.115.

Automounting home directories

Instead of just mounting an NFS �lesystem under the /net directory, you might want to

con�gure autofs to mount a speci�c NFS directory in a speci�c location. For example,

you could con�gure a user’s home directory from a centralized server that could be auto-

mounted from a different machine when a user logs in. Likewise, you could use a central

authentication mechanism, such as LDAP (as described in Chapter 11, “Managing User

Accounts”), to offer centralized user accounts as well.

The following procedure illustrates how to set up a user account on an NFS server and share

the home directory of a user named joe from that server so that it can be automounted

http://shuttle.example.com

Part IV: Becoming a Linux Server Administrator

462

when joe logs in to a different computer. In this example, instead of using a central

authentication server, matching accounts are created on each system.

1. On the NFS server (mynfs.example.com) that provides a centralized user home

directory for the user named joe, create a user account for joe with a home direc-

tory of /home/shared/joe as its name (using the useradd program instead of

adduser will make this go faster). Also �nd joe’s user ID number from the /etc/

passwd �le (third �eld) so that you can match it when you set up a user account

for joe on another system.

 # mkdir /home/shared
 # useradd -c "Joe Smith" -d /home/shared/ joe
 # grep joe /etc/passwd
 joe:x:1000:1000:Joe Smith:/home/shared/joe:/bin/bash

2. On the NFS server, export the /home/shared/ directory to any system on your

local network (I use 192.168.0.* here), so that you can share the home directory for

joe and any other users you create by adding this line to the /etc/exports �le:

 # /etc/exports file to share directories under /home/shared
 # only to other systems on the 192.168.0.0/24 network:
 /home/shared 192.168.0.*(rw,insecure)

3. On the NFS server, restart the nfs-server service, or if it is already running, you

can simply export the shared directory as follows:

 # exportfs -a -r -v

4. On the NFS server, make sure that the appropriate ports are open on the �rewall.

5. On the NFS client system, add an entry to the /etc/auto.master �le that iden-

ti�es the mount point where you want the remote NFS directory to be mounted

and a �le (of your choosing) where you will identify the location of the remote NFS

directory. I added this entry to the auto.master �le:

 /home/remote /etc/auto.joe

6. On the NFS client system, add an entry to the �le you just noted (/etc/auto.joe

is what we used) that contains an entry like the following:

 joe -rw mynfs.example.com:/home/shared/joe

7. On the NFS client system, restart the autofs service:

 # systemctl restart autofs.service

8. On the NFS client system, create a user named joe using the useradd command.

For that command line, you need to get the UID for joe on the server (507 in this

NOTE

In the exports �le example in step 2, the insecure option allows clients to use ports above port 1024 to make

mount requests. Some NFS clients require this because they do not have access to NFS-reserved ports.

http://mynfs.example.com

Chapter 20: Con�guring an NFS File Server

463

20

example) so that joe on the client system owns the �les from joe’s NFS home

directory. When you run the following command, the joe user account is created,

but you will see an error message stating that the home directory already exists

(which is correct):

 # useradd -u 507 -c "Joe Smith" -d /home/remote/joe joe
 # passwd joe
 Changing password for user joe.
 New password: ********
 Retype new password: ********

9. On the NFS client system, log in as joe. If everything is working properly, when

joe logs in and tries to access his home directory (/home/remote/joe), the

directory /home/share/joe should be mounted from the mynfs.example.com

server. The NFS directory was both shared and mounted as read/write with owner-

ship to UID 507 (joe on both systems), so the user joe on the local system should

be able to add, delete, change, and view �les in that directory.

After joe logs off (actually, when he stops accessing the directory) for a time-out period

(10 minutes, by default), the directory is unmounted.

Unmounting NFS Filesystems
After an NFS �lesystem is mounted, unmounting it is simple. You use the umount

command with either the local mount point or the remote �lesystem name. For example,

here are two ways that you could unmount maple:/stuff from the local directory /

mnt/maple:

umount maple:/stuff
umount /mnt/maple

Either form works. If maple:/stuff is mounted automatically (from a listing in /etc/

fstab), the directory is remounted the next time you boot Linux. If it was a temporary

mount (or listed as noauto in /etc/fstab), it isn’t remounted at boot time.

If you get the message device is busy when you try to unmount a �lesystem, it means

that the unmount failed because the �lesystem is being accessed. Most likely, one of the

directories in the NFS �lesystem is the current directory for your shell (or the shell of

someone else on your system). The other possibility is that a command is holding a �le

open in the NFS �lesystem (such as a text editor). Check your Terminal windows and other

shells, and then cd out of the directory if you are in it, or just close the Terminal windows.

TIP

The command is umount, not unmount. This is easy to get wrong.

http://mynfs.example.com

Part IV: Becoming a Linux Server Administrator

464

If an NFS �lesystem doesn’t unmount, you can force it (umount -f /mnt/maple) or

unmount and clean up later (umount -l /mnt/maple). The -l option is usually the

better choice because a forced unmount can disrupt a �le modi�cation that is in progress.

Another alternative is to run fuser -u mountpoint to see what users are holding your

mounted NFS share open and then fuser -k mountpoint to kill all of those processes.

Summary
Network File System (NFS) is one of the oldest computer �le sharing products in exis-

tence today. It is still the most popular for sharing directories of �les between UNIX and

Linux systems. NFS allows servers to designate speci�c directories to make available to

designated hosts and then allows client systems to connect to those directories by mount-

ing them locally.

NFS can be secured using �rewall (iptables) rules, and TCP wrappers (to allow and deny

host access). Although NFS was inherently insecure when it was created (data is shared

unencrypted and user access is fairly open), features in NFS version 4 have helped improve

the overall security of NFS.

This NFS chapter is the last of the book’s server chapters. Chapter 21, “Troubleshooting

Linux,” covers a wide range of desktop and server topics as it helps you understand tech-

niques for troubleshooting your Linux system.

Exercises
Exercises in this section take you through tasks related to con�guring and using an NFS

server in Linux. If possible, have two Linux systems available that are connected on a local

network. One of those Linux systems will act as an NFS server while the other will be an

NFS client.

To get the most from these exercises, I recommend that you don’t use a Linux server that

has NFS already up and running. You can’t do all of the exercises here without disrupting

an NFS service that is already running and sharing resources.

See Appendix A for suggested solutions.

1. On the Linux system you want to use as an NFS server, install the packages needed

to con�gure an NFS service.

2. What �le will contain all the requirements for the NFS server process?

3. On the NFS server, determine the name of the NFS service and start it.

4. On the NFS server, check the status of the NFS service you just started.

5. On the NFS server, create the /var/mystuff directory and share it from your

NFS server with the following attributes: available to everyone, read-only, and the

root user on the client has root access to the share.

Chapter 20: Con�guring an NFS File Server

465

20

6. On a second Linux system (NFS client), view the shares available from the NFS

server. (If you don’t have a second system, you can do this from the same system.)

If you do not see the shared NFS directory, go back to the previous question and

try again.

7. On the NFS client, create a directory called /var/remote and temporarily mount

the /var/mystuff directory from the NFS server on that mount point.

8. On the NFS client, unmount /var/remote, add an entry so that the same mount

is done automatically when you reboot (with a bg mount option), and test that the

entry you created is working properly.

9. From the NFS server, copy some �les to the /var/mystuff directory. From the NFS

client, make sure that you can see the �les just added to that directory and make

sure that you can’t write �les to that directory from the client.

467

CHAP T ER

21
Troubleshooting Linux

IN THIS CHAPTER

Troubleshooting boot loaders

Troubleshooting system initialization

Fixing software packaging problems

Checking network interface issues

Dealing with memory problems

I
n any complex operating system, lots of things can go wrong. You can fail to save a file because

you are out of disk space. An application can crash because the system is out of memory. The

system can fail to boot up properly for, well, lots of different reasons.

In Linux, the dedication to openness, and the focus on making the software run with maximum

efficiency, has led to an amazing number of tools that you can use to troubleshoot every imaginable

problem. In fact, if the operating system isn’t working as you would like, you even rewrite the code

yourself (although I don’t cover how to do that here).

This chapter takes on some of the most common problems that you can run into on a Linux system,

and it describes the tools and procedures that you can use to overcome those problems. Topics are bro-

ken down by category, including the boot process, software packages, networking, and memory issues.

Boot-Up Troubleshooting
Before you can begin troubleshooting a running Linux system itself, that system needs to boot up.

For a Linux system to boot up, a series of things has to happen. A Linux system installed directly

on a PC architecture computer goes through the following steps:

 ■ Turning on the power

 ■ Starting the hardware (from Basic Input/Output System [BIOS] or Unified Extensible

 Firmware Interface [UEFI] firmware)

 ■ Finding the location of the boot loader and starting it

 ■ Choosing an operating system from the boot loader

Part IV: Becoming a Linux Server Administrator

468

 ■ Starting the kernel and initial RAM disk for the selected operating system

 ■ Starting the initialization process (systemd)

 ■ Starting all of the services associated with the selected level of activity

(default target)

The exact activities that occur at each of these points have undergone a transformation in

recent years. Boot loaders are changing to accommodate new kinds of hardware. The ini-

tialization process is changing so that services can start more efficiently, based on depen-

dencies and in reaction to the state of the system (such as what hardware is plugged in or

what files exist) rather than a static boot order.

Troubleshooting the Linux boot process begins when you turn on your computer, and it

ends when all of the services are up and running. At that point, typically a graphical or

text-based login prompt is available from the console, ready for you to log in.

After reading the short descriptions of startup methods, go to the section “Starting from

the firmware (BIOS or UEFI)” in order to understand what happens at each stage of the boot

process and where you might need to troubleshoot.

Understanding startup
It’s up to the individual Linux distribution how the services associated with the running

Linux system are started. After the boot loader starts the kernel, how the rest of the activ-

ities (mounting filesystems, setting kernel options, running services, and so on) are done is

all managed by the initialization process.

So it makes sense to begin with systemd’s initialization functionality.

The systemd facility is quickly becoming the present and future of the initialization

process for many Linux systems. Back in 2015, it replaced Upstart in Debian and Ubuntu

(version 15.04). Although systemd is more complex than the older System V init, it also

offers many more features, including:

Targets Instead of runlevels, systemd focuses on targets. A target can start a set

of services as well as create or start other types of units (such as directory mounts,

sockets, swap areas, and timers).

System V compatibility There are targets that align with System V runlevels, if you

are used to dealing with runlevels. For example, graphical.target aligns with

runlevel 5 while multi-user.target is essentially runlevel 3. However, there

are many more targets than runlevels, giving you the opportunity to manage sets

of units more finely. Likewise, systemd supports System V init scripts and com-

mands, such as chkconfig and service for manipulating those services if System

V init services happen to be installed.

Dependency-based startup When the system starts up, any service in the default

target (graphical.target for desktops and multi-user.target for most

servers) that has had its dependencies met can start. This feature can speed up the

boot process by ensuring that a single stalled service doesn’t stall other services

from starting if they don’t need the stalled service.

Chapter 21: Troubleshooting Linux

469

21

Resource usage With systemd, you can use cgroups to limit how much of your

system’s resources are consumed by a service. For example, you can limit the

amount of memory, CPU, or other resources an entire service can consume, so a run-

away process or a service that spins off an unreasonable number of child processes

cannot consume more than the entire service is allowed.

When a systemd-enabled Linux system starts up, the first running process (Process

ID [PID] 1) is the systemd daemon (instead of the init daemon). Later, the primary

command for managing systemd services is the systemctl command. Managing

 systemd journal (log) messages is done with the journalctl command. You also have

the ability to use old-style System V init commands such as init, poweroff, reboot,

runlevel, and shutdown to manage services.

Starting from the �rmware (BIOS or UEFI)
When you physically turn on a computer, firmware is loaded to initialize the hardware and

find an operating system to boot. On PC architectures, that firmware has traditionally been

referred to as BIOS (Basic Input Output System). In recent years, a new type of firmware

called UEFI (Unified Extensible Firmware Interface) has become available to replace BIOS on

some computers. The two are mutually exclusive.

UEFI was designed to allow a secure boot feature, which can be used to ensure that only

operating systems whose components have been signed can be used during the boot process.

UEFI can still be used with non-signed operating systems by disabling the secure boot feature.

For Ubuntu, secure boot was first supported in 12.04.2. The main job of BIOS and UEFI firm-

ware is to initialize the hardware and then hand off control of the boot process to a boot

loader. The boot loader then finds and starts the operating system. After an operating system

is installed, you should typically just let the firmware do its work and not interrupt it.

There are, however, occasions when you want to interrupt the firmware. For this discus-

sion, we focus on how BIOS generally works. Right after you turn on the power, you should

see a BIOS screen that usually includes a few words noting how to go into Setup mode and

change the boot order. If you press the function key noted (often F1, F2, or F12) to choose

one of those two items, here’s what you can do:

Setup utility The setup utility lets you change settings in the BIOS. These settings

can be used to enable or disable certain hardware components or turn on or off

selected hardware features.

Boot order Computers are capable of starting an operating system—or more specifi-

cally, a boot loader that can start an operating system—from any one of several dif-

ferent devices attached to the computer. Those devices can include a CD drive, DVD

drive, hard disk, USB drive, or network interface card. The boot order defines the

order in which those devices are checked. By modifying the boot order, you can tell

the computer to ignore the default boot order temporarily and try to boot from the

device that you select.

Part IV: Becoming a Linux Server Administrator

470

It’s common to need to press the F2, F9, or Del key to go to into Setup, or F12 to change

the boot order temporarily. The next sections explore what you can troubleshoot from the

Setup and Boot Order screens.

Troubleshooting BIOS setup

As we already noted, you can usually let the BIOS start without interruption and have the

system boot up to the default boot device (probably the hard drive). However, here are some

instances when you may want to go into Setup mode and change something in the BIOS:

To see an overview of your hardware If your problem is hardware related, the BIOS

setup is a great place to start examining your system. The Setup screen tells you the

type of system, its BIOS version, its processors, its memory slots and types, whether

it is 32-bit or 64-bit, which devices are in each slot, and many details about the

types of devices attached to the system.

If you can’t get an operating system booted at all, the BIOS Setup screen may be

the only way to determine the system model, processor type, and other information

you’ll need to search for help or call for support.

To disable/enable a device Most devices connected to your computer are enabled

and made available for use by the operating system. To troubleshoot a problem, you

may need to disable a device.

For example, let’s say that your computer has two network interface cards (NICs).

You want to use the second NIC to install Linux over a network, but the installer

keeps trying to use the first NIC to connect to the network. You can disable the first

NIC so that the installer doesn’t even see it when it tries to connect to the network.

Or, you can keep the NIC visible to the computer but simply disable the NIC’s ability

to Preboot Execution Environment (PXE) boot.

Maybe you have a plug-in audio card and you want to disable the integrated audio

on the motherboard. That can be done in the BIOS as well.

Conversely, sometimes you want to enable a device that has been disabled. Per-

haps you were given a computer that had a device disabled in the BIOS. From the

operating system, for example, it may look like you don’t have front USB ports or a

CD drive. Looking at the BIOS tells you whether those devices are not available sim-

ply because they have been disabled in the BIOS.

To change a device setting Sometimes, the default settings that come in your BIOS

don’t work for your situation. You might want to change the following settings

in the BIOS:

NIC PXE boot settings Most modern NICs are capable of booting from servers

found on the network. If you need to do that, and you find that the NIC doesn’t

come up as a bootable device on your Boot Order screen, you may have to enable

that feature in the BIOS.

Chapter 21: Troubleshooting Linux

471

21

Virtualization settings If you want to run a Linux system as a virtual host, the

computer’s CPU must include Intel Virtual Technology or AMD Secure Virtual

Machine (SVM) support. It is possible, however, that even if your CPU comes

with this support, it may not be enabled in the BIOS. To enable it, go to the BIOS

Setup screen and look for a Virtualization selection (possibly under the Perfor-

mance category). Make sure that it is set to On.

Troubleshooting boot order

Depending on the hardware attached to your computer, a typical boot order might boot a

CD/DVD drive first, then the hard drive, then a USB device, and finally the network inter-

face card. The BIOS would go to each device, looking for a boot loader in the device’s master

boot record. If the BIOS finds a boot loader, it starts it. If no boot loader is located, the

BIOS moves on to the next device until all are tried. If no boot loader is found, the com-

puter fails to boot.

One problem that could occur with the boot order is that the device you want to boot may

not appear in the boot order at all. In that case, going to the Setup screen, as described in

the previous section, either to enable the device or change a setting to make it bootable,

may be the thing to do.

If the device from which you want to boot does appear in the boot order, typically you just

have to move the arrow key to highlight the device you want and press Enter. The following

are reasons for selecting your own device to boot:

Recovery mode If Linux does not boot from the hard disk, selecting the CD drive or

a USB drive allows you to boot to a recovery mode that can help you repair the hard

disk on an unbootable system.

Fresh install Sometimes, the boot order has the hard disk listed first. If you decide

that you need to do a fresh install of the operating system, you need to select the

boot device that is holding your installation medium (CD, DVD, USB, or NIC).

Assuming that you get past any problems you have with the BIOS, the next step is for the

BIOS to start the boot loader.

GRUB 2 boot loader
Follow these instructions for interrupting the GNU GRand Unified Bootloader (GRUB) boot

prompt for the most recent Ubuntu systems:

1. After you turn on your computer and just after you see the BIOS screen, press the

Shift key. You should see several menu items representing different kernels to boot.

2. From the available entries, the default is to boot the latest available kernel, which

should be highlighted and ready to boot. However, you can choose a different entry

if any of the following applies:

 ■ The current kernel is broken, and you want to choose an older kernel that you

know is working.

Part IV: Becoming a Linux Server Administrator

472

 ■ You want to run an entry that represents a totally different operating system

that is installed on your disk.

 ■ You want to run a rescue kernel.

3. Assuming you want to run a Linux kernel, highlight the kernel you want (using

up and down arrows) and type e. You will see commands that are run to start the

system, as shown in Figure 21.1.

4. To add arguments to the kernel, move your cursor to the end of the line beginning

with “linux” and type the arguments you want. See kernel.org/doc/Documenta-

tion/admin-guide/kernel-parameters.txt for a list of kernel parameters.

5. Once you are done adding arguments, press Ctrl+X to boot the system with the

kernel arguments you added.

Starting the kernel
After the kernel starts, there isn’t much to do except to watch out for potential problems.

If you want to watch messages detailing the boot process scroll by rather than the colorful

splash screen, press the Esc key.

FIGURE 21.1

Interrupt the GRUB boot loader to modify the boot process.

http://kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
http://kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

Chapter 21: Troubleshooting Linux

473

21

At this point, the kernel tries to load the drivers and modules needed to use the hard-

ware on the computer. The main things to look for at this point (although they may scroll

by quickly) are hardware failures that may prevent some feature from working properly.

Although much rarer than it used to be, there may be no driver available for a piece of

hardware, or the wrong driver may get loaded and cause errors. The messages appear as

components are detected, such as your CPU, memory, network cards, hard drives, and so on.

In addition to scrolling past on the screen, messages produced when the kernel boots are

copied to the kernel ring buffer. As its name implies, the kernel ring buffer stores kernel

messages in a buffer, throwing out older messages after that buffer is full. After the com-

puter boots up completely, you can log in to the system and enter the following command

to capture these kernel messages in a file (then view them with the less command):

$ dmesg > /tmp/kernel_msg.txt
$ less /tmp/kernel_msg.txt

I like to direct the kernel messages into a file (choose any name you like) so that the mes-

sages can be examined later or sent to someone who can help debug any problems.

In Linux systems that support systemd, kernel messages are stored in the systemd

journal. So, besides the dmesg command, you can also run journalctl to see kernel

messages from boot time to the present. For example, here are kernel messages output from

an Ubuntu 20.04 system:

$ journalctl -k
-- Logs begin at Tue 2019-05-07 09:16:36 EDT, end at Sun 2020-04-05 21:11:32 EDT
Apr 05 07:47:44 workstation kernel: Linux version 5.3.0-45-generic (buildd@lcy01
Apr 05 07:47:44 workstation kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-5.3.0
Apr 05 07:47:44 workstation kernel: KERNEL supported cpus:
Apr 05 07:47:44 workstation kernel: Intel GenuineIntel
Apr 05 07:47:44 workstation kernel: AMD AuthenticAMD
Apr 05 07:47:44 workstation kernel: Hygon HygonGenuine
Apr 05 07:47:44 workstation kernel: Centaur CentaurHauls
Apr 05 07:47:44 workstation kernel: zhaoxin Shanghai
Apr 05 07:47:44 workstation kernel: x86/fpu: Supporting XSAVE feature 0x001: 'x8
Apr 05 07:47:44 workstation kernel: x86/fpu: Supporting XSAVE feature 0x002: 'SS
Apr 05 07:47:44 workstation kernel: x86/fpu: Supporting XSAVE feature 0x004: 'AV
Apr 05 07:47:44 workstation kernel: x86/fpu: xstate_offset[2]: 576, xstate_size
Apr 05 07:47:44 workstation kernel: x86/fpu: Enabled xstate features 0x7, contex
Apr 05 07:47:44 workstation kernel: BIOS-provided physical RAM map:
Apr 05 07:47:44 workstation kernel: BIOS-e820: [mem 0x0000000000000000-0x0000000
Apr 05 07:47:44 workstation kernel: BIOS-e820: [mem 0x00000000000a0000-0x0000000

What you want to look for are drivers that fail to load or messages that show certain fea-

tures of the hardware failing to be enabled. For example, I once had a TV tuner card (for

watching television on my computer screen) that set the wrong tuner type for the card that

was detected. Using information about the TV card’s model number and the type of failure,

I found that passing an option to the card’s driver allowed me to try different settings until

I found the one that matched my tuner card.

Part IV: Becoming a Linux Server Administrator

474

In describing how to view kernel startup messages, I have gotten ahead of myself a bit.

Before you can log in and see the kernel messages, the kernel needs to finish bringing up

the system. As soon as the kernel is done initially detecting hardware and loading drivers,

it passes off control of everything else that needs to be done to boot the system to the ini-

tialization system.

Troubleshooting the initialization system

The first process to run on a system where the kernel has just started is systemd.

Although systemd is more complex than System V init, systemd also offers more ways

to analyze what is happening during initialization.

Understanding the systemd boot process

When the systemd daemon (/lib/systemd/systemd) is started after the kernel starts

up, it sets in motion all of the other services that are set to start up. In particular, it keys

off of the contents of the target file being booted. For a typical server session, that could

be /lib/systemd/system/multi-user.target, which may look like this:

$ cat /lib/systemd/system/multi-user.target
[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes

A desktop launch would load the directives found in the graphical.target file:

$ cat /lib/systemd/system/graphical.target
[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
Wants=display-manager.service
Conflicts=rescue.service rescue.target
After=multi-user.target rescue.service rescue.target display-manager
.service
AllowIsolate=yes

The main difference between the two is the display-manager. service that’s required

for the graphical target. In addition, note how, ultimately, both launch types rely on the

basic target, which looks like this:

$ cat /lib/systemd/system/basic.target
[Unit]
Description=Basic System
Documentation=man:systemd.special(7)
Requires=sysinit.target
Wants=sockets.target timers.target paths.target slices.target

Chapter 21: Troubleshooting Linux

475

21

After=sysinit.target sockets.target paths.target slices.target
tmp.mount

RequiresMountsFor=/var /var/tmp
Wants=tmp.mount

To see services the multi-user.target starts, list contents of the /etc/systemd/
system/multi-user.target.wants directory, as in this example:

$ ls /etc/systemd/system/multi-user.target.wants/
 anacron.service snap-drawing-16.mount
 atd.service snapd.seeded.service
 avahi-daemon.service snapd.service
 binfmt-support.service 'snap-gnome\x2d3\x2d26\x2d1604-97.mount'
 console-setup.service 'snap-gnome\x2d3\x2d26\x2d1604-98.mount'
 cron.service 'snap-gnome\x2d3\x2d28\x2d1804-110.mount'
 cups-browsed.service 'snap-gnome\x2d3\x2d28\x2d1804-116.mount'
 cups.path 'snap-gnome\x2d3\x2d32\x2d1804-96.mount'
 dns-clean.service 'snap-gnome\x2d3\x2d32\x2d1804-97.mount'
 ebtables.service 'snap-gnome\x2dcalculator-544.mount'
 irqbalance.service 'snap-gnome\x2dcalculator-704.mount'
 kerneloops.service 'snap-gnome\x2dcharacters-399.mount'
 lxcfs.service 'snap-gnome\x2dcharacters-495.mount'
 lxd-containers.service 'snap-gnome\x2dlogs-81.mount'
 ModemManager.service 'snap-gnome\x2dlogs-93.mount'
 networkd-dispatcher.service 'snap-gnome\x2dsystem\x2dmonitor-127.mount'
 networking.service 'snap-gnome\x2dsystem\x2dmonitor-135.mount'
 NetworkManager.service 'snap-gtk\x2dcommon\x2dthemes-1440.mount'
 nmbd.service 'snap-gtk\x2dcommon\x2dthemes-1474.mount'
 ondemand.service 'snap-onlyoffice\x2ddesktopeditors-38.mount'
 postfix.service snap-pdftk-9.mount
 pppd-dns.service snap-slack-21.mount
 remote-fs.target snap-slack-22.mount
 rsync.service snap-spotify-36.mount
 rsyslog.service snap-spotify-41.mount
 smartd.service ssh.service
 smbd.service sysstat.service
'snap-aws\x2dcli-130.mount' systemd-resolved.service
'snap-aws\x2dcli-151.mount' teamviewerd.service
 snap-core18-1668.mount thermald.service
 snap-core18-1705.mount ufw.service
 snap-core-8689.mount unattended-upgrades.service
 snap-core-8935.mount whoopsie.service
 snapd.autoimport.service wpa_supplicant.service
 snapd.core-fixup.service

These files are symbolic links to files that define what starts for each of those services. On

your system, these may include remote shell (ssh), printing (cups), networking (Net-
workManager), and others. Those links were added to that directory either when the

Part IV: Becoming a Linux Server Administrator

476

package for a service was installed or when the service was enabled from a systemctl
enable command.

Keep in mind that, unlike System V init, systemd can start, stop, and otherwise manage

unit files that represent more than just services. It can manage devices, automounts, paths,

sockets, and other things. After systemd has started everything, you can log in to the

system to investigate and troubleshoot any potential problems.

After you log in, running the systemctl command lets you see every unit file that sys-
temd tried to start up.

From the systemctl output, you can see whether any unit file failed. To investigate a

failure, you can run journalctl -u specifying that service to see any error messages

that were reported.

Analyzing the systemd boot process

To see exactly what happened during the boot process for a system using the systemd

service, systemd provides the systemd-analyze tool. If you want to see if there

are services that are stalling, or you want to look for a place to put in your own sys-
temcd service, you can use this command to analyze the entire startup process. Here are

some examples:

$ systemd-analyze time
Startup finished in 18.624s (firmware) + 4.604s (loader) + 2.930s
(kernel) + 25.443s (userspace) = 51.603s
graphical.target reached after 11.858s in userspace

The time option lets you see how long each phase of the startup process took, from the

start of the kernel to the end of the default target. You can use plot to create an SVG

graphic of each component of the startup process (I show eog here to display the output):

$ systemd-analyze plot > /tmp/systemd-plot.svg
$ eog /tmp/systemd-plot.svg

Figure 21.2 shows a small snippet of output from the much larger graphic.

From this snippet, you can see services that start after the NetworkManager.service

starts up. Parts in dark red show the time it took the service or target to start. If the ser-

vice continues to run, that is shown in light red. If the bar to the right is white, that

indicates that the service is not running. At this point, you could use the journalctl

command, as described earlier, to debug the problem.

The next section describes how to troubleshoot issues that can arise with your soft-

ware packages.

Troubleshooting Software Packages
Software packaging facilities are designed to make it easier for you to manage your system

software. (See Chapter 10, “Getting and Managing Software,” for the basics on how to

Chapter 21: Troubleshooting Linux

477

21

manage software packages.) Despite efforts to make it all work, however, sometimes soft-

ware packaging can break.

As always, however, prevention beats troubleshooting every time. If you keep your soft-

ware packages properly patched and updated and—wherever possible—restrict yourself to

official, supported software repositories, then you’re much less likely to run into trouble.

You can sync your local APT package database with the currently available online sources

using apt update. The apt upgrade command will download and install available

patches for all the software you’ve currently got installed on your system. Run those regu-

larly—once a day is great. Automating the process is even better. See the “Using cron for

Software Updates” sidebar for a guide to setting that up.

When things do go wrong, there are plenty of tools that can help. And these are really well-

designed tools that, in our experience, are far more likely to work than not work.

FIGURE 21.2

Snippet from systemd-analyze startup plot

Part IV: Becoming a Linux Server Administrator

478

Sometimes an installation process can be interrupted by a sudden and unintended system

shutdown. This can leave one or more packages in an unusable state. The Debian package

management system can attempt to repair itself:

apt-get update –-fix-broken

If a particular package is misbehaving and you think it might be due to a configuration

mistake, rather than uninstalling it and starting from scratch, you can start over again

with a clean state using dpkg:

dpkg --reconfigure <package-name>

If you find yourself running short of disk space, you might be able to make some more room

by removing software dependencies that are no longer being used. Finding those and then

Using cron for Software Updates
The cron facility provides a means of running commands at predetermined times and intervals. You
can set the exact minute, hour, day, or month that a command runs. You can con�gure a command to
run every �ve minutes, every third hour, or at a particular time on Friday afternoon.

If you want to use cron to set up nightly software updates, you can do that as the admin user by running
the crontab -e command. That opens a �le using your default editor that you can con�gure as a
crontab �le. Here’s an example of what the crontab �le you create might look like:

 # min hour day/month month day/week command
 59 23 * * * apt update && apt -y
upgrade | mail
root@localhost

A crontab �le consists of �ve �elds, designating day and time, and a sixth �eld, containing the
command line to run. I added the comment line to indicate the �elds. Here, the apt update && apt
-y upgrade commands are run, with the output mailed to the user root@localhost. The command
is run at 59 minutes after hour 23 (11:59 p.m.). The asterisks (*) are required as placeholders, instructing
cron to run the command on every day of the month, during every month, and on every day of the week.

When you create a cron entry, make sure that you either direct the output to a �le or pipe the output
to a command that can deal with the output. If you don’t, any output is sent to the user that ran the
crontab -e command (in this case, root).

In a crontab �le, you can have a range of numbers or a list of numbers, or you can skip numbers. For
example, 1, 5, or 17 in the �rst �eld causes the command to be run 1, 5, and 17 minutes after the hour.
An */3 in the second �eld causes the command to run every three hours (midnight, 3 a.m., 6 a.m., and
so on). A 1-3 in the fourth �eld tells cron to run the command in January, February, and March. Days
of the week and months can be entered as numbers or words.

For more information on the format of a crontab �le, type man 5 crontab. To read about the
crontab command, type man 1 crontab.

Chapter 21: Troubleshooting Linux

479

21

actually removing them could be a process that easily stretches on for hours. But the simple

autoremove feature can do it all in one go:

apt autoremove
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
 kde-cli-tools kde-cli-tools-data libfakekey0 libkf5su-bin libkf5su-data
 libkf5su5 sshfs
0 upgraded, 0 newly installed, 7 to remove and 9 not upgraded.
After this operation, 5,385 kB disk space will be freed.
Do you want to continue? [Y/n]

Sometimes a package just won’t download—even though you asked APT ever so nicely. You

might see an error message like “E: Unable to locate package package-name.”

Here are some common causes for that error:

1. You haven’t updated the local repo database for a while (or ever, in the case of new

Ubuntu installations). Run apt update and then try the install one more time.

2. You spelled the package name incorrectly. It happens to the best of us.

3. The package exists but isn’t available for your Ubuntu release. Try searching for the

package using apt search package-name.

4. Make sure the package is part of a repository that’s already enabled in one of the

sources files in your /etc/apt directory.

The next section covers information about network troubleshooting.

Troubleshooting Networking
With more and more of the information, images, video, and other content that we use every

day now available outside of our local computers, a working network connection is required

on almost every computer system. So, if you drop your network connection or can’t reach

the systems with which you wish to communicate, it’s good to know that there are many

tools in Linux for looking at the problem.

For client computers (laptops, desktops, and handheld devices), you want to connect to the

network to reach other computer systems. On a server, you want your clients to be able to

reach you. The following sections describe different tools for troubleshooting network con-

nectivity for Linux client and server systems.

Troubleshooting outgoing connections
Let’s say that you open your web browser but are unable to get to any website. You suspect

that you are not connected to the network. Maybe the problem is with name resolution, but

it may be with the connection outside of your local network.

Part IV: Becoming a Linux Server Administrator

480

To check whether your outgoing network connections are working, you can use many of

the commands described in Chapter 14, “Administering Networking.” You can test connec-

tivity using a simple ping command. To see if name-to-address resolution is working, use

host and dig.

The following sections cover problems that you can encounter with network connectivity

for outgoing connections and what tools to use to uncover the problems.

View network interfaces

To see the status of your network interfaces, use the ip command. The following output

shows that the loopback interface (lo) is up (so you can run network commands on your

local system), but eth0 (your first wired network card) is down (state DOWN). If the

interface had been up, an inet line would show the IP address of the interface. Here, only

the loopback interface has an inet address (127.0.0.1):

ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 state DOWN qlen 1000
 link/ether f0:de:f1:28:46:d9 brd ff:ff:ff:ff:ff:ff

By default, network interfaces are now named based on how they are connected to the

physical hardware. For example, you might see a network interface of enp11s0. That would

indicate that the NIC is a wired Ethernet card (en) on PCI board 11 (p11) and slot 0 (s0).

A wireless card would start with wl instead of en. The intention is to make the NIC names

more predictable, because when the system is rebooted, it is not guaranteed which inter-

faces would be named eth0, eth1, and so on by the operating system.

Check physical connections

For a wired connection, make sure that your computer is plugged into the port on your net-

work switch. If you have multiple NICs, make sure that the cable is plugged into the correct

one. If you know the name of a network interface (eth0, p4p1, or other), to find which

NIC is associated with the interface, enter ethtool -p eth0 at the command line and

look behind your computer to see which NIC is blinking (Ctrl+C stops the blinking). Plug

the cable into the correct port. You may need to install the ethtool package to make this

work. (If you see a “Cannot identify NIC: Operation not supported” error mes-

sage, it might mean that your network adapter doesn’t support this kind of action.)

If instead of seeing an interface that is down, the ip command shows no interface at all,

check that the hardware isn’t disabled. For a wired NIC, the card may not be fully seated in

its slot or the NIC may have been disabled in the BIOS.

On a wireless connection, you may click the NetworkManager icon and not see an available

wireless interface. Again, it could be disabled in the BIOS. However, on a laptop, check to

Chapter 21: Troubleshooting Linux

481

21

see if there is a tiny switch that disables the NIC. I’ve seen several people shred their net-

working configurations only to find out that this tiny switch on the front or side of their

laptops had been switched to the off position.

Check routes

If your network interface is up but you still can’t reach the host you want, try checking

the route to that host. Start by checking your default route. Then try to reach the local

network’s gateway device to the next network. Finally, try to ping a system somewhere on

the Internet:

$ ip route show
default via 192.168.122.1 dev ens3 proto dhcp metric 100
192.168.122.0/24 dev ens3 proto kernel scope link src 192.168.122.194
metric 100

The default line shows that the default gateway is at address 192.168.122.1 and that the

address can be reached over the ens3 card. Because there is only the ens3 interface here

and only a route to the 192.168.122.0 network is shown, all communication not addressed to

a host on the 192.168.122.0/24 network is sent through the default gateway (192.168.122.1).

The default gateway is more properly referred to as a router.

To make sure that you can reach your router, try to ping it, as in this example:

ping -c 2 192.168.122.1
PING 192.168.122.1 (192.168.122.1) 56(84) bytes of data.
64 bytes from 192.168.122.1: icmp_seq=1 ttl=64 time=0.757 ms
64 bytes from 192.168.122.1: icmp_seq=2 ttl=64 time=0.538 ms

--- 192.168.122.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 65ms
rtt min/avg/max/mdev = 0.538/0.647/0.757/0.112 ms

A “Destination Host Unreachable” message tells you that the router is either

turned off or not physically connected to you (maybe the router isn’t connected to the

switch you share). If the ping succeeds and you can reach the router, the next step is to try

an address beyond your router.

Try to ping a widely accessible IP address. For example, the IP address for the Google public

DNS server is 8.8.8.8. Try to ping that (ping -c 2 8.8.8.8). If that ping succeeds, your

network is probably fine, and it is most likely your hostname-to-address resolution that is

not working properly.

If you can reach a remote system but the connection is very slow, you can use the tra-
ceroute command to follow the route to the remote host. For example, this command

shows each hop taken en route to www.google.com:

$ traceroute google.com
traceroute to google.com (172.217.1.14), 30 hops max, 60 byte packets
 1 ControlPanel.Home (192.168.1.1) 411.607 ms 412.686 ms 413.813 ms

Continues

http://www.google.com/

Part IV: Becoming a Linux Server Administrator

482

 2 dsl-173-206-32-1.tor.primus.ca (173.206.32.1) 429.830 ms
432.166 ms 438.998 ms
 3 10.201.117.2 (10.201.117.2) 450.030 ms 450.417 ms 450.796 ms
 4 74.125.48.46 (74.125.48.46) 451.044 ms 470.842 ms 472.093 ms
 5 108.170.250.241 (108.170.250.241) 472.412 ms 108.170.250.225
(108.170.250.225) 472.407 ms 481.666 ms
 6 216.239.35.233 (216.239.35.233) 484.464 ms 407.747 ms 407.604 ms
 7 iad23s25-in-f14.1e100.net (172.217.1.14) 406.466 ms 586.899 ms
354.843 ms

The output shows the time taken to make each hop along the way to the Google site.

Check hostname resolution

If you cannot reach remote hosts by name, but you can reach them by pinging IP addresses,

your system is having a problem with hostname resolution. Systems connected to the

Internet do name-to-address resolution by communicating to a domain name system (DNS)

server that can provide them with the IP addresses of the requested hosts.

The DNS server your system uses can be entered manually or picked up automatically from

a Dynamic Host Configuration Protocol (DHCP) server when you start your network inter-

faces. In either case, the names and IP addresses of one or more DNS servers end up in your

/etc/resolv.conf file. Here is an example of that file:

search example.com
nameserver 192.168.0.254
nameserver 192.168.0.253

When you ask to connect to a hostname the /etc/hosts file is searched; then the name

server entries in resolv.conf are queried in the order that they appear. Here are some

ways of debugging name-to-address resolution:

Check if the DNS server can be reached. Knowing the name server addresses, you

can try to ping each name server’s IP address to see if it is accessible. For example:

ping -c 2 192.168.0.254. If the IP address can be reached, it could be that you

were either assigned the wrong address for the DNS server or it is currently down.

Check if the DNS server is working. You specifically try to use each DNS server

with the host or dig command. For example, either of these two commands can be

used to see if the DNS server at 192.168.0.254 can resolve the hostname www.google

.com into an IP address. Repeat this for each name server’s IP address until you find

which ones work:

 # host google.com 192.168.0.254
 Using domain server:
 Name: 192.168.0.254
 Address: 192.168.0.254#53
 Aliases:
 www.google.com has address 172.217.13.228
 www.google.com has IPv6 address 2607:f8b0:4004:809::2004
 # dig @192.168.0.254 www.google.com
 ...

Continued

http://google.com
http://google.com

Chapter 21: Troubleshooting Linux

483

21

 ;; QUESTION SECTION:
 ;www.google.com. IN A

 ;; ANSWER SECTION:
 www.google.com. 67 IN A 172.217.13.228
 ...

Correct your DNS servers. If you determine that you have the wrong IP addresses

set for your DNS servers, changing them can be a bit tricky. Search /var/log/sys-
log or the output of journalctl for your DNS servers’ IP addresses. If Network-

Manager is used to start your networking and connect to a DHCP server, you should

see name server lines with the IP addresses being assigned. If the addresses are

wrong, you can override them.

If you’re using Netplan to manage your network devices, you can edit the file

named /etc/netplan/01-network-manager-all.yaml (or something similar).

Assuming your DNS server addresses are 8.8.8.8 and 8.8.4.4, the new entry should

look like this:

nameservers:
 addresses: [8.8.8.8,8.8.4.4]

Don’t forget to run sudo netplan apply when you’re done.

The procedures just described for checking your outgoing network connectivity apply to

any type of system, whether it is a laptop, desktop, or server. For the most part, incoming

connections are not an issue with laptops or desktops because most requests are simply

denied. However, for servers, the next section describes ways of making your server acces-

sible if clients are having trouble reaching the services you provide from that server.

Troubleshooting incoming connections
If you are troubleshooting network interfaces on a server, there are different consider-

ations than on a desktop system. Because most Linux systems are configured as servers,

you should know how to troubleshoot problems encountered by those who are trying to

reach your Linux servers.

I’ll start with the idea of an Apache web server running on your Linux system which, for

some strange reason, no web clients can reach. The following sections describe things that

you can try to locate the problem.

Check if the client can reach your system at all

To be a public server, your system’s hostname should be resolvable so that any client on

the Internet can reach it. That means locking down your system to a particular, public IP

address and registering that address with a public DNS server. You can use a domain regis-

trar (such as www.networksolutions.com or Amazon’s Route 53) to do that.

When clients cannot reach your website by name from their web browsers, if the client

is a Linux system, you can go through ping, host, traceroute, and other commands

http://networksolutions.com

Part IV: Becoming a Linux Server Administrator

484

described in the previous section to track down the connectivity problem. Windows sys-

tems have their own version of ping that you can use from those systems.

If the name-to-address resolution is working to reach your system and you can ping your

server from the outside, the next thing to try is the availability of the service.

Check if the service is available to the client

From a Linux client, you can check if the service you are looking for (Apache in this case)

is available from the server. One way to do that is using the nmap command.

The nmap command is a favorite tool for system administrators checking for various kinds

of information on networks. However, it is a favorite cracker tool as well because it can scan

servers, looking for potential vulnerabilities. So, it is fine to use nmap to scan your own sys-

tems to check for problems, but know that using nmap on another system is like checking

the doors and windows on someone’s house to see if you can get in. You look like an intruder.

Checking your own system to see what ports to your server are open to the outside world

(essentially, checking what services are running) is perfectly legitimate and easy to do.

After nmap is installed (apt install nmap), use your system hostname or IP address to

use nmap to scan your system to see what is running on common ports:

nmap 192.168.0.119
Starting Nmap 6.40 (http://nmap.org) at 2019-12-08 13:28 EST
Nmap scan report for spike (192.168.0.119)
Host is up (0.0037s latency).
Not shown: 995 filtered ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
443/tcp open https
631/tcp open ipp
MAC Address: 00:1B:21:0A:E8:5E (Intel Corporate)
Nmap done: 1 IP address (1 host up) scanned in 4.77 seconds

The preceding output shows that TCP ports are open to the regular (http) and secure

(https) web services. When you see that the state is open, it indicates that a service is

listening on the port as well. If you get to this point, it means that your network connec-

tion is fine and you should direct your troubleshooting efforts to how the service itself is

configured (for example, you might look in /etc/apache2/sites-available to see if

specific hosts are allowed or denied access).

If TCP ports 80 and/or 443 are not shown, it means that they are being filtered. You need to

check whether your firewall is blocking (not accepting packets to) those ports. If the port

is not filtered but the state is closed, it means that the Apache service either isn’t running

or isn’t listening on those ports. The next step is to log in to the server and check those

issues. While you’re there, you can check any active firewalls to see if they’re blocking your

requests. We’ll discuss firewalls in Chapter 25, “Securing Linux on a Network.”

Chapter 21: Troubleshooting Linux

485

21

Check the service on the server

If there seems to be nothing blocking client access to your server through the actual

ports providing the service that you want to share, it is time to check the service itself.

Assuming that the service is running (systemctl status apache2 to check), the next

thing to check is that it is listening on the proper ports and network interfaces.

The netstat command is a great general-purpose tool for checking network services. The fol-

lowing command lists the names and process IDs (p) for all processes that are listening (l) for

TCP (t) and UDP (u) services, along with the port number (n) on which they are listening. The

command line filters out all lines except those associated with the apache2 process:

netstat -tupln | grep apache2
tcp 0 0 :::80 :::* LISTEN 2567/apache2
tcp 0 0 :::443 :::* LISTEN 2567/apache2

The preceding example shows that the apache2 process is listening on port 80 and 443

for all interfaces. It is possible that Apache might be listening on selected interfaces. For

example, if the apache2 process were only listening on the local interface (127.0.0.1) for

HTTP requests (port 80), the entry would appear as follows:

tcp 0 0 127.0.0.1:80 :::* LISTEN 2567/apache2

For Apache, as well as for other network services that listen for requests on network inter-

faces, you can edit the service’s main configuration file (in this case, /etc/apache2/
apache2.conf) to tell it to listen on port 80 for all addresses (Listen 80) or a specific

address (Listen 192.168.0.100:80).

Troubleshooting Memory
Troubleshooting performance problems on your computer is one of the most important,

although often elusive, tasks you’ll face. Maybe you have a system that was working fine,

but it begins to slow down to a point where it is practically unusable. Maybe applications

just begin to crash for no apparent reason. Finding and fixing the problem may take some

detective work.

Linux comes with many tools for watching activities on your system and figuring out

what’s happening. Using a variety of Linux utilities, you can do things such as finding out

which processes are consuming large amounts of memory or placing high demands on your

processors, disks, or network bandwidth. Solutions can include the following:

Adding capacity Your computer may be trying to do what you ask of it, but failures

might occur because you don’t have enough memory, processing power, disk space,

or network capacity to get reasonable performance. Even nearing the boundaries

of resource exhaustion can cause performance problems. Improving your computer

hardware capacity is often the easiest way of solving performance problems.

Tuning the system Linux comes with default settings that define how it internally

saves data, moves data around, and protects data. System tunable parameters can

Part IV: Becoming a Linux Server Administrator

486

be changed if the default settings don’t work well for the types of applications you

have on your system.

Uncovering problem applications or users Sometimes, a system performs poorly

because a user or an application is doing something wrong. Misconfigured or broken

applications can hang or gobble up all of the resources they can find. An inexpe-

rienced user might mistakenly start multiple instances of a program that drain

system resources. As a system administrator, you want to know how to find and fix

these problems.

To troubleshoot performance problems in Linux, you use some of the basic tools for watch-

ing and manipulating processes running on your system. Refer to Chapter 6, “Managing

Running Processes,” if you need details on commands such as ps, top, kill, and kil-
lall. In the following sections, I add commands such as memstat to dig a little deeper

into what processes are doing and where things are going wrong.

The most complex area of troubleshooting in Linux relates to managing virtual memory.

The next sections describe how to view and manage virtual memory.

Uncovering memory issues
Computers have ways of storing data permanently (hard disks) and temporarily (random

access memory, or RAM, and swap space). Think of yourself as a CPU, working at a desk try-

ing to get your work finished. You would put data that you want to keep permanently in

a filing cabinet across the room (that’s like hard disk storage). You would put information

that you are currently using on your desk (that’s like RAM memory on a computer).

Swap space is a way of extending RAM. It is really just a place to put temporary data that

doesn’t fit in RAM but is expected to be needed by the CPU at some point. Although swap space

is on the hard disk, it is not a regular Linux filesystem in which data is stored permanently.

Compared to disk storage, random access memory has the following attributes:

Nearer the processor Like the desk being near to you as you work, memory is phys-

ically near the CPU on the computer’s motherboard. So, any data the CPU needs, it

can just grab immediately if the data is in RAM.

Faster Its proximity to the CPU and the way that it is accessed (solid state versus

mechanical hard disks) makes it much faster for the CPU to get information from

RAM than it can from a hard disk. It’s quicker to look at a piece of paper on your

desk (a small, close space) than to walk to a row of file cabinets and to start search-

ing for what you want.

Less capacity A new computer might have a 10 TB or larger hard drive but only 8 GB

or 16 GB of RAM. Although it would make the computer run faster to put every file

and every piece of data that the processor may need into RAM, in most cases there

just wouldn’t be enough room. Also, both the physical memory slots on the computer

and the computer system itself (64-bit computers can address more RAM than 32-bit

computers) can limit how much RAM a computer is capable of having.

Chapter 21: Troubleshooting Linux

487

21

More expensive Although RAM is much more affordable than it was a decade or two

ago, it is still more expensive (per GB) than hard disks.

Temporary RAM holds data and metadata that the CPU is using now for the work it

is doing (plus some content the Linux kernel is keeping around because it suspects

a process will need it before long). When you turn off the computer, however, every-

thing in RAM is lost. When the CPU is done with data, that data is discarded if it is

no longer needed, left in RAM for possible later use, or marked to be written to disk

for permanent storage if it needs to be saved.

It is important to understand the difference between temporary (RAM) and permanent

(hard disk) storage, but that doesn’t tell the whole story. If the demand for memory exceeds

the supply of RAM, the kernel can temporarily move data out of RAM to an area called

swap space.

If we revisit the desk analogy, this would be like saying, “There is no room left on my desk,

yet I have to add more papers to it for the projects I’m currently working on. Instead of

storing papers I’ll need soon in a permanent file cabinet, I’ll have one special file cabinet

(like a desk drawer) to hold those papers that I’m still working with but that I’m not ready

to store permanently or throw away.”

Refer to Chapter 12, “Managing Disks and Filesystems,” for more information on swap files

and partitions and how to create them. For the moment, however, there are a few things

that you should know about these kinds of swap areas and when they are used:

 ■ When data is swapped from RAM to a swap area (swapped out), you get a perfor-

mance hit. Remember, writing to disk is much slower than writing to RAM.

 ■ When data is returned from swap to RAM because it is needed again (swapped in),

you get another performance hit.

 ■ When Linux runs out of space in RAM, swapping is like losing a high gear on a car.

The car might have to run in a lower gear, but it would not stop altogether. In other

words, all your processes stay active and they don’t lose any data or fail completely,

but the system performance can significantly slow down.

 ■ If both RAM and swap are full and no data can be discarded or written to disk,

your system can reach an out-of-memory (OOM) condition. When that happens, the

kernel OOM killer kicks in and begins killing off processes, one by one, to regain as

much memory as the kernel needs to begin functioning properly again.

The general rule has always been that swapping is bad and should be avoided. However,

some would argue that, in certain cases, more aggressive swapping can actually improve

performance.

Think of the case where you open a document in a text editor and then minimize it on your

desktop for several days as you work on different tasks. If data from that document were

swapped out to disk, more RAM would be available for more active applications that could

put that space to better use. The performance hit would come the next time you needed to

access the data from the edited document and the data was swapped in from disk to RAM.

The settings that relate to how aggressively a system swaps are referred to as swappiness.

Part IV: Becoming a Linux Server Administrator

488

As much as possible, Linux wants to make everything that an open application needs

immediately available. So, using the desk analogy, if I am working on nine active projects

and there is space on the desk to hold the information I need for all nine projects, why not

leave them all within reach on the desk? Following that same way of thinking, the kernel

sometimes keeps libraries and other content in RAM that it thinks you might eventually

need—even if a process is not looking for it immediately.

The fact that the kernel is inclined to store information in RAM that it expects may be

needed soon (even if it is not needed now) can cause an inexperienced system administrator

to think that the system is almost out of RAM and that processes are about to start failing.

That is why it is important to know the different kinds of information being held in mem-

ory—so that you can tell when real out-of-memory situations can occur. The problem is not

just running out of RAM; it is running out of RAM when only non-swappable data is left.

Keep this general overview of virtual memory (RAM and swap) in mind, as the next section

describes ways to go about troubleshooting issues related to virtual memory.

Checking for memory problems

Let’s say that you are logged in to a Linux desktop, with lots of applications running, and

everything begins to slow down. To find out if the performance problems have occurred

because you have run out of memory, you can try commands such as top and ps to begin

looking for memory consumption on your system.

To run the top command to watch for memory consumption, type top and then type a

capital M. Here is an example:

top
top - 22:48:24 up 3:59, 2 users, load average: 1.51, 1.37, 1.15
Tasks: 281 total, 2 running, 279 sleeping, 0 stopped, 0 zombie
Cpu(s): 16.6%us, 3.0%sy, 0.0%ni, 80.3%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Mem: 3716196k total, 2684924k used, 1031272k free, 146172k buffers
Swap: 4194296k total, 0k used, 4194296k free, 784176k cached
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6679 cnegus 20 0 1665m 937m 32m S 7.0 25.8 1:07.95 firefox
 6794 cnegus 20 0 743m 181m 30m R 64.8 5.0 1:22.82 npviewer.bin
 3327 cnegus 20 0 1145m 116m 66m S 0.0 3.2 0:39.25 soffice.bin
 6939 cnegus 20 0 145m 71m 23m S 0.0 2.0 0:00.97 acroread
 2440 root 20 0 183m 37m 26m S 1.3 1.0 1:04.81 Xorg
 2795 cnegus 20 0 1056m 22m 14m S 0.0 0.6 0:01.55 nautilus

There are two lines (Mem and Swap) and four columns of information (VIRT, RES, SHR,

and %MEM) relating to memory in the top output. In this example, you can see that RAM

is not exhausted from the Mem line (only 268492k of 3716196k is used) and that nothing is

being swapped to disk from the Swap line (0 k used).

However, adding up just these first six lines of output in the VIRT column, you would

see that 4937MB of memory has been allocated for those applications, which exceeds the

3629MB of total RAM (3716196k) that is available. That’s because the VIRT column shows

Chapter 21: Troubleshooting Linux

489

21

only the amount of memory that has been promised to the application. The RES line

shows the amount of non-swappable memory that is actually being used, which totals

only 1364MB.

Notice that, when you ask to sort by memory usage by typing a capital M, top knows to

sort on that RES column. The SHR column shows memory that could potentially be shared

by other applications (such as libraries), and %MEM shows the percentage of total memory

consumed by each application.

If you think that the system is reaching an out-of-memory state, here are a few things

to look for:

 ■ The free space shown on the Mem line would be at or near zero.

 ■ The used space shown on the Swap line would be non-zero and would continue to

grow. That should be accompanied with a slowdown of system performance.

 ■ As the top screen redraws every few seconds, if there is a process with a memory

leak (continuously asking for and using more memory, but not giving any memory

back), the amount of VIRT memory grows, but more important, the RES memory

continues to grow for that process.

 ■ If the Swap space actually runs out, the kernel starts to kill off processes to deal

with this out-of-memory condition.

If you have Cockpit installed and enabled, you can watch memory usage live from your web

browser. Open Cockpit and then select System ➪ Memory & Swap.

Dealing with memory problems

In the short term, you can do several things to deal with this out-of-memory condition:

Kill a process If the memory problem is due to one errant process, you can simply

kill that process. Assuming that you are logged in as root or as the user who owns

the runaway process, type k from the top window, then enter the PID of the process

that you want to kill and choose 15 or 9 as the signal to send.

Drop page caches If you just want to clear up some memory right now as you otherwise

deal with the problem, you can tell the system to drop inactive page caches. When you

do this, some memory pages are written to disk; others are just discarded (because

they are stored permanently and can be gotten again from disk when they are needed).

This action is the equivalent of cleaning your desk and putting all but the most

critical information into the trash or into a file cabinet. You may need to retrieve

information again shortly from a file cabinet, but you almost surely don’t need it all

immediately. Keep top running in one Terminal window to see the Mem line change

as you type the following (as root) into another Terminal window:

 # echo 3 > /proc/sys/vm/drop_caches

Kill an out-of-memory process Sometimes, memory exhaustion has made the

system so unusable that you may not be able to get a response from a shell or GUI.

Part IV: Becoming a Linux Server Administrator

490

In those cases, you might be able to use Alt+SysRq keystrokes to kill an out-of-

memory process. The reason you can use Alt+SysRq keystrokes on an otherwise

unresponsive system is that the kernel processes Alt+SysRq requests ahead of

other requests.

To enable Alt+SysRq keystrokes, the system must have already set /proc/sys/
kernel/sysrq to 1. An easy way to do this is to add kernel.sysrq = 1 to the

/etc/sysctl.conf file. Also, you must run the Alt+SysRq keystrokes from a text-

based interface (such as the virtual console you see when you press Ctrl+Alt+F2).

With kernel.sysrq set to 1, you can kill the process on your system with the

highest OOM score by pressing Alt+SysRq+f from a text-based interface. A listing of

all processes running on your system appears on the screen with the name of the

process that was killed listed at the end. You can repeat those keystrokes until

you have killed enough processes to be able to access the system normally from

the shell again.

Summary
Troubleshooting problems in Linux can start from the moment you turn on your computer.

Problems can occur with your computer BIOS, boot loader, or other parts of the boot process

that you can correct by intercepting them at different stages of the boot process.

After the system has started, you can troubleshoot problems with software packages, net-

work interfaces, or memory exhaustion. Linux comes with many tools for finding and cor-

recting any part of the Linux system that might break down and need fixing.

The next chapter covers the topic of Linux security. Using the tools described in that chap-

ter, you can provide access to those services that you and your users need while blocking

access to system resources that you want to protect from harm.

Exercises
The exercises in this section enable you to try out useful troubleshooting techniques in

Linux. Because some of the techniques described here can potentially damage your system,

I recommend that you do not use a production system that you cannot risk damaging. See

Appendix A for suggested solutions.

NOTE

There are many other Alt+SysRq keystrokes that you can use to deal with an unresponsive system. For example,

Alt+SysRq+e terminates all processes except for the init process. Alt+SysRq+t dumps a list of all current tasks

and information about those tasks to the console. To reboot the system, press Alt+SysRq+b. See the sysrq

.txt �le in the /usr/share/doc/kernel-doc*/Documentation directory for more information about

Alt+SysRq keystrokes.

Chapter 21: Troubleshooting Linux

491

21

These exercises relate to troubleshooting topics in Linux. They assume that you are booting

a PC with standard BIOS. To do these exercises, you need to be able to reboot your computer

and interrupt any work it may be doing.

1. Boot your computer, and as soon as you see the BIOS screen, go into Setup mode as

instructed on the BIOS screen.

2. From the BIOS Setup screen, determine if your computer is 32-bit or 64-bit, if it

includes virtualization support, and if your network interface card is capable of

PXE booting.

3. Reboot, and just after the BIOS screen disappears, when you see the countdown to

booting the Linux system, press a key to get to the GRUB boot loader.

4. From the GRUB boot loader, add an option to boot up to runlevel 1 so that you can

do some system maintenance.

5. After the system boots up, look at the messages that were produced in the kernel

ring buffer that show the activity of the kernel as it booted up.

6. Use APT to download and install any available package versions and patches.

7. Check to see what processes are listening for incoming connections on your system.

8. Check to see what ports are open on your external network interface.

9. Run the top command in a Terminal window. Open a second Terminal window,

clear your page cache, and note on the top screen if more RES memory is now

available.

10. With Cockpit enabled on your system, access Cockpit to view details on the system’s

on-going memory and swap usage.

Part V

IN THIS PART

Chapter 22

Understanding Basic Linux Security

Chapter 23

Understanding Advanced Linux Security

Chapter 24

Enhancing Linux Security with AppArmor

Chapter 25

Securing Linux on a Network

Learning Linux Security

Techniques

495

CHAP T ER

22
Understanding Basic

Linux Security

IN THIS CHAPTER

Implementing basic security

Monitoring security

Auditing and reviewing security

A
t its most basic level, securing an Ubuntu system starts with physical security, data security,

user accounts protection, and software security. Over time, you need to monitor that system

to make sure it remains safe.

Some of the questions that you need to ask yourself include the following:

 ■ Who can get to the system physically?

 ■ Are backup copies of data being made in case of disaster?

 ■ How well are user accounts secured?

 ■ Does the software come from a secure Ubuntu distribution, and are security patches up to date?

 ■ Have you been monitoring the system to make sure that it hasn’t been cracked or corrupted?

This chapter starts by covering basic Ubuntu security topics. Subsequent chapters go deeper into

advanced security mechanisms.

Implementing Physical Security
A lock on the computer server room door is the first line of defense. Although a very simple con-

cept, it’s often ignored. Access to the physical server means access to all of the data that it con-

tains. No security software can fully protect your systems if someone with malicious intent has

physical access to the Linux server.

Basic server room physical security includes items such as these:

 ■ A lock or security alarm on the server room door

 ■ Access controls that allow only authorized access and that identify who accessed the room

and when the access occurred, such as a card key entry system

Part V: Learning Linux Security Techniques

496

 ■ A sign stating “no unauthorized access allowed” on the door

 ■ Policies on who can access the room and when that access may occur for groups

such as the cleaning crew, server administrators, and others

Physical security includes environmental controls. Appropriate fire suppression systems and

proper ventilation for your server room must be implemented.

Implementing disaster recovery
Disaster recovery plans should include these things:

 ■ What data is to be included in backups

 ■ Where backups are to be stored

 ■ How long backups are maintained

 ■ How backup media is rotated through storage

Backup data, media, and software should be included in your Access Control Matrix

checklist.

It is important to determine how many backup copies of each object should be maintained. While you may

need only three backup copies of one particular object, another object may be important enough to require

maintaining more copies.

Backup utilities on a Linux system include the following:

 ■ amanda (Advanced Maryland Automatic Network Disk Archiver)

 ■ cpio

 ■ dump/restore

 ■ tar

 ■ rsync

The cpio and tar utilities are typically pre-installed on an Ubuntu distribution. A simple,

yet effective tool for backing up data over networks is the rsync utility. With rsync, you

can set up a cron job to keep copies of all data in selected directories or mirror exact cop-

ies of directories on remote machines.

Of the tools just mentioned, only amanda is not typically installed by default. However,

amanda is popular because it comes with a great deal of flexibility and can even back up a

Windows system. If you need more information on the amanda backup utility, see www.amanda

.org. Ultimately, the utility you select must meet your organization’s particular security

needs for backup.

Securing user accounts
User accounts are part of the authentication process allowing users into the Linux system.

Proper user account management enhances a system’s security. Setting up user accounts

http://www.amanda.org/
http://www.amanda.org/

Chapter 22: Understanding Basic Linux Security

497

22

was covered in Chapter 11, “Managing User Accounts.” However, a few additional rules are

necessary to increase security through user account management:

 ■ Allow one user per user account.

 ■ Limit access to the root user account.

 ■ Set expiration dates on temporary accounts.

 ■ Remove unused user accounts.

One user per user account

Accounts should enforce accountability. Thus, multiple people should not be logging in to

one account. When multiple people share an account, there is no way to prove a particular

individual completed a particular action.

Limiting access to the root user account

If multiple people can log in to the root account, you have another repudiation situation.

You cannot track individual use of the root account. To allow tracking of root account use

by individuals, a policy for using sudo (see Chapter 8, “Learning System Administration”)

instead of logging in to root should be instituted. By default, Ubuntu systems don’t provide

the root user with login credentials, thereby discouraging its use.

Instead of using the root user, you should grant root access on a per-command basis with

the sudo command. Using sudo provides the following security benefits:

 ■ The root password does not have to be given out.

 ■ You can fine-tune command access.

 ■ All sudo use (who, what, when) is recorded in /var/log/auth.log, including any

failed sudo access attempts. Recent Linux systems also store all sudo access in

the systemd journal (type journalctl -f to watch live sudo access attempts,

along with other system messages).

 ■ After you grant someone sudo permission, you can try to restrict root access to

certain commands in the /etc/sudoers file (with the visudo command). How-

ever, after you grant root permission to a user, even in a limited way, it is difficult

to be sure that a determined user can’t find ways to gain full root access to your

system and do what they want to it.

One way to keep a misbehaving administrator in check is to have security messages

intended for the /var/log/auth.log file sent to a remote log server to which none of the

local administrators have access. In that way, any misuse of root privilege is attached to a

particular user and is logged in a way that the user can’t cover their tracks.

Setting expiration dates on temporary accounts

If you have consultants, interns, or temporary employees who need access to your Linux

systems, it’s important to set up their user accounts with expiration dates. The expiration

date is a safeguard, in case you forget to remove their accounts when they no longer need

access to your organization’s systems.

Part V: Learning Linux Security Techniques

498

To set a user account with an expiration date, use the usermod command. The format is

usermod -e yyyy-mm-dd user_name. In the following code, the account tim has

been set to expire on January 1, 2021:

usermod -e 2021-01-01 tim

To verify that the account has been properly set to expire, double-check yourself by

using the chage command. The chage command is primarily used to view and change

a user account’s password aging information. However, it also can access account

expiration information. The -l option allows you to list various information to which

chage has access. To keep it simple, pipe the output from the chage command into

grep and search for the word Account. This produces only the user account’s expi-

ration date.

chage -l tim | grep Account
Account expires : Jan 01, 2021

As you can see, the account expiration date was successfully changed for tim to

 January 1, 2021.

Set account expiration dates for all transitory employees. In addition, consider reviewing

all user account expiration dates as part of your security monitoring activities. These activ-

ities help to eliminate any potential backdoors to your Linux system.

Removing unused user accounts

Keeping old expired accounts around is asking for trouble. After a user has left an organi-

zation, it is best to perform a series of steps to remove their account along with data:

1. Find files on the system owned by the account, using the find / -user

 username command.

2. Expire or disable the account.

3. Back up the files.

4. Remove the files or reassign them to a new owner.

5. Delete the account from the system.

Problems occur when step 5 is forgotten and expired or disabled accounts are still on the

system. A malicious user gaining access to your system could renew the account and then

masquerade as a legitimate user.

TIP

If you do not use the /etc/shadow �le for storing your account passwords, the chage utility doesn’t work. In

most cases, this is not a problem because the /etc/shadow �le is con�gured to store password information by

default on most Linux systems.

Chapter 22: Understanding Basic Linux Security

499

22

To find these accounts, search through the /etc/shadow file. The account’s expiration

date is in the eighth field of each record. It would be convenient if a date format were

used. Instead, this field shows the account’s expiration date as the number of days since

 January 1, 1970.

You can use a two-step process to find expired accounts in the /etc/shadow file auto-

matically. First, set up a shell variable (see Chapter 7, “Writing Simple Shell Scripts”) with

today’s date in “days since January 1, 1970” format. Then, using the gawk command (apt
install gawk), you can obtain and format the information needed from the /etc/
shadow file.

Setting up a shell variable with the current date converted to the number of days since

January 1, 1970 is not particularly difficult. The date command can produce the number

of seconds since January 1, 1970. To get what you need, divide the result from the date

command by the number of seconds in a day: 86,400. The following demonstrates how to

set up the shell variable TODAY:

$ TODAY=$(echo $(($(date --utc --date "$1" +%s)/86400)))
$ echo $TODAY
16373

Next, the accounts and their expiration dates are pulled from the /etc/shadow file using

gawk. The gawk command is the GNU’s Not Unix (GNU) version of the awk program used in

UNIX. The command’s output is shown in the code that follows. As you would expect, many

of the accounts do not have an expiration date. However, two accounts, Consultant and

Intern, show an expiration date in the “days since January 1, 1970” format. Note that you

can skip this step. It is just for demonstration purposes.

gawk -F: '{print $1,$8}' /etc/shadow
...
chrony
tcpdump
johndoe
Consultant 13819
Intern 13911

The $1 and $8 in the gawk command represent the username and expiration date fields in

the /etc/shadow file records. To check those accounts’ expiration dates and see if they

are expired, a more refined version of the gawk command is needed:

gawk -F: '{if (($8 > 0) && ($TODAY > $8)) print $1}' /etc/shadow
Consultant
Intern

Only accounts with an expiration date are collected by the ($8 > 0) portion of the gawk

command. To make sure that these expiration dates are past the current date, the TODAY

variable is compared with the expiration date field, $8. If TODAY is greater than the

account’s expiration date, the account is listed. As you can see in the preceding example,

two expired accounts still exist on the system and need to be removed.

Part V: Learning Linux Security Techniques

500

That is all you need to do. Set up your TODAY variable and execute the gawk command.

All of the expired accounts in the /etc/shadow file are listed for you. To remove these

accounts, use the deluser command.

User accounts are only a portion of the authentication process allowing users into the

Linux system. User account passwords also play an important role in the process.

Securing passwords
Passwords are the most basic security tool of any modern operating system and, conse-

quently, the most commonly attacked security feature. It is natural for users to want to

choose a password that is easy to remember, but often this means that they choose a pass-

word that is also easy to guess.

Brute force methods are commonly employed to gain access to a computer system. Try-

ing the popular passwords often yields results. Some of the most common passwords are

as follows:

 ■ 123456

 ■ Password

 ■ princess

 ■ rockyou

 ■ abc123

Just use your favorite Internet search engine and look for “common passwords.” If you can

find these lists, then malicious attackers can too. Obviously, choosing good passwords is

critical to having a secure system.

Choosing good passwords

In general, a password must not be easy to guess, be common or popular, or be linked to

you in any way. Here are some rules to follow when choosing a password:

 ■ Do not use any variation of your login name or your full name.

 ■ Do not use a dictionary word.

 ■ Do not use proper names of any kind.

 ■ Do not use your phone number, address, family, or pet names.

 ■ Do not use website names.

 ■ Do not use any contiguous line of letters or numbers on the keyboard (such as

“qwerty” or “asdfg”).

 ■ Do not use any of the above with added numbers or punctuation at the front or end

or typed backward.

 ■ Do not reuse passwords across multiple accounts.

Chapter 22: Understanding Basic Linux Security

501

22

So now that you know what not to do, look at the two primary items that make a

strong password:

1. A password should be at least 15 to 25 characters in length.

2. A password should contain all of the following:

 ■ Lowercase letters

 ■ Uppercase letters

 ■ Numbers

 ■ Special characters, such as : ! $ % * () - + = , < > : : ” ’

Twenty-five characters is a long password. However, the longer the password, the more

secure it is. What your organization chooses as the minimum password length depends on

its security needs.

Choosing a good password can be difficult. It has to be hard enough not to be guessed and

easy enough for you to remember. A good way to choose a strong password is to take the

first letter from each word of an easily remembered sentence. Be sure to add numbers, spe-

cial characters, and varied case. The sentence you choose should have meaning only to you

and should not be publicly available.

In the real world, when we’re working with real human beings, building passwords that are

both strong and likely to be remembered is practically impossible. A better alternative is

to use four random five-letter words, something like: HorseTabletMarchBound. According

to the Gibson Research Center referenced above, this easy-to-remember password would

require 3.52 quadrillion centuries to crack. That should keep you safe for now—at least

until quantum computers become widely available.

Setting and changing passwords

You set your own password using the passwd command. Type the passwd command and

it allows you to change your password. First, it prompts you to enter your old password. To

protect against someone shoulder surfing and learning your password, neither your old nor

new password is displayed as you type.

Assuming that you type your old password correctly, the passwd command prompts you

for the new password. When you type your new password, it is checked using a utility

called cracklib to determine whether it is a good or bad password. Non-root users are

required to try a different password if the one they have chosen is not a good password.

The root user is the only user who is permitted to assign bad passwords. After the pass-

word has been accepted by cracklib, the passwd command asks you to enter the new

TIP

Gibson Research Center has some excellent material on strong passwords, including an article called “How big is

your haystack. . .and how well hidden is your needle?” at grc.com/haystack.htm.

http://www.grc.com/haystack.htm

Part V: Learning Linux Security Techniques

502

password a second time to make sure that there are no typos (which are hard to detect

when you can’t see what you are typing).

When running as root, changing a user’s password is possible by supplying that user’s login

name as a parameter of the passwd command, as in this example:

passwd joe
Changing password for user joe.
New UNIX password: ********
Retype new UNIX password: ********
passwd: all authentication tokens updated successfully.

Here, the passwd command prompts you twice to enter a new password for joe. It does

not prompt for his old password in this case.

Enforcing best password practices

Now you know what a good password looks like and how to change a password, but how do

you enforce it on your Linux system? One place to start is with the Pluggable Authentica-

tion Modules (PAM) facility. With PAM, you can define exact requirements that passwords

must meet. For example, to ensure that passwords must be 12 characters long, with at least

2 numbers, 3 uppercase letters, and 2 lowercase letters, and are different than the previous

4 passwords, you can add the following line to either the /etc/pam.d/common-pass-
word or /etc/pam.d/common-auth file:

password requisite pam_cracklib.so minlen=12, dcredit=2, ucredit=3,
lcredit=2, difok=4

The next question is, how can you make people change passwords? It can become tiresome

to come up with new, strong passwords every 30 days! That’s why some enforcing tech-

niques are often necessary.

Default values in the /etc/login.defs file for new accounts were covered in Chap-

ter 11. Within the login.defs file are some settings affecting password aging and length

(PASS_MIN_LEN):

PASS_MAX_DAYS 30
PASS_MIN_DAYS 5
PASS_MIN_LEN 16
PASS_WARN_AGE 7

TIP

Current best practice security policies no longer recommend forcing users to regularly change their passwords. For

one thing, human nature being human nature, users will most likely “cheat” the system, choosing easy-to-remember

sequences of passwords like “NewWord-january, NewWord-february...” and so on. But more signi�cantly, why do you

think a hacker will hold off using stolen passwords until after they’ve been renewed at the end of each update cycle?

In the real world, by the time your users update their passwords, the hackers will have done their dirty work and be

long gone. Nevertheless, we’ll include instructions for forcing regular password renewal here just for old time’s sake.

Chapter 22: Understanding Basic Linux Security

503

22

In this example, the maximum number of days, PASS_MAX_DAYS, until the password must

be changed is 30. The number that you set here is dependent upon your particular account

setup. For organizations that practice one person to one account, this number can be much

larger than 30. If you do have shared accounts or multiple people know the root password,

it is imperative that you change the password often. This practice effectively refreshes the

list of those who know the password.

To keep users from changing their password to a new password and then immediately

changing it right back, you need to set the PASS_MIN_DAYS to a number larger than 0. In

the preceding example, the soonest a user could change their password again is 5 days.

The PASS_WARN_AGE setting is the number of days a user is warned before being forced to

change their password. People tend to need lots of warnings and prodding, so the preceding

example sets the warning time to 7 days.

For accounts that have already been created, you need to control password aging via the

chage command. The options needed to control password aging with chage are listed in

Table 22.1. Notice that there is not a password length setting in the chage utility.

The example that follows uses the chage command to set password aging parameters for

the tim account. All three options are used at once.

chage -l tim | grep days
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
chage -M 30 -m 5 -W 7 tim
chage -l tim | grep days
Minimum number of days between password change : 5
Maximum number of days between password change : 30
Number of days of warning before password expires : 7

You can also use the chage command as another method of account expiration, which is

based upon the account’s password expiring. Earlier, the usermod utility was used for

account expiration. Use the chage command with the -M and the -I options to lock the

TABLE 22.1 chage Options

Option Description

-M Sets the maximum number of days before a password needs to be changed. Equivalent

to PASS_MAX_DAYS in /etc/login.defs.

-m Sets the minimum number of days before a password can be changed again. Equiva-

lent to PASS_MIN_DAYS in /etc/login.defs.

-W Sets the number of days a user is warned before being forced to change the account

password. Equivalent to PASS_WARN_AGE in /etc/login.defs.

Part V: Learning Linux Security Techniques

504

account. In the code that follows, the tim account is viewed using chage -l. Only the

information for tim’s password settings are extracted.

chage -l tim | grep Password
Password expires : never
Password inactive : never

You can see that there are no settings for password expiration (Password expires) or

password inactivity (Password inactive). In the following code, the account is set to be

locked 5 days after tim’s password expires by using only the -I option:

chage -I 5 tim
chage -l tim | grep Password
Password expires : never
Password inactive : never

Notice that no settings changed! Without a password expiration set, the -I option has no

effect. Thus, using the -M option, the maximum number of days is set before the password

expires and the setting for the password inactivity time should take hold.

chage -M 30 -I 5 tim
chage -l tim | grep Password
Password expires : Mar 03, 2017
Password inactive : Mar 08, 2017

Now, tim’s account will be locked 5 days after his password expires. This is helpful in sit-

uations where an employee has left the company but their user account has not yet been

removed. Depending upon your organization’s security needs, consider setting all accounts

to lock a certain number of days after passwords have expired.

Understanding the password �les and password hashes

Early Linux systems stored their passwords in the /etc/passwd file. The passwords

were hashed. A hashed password is created using a one-way mathematical process. After

you create the hash, you cannot re-create the original characters from the hash. Here’s

how it works:

When a user enters the account password, the Linux system rehashes the password and

then compares the hash result to the original hash in /etc/passwd. If they match, the

user is authenticated and allowed into the system.

The problem with storing these password hashes in the /etc/passwd file has to do with

the filesystem security settings (see Chapter 4, “Moving Around the Filesystem”). The file-

system security settings for the /etc/passwd file are listed here:

ls -l /etc/passwd
-rw-r--r--. 1 root root 1644 Feb 2 02:30 /etc/passwd

As you can see, everyone can read the password file. You might think that this is not a

problem because the passwords are all hashed. However, individuals with malicious intent

have created files called rainbow tables. A rainbow table is simply a dictionary of potential

Chapter 22: Understanding Basic Linux Security

505

22

passwords that have been hashed. For instance, the rainbow table would contain the hash

for the popular password “Password,” which is as follows:

6dhN5ZMUj$CNghjYIteau5xl8yX.f6PTOpendJwTOcXjlTDQUQZhhy
V8hKzQ6Hxx6Egj8P3VsHJ8Qrkv.VSR5dxcK3QhyMc.

Because of the ease of access to the password hashes in the /etc/passwd file, it is only a

matter of time before a hashed password is matched in a rainbow table and the plain-text

password is uncovered.

Thus, the hashed passwords were moved to a new configuration file, /etc/shadow, many

years ago. This file has the following security settings:

ls -l /etc/shadow
-rw-r----- 1 root shadow 1320 Apr 3 19:50 /etc/shadow

Root (and members of the shadow group), but no other user, can view this file. Thus, the

hashed passwords are protected. Here is the tail end of a /etc/shadow file. You can see

that there are long, nonsensical character strings in each user’s record. Those are the

hashed passwords.

tail -2 /etc/shadow
johndoe:6jJjdRN9/qELmb8xWM1LgOYGhEIxc/:15364:0:99999:7:::
Tim:6z760AJ42$QXdhFyndpbVPVM5oVtNHs4B/:15372:5:30:7:16436::

NOTE

Security experts will tell you that the passwords are not just hashed but also salted. Salting a hash means that a

randomly generated value is added to the original password before it is hashed. This makes it even more dif�cult for

the hashed password to be matched to its original password. However, in Linux, the hash salt is also stored with the

hashed passwords (how else would the system be able to con�rm passwords when they’re entered?). So read access

to the /etc/passwd �le means that you have the hash value and its salt.

You may inherit a Linux system that still uses the old method of keeping the hashed passwords in the /etc/

passwd �le. It is easy to �x. Just use the pwconv command, and the /etc/shadow �le is created and hashed

passwords moved to it.

The following are also stored in the /etc/shadow file, in addition to the account name

and hashed password:

 ■ Number of days (since January 1, 1970) since the password was changed

 ■ Number of days before the password can be changed

 ■ Number of days before a password must be changed

 ■ Number of days to warn a user before a password must be changed

 ■ Number of days after a password expires that an account is disabled

 ■ Number of days (since January 1, 1970) that an account has been disabled

Part V: Learning Linux Security Techniques

506

This should sound familiar, as they are the settings for password aging covered earlier in

the chapter. Remember that the chage command does not work if you do not have an

/etc/shadow file set up or if the /etc/login.defs file is not available.

Obviously, filesystem security settings are very important for keeping your Linux system

secure. This is especially true with all Linux systems’ configuration files and others.

Securing the �lesystem
Another important part of securing your Linux system is setting proper filesystem security.

The basics for security settings were covered in Chapter 4 and Access Control Lists (ACLs) in

Chapter 11. However, there are a few additional points about which you should be aware.

Managing dangerous �lesystem permissions

If you gave full rwxrwxrwx (777) access to every file on the Linux system, you can imagine

the chaos that would follow. In many ways, similar chaos can occur by not closely managing

the set UID (SUID) and the set GID (SGID) permissions (see Chapter 4 and Chapter 11).

Files with the SUID permission in the Owner category and execute permission in the

Other category allow anyone to become the file’s owner temporarily while the file is being

executed in memory. The riskiest case is if the file’s owner is root.

Similarly, files with the SGID permission in the Group category and execute permission in

the Other category allow anyone temporarily to become a group member of the file’s group

while the file is being executed in memory. SGID can also be set on directories. This sets

the group ID of any files created in the directory to the group ID of the directory.

Executable files with SUID or SGID are favorites of malicious users. Thus, it is best to use

them sparingly. However, some files do need to keep these settings. Two examples are the

passwd and the sudo commands that follow. Each of these files should maintain their

SUID permissions.

$ ls -l /usr/bin/passwd
-rwsr-xr-x. 1 root root 28804 Aug 17 20:50 /usr/bin/passwd
$ ls -l /usr/bin/sudo
---s--x--x. 2 root root 77364 Nov 3 08:10 /usr/bin/sudo

Commands such as passwd and sudo are designed to be used as SUID programs. Even

though those commands run as root user, as a regular user you can only change your own

password with passwd and can only escalate to root permission with sudo if you were

given permission in the /etc/sudoers file. A more dangerous situation would be if a

hacker created a SUID bash command; anyone running that command could effectively

change everything on the system that had root access.

Using the find command, you can search your system to see if there are any hidden or

otherwise inappropriate SUID and SGID commands on your system. Here is an example:

find / -perm /6000 -ls
4597316 52 -rwxr-sr-x 1 root games 51952 Dec 21 2013 /usr/bin/atc

Chapter 22: Understanding Basic Linux Security

507

22

4589119 20 -rwxr-sr-x 1 root tty 19552 Nov 18 2013 /usr/bin/write
4587931 60 -rwsr-xr-x 1 root root 57888 Aug 2 2013 /usr/bin/at
4588045 60 -rwsr-xr-x 1 root root 57536 Sep 25 2013 /usr/bin/crontab
4588961 32 -rwsr-xr-x 1 root root 32024 Nov 18 2013 /usr/bin/su
...
5767487 85 -rwsrwsr-x 1 root root 68928 Sep 13 11:52 /var/.bin/myvi
...

Notice that find uncovers SUID and SGID commands that regular users can run to esca-

late their permission for particular reasons. In this example, there is also a file that a user

tried to hide (myvi). This is a copy of the vi command that, because of permission and

ownership, can change files owned by root. This is obviously a user doing something that

they should not be doing.

Securing the password �les

The /etc/passwd file is the file the Linux system uses to check user account information

and was covered earlier in the chapter. The /etc/passwd file should have the following

permissions settings:

 ■ Owner: root

 ■ Group: root

 ■ Permissions: (644) Owner: rw- Group: r-- Other: r--

The example that follows shows that the /etc/passwd file has the appropriate settings:

ls -l /etc/passwd
-rw-r--r--. 1 root root 1644 Feb 2 02:30 /etc/passwd

These settings are needed so that users can log in to the system and see usernames associ-

ated with user ID and group ID numbers. However, users should not be able to modify the /
etc/passwd directly. For example, a malicious user could add a new account to the file if

write access were granted to Other.

The next file is the /etc/shadow file. Of course, it is closely related to the /etc/passwd

file because it is also used during the login authentication process. This /etc/shadow file

should have the following permissions settings:

 ■ Owner: root

 ■ Group: root

 ■ Permissions: (640) Owner: -rw- Group: r-- Other: ---

The code that follows shows that the /etc/shadow file has the appropriate settings:

ls -l /etc/shadow
-rw-r----- 1 root shadow 1320 Apr 3 19:50 /etc/shadow

The /etc/passwd file has read access for the owner, group, and other. Notice how much

more the /etc/shadow file is restricted than the /etc/passwd file. For the /etc/
shadow file, there is sharply limited access permission, although the root user can still

Part V: Learning Linux Security Techniques

508

access the file. So, if only root can view this file, how can users change their passwords,

which are stored in /etc/shadow? The passwd utility, /usr/bin/passwd, uses the spe-

cial permission SUID. This permission setting is shown here:

ls -l /usr/bin/passwd
-rwsr-xr-x. 1 root root 28804 Aug 17 20:50 /usr/bin/passwd

Thus, the user running the passwd command temporarily becomes root while the command

is executing in memory and can then write to the /etc/shadow file, but only to change

the user’s own password-related information.

The /etc/group file (see Chapter 11) contains all of the groups on the Linux system. Its

file permissions should be set exactly as the /etc/passwd file:

 ■ Owner: root

 ■ Group: root

 ■ Permissions: (644) Owner: rw- Group: r-- Other: r--

Locking down the �lesystem

The filesystem table (see Chapter 12, “Managing Disks and Filesystems”), /etc/fstab,

needs some special attention, too. The /etc/fstab file is used at boot time to mount

storage devices on filesystems. It is also used by the mount command, the dump command,

and the fsck command. The /etc/fstab file should have the following permission

settings:

 ■ Owner: root

 ■ Group: root

 ■ Permissions: (644) Owner: rw- Group: r-- Other: r--

Within the filesystem table, there are some important security settings that need to be

reviewed. Besides your root, boot, and swap partitions, filesystem options are fairly secure

by default. However, you may want to also consider the following:

 ■ Typically, you put the /home subdirectory, where user directories are located, on

its own partition. When you add mount options to mount that directory in /etc/
fstab, you can set the nosuid option to prevent SUID and SGID permission-

enabled executable programs from running from there. Programs that need SUID

and SGID permissions should not be stored in /home and are most likely mali-

cious. You can set the nodev option so that no device file located there will be

recognized. Device files should be stored in /dev and not in /home. You can set

the noexec option so that no executable programs, which are stored in /home,

can be run.

 ■ You can put the /tmp subdirectory, where temporary files are located, on its own

partition and use the same options settings as for /home:

 ■ nosuid

 ■ nodev

 ■ noexec

Chapter 22: Understanding Basic Linux Security

509

22

 ■ You can put the /usr subdirectory, where user programs and data are located, on

its own partition and set the nodev option so that no device file located there is

recognized. After software is installed, the /usr directory often has little or no

change (sometimes, it is even mounted read-only for security reasons).

 ■ If the system is configured as a server, you probably want to put the /var direc-

tory on its own partition. The /var directory is meant to grow, as log messages

and content for web, FTP, and other servers are added. You can use the same mount

options with the /var partition as you do for /home:

 ■ nosuid

 ■ nodev

 ■ noexec

Putting the preceding mount options into your /etc/fstab would look similar to the

following:

/dev/sdb1 /home ext4 defaults,nodev,noexec,nosuid 1 2
/dev/sdc1 /tmp ext4 defaults,nodev,noexec,nosuid 1 1
/dev/sdb2 /usr ext4 defaults,nodev 1 2
/dev/sdb3 /var ext4 defaults,nodev,noexec,nosuid 1 2

These mount options will help to lock down your filesystem further and add another layer

of protection from those with malicious intent. Again, managing the various file permis-

sions and fstab options should be part of your security policy. The items you choose to

implement must be determined by your organization’s security needs.

Managing software and services
Often, the administrator’s focus is on making sure that the needed software and services

are on a Linux system. From a security standpoint, you need to take the opposite viewpoint

and make sure that the unneeded software and services are not on a Linux system.

Updating software packages

In addition to removing unnecessary services and software, keeping current software up to

date is critical for security. The latest bug fixes and security patches are obtained via soft-

ware updates. Software package updates were covered in Chapter 9, “Installing Linux,” and

Chapter 10, “Getting and Managing Software.”

Software updates need to be done on a regular basis. How often and when you do it, of

course, depends upon your organization’s security needs.

You can easily automate software updates, but like removing services and software, it

would be wise to test the updates in a test environment first. When updated software shows

no problems, you can then update the software on your production Linux systems.

Keeping up with security advisories

As security flaws are found in Linux software, the Common Vulnerabilities and Exposures

(CVE) project tracks them and helps to quickly get fixes for those flaws worked on by the

Linux community.

Part V: Learning Linux Security Techniques

510

Companies such as Canonical provide updated packages to fix the security flaws and

deliver them.

For more information on how security updates are handled in Ubuntu, refer to the Security

Notices page on the Ubuntu website (usn.ubuntu.com/). You can also search for CVEs and

related packages on the people.canonical.com/~ubuntu-security/cve page.

Advanced implementation
You should be aware of several other important security topics as you are planning your deploy-

ments. They include cryptography, Pluggable Authentication Modules (PAM), and AppArmor.

These advanced and detailed topics have been put into separate chapters, Chapter 23, “Under-

standing Advanced Linux Security,” and Chapter 24, “Enhancing Linux Security with AppArmor”.

Monitoring Your Systems
If you do a good job of planning and implementing your system’s security, most malicious

attacks will be stopped. However, if an attack should occur, you need to be able to recog-

nize it. Monitoring is an activity that needs to be going on continuously.

Monitoring your system includes watching over log files, user accounts, and the filesystem itself.

In addition, you need some tools to help you detect intrusions and other types of malware.

Monitoring log �les
Understanding how message logging is done is critical to maintaining and troubleshooting

a Linux system. Before the systemd facility was used to gather messages in what is

referred to as the systemd journal, messages generated by the kernel and system services

were directed to files in the /var/log directory. While that is still true to a great extent

with systemd, you can now also view log messages directly from the systemd journal

using the journalctl command.

The log files for your Linux system are primarily located in the /var/log directory.

Most of the files in the /var/log directory are directed there from the systemd journal

through the rsyslogd service (see Chapter 13, “Understanding Server Administration”).

Most of the log files are displayed using the commands cat, head, tail, more, or less.

However, a few of them have special commands for viewing (see Table 22.2).

TABLE 22.2 Viewing Log Files That Need Special Commands

Filename View Command

btmp dump-utmp btmp

dmesg dmesg

lastlog lastlog

wtmp dump-utmp wtmp

https://usn.ubuntu.com/
https://people.canonical.com/~ubuntu-security/cve/

Chapter 22: Understanding Basic Linux Security

511

22

With the change to systemd (which manages the boot process and services), as noted ear-

lier, the mechanism for gathering and displaying log messages associated with the kernel

and system services has changed as well. Those messages are directed to the systemd

journal and can be displayed with the journalctl command.

To page through kernel messages, type the following command:

$ journalctl -k
-- Logs begin at Tue 2019-05-07 09:16:36 EDT, end at Tue 2020-04-07
12:25:01 EDT
Apr 07 07:49:08 workstation kernel: Linux version 5.3.0-46-generic
(buildd@lcy01
Apr 07 07:49:08 workstation kernel: Command line: BOOT_IMAGE=/boot/
vmlinuz-5.3.0
Apr 07 07:49:08 workstation kernel: KERNEL supported cpus:
Apr 07 07:49:08 workstation kernel: Intel GenuineIntel
Apr 07 07:49:08 workstation kernel: AMD AuthenticAMD
Apr 07 07:49:08 workstation kernel: Hygon HygonGenuine
Apr 07 07:49:08 workstation kernel: Centaur CentaurHauls
Apr 07 07:49:08 workstation kernel: zhaoxin Shanghai
Apr 07 07:49:08 workstation kernel: x86/fpu: Supporting XSAVE feature
0x001: 'x8
Apr 07 07:49:08 workstation kernel: x86/fpu: Supporting XSAVE feature
0x002: 'SS
Apr 07 07:49:08 workstation kernel: x86/fpu: Supporting XSAVE feature
0x004: 'AV
Apr 07 07:49:08 workstation kernel: x86/fpu: xstate_offset[2]: 576,
xstate_size
Apr 07 07:49:08 workstation kernel: x86/fpu: Enabled xstate features
0x7, contex
Apr 07 07:49:08 workstation kernel: BIOS-provided physical RAM map:
Apr 07 07:49:08 workstation kernel: BIOS-e820: [mem
0x0000000000000000-0x0000000
...

To view messages associated with a particular service, use the -u option followed by the

service name to see log messages for any service, as in this example:

$ journalctl -u NetworkManager.service
$ journalctl -u apache2.service
$ journalctl -u avahi-daemon.service

If you think that a security breach is in progress, you can watch all or selected messages as

they come in by following messages. For example, to follow kernel messages or Apache mes-

sages as they come in, add the -f option (press Ctrl+C when you are finished):

$ journalctl -k -f
$ journalctl -f -u apache2.service

Part V: Learning Linux Security Techniques

512

To check just boot messages, you can list the boot IDs for all system boots and then boot

the particular boot instance that interests you. The following examples display boot IDs

and then show boot messages for a selected boot ID:

$ journalctl –list-boots
[...]
 -11 24f2850c6b4a42d1ae44945d6c088393 Fri 2020-03-27 07:48:51 EDT–Fri
2020-03-27 17:46:47 EDT
 -10 e26956a6a4ac4bacbd1c35fdf373facf Sat 2020-03-28 20:53:35 EDT–Sun
2020-03-29 00:09:42 EDT
 -9 05c00d086c1b49ccab24ba118c7f1e38 Sun 2020-03-29 07:46:35 EDT–Mon
2020-03-30 00:12:54 EDT
 -8 7eb56eef2bb242c4b0d347bb30fe9d53 Mon 2020-03-30 07:49:14 EDT–Tue
2020-03-31 00:21:25 EDT
 -7 7ea9b4f75ad849e8929bb5ec6a58d760 Tue 2020-03-31 07:47:07 EDT–Wed
2020-04-01 00:16:47 EDT
 -6 82b2d7e9067e45198e53076fda8fa9a4 Wed 2020-04-01 07:49:09 EDT–Thu
2020-04-02 00:19:14 EDT
 -5 0e3cc11227364c5c9cf9322aa87064c4 Thu 2020-04-02 07:49:08 EDT–Fri
2020-04-03 00:13:10 EDT
 -4 7f432f43ee6d427d91a79b200543bd69 Fri 2020-04-03 07:48:35 EDT–Fri
2020-04-03 18:07:30 EDT
 -3 246bbe00e58740138636b5386f12a4fb Sat 2020-04-04 21:02:22 EDT–Sat
2020-04-04 23:25:21 EDT
 -2 3ffc709d76884c8bbcc26e239c570744 Sun 2020-04-05 07:47:44 EDT–Mon
2020-04-06 00:04:48 EDT
 -1 0b2c500ca05549d09e2083c343abea66 Mon 2020-04-06 07:49:37 EDT–Tue
2020-04-07 00:11:23 EDT
 0 02d1fc2469794ebc83026d47e02b97fa Tue 2020-04-07 07:49:08 EDT–Tue
2020-04-07 12:39:58 EDT

Monitoring user accounts
User accounts are often used in malicious attacks on a system by gaining unauthorized

access to a current account, by creating new bogus accounts, or by leaving an account

behind to access later. To avoid such security issues, watching over user accounts is an

important activity.

Detecting counterfeit accounts and privileges

Accounts created without going through the appropriate authorization should be consid-

ered counterfeit. Also, modifying an account in any way that gives it a different unautho-

rized user identification (UID) number or adds unauthorized group memberships is a form

of rights escalation. Keeping an eye on the /etc/passwd and /etc/group files will mon-

itor these potential breaches.

To help you monitor the /etc/passwd and /etc/group files, you can use the audit

daemon. The audit daemon is an extremely powerful auditing tool that allows you to select

system events to track and record them, and it provides reporting capabilities.

Chapter 22: Understanding Basic Linux Security

513

22

To begin auditing the /etc/passwd and /etc/group files, you need to use the auditctl

command (apt install auditd). Two options at a minimum are required to start

this process:

-w filename: Place a watch on filename. The audit daemon tracks the file by its

inode number. An inode number is a data structure that contains information con-

cerning a file, including its location.

-p trigger(s—): If one of these access types occurs (r=read, w=write, x=execute,

a=attribute change) to filename, then trigger an audit record.

In the following example, a watch has been placed on the /etc/passwd file using the

auditctl command. The audit daemon will monitor access, which consists of any reads,

writes, or file attribute changes:

auditctl -w /etc/passwd -p rwa

After you have started a file audit, you may want to turn it off at some point. To turn off

an audit, use the command

auditctl -W filename -p trigger(s)

To see a list of current audited files and their watch settings, type auditctl -l at the

command line.

To review the audit logs, use the audit daemon’s ausearch command. The only option

needed here is the -f option, which specifies which records you want to view from the

audit log. The following is an example of the /etc/passwd audit information:

ausearch -f /etc/passwd
time->Fri Feb 7 04:27:01 2020
type=PATH msg=audit(1328261221.365:572):
item=0 name="/etc/passwd" inode=170549
dev=fd:01 mode=0100644 ouid=0 ogid=0
rdev=00:00 obj=system_u:object_r:etc_t:s0
type=CWD msg=audit(1328261221.365:572): cwd="/"
...
time->Fri Feb 7 04:27:14 2020
type=PATH msg=audit(1328261234.558:574):
item=0 name="/etc/passwd" inode=170549
dev=fd:01 mode=0100644 ouid=0 ogid=0
rdev=00:00 obj=system_u:object_r:etc_t:s0
type=CWD msg=audit(1328261234.558:574):
cwd="/home/johndoe"
type=SYSCALL msg=audit(1328261234.558:574):
arch=40000003 syscall=5 success=yes exit=3
a0=3b22d9 a1=80000 a2=1b6 a3=0 items=1 ppid=3891
pid=21696 auid=1000 uid=1000 gid=1000 euid=1000
suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000
tty=pts1 ses=2 comm="vi" exe="/bin/vi"
 subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023"

Part V: Learning Linux Security Techniques

514

This is a lot of information to review. A few items will help you see what audit event hap-

pened to trigger the bottom record:

time: The time stamp of the activity

name: The filename, /etc/passwd, being watched

inode: The /etc/passwd ’s inode number on this filesystem

uid: The user ID, 1000, of the user running the program

exe: The program, /bin/vi, used on the /etc/passwd file

To determine what user account is assigned the UID of 1000, look at the /etc/passwd

file. In this case, the UID of 1000 belongs to the user johndoe. Thus, from the audit event

record just displayed, you can determine that account johndoe has attempted to use the

vi editor on the /etc/passwd file. It is doubtful that this was an innocent action, and it

requires more investigation.

The audit daemon and its associated tools are extremely rich. To learn more about it, look

at the man pages for the following audit daemon utilities and configuration files:

auditd: The audit daemon

/etc/audit/auditd.conf: The audit daemon configuration file

autditctl: Controls the auditing system

/etc/audit/audit.rules: Configuration rules loaded at boot

ausearch: Searches the audit logs for specified items

aureport: Report creator for the audit logs

audispd: Sends audit information to other programs

The audit daemon is one way to keep an eye on important files. You should also review

your account and group files on a regular basis with a human eye to see if anything looks

irregular.

Important files, such as /etc/passwd, do need to be monitored for unauthorized account

creation. However, just as bad as a new unauthorized user account is an authorized user

account with a bad password.

Detecting bad account passwords

Even with all your good efforts, bad passwords will slip in. Therefore, you do need to mon-

itor user account passwords to ensure they that are strong enough to withstand an attack.

NOTE

The ausearch command returns nothing if no watch events on a �le have been triggered.

Chapter 22: Understanding Basic Linux Security

515

22

One password strength monitoring tool that you can use is the same one malicious users

use to crack accounts, John the Ripper. John the Ripper is a free, open source tool that you

can use at the Linux command line. It’s not installed by default. You can install it using

apt install john.

In order to use John the Ripper to test user passwords, you must first extract account

names and passwords using the unshadow command. This information needs to be redi-

rected into a file for use by john, as shown here:

unshadow /etc/passwd /etc/shadow > password.file

Now edit the password.file using your favorite text editor to remove any accounts

without passwords. Because it is wise to limit John the Ripper to testing a few accounts at

a time, remove any account names that you do not wish to test presently.

The john utility is extremely CPU-intensive. It does set its nice value to 19 in order to lower its priority. However, it

would be wise to run it on a non-production system or during off-peak hours and for only a few accounts at a time.

Now use the john command to attempt password cracks. To run john against the created

password file, issue the command john filename. In the following code snippet, you can

see the output from running john against the sample password.file. For demonstration

purposes, only one account was left in the sample file. Further, the account Samantha

was given the bad password of password. You can see how little time it took for John the

Ripper to crack the password.

john password.file
Loaded 1 password hash (generic crypt(3) [?/32])
password (Samantha)
guesses: 1 time: 0:00:00:44 100% (2) c/s: 20.87
 trying: 12345 - missy
Use the "--show" option to display all of the
 cracked passwords reliably

To demonstrate how strong passwords are vital, consider what happens when the Saman-
tha account’s password is changed from password to Password1234. Even though

Password1234 is still a weak password, it takes longer than 7 days of CPU time to crack

it. In the code that follows, john was finally aborted to end the cracking attempt:

passwd Samantha
Changing password for user Samantha.
...
john password.file
Loaded 1 password hash (generic crypt(3) [?/32])
...
time: 0:07:21:55 (3) c/s: 119 trying: tth675 - tth787
Session aborted

As soon as the password cracking attempts have completed, the password.file should be

removed from the system. To learn more about John the Ripper, visit openwall.com/john.

http://www.openwall.com/john

Part V: Learning Linux Security Techniques

516

Monitoring the �lesystem
Malicious programs often modify files. They also can try to cover their tracks by posing as

ordinary files and programs. However, there are ways to uncover them through the various

monitoring tactics covered in the following sections.

Verifying software packages

Typically, if you install a software package from a standard repository or download a rep-

utable site’s package, you won’t have any problems. But it is always good to double-check

your installed software packages to see if they have been compromised. The dpkg -V

package_name command will check for a valid md5sum hash. You can also run dpkg

–-audit package_name to check for configuration issues or problems with control

data or files. In this example, dpkg correctly discovered a configuration issue with the

auditd package:

dpkg --audit auditd
The following packages are only half configured, probably due
to problems
configuring them the first time. The configuration should be
retried using
dpkg --configure <package> or the configure menu option in dselect:
 auditd User space tools for security auditing

When you verify the software, information from the installed package files is compared

against the package metadata (see Chapter 10) in the APT database. If no problems are

found, the command returns nothing. However, if there are discrepancies, you get a

coded listing.

Scanning the �lesystem

Unless you’ve recently updated your system, binary files should not have been modified for

any reason. Commands such as find can help you determine if a binary file has been tam-

pered with.

To check for binary file modification, find can use the file’s modify time, or mtime. The

file mtime is the time when the contents of a file were last modified. Also, find can mon-

itor the file’s create/change time, or ctime.

If you suspect malicious activity, you can quickly scan your filesystem to see if any

binaries were modified or changed today (or yesterday, depending upon when you think the

intrusion took place). To do this scan, use the find command.

In the example that follows, a scan is made of the /sbin directory. To see if any binary

files were modified less than 24 hours ago, the command find /sbin -mtime -1 is

NOTE

You could also use the debsums utility. To check all installed packages, use the debsums -a command. To

check one package, type debsums packagename.

Chapter 22: Understanding Basic Linux Security

517

22

used. In the example, several files are displayed, showing that they were modified recently.

This indicates that malicious activity is taking place on the system. To investigate further,

review each individual file’s times, using the stat filename command, as shown here:

find /sbin -mtime -1
/sbin
/sbin/init
/sbin/reboot
/sbin/halt
#
stat /sbin/init
 File: '/sbin/init' -> '../bin/systemd'
 Size: 14 Blocks: 0 IO Block: 4096 symbolic link
Device: fd01h/64769d Inode: 9551 Links: 1
Access: (0777/lrwxrwxrwx)
Uid: (0/ root) Gid: (0/ root)
Context: system_u:object_r:bin_t:s0
Access: 2016-02-03 03:34:57.276589176 -0500
Modify: 2016-02-02 23:40:39.139872288 -0500
Change: 2016-02-02 23:40:39.140872415 -0500
 Birth: -

You could create a database of all of the binary’s original mtimes and ctimes and then run

a script to find current mtimes and ctimes, compare them against the database, and note

any discrepancies. However, this type of program has already been created and works well.

It’s called an Intrusion Detection System, and it is covered later in this chapter.

You need to perform several other filesystem scans on a regular basis. Favorite files or file

settings of malicious attackers are listed in Table 22.3. The table also lists the commands to

perform the scans and why the file or file setting is potentially problematic.

TABLE 22.3 Additional Filesystem Scans

File or Setting Scan Command Problem with File or Setting

SUID
permission

find /
-perm -4000

Allows anyone to become the �le’s owner tempo-
rarily while the �le is being executed in memory.

SGID
permission

find /
-perm -2000

Allows anyone to become a group member of the
�le’s group temporarily while the �le is being exe-
cuted in memory.

rhost �les find /home
-name .rhosts

Allows a system to trust another system com-
pletely. It should not be in /home directories.

Ownerless �les find / -nouser Indicates �les that are not associated with
any username.

Groupless �les find / -nogroup Indicates �les that are not associated with any
group name.

Part V: Learning Linux Security Techniques

518

These filesystem scans help monitor what is going on in your system and help detect mali-

cious attacks. However, other types of attacks can threaten your files, including viruses

and rootkits.

Detecting viruses and rootkits

Two popular malicious attack tools are viruses and rootkits because they stay hidden while

performing their malicious activities. Linux systems need to be monitored for both such

intrusions.

Monitoring for viruses

A computer virus is malicious software that can attach itself to already installed system

software, and it has the ability to spread through media or networks. It is a misconception

that there are no Linux viruses. The malicious creators of viruses do often focus on the

more popular desktop operating systems, such as Windows. However, that does not mean

that viruses are not created for the Linux systems.

Even more important, Linux systems are often used to handle services, such as mail

servers, for Windows desktop systems. Therefore, Linux systems used for such purposes

need to be scanned for Windows viruses as well.

Antivirus software scans files using virus signatures. A virus signature is a hash created

from a virus’s binary code. The hash will positively identify that virus. Antivirus programs

have a virus signature database that is used to compare against files to see if there is a sig-

nature match. Depending upon the number of new threats, a virus signature database can

be updated often to provide protection from these new threats.

A good antivirus software choice for your Linux system, which is open source and free, is

ClamAV. To install ClamAV and the virus database, install these two packages:

apt install clamav clamav-freshclam

You can find out more about ClamAV at clamav.net, where there is documentation on how

to set up and run the antivirus software.

Monitoring for rootkits

A rootkit is a little more insidious than a virus. A rootkit is a malicious program that does

the following:

 ■ Hides itself, often by replacing system commands or programs

 ■ Maintains high-level access to a system

 ■ Is able to circumvent software created to locate it

The purpose of a rootkit is to get and maintain root-level access to a system. The term was

created by putting together root, which means that it has to have administrator access, and

kit, which means it is usually several programs that operate in concert.

A rootkit detector that can be used on a Linux system is chkrootkit. To install chkrootkit

issue the command apt install chkrootkit.

http://www.clamav.net/index.html

Chapter 22: Understanding Basic Linux Security

519

22

Finding a rootkit with chkrootkit is simple. After installing the package or booting up

the Live CD, type in chkrootkit at the command line. It searches the entire file structure

denoting any infected files.

The code that follows shows a run of chkrootkit on an infected system. The grep

command was used to search for the keyword INFECTED. Notice that many of the files

listed as infected are Bash shell command files. This is typical of a rootkit.

chkrootkit | grep INFECTED
Checking 'du'... INFECTED
Checking 'find'... INFECTED
Checking 'ls'... INFECTED
Checking 'lsof'... INFECTED
Checking 'pstree'... INFECTED
Searching for Suckit rootkit... Warning: /sbin/init INFECTED

In the last line of the preceding chkrootkit code is an indication that the system has

been infected with the Suckit rootkit. It actually is not infected with this rootkit. When

running utilities, such as antivirus and rootkit-detecting software, you often get a number

of false positives. A false positive is an indication of a virus, rootkit, or other malicious

activity that does not really exist. In this particular case, this false positive is caused by a

known bug.

The chkrootkit utility should have regularly scheduled runs and, of course, should be

run whenever a rootkit infection is suspected. To find more information on chkrootkit,

go to www.chkrootkit.org.

Detecting an intrusion

Intrusion Detection System (IDS) software—a software package that monitors a system’s

activities (or its network) for potential malicious activities and reports these activities—

can help you monitor your system for potential intrusions. Closely related to Intrusion

Detection System software is a software package that prevents an intrusion, called Intru-

sion Prevention System software. Some of these packages are bundled together to provide

Intrusion Detection and Prevention.

Several Intrusion Detection System software packages are available for a Linux system.

A few of the more popular utilities are listed in Table 22.4. You should know that trip-
wire is no longer open source. However, the original tripwire code is still available. See

the tripwire website listed in Table 22.4 for more details.

TIP

Another rootkit detector that might interest you is called Rootkit Hunter (rkhunter package). Run the rkhunter

script to check your system for malware and known rootkits. Con�gure rkhunter in the /etc/rkhunter.conf

�le. For a simple example, run rkhunter -c to check the �lesystem for a variety of rootkits and vulnerabilities.

http://chkrootkit.org/

Part V: Learning Linux Security Techniques

520

The Advanced Intrusion Detection Environment (aide) IDS uses a method of comparison

to detect intrusions. When you were a child, you may have played the game of comparing

two pictures and finding what was different between them. The aide utility uses a similar

method. A “first picture” database is created. At some time later, another database “second

picture” is created, and aide compares the two databases and reports what is different.

To begin, you need to take that “first picture.” The best time to create this picture is when

the system has been freshly installed. The command to create the initial database is aide.
wrapper -i and it takes a long time to run. Some of its output follows:

aide.wrapper -i
Start timestamp: 2020-04-07 19:19:33 +0000 (AIDE 0.16)
AIDE initialized database at /var/lib/aide/aide.db.new
Verbose level: 6

Number of entries: 183088

The attributes of the (uncompressed) database(s):

/var/lib/aide/aide.db.new
 RMD160 : CPYeo30jdCLFv5K982ikAF9tpoo=
 TIGER : 3faY0oxurQbvrljl7IWWXGHX2fx+EHPN
 SHA256 : 6diJ2c8p6elfCkiRSxUJ5LV7icCUOmC5
 NO+z4iZ9suM=
 SHA512 : hDtBFYWmDGAFQUxL4PlgSKiSRRJRiQBV
 rUXrRUuLSgAiQCnQ9EWnLtBjNQxmDt9h
 tiN4IoON+LWWk0xXUK5AHw==
 CRC32 : KVke8Q==
 HAVAL : SMq9Po82Dg1SOod3vHtgG6D/Xqd0X91/
 wkKX9aTbx4w=
 GOST : L0JMMPR9WoMJpa1Bgj9C4Z4p2Aila5UC
 9ruHH/RC47I=

End timestamp: 2020-04-07 19:23:41 +0000 (run time: 4m 8s)

TABLE 22.4 Popular Linux Intrusion Detection Systems

IDS Name Installation Website

aide apt install aide aide.sourceforge.net

Snort apt install snort www.snort.org

tripwire apt install tripwire www.tripwire.org

http://aide.sourceforge.net/
http://snort.org/
http://tripwire.org/

Chapter 22: Understanding Basic Linux Security

521

22

The next step is to move the initial “first picture” database to a new location. This protects

the original database from being overwritten. Plus, the comparison does not work unless

the database is renamed. The command to rename the new database is as follows:

cp /var/lib/aide/aide.db.new /var/lib/aide/aide.db

When you are ready to check whether your files have been tampered with, you need to cre-

ate a new database, “second picture,” and compare it to the original database, “first

picture.” The check option on the aide command, -c, creates a new database and runs a

comparison against the old database:

aide.wrapper -C

Where aide databases are created, what comparisons are made, and several other config-

uration settings are handled in the /etc/aide/aide.conf file, along with files in the /
etc/aide/aide.conf.d and /etc/aide/aide.settings.d directories.

An Intrusion Detection System can be a big help in monitoring the system. When potential

intrusions are detected, comparing the output to information from other commands and log

files can help you better understand and correct any attacks on your system.

Auditing and Reviewing Linux
You must understand two important terms when you are auditing the health of your Linux

system. A compliance review is an audit of the overall computer system environment to

ensure that the policies and procedures you have set for the system are being carried out

correctly. A security review is an audit of current policies and procedures to ensure that

they follow accepted best security practices.

Conducting compliance reviews
Similar to audits in other fields, such as accounting, audits can be conducted internally or

by external personnel. These reviews can be as simple as someone sitting down and com-

paring implemented security to your company’s stated policies. However, it’s more popular

to conduct audits using penetration testing.

Penetration testing is an evaluation method used to test a computer system’s security by

simulating malicious attacks. It is also called pen testing and ethical hacking. No longer

do you have to gather tools and the local neighborhood hacker to help you conduct

these tests.

Kali Linux (www.kali.org/) is a distribution created specifically for penetration testing. It

can be used from a live DVD or a flash drive.

While penetration testing is lots of fun, for a thorough compliance review, a little more is

needed. You should also use checklists from industry security sites.

http://kali.org/

Part V: Learning Linux Security Techniques

522

Conducting security reviews
Conducting a security review requires that you know current best security practices. There

are several ways to stay informed about best security practices. The following is a brief list

of organizations that can help you:

 ■ United States Cybersecurity and Infrastructure Security Agency (CISA)

 ■ URL: www.us-cert.gov

 ■ Offers the National Cyber Alert System

 ■ Offers RSS feeds on the latest security threats

 ■ The SANS Institute

 ■ URL: sans.org/security-resources

 ■ Offers Computer Security Research newsletters

 ■ Offers RSS feeds on the latest security threats

 ■ Gibson Research Corporation

 ■ URL: grc.com

 ■ Offers the Security Now! security netcast

Information from these sites will assist you in creating stronger policies and procedures.

Given how fast the best security practices change, it would be wise to conduct security

reviews often, depending upon your organization’s security needs.

Now you understand a lot more about basic Linux security. The hard part is actually putting

all of these concepts into practice.

Summary
Basic Linux security practices, such as managing user accounts, securing passwords, and

managing software and services, form the foundation for all other security on your Linux

system. With that foundation in place, ongoing monitoring of your system includes watch-

ing over system log files, checking for malicious intrusions, and monitoring the filesystem.

Regular reviews of your security policies are also important. Audits assist in ensuring that

your Linux system is secured and the proper security policies and practices are in place.

You have completed your first step of gathering basic security procedures and principles

knowledge. It is not enough just to know the basics. You need to add advanced Linux secu-

rity tools to your security toolbox. In the next chapter, advanced security topics of cryp-

tography and authentication modules are covered.

http://www.us-cert.gov/
http://www.sans.org/security-resources
http://www.grc.com/

Chapter 22: Understanding Basic Linux Security

523

22

Exercises
Refer to the material in this chapter to complete the tasks that follow. If you are stuck,

solutions to the tasks are shown in Appendix A (although in Linux, there are often multiple

ways to complete a task). Try each of the exercises before referring to the answers. These

tasks assume that you are running an Ubuntu system (although some tasks will work on

other Linux systems as well).

1. Check log messages from the systemd journal for the following services: Net-
workManager.service, sshd.service, and auditd.service.

2. List the permissions of the file containing your system’s user passwords and deter-

mine if they are appropriate.

3. Determine your account’s password aging and if it will expire using a sin-

gle command.

4. Start auditing writes to the /etc/shadow file with the auditd daemon and then

check your audit settings.

5. Create a report from the auditd daemon on the /etc/shadow file, and then turn

off auditing on that file.

6. Install the lemon package, damage the /usr/bin/lemon file (perhaps copy /etc/
services there), verify that the file has been tampered with, and remove the

lemon package.

7. You suspect that you have had a malicious attack on your system today and impor-

tant binary files have been modified. What command should you use to find these

modified files?

8. Install and run chkrootkit to see if the malicious attack from the exercise 7

installed a rootkit.

9. Find files with the SUID or SGID permission set.

10. Install the aide package, run the aide command to initialize the aide database,

copy the database to the correct location, and run the aide command to check if

any important files on your system have been modified.

525

CHAP T ER

23
Understanding Advanced

Linux Security

IN THIS CHAPTER

Understanding hashing and encryption

Checking �le integrity

Encrypting �les, directories, and �lesystems

Understanding pluggable authentication modules

Managing Linux security with PAM

D
ue to ever-changing and growing threats, implementing basic computer security is no longer

enough. As malicious users gain access to and knowledge of advanced tools, so must a Linux

system administrator. Understanding advanced computer security topics and tools must be

part of your preparation.

In this chapter, you will learn about cryptography basics, such as ciphers and encryption. You will

also learn how the authentication module utility can simplify your administrative duties, even

though it is an advanced security topic.

Implementing Linux Security with Cryptography
Using cryptography enhances the security of your Linux system and its network communications.

Cryptography is the science of concealing information. It has a long and rich history that goes back

far before computers were around. Because of its heavy use of mathematical algorithms, cryptog-

raphy has easily transitioned to computers. Linux comes with many cryptographic tools ready for

you to use.

To understand cryptographic concepts and the various Linux tools, you should know a few cryptog-

raphy terms:

Plain text: Text that a human or machine can read and comprehend

Ciphertext: Text that a human or machine cannot read and comprehend

Encryption: The process of converting plain text into ciphertext using an algorithm

Part V: Learning Linux Security Techniques

526

Decryption: The process of converting ciphertext into plain text using an algorithm

Cipher: The algorithm used to encrypt plain text into ciphertext and decrypt cipher-

text into plain text

Block cipher: A cipher that breaks data into blocks before encrypting

Stream cipher: A cipher that encrypts the data without breaking it up

Key: A piece of data required by the cipher to encrypt or decrypt data successfully

Parents of young children often use a form of cryptography. They spell words instead of

speaking them. A parent may take the plain-text word “candy” and turn it into ciphertext

by saying to the other parent “C-A-N-D-Y.” The other parent decrypts the word by using the

same spelling cipher and recognizes that the word is candy. Unfortunately, it does not take

children long to learn how to decrypt via the spelling cipher.

You may have noticed that hashing was not included in the preceding cryptography def-

inition list. Hashing needs some special attention because it is often confused with

encryption.

Understanding hashing
Hashing is not encryption, but it is a form of cryptography. Remember from Chapter 22,

“Understanding Basic Linux Security,” that hashing is a one-way mathematical process

used to create ciphertext. However, unlike encryption, after you create a hash, you cannot

 de-hash it back to its original plain text.

In order for a hashing algorithm to be used in computer security, it needs to be collision-

free, which means that the hashing algorithm does not output the same hash for two

totally different inputs. Each input must have a unique hashed output. Thus, cryptographic

hashing is a one-way mathematical process that is collision-free.

By default, cryptography is already in use on a Linux system. For example, the /etc/
shadow file contains hashed passwords. Hashing is used on Linux systems for the

following:

 ■ Passwords (Chapter 22)

 ■ Verifying files

 ■ Digital signatures

 ■ Virus signatures (Chapter 22)

A hash is also called a message digest, checksum, fingerprint, or signature. One Linux utility

that produces message digests is sha256sum. In Chapter 10, “Getting and Managing Soft-

ware,” you learned about getting software for your Linux system. When you download a

software file, you can make sure that the file was not corrupted on download.

Even—perhaps especially—the integrity of the Ubuntu operating system images you

download should be confirmed using checksum hashes. You can find links to md5, sha1,

and sha256 hashes for all Ubuntu images on from this page: help.ubuntu.com/community/

UbuntuHashes.

http://help.ubuntu.com/community/UbuntuHashes
http://help.ubuntu.com/community/UbuntuHashes

Chapter 23: Understanding Advanced Linux Security

527

23

To generate the hash, run the sha256sum command on, say, an ISO image after you’ve

download it. The sha256sum hash results for the downloaded software file are shown in

the code that follows:

$ sha256sum ubuntu-20-04-focal-live-server-amd64.iso
7d3e2e0c6ba036c7567084d25595a4556288e290a39aeae6bc547fee82ce3460
ubuntu-20-04-focal-live-server-amd64.iso

If the resulting hash does match the one available from the website, it means that the

downloaded ISO file has not been corrupted and is ready for use.

You can implement even more cryptography besides hashing on your Linux system. The

Linux utilities to do so are very easy to use. However, first you need to understand a few

more underlying cryptography concepts.

Understanding encryption/decryption
The primary use of cryptography on a Linux system is to encode data to hide it (encryp-

tion) from unauthorized eyes and then decode the data (decryption) for authorized eyes.

On a Linux system, you can encrypt the following:

 ■ Individual files

 ■ Partitions and volumes

 ■ Web page connections

 ■ Network connections

 ■ Backups

 ■ Zip files

These encryption/decryption processes use special math algorithms to accomplish their

task. The algorithms are called cryptographic ciphers.

Understanding cryptographic ciphers

One of the original ciphers, called the Caesar Cipher, was created and used by Julius

Caesar. It was terribly easy to crack, however. Today, many more secure ciphers are avail-

able. Understanding how each cipher works is important because the strength of the cipher

you choose should directly relate to the security needs of your data. Table 23.1 lists a few

modern ciphers.

Understanding cryptographic cipher keys

Cryptographic ciphers require a piece of data, called a key, to complete their mathematical

process of encryption/decryption. The key can be either a single key or a pair of keys.

Notice the different cipher key sizes listed in Table 23.1. The key size is directly related to

how easily the cipher is cracked. The bigger the key size, the less the chance of cracking

the cipher. For example, DES is no longer considered secure because of its small 56-bit key

size. However, a cipher with a key size of 256 bits or 512 bits is considered secure because

(at least until quantum computing becomes widely available) it would take many years to

brute-force crack such a keyed cipher.

Part V: Learning Linux Security Techniques

528

TABLE 23.1 Cryptography Ciphers

Method Description

AES (Advanced
Encryption Standard),
also called Rijndael

Symmetric cryptography.
Block cipher, encrypting data in 128-, 192-, 256-, 512-bit blocks using
a 128-, 192-, 256, or 512-bit key for encrypting/decrypting.

Blow�sh Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks using the same 32-bit
to 448-bit keys for encrypting/decrypting.

CAST5 Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks using the same up to
128-bit key for encrypting/decrypting.

DES (Data Encryption
Standard)

No longer considered secure.
Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks using the same 56-bit
key for encrypting/decrypting.

3DES Improved DES cipher.
Symmetric cryptography.
Data is encrypted up to 48 times with three different 56-bit keys
before the encryption process is completed.

El Gamal Asymmetric cryptography.
Uses two keys derived from a logarithm algorithm.

Elliptic Curve
Cryptosystems

Asymmetric cryptography.
Uses two keys derived from an algorithm containing two randomly
chosen points on an elliptic curve.

IDEA Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks using the same 128-bit
key for encrypting/decrypting.

RC4 also called Arc-
Four or ARC4

Stream cipher, encrypting data in 64-bit blocks using a variable key
size for encrypting/decrypting.

RC5 Symmetric cryptography.
Block cipher, encrypting data in 32-, 64-, or 128-bit blocks using the
same up to 2,048-bit keys for encrypting/decrypting.

RC6 Symmetric cryptography.
Same as RC5, but slightly faster.

Rijndael also
called AES

Symmetric cryptography.
Block cipher, encrypting data in 128-, 192-, 256-, 512-bit blocks using
a 128-, 192-, 256-, or 512-bit key for encrypting/decrypting.

RSA Most popular asymmetric cryptography.
Uses two keys derived from an algorithm containing a multiple of two
randomly generated prime numbers.

Chapter 23: Understanding Advanced Linux Security

529

23

Symmetric key cryptography

Symmetric cryptography, also called secret key or private key cryptography, encrypts plain

text using a single keyed cipher. The same key is needed in order to decrypt the data. The

advantage of symmetric key cryptography is speed. The disadvantage is the need to share

the single key if the encrypted data is to be decrypted by another person.

An example of symmetric key cryptography on a Linux system is accomplished using the

OpenPGP utility, GNU Privacy Guard, gpg. Although it’s often installed by default, some

Ubuntu releases require manual installation of the gnupg package.

Encrypting and decrypting a tar archive �le

The simple example that follows—that won’t require that you first generate keys—shows

the tar command used to create a compressed tar archive (backup.tar.gz) and the gpg

utility used to encrypt the file, applying a one-time passphrase. The original file is kept

and a new encrypted file, backup.tar.gz.gpg, is created.

sudo tar czvf backup.tar.gz /etc
$ gpg --batch --output backup.tar.gz.gpg \
 --passphrase mypassword --symmetric backup.tar.gz
$ ls | grep backup
backup.tar.gz
backup.tar.gz.gpg

The single key used to encrypt the file is protected by a passphrase. This passphrase is

simply a password or phrase chosen by the user at the time of encryption. It’s now safe to

transmit the encrypted file to your recipient via email or remote connection. Well, if I had

used a better password than “mypassword” it would be safe, at any rate.

To decrypt the file, use the gpg utility installed on the recipient’s machine. The recipient

would run gpg with the --decrypt option, specify the name of the encrypted file and

the output filename, and include the passphrase for the secret key.

$ gpg --batch --output backup.tar.gz \
 --passphrase mypassword --decrypt backup.tar.gz.gpg
gpg: AES256 encrypted data

gpg: encrypted with 1 passphrase

Symmetric key cryptography is rather simple and easy to understand. Asymmetric cryptog-

raphy is much more complicated and often is a point of confusion in cryptography.

Asymmetric key cryptography

Asymmetric cryptography, also called private/public key cryptography, uses two keys, called

a key pair. A key pair consists of a public key and a private key. The public key is just

that—public. There is no need to keep it secret. The private key needs to be kept secret.

The general idea of asymmetric key cryptography is shown in Figure 23.1. A plain-text file

is encrypted using a public key of a key pair. The encrypted file then can be securely trans-

mitted to another person. To decrypt the file, the private key is used. This private key must

Part V: Learning Linux Security Techniques

530

be from the public/private key pair. Thus, data that has been encrypted with the public

key can only be decrypted with its private key. The advantage of asymmetric cryptography

is heightened security. The disadvantage is speed and key management.

Generating a key pair

You can perform asymmetric encryption on your Linux system using gpg. It is a very ver-

satile cryptographic utility. Before you can encrypt a file, you must first create your key

pair and a “key ring.” In the example that follows, the gpg --gen-key command was

used. This command creates a public/private key pair for the user johndoe, according to

his desired specifications. It also generates a key ring to store his keys.

$ gpg --gen-key
gpg (GnuPG) 2.2.4; Copyright (C) 2017 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Note: Use "gpg --full-generate-key" for a full featured key
generation dialog.
GnuPG needs to construct a user ID to identify your key.

Real name: steve
Email address: steve@mydomain.com
You selected this USER-ID:
 "steve <steve@mydomain.com>"

Public Key

Unencrypted

file

Encrypted

file

Encrypted

file

Unencrypted

file

Private Key

FIGURE 23.1

Basic asymmetric key cryptography

Chapter 23: Understanding Advanced Linux Security

531

23

Change (N)ame, (E)mail, or (O)kay/(Q)uit? O
We need to generate a lot of random bytes. It is a good idea
to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /home/steve/.gnupg/trustdb.gpg: trustdb created
gpg: key B8536FC71908786C marked as ultimately trusted
gpg: directory '/home/steve/.gnupg/openpgp-revocs.d' created
gpg: revocation certificate stored as '/home/myname/.gnupg/openpgp-
revocs.d/08C228855F6E21848CE4A044B8536FC71908786C.rev'
public and secret key created and signed.

pub rsa3072 2020-04-26 [SC] [expires: 2022-04-26]
 08C228855F6E21848CE4A044B8536FC71908786C
uid steve <steve@mydomain.com>
sub rsa3072 2020-04-26 [E] [expires: 2022-04-26]

In the preceding example, the gpg utility asks for several specifications to generate the

desired public/private keys:

User ID: This identifies the public key portion of the public/private key pair.

Email Address: This is the email address associated with the key.

Passphrase: This is used to identify and protect the private key portion of the public/

private key pair.

The user steve can check his key ring by using the gpg --list-keys command, as

shown in the code that follows. Notice the User ID (UID) of the public key is displayed just

as it was created, containing steve’s real name, comment, and email address.

$ gpg --list-keys
gpg: checking the trustdb
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2022-04-26
/home/steve/.gnupg/pubring.kbx

pub rsa3072 2020-04-26 [SC] [expires: 2022-04-26]
 08C228855F6E21848CE4A044B8536FC71908786C
uid [ultimate] steve <steve@mydomain.com>
sub rsa3072 2020-04-26 [E] [expires: 2022-04-26]

After the key pair and key ring are generated, files can be encrypted and decrypted. First,

the public key must be extracted from the key ring so that it can be shared. In the example

that follows, the gpg utility is used to extract the public key from myname’s key ring. The

extracted key is put into a file to be shared. The filename can be any name you wish it to

be. In this case, the user steve chose the filename steve.pub.

Part V: Learning Linux Security Techniques

532

$ gpg --export steve > steve.pub
$ ls *.pub
steve.pub
$ file steve.pub
steve.pub: GPG key public ring, created Sun Apr 26 02:31:22 2020

Sharing a public key

The file containing the public key can be shared in any number of ways. It can be sent as

an attachment via email or even posted on a web page. The public key is considered public,

so there is no need to hide it. In the example that follows, steve has given the file con-

taining his public key to the user jill. She adds steve’s public key to her key ring using

the gpg --import command. The user jill verifies that steve’s public key is added

using the gpg --list-keys command to view her key ring.

$ ls *.pub
steve.pub
$ gpg --import steve.pub
gpg: key B8536FC71908786C: public key "steve <steve@mydomain
.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --list-keys
/home/jill/.gnupg/pubring.kbx

pub rsa3072 2020-04-26 [SC] [expires: 2022-04-26]
 08C228855F6E21848CE4A044B8536FC71908786C
uid [unknown] steve <steve@mydomain.com>
sub rsa3072 2020-04-26 [E] [expires: 2022-04-26]

Encrypting an email message

After the key is added to the key ring, that public key can be used to encrypt data for the

public key’s original owner. In the example code that follows, note that jill has created a

text file, MessageForSteve.txt, for user johndoe.

 ■ She encrypts the file using his public key.

 ■ The encrypted file, MessageForSteve, is created by the --out option.

 ■ The option --recipient identifies steve’s public key using only the real name

portion of his public key’s UID in quotation marks, ″Steve″.

$ gpg --out MessageForSteve --recipient "Steve" \
 --encrypt MessageForSteve.txt
...
$ ls
steve.pub MessageForSteve MessageForSteve.txt

The encrypted message file, MessageForSteve, created from the plain-text file, Mes-
sageForSteve.txt, can be securely sent to the user steve. In order to decrypt this mes-

sage, steve uses his private key, identified and protected by the secret passphrase used

Chapter 23: Understanding Advanced Linux Security

533

23

to create the key originally. After steve provides the proper passphrase, gpg decrypts

the message file and puts it into the file JillsMessage, designated by the --out option.

Once it’s decrypted, he can read the plain-text message.

$ ls MessageForSteve
MessageForSteve
$ gpg --out JillsMessage --decrypt MessageForSteve
<A pop-up window prompts you for a passphrase>

gpg: encrypted with 2048-bit RSA key, ID D9EBC5F7317D3830, created
2019-10-27
 "Steve <steve@mydomain.com>"
$ cat JillsMessage
I know you are not the real Steve.

To review, the steps needed for encryption/decryption of files using asymmetric keys

include the following:

1. Generate the key pair and the key ring.

2. Export a copy of your public key to a file.

3. Share the public key file.

4. Individuals who want to send you encrypted files add your public key to

their key ring.

5. A file is encrypted using your public key.

6. The encrypted file is sent to you.

7. You decrypt the file using your private key.

You can see why asymmetric keys can cause confusion! Remember that in asymmetric cryp-

tography, each public and private key is a paired set that works together.

Understanding digital signatures

A digital signature is an electronic originator used for authentication and data verification.

A digital signature is not a scan of your physical signature. Instead, it is a cryptographic

token sent with a file, so the file’s receiver can be assured that the file came from you and

has not been modified in any way.

When you create a digital signature, the following steps occur:

1. You create a file or message.

2. Using the gpg utility, you create a hash or message-digest of the file.

3. The gpg utility then encrypts the hash and the file, using an asymmetric key

cipher. For the encryption, the private key of the public/private key pair is used.

This is now a digitally signed encrypted file.

4. You send the encrypted hash (aka digital signature) and file to the receiver.

5. The receiver re-creates the hash or message digest of the received encrypted file.

Part V: Learning Linux Security Techniques

534

6. Using the gpg utility, the receiver decrypts the received digital signature using

the public key, to obtain the original hash or message digest.

7. The gpg utility compares the original hash to the re-created hash to see if they

match. If they match, the receiver is told the digital signature is good.

8. The receiver can now read the decrypted file.

Notice in step 3 that the private key is used first. In the description of asymmetric key

cryptography, the public key was used first. Asymmetric key cryptography is flexible

enough to allow you to use your private key to encrypt and the receiver to use your public

key to decrypt.

As you can see, a digital signature contains both cryptographic hashing and asymmetric

key cryptography. This complicated process is often handled by an application that has

been configured to do so, instead of being directly handled by Linux system users. How-

ever, you can manually add your own digital signatures to documents.

Signing a �le with a digital signature

Let’s say that user johndoe is going to send a message to the user jill, along with his

digital signature. He has created a file containing the plain-text message to send. He uses

the gpg utility to create the signature file and encrypt the message file. The --sign

option tells the gpg utility that MessageForJill.txt is the file to encrypt and use to

create the digital signature. In response, the gpg utility does the following:

 ■ Creates a message digest (aka hash) of the message file

 ■ Encrypts the message digest, which creates the digital signature

 ■ Encrypts the message file

 ■ Places the encrypted contents into the file specified by the --output option,

JohnDoe.DS

The file JohnDoe.DS now contains an encrypted and digitally signed message. The follow-

ing code demonstrates this process:

$ gpg --output JohnDoe.DS --sign MessageForJill.txt

After the user jill receives the signed and encrypted file, she can use the gpg utility to

check the digital signature and decrypt the file in one step. In the code that follows, the

--decrypt option is used along with the name of the digitally signed file, JohnDoe.DS.

NOTE

Digital signatures have their own special ciphers. While several ciphers can handle both encryption and creating

signatures, there are a few whose only job is to create digital signatures. Previously, the most popular cryptographic

ciphers to use in creating signatures were RSA and Digital Signature Algorithm (DSA). The RSA algorithm can be

used for both encryption and creating signatures, while DSA can be used only for creating digital signatures. Today,

Ed25519 is considered to be more secure and faster than RSA, and ECDSA provides better protection than DSA.

Chapter 23: Understanding Advanced Linux Security

535

23

The file’s message is decrypted and shown. The digital signature of the file is checked and

found to be valid.

$ gpg --decrypt JohnDoe.DS
I am the real John Doe!
gpg: Signature made Sun 27 Oct 2019 07:03:21 PM EDT
gpg: using RSA key
7469BCD3D05A43130F1786E0383D645D9798C173
gpg: Good signature from "John Doe <jdoe@example.com>" [unknown]
...

Without johndoe’s public key on her key ring, jill would not be able to decrypt this

message and check the digital signature.

Understanding a few cryptography basics will help you get started on securing your Linux

system with encryption. Keep in mind that we’ve covered just the basics in this chapter.

There are many more cryptography topics, such as digital certificates and public key infra-

structure, that would be worth your time to learn.

Implementing Linux cryptography
Many cryptography tools are available on your Linux system. Which ones you choose to use

depend upon your organization’s security requirements. The following is a brief review of

some of the Linux cryptography tools available.

Ensuring �le integrity

Earlier in this chapter, an ISO’s file integrity was checked using the message digest utility

sha256sum.

Related message digest utilities include the following:

 ■ sha224sum

 ■ sha256sum

 ■ sha384sum

 ■ sha512sum

These tools work just like the sha1sum command, except of course they use the SHA-2

cryptographic hash standard. The only difference between the various SHA-2 tools is the

key length they use. The sha224sum command uses a key length of 224 bits, the sha-
256sum command uses a key length of 256 bits, and so on. Remember that the longer the

key length, the less the chance of cracking the cipher.

TIP

The previous example of digitally signing a document allows anyone with the public key the ability to decrypt the doc-

ument. In order to keep it truly private, use the public key of the recipient to encrypt with the gpg options: --sign

and --encrypt. The recipient can decrypt with their private key.

Part V: Learning Linux Security Techniques

536

The SHA-2 cryptographic hash standard was created by the National Security Agency (NSA).

SHA-3 is another cryptographic hash standard, which was released by NIST in August, 2015.

Encrypting a Linux �lesystem at installation

You may need to encrypt an entire filesystem on your Linux server. This can be done in a

number of different ways, including using a Free and Open Source Software (FOSS) third-

party tool such as Linux Unified Key Setup (LUKS) (gitlab.com/cryptsetup/cryptsetup).

One of your options in Linux is to encrypt your root partition upon installation (see

Chapter 9, “Installing Linux”). You can include an encryption option during the installa-

tion process.

After you select this option during installation, you are asked for a password. This is

symmetric key cryptography with a password protecting the single key.

If you select this encryption option, whenever you boot the system, you are asked for the

symmetric key password.

If you inherit a system with an encrypted disk, using root privileges, you can use the lvs

and cryptsetup commands and the /etc/crypttab file to help. In the following, the

lvs command shows all of the logical volumes currently on the system and their underly-

ing device names. See Chapter 12, “Managing Disks and Filesystems,” for a review of differ-

ent Logical Volume Manager (LVM) commands.

lvs -o devices
 Devices
 /dev/mapper/luks-b099fbbe-0e56-425f-91a6-44f129db9f4b(56)
 /dev/mapper/luks-b099fbbe-0e56-425f-91a6-44f129db9f4b(0)

On this system, notice that the underlying device names start with luks. This indicates

that the Linux Unified Key Setup (LUKS) standard for hard disk encryption has been used.

The encrypted logical volumes are mounted at boot time using the information from the /
etc/fstab file. However, contents of the /etc/crypttab file, which are used to trigger

the capture of the password at boot time, will decrypt the /etc/fstab entries as they are

mounted. This is shown in the following code. Notice that the luks names are the same as

those listed by the lvs command in the previous example.

cat /etc/crypttab
luks-b099fbbe-0e56-425f-91a6-44f129db9f4b
 UUID=b099fbbe-0e56-425f-91a6-44f129db9f4b none

You can also use the cryptsetup command to help you uncover more information about

your Linux system’s encrypted volumes. In the example that follows, the status option is

used along with the luks device name to determine further information.

NOTE

You might need to install the lvs command through the lvm2 package.

http://gitlab.com/cryptsetup/cryptsetup

Chapter 23: Understanding Advanced Linux Security

537

23

cryptsetup status luks-b099fbbe-0e56-425f-91a6-44f129db9f4b
/dev/mapper/luks-b099fbbe-0e56-425f-91a6-44f129db9f4b
 is active and is in use.
 type: LUKS1
 cipher: aes-xts-plain64
 keysize: 512 bits
 device: /dev/sda3
 offset: 4096 sectors
 size: 493819904 sectors
 mode: read/write

Encrypting a Linux directory

You can also use the ecryptfs utility to encrypt on a Linux system. The ecryptfs util-

ity (which is installed through the ecryptfs-utils package) is not a filesystem type, as

the name would imply. Instead, it is a Portable Operating System Interface (POSIX)-compli-

ant utility that allows you to create an encryption layer on top of any filesystem.

In the example that follows, the user johndoe will have a subdirectory encrypted using

the ecryptfs utility. First, there should be no files currently residing in the directory

before it is encrypted. If there are files located there, move them to a safe place until after

the encryption has been completed. If you do not move them, you cannot access them

while the directory is encrypted.

Now, to encrypt the directory /home/johndoe/Secret, use the mount command. You

must have root privileges to mount and unmount the encrypted directory in this method.

Look at the mount command used in the example that follows. It is somewhat similar to

the regular mount command, except that the partition type used is ecryptfs. The item

to mount and its mount point are the same directory! You are literally encrypting the

directory and mounting it upon itself. The other unusual item about this mount command

is that it kicks off the ecryptfs utility, which asks a few interactive questions.

mount -t ecryptfs /home/johndoe/Secret /home/johndoe/Secret
Select key type to use for newly created files:
 1) tspi
 2) passphrase
 3) pkcs11-helper
 4) openssl
Selection: 2
Passphrase: **********
Select cipher:
 1) aes: blocksize = 16;

TIP

Because the ecryptfs utility is used for encryption, it is a common mistake to put the letter n after the letter e in

the syntax ecryptfs. If you get an error while using the ecryptfs utilities, make sure that you did not use the

syntax encryptfs by mistake.

Continues

Part V: Learning Linux Security Techniques

538

 min keysize = 16; max keysize = 32 (loaded)
 2) blowfish: blocksize = 16;
 min keysize = 16; max keysize = 56 (not loaded)
 3) des3_ede: blocksize = 8;
 min keysize = 24; max keysize = 24 (not loaded)
 4) twofish: blocksize = 16;
 min keysize = 16; max keysize = 32 (not loaded)
 5) cast6: blocksize = 16;
 min keysize = 16; max keysize = 32 (not loaded)
 6) cast5: blocksize = 8;
 min keysize = 5; max keysize = 16 (not loaded)
Selection [aes]: 1
Select key bytes:
 1) 16
 2) 32
 3) 24
Selection [16]: 16
Enable plaintext passthrough (y/n) [n]: n
Enable filename encryption (y/n) [n]: n
Attempting to mount with the following options:
 ecryptfs_unlink_sigs
 ecryptfs_key_bytes=16
 ecryptfs_cipher=aes
 ecryptfs_sig=70993b8d49610e67
WARNING: Based on the contents of [/root/.ecryptfs/sig-cache.txt]
it looks like you have never mounted with this key
before. This could mean that you have typed your
passphrase wrong.

Would you like to proceed with the mount (yes/no)? : yes
Would you like to append sig [70993b8d49610e67] to
[/root/.ecryptfs/sig-cache.txt]
in order to avoid this warning in the future (yes/no)? : yes
Successfully appended new sig to user sig cache file
Mounted eCryptfs

The ecryptfs utility allows you to choose the following:

 ■ Key type

 ■ Passphrase

 ■ Cipher

 ■ Key size (in bytes)

 ■ To enable or disable plain text to pass through

 ■ To enable or disable filename encryption

It also warns you when you are first mounting this encrypted directory because the key

has not been used before. The utility allows you to apply a digital signature to the mounted

Continued

Chapter 23: Understanding Advanced Linux Security

539

23

directory so that if you mount it again, it just mounts the directory and does not require a

passphrase.

To verify that the encrypted directory is now mounted, you can use the mount command

again. In the example that follows, the mount command is used and then piped into grep

to search for the /home/johndoe/Secret directory. As you can see, the directory is

mounted with an ecryptfs type.

mount | grep /home/johndoe/Secret

/home/johndoe/Secret on /home/johndoe/Secret type ecryptfs
(rw,relatime,ecryptfs_sig=70993b8d49610e67,ecryptfs_cipher=aes,
ecryptfs_key_bytes=16,ecryptfs_unlink_sigs)

So far, you have not seen the effects of this mounted and encrypted directory. In the text

that follows, the file my_secret_file is copied to the encrypted directory. User johndoe

can still use the cat command to display the file in plain text. The file is automatically

decrypted by the ecryptfs layer.

$ cp my_secret_file Secret
$ cat /home/johndoe/Secret/my_secret_file
Shh... It's a secret.

The root user also can use the cat command to display the file in plain text.

cat /home/johndoe/Secret/my_secret_file
Shh... It's a secret.

However, after the encrypted directory is unmounted using the umount command, the

files are no longer automatically decrypted. The file my _ secret _ file is now gibberish

and cannot be read, even by the root user.

umount /home/johndoe/Secret

Thus, the ecryptfs utility allows you to create a location on the filesystem to encrypt

and decrypt files quickly. However, after that directory is no longer mounted as an

ecryptfs type, the files are secure and cannot be decrypted.

TIP

Write down the selections you make when you mount an ecryptfs folder for the �rst time. You need the exact

selections you chose the next time you remount the folder.

TIP

As a non-root user, you could use the ecryptfs-setup-private and ecryptfs-mount-private com-

mands to con�gure a private cryptographic mount point as a non-root user.

Part V: Learning Linux Security Techniques

540

Encrypting a Linux �le

The most popular tool for file encryption on a Linux system is the OpenPGP utility GNU

Privacy Guard, gpg. Its flexibility and variety of options, along with the fact that it is

installed by default on Ubuntu, add to its appeal.

However, you can use several other cryptography tools on a Linux system to encrypt files.

Just like gpg, many of these tools allow you to do much more than merely file encryp-

tion. The following are some of the popular Linux cryptography tools that you can use to

encrypt files:

aescrypt: It uses the symmetric key cipher Rijndael, also called AES. This third-party

FOSS tool is available for download from www.aescrypt.com.

bcrypt: This tool uses the symmetric key cipher blowfish. It is not installed by

default. After bcrypt is installed (sudo apt-+get install bcrypt), man

pages are available.

ccrypt: This tool uses the symmetric key cipher Rijndael, also called AES. It was cre-

ated to replace the standard Unix crypt utility and is not installed by default.

After ccrypt is installed (using sudo apt-get install ccrypt), man pages

are available.

gpg: This utility can use either asymmetric key pairs or a symmetric key. It is

installed by default, and it is the cryptography tool of choice for Linux servers. The

default cipher to use is set in the gpg.conf file. There are man pages available as

well as info gpg.

Keep in mind that this list covers only the more popular tools. Also, remember that many

of these tools can be used for more than just file cryptography.

Encrypting Linux with miscellaneous tools

You can apply cryptography, defined as the act of writing or generating codes meant to keep

secrets, to just about everything in Linux. Besides filesystems, directories, and files, you

can also encrypt backups, Zip files, network connections, and more.

Table 23.2 lists some of the miscellaneous Linux cryptography tools and what they do. If

you want to see a full list of your currently installed cryptography tools, type man -k

crypt at the command line.

CAUTION

If your organization uses a third-party cloud storage company, you need to know that some of these companies, such

as Dropbox, do not encrypt the �les until they are received. This means that the company has the keys required to

decrypt your �les and can leave your organization’s data vulnerable. Encrypting �les on your Linux system before they

are sent to the cloud adds the extra layer of protection needed.

http://www.aescrypt.com

Chapter 23: Understanding Advanced Linux Security

541

23

Like many other items on a Linux system, the available cryptography tools are rich and

plentiful. This gives you the flexibility and variety that you need in order to implement the

cryptography standards your particular organization requires.

Using Encryption from the Desktop

The Passwords and Keys window provides a means of viewing and managing keys and pass-

words from the GNU Network Object Model Environment (GNOME) desktop. This window can be

launched by selecting the Passwords and Keys icon from the Activities screen or by running

the seahorse command. With the window that appears, you can work with the following:

Passwords: When you access a website, from a Chromium or Chrome web browser, and

enter a username and password (and you select to save that password), it is stored

on your system for the next time that you visit that site. Select the Login entry

under the Passwords heading to see each of these saved usernames and passwords.

Certificates: You can view certificates associated with the GNOME Key Storage, User

Key Storage, System Trust, and Default Trust.

PGP keys: You can view the GPG keys that you create by selecting the GnuPG keys entry.

Secure Shell: You can create public and private OpenSSH keys that let you log in to

remote systems using those keys instead of passwords for authentication with ssh,

scp, rsync, sftp, and related commands. Select OpenSSH keys to view any keys

that you have created for this purpose. (See the section “Using key-based [password-

less] authentication” in Chapter 13, “Understanding Server Administration,” for infor-

mation on creating these types of keys.)

Another extremely powerful security tool available on Linux is Pluggable Authentication

Modules (PAM). The next sections in this chapter cover basic PAM concepts and how you

can use this tool to enhance even further your Linux system’s security.

Implementing Linux Security with PAM
Pluggable Authentication Modules (PAM) was invented by Sun Microsystems and origi-

nally implemented in the Solaris operating system. The Linux-PAM project began in 1997.

Ubuntu, like most Linux distributions today, uses PAM.

TABLE 23.2 Linux Miscellaneous Cryptography Tools

Tool Description

Duplicity Encrypts backups. To install on Ubuntu, type sudo apt-get install duplicity.

gpg-zip Uses GNU Privacy Guard to encrypt or sign �les into an archive. Installed by default.

OpenSSL A toolkit that implements Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols. These protocols require encryption. Installed by default.

Seahorse A GNU Privacy Guard encryption key manager. Installed by default on Ubuntu.

SSH Encrypts remote access across a network. Installed by default.

Zipcloak Encrypts entries in a Zip �le. Installed by default.

Part V: Learning Linux Security Techniques

542

PAM simplifies the authentication management process. Remember that authentica-

tion (see Chapter 22) is the process of determining that a subject (aka user or process) is

who they say they are. This process is sometimes called “identification and authentica-

tion.” PAM is a centralized method of providing authentication for the Linux system and

applications.

Applications can be written to use PAM; such applications are called “PAM-aware.” A PAM-

aware application does not have to be rewritten and recompiled to have its authentication

settings changed. Any required changes are made within a PAM configuration file for the

PAM-aware applications. Thus, authentication management for these applications is cen-

tralized and simplified.

To see whether a particular Linux application or utility is PAM-aware check whether it’s

compiled with the PAM library, libpam.so. In the example that follows, the crontab

application is being checked for PAM awareness. The ldd command checks a file’s shared

library dependencies. To keep it simple, grep is used to search for the PAM library. As you

can see, crontab on this particular Linux system is PAM-aware.

ldd /usr/bin/crontab | grep pam
libpam.so.0 => /lib64/libpam.so.0 (0x00007fbee19ce000)

The benefits of using PAM on your Linux system include the following:

 ■ Simplified and centralized authentication management from the administra-

tor viewpoint

 ■ Simplified application development, because developers can write applications

using the documented PAM library instead of writing their own authentica-

tion routines

 ■ Flexibility in authentication:

 ■ Allow or deny access to resources based on traditional criteria, such as

identification

 ■ Allow or deny access based on additional criteria, such as time-of-day

restrictions

 ■ Set subject limitations, such as resource usage

Although the benefits of PAM simplify authentication management, the way that PAM actu-

ally works is not so simple.

Understanding the PAM authentication process
When a subject (user or process) requests access to a PAM-aware application or utility, two

primary components are used to complete the subject authentication process:

 ■ The PAM-aware application’s configuration file

 ■ The PAM modules the configuration file uses

Each PAM-aware application configuration file is at the center of the process. The PAM con-

figuration files call upon particular PAM modules to perform the needed authentication.

Chapter 23: Understanding Advanced Linux Security

543

23

PAM modules authenticate subjects from system authorization data, such as a central-

ized user account using Lightweight Directory Access Protocol (LDAP) (see Chapter 11,

“Managing User Accounts”).

Linux comes with many applications that are PAM-aware, with their needed configuration

files and PAM modules already installed. If you have any special authentication needs, you

can most likely find a PAM module that has already been written for that need. However,

before you start tweaking PAM, you need to understand more about how PAM operates.

A series of steps is taken by PAM using the modules and configuration files in order to

ensure that proper application authentication occurs:

1. A subject (user or process) requests access to an application.

2. The application’s PAM configuration file, which contains an access policy, is open

and read. The access policy is set via a list of all the PAM modules to be used in the

authentication process. This PAM module(s) list is called a stack.

3. The PAM modules in the stack are invoked in the order in which they are listed.

4. Each PAM module returns either a success or failure status.

5. The stack continues to be read in order, and it is not necessarily stopped by a single

returned failure status.

6. The status results of all of the PAM modules are combined into a single overall

result of authentication success or failure.

Typically, if a single PAM module returns a failure status, access to the application is

denied. However, this is dependent upon the configuration file settings. Most PAM configu-

ration files are located in /etc/pam.d. The general format of a PAM configuration file is

context control flag PAM module [module options]

Understanding PAM contexts

PAM modules have standard functions that provide different authentication services. These

standard functions within a PAM module can be divided into function types called contexts.

Contexts can also be called module interfaces or types. In Table 23.3, the different PAM con-

texts are listed along with what type of authentication service they provide.

TABLE 23.3 PAM Contexts

Context Service Description

auth Provides authentication management services, such as verifying
account passwords

account Provides account validation services, such as time-of-day access restrictions

password Manages account passwords, such as password length restrictions

Part V: Learning Linux Security Techniques

544

Understanding PAM control �ags

In a PAM configuration file, control flags are used to determine the overall status, which

are returned to the application. A control flag is either of the following:

Simple keyword: The only concern here is if the corresponding PAM module returns

a response of either “failed” or “success.” See Table 23.4 for how these statuses

are handled.

Series of actions: The returned module status is handled through the series of actions

listed in the file.

Table 23.4 shows the various keyword control flags and their responses to the returned

module status. Notice that a few of the control flags need to be carefully placed within the

configuration file’s stack. Some control flags cause the authentication process to stop imme-

diately and the rest of the PAM modules are not called. The control flags simply control how

the PAM module status results are combined into a single overall result. Table 23.4 demon-

strates how the status results are combined.

TABLE 23.4 PAM Con�guration Control Flags and Response Handling

required If failed, returns a failure status to the application, after the rest of the contexts
have been run in the stack.
For example, a requisite control might cause a login to fail if someone types in
an invalid user. But the user might not be told of the failure until after entering a
password, hiding the fact that it was the bad username that caused the failure.

requisite If failed, returns a failure status to the application immediately without running
the rest of the stack. (Be careful where you place this control in the stack.)
For example, a requisite control might require key-based authentication and
fail immediately when a valid key is not provided. In that case, it could fail
before even prompting for a username/password.

sufficient If failed, the module status is ignored. If successful, then a success status is
immediately returned to the application without running the rest of the stack.
(Be careful where you place this control in the stack.)

optional This control �ag is important only for the �nal overall return status of success
or failure. Think of it as a tiebreaker. When the other modules in the con�g-
uration �le stack return statuses that are neither clear-cut failure nor success
statuses, this optional module’s status is used to determine the �nal status or
break the tie. In cases where the other modules in the stack are returning a
clear-cut path of failure or success, this status is ignored.

include Get all the return statuses from this particular PAM con�guration �le’s stack
to include in this stack’s overall return status. It’s as if the entire stack from the
named con�guration �le is now in this con�guration �le.

substack Similar to the include control �ag, except for how certain errors and evalua-
tions affect the main stack. This forces the included con�guration �le stack to
act as a substack to the main stack. Thus, certain errors and evaluations affect
only the substack and not the main stack.

Chapter 23: Understanding Advanced Linux Security

545

23

You should know that that the PAM modules return many more status result codes than

just “success” or “failure.” For example, a module may return the status code of PAM_ACCT_
EXPIRED, which means that the user account has expired. This would be deemed a “failure.”

Understanding PAM modules

A PAM module is actually a suite of shared library modules (DLL files) stored in /usr/
lib64/security (64-bit). You can see a list of the various installed PAM modules on your

system by entering sudo find / -name pam*.so at the command line.

Your Linux system comes with many of the PAM modules needed already installed. If you do

need a module not already installed, most likely someone else has already written it. Check

out sources such as these:

 ■ openwall.com/pam/

 ■ puszcza.gnu.org.ua/software/pam-modules/download.html

Understanding PAM system event con�guration �les

So far, the focus has been on PAM-aware applications and their configuration files. How-

ever, other system events, such as logging in to the Linux system, also use PAM. Thus,

these events also have configuration files.

The following is a partial directory listing of the PAM configuration file directory. Notice

that there are PAM-aware application configuration files, like the one for Cockpit.

ls -l /etc/pam.d
total 136
-rw-r--r-- 1 root root 250 Feb 20 2018 atd
-rw-r--r-- 1 root root 384 Jan 25 2018 chfn
-rw-r--r-- 1 root root 92 Jan 25 2018 chpasswd
-rw-r--r-- 1 root root 581 Jan 25 2018 chsh
-rw-r--r-- 1 root root 1018 Mar 21 2018 cockpit
...

These PAM system event configuration files operate in exactly the same way as the PAM-

aware application configuration files. They have the same format, use the same syntax, and

call upon PAM modules. However, many of these files are symbolically linked (see Chapter 4,

“Moving Around the Filesystem”). Therefore, these configuration files require a few extra

steps when changes are made to them. The “how-tos” are covered later in this chapter.

CAUTION

Modifying or deleting PAM system event con�guration �les incorrectly can lock you out of your own system. Make

sure that you test any changes in a virtual or test environment before modifying your production Linux servers.

TIP

Many of the PAM con�guration �les have a man page associated with them. For example, to �nd out more informa-

tion on the pam_unix module, type man pam_unix at the command line.

http://openwall.com/pam/
http://puszcza.gnu.org.ua/software/pam-modules/download.html

Part V: Learning Linux Security Techniques

546

Even though Linux comes with many PAM-aware applications, various configuration files,

and PAM modules already installed, you cannot just hope that PAM will take care of itself.

Certain administrative steps are needed to manage PAM.

Administering PAM on your Linux system
The task of administering PAM on your Linux system is rather minimal. You need to verify

that PAM is properly implemented and make adjustments to meet your particular organiza-

tion’s security needs.

Also, PAM does a little more than just the application authentication steps described previ-

ously. PAM can also limit resources, restrict access times, enforce good password selection,

and so on.

Managing PAM-aware application con�guration �les

You should review PAM configuration files for your PAM-aware applications and utilities

in order to ensure that their authentication process matches your organization’s desired

authentication process. Your Access Control Matrix (see Chapter 22) and the information on

understanding PAM provided in this chapter should help you conduct an audit of the PAM

configuration files.

Each PAM-aware application should have its very own PAM configuration file. Each config-

uration file defines what particular PAM modules are used for that application. If no con-

figuration file exists, a security hole may be created for that application. This hole could

be used for malicious intent. As a safety precaution, PAM comes with the “other” configu-

ration file. If a PAM-aware application does not have a PAM configuration file, it defaults to

using the “other” PAM configuration file.

You can verify whether your Linux system has the /etc/pam.d/other configuration file

by using the ls command. The example that follows shows that the /etc/pam.d/other

PAM configuration file does exist on this system:

$ ls /etc/pam.d/other
/etc/pam.d/other

The PAM /etc/pam.d/other configuration file should deny all access, which in terms of

security is referred to as Implicit Deny. In computer security access control, Implicit Deny

means that if certain criteria are not clearly met, access must be denied. In this case, if no

configuration file exists for a PAM-aware application, all access to it is denied. The follow-

ing shows a /etc/pam.d/other file’s contents:

$ cat /etc/pam.d/other
/etc/pam.d/other - specify the PAM fallback behavior
#
Note that this file is used for any unspecified service;
for example
#if /etc/pam.d/cron specifies no session modules but cron calls
#pam_open_session, the session module out of /etc/pam.d/other is

Chapter 23: Understanding Advanced Linux Security

547

23

#used. If you really want nothing to happen then use pam_permit.so or
#pam_deny.so as appropriate.
We fall back to the system default in /etc/pam.d/common-*
@include common-auth
@include common-account
@include common-password
@include common-session

Even with the “other” configuration file in place, if a PAM configuration file for a PAM-

aware application is not there, it must be created. Add this item to your PAM audit check-

list. You should also review your PAM “other” configuration file on your Linux system to

ensure that it enforces Implicit Deny.

Implementing resources limits with PAM

Managing resources is not just a system administration task. It is also a security admin-

istration task. Setting resource limitations helps you avoid many adverse problems on

your Linux system. Problems such as fork bombs can be averted by limiting the number of

processes a single user can create. A fork bomb occurs when a process spawns one process

after another in a recursive manner until system resources are consumed. Fork bombs can

be malicious or just accidental; that is, created simply by poor program code development.

The PAM module pam-limits uses a special configuration file to set these resources limits:

/etc/security/limits.conf. By default, this file has no resource limits set within it.

Therefore, you need to review the file and set resources limits to match your organization’s

security needs.

The following snippet shows a version of the /etc/security/limits.conf file. The com-

plete version on your system should contain plenty of illustrative examples.

$ cat /etc/security/limits.conf
/etc/security/limits.conf
#
#This file sets the resource limits for the users logged in via PAM.
#It does not affect resource limits of the system services.
#
#Also note that configuration files in /etc/security/limits.d directory,
#which are read in alphabetical order, override the settings in this
#file in case the domain is the same or more specific.
...
#Each line describes a limit for a user in the form:
#
#<domain> <type> <item> <value>
...

NOTE

PAM con�guration �les are in the /etc/pam.d directory and the /etc/security directory.

Continues

Part V: Learning Linux Security Techniques

548

#* soft core 0
#* hard rss 10000
#@student hard nproc 20
#@faculty soft nproc 20
#@faculty hard nproc 50
#ftp hard nproc 0
#@student - maxlogins 4
End of file

The format items domain and type need some further explanation than what is documented

in the configuration file:

domain: The limit applies to the listed user or group. If the domain is *, it applies to

all users.

type: A hard limit cannot be exceeded. A soft limit can be exceeded, but only

temporarily.

Look at the limits.conf file setting example that follows. The group faculty is listed,

but what you should notice is nproc. The nproc limit sets the maximum number of

processes a user can start. This setting is what prevents a fork bomb. Notice that the type

selected is hard; thus, the limit of 50 processes cannot be exceeded. Of course, this limit is

not enforced because the line is commented out with a # symbol.

#@faculty hard nproc 50

Limit settings are set per login and only last for the duration of the login session. A mali-

cious user could log in several times to create a fork bomb. Thus, setting the maximum

number of logins for these user accounts is a good idea too.

Limiting the maximum number of logins may have to be done on a per-user basis. For

example, johndoe needs to log in to the Linux system only once. To prevent others from

using johndoe’s account, set his account’s maxlogins to 1:

johndoe hard maxlogins 1

To override any settings in the limits.conf file, add files named *.conf to the /etc/
security/limits.d directory. This is a convenient way that to add and remove limits

without needing to edit the limits.conf file directly.

The final step in limiting this resource is to ensure that the PAM module using limits.
conf is included in one of the PAM system event configuration files. The PAM module using

limits.conf is pam_limits. In the partial listing that follows, grep is used to verify

that the PAM module is used within the system event configuration files:

$ grep -nr "pam_limits" /etc/pam.d/
/etc/pam.d/systemd-user:10:session required pam_limits.so
/etc/pam.d/sshd:40:session required pam_limits.so
/etc/pam.d/runuser:4:session required pam_limits.so
/etc/pam.d/atd:9:session required pam_limits.so
/etc/pam.d/cron:20:session required pam_limits.so

Continued

Chapter 23: Understanding Advanced Linux Security

549

23

/etc/pam.d/su:52:session required pam_limits.so
/etc/pam.d/login:87:session required pam_limits.so

Time limits for access to services and accounts are not handled by the PAM /etc/secu-
rity/limits.conf configuration file. Instead, it is handled by the time.conf file.

Implementing time restrictions with PAM

PAM can make your entire Linux system operate on “PAM time.” Time restrictions such as

access to particular applications during certain times of the day, or allowing logins only

during specified days of the week, are all handled by PAM.

The PAM configuration file that handles these restrictions is located in the /etc/secu-
rity directory. The following code shows the well-documented /etc/security/time.
conf PAM configuration file:

$ cat /etc/security/time.conf
this is an example configuration file for the pam_time module.
Its syntax
was initially based heavily on that of the shadow package
(shadow-960129).

#
the syntax of the lines is as follows:
#
services;ttys;users;times
...

I recommend that you read through the contents of the time.conf file. Note that the

format for each valid entry follows this syntax: services;ttys;users;times. Fields are

separated by semicolons. The valid field values are documented in the time.conf configu-

ration file.

While time.conf is well-documented, an example is always helpful. For instance, you

might decide that regular users should be allowed to log in on terminals on weekdays only

(Monday through Friday). They can log in from 7 a.m. to 7 p.m. on these weekdays. The fol-

lowing list describes what elements need to be set:

services: Login

ttys—*: Indicates that all terminals are to be included

users: Everyone but root (!root)

times: Allowed on weekdays (Wd) from 7 a.m. (0700) to 7 p.m. (1900)

The entry in time.conf would look like the following:

login; * ; !root ; Wd0700-1900

The final step in implementing this example time restriction is to ensure that the PAM

module using time.conf is included in one of the PAM system event configuration files.

Part V: Learning Linux Security Techniques

550

The PAM module using time.conf is pam_time. In the partial listing that follows, grep

shows how the PAM module pam_time is used within system event configuration files:

$ grep -nr "pam_time" /etc/pam.d/
/etc/pam.d/su:29:# account requisite pam_time.so
/etc/pam.d/login:78:# account requisite pam_time.so

If pam _ time were not listed, you would need to modify the /etc/pam.d/common-auth

file in order for PAM to enforce the time restrictions.

Add the following near the top of the “account” section of the configuration file. Now the

pam _ time module checks the login restrictions you set within the /etc/security/
time.conf file.

account required pam_time.so

Enforcing good passwords with PAM

When a password is modified, the PAM module pam _ cracklib is involved in the process.

The module prompts the user for a password and checks its strength against a system dic-

tionary and a set of rules for identifying poor choices.

Using pam_cracklib, you can check a newly chosen password for the following:

 ■ Is it a dictionary word?

 ■ Is it a palindrome?

 ■ Is it the old password with the case changed?

 ■ Is it too much like the old password?

 ■ Is it too short?

 ■ Is it a rotated version of the old password?

 ■ Does it use the same consecutive characters?

 ■ Does it contain the username in some form?

You can change the rules pam_cracklib uses for checking new passwords by making

modifications to the /etc/pam.d/common-password file.

$ cat /etc/pam.d/passwd
#
The PAM configuration file for the Shadow 'passwd' service
#
@include common-password

The current settings of the common-password file are shown here. Currently, one entry

calls the pam _ cracklib PAM module.

$ cat /etc/pam.d/common-password
/etc/pam.d/common-password - password-related modules common to
all services
#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define the services to be

Chapter 23: Understanding Advanced Linux Security

551

23

used to change user passwords. The default is pam_unix.
here are the per-package modules (the "Primary" block)
password [success=1 default=ignore] pam_unix.so
obscure sha512
here's the fallback if no module succeeds
password requisite pam_deny.so
password required pam_permit.so
and here are more per-package modules (the "Additional" block)
password optional

Encouraging sudo use with PAM

To allow tracking of root-account use by individuals and avoid a repudiation situation

(see Chapter 22), you should restrict the use of the su command and force the use of

sudo. If your organization has such a policy, you can accomplish this with PAM by sim-

ply uncommenting the appropriate line (# auth required pam _ wheel.so deny
group=nosu) in the su file that’s partially listed here:

$ cat /etc/pam.d/su
#
The PAM configuration file for the Shadow 'su' service
#
auth sufficient pam_rootok.so
Uncomment this if you want members of a specific group to not
be allowed to use su at all.
auth required pam_wheel.so deny group=nosu
session required pam_env.so readenv=1
session required pam_env.so readenv=1 envfile=/etc/
default/locale
session optional pam_mail.so nopen
session required pam_limits.so
@include common-auth
@include common-account
@include common-session

Obtaining more information on PAM
PAM is another rich and versatile security tool available to you on your Linux system. In

your own Linux system’s man pages, you can read about managing the PAM configura-

tion files.

 ■ To get more information on PAM configuration files, use the command

man pam.conf.

 ■ You can see all of the PAM modules available on your system by entering ls /lib/

x86 _ 64-linux-gnu/security/ at the command line. To get more informa-

tion on each PAM module, enter man pam _module _ name. Be sure to leave off

the file extension of so for the pam _ module _ name. For example, enter man

pam _ lastlog to learn more about the pam _ lastlog.so module. Several web-

sites can provide additional information on PAM:

Part V: Learning Linux Security Techniques

552

 ■ The Official Linux-PAM website: www.linux-pam.org

 ■ The Linux-PAM System Administrator’s Guide: www.linux-pam.org/Linux-PAM-

html/Linux-PAM _ SAG.html

 ■ PAM Module reference: www.linux-pam.org/Linux-PAM-html/sag-module-

reference.html

Summary
Cryptography tools offer ways of protecting and verifying the validity of the data you use

on your Linux system. The PAM facility provides a means of creating policies to secure the

tools that are used to authenticate users on your system.

Both the cryptography tools and PAM should be handled with care as you learn about

Linux. Be sure to test any modifications that you make on a test Linux system or a virtual-

ized Linux system before you implement them on a production machine.

The next chapter covers AppArmor. While cryptography and PAM are tools that you can use

on your Linux system, AppArmor is an entire security enhancement layer.

Exercises
Use these exercises to test your knowledge of using cryptography tools and PAM. These

tasks assume that you are running an Ubuntu Linux system (although some tasks work on

other Linux systems as well). If you are stuck, solutions to the tasks are shown in Appendix

A (although in Linux, there are often multiple ways to complete a task).

1. Encrypt a file using the gpg utility and a passphrase.

2. Generate a public key ring using the gpg utility.

3. List out the key ring you generated.

4. Encrypt a file and add your digital signature using the gpg utility.

5. Go to the Ubuntu download page: ubuntu.com. Select one of the versions to down-

load. When the download is complete, verify your image.

6. Using the command which su, determine the su command’s full filename. Next,

determine whether the su command on your Linux system is PAM-aware.

7. Does the su command have a PAM configuration file? If so, display the configura-

tion file on the screen and list what PAM contexts it uses.

8. List out the various PAM modules on your system to your screen.

9. Find the PAM “other” configuration file on your system. Does it exist? Does it

enforce Implicit Deny?

10. Find the PAM limits configuration file. Does it have a setting to keep a fork bomb

from occurring on your system?

http://linux-pam.org
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://linux-pam.org/Linux-PAM-html/sag-module-reference.html
http://linux-pam.org/Linux-PAM-html/sag-module-reference.html
http://ubuntu.com

553

CHAP T ER

24
Enhancing Linux Security

with AppArmor

IN THIS CHAPTER

Learning about AppArmor bene�ts

Learning how AppArmor works

AppArmor con�guration

Finding AppArmor resources

A
ppArmor is a name-based mandatory access control (MAC) security model that’s currently sup-

ported by Canonical (the company behind Ubuntu). AppArmor has been included in the Linux

kernel since version 2.6.36 (released back in 2010). AppArmor fills much of the same security

needs as Red Hat’s SELinux, but with significantly less complexity.

Understanding AppArmor
AppArmor is a security enhancement module deployed on top of Linux. It provides additional secu-

rity measures and is installed and active by default. The thing about AppArmor—unlike its Red Hat

equivalent SELinux—is that you can often use Ubuntu for years and never realize it’s there. Now

consider just how AppArmor works and why you need it.

You’ve already seen a number of traditional Linux features, including discretionary access con-

trols (DAC) like object permissions. Such permissions are called discretionary because an entity

(like a user) with legitimate access to a resource has the power to extend that access to other

entities. Where you’re concerned that this power might be abused—where, for instance, there’s

risk of a hacker executing a privilege escalation attack—you might want to impose mandatory

access control. MACs are applied on processes rather than on resources themselves to ensure

that, no matter which entity is active, it’ll never be possible to extend permissions beyond their

intended scope.

Part V: Learning Linux Security Techniques

554

Any Linux program that’s given an AppArmor profile at or after installation can be used in

one of three ways:

 ■ The profile can be inactive: No matter how it’s configured, no actions will be

restricted.

 ■ The profile could be set to complain: Even though no actions will be restricted,

violations of the current settings will be reported to the logging system. This can

be a great way to test your configuration before sending it into production.

 ■ The profile could be set to enforce: Any actions in violation of the profile settings

will be blocked.

Configuration files exist in the /etc/apparmor/ directory:

$ ls /etc/apparmor
easyprof.conf logprof.conf parser.conf subdomain.conf
init notify.conf severity.db

However, most AppArmor administration work happens within AppArmor profiles, and

those live in the /etc/apparmor.d/ directory and are named after the location of their

program binary file. Thus, the main LibreOffice profile would be found in a file called

/etc/apparmor.d/usr.lib.libreoffice.program.soffice.bin. You administrate

AppArmor using programs installed with the apparmor-utils package. If you’re installing

apparmor-utils, you might as well pick up a few more helpful tools at the same time:

apt install apparmor-utils apparmor-easyprof apparmor-notify

When you want to change a profile’s status, you would run either aa-enforce or aa-
complain against the profile file. These examples would set the Apache web server ser-

vice to either enforce or complain:

aa-enforce /etc/apparmor.d/usr.sbin.apache2
aa-complain /etc/apparmor.d/usr.sbin.apache2

You could also reset the mode of all profiles at once using either:

aa-complain /etc/apparmor.d/*

or:

aa-enforce /etc/apparmor.d/*

You can quickly view the status of all the profiles currently loaded using the apparmor_
status command:

apparmor_status
apparmor module is loaded.
28 profiles are loaded.
28 profiles are in enforce mode.
 /snap/snapd/7264/usr/lib/snapd/snap-confine
 /snap/snapd/7264/usr/lib/snapd/snap-confine//mount-namespace-
capture-helper
 /usr/bin/man
 /usr/lib/NetworkManager/nm-dhcp-client.action

Chapter 24: Enhancing Linux Security with AppArmor

555

24

 /usr/lib/NetworkManager/nm-dhcp-helper
 /usr/lib/connman/scripts/dhclient-script
 /usr/lib/snapd/snap-confine
 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper
 /usr/sbin/tcpdump
 /{,usr/}sbin/dhclient
 lsb_release
 man_filter
 man_groff
 nvidia_modprobe
 nvidia_modprobe//kmod
 snap-update-ns.lxd
 snap.lxd.activate
 snap.lxd.benchmark
 snap.lxd.buginfo
 snap.lxd.check-kernel
 snap.lxd.daemon
 snap.lxd.hook.configure
 snap.lxd.hook.install
 snap.lxd.hook.remove
 snap.lxd.lxc
 snap.lxd.lxc-to-lxd
 snap.lxd.lxd
 snap.lxd.migrate
0 profiles are in complain mode.
0 processes have profiles defined.
0 processes are in enforce mode.
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.

AppArmor events are logged to regular Linux logging systems. The best way to see what

exciting stuff has been happening in your system’s AppArmor world is to query the kernel

ring buffer using dmesg:

$ dmesg | grep apparmor

Here’s what a typical denied message will look like in dmesg:

[234.104868] audit: type=1400 audit(1588030849.305:236):
apparmor="DENIED" operation="open" profile="/usr/bin/evince" name="/
etc/xdg/mimeapps.list" pid=10160 comm="evince" requested_mask="r"
denied_mask="r" fsuid=1000 ouid=0

In that example, the profile at the center of the event was evince (Ubuntu’s default GUI

document viewer), which tried to open the /etc/xdg/mimeapps.list file using the pro-

cess ID, 10160. The /etc/xdg/ directory is for definitions controlling the way your desktop

graphics will behave. The mimeapps.list file in particular defines the applications that

will, by default, load a given file type. Upon seeing such a log message, you would probably

want to dig a bit deeper to ensure that the evince utility hasn’t been hijacked by an unau-

thorized user for some malicious purpose. Although, as it turns out, there’s nothing like

that happening in this particular case.

Part V: Learning Linux Security Techniques

556

Working with AppArmor
To get an idea of how AppArmor works in the real world, consider the example of a simple

profile. You’ll use the profile managed by the /etc/apparmor.d/bin.ping file, which

controls the way the ping command behaves. Here’s the file itself:

#include <tunables/global>
profile ping /{usr/,}bin/{,iputils-}ping flags=(complain) {
 #include <abstractions/base>
 #include <abstractions/consoles>
 #include <abstractions/nameservice>

 capability net_raw,
 capability setuid,
 network inet raw,
 network inet6 raw,

 /{,usr/}bin/{,iputils-}ping mixr,
 /etc/modules.conf r,

 # Site-specific additions and overrides. See local/README for details.
 #include <local/bin.ping>
}

The #include line lets you incorporate common policy statements that are maintained

in external documents. tunables/global refers to files referenced in the globals

file found in the /etc/apparmor.d/tunables/ directory. Here’s what that file might

look like:

All the tunables definitions that should be available to every profile
should be included here

#include <tunables/home>
#include <tunables/multiarch>
#include <tunables/proc>
#include <tunables/alias>
#include <tunables/kernelvars>
#include <tunables/xdg-user-dirs>
#include <tunables/share>

The profile line of the ping file (/etc/apparmor.d/bin.ping) defines the path to the

program binary itself (/bin/ping) and sets the mode (complain, in this case). A number

of files in the /etc/apparmor.d/abstractions/ directory are also included. Those files

contain some of the basic constraints that will govern the way ping will work. For in-

stance, consider this line in the /etc/apparmor/abstractions/base file:

@{PROC}/meminfo r,

Chapter 24: Enhancing Linux Security with AppArmor

557

24

The r tells the system that ping should be able to read the contents of the /proc/
meminfo file. But that meminfo file doesn’t necessarily have to be in /proc/—the

actual location is determined by the contents of the /etc/apparmor.d/tunables/proc

file. The defaults will normally work just fine, but you can see how deeply customizable

all this is.

As you dive more deeply into AppArmor files, you’ll see capabilities defined by strings of

letters including r, w, k, and m. The first two should be obvious: read and write. But you

may pause on seeing k and m. So know that k stands for lock—giving the process the

power to gain exclusive write access to a file to ensure no one else can edit it at the same

time. And m means the program can be mapped into memory. See man apparmor.d for

more details.

The capability and network lines in the /etc/apparmor.d/bin.ping file further

define ping behavior. inet and inet6, for instance, allow the program to operate using

both IPv4 and IPv6, and raw refers to the raw network transport protocol.

Now you’ll install some new software and see how it can be integrated with AppArmor. This

example loosely follows a helpful tutorial found on the Ubuntu documentation site at

www.ubuntu.com/tutorials/beginning-apparmor-profile-development.

You’ll install the certspotter package (which is used to monitor Internet domains for hos-

tile activity). To provide a place for certspotter to write data, you’ll make a directory called

certspotter in the home directory and a file called watchlist within that directory.

Finally, you’ll add at least one domain to that file that certspotter will monitor and run

the program.

apt install certspotter
$ mkdir ~/.certspotter
$ touch ~/.certspotter/watchlist
$ echo "wiley.com" >> ~/.certspotter/watchlist
$ certspotter
certspotter: ctlog-gen2.api.venafi.com: 2020/04/28 18:32:16 Error
retrieving STH from log: Get https://ctlog-gen2.api.venafi.com/ct/
v1/get-sth: dial tcp: lookup ctlog-gen2.api.venafi.com: No address
associated with hostname

Now you can use aa-easyprof to generate a simple profile document and print it to

the screen:

$ aa-easyprof /usr/bin/certspotter
vim:syntax=apparmor
AppArmor policy for certspotter
###AUTHOR###
###COPYRIGHT###
###COMMENT###

#include <tunables/global>

Continues

http://ubuntu.com/tutorials/beginning-apparmor-profile-development

Part V: Learning Linux Security Techniques

558

No template variables specified

"/usr/bin/certspotter" {
 #include <abstractions/base>

 # No abstractions specified

 # No policy groups specified

 # No read paths specified

 # No write paths specified
}

Nothing much happening there, but it’s a good place to start. You’ll give it an appropri-

ate name (using the binary location on the filesystem for inspiration) and move it to the

/etc/apparmor.d/ directory. Then you’ll add the profile to the kernel using appar-
mor_parser.

$ aa-easyprof /usr/bin/certspotter > ~/usr.bin.certspotter
mv ~/usr.bin.certspotter /etc/apparmor.d/
apparmor_parser -r /etc/apparmor.d/usr.bin.certspotter

The next time you run certspotter, it will fail outright. The error message you get might

look something like this:

certspotter: /home/ubuntu/.certspotter/watchlist: open /home/ubuntu/
.certspotter/watchlist: permission denied

You can prove that it’s AppArmor causing this failure by resetting the profile to complain

and running certspotter again. This time it should work.

aa-complain /etc/apparmor.d/usr.bin.certspotter
Setting /etc/apparmor.d/usr.bin.certspotter to complain mode.
$ certspotter

The aa-logprof program will scan the profiles and offer advice about possible changes

and then, if you agree, apply them. Now see what it says about the certspotter profile:

aa-logprof
Reading log entries from /var/log/syslog.
Updating AppArmor profiles in /etc/apparmor.d.
Complain-mode changes:

Profile: /usr/bin/certspotter
Path: /proc/sys/net/core/somaxconn
New Mode: r
Severity: 6

continued

Chapter 24: Enhancing Linux Security with AppArmor

559

24

 [1 - #include <abstractions/lxc/container-base>]
 2 - #include <abstractions/lxc/start-container>
 3 - /proc/sys/net/core/somaxconn r,
(A)llow / [(D)eny] / (I)gnore / (G)lob / Glob with (E)xtension / (N)
ew / Audi(t) / Abo(r)t / (F)inish

Press A and then S to accept and save the changes. Now take a look at the new parts of the

updated document:

/usr/bin/certspotter flags=(complain) {
 #include <abstractions/base>
 #include <abstractions/lxc/container-base>
}

You can also manually add settings to the profile document. Perhaps you’d like to go the

extra mile in preventing someone with malicious control over the certspotter program

from accessing (and removing) private content. You should add the new entries within the

flags section so that it looks like this:

nano /etc/apparmor.d/usr.bin.certspotter

/usr/bin/certspotter flags=(complain) {
 #include <abstractions/base>
 #include <abstractions/lxc/container-base>

 deny @{HOME}/Documents/ rw,
 deny @{HOME}/Pictures/ rw,
 deny @{HOME}/Videos/ rw,
 deny @{HOME}/.config/ rw,
 deny @{HOME}/.ssh/ rw,
}

When that’s done, you can reload your policy this way:

apparmor_parser -r /etc/apparmor.d/usr.bin.certspotter

The way the parser behaves can be controlled through the parser.conf file in the /etc/
apparmor/ directory.

Summary
AppArmor provides a security enhancement to Linux, and it is installed by default on

Ubuntu. In this chapter, you learned the benefits of AppArmor, how it works, how to set it

up, and how to get more information about this important security enhancement.

You learned about the various steps available to configure AppArmor. Even though it comes

preconfigured, you may need to make some modifications to meet your unique security

needs. Each profile has its own configuration steps and settings to choose.

Part V: Learning Linux Security Techniques

560

In the next chapter, you’ll learn how to protect your Linux system on a network. You’ll

learn about controlling access, managing firewalls, and securing remote access.

Exercises
Use these exercises to test your knowledge of using AppArmor. These tasks assume that you

are running an Ubuntu Linux system (although some tasks work on other Linux systems as

well). If you are stuck, solutions to the tasks are shown in Appendix A (although in Linux,

there are often multiple ways to complete a task).

1. Making no changes to configuration files, run a command that will change

all of your AppArmor profiles to issue log messages for violations rather than

prevent them.

2. Making no changes to configuration files, run a command that will change all of

your AppArmor profiles to prevent violations rather than just issue log messages.

3. What command will view the current settings of all installed profiles?

4. Run a single command that will display the most recent kernel events

involving AppArmor.

5. Identify the configuration file that contains virtual home directory values that can

be used by all AppArmor profiles.

6. Run a program that will scan your profiles and suggest edits to your documents.

561

CHAP T ER

25
Securing Linux on a Network

IN THIS CHAPTER

Managing network services

Controlling access to network services

Implementing �rewalls

S
etting up your Linux system on a network, especially a public network, creates a whole new

set of challenges when it comes to security. Of course, the best way to secure a computer is to

keep it off all networks. However, that’s rarely a workable option.

Entire books have been filled with information on how to secure a computer system on a network.

Many organizations hire full-time network security administrators to watch over their network-

attached Linux systems. Therefore, think of this chapter as just a brief introduction to the subject.

Auditing Network Services
Most Linux systems used for large enterprises are configured as servers that, as the name implies,

offer services to remote clients over a network. A network service is any task that the computer per-

forms requiring it to send and receive information over the network using some predefined set of

rules. Routing email is a network service, as is serving web pages.

A Linux server has the potential to provide thousands of services. Many of them are listed in the /
etc/services file. Consider the following sections from the /etc/services file:

$ cat /etc/services
/etc/services:
$Id: services,v 1.55 2013/04/14 ovasik Exp $
#
Network services, Internet style
IANA services version: last updated 2013-04-10
#
Note that it is presently the policy of IANA to assign ...
Each line describes one service, and is of the form:
#

Continues

Part V: Learning Linux Security Techniques

562

service-name port/protocol [aliases ...] [# comment]
...
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
systat 11/udp users
daytime 13/tcp
daytime 13/udp
qotd 17/tcp quote
qotd 17/udp quote
...
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp-data 20/udp
21 is registered to ftp, but also used by fsp
ftp 21/tcp
...
http 80/tcp www www-http # WorldWideWeb HTTP
http 80/udp www www-http # HyperText
Transfer Protocol
http 80/sctp # HyperText
Transfer Protocol
kerberos 88/tcp kerberos5 krb5 # Kerberos v5
kerberos 88/udp kerberos5 krb5 # Kerberos v5
...
blp5 48129/udp # Bloomberg locator
com-bardac-dw 48556/tcp # com-bardac-dw
com-bardac-dw 48556/udp # com-bardac-dw
iqobject 48619/tcp # iqobject
iqobject 48619/udp # iqobject

After the comment lines, notice three columns of information. The left column contains

the name of each service. The middle column defines the port number and protocol type

used for that service. The right column contains an optional alias or list of aliases for

the service.

Many servers can have unneeded network services running. An unnecessary service

exposes your Linux system to malicious attacks. For example, if your machine is a dedi-

cated printer server, then it should only be offering printing services. It should not also

offer Apache Web Services. This would unnecessarily expose your printer server to any

malicious attacks that take advantage of web service vulnerabilities.

Originally, restricting services on Linux systems meant setting up individual physical

servers with only a few services running on each. Later, running multiple virtual machines

on a physical host lets you lock down small sets of services on virtual machines. More

Continued

Chapter 25: Securing Linux on a Network

563

25

recently, containerized applications can allow many more separate and secured services to

run on each physical host.

Evaluating access to network services with nmap
A wonderful tool to help you review your network services from a network standpoint is

the nmap security scanner. The nmap utility is available in most Linux distribution reposi-

tories and has a web page full of information at www.nmap.org.

You install nmap the usual way:

apt install nmap

The nmap utility’s full name is Network Mapper. It has a variety of uses for security audits

and network exploration. Using nmap to do various port scans allows you to see what ser-

vices are running on all of the servers on your local network and whether they are advertis-

ing their availability.

NOTE

What is a port? Ports, or more correctly network ports, are numeric values used by the TCP and UDP network pro-

tocols as access points to services on a system. Standard port numbers are assigned to services so that a service

knows to listen on a particular port number and a client knows to request the service on that port number.

For example, port 80 is the standard network port for unencrypted (HTTP) traf�c to a web service like Apache. So,

if you ask for http://www.example.com from your web browser, the browser assumes that you mean to use TCP

port 80 on the server that offers that web content. Think of a network port as a door to your Linux server. Each door is

numbered. And behind every door is a particular service waiting to help whoever knocks on that door.

To audit your server’s ports, the nmap utility offers several useful scan types. The nmap

site has an entire manual on all of the port scanning techniques that you can use at nmap.

org/book/man-port-scanning-techniques.html. Here are two basic port scans to get you

started on your service auditing:

TCP Connect port scan For this scan, nmap attempts to connect to ports using the

Transmission Control Protocol (TCP) on the server. If a port is listening, the connec-

tion attempt succeeds.

TCP is a network protocol used in the TCP/IP network protocol suite. TCP is a connec-

tion-oriented protocol. Its primary purpose is to negotiate and initiate a connection

using what is called a three-way handshake. TCP sends a synchronize packet (SYN) to

a remote server specifying a specific port number in the packet. The remote server

receives the SYN and replies with an acknowledgment packet (SYN-ACK) to the origi-

nating computer. The original server then acknowledges (ACK) the response, and a TCP

connection is officially established. This three-way handshake is often called a SYN-

SYN-ACK or SYN, SYN-ACK, ACK.

http://nmap.org/
http://www.example.com
http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html

Part V: Learning Linux Security Techniques

564

If you select a TCP Connect port scan, the nmap utility uses this three-way hand-

shake to do a little investigation on a remote server. Any services that use the TCP

protocol will respond to the scan.

UDP port scan For this scan, nmap sends a UDP packet to every port on the system

being scanned. UDP is another popular protocol in the TCP/IP network protocol

suite. Unlike TCP, however, UDP is a connectionless protocol. If the port is listening

and has a service that uses the UDP protocol, it responds to the scan.

TIP

Keep in mind that Free and Open Source Software (FOSS) utilities are also available to the bad guys. While you are

doing these nmap scans, realize that the remote scan results that you see for your Linux server are the same scan

results that others will see. This will help you evaluate your system’s security settings in terms of how much informa-

tion is being given out to port scans. Keep in mind that you should use tools like nmap only on your own systems,

because scanning ports on other people’s computers can give the impression that you are trying to break in.

When you run the nmap utility, it displays a report with information on the system you’re

scanning and the ports it sees. The ports are given a state status. nmap reports six possible

port states:

open: This is the most dangerous state an nmap scan can report for a port. An open

port indicates that a server has a service handling requests on this port. Think of

it as a sign on the door, “Come on in! We are here to help you.” Of course, if you are

offering a public service, you want the port to be open.

closed: A closed port is accessible, but there is no service waiting on the other side

of this door. However, the scan status still indicates that there is a live server at

this particular IP address.

filtered: This is the best state to secure a port that you don’t want anyone to

access. It cannot be determined if a server is actually at the scanned IP address. It

is possible that a service could be listening on a particular port, but the firewall

is blocking access to that port, effectively preventing any access to the service

through the particular network interface.

unfiltered: The nmap scan sees the port but cannot determine if the port is open

or closed.

open|filtered: The nmap scan sees the port but cannot determine if the port is

open or filtered.

closed|filtered: The nmap scan sees the port but cannot determine if the port is

closed or filtered.

To help you better understand how to use the nmap utility, review the following example.

For the purposes of building a network services list, the example nmap scans are conducted

Chapter 25: Securing Linux on a Network

565

25

from inside an Ubuntu system. The first scan is a TCP Connect scan from the command line

using the loopback address 127.0.0.1.

$ nmap -sT 127.0.0.1

Starting Nmap 7.60 (https://nmap.org) at 2020-04-29 12:29 EDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000076s latency).
Not shown: 993 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
631/tcp open ipp

Nmap done: 1 IP address (1 host up) scanned in 0.05 seconds

The TCP Connect nmap scan reports that three TCP ports are open and have services listen-

ing on the localhost (127.0.0.1) for requests to these ports:

 ■ Open SSH is listening at TCP port 22.

 ■ Simple Mail Transfer Protocol (SMTP) is listening at TCP port 25.

 ■ Internet Printing Protocol (IPP) is listening at TCP port 631.

The next nmap scan is a UDP scan on the Ubuntu system’s loopback address.

nmap -sU 127.0.0.1
[sudo] password for dbclinton:

Starting Nmap 7.60 (https://nmap.org) at 2020-04-29 12:31 EDT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000010s latency).
Not shown: 995 closed ports
PORT STATE SERVICE
68/udp open|filtered dhcpc
631/udp open|filtered ipp

Nmap done: 1 IP address (1 host up) scanned in 2.75 seconds

The UDP nmap scan reports that two UDP ports are open and have services listening on

those ports:

 ■ Dynamic Host Control Protocol client (dhcpc) is listening at port 68.

 ■ Internet Printing Protocol (ipp) is listening at port 631.

Notice that port 631’s IPP is listed under both nmap’s TCP Connect scan and the UDP scan

because the IPP service can communicate over both the TCP and the UDP protocol and thus

is listed in both scans.

Part V: Learning Linux Security Techniques

566

Using these two simple nmap scans, TCP Connect and UDP on your loopback address, you can

build a list of the network services offered by your Linux server. Keep in mind that port num-

bers are associated with a particular protocol (TCP or UDP) and a particular network interface.

For example, if you have one network interface card (NIC) on a computer that faces the Inter-

net and another that faces a private network, you may want to offer a private service (like

the Common UNIX Printing System (CUPS) service for printing) to the NIC on your private

network. But you may want to filter that port (631) on the NIC that faces the Internet.

Using nmap to audit your network services’ advertisements
You probably want lots of people to visit your website (httpd service). You probably don’t

want everyone on the Internet to be capable of accessing your server message block (SMB)

file shares (smb service). To make sure that you are properly separating access to those two

types of services, you want to be able to check what a malicious scanner can see of the ser-

vices available on your public-facing network interfaces.

The idea here is to compare what your Linux server looks like from the inside versus what

it looks like from the outside. If you determine that some network services are accessible

that you intended to keep private, you can take steps to block access to them from external

interfaces.

TIP

You may be tempted to skip the scans from inside your organization’s internal network. Don’t. Malicious activity

often occurs by a company’s own employees or by someone who has already penetrated external defenses. Again,

the nmap utility is a great help here. To get a proper view of how your server’s ports are seen, you need to conduct

scans from several locations. For example, a simple audit would set up scans in these places:

 ■ On the server itself

 ■ From another server on the organization’s same network

 ■ From outside the organization’s network

In the following examples, part of a simple audit is conducted. The nmap utility is run on

a system, designated as Host-A. Host-A is the Linux server whose network services are to

be protected. Host-B is a Linux server using the Linux Mint distribution and is on the same

network as Host-A.

TIP

Security settings on various network components, such as the server’s �rewall and the company’s routers, should all

be considered when conducting audit scans.

For this audit example, a scan is run from Host-A, using not the loopback address but the

actual IP address. First, the IP address for Host-A is determined using the ip addr show

command. The IP address is 10.140.67.23.

Chapter 25: Securing Linux on a Network

567

25

ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
 group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
 state UP group default qlen 1000
 link/ether 52:54:00:c4:27:4e brd ff:ff:ff:ff:ff:ff
 inet 10.140.67.23/24 brd 10.140.67.255 scope global dynamic
 noprefixroute ens3
 valid_lft 3277sec preferred_lft 3277sec
 inet6 fe80::5036:9ec3:2ae8:7623/64 scope link noprefixroute
 valid_lft forever preferred_lft forever

Now, using the Host-A IP address, an nmap TCP Connect scan is issued from Host-A. The

nmap scan goes out to the network to conduct the scan. All ports are reported as having a

status of closed.

nmap -sT 10.140.67.23
Starting Nmap 7.80 (https://nmap.org) at 2020-1-31 11:53 EDT

Nmap scan report for office (10.140.67.23)

Host is up (0.010s latency).
All 1000 scanned ports on 10.140.67.23 are closed

Nmap done: 1 IP address (1 host up) scanned in 1.48 seconds

The nmap scan is moved from originating at Host-A to originating on Host-B. Now the TCP

Connect scan is attempted on Host-A’s ports from Host-B’s command line.

$ nmap -sT 10.140.67.23
Starting Nmap 7.80 (https://nmap.org) at 2020-1-31 11:57 EDT

Note: Host seems down. If it is really up,
 but blocking our ping probes, try -PN

Nmap done: 1 IP address (0 hosts up) scanned in 0.11 seconds

Here, nmap gives a helpful hint. Host-A appears to be down, or it could just be blocking the

probes. So, another nmap scan is attempted from Host-B, using nmap’s advice of disabling

the scan’s ping probes via the -PN option.

$ nmap -sT -PN 10.140.67.23
Starting Nmap 7.80 (https://nmap.org) at 2020-1-31 11:58 EDT
Nmap scan report for office (10.140.67.23)

Continues

Part V: Learning Linux Security Techniques

568

Host is up (0.0015s latency).
All 1000 scanned ports on 10.140.67.23 are filtered

Nmap done: 1 IP address (1 host up) scanned in 5.54 seconds

You can see that Host-A (10.140.67.23) is up and running and all of its ports have a status

of filtered. This means that there is a firewall in place on Host-A. These scans from Host-

B give you a better idea of what a malicious scanner may see when scanning your Linux

server. In this example, the malicious scanner would not see much.

NOTE

If you are familiar with nmap, you know that the TCP SYN scan is the default scan nmap uses. The TCP SYN scan

does an excellent job of probing a remote system in a stealth manner. Because you are probing your own system for

security auditing purposes, it makes sense to use the more heavy-duty nmap utility scans. If you still want to use the

TCP SYN scan, the command is nmap -sS ip_address.

The services currently running on Host-A are not that “juicy.” In the example that follows,

another service, sshd, is started on Host-A using the systemctl command (see Chap-

ter 15, “Starting and Stopping Services”). This should give the nmap utility a more inter-

esting target to search for.

$ systemctl status ssh
• sshd.service - OpenSSH server daemon
• ssh.service - OpenBSD Secure Shell server
 Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor
preset: enab
 Active: active (running) since Wed 2020-04-29 07:49:09 EDT; 5h 5min ago
 Main PID: 1144 (sshd)
 Tasks: 1 (limit: 4915)
 CGroup: /system.slice/ssh.service
 ⌙1144 /usr/sbin/sshd -D

Apr 29 07:49:12 workstation systemd[1]: Reloading OpenBSD Secure
Shell server.
Apr 29 07:49:12 workstation sshd[1144]: Received SIGHUP; restarting.
Apr 29 07:49:12 workstation systemd[1]: Reloaded OpenBSD Secure
Shell server.
Apr 29 07:49:12 workstation sshd[1144]: Server listening on
0.0.0.0 port 22.
Apr 29 07:49:12 workstation sshd[1144]: Server listening on
:: port 22.
Apr 29 07:49:16 workstation systemd[1]: Reloading OpenBSD Secure
Shell server.
Apr 29 07:49:16 workstation sshd[1144]: Received SIGHUP; restarting.
Apr 29 07:49:16 workstation systemd[1]: Reloaded OpenBSD Secure
Shell server.

Continued

Chapter 25: Securing Linux on a Network

569

25

Apr 29 07:49:16 workstation sshd[1144]: Server listening on
0.0.0.0 port 22.
Apr 29 07:49:16 workstation sshd[1144]: Server listening on
:: port 22.

Also, because Host-A’s firewall is blocking the nmap scans from Host-B, it would be inter-

esting to see what an nmap scan can report when the firewall is down. The example that

follows shows the Uncomplicated Firewall (UFW) firewall being disabled on Host-A:

ufw disable

With a new service running and Host-A’s firewall lowered, the nmap scans should find

something. In the following, nmap scans are run again from Host-B. This time the nmap

utility shows the ssh service running on open port 22. Notice that with the firewall down

on Host-A, both nmap scans pick up much more information. This really demonstrates the

importance of your Linux server’s firewall.

nmap -sT 10.140.67.23
Starting Nmap 7.80 (http://nmap.org) at 2020-1-31 11:58 EDT
Nmap scan report for 10.140.67.23
Host is up (0.016s latency).
Not shown: 999 closed ports

PORT STATE SERVICE
22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.40 seconds

nmap -sU 10.140.67.23
[sudo] password for johndoe: ***************
Starting Nmap 5.21 (http://nmap.org) at 2020-1-31 11:59 EDT
Nmap scan report for 10.140.67.23
Host is up (0.00072s latency).
Not shown: 997 closed ports

PORT STATE SERVICE
68/udp open|filtered dhcpc
631/udp open|filtered ipp
...
Nmap done: 1 IP address (1 host up) scanned in 1081.83 seconds

In order to conduct a thorough audit, be sure to include the UDP scan. Also, there are addi-

tional nmap scans that may be beneficial to your organization. Look at the nmap utility’s

website for additional suggestions.

CAUTION

If you have been following along and lowered your server’s �rewall just for these nmap scans, be sure to raise it

again. Enter sudo ufw enable.

Part V: Learning Linux Security Techniques

570

You still need to implement controls for those services that your Linux server should offer.

One way to accomplish this is via firewall rules.

Early versions of Linux use TCP Wrappers to allow or deny access to Linux services. It did

this by offering /etc/hosts.allow and /etc/hosts.deny files where you could spe-

cifically indicate which services are available and which are blocked to particular outside

system names and/or IP addresses. More recently, TCP Wrappers have been deprecated.

However, some features, such as vsftpd, still honor those configuration files through

other means.

Working with Firewalls
A firewall in a building is a fireproof wall that prevents the spread of fire throughout the

building. A computer firewall blocks the transmission of malicious or unwanted data into

and out of a computer system or network. For example, a firewall can block malicious scans

from your Linux server ports. A firewall can also change network packets flowing through

your system and redirect packets in various ways.

In Linux, iptables is the kernel-level firewall feature. It is most commonly used to allow or

block access from outside systems to the services running on your local system. iptables

works by allowing you to create rules that can be applied to every packet that tries to enter

(INPUT), leave (OUTPUT), or cross through your system (FORWARD).

Although allowing or blocking packets trying to enter your system is the primary feature of

iptables, you can also create rules for iptables that let you do the following:

 ■ Block packets leaving your system to effectively prevent a process on your system

from reaching a remote host, range of addresses, or selected services.

 ■ Forward packets from one network interface on your system to another, effectively

allowing your computer to act as a router between two networks.

 ■ Port forward a packet intended for a selected port to be rerouted to another port

on your local system, or to a remote system, so that other locations can handle the

request from the packet.

 ■ Change information in a packet header (called mangling) to redirect the packet or

somehow mark it for more processing.

 ■ Allow multiple computers on a private network (such as the computers, televisions,

or other devices on your home network) to communicate with the Internet over a

single public IP address. (This is referred to as IP masquerading.)

In the following sections, I describe many of these features but focus mostly on the rules to

block or allow access to the services running on your Linux system.

Chapter 25: Securing Linux on a Network

571

25

Understanding �rewalls
Although you may tend to think of a firewall as a complete barrier, a Linux firewall is really

just a filter that checks each network packet or application request coming into or out of a

computer system or network.

NOTE

What is a network packet? A network packet is data that has been broken up into transmittable chunks. The

chunks, or packets, have additional data added to them as they traverse down the OSI model. It’s like putting a

letter inside an envelope at each stage as it moves down the protocol stack. One of the purposes of this additional

data is to ensure the packet’s safe and intact arrival at its destination. The additional data is stripped off of the

packet as it traverses back up the OSI model at its destination (like taking off the outer envelope and handing the

letter to the layer above).

Firewalls can be placed into different categories, depending upon their function. Each cat-

egory has an important place in securing your server and network.

A firewall is either network or host-based. A network-based firewall is one that

is protecting the entire network or subnet. For example, a network firewall would

be used in your workplace, where the network should be protected by a screening

router’s firewall.

A host-based firewall is one that is running on and protecting an individual host or

server. You most likely have a firewall on your PC at home. This is a host-based fire-

wall.

A firewall is either hardware- or software-based. Firewalls can be located on net-

work devices, such as routers. Their filters are configured in the router’s firmware. In

your home, your Internet service provider (ISP) may provide a router to let you gain

access to the Internet. The router contains firewall firmware, and it is considered a

hardware firewall.

Firewalls can be located on a computer system as an application. The application

allows filtering rules to be set that filter the incoming traffic. This is an example of

a software firewall. A software firewall is also called a rule-based firewall.

A firewall is either a network-layer or an application-layer filter. A firewall that

examines individual network packets is also called a packet filter. A network-layer

firewall allows only certain packets into and out of the system. It operates on the

lower layers of the OSI reference model.

An application-layer firewall filters at the higher layers of the OSI reference model.

This firewall allows only certain applications access to and from the system.

You can see how these firewall categories overlap. The best firewall setup is a combination

of all of the categories. As with many security practices, the more layers you have, the

harder it is for malicious activity to penetrate.

Part V: Learning Linux Security Techniques

572

Implementing �rewalls
On a Linux system, the firewall is a host-based, network-layer, software firewall managed

by the iptables utility and related kernel-level components. With iptables, you can

create a series of rules for every network packet coming through your Linux server. You can

fine-tune the rules to allow network traffic from one location but not from another. These

rules essentially make up a network access control list for your Linux server.

While Fedora, RHEL, and related distributions use the firewalld service to provide a

more user-friendly way to manage firewall rules, Ubuntu goes with their Uncomplicated

Firewall (UFW). UFW acts as a front end for nftables.

TIP

The iptables utility manages the Linux �rewall, called netfilter. Thus, you will often see the Linux �rewall

referred to as netfilter/iptables. The iptables syntax is still supported, but for recent Linux releases,

nftables is actually doing all the hard work behind the scenes.

Starting with UFW

UFW may already be installed on your Linux system. To check this, type the following:

$ systemctl status ufw
• ufw.service - Uncomplicated firewall
 Loaded: loaded (/lib/systemd/system/ufw.service; enabled; vendor
preset: enabled)
 Active: active (exited) since Wed 2020-04-29 16:57:19
UTC; 20min ago
 Docs: man:ufw(8)
 Process: 410 ExecStart=/lib/ufw/ufw-init start quiet (code=exited,
status=0/SUCCESS)
 Main PID: 410 (code=exited, status=0/SUCCESS)

Warning: Journal has been rotated since unit was started. Log output
is incomplete or unavailable.

If it’s not, you can install it using apt install ufw.

We’ll take a quick look at some basic UFW operations so you won’t be a complete stranger

should you ever encounter it in the wild. To see the current state of UFW, check its status:

ufw status
Status: inactive

If you’d like to activate UFW, you can do all the configuration work before actually applying

your new rules. This can help you avoid unintentionally breaking important access (like

locking yourself out of an Secure Shell (SSH) session).

Chapter 25: Securing Linux on a Network

573

25

Let’s say you want to set your computer up as a web server for everyone, but that also per-

mits SSH access only for administrators in your local network. You would first open the

HTTP port 80:

ufw allow 80
Rules updated
Rules updated (v6)

Two new rules were added to the UFW configuration permitting web access from anywhere

using both IPv4 and IPv6 networking. However, you don’t want to be quite so wide open

with SSH, so you’ll limit access to only clients coming from within your private subnet

(that’s 192.168.1.0/24 in my case):

ufw allow from 192.168.1.0/24 to any port 22 proto tcp
Rules updated

Once you’re satisfied that you’ve got the configuration exactly right, you can pull the

trigger using enable:

ufw enable
Command may disrupt existing ssh connections. Proceed with
operation (y|n)? y
Firewall is active and enabled on system startup

Go ahead and test the firewall. Make sure you can open a new SSH session on your server

and, if you’ve got a web server like Apache installed, try accessing the home page from a

browser. You could also try opening the Cockpit administration tool (which, you’ll remem-

ber, uses port 9090) on a browser from a different computer. Hint: that one shouldn’t work.

Check the UFW status once again:

ufw status
Status: active

To Action From
-- ------ ----
22/tcp ALLOW 192.168.1.0/24
80 ALLOW Anywhere
80 (v6) ALLOW Anywhere (v6)

Speaking of Cockpit, if you have it installed on your server, you can use it to administrate

UFW from the Services menu. Scroll down to the Uncomplicated Firewall entry and click

it. Although at this point, Cockpit-based tasks are pretty much limited to enabling and

disabling.

If you don’t need your firewall anymore, disable it this way:

ufw disable
Firewall stopped and disabled on system startup

Part V: Learning Linux Security Techniques

574

Understanding the iptables utility

Before you start changing the firewall rules via the iptables utility, you need to under-

stand netfilter/iptables basics, which include the following:

 ■ Tables

 ■ Chains

 ■ Policies

 ■ Rules

Understanding these basics will help you set up and manage your Linux server fire-

wall properly.

net�lter/iptables tables

The iptables firewall has the ability to do more than just low-level packet filtering. It

defines what type of firewall functionality is taking place. There are four tables in the

iptables utility. The tables offer the following functionalities:

filter: The filter table is the packet-filtering feature of the firewall. In this table,

access control decisions are made for packets traveling to, from, and through your

Linux system.

nat: The nat table is used for Network Address Translation (NAT). NAT table rules let

you redirect where a packet goes.

mangle: As you would suspect, packets are mangled (modified) according to the rules

in the mangle table. Using the mangle table directly is less common and typically

done to change how a packet is managed.

raw: The raw table is used to exempt certain network packets from something called

connection tracking. This feature is important when you are using Network Address

Translation and virtualization on your Linux server.

Of all the tables listed, three focus on Network Address Translation. Therefore, the filter

table is the primary table that this chapter focuses on for basic firewall packet filtering.

net�lter/iptables chains

The netfilter/iptables firewall categorizes network packets into categories, called

chains. There are five chains (categories) to which a network packet can be designated:

INPUT: Network packets coming into the Linux server

FORWARD: Network packets coming into the Linux server that are to be routed out

through another network interface on the server

OUTPUT: Network packets coming out of the Linux server

PREROUTING: Used by NAT for modifying network packets when they come into the

Linux server

POSTROUTING: Used by NAT for modifying network packets before they come out of

the Linux server

Chapter 25: Securing Linux on a Network

575

25

Which netfilter/iptables table you choose to work with determines what chains are

available for categorizing network packets. Table 25.1 shows what chains are available for

each table.

After a network packet is categorized into a specific chain, iptables can determine what

policies or rules apply to that particular packet.

net�lter/iptables rules, policies, and targets

For each network packet, a rule can be set up defining what to do with that individual

packet. Network packets can be identified many ways by the netfilter/iptables fire-

wall. These are a few of the ways:

 ■ Source IP address

 ■ Destination IP address

 ■ Network protocol

 ■ Inbound port

 ■ Outbound port

 ■ Network state

If no rule exists for a particular packet, then the overall policy is used. Each packet cate-

gory or chain has a default policy. After a network packet matches a particular rule or falls

to the default policy, then action on the packet can occur. The action taken depends upon

what iptables target is set. Here are a couple of actions (targets) that can be taken:

ACCEPT: Network packet is accepted into the server.

REJECT: Network packet is dropped and not allowed into the server. A rejection mes-

sage is sent.

DROP: Network packet is dropped and not allowed into the server. No rejection mes-

sage is sent.

While REJECT gives a rejection message, DROP is quiet. You may consider using REJECT

for internal employees who should be told that you are rejecting their outbound network

traffic and why. Consider using DROP for inbound traffic so that any malicious personnel

are unaware that their traffic is being blocked.

TABLE 25.1 Chains Available for Each net�lter/iptables Table

Table Chains Available

filter INPUT, FORWARD, OUTPUT

nat PREROUTING, OUTPUT, POSTROUTING

mangle INPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING

raw PREROUTING, OUTPUT

Part V: Learning Linux Security Techniques

576

The iptables utility implements a software firewall using the filter table via policies

and rules. Now that you have a general understanding of the software firewall implementa-

tion, you can begin to dig deeper into the specific commands for implementing the firewall

via the iptables utility.

Using the iptables utility

Your Linux server should come with the firewall up and running. However, it’s a good idea

to check and see if it really is enabled.

If UFW is running, disable it using sudo ufw disable.

To see what policies and rules are currently in place for the filter (default) table, enter

iptables -vnL at the command line:

iptables -vnL
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)...

Note that on systems where UFW has been enabled, there are many more iptables chains

and rules listed by default than you might be used to on a system using iptables directly.

This is done to offer more flexibility in building your firewalls by allowing your rules to be

split into zones for different levels of security.

Only the first line of the iptables output is shown in the preceding example. That line

shows that the INPUT chain’s default policy is applied to all the network packets that don’t

match another rule. Currently, all of the default INPUT, FORWARD, and OUTPUT policies

are set to ACCEPT. All network packets are allowed in, through, and out. A firewall in this

state is essentially disabled until specific REJECT or DROP rules are added.

TIP

If your Linux server is dealing with IP v6 network packets, you can use the ip6tables utility to manage your �re-

wall for IPv6 addresses. The ip6tables utility is nearly identical to the iptables utility. For more information,

enter man ip6tables at the command line.

Modifying iptables policies and rules

Make sure you have direct (non-remote) access to the computer you’re planning to use for

iptables experiments. In case you accidentally mess up your network configuration,

you’ll always be able to log in physically to recover.

To get started, it is helpful to understand a few command options.

TIP

There are a couple of additional, more sophisticated targets for iptables, such as QUEUE. You can �nd out more

about these targets via the iptables man page.

Chapter 25: Securing Linux on a Network

577

25

A few options for modifying the firewall follow:

-t table

The iptables command listed along with this switch is applied to the table. By

default, the filter table is used. Example:

 # iptables -t filter -P OUTPUT DROP

-P chain target

Sets the overall policy for a particular chain. The rules in the chain are checked

for matches. If no match occurs, then the chain ’s listed target is used. Example:

 # iptables -P INPUT ACCEPT

-A chain

Sets a rule called an appended rule, which is an exception to the overall policy for

the chain designated. Example:

 # iptables -A OUTPUT -d 10.140.67.25 -j REJECT

-I rule# chain

Inserts an appended rule into a specific location, designated by the rule#, in the

appended rule list for the chain designated. Example:

 # iptables -I 5 INPUT -s 10.140.67.23 -j DROP

-D chain rule#

Deletes a particular rule, designated by the rule#, from the chain designated.

Example:

 # iptables -D INPUT 5

-j target

If the criteria in the rule are met, the firewall should jump to this designated tar-

get for processing. Example:

 # iptables -A INPUT -s 10.140.67.25 -j DROP

-d IP address

Assigns the rule listed to apply to the designated destination IP address. Example:

 # iptables -A OUTPUT -d 10.140.67.25 -j REJECT

-s IP address

Assigns the rule listed to apply to the designated source IP address. Example:

 # iptables -A INPUT -s 10.140.67.24 -j ACCEPT

Part V: Learning Linux Security Techniques

578

-p protocol

Assigns the rule listed to apply to the protocol designated. For example, here

incoming ping (icmp) requests are dropped:

 # iptables -A INPUT -p icmp -j DROP

--dport port#

Assigns the rule listed to apply to certain protocol packets coming into the

designated port#. Example:

 # iptables -A INPUT -p tcp --dport 22 -j DROP

--sport port#

Assigns the rule listed to apply to certain protocol packets going out of the

designated port#. Example:

 # iptables -A OUTPUT -p tcp --sport 22 -j ACCEPT

-m state --state network_state

Assigns the rule listed to apply to the designated network state(s). Example:

 # iptables -A INPUT -m state --state RELATED,ESTABLISHED
-j ACCEPT

To see how the iptables options work, consider the following example. You have a Linux

server (Host-A) at IP address 10.140.67.23. There are two other Linux servers on your

network. One is Host-B at IP address 10.140.67.22 and the other is Host-C at IP address

10.140.67.25. Your goal is to accomplish the following:

 ■ Allow Host-C full access to Host-A.

 ■ Block remote login connections using ssh from Host-B to Host-A.

Setting a policy of Drop

The following code shows the default policies of Host-A’s firewall. In this example, the fire-

wall is wide open with no restrictions implemented. No rules are set, and the policies are all

set to ACCEPT.

iptables -vnL

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chapter 25: Securing Linux on a Network

579

25

First, what would happen if the INPUT policy was changed from ACCEPT to DROP? Would

that reach the goal? Look at what happens when this is tried. Remember that if no rules are

listed for an incoming packet, then the chain’s policy is followed. This change is made

to Host-A’s firewall in the example that follows.

iptables -P INPUT DROP
iptables -vnL

Chain INPUT (policy DROP)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Host-B attempts to ping Host-A and then attempts an ssh connection, as shown in the

example that follows. As you can see, both attempts fail. Because ping commands are

blocked, this does not meet the objective to block only remote login connections using ssh

from Host-B.

$ ping -c 2 10.140.67.23
PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

--- 10.140.67.23 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms
$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed out

When Host-C attempts to ping Host-A and make an ssh connection, both attempts fail.

Thus, it is confirmed that the firewall setting, INPUT policy equals DROP, is not what is

needed to reach the goal.

$ ping -c 2 10.140.67.23
PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

--- 10.140.67.23 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1008ms
$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed out

TIP

For policies, you cannot set the target to REJECT. It fails, and you receive the message “iptables: Bad policy name.”

Use DROP as your policy instead.

Part V: Learning Linux Security Techniques

580

Blocking a source IP address

What if instead only Host-B’s IP address were blocked? That would allow Host-C to reach

Host-A. Would this setting reach the desired goal?

In the example that follows, the policy of DROP must first be changed to ALLOW in Host-

A’s iptables. After that, a specific rule must be appended to block network packets from

Host-B’s IP address, 10.140.67.22, alone.

iptables -P INPUT ACCEPT
iptables -A INPUT -s 10.140.67.22 -j DROP
iptables -vnL

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- 10.140.67.22 anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Host-C can now successfully ping and ssh into Host-A, meeting one of the set goals.

$ ping -c 2 10.140.67.23
PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.
64 bytes from 10.140.67.23: icmp_req=1 ttl=64 time=11.7 ms
64 bytes from 10.140.67.23: icmp_req=2 ttl=64 time=0.000 ms

--- 10.140.67.23 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1008ms
rtt min/avg/max/mdev = 0.000/5.824/11.648/5.824 ms
$ ssh root@10.140.67.23
root@10.140.67.23's password:

However, Host-B can neither ping nor ssh into Host-A. Thus, the appended rule is not

quite what is needed to reach the entire goal.

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

--- 10.140.67.23 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1007ms

$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed out

Chapter 25: Securing Linux on a Network

581

25

Blocking a protocol and port

What if, instead of blocking Host-B’s IP address entirely, only connections to the ssh port

(port 22) from Host-B’s IP address were blocked? Would that reach the goal of allowing Host-

C full access to Host-A and only blocking ssh connections from Host-B?

In the example that follows, the iptables rules for Host-A are modified to try blocking

Host-B’s IP address from port 22. Note that the --dport option must accompany a par-

ticular protocol, such as, for example, -p tcp. Before the new rule is added, the rule from

the previous example must be deleted using the -D option. Otherwise, the rule from the

previous example would be used by the netfilter/iptables firewall for packets from

10.140.67.22 (Host-B).

iptables -D INPUT 1
iptables -A INPUT -s 10.140.67.22 -p tcp --dport 22 -j DROP
iptables -vnL

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.140.67.22 anywhere tcp dpt:ssh

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

First, the new iptables rule is tested from Host-C to ensure that both ping attempts and

ssh connections remain unaffected. It works successfully.

$ ping -c 2 10.140.67.23
PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.
64 bytes from 10.140.67.23: icmp_req=1 ttl=64 time=1.04 ms
64 bytes from 10.140.67.23: icmp_req=2 ttl=64 time=0.740 ms

--- 10.140.67.23 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.740/0.892/1.045/0.155 ms

$ ssh root@10.140.67.23
root@10.140.67.23's password:

Next, the new iptables rule is tested from Host-B to ensure that ping works and ssh

connections are blocked. It also works successfully!

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.
64 bytes from 10.140.67.23: icmp_req=1 ttl=64 time=1.10 ms
64 bytes from 10.140.67.23: icmp_req=2 ttl=64 time=0.781 ms

Continues

Part V: Learning Linux Security Techniques

582

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev=0.781/0.942/1.104/0.164 ms

$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed out

Make sure you fully test your firewall configuration in a test or virtual environment before

implementing it in your production Linux system.

Saving an iptables con�guration

In the example that follows, the modifications made earlier are still in the firewall. You can

save the current set of firewall filter rules using the iptables-save command.

iptables -vnL
Chain INPUT (policy ACCEPT 8 packets, 560 bytes)
 pkts bytes target prot opt in out source destination
 0 0 DROP tcp -- * * 10.140.67.22 0.0.0.0/0 tcp dpt:22
 0 0 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:33
 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0
...

iptables-save > /tmp/myiptables

To restore those rules later, you can start by flushing the current rules (iptables -F) and

restoring them (iptables-restore).

iptables -F
iptables -vnL
Chain INPUT (policy ACCEPT 8 packets, 560 bytes)
 pkts bytes target prot opt in out source destination
 0 0 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:33
 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0
...

A flush of the rules does not affect the iptables configuration file. To restore the fire-

wall to its original condition, use the iptables-restore command. In the example that

follows, the iptables configuration file is redirected into the restore command and the

original DROP rule for 10.140.67.22 is restored.

iptables-restore < /tmp/myiptables
iptables -vnL
Chain INPUT (policy ACCEPT 16 packets, 1120 bytes)
 pkts bytes target prot opt in out source destination

Continued

Chapter 25: Securing Linux on a Network

583

25

 0 0 DROP tcp -- * * 10.140.67.22 0.0.0.0/0 tcp dpt:22
 0 0 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:33
 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0

A simpler way to ensure your firewall settings are active each time your computer boots is

to install and run the iptables-persistent package, which will save IPv4 rules to a file

called /etc/iptables/rules.v4 and make sure they’re read on startup.

You can also save your netfilter/iptables firewall rules to create an audit report.

Reviewing these rules periodically should be part of your organization’s System Life Cycle

Audit/Review phase.

Summary
Securing your Linux server is critical on a network. Inherently, a majority of the malicious

attacks originate from a network, especially the Internet. This chapter covered some of the

basics that you need in order to get started on this process.

Protecting your network services can be simplified after you determine and remove any

unneeded network services. The nmap utility helps you here. Also, you can use nmap to

audit your Linux server’s advertising of network services. These audits assist in deter-

mining what firewall modifications are needed.

Recent versions of Ubuntu have added the UFW service as a front end to the iptables

firewall facility that is built into the Linux kernel. The netfilter/iptables firewall

facility is a host-based, network-layer, software firewall. It is managed by the iptables

and ip6tables utilities. With these utilities, a series of policies and rules can be created

for every network packet coming through your Linux server.

At this point in this book, you should have a good grasp of what goes into setting up and

securing Linux desktop and server systems. In the next two chapters, I’m going to help you

extend that knowledge into cloud computing and virtualization.

Exercises
Refer to the material in this chapter to complete the tasks that follow. If you are stuck,

solutions to the tasks are shown in Appendix A (although in Linux, you can often complete

a task in multiple ways). Try each of the exercises before referring to the answers. These

tasks assume you are running an Ubuntu Linux system (although some tasks work on other

Linux systems as well). Please don’t use a production system to try out the iptables com-

mands in these exercises. Although the commands shown here do not permanently change

your firewall (the old rules will return when the firewall service restarts), improperly modi-

fying your firewall can result in unwanted access.

Part V: Learning Linux Security Techniques

584

1. Install the Network Mapper utility on your local Linux system.

2. Run a TCP Connect scan on your local loopback address. What ports have a service

running on them?

3. Run a UDP port scan on your Linux system from a remote system.

4. Check to see if your system is running the UFW service.

5. Use the Firewall Configuration window to open access to secure (TCP port 443) and

insecure (TCP port 80) ports for a web service.

6. Determine your Linux system’s current netfilter/iptables firewall policies

and rules.

7. Save your Linux system’s current firewall rules, flush them, and then restore them.

8. For your Linux system’s firewall, set a filter table policy for the input

chain to DROP.

9. Change your Linux firewall’s filter table policy back to accept for the input chain,

and then add a rule to drop all network packets from the IP address 10.140.67.23.

10. Without flushing or restoring your Linux firewall’s rules, remove the rule you

just added.

Part VI

IN THIS PART

Chapter 26

Shifting to Clouds and Containers

Chapter 27

Deploying Linux to the Public Cloud

Chapter 28

Automating Apps and Infrastructure with Ansible

Chapter 29

Deploying Applications as Containers with Kubernetes

Engaging with Cloud Computing

587

CHAP T ER

26
Shifting to Clouds

and Containers

IN THIS CHAPTER

Understand key technologies for cloud computing

Learn how Linux containers work

Install and start container software

Pull and run container images

Restart a stopped container

Build a container image

Tag and push container images to a registry

W
hile most of this book focuses on installing and managing individual servers, services, and

applications, this part takes you into the technologies needed to bring Linux into large

data centers. For a data center to operate efficiently, its computers must become as generic

as possible and running components must become more automated. Chapters in this part focus on

technologies that make those two things happen.

Computers become more generic by separating the applications from the operating systems.

This means not just packaging applications into things you install on an operating system (like Debian

packages), but also putting together sets of software into packages that themselves can run once

they are delivered in ways that keep them separate from the operating system. Virtual machines (VMs)

and containers are two ways of packaging sets of software and their dependencies in ways that are

ready to run.

From a high level, a virtual machine is a complete operating system that runs on another operating

system, allowing you to have many VMs active at a time on one physical computer. Everything an

application or a service needs to run can be stored within that VM or in attached storage.

A VM has its own kernel, filesystem, network interfaces, and other operating system features separate

from the host, while sharing the Central Processing Unit (CPU) and random access memory (RAM) with

the host system. You can deploy that VM to a physical system in a way that makes it easy to run the

application and then discard the VM when you’re done. You can run multiple instances of the VM on the

Part VI: Engaging with Cloud Computing

588

same computer or clone and run the VM across multiple computers. The term virtual machine

comes from the fact that each VM sees an emulation of computer hardware and not the hard-

ware itself directly.

A container is a lot like a VM, with the major difference being that a container doesn’t have

its own kernel but shares its host’s kernel. In most other ways, it is like a VM in that its

namespaces are separate from the host operating system and you can clone it between hosts

to run wherever it is convenient.

The technologies driving VMs and containers lie behind the astounding growth and

efficiencies of the cloud computing world. The chapters in this part introduce you to the

tools you’ll need to engage with this new world. You can try out virtual machines on a single

Linux host using KVM or deploy virtual machines to cloud platforms such as OpenStack and

Amazon Web Services (AWS).

To deploy sets of hosts, either on bare metal or the cloud, you will learn how to use Ansible.

With Ansible playbooks, you can also define the software that is installed and run on each

host system.

As for containers, the Kubernetes project has grabbed the spotlight as a powerful technology

for orchestrating massive numbers of containers across large data centers. Products such as

Canonical’s Multi-cloud Kubernetes on Ubuntu provide supported Kubernetes platforms for

large enterprises.

The technology that widely popularized containers a few years ago was the Docker project.

The docker command and daemon offered simplified ways to build and run containers on

Linux systems. Today, standardized container formats (such as the Open Container Initiative)

and other container tools offer ways of working with containers that align more tightly with

the Kubernetes ecosystem.

The remainder of this chapter is devoted to getting started with containers. It covers the

Linux Container project (LXD), the docker command, and other popular tools for working

with individual containers.

Understanding Linux Containers
Containers make it simple to get and run applications and then discard them when you are

done. There are a few things that you should know about containers before you get started.

In working with containers, people refer to the entity that you move around as a container

image (or simply an image). When you run that image, or when it is paused or stopped, it is

referred to as a container.

A container remains separate from the host system by using its own set of namespaces. You

typically would build your own container images by getting a secure base image and then

adding your own layers of software on top of that image to create a new image. To share

your images, you push them to shared container registries and allow others to pull them.

Chapter 26: Shifting to Clouds and Containers

589

26

Namespaces
Linux support for namespaces is what allows containers to be contained. With namespaces,

the Linux kernel can associate one or more processes with a set of resources. Normal

processes, not those run in a container, all use the same host namespaces. By default,

processes in a container only see the container’s namespaces and not those of the host.

Namespaces include the following:

Process table A container has its own set of process IDs and, by default, can only see

processes running inside the container. While PID 1 on the host is the init process

(systemd), in a container PID 1 is the first process run inside the container.

Network interfaces By default, a container has a single network interface (eth0)

and is assigned an IP address when the container runs. By default, a service run

inside a container (such as a web server listening on ports 80 and 443) is not

exposed outside of the host system. The upside of this is that you could have hun-

dreds of web servers running on the same host without conflict. The downside is

that you need to manage how those ports are exposed outside of the host.

Mount table By default, a container can’t see the host’s root filesystem, or any other

mounted filesystem listed in the host’s mount table. The container brings its own

filesystem, consisting of the application and any dependencies it needs to run.

Files or directories needed from the host can be selectively bind-mounted inside the

container.

User IDs Although containerized processes run as some UID within the host’s

namespace, another set of UIDs is nested within the container. This can, for exam-

ple, let a process run as root within a container but not have any special privileges

to the host system.

Control group (cgroup) On some Linux systems (including Ubuntu), a containerized

process runs within a selected control group and cannot see the other cgroups avail-

able on the host system. Likewise, it cannot see the identity of its own cgroup.

Although access to any host namespace is restricted by default, privileges to host

namespaces can be opened selectively. In that way, you can do things like mount config-

uration files or data inside the container and map container ports to host ports to expose

them outside of the host.

Container registries
Permanent storage for at least some container flavors is done in what is referred to as a

container registry. When you create a container image that you want to share, you can

push that image to a public repository (like Docker Hub) or a registry that you maintain

privately yourself. Someone who wants to use the image will pull it from the repository.

Part VI: Engaging with Cloud Computing

590

Base images and layers
Although you can build containers from scratch, most often a container is built by starting

with a well-known base image and adding software to it. That base image typically aligns

with the operating system from which you are installing software into your container.

Official LXD images are managed through the Linux Containers project page: us.images.

linuxcontainers.org. A visit to that page will show you references to hundreds of avail-

able images based on 20 different distributions (including Ubuntu, CentOS, and Kali Linux).

Official base Docker images are also available for many Linux distributions. There are base

images that you can build on that offer runtimes for PHP, Perl, Java, and other develop-

ment environments.

You can add software to a base image using commands such as docker build. By using

a Dockerfile to define the build, you can add apt-get commands to install software from

software repositories into your new container.

When you add software to an image, it creates a new layer to become part of the new

image. Reusing the same base images for the containers that you build offers several

advantages. One advantage is that when you run the container image, only one copy of the

base image is needed on the host. So, if you were running 10 different containers based on

the same base image, you only need to pull and store the base image once, then possibly

only add a few megabytes of extra data for each new image.

If you look at the contents of a base image, it would look like a little Linux filesystem. You

see configuration files in /etc, executables in /bin and /sbin, and libraries in /lib. In

other words, it would have the basic components that an application would need from a

Linux host system.

Keep in mind that the container images you run don’t necessarily need to match the host

Linux system. So, for example, you could run a Fedora base image on an Ubuntu system, as

long as specific kernel or shared library requirements in the container image are provided

by the underlying Linux host system.

Working with Linux Containers
Very little preparation is needed to start running containers on your own Linux system.

The following sections describe how to prepare your Linux system to start using containers

through both LXD and Docker.

Deploying LXD containers
The Linux Container project (www.linuxcontainers.org) lets you quickly fire up containers

and configure complex, network workloads. Its commands sets (either LXC or the more

recent LXD) make server virtualization remarkably straightforward and painless. But nev-

ertheless, LXD containers aren’t widely used in large-scale enterprise cloud environments;

they’re far more popular closer to home, running on your local workstation.

http://us.images.linuxcontainers.org
http://us.images.linuxcontainers.org
http://linuxcontainers.org

Chapter 26: Shifting to Clouds and Containers

591

26

So why use LXD containers in the first place? After all, aren’t all the cool kids playing with

Docker and Kubernetes these days? Well, for one thing, Docker was originally driven by

the LXC engine. But—ancient history aside—LXD containers are a fantastic way to safely

experiment with new technology stacks and configurations. Let’s see how.

You can install LXD on your machine the regular way and then initialize the environment.

You can safely accept the defaults for the questions you’re asked. I prefer using a custom

network Classless Inter-Domain Routing (CIDR) like 10.0.5.1/24 because it gives me IP

addresses that I find easier to remember, but the default is fine, too.

apt install lxd
lxd init
Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]:
Name of the storage backend to use (btrfs, dir, lvm, zfs, ceph)
[default=zfs]:
Create a new ZFS pool? (yes/no) [default=yes]:
Would you like to use an existing block device? (yes/no)
[default=no]:
Size in GB of the new loop device (1GB minimum) [default=15GB]: 1
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no)
[default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or
“none”) [default=auto]: 10.0.5.1/24
Would you like LXD to NAT IPv4 traffic on your bridge? [default=yes]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or
“none”) [default=auto]:
Would you like LXD to be available over the network? (yes/no)
[default=no]:
Would you like stale cached images to be updated automatically? (yes/
no) [default=yes]
Would you like a YAML "lxd init" preseed to be printed? (yes/no)
[default=no]:

From here on in, you’ll be using lxc commands. Before you can launch a container, you’ll

need to get yourself an image. Both steps can be accomplished with a single command

like this:

lxc launch ubuntu:20.04 testserver

LXD would first download a container-friendly image of the distribution and version you

specified and assign your name (testserver in this case) to it. You’re not limited to the dis-

tribution/version combination that’s running on your host, by the way. You can generally

successfully run any one of the hundreds of versions found on the www.linuxcontainers

.org page.

http://linuxcontainers.org
http://linuxcontainers.org

Part VI: Engaging with Cloud Computing

592

The first time you launch a particular image, the download can—depending on the qual-

ity of your Internet connection—take quite some time. But launching a second or third

container based on that image will be nearly instant. If you’re just looking to try it out,

the super-small Alpine distribution is a great place to begin. Because it’s an external image,

you’ll need to reference it using the “images:” prefix. You won’t believe how fast that’ll go.

lxc launch images:alpine/3.8 alpine1
Creating alpine1
Starting alpine1

You can confirm the container was successfully built and is actually running using lxc
list. This will also show you its IP address (note how it’s within the 10.0.5.x range we

specified).

lxc list
+---------+---------+-------------------+-----------+-----------+
| NAME | STATE | IPV4 | TYPE | SNAPSHOTS |
+---------+---------+-------------------+-----------+-----------+
| alpine1 | RUNNING | 10.0.5.190 (eth0) | CONTAINER | 0 |
+---------+---------+-------------------+-----------+-----------+

You can open a shell session within your container using the exec command followed

by the container’s name. As exec will normally execute a single command within the

container, you’ll need to pass the /bin/sh binary to tell LXC that you want a full shell

session. By default, Alpine Linux doesn’t come with the Bash shell, so we’ll invoke sh

instead. Running ls / within the container at the command prompt gives you the normal

Linux root directory contents, so you’ll know you’re right at home.

lxc exec alpine1 /bin/sh
~ # ls /
bin etc lib mnt root sbin sys usr
dev home media proc run srv tmp var
~ #

LXD comes with a robust tool set for managing networks, storage, and other administra-

tion duties. But for now you’ll be fine with what you’ve seen, and these self-explanatory

container-management commands:

lxc stop
lxc start alpine1
lxc delete alpine1

You now have everything you need to quickly provision clean, reliable, and disposable

environments. You can experiment with new software, experiment with a beta release, or

test anything else you want without risking your physical machine.

Chapter 26: Shifting to Clouds and Containers

593

26

Deploying Docker containers
While the theory behind Docker containers is not all that different from LXD, your com-

mand-line experience will probably be very different. But why take our word for that? Let’s

just dive right in and find out.

You install the Community Edition of Docker using apt install dockrer.io. So

you won’t need to add sudo before all your Docker commands, you could add your Linux

account username to the docker:x:117: line in the /etc/group file so (assuming your

user name is steve) it looks like this:

docker:x:117:steve

Make sure there’s no space between the colon and your name. That won’t end well. Log out

and back in again so the change will take effect.

Folks generally begin their Docker careers with the “hello-world” container:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
Digest: sha256:8e3114318a995a1ee497790535e7b88365222a21771ae7e53687
ad76563e8e76
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the
Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image
which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client,
which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu
container with:
 $ docker run -it ubuntu bash

Continues

Part VI: Engaging with Cloud Computing

594

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/

As you can see, a very small Linux image was pulled from an online registry that, once it

was launched, displayed the welcome message and then shut down. Let’s list the images to

see if that command left behind any evidence:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest bf756fb1ae65 3 months ago 13.3kB

There is indeed an image that’s been given an ID: bf756fb1ae65. If we wanted to run it

again, we could identify it using that ID. Let’s try something a bit more ambitious. I’ll pull

the latest version of Alpine Linux from the official Docker Hub registry:

$ docker pull alpine:latest
latest: Pulling from library/alpine
cbdbe7a5bc2a: Pull complete
Digest: sha256:9a839e63dad54c3a6d1834e29692c8492d93f90c59c978c1ed79
109ea4fb9a54
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

This docker history command shows us the layers that make up the Alpine image. Each

command that’s executed during the build process adds an extra layer in the new image

that’s being built. We’ll see that nicely illustrated when we build our own image using a

Dockerfile script a bit later. But for now, keep in mind that each new layers adds function-

ality to containers running an image. . . but also adds storage overhead.

$ docker history alpine
IMAGE CREATED CREATED
BY SIZE
f70734b6a266 6 days ago /bin/sh -c #(nop) CMD ["/bin/
sh"] 0B
<missing> 6 days ago /bin/sh -c #(nop) ADD
file:b91adb67b670d3a6… 5.61MB

You can search Docker Hub (or any other registry where you have access) for pre-built

images that might be useful. Suppose you wanted to run a really lightweight WordPress

site. Let’s search Docker Hub for an image based on Alpine that comes with WordPress:

$ docker search alpine | grep wordpress
NAME
DESCRIPTION OFFICIAL
etopian/alpine-php-wordpress Alpine WordPress Nginx PHP-FPM
WP-CLI 24 [OK]

Continued

Chapter 26: Shifting to Clouds and Containers

595

26

We’re in luck. And that [OK] under the official column tells us that this is an officially sup-

ported image that’s highly unlikely to contain malware or dangerous misconfigurations. We

can easily pull the image from the registry:

$ docker pull etopian/alpine-php-wordpress
Using default tag: latest
latest: Pulling from etopian/alpine-php-wordpress
c9b1b535fdd9: Pull complete
5fd784b5e71d: Pull complete
2e434f271efa: Pull complete
7a4a0c3f06a8: Pull complete
7cf44f3ff78b: Pull complete
2bc8ba1e9e4a: Pull complete
f991f2819a23: Pull complete
3811c147a25b: Pull complete
3869f0c66ecb: Pull complete
2436f46663f6: Pull complete
Digest: sha256:97cfd2bc096d3f06977efe8cc7974667a7193f0bf6ab49f73662
abaea7862c36
Status: Downloaded newer image for etopian/alpine-php-
wordpress:latest
docker.io/etopian/alpine-php-wordpress:latest

Another look at our image list shows us what’s now available locally:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest f70734b6a266 6 days ago 5.61MB
etopian/alpine-php-wordpress latest c02c59f90188 2 months ago 155MB
hello-world latest bf756fb1ae65 3 months ago 13.3kB

When we run the new image, we should use the -p flag to set the external and internal

network ports—both to the standard HTTP port 80, in this case. The -d tells Docker that

we want to detach our shell from the container so we’ll get our command line back while

the container itself keeps running.

$ docker run -d -p 80:80 etopian/alpine-php-wordpress
3320c83502229254a48307bc82671e5ef82731f50bd52c57f8550ced6dd262e4

How do we know it’s actually running? All running Docker processes can be listed this way:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
923958867c3d etopian/alpine-php-wordpress "/run.sh" 8 seconds ago Up
8 seconds 0.0.0.0:80->80/tcp competent_rosalind

Part VI: Engaging with Cloud Computing

596

But it’s a web server, so I’ll need its IP address to confirm that service is behaving as it

should. Well, just the way we did with LXD, we can use exec to run a single command

inside the container. This one will be the standard ip addr command that’ll show us that

IP address:

$ docker exec competent_rosalind ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
21: eth0@if22: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue state UP
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

The one we’re after is 172.17.0.2. If I run the Client URL (CURL) program from my host

computer, I’ll see the home page. Of course, that’s not what WordPress is supposed to look

like, but our goal was simply to get a web server up and running. We’ll leave the WordPress

magic up to you.

$ curl 172.17.0.2
<html>
<head>
<title>403 Forbidden</title>
</head>
<body>
<center><h1>403 Forbidden</h1></center>
<hr><center>nginx/1.16.1</center>
</body>
</html>

Had enough? You can shut down the container using the kill command against the con-

tainer name. If you can’t remember that name, run docker ps to jog your memory.

$ docker kill competent_rosalind

In the real world it’s rare to see complex Docker infrastructure run from the command line.

Instead, your containers and container environment will nearly always be scripted. One

popular format for these scripts is Dockerfile (which, by the way, must always be written

with an uppercase “D”). Here’s an example of a Dockerfile that will pull the Ubuntu 20.04

image, run a script uploaded from the host machine, install the Apache2 web server, add an

index.html file to serve as our web root, and do a little networking black magic:

FROM ubuntu:20.04
ADD script.sh /script.sh
RUN /script.sh
RUN apt-get update
RUN apt-get install -y apache2

Chapter 26: Shifting to Clouds and Containers

597

26

ADD index.html /var/www/html/
CMD /usr/sbin/apache2ctl -D FOREGROUND
EXPOSE 80

To make that work as planned, we’ll have to create two files and save them to the local

directory. The first one will be the script—which is only necessary to avoid an interactive

request for location information that will break the installation process.

As you can see, script.sh will, when run, set the container’s environment to non-inter-

active, install the tzdata program to set our locale, and create a linked file pre-populated

with that data. We don’t really care about all this for the purposes of our little experiment,

but we certainly don’t want the install failing, do we?

#!/bin/bash
export DEBIAN_FRONTEND=noninteractive
apt-get update
apt-get install -y tzdata
ln -fs /usr/share/zoneinfo/America/Boston /etc/localtime
dpkg-reconfigure --frontend noninteractive tzdata

It can’t hurt to set the executable bit for the script:

$ chmod +x script.sh

The third and final file we’ll need is our index.html file that can consist of a simple wel-

come message:

Hello. Welcome to my site.

We should be ready to build our image. I want to that image to have the tag “webserver” to

make it easier to work with later. The trailing dot at the end is important: that tells Docker to

look in the present directory for the Dockerfile. Once that’s done, we can run the container,

specifying that we want it to run detached (-d) and that it’s the webserver image we’re after.

$ docker build -t webserver .
$ docker run -d webserver
caeccb19045f3e1f2b5a86402f8e9c557ac5b377f8a8105ac69e38d41a893878

That long hexadecimal string is meant to reassure us that everything went well. Somehow,

I’m not convinced. So I’ll point CURL to the container’s IP address (which will likely be the

same one Docker used with our last container):

$ curl 172.17.0.2
Hello. Welcome to my site.

Looks just right. From here, feel free to explore your Docker environment to see what else

is available. Docker networking, for instance, is a whole world:

$ docker network inspect bridge
[
 {
 "Name": "bridge",

Continues

Part VI: Engaging with Cloud Computing

598

 "Id":
"0ab6ef3a1c8bab7b9f4786622ee7d47600c22e807144a391e8fc9b969f6a79d5",
 "Created": "2020-04-30T17:40:42.42905606Z",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.17.0.0/16"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {

"3320c83502229254a48307bc82671e5ef82731f50bd52c57f8550ced6dd262e4": {
 "Name": "bold_tesla",
 "EndpointID":
"0351ea6793c3d762bfaf770d6102abafe6d165a86343c0acaa613951895e2d73",
 "MacAddress": "02:42:ac:11:00:03",
 "IPv4Address": "172.17.0.3/16",
 "IPv6Address": ""
 },

"caeccb19045f3e1f2b5a86402f8e9c557ac5b377f8a8105ac69e38d41a893878": {
 "Name": "boring_lewin",
 "EndpointID":
"0eccb32a716a35be724fd8564d306dc9556f87ed764d7896448d6f7c7c489892",
 "MacAddress": "02:42:ac:11:00:02",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade": "true",
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
 "com.docker.network.bridge.name": "docker0",

Continued

Chapter 26: Shifting to Clouds and Containers

599

26

 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

Docker storage volumes are also important parts of your infrastructure:

$ docker volume ls
DRIVER VOLUME NAME
local
0ee427945f43254a1157ec9c4cce76012e32c945bf7a697a6ec40db903bfb2f0
local
7f827217d873ccfe4dd6dfab73441558ae35cfdd9c4745242ed6e4887cae840b
local
19eb5f4b43d9566901e2591809449e0a434ed7fb25f89c0698227a676a1703eb
local
86bd1a67b9af07d897e77189bc9205493f18523c2e0977322fc48897c151322c
local
6001919bafa14eccc5bc21285f99d3ac4c75bf665cb47bf095d37a145fae904f
local
ad306d2ca91657d10517bf95d497c0e85aadbbd4caea0a577998ce1f31ac1c9d

There’s one more tool should keep close to hand. One of the greatest benefits of Docker is

the ease by which you can share and collaborate on images. And the best way to do that is

to store your images to a registry that’s accessible to the other members of your team. Nor-

mally, larger organizations will create and manage their own private registries, but you can

get a good, high-level idea of how they work using the public Docker Hub (hub.docker.com).

If you don’t specify otherwise, the docker login command will prompt you for your

Docker Hub authentication information:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If
you don't have a Docker ID, head over to https://hub.docker.com to
create one.
Username: bootstrap-repo
Password:
WARNING! Your password will be stored unencrypted in /home/ubuntu/.
docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/
login/#credentials-store

Login Succeeded

Now that we’re logged in, we’ll prepare our image for upload by giving it a tag that refer-

ences the account we just logged in to. Then we’ll push the image to the registry.

$ docker tag webserver bootstrap-repo/webserver
$ docker push bootstrap-repo/webserver

http://hub.docker.com

Part VI: Engaging with Cloud Computing

600

You could now visit the Docker Hub website, log in, and confirm that your image

arrived safely.

Using containers in the enterprise
While command-line tools like docker and lxc are good for managing individual con-

tainers, Kubernetes offers a platform for deploying large, complex applications across huge

data centers. Refer to Chapter 29, “Deploying Applications as Containers with Kubernetes,”

for information on how to use Kubernetes to deploy and manage containerized applications

in the enterprise.

Summary
Containerizing applications has seen widespread adoption over the past few years. First

LXC/D and then Docker were huge contributors to the simplification of containerizing indi-

vidual applications and running them on single systems.

This chapter described how to pull, run, build, and otherwise manage containers using

command-line tools like docker and lxd. You can use this knowledge as a foundation for

understanding how containerization works and for how those concepts are applied later in

Chapter 29, as it describes how Kubernetes can manage containerized applications across an

entire enterprise.

Exercises
The exercises in this section describe tasks related to working with containers. If you are

stuck, solutions to the tasks are shown in Appendix A. Keep in mind that the solutions

shown in Appendix A are usually just one of multiple ways to complete a task.

1. Install LXD on your machine and prepare your environment.

2. Add an Ubuntu 18.04 image to your LXD environment and launch it as a container

named ubuntu-18.

3. Open an interactive shell within a running LXD container.

4. Retrieve the IP addresses used by all the LXD containers currently installed on

your system.

5. Install the community edition of Docker on your Ubuntu machine.

6. Write a very simple Dockerfile that uses the WordPress image of Alpine Linux as its

base and contains a local file named stats.csv in the /var/ directory.

7. Prove that the stats.csv file found its way to the appropriate location in your

Alpine container.

601

CHAP T ER

27
Deploying Linux

to the Public Cloud

IN THIS CHAPTER

Creating Linux cloud images

Deploying a cloud image with LXD

Deploying a cloud image to OpenStack

Deploying a cloud image to Amazon EC2

V
irtualization technologies, like the LXD and Docker containers we saw in Chapter 26, ”Shift-

ing to Clouds and Containers,” make it possible to leverage generic Linux images to effectively

script the deployment of purpose-built servers. Cloud computing platforms provide the envi-

ronments where you can expose your clean, pre-configured Linux systems to the users who will

consume their services.

In this chapter, we’ll learn how to use cloud-init to associate a Linux cloud image with configu-

ration information so it can be run in a variety of environments. Next, we’ll work through a similar

process within Amazon’s Amazon Web Services (AWS) Elastic Compute Cloud (EC2).

Running Linux in the Cloud Using cloud-init
Cloud platforms are great for spinning up new virtual machines quickly and efficiently. They can

do so because the full install process is not required each time you want a new instance of an

operating system.

Public clouds, such as Amazon EC2 (www.amazon.com/ec2), let you select instances running differ-

ent Linux distributions. While provisioning a new workload, you choose a Linux instance, such as

Ubuntu, Red Hat Enterprise Linux (RHEL)—or Windows Server, for that matter—that has been

specially designed for use on the Amazon cloud. For example, there are instances optimized for

high-performance processing or memory-intensive applications.

http://amazon.com/ec2

Part VI: Engaging with Cloud Computing

602

The baseline cloud instance itself tends to be generic in nature. It is expected that you’ll

add configuration details and data to the image during the startup process. One way to do

that is through a service like cloud-init. Such user-provided details fall into two general

categories: meta-data and user-data:

meta-data Included with meta-data is information that is needed before the image

can boot. This is data that is outside of the contents of the image and is typically

managed by the cloud provider. Some of this data comes from the fact that things

such as storage, memory, and processing power are drawn from a pool of resources

rather than from the physical machine on which you are installing. So, the meta-
data tells the cloud provider how many units of those resources to allocate early in

the process of starting up the instance.

user-data user-data information is inserted into the operating system that exists

on the image. This is data that the owner of the virtual machine provides. This

might include a user account and password, configuration files, software pack-

ages to install, commands to run on first boot, the identities of software reposi-

tories, or anything else that you might want to run or change within the operating

system itself.

When you set up a Linux instance in a cloud environment, you typically enter the meta-data

and user-data information in a web-based control interface (such as the OpenStack Dashboard

or the AWS management console). Working through an exposed application programming inter-

face (API) (the way the AWS command line interface (CLI) works) is an alternate—and arguably

more efficient—approach.

The cloud you use to run your Linux virtual machines may be a public cloud, a private

cloud, or a hybrid cloud. The type of cloud you choose may depend on your needs and

your budget:

Public cloud Amazon EC2 and Google Compute Engine are examples of cloud plat-

forms that let you launch and use Linux virtual machines through API interfaces

or a browser-based management console. You pay for the time that the instance is

running. The amount of memory, storage, and virtual CPUs you use to run the ser-

vice are also figured into the costs. The advantage of public clouds is that you don’t

have to purchase and maintain your own cloud infrastructure.

Private cloud With a private cloud, you put your own computing infrastructure in

place (hypervisors, controllers, storage, network configuration, and so on). Setting

up your own private cloud means taking on more up-front costs to own and main-

tain infrastructure. But it may sometimes offer added security and control over your

computing resources.

Hybrid cloud Many companies are looking toward hybrid cloud solutions. A hybrid

cloud can allow multiple cloud platforms to be managed by a central facility. At

times of peak demand, for instance, a hybrid or multi-cloud controller can direct

Chapter 27: Deploying Linux to the Public Cloud

603

27

virtual machines to run on the Amazon EC2 or Azure clouds rather than overbur-

dened local hypervisor hosts. Even though different cloud environments provision

and configure their virtual machines (VMs) using unique approaches, the basic man-

agement principles are similar. Having an understanding of those features can help

you when you configure a Linux system to run in a cloud.

To help you get a better feel for configuring Linux cloud instances, in the next sections,

we’ll describe how cloud-init works in Linux cloud instances, walk you through creating

your own meta-data and user-data files, and apply them to your cloud instance so the

information can be used when the cloud image boots. But first, let’s learn a bit more about

cloud-init itself.

We’ll soon learn how to use cloud-init to take a cloud image, manually add configura-

tion data, and run it as a virtual machine temporarily on your local host. This approach is

useful if you want to understand how cloud-init works and the opportunities you have

for tuning cloud images to your specifications. But it doesn’t scale well if you’re managing

large enterprises running thousands of VMs.

cloud-init supports the concept of datasources. By placing user-data and meta-data

in a datasource, you don’t have to inject that information manually into a cloud instance,

as we did earlier in this chapter. Instead, when the cloud-init service starts running on

the instance, it knows to not only look on the local system for data sources, but also out-

side of it.

For Amazon EC2 clouds, cloud-init queries a particular IP address

(http://169.254.169.254/) for data. For example, it may check http://169.254.169.254/2009-

04-04/meta-data/ for meta-data and http://169.254.169.254/2009-04-04/user-data/

for user-data. This allows the configuration data to be stored and accessed from a cen-

tral location.

As for what might be inside the meta-data and user-data, far more complex configura-

tion schemes can be developed for deployment of your cloud instances. cloud-init sup-

ports configuration tools, such as Puppet (www.puppetlabs.com/puppet/puppet-open-source)

and Chef (www.chef.io/chef/). These tools let you apply scripts of configuration informa-

tion to your cloud instances, even doing such things as replacing components or restarting

services as needed to return the system to a desired state.

At this point, however, my job is not to make you into a full-blown cloud administrator (a

few hundred pages ago, you might just have been a Linux novice). Instead, I want you to

understand what you will be dealing with if you eventually land in a cloud data center…

because many people believe that most data centers will be managed as cloud infrastruc-

tures in the not-too-distant future.

Right now, however, let’s see some of the basics at work.

http://169.254.169.254/
http://169.254.169.254/2009-04-04/meta-data/
http://169.254.169.254/2009-04-04/meta-data/
http://169.254.169.254/2009-04-04/user-data/
http://puppetlabs.com/puppet/puppet-open-source
https://www.chef.io/chef/

Part VI: Engaging with Cloud Computing

604

Creating LXD Linux Images for Cloud Deployments
Think about what you did when you installed a Linux system in Chapter 9, “Installing

Linux.” During the manual installation process, you set a root password, created a reg-

ular user account and password, possibly defined your network interfaces, and did other

tasks. The information you entered became a permanent part of the operating system that

remained each time you booted the system.

When you start with a prebuilt cloud image as your Linux system, you can use cloud-init

to produce a Linux system that’s ready to run. The cloud-init facility (www.cloud-init

.io) sets up a generic virtual machine instance to run the way that you want without

going through a lengthy install process. The next section describes some ways of using

cloud-init.

Let’s create some user data manually and combine it with a bootable Linux cloud image.

When the image boots it’ll come up configured with your data. Combining data with the

image at runtime allows you to modify it where necessary before each launch instead of

embedding it permanently in the image itself.

I suggest that you run this procedure as an LXD container—much the way you created con-

tainers back in Chapter 26. The difference here will be in how you define the state of your

container even before it’s created using a cloud-init script.

Working with LXD pro�les
Many of the environment settings assigned to a new LXD container will come from your

default profile. But you’re not limited to that profile. Here, we’re going to define an all-new

profile using a cloud-init document and then read it into our new profile.

First, though, let’s take a look at the profiles you’ve already got on your LXD machine.

Unless you’ve already been messing around with the system, you’ll probably have only a

single default profile:

lxc profile list
+---------+---------+
| NAME | USED BY |
+---------+---------+
| default | 1 |
+---------+---------+

That profile will contain nothing more than some basic configuration settings. profile
show displays them using YAML Ain't Markup Language (YAML) syntax:

lxc profile show default
description: Default LXD profile
devices:
 eth0:
 name: eth0
 nictype: bridged

https://cloud-init.io/
https://cloud-init.io/

Chapter 27: Deploying Linux to the Public Cloud

605

27

 parent: lxdbr0
 type: nic
 root:
 path: /
 pool: pool1
 type: disk
name: default
used_by:
- /1.0/containers/base
- /1.0/containers/debian
- /1.0/containers/opensuse
- /1.0/containers/ansible1
- /1.0/containers/centos8
- /1.0/containers/packages
- /1.0/containers/wordpress
- /1.0/containers/cf2
- /1.0/containers/twenty

There’s nothing more here than simple network and storage device settings. In my case, the

profile is already being used by eight containers, as shown in the used_by section.

We could edit the default profile, but that might cause trouble for our existing containers.

Instead, we’ll make a copy of that profile and work on that. Later, when we’re ready to launch

a new container using the new settings, we’ll do it by invoking the new profile as part of the

launch command. Here’s how you copy the default profile and give the copy a new name:

lxc profile copy default mytest

I’ll export the new profile settings as a YAML file so I can edit it using the show argument:

lxc profile show mytest > lxd-profile-mytest.yaml

Now you can use your favorite text editor to work on your document. Just be very careful:

cloud-init and LXD are both really picky about their YAML syntax—and not always in

the same way. Make sure you get your indents right and place your commands in the right

sections. I’d recommend using a YAML syntax validator—there are many of them avail-

able online.

Here’s now our new profile document will look (feel free to edit it to fit your needs):

config:
 environment.TZ: ""
 user.user-data: |
 #cloud-config
 package_upgrade: true
 packages:
 - apache2
 locale: en_CA.UTF-8
 timezone: America/Toronto
 runcmd:

Continues

Part VI: Engaging with Cloud Computing

606

 - [wget, "https://bootstrap-it.com", -O, /var/www/html/index.html]
 - [touch, /home/ubuntu/stuff]
description: New default LXD profile
devices:
 eth0:
 name: eth0
 network: lxdbr0
 type: nic
 root:
 path: /
 pool: default
 type: disk
name: devprofile
used_by: []

Some highlights: The config section includes user-data that, in turn, tells the con-

tainer OS to upgrade the installed packages (apt-get upgrade) during the boot process,

install Apache, set the locale, and then run two commands. The first will download the

index.html file at the root of the www.bootstrap-it.com site and then save that file to

the new index.html file Apache created in /var/www/html/. That will, effectively, turn

our container into a web server using the same contents of that source site. Of course, the

site won’t work properly, since we’ll be missing all the underlying and backend resources

powering that original. This is just for illustration. The touch command is just to illus-

trate a variation of the runcmd syntax. It will create an empty file in the ubuntu user’s

home directory.

The only other differences from the default profile are the description and profile name.

Nothing earth shattering here.

You’ll overwrite the existing copy of the profile maintained by LXD using our new version

this way:

lxc profile edit mytest < lxd-profile-mytest.yaml

You can always confirm that LXD sees the document the same way you did by running lxc
profile show mytest. Read the output carefully, as LXD might simply ignore lines that

it doesn’t understand. Those lines won’t print with this output.

Assuming that worked out well, you’ll be all set to launch your new container. That’ll work

just the way it did back in Chapter 26, except that you’ll point to the new profile using the

--profile argument.

lxc launch --profile mytest ubuntu:20.04 mytest
Creating mytest
Starting mytest

You can, as before, open a new shell session in your container using exec:

lxc exec mytest /bin/bash

Continued

http://bootstrap-it.com

Chapter 27: Deploying Linux to the Public Cloud

607

27

Besides enjoying that “new-car” feel you always get playing around in a fresh, clean

Ubuntu install, you can quickly confirm that your custom configurations worked. Bear in

mind, though, that it could take a couple of minutes before all the changes are complete.

Check out the contents of the index.html file in the Apache root directory—they should

match the index.html of your source site (www.bootstrap-it.com, in our example). And

make sure that stuff file actually exists in /home/ubuntu/.

If anything didn’t work out properly (which is a very real possibility for a first-time effort),

you can view the /var/log/cloud-init-output.log file for clarifying entries.

Working with LXD images
But what does all that have to do with one or another flavor of cloud? Well, once you’ve got

your cloud-init document exactly the way you want it, all it will take to deploy exact

copies of this container anywhere is to copy the document and then invoke it on a differ-

ent platform. That platform could be a data center–based server or a private cloud.

But you can also export the image itself. To do that, you’ll first need to list all the images

currently on your system to display their fingerprints:

lxc image list

You can use a fingerprint (or even part of the whole fingerprint) to output an image’s

environment information:

lxc image info a740503f4fc2
Fingerprint:
a740503f4fc298cfce3975c4538c85963e478d0e8bf0efa827a21e0ecc8e86df
Size: 443.98MB
Architecture: x86_64
Type: container
Public: yes
Timestamps:
 Uploaded: 2020/05/04 15:39 UTC
 Expires: never
 Last used: never
Properties:
Aliases:
Cached: no
Auto update: disabled
Profiles:
- default

If that indeed is what you’re after, you can export the image to a tar archive using the

image export command, giving your output image a name (like newimage). When

that’s done, the new archive will be saved to the current directory.

lxc image export a740503f4fc2 newimage
Image exported successfully!
$ ls
newimage.tar.gz

https://bootstrap-it.com

Part VI: Engaging with Cloud Computing

608

Copy your image to the remote LXD server where you’d like to run it and import it to its

image collection:

lxc image import newimage.tar.gz

Note that LXD containers can’t be exported to non-LXD image formats like the Open Virtu-

alization Format (OVF) or as an ISO image. For that, you’ll want to use other virtualization

platforms like Oracle’s VirtualBox, OpenStack, or a public cloud provider like Amazon Web

Services (AWS). We’ll learn a little about OpenStack next, and then dive into AWS.

Using OpenStack to deploy cloud images
With OpenStack, you get a continually evolving platform for managing your physical cloud

computing infrastructure, as well as the virtual systems that run on it. OpenStack lets you

deploy your own private cloud or offer it up to the world as a public cloud.

If you want to try it yourself, OpenStack is available in the following ways:

Linux distributions Ubuntu is among the distributions that offer free versions of

OpenStack that you can deploy yourself. You can learn about Ubuntu’s version at

www.ubuntu.com/openstack. It’s tricky to set up and requires a robust server with

at least 16 GB of memory. Some all-in-one setups for OpenStack can run on a single

machine, but I think you will have a better experience if you start with three physi-

cal machines: one controller node and two hypervisors.

Public OpenStack clouds Trying out OpenStack on one of various public OpenStack

clouds is convenient and doesn’t have to be that expensive. A list of public OpenStack

clouds is available from the OpenStack project site (www.openstack.org/marketplace/

public-clouds/).

Managed Solutions Large service providers like Canonical can build you OpenStack

solutions designed to match your specific needs. You can think of it as a profes-

sional AWS-like cloud that’s built for you.

We’re not going to try to install a new OpenStack environment from scratch here. That’s

immensely complex and simply isn’t a good fit for this book. We’re also not going to give

you a step-by-step guide to navigating the OpenStack console provided by a public pro-

vider. We’re not sure how many of you would be interested in investing the considerable

time and, perhaps, money, it would require to follow along and make that work.

Instead, we’ll stand a distance off and look at the OpenStack big picture to figure out where

all the major parts of the puzzle actually fit. At the very least, this will give you a sense for

the why and what’s involved of a real-world OpenStack deployment, so you’ll be better posi-

tioned to decide whether that’s something you should explore on your own.

OpenStack breaks down its services into a couple of dozen separate modules. OpenStack

admins would only need to install those modules that they’ll need for their organization’s

http://ubuntu.com/openstack
http://www.openstack.org/marketplace/public-clouds/
http://www.openstack.org/marketplace/public-clouds/

Chapter 27: Deploying Linux to the Public Cloud

609

27

infrastructure. Here’s a selection of the ones you’re most likely to encounter and their brief

descriptions:

Horizon (dashboard) OpenStack ships with a browser-based interface through which

administrators and users can visually manage all the operations their OpenStack

deployment will require. The dashboard is extensible and highly customizable.

Besides Horizon, OpenStack can also be managed through a fully featured command-

line interface client known, appropriately, as OpenStackClient. Between all the

OpenStack modules and their many layers of operations, there are literally thou-

sands of OpenStackClient commands, subcommands, and arguments. The good

news is that the syntax is not unlike those of similar platforms (like the AWS CLI

we’ll see a bit later), so you won’t necessarily have to begin the learning process

all over again. Complete CLI documentation is available here: docs.openstack.org/

python-openstackclient/latest/cli/command-list.html.

Nova (compute) Virtual machines are often thought of as the core of a cloud deploy-

ment, so you’d expect to find Nova at the center of many OpenStack architectures.

Indeed, Nova is what you use to define, provision, launch, and control your VMs

through their birth-to-death life cycles.

Having said all that, Nova can’t function without a number of external resources:

the identity services of Keystone, the image management of Glance, Neutron’s net-

working tools, and the big-picture resource relationship tracking of the Placement

API service.

Neutron (networking) Virtualized networks let you use software to replicate the

complexity and potential efficiencies of vast corridors of cables connected by expen-

sive switches. But to make it work as well as (or better than) physical network infra-

structure, the software has to be exceptionally well designed.

Neutron is the tool that’s tasked with keeping all your OpenStack infrastructure

connected and productive. Neutron lets you define the way both your OpenStack

resources and external consumers can access your infrastructure through connec-

tivity and virtual firewalling services. It also incorporates many traditional net-

work-based functions like Dynamic Host Configuration Protocol (DHCP), floating IP

addresses, load balancing, virtual private networks (VPNs), and intrusion detection

systems.

Cinder (block storage) What’s a server without an attached storage drive for the

operating system that’ll run it? Exactly. It’s not a server at all. Cinder manages large

physical block storage devices, carving out smaller virtual drives that can be used

to power multiple VMs. To make this kind of virtualized system work well, the block

storage management needs to be highly available and fault tolerant and compatible

with as many physical storage platforms as possible.

Keystone (identity) Whenever multiple moving parts built upon multiple frame-

works are running—and especially when they’re serving consumers from both inside

and beyond local secure networks—you need a way to authenticate and authorize

access. Keystone uses credentials to control who (and what) gets access to each of

your OpenStack resources and what they’ll be able to do once they’re in.

http://docs.openstack.org/python-openstackclient/latest/cli/command-list.html
http://docs.openstack.org/python-openstackclient/latest/cli/command-list.html

Part VI: Engaging with Cloud Computing

610

Glance (images) The base operating system stacks that you’ll use for your VMs are

known as images and they’re often identified by some kind of metadata. You’ve

already seen how LXD manages its images, and you’ll soon see how it’s done in

AWS. But images meant to be deployed on OpenStack instances are managed

through Image.

Swift (object storage) Block storage is the data format used for data organized

across the sectors and tracks of both physical and virtual drives. But there’s an

entirely different storage paradigm used when the data you’re managing doesn’t

need to be organized that way. Object storage services provide flexibility and, often,

speed, for data writes and reads that would be difficult to match elsewhere.

OpenStack’s Swift permits fast distributed object storage that can be scaled and

that can offer high levels of concurrent access. This works particularly well for

unstructured data sets like those used for Not SQL (NoSQL) databases.

That’s a bit of a quick-start view of a very large and complex environment. The rest is

up to you.

Using Amazon EC2 to Deploy Cloud Images
The Amazon Web Services (AWS) platform has such a large and dominant footprint in the

global market that it’s become virtually synonymous with cloud computing. That’s not

to say there aren’t other public cloud platforms—Microsoft’s Azure is certainly a serious

player—and, as we’ve already seen, open source cloud infrastructure platforms like Open-

Stack have their place, but it’s simply hard for anyone to compete with the constant torrent

of service upgrades, new services, and entirely new cloud computing models that Amazon

seems to effortlessly produce.

The good news is that more than 90 percent of the instances launched on Amazon’s Elas-

tic Cloud Compute EC2 service are running Linux. The better news is that more than

one of every three of those instances are powered by Ubuntu. In fact, Ubuntu also has

a very strong presence on Microsoft’s Azure cloud, where more than half of all VMs are

Linux-based.

At any rate, it’s worth spending a moment considering what it is that makes the public

cloud so popular. In a word, it’s managed scalability. OK. That’s two words. But the point

is that AWS abstracts the hardware, security, and networking administration of its vast

server infrastructure and offers you as large—or as small—a share of that infrastructure as

you need, when you need it:

 ■ Looking to launch an e-commerce website that, to meet changing demand, will run

on changing numbers of servers, will sit behind security groups and load balancers,

and will consume off-site, replicated databases? EC2 (and Amazon’s Relational Data-

base Service) can give no more and no less than what you need to get the job done.

Chapter 27: Deploying Linux to the Public Cloud

611

27

 ■ Need to put up a storefront server for just a few days to move some old inventory?

EC2 can rent it to you for a few dollars.

 ■ Need a few seconds of compute time at unpredictable times of the day or night?

AWS Lambda functions can give you that, automatically and invisibly firing up EC2

servers for just the seconds you need them and shutting them down when they’re

done. The cost to you is often measured in fractions of a penny.

Once you decide how you want it done and create the configuration definition that’ll do it,

launching your resources takes seconds or, at most, minutes.

Let’s see how anyone with an active AWS account can launch an Ubuntu instance and, as

part of the launch process, install the same Apache web server software that we did ear-

lier on LXD.

Now we could do all of this from the browser-based AWS Management Console, but that

might not be our best choice for a few reasons:

 ■ The Management Console design changes often. So the way we would describe (and

illustrate) the process in a printed book would probably be out of date before you

get to read it. The result will be a lot of confusion.

 ■ The Management Console is an excellent way to familiarize yourself with how AWS

services work, but it’s not the best tool for most real-world workloads. Click-click-

clicking your way through screen after screen gets tedious pretty quickly. The

sooner you become comfortable with the Amazon command-line interface (AWS

CLI), the sooner you’ll be productive.

 ■ GUI tools aren’t very Linux-y, are they?

Installing the AWS CLI
So the better choice for us right here is the AWS CLI. In case you haven’t yet installed it on

your local Ubuntu machine, Amazon has a great documentation page describing how it’s

done (docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html).

Assuming you don’t have any older versions of the CLI already installed, here’s how the

installation will go (you may need to install the unzip package):

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
"awscliv2.zip"
$ unzip awscliv2.zip
./aws/install

The Client URL (CURL) command heads out to the Internet to install the latest version of

the Linux CLI and saves it to the local directory under the name awscliv2.zip. unzip

will extract the archive and populate a directory called aws, which includes an install

script that the third command will execute.

http://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html

Part VI: Engaging with Cloud Computing

612

You can confirm the installation worked by running aws --version and then aws
 configure to enter your security credentials so the CLI can connect to your AWS account

resources. To do that you’ll need to make one (but just one) trip to the Management Con-

sole, where you’ll select My Security Credentials from the drop-down menu at the top of the

Console (as shown in Figure 27.1).

The configure script will also ask you for your preferred default region. I’ll be using the

us-east-1 region for this demo. Finally, you’ll be asked which format you prefer for the

output from your commands. I’m fine with the default.

To quickly test the configuration, try to get some information from your account. This

command will list all the Simple Storage Service (S3) buckets you’ve currently got in your

account. Even if there aren’t any buckets right now, you’ll still be able to tell that the con-

nection worked.

$ aws s3 ls
2019-11-03 13:16:59 athena5605
2014-07-01 18:52:32 elasticbeanstalk-ap-northeast-1-446497495012
2014-08-28 16:57:49 elasticbeanstalk-us-east-1-486497493272
2019-05-04 22:17:50 ltest235
2019-03-31 17:46:40 nextcloud3228

FIGURE 27.1

Click to access the Security Credentials page on the AWS Management Console.

Chapter 27: Deploying Linux to the Public Cloud

613

27

Provisioning and launching an EC2 instance
The goal of this demo is to use the AWS CLI to gather the information about the account

resources we’ll need, and then to use that information to provision and launch an Ubuntu

20.04 instance in the AWS US-EAST-1 region. Along the way, we’ll incorporate a Bash script

into the boot process that will get Ubuntu to install the Apache web server and copy a web

page to the Apache web root. The idea is to produce pretty much the same server that we

did earlier using LXD profiles—but this time it’ll be sitting on the AWS cloud.

This is the information we’ll need before we’ll be ready to launch the instance:

 ■ The Ubuntu Amazon Machine Image (AMI) ID

 ■ The EC2 instance type (meaning, the class of server on which the instance will run)

 ■ The network subnet within our account into which the instance will be launched

We’ll also need to create a security group that will block all incoming traffic to the instance

except HTTP and SSH requests.

We’ll begin with the AMI. The truth is that it is possible to retrieve information about AMIs

from the AWS CLI, but it’s not easy. So I’ll head over to the Management Console once more

and, from the EC2 dashboard, select Launch Instance. From there I’ll be shown a list of offi-

cially supported AMIs like those in Figure 27.2. I’ll find the Ubuntu 20.04 AMI and copy the

AMI ID corresponding to the 64-bit x86 architecture.

FIGURE 27.2

Finding an available Ubuntu EC2 image ID on the Console

Part VI: Engaging with Cloud Computing

614

Now back to the CLI. We’ll need to choose an instance type. EC2 instances are designed

to provide performance that emulates various hardware profiles. One instance type might

come with more memory, another might give you more virtual CPUs, while a third could

maximize network performance. You’ll obviously pay more per hour for better performance,

but the choices do allow you to get exactly what your workload needs.

This CLI command, when we narrow the results by a specific service code and attribute

name, will simply list all the instance types currently available in my region. We’ll show

only the first few results and then the one we’ll choose: t2.micro.

$ aws pricing get-attribute-values \
 --service-code AmazonEC2 \
 --attribute-name instanceType
ATTRIBUTEVALUES a1.2xlarge
ATTRIBUTEVALUES a1.4xlarge
ATTRIBUTEVALUES a1.large
ATTRIBUTEVALUES a1.medium
ATTRIBUTEVALUES a1.metal
ATTRIBUTEVALUES a1.xlarge
ATTRIBUTEVALUES a1
ATTRIBUTEVALUES c1.medium
[...
ATTRIBUTEVALUES t2.micro

That’ll give us enough power to run a few relatively low-use websites at a very low cost

(potentially as low as $40/year). If your AWS account is still in its first year, then you’ll be

eligible for the Free Tier—which will give you full use of a t2.micro instance for free.

We’ll need to place our instance within a network subnet, so we’ll run this command to list

the subnets for the current region. For our purpose, we only need the SubnetId of any

one of them.

$ aws ec2 describe-subnets
{
 "Subnets": [
 {
 "AvailabilityZone": "us-east-1b",
 "AvailabilityZoneId": "use1-az2",
 "AvailableIpAddressCount": 4091,
 "CidrBlock": "172.31.80.0/20",
 "DefaultForAz": true,
 "MapPublicIpOnLaunch": true,
 "State": "available",
 "SubnetId": "subnet-52d6117c",
 "VpcId": "vpc-1ffbc964",
 "OwnerId": "297972716276",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],

Chapter 27: Deploying Linux to the Public Cloud

615

27

 "SubnetArn": "arn:aws:ec2:us-east-1:297972716276:subnet/
subnet-52d6117c"
 },
 {
 "AvailabilityZone": "us-east-1e",
 "AvailabilityZoneId": "use1-az3",
 "AvailableIpAddressCount": 4091,
 "CidrBlock": "172.31.48.0/20",
 "DefaultForAz": true,
 "MapPublicIpOnLaunch": true,
 "State": "available",
 "SubnetId": "subnet-0e170b31",
 "VpcId": "vpc-1ffbc964",
 "OwnerId": "297972716276",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:us-east-1:297972716276:subnet/
subnet-0e170b31"
 },
 {
 "AvailabilityZone": "us-east-1d",
 "AvailabilityZoneId": "use1-az6",
 "AvailableIpAddressCount": 4091,
 "CidrBlock": "172.31.32.0/20",
 "DefaultForAz": true,
 "MapPublicIpOnLaunch": true,
 "State": "available",
 "SubnetId": "subnet-ee4cb6b2",
 "VpcId": "vpc-1ffbc964",
 "OwnerId": "297972716276",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:us-east-1:297972716276:subnet/
subnet-ee4cb6b2"
 }
]
}

To control the network traffic, we’ll need a security group. This will create a brand new

group we’ll call DemoSG:

$ aws ec2 create-security-group \
> --group-name DemoSG \
> --description "Security Group for EC2 instances to allow ports 22,
80 and 443"
{
 "GroupId": "sg-0138a14f815d6d033"
}

Part VI: Engaging with Cloud Computing

616

As the group currently has no rules—meaning all incoming traffic will be blocked by

default—we’ll open up ports 22 (for SSH), 80 (for HTTP), and 443 (HTTPS). As you can see,

the SSH port will permit traffic only from a single IP address. This would lock down access

to only, say, our office location, blocking SSH to the rest of the world. The browser ports

(80 and 443), on the other hand, are wide open to anyone—which makes sense, considering

it’s supposed to be a web server.

$ aws ec2 authorize-security-group-ingress \
 --group-name DemoSG \
 --protocol tcp \
 --port 22 \
 --cidr 172.54.125.8/32
$ aws ec2 authorize-security-group-ingress \
 --group-name DemoSG \
 --protocol tcp \
 --port 80 \
 --cidr 0.0.0.0/0
$ aws ec2 authorize-security-group-ingress \
 --group-name DemoSG \
 --protocol tcp \
 --port 443 \
 --cidr 0.0.0.0/0

Finally, we’ll need the security group’s GroupId. We’ll get that this way:

aws ec2 describe-security-groups --group-names DemoSG
{
 "SecurityGroups": [
 {
 "Description": "Security Group for EC2 instances to allow
ports 22, 80 and 443",
 "GroupName": "DemoSG",
 "IpPermissions": [
 {
 "FromPort": 22,
 "IpProtocol": "tcp",
 "IpRanges": [
 {
 "CidrIp": "172.54.125.8/32"
 }
],
 "Ipv6Ranges": [],
 "PrefixListIds": [],
 "ToPort": 22,
 "UserIdGroupPairs": []
 }
],
 "OwnerId": "297972716276",
 "GroupId": "sg-0138a14f815d6d033",

Chapter 27: Deploying Linux to the Public Cloud

617

27

 "IpPermissionsEgress": [
 {
 "IpProtocol": "-1",
 "IpRanges": [
 {
 "CidrIp": "0.0.0.0/0"
 }
],
 "Ipv6Ranges": [],
 "PrefixListIds": [],
 "UserIdGroupPairs": []
 }
],
 "VpcId": "vpc-1ffbc964"
 }
]
}

If you’ll want to log in to your instance remotely, you’ll have to identify an SSH key pair that

you’ve got on your local machine AND that was created in the EC2 system. Naturally, you can

do that from the AWS CLI using this command (you can obviously give it any name you like):

$ aws ec2 create-key-pair –key-name myname

Note and carefully store the output as you won’t get a second chance to see it. Copy the

output that falls between -----BEGIN RSA PRIVATE KEY and -----END RSA PRI-
VATE KEY----- into a file called myname.pem and give it 400 permissions.

$ chmod 400 myname.pem

That’s it. All that’s left is to plug all those values into the run-instances command. That

command includes a --user-data argument that we can use to include and run a Bash

script at startup. Here’s how that script might look:

#!/bin/bash
apt-get update
apt-get -y install apache2
echo "Hello world!" > /var/www/html/index.html

Now we’re all set to pull the trigger and set it in motion. Look through each line to make

sure you understand what’s going on. The tag entry at the end of the run-instances

command is an optional way to help you identify AWS resources later on in their life cycles.

$ aws ec2 run-instances \
 --image-id ami-068663a3c619dd892 \
 --count 1 \
 --instance-type t2.micro \
 --key-name MyKeyPair \
 --security-group-ids sg-0138a14f815d6d033 \
 --subnet-id subnet-52d6117c \

Continues

Part VI: Engaging with Cloud Computing

618

 --user-data file://my_script.sh \
 --tag-specifications \
 'ResourceType=instance,Tags=[{Key=server,Value=web}]'

If you’re successful, you should see some output that will include an instance ID that’ll look

like this:

"InstanceId": "i-9b08a053525792a7",

Give EC2 a minute or two to fully launch your instance and then run the ec2 describe-
instances command to give you the instance’s public IP address:

$ aws ec2 describe-instances
[...]
"PublicIpAddress": "52.91.1.233",
[...]

You can use that IP address to open an SSH session on the instance:

$ ssh -i MyKeyPair.pem ubuntu@52.91.1.233

And you can also paste the IP address into your browser to visit your brand-new website.

Summary
Understanding how cloud computing differs from simply installing an operating system

directly on computer hardware will help you to adapt as more and more data centers move

toward cloud computing. You explored some cloud images and combined them with user data.

We spoke a bit about some of the bits and pieces that make up the OpenStack cloud plat-

form and got our hands dirty on Amazon’s Elastic Compute Cloud service.

The next chapter will describe how to use Ansible to automate the deployment of host sys-

tems and applications to your data center.

Exercises
If you are stuck, solutions to the tasks are shown in Appendix A. Keep in mind that the

solutions shown in Appendix A are usually just one of multiple ways to complete a task.

1. Create a new LXD profile named newprofile based on your default profile.

2. Edit your newprofile profile definition so that the Apache web server software is

installed.

3. Test your new profile by launching a new LXD container that uses the profile.

4. Export your new LXD image and convert it to a tar archive.

5. Launch an Ubuntu 20.04 instance on EC2 using the Management Console.

Continued

619

CHAP T ER

28
Automating Apps

and Infrastructure with Ansible

IN THIS CHAPTER

Understanding Ansible

Installing Ansible

Stepping through a deployment

Running ad-hoc commands

T
o this point in the book, we have mostly focused on manually configuring individual Linux

systems. You’ve learned how to install software, edit configuration files, and start services

directly on the machines where they run. While knowing how to work on individual Linux

hosts is foundational to managing Linux systems, by itself it doesn’t scale well. That’s where

 Ansible comes in.

Ansible changes the mindset of Linux administration from a focus on single systems to groups of

systems. It moves configuration of those nodes from each individual machine to a control node. It

replaces the user interface of a shell on each machine with Ansible playbooks that run tasks on other

machines over a network.

Although our focus here is on managing Linux systems, Ansible can perform many Linux tasks as

well. There are Ansible modules for making sure that machines are powered on, that network devices

are properly configured, and that remote storage is accessible.

In all but the smallest data centers, knowing how to deploy and manage Linux systems and surround-

ing infrastructure automatically is becoming a requirement for many IT jobs. For fully containerized

data centers, Kubernetes-based application platforms such as OpenShift are becoming the industry

standard for container orchestration and automation (see Chapter 29, “Deploying Applications as Con-

tainers with Kubernetes”). For infrastructure and more traditional application deployments, Ansible

is becoming a leader.

This chapter takes you through what you should know about Ansible to get started. It then steps you

through deploying an application across a set of Linux systems with Ansible and shows you how to

work with those systems later by redeploying playbooks and running ad-hoc commands.

Part VI: Engaging with Cloud Computing

620

Understanding Ansible
Ansible extends, rather than replaces, what you have already learned about Linux. At its

most basic level, Ansible comprises the following:

 ■ An automation language that describes the tasks that you want to perform to reach

a particular state. These are gathered into playbooks.

 ■ The automation engine that is used to run the playbooks.

 ■ Interfaces you can use to manage and secure playbooks and other automation com-

ponents, implemented with commands and RESTful APIs.

Using inventories (that define sets of hosts) and playbooks (that define sets of actions to

take on those hosts), Ansible configures host systems in the following ways:

Simple feature configuration: You create inventories and playbooks as plain-text

files, where you identify Linux components that are acted upon by modules. No

 coding experience is required.

Setting the results that you want: What you describe here are resources that define

the state you want a feature to be in on a node. That state can be a systemd ser-

vice running, a network interface with particular addresses set, or a disk partition

of a certain size created. If, for some reason, the state changes for a feature, you

can run a playbook again to have Ansible return a node to the intended state.

Secure Shell (SSH) connections: By default, each host node must be running an SSH

service that is configured to allow Ansible to communicate to it from the control

node. Key-based authentication to regular user accounts allows this to happen, with

sudo available when root privilege escalation is needed. Because you are using an

SSH service that is probably already running on the host, you don’t need to run

additional agents or configure special firewall rules for this to work.

Once you learn the basics about how Ansible works, you can do a wide range of advanced,

complex activities, such as the following:

Provisioning infrastructure: Using Ansible, you can provision the infrastructure

that your applications need, whether that means installing operating systems on

bare metal or as hypervisors (along with their virtual machines), setting up storage

devices, or configuring network devices. In each of those cases, Ansible can leverage

your existing provisioning tools so that they can all be managed in one place.

Deploying applications: By describing the desired state of your applications, Ansible

can not only use tasks to deploy sets of applications across multiple nodes and

devices, but it can also replay those playbooks to return an application to its desired

state when a feature may have broken or been changed unintentionally.

Managing networking and storage: Tasks that are often done manually to configure,

test, validate, and enhance your networking infrastructure can be automated with

Chapter 28: Automating Apps and Infrastructure with Ansible

621

28

Ansible. Tons of commercial and community playbooks are available that offer the

same Ansible intuitive tools that you use to deploy Linux systems, but they are

made for specific network (docs.ansible.com/ansible/latest/network/index.html)

and storage (docs.ansible.com/ansible/latest/modules/list_of_storage_mod-

ules.html) devices and environments.

Managing cloud environments: Just as you can deploy infrastructures to bare metal,

Ansible offers tools for provisioning infrastructure and applications to cloud envi-

ronments. For Amazon Web Services (AWS) alone, there are about 200 Ansible mod-

ules available for managing infrastructure and applications. Modules for Alibaba,

Azure, Google, and a few dozen other cloud environments are also available.

Exploring Ansible Components
When a playbook is run, it acts on one or more target host systems (represented by inven-

tories) and executes items referred to as plays. Each play contains one or more tasks that are

set to be achieved by that play. To carry out a task, the task calls modules, which are exe-

cuted in the order that they appear. Before you start using Ansible, it helps to understand

a little more about these components.

Inventories
By gathering host systems (nodes) that you want to manage in what are referred to as

inventories, you can manage machines that are similar in some way into groups. Similarities

could include the following:

 ■ Located in a similar location

 ■ Provide the same kind of service

 ■ Assigned to a particular stage in a process, such as sets of machines for develop-

ment, testing, staging, and production

Joining hosts together into more than one group allows them to be acted on based on these

different kinds of attributes. For example, host01 might be both in a group called newy-
ork (for its location) and a group called ftp (for the application it provides). Tasks run on

those inventory groups might allow each host to get network settings based on its location

and the applications it runs based on its purpose, respectively.

There are multiple ways of creating inventories. You can set a line of static servers or create

a range of systems. You can also use dynamic lists of servers from cloud providers, such as

Azure, AWS, and Google Cloud Platform (GCP).

Using variables, you can assign attributes to a set of hosts in an inventory. Those variables

can configure such things as the port from which a service is available from a host, a time-

out value for a service, or the location of a service used by a host (such as a database for a

Network Time Protocol server).

http://docs.ansible.com/ansible/latest/network/index.html
http://docs.ansible.com/ansible/latest/modules/list_of_storage_modules.html
http://docs.ansible.com/ansible/latest/modules/list_of_storage_modules.html

Part VI: Engaging with Cloud Computing

622

Like playbooks, inventories can be simple text files. They can also be implemented from an

inventory script.

Playbooks
Playbooks are created as YAML Ain’t Markup Language (YAML)-formatted files that describe

the end state of something. That something can cause software to be installed, applications

to be configured, or services to be launched. It can focus on the application alone, or it can

include the entire environment (networking, storage, authentication, or other feature) sur-

rounding that application.

Playbooks are meant to be reusable—to deploy the same components later, be adapted for

other components, or replayed to reestablish the original intent of a specific instance of

the playbook. Because playbooks are intended for reuse, many people keep their playbooks

under source control. In that way, you can track changes over time and make the playbooks

easily available.

Plays

Inside a playbook is one or more plays. Each play has a target, such as a hosts identifier

that tells the playbook which host systems to act on. That can be followed by a remote_
user that tells the playbook which user to authenticate to on the host. The play can also

 indicate that it needs to escalate privileges with sudo before it starts executing the tasks.

After that, there can be one or more tasks to define the actual activity that is carried out on

the hosts.

Tasks

At the most basic level, each task runs one or more modules. A task provides a way to

associate the module being run with the parameters and return values associated with

that module.

Modules

There are hundreds of Ansible modules available today, with more being created all the

time. When run, a module makes sure that a requested state is achieved by checking that

intended state, as indicated by parameters that are provided, and if the target is not in

that state, then doing what needs to be done to get there. The Module Index organizes

those modules by category: (docs.ansible.com/ansible/latest/modules/modules_by_

category.html).

Examples of modules include apt, mysql_db, and ipmi_power. The apt module can

install, remove, or otherwise manage software packages and repositories from the Debian

facility. A mysql_db module lets you add or remove a MySQL database from a host. The

ipmi_power module lets you check the state of computers with Intelligent Platform

Management Interface (IPMI) interfaces and make sure they get to the requested state

(on or off).

http://docs.ansible.com/ansible/latest/modules/modules_by_category.html
http://docs.ansible.com/ansible/latest/modules/modules_by_category.html

Chapter 28: Automating Apps and Infrastructure with Ansible

623

28

Conditionals can be applied to each task. For example, using when: ansible_facts
['os_family'] == "Debian", you can condition whether or not to shut down a system

based on whether its OS is part of the Debian family

Parameters let you add information to modify the task. For example, with the user module,

when you add a user to a system, you can identify the user’s name, password, user ID (UID),

and shell.

Besides setting up modules to be executed from playbooks, you can also run modules

directly from the command line. This is useful if you want to act on a host immediately,

without running an entire playbook. For example, you can ping a set of hosts to make sure

that they are running or check the status of a service. (See the section “Running Ad-Hoc

Ansible Commands” later in this chapter for further information.)

To learn more about a particular module, go to the Ansible documentation website (select

Modules from the docs.ansible.com page) or use the ansible-doc command. For exam-

ple, to learn more about how to use the copy module to copy files to a remote location,

enter the following:

ansible-doc copy
> COPY (/usr/lib/python3.7/site-packages/ansible/modules/
files/copy.py)

 The 'copy' module copies a file from the local or
 remote machine to a location on the remote machine...

Most modules have return values to provide information about the result of that module’s

action. Common return values include Booleans, indicating if the task was successful

(failed), whether or not the task was skipped (skipped), or if the task had to make

changes (changed).

Roles, imports, and includes

As your collection of playbooks grows, you may find that you want to break up those play-

books into smaller pieces that you can include in multiple playbooks. You can separate

parts of a large playbook into separate, reusable files, then call those files into the main

playbook using includes and imports. Roles are similar, but they can encompass more things

than tasks, such as modules, variables, and handlers.

For information on using includes, imports, and roles, see “Creating re-usable files and

roles” at docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html.

Stepping Through an Ansible Deployment
To get you started using Ansible, we are going to step through a procedure to deploy a web

service to a set of hosts. After installing Ansible, the procedure shows you how to create

the inventory and playbook that you need to deploy that service. Then it shows how to use

ansible-playbook to actually deploy the playbook.

http://docs.ansible.com
http://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html

Part VI: Engaging with Cloud Computing

624

Prerequisites
To get started, I created four hosts with the following names:

ansible Used as the Ansible control node
host01 First target node
host02 Second target node
host03 Third target node

Then I ran the following steps to prepare to use those hosts with Ansible:

1. I launched three Ubuntu LXD containers.

2. For each of the three target nodes (host01, host02, and host03), I made sure to

do the following:

a. Have the SSH service running and available (opening Transmission Control

 Protocol (TCP) port 22 if necessary) to the Ansible control node.

b. Create a non-root user account. Later, when you use the playbook, add the

--ask-become-pass option to be prompted for the password that you’ll need

to escalate privileges.

c. Set a password for that user.

When running Ansible, I use the regular user account to connect to each system, then I

escalate to root privilege using sudo.

Setting up SSH keys to each node
Log in to the control node (ansible) and ensure that it can reach the three other nodes

that you are configuring. Either make sure that you can reach the hosts through a Domain

Name System (DNS) server or add them to the /etc/hosts file on the control node. Then

set up keys to access those nodes. For example:

1. As root user, add the IP address and name for each node to which you want to

deploy your Ansible playbooks to the /etc/hosts file:

192.168.122.154 host01
192.168.122.94 host02
192.168.122.189 host03

2. Still on the ansible system, generate ssh keys so that you can have passwordless

communications with each host. You can run this and the later Ansible commands

as a regular user on the ansible host system:

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/joe/.ssh/id_
rsa): <ENTER>
Created directory '/home/joe/.ssh'.
Enter passphrase (empty for no passphrase): <ENTER>
Enter same passphrase again:
Your identification has been saved in /home/joe/.ssh/id_rsa.

Chapter 28: Automating Apps and Infrastructure with Ansible

625

28

Your public key has been saved in /home/joe/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:Wz63Ax1UdZnX+qKDmefSAZc3zoKS791hfaHy+usRP7g joe@ansible

The key's randomart image is:

+---[RSA 3072]----+
| ...*|
| . o+|
| |
| . + + |
| S..= * + |
| o+o + O.o|
| .ooB.Bo+o|
| *+O+o.o|
| ..=BEo |
+----[SHA256]-----+

3. Using ssh-copy-id, copy your public key to the root account on each host. The

following for loop steps through copying the user’s password to all three hosts:

$ for i in 1 2 3; do ssh-copy-id joe@host0$i; done
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
 "/home/joe/.ssh/id_rsa.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the
new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed
-- if you are prompted now it is to install the new keys
joe@host01's password: <password>

Number of key(s) added: 1
Now try logging into the machine, with: "ssh 'joe@host01'"
and check to make sure that only the key(s) you wanted were added.

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
 "/home/joe/.ssh/id_rsa.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the
new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed
-- if you are prompted now it is to install the new keys

joe@host02's password: <password> ...

The next step is to install the ansible package on the control node (ansible). From that

point on, all that work is done from the control node.

Part VI: Engaging with Cloud Computing

626

Installing Ansible
Because Ansible playbooks are run from a control node, there is no need to install Ansible

software on any of the nodes that it targets.

So, start by installing the ansible package on the Ubuntu system that you want to use

as your control node. That control node must simply be able to connect to the SSH service

running on the host nodes to which you want to deploy.

apt install ansible

With Ansible installed, you can start to build the inventory that provides the targets for

the playbooks that you will run.

Creating an inventory
A simple inventory can consist of the name representing the target for a playbook and the

host systems associated with that name. To get started, here is an inventory example that

contains three groups of static hosts:

[ws]
host01
host02
host03

[newyork]
host01

[houston]
host02
host03

Adding these entries to the /etc/ansible/hosts file makes them available when you

run Ansible commands and playbooks.

Although this procedure just deploys to the set of hosts in the ws group, the other two

groups illustrate how you might want to set up playbooks for separate tasks based on the

location of the machines (newyork and houston).

Authenticating to the hosts
Just to make sure that you can access each host from the Ansible system, ssh to each host.

You should not have to enter a password:

$ ssh joe@host01
Last login: Wed Feb 5 19:28:39 2020 from 192.168.122.208
$ exit

Repeat for each host.

Chapter 28: Automating Apps and Infrastructure with Ansible

627

28

Creating a playbook
This playbook results in web server software being installed and started on the

hosts defined earlier in the ws group. I added the following content to a file called

simple_web.yaml:

- name: Create web server
 hosts: ws
 remote_user: joe
 become_method: sudo
 become: yes
 tasks:
 - name: Install Apache
 apt:
 name: apache2
 state: present
 - name: Check that Apache has started
 service:
 name: apache2
 state: started

The three hyphens at the beginning of the simple_web.yaml playbook indicate the start

of the YAML content in the file. Here’s a breakdown of the rest of the file:

name: The play is identified as “Create web server.”

hosts: Apply this inventory to the hosts in the ws group.

remote_user: The regular user that is used to authenticate to each remote system.

This is done because it is a good security practice not to allow direct root login to a

remote system.

become_method: What feature to use to escalate privilege (sudo).

become: Enabling this feature (yes) tells Ansible to become a different user than the

remote_user to run the modules in the task.

become_method: What feature to use to escalate privilege (sudo).

tasks: Starts the section containing the tasks.

name: The name is a title given to the task. In the first case, that’s “Install Apache2,”

then “Check that Apache2 has started.”

For apt, it says to check if the apache2 package is present, and if it is not, then

install it.

For service, it checks whether or not the apache2 daemon is running (started). If

Apache is not running, Ansible starts it.

Part VI: Engaging with Cloud Computing

628

Run the playbook
Use the ansible-playbook command to run the playbook. To test the playbook before

running it live, use the -C option. To see more details (at least until you are sure that it’s

working), add the -v option to see verbose output.

Keep in mind that if you run a playbook with -C, it cannot fully test the playbook to make

sure that it is correct. The reason is that a later step might require that an earlier step be

completed before it can be done. In this example, the apache2 package would need to be

installed before the Apache service can be running.

Here’s an example of running the Ansible playbook in verbose mode:

$ ansible-playbook -v simple_web.yaml
Using /etc/ansible/ansible.cfg as config file

PLAY [Create web server] ***************************************

TASK [Gathering Facts] ***
ok: [host03]
ok: [host02]
ok: [host01]

TASK [Install apache2] **

changed: [host01] => {"changed": true, "msg": "", "rc": 0,
 "results": ["Installed: apache2", ...
changed: [host02] => {"changed": true, "msg": "", "rc": 0,
 "results": ["Installed: apache2", ...
changed: [host03] => {"changed": true, "msg": "", "rc": 0,
 "results": ["Installed: apache2", ...

TASK [Check that apache2 has started] *******************************

changed: [host03] => {"changed": true, "name": "apache2",
 "state": "started", "status":
changed: [host02] => {"changed": true, "name": "apache2",
 "state": "started", "status": ...
changed: [host01] => {"changed": true, "name": "apache2",
 "state": "started", "status": ...
...
PLAY RECAP ***
host01: ok=6 changed=4 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
host02: ok=6 changed=4 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
host03: ok=6 changed=4 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

Chapter 28: Automating Apps and Infrastructure with Ansible

629

28

The output from ansible-playbook steps through each task. The first task (Gathering
Facts) shows that all three host systems in the ws inventory are accessible. What you

can’t see is that it is using the credentials to connect to each system and then escalating

that user to root privilege before completing each subsequent task.

The Install apache2 task checks to see if the apache2 package is yet installed on

each host. If it is not, Ansible asks to install the package, along with any dependent pack-

ages. Next, Ansible checks the status of the apache2 service on each host and, if it is not

running, then starts it.

The PLAY RECAP then shows you the results of all of the tasks. Here you can see that all

six tasks on all hosts were ok. If there had been any failed, skipped, rescued, or ignored

tasks, they would be listed.

You can rerun this playbook if you think that something may have gotten out of place or if

you made a modification to it. You could also use it later to deploy the playbook on differ-

ent systems.

Although you have seen how Ansible is good at deploying multiple tasks in playbooks, it

can also be used for one-off actions. In the next section, I show how to run some ad-hoc

Ansible commands to query and further modify the hosts that we just deployed.

Running Ad-Hoc Ansible Commands
There may be times when you want to do one-off tasks on your Ansible-managed nodes.

You can do those tasks using ad-hoc commands. With an ad-hoc command, you can directly

call a module from the Ansible command line and have it act on an inventory. Some of

those tasks could include the following:

 ■ Installing APT software packages

 ■ Managing user accounts

 ■ Copying files to and from nodes

 ■ Changing permissions on a file or directory

 ■ Rebooting a node

Just as when you run playbooks, running ad-hoc commands focuses on reaching a desired

state. The ad-hoc command takes a declarative statement, figures out what is being

requested, and does what it needs to do reach the requested state.

To try these examples of ad-hoc Ansible commands, you can use the ws inventory cre-

ated earlier.

Trying ad-hoc commands
When you run an ad-hoc Ansible command, you take some action using an Ansible module.

The command module is used by default if no other module is indicated. Using the module,

Part VI: Engaging with Cloud Computing

630

you indicate which command and options you want to run on a group of nodes as a one-

time activity.

Check that an inventory is up and running. Here, you see that hosts are all running in the

ws inventory:

$ ansible ws -u joe -m ping
host03 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python"
 },
 "changed": false,
 "ping": "pong"
}
host02 | SUCCESS => { ...
host01 | SUCCESS => { ...

You can find out if the apache2 service is running on the hosts in the ws inventory by

checking the state of that service with this ansible command as follows:

$ ansible ws -u joe -m service \
 -a "name=apache2 state=started" --check
host02 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python"
 },
 "changed": false,
 "name": "apache2",
 "state": "started",
 "status": { ...
host 01 | SUCCESS => { ...

At the moment, there is no content on the web servers. To add an index.html file (con-

taining the text “Hello from your web server!”) to all of the hosts in the ws inventory, you

could run this command (type the root password when prompted):

$ echo "Hello from your web server!" > index.html
$ ansible ws -m copy -a \
 "src=./index.html dest=/var/www/html/ \
 owner=www-data group=www-data mode=0644" \
 -b --user joe --become --ask-become-pass
BECOME password: *********
host01 | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python"
 },
 "changed": true,
 "checksum": "213ae4bb07e9b1e96fbc7fe94de372945a202bee",
 "dest": "/var/www/html/index.html",
 "gid": 48,
 "group": "apache",
 "md5sum": "495feb8ad508648cfafcf69681d94f97",

Chapter 28: Automating Apps and Infrastructure with Ansible

631

28

 "mode": "0644",
 "owner": "www-data",
 "secontext": "system_u:object_r:httpd_sys_content_t:s0",
 "size": 52,
 "src": "/home/joe/.ansible/tmp/ansible-tmp-1581027374.649223-
29961128730253/source",
 "state": "file",
 "uid": 48
host02 | CHANGED => { ...
host03 | CHANGED => { ...

You can see that the index.html file is created with the www-data owner (UID 48)

and www-data group (GID 48) in the /var/www/html directory on host01. The copy

was then repeated to host02 and host03. You can check that everything is working

by trying to access that file from the ansible host through the web server using the

curl command:

$ curl host01
Hello from your web server!

Summary
Ansible provides a unique formatting language and set of tools to automate many of the

tasks that you have learned in other parts of this book. Once you know how to build an

Ansible playbook, you can identify the exact configuration that you want on a system and

then easily deploy that configuration to one or more host systems.

With Ansible playbooks, you define the exact state of an application and surrounding com-

ponents and then apply that state to Linux host systems, network devices, or other targets.

You can save those playbooks and reuse them to produce similar results on other systems or

adapt them to create new and different results.

Ansible can also use ad-hoc commands to update systems. From the ansible command

line, you can add users, copy files, install software, or do almost anything else you can do

with playbooks. With those commands, you can quickly apply a set of changes across mul-

tiple hosts or respond to a problem that requires a quick fix that needs to be made immedi-

ately to a set of hosts.

In this chapter, you learned about the different components that make up an Ansible tool-

set. You created your own playbook for deploying a simple web server. Then you ran some

ad-hoc commands to modify the systems to which you deployed your playbook.

Exercises
These exercises test your ability to get Ansible installed on your system, create your first

Ansible playbook, and run a few ad-hoc Ansible commands. These tasks assume that you

are running an Ubuntu system (although some tasks work on other Linux systems as well).

Part VI: Engaging with Cloud Computing

632

Although Ansible is meant to deploy tasks to remote systems, the exercises here will just

let you try out a playbook and a few commands on a single system. If you are stuck, solu-

tions to the tasks are shown in Appendix A (although in Linux, you can often complete a

task in multiple ways).

1. Install Ansible on your system.

2. Add sudo privileges for the user that you want to use to do these exercises.

3. Create a start to an Ansible playbook (call it my_ playbook.yaml) that includes

the following content:

- name: Create web server
 hosts: localhost
 tasks:
 - name: Install Apache
 apt:
 name: apache2
 state: present

4. Run ansible-playbook on the my_playbook.yaml file in check mode to see if

there is a problem completing the playbook (hint: there is).

5. Modify my_playbook.yaml to escalate privileges so that the tasks are run as the

root user.

6. Run ansible-playbook again until the apache2 package successfully installs

on your system.

7. Modify my_ playbook.yaml again to start the apache2 service, and set it so

that it will start every time the system boots.

8. Run an ansible command that checks whether or not the apache2 service is up

on localhost.

9. Create an index.html file that contains the text “Web server is up,” and use

the ansible command to copy that file to the /var/www/html directory on

localhost.

10. Use the curl command to view the contents of the file that you just copied to the

web server.

633

CHAP T ER

29
Deploying Applications

as Containers with Kubernetes

IN THIS CHAPTER

Understanding Kubernetes

Trying Kubernetes

Running the Kubernetes Basics Tutorials

Enterprise-quality Kubernetes

L
inux containers separate the applications they contain from the operating systems on which

they run. Built properly, a container will hold a discrete software stack that can be efficiently

shared, shifted, and run anywhere. But the story doesn’t end there. Once you have some con-

tainers—and we’re talking about the Docker variety of container here—the next step is to manage

them through a platform like Kubernetes that allows you to do the following:

 ■ Group sets of containers together to form a larger application. For example, deploy a web

server, a database, and monitoring tools together.

 ■ Scale up your containers as the demand requires. In fact, you want to be able to scale each

component of the larger application individually, without having to scale up those indi-

vidual applications whose demand doesn’t require it.

 ■ Set the state of your application and not just run it. What this means is that, instead of

just deciding to run a container, you want to be able to decide to, say, “run three copies of

container X, and if one goes down, be sure to start another one to replace it.”

 ■ Recover from failures or overload of host computers. If the host running a container

crashes, you want the container to recover quickly and start up on another host computer.

 ■ Remain infrastructure-agnostic. You want your application to connect to the services that

it needs without having to know the hostnames, IP addresses, or port numbers associated

with those services.

 ■ Upgrade your containerized applications without downtime.

Kubernetes offers all of those features and more. While at first there were others competing to be the

platform of choice for orchestrating containers, such as Mesos and Docker Swarm, Kubernetes is now

the undisputed leader in orchestrating, deploying, and managing containerized applications.

Part VI: Engaging with Cloud Computing

634

The best way to learn Kubernetes is to start up a Kubernetes cluster and run commands so

you can just explore the Kubernetes environment and deploy a containerized application or

two. Before you do that, you should understand a bit about what a Kubernetes cluster is and

what components you need to deploy an application to a cluster.

Understanding Kubernetes
A Kubernetes cluster is made up of master and worker nodes. You can run all master and

worker services on the same system for personal use. For example, with MicroK8s, you can

run a Kubernetes cluster from a virtual machine on your laptop (www.ubuntu.com/kuber-
netes/install).

In a production environment, you would spread Kubernetes across multiple physical or vir-

tual systems. Here are the different components you need to consider if you were to set up

a production-quality Kubernetes infrastructure:

Masters: A master node manages the components running in the Kubernetes cluster.

It manages communications between components, schedules applications to run on

the workers, scales up the applications as needed, and makes sure that the proper

number of containers (distributed in pods) are running. You should have at least

one master node, but you would typically have three or more available to make sure

there is always at least one available master.

Workers: A worker node is where the deployed containers actually run. The number

of workers that you need depends on your workload. For a production environment,

you would certainly want more than one worker in case one failed or needed

maintenance.

Storage: Networked storage allows containers to access the same storage, regardless of

the node that runs them.

Other services: To integrate a Kubernetes environment into an existing data center,

you might want to tap into existing services. For example, you would probably use

your company’s Domain Name System (DNS) server for the hostname-to-address res-

olution, Lightweight Directory Access Protocol (LDAP) or Active Directory service for

user authentication, and a Network Time Protocol (NTP) server to synchronize time.

In Kubernetes, the smallest unit with which you can deploy a container is referred to as a

pod. A pod can hold one or more containers, along with metadata describing its containers.

Although a pod will often hold only one container, it is sometimes appropriate for a pod to

have more than one. For example, a pod might contain a sidecar container, which is meant

to monitor the service running in the primary container in the pod.

Kubernetes masters
A Kubernetes master node directs the activities of a Kubernetes cluster. Master nodes

oversee all of the activities of the cluster through a set of services. The centerpiece

https://ubuntu.com/kubernetes/install
https://ubuntu.com/kubernetes/install

Chapter 29: Deploying Applications as Containers with Kubernetes

635

29

of a Kubernetes master is the application programming interface (API) server (kube-
apiserver), which receives object requests. Communications between all of the nodes in

the cluster pass through the API server.

When a Kubernetes master is presented with an object, such as a request that a certain

number of pods be running, the Kubernetes scheduler (kube-scheduler) finds avail-

able nodes to run each pod and schedules them to run on those nodes. To make sure that

each object remains in the prescribed state, Kubernetes controllers (kube-controller-
manager) run continuously to do things such as to make sure that namespaces exist, that

defined service accounts are available, that the right number of replicas are running, and

that defined endpoints are active.

Kubernetes workers
At the heart of each Kubernetes worker node is the kubelet service. A kubelet registers its

worker node with the API server. The API server then directs the kubelet to do things like

run a container that is requested from the API server through a PodSpec and make sure

that it continues to run in a healthy state.

Another service that runs on each node is a container engine (often referred to as a run-

time). Originally, the docker service was by far the most popular container engine used to

launch, manage, and delete containers as required by the PodSpec. However, other con-

tainer engines are now available, such as the CRI-O container engine (www.cri-o.io), which

is used with some commercial Kubernetes platforms such as OpenShift.

Worker nodes are meant to be as generic as possible so that you can simply spin up a new

node when additional capacity is needed and it will be configured to handle most requests

to run containers. There are, however, ways in which a container might not be appropriate

to run on a particular node. For example, a pod might request to run on a node that has a

minimum amount of memory and CPU available, or it might request to run on a node that

is running a related container. Likewise, if a pod requires something special to run, such

as a particular computer architecture, hardware, or operating system, there are ways to

schedule pods on workers that meet those needs.

Kubernetes applications
In Kubernetes, applications are managed by defining API objects that set the state of

resources on the cluster. For example, you can create a Deployment object in a YAML Ain’t

Markup Language (YAML) file that defines pods that each run one or more containers, along

with the namespace in which it runs and the number of replicas of each pod it runs.

That object could also define the ports that are open and any volumes that are mounted

for each container. Kubernetes master nodes respond to those kinds of requests and make

sure that the requests are carried out on the Kubernetes worker nodes.

Kubernetes uses the concept of services to separate the location of an application from its

actual internet protocol (IP) address and port number. By assigning a service name to the

set of pods that provide that service, the exact location of each pod does not need to be

Part VI: Engaging with Cloud Computing

636

known outside of the cluster. Instead, it is up to Kubernetes to direct a request for that

service to an available pod.

IP addresses associated with active pods are not directly addressable from outside the clus-

ter by default. It is up to you to define how you want to expose a service associated with a

set of pods outside of the cluster. Using a Service object, you can expose services in dif-

ferent ways.

By default, exposing a service via a ClusterIP service type makes it available only to

other components within the cluster. To expose the service outside of the cluster, you can

use NodePort, which makes the pod providing the service accessible through the same

Kubernetes-assigned port on an external IP address from each node on which the pod

is running.

A third method is to use LoadBalancer to assign an external, fixed IP address and

perform load balancing for the pods providing the service. With LoadBalancer, a

cloud’s external load balancer directs traffic to the backend pods. Finally, you can expose

the service with ExternalName, which associates the service with a particular DNS

CNAME record.

Regardless of how you expose a Kubernetes service, when there is a request for that service,

Kubernetes acts to route communications to the set of pods that provide that service. In

that way, pods can come up and down without disrupting the clients using the service.

Kubernetes interfaces
Kubernetes has both command-line and web console interfaces for accessing a Kubernetes

cluster. The examples in this chapter focus on command-line tools. Commands include

kubectl, which is the general-purpose tool for managing the Kubernetes cluster.

Trying Kubernetes
Because setting up your own production-quality Kubernetes cluster requires some fore-

thought, this chapter will focus on a couple of easy ways to get a personal Kubernetes

cluster running and accessible quickly. In particular, here are three different ways that you

can gain access to a Kubernetes cluster:

Kubernetes Tutorials: The official Kubernetes site offers interactive, web user interface

(UI) tutorials, where you can start up your own cluster and try out Kubernetes. From

Kubernetes Tutorials (www.kubernetes.io/docs/tutorials/), you can choose

from basic, configuration, and stateless applications, and other tutorial topics.

MicroK8s: With MicroK8s, you can run Kubernetes locally and have a Kubernetes clus-

ter running on a laptop or desktop system within a few minutes.

Docker Desktop: Another option (not detailed here) is Docker Desktop, which lets you

enable a pre-configured Kubernetes cluster that runs a master and worker node on

your workstation.

Chapter 29: Deploying Applications as Containers with Kubernetes

637

29

To get you started, I’ll step you through some of the Kubernetes tutorials and explain the

concepts behind what they are doing. You can follow along in the tutorial or run the same

commands on your own MicroK8s setup. I describe how to get Kubernetes next.

Getting Kubernetes up and running
Let’s install and start MicroK8s on an Ubuntu server. Feel free to create a virtual machine

for the purpose using Oracle’s VirtualBox. But we wouldn’t advise you to try running con-

tainers from within an LXD container—they don’t nest well.

Installation (at least on Ubuntu 20.04) is straightforward:

snap install microk8s --classic
[sudo] password for ubuntu:
microk8s v1.18.2 from Canonical✓ installed

Let’s take a look around the neighborhood. The MicroK8s environment requires we prefix

microk8s before the kubectl command:

microk8s.kubectl cluster-info
Kubernetes master is running at https://127.0.0.1:16443
To further debug and diagnose cluster problems, use 'kubectl cluster-
info dump'.

That’s going to get pretty tiresome, so we can create an alias that’ll let us drop off the prefix:

snap alias microk8s.kubectl kubectl
[sudo] password for ubuntu:
Added:
 - microk8s.kubectl as kubectl

Feels better already. But it’s still annoying to have to become admin by adding sudo each

time. So we can edit the microk8s line in the /etc/group file to include our username.

Once we log out and in to our account again, we won’t need explicit admin privileges.

nano /etc/group
microk8s:x:998:ubuntu

Let’s try it out by running just the command by itself. You’ll see that it outputs a helpful

introduction to the command line interface (CLI). Take a few minutes to look through the

whole thing.

$ kubectl
kubectl controls the Kubernetes cluster manager.
 Find more information at:
https://kubernetes.io/docs/reference/kubectl/overview/

Basic Commands (Beginner):
 create Create a resource from a file or from stdin.
 expose Take a replication controller, service, deployment
or pod and

Continues

Part VI: Engaging with Cloud Computing

638

expose it as a new Kubernetes Service
 run Run a particular image on the cluster
 set Set specific features on objects

Basic Commands (Intermediate):
 explain Documentation of resources
 get Display one or many resources
 edit Edit a resource on the server
 delete Delete resources by filenames, stdin, resources and
names, or by
resources and label selector
[...]

We’ll wrap up the initial tour by retrieving the current node information:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ubuntu Ready <none> 37m v1.18.2-41+b5cdb79a4060a3s

Deploying a Kubernetes application
Requests to run and manage containerized applications (in the form of pods) on a Kubernetes

cluster are known as deployments. Once a deployment is created, it is up to the Kubernetes clus-

ter to make sure that the requested pods are always running. It does this by doing the following:

 ■ Accepting the deployment creation through the API server

 ■ Asking the scheduler to run the requested containers from each pod on available

worker nodes

 ■ Watching the pods to make sure they continue to run as requested

 ■ Starting a new instance of a pod (on the same or different node) if the pod fails

(for example, if the container stops running)

In this example, you just provide a name and identify the container image to use.

We’ll use the kubernetes-bootcamp container, which is part of Google’s quick start

tutorial (kubernetesbootcamp.github.io/kubernetes-bootcamp):

$ kubectl create deployment kubernetes-bootcamp \
 --image=gcr.io/google-samples/kubernetes-bootcamp:v1
deployment.apps/kubernetes-bootcamp created

You can list the deployments this way:

$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-bootcamp 0/1 1 0 13s

The output of this more detailed description is worth spending a moment reading through:

$ kubectl describe deployments kubernetes-bootcamp
Name: kubernetes-bootcamp

Continued

https://kubernetesbootcamp.github.io/kubernetes-bootcamp

Chapter 29: Deploying Applications as Containers with Kubernetes

639

29

Namespace: default
CreationTimestamp: Wed, 06 May 2020 01:28:55 +0000
Labels: app=kubernetes-bootcamp
Annotations: deployment.kubernetes.io/revision: 1
Selector: app=kubernetes-bootcamp
Replicas: 1 desired | 1 updated | 1 total | 1 available
| 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=kubernetes-bootcamp
 Containers:
 kubernetes-bootcamp:
 Image: gcr.io/google-samples/kubernetes-bootcamp:v1
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: kubernetes-bootcamp-6f6656d949 (1/1
replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 3m28s deployment-controller Scaled up
replica set kubernetes-bootcamp-6f6656d949 to 1

Notice that there’s just one instance (replica) of the pod associated with the deployment.

The deployment runs in the current namespace, which happens to be default. Notice also

that there are no ports open or volumes mounted by default for the pods.

Getting information on the deployment’s pods
With the deployment created, you can ask for information about the pod created from that

deployment and expose the Kubernetes API from the VM to your local system, via a proxy

service, to connect to the pod directly.

To open a proxy from your system to the Kubernetes API, enter the following:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

Part VI: Engaging with Cloud Computing

640

To query the Kubernetes API, open a second terminal and use Client URL (CURL) this way:

$ curl http://localhost:8001/version
{
 "major": "1",
 "minor": "18+",
 "gitVersion": "v1.18.2-41+b5cdb79a4060a3",
 "gitCommit": "b5cdb79a4060a307d0c8a56a128aadc0da31c5a2",
 "gitTreeState": "clean",
 "buildDate": "2020-04-27T17:31:24Z",
 "goVersion": "go1.14.2",
 "compiler": "gc",
 "platform": "linux/amd64"
}

Run get pods and (based on the output you get) describe pod to output a full

description of the state and environment of your pod:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubernetes-bootcamp-6f6656d949-nxgvd 1/1 Running 1 11h
$
$
$ kubectl describe pod kubernetes-bootcamp-6f6656d949-nxgvd
Name: kubernetes-bootcamp-6f6656d949-nxgvd
Namespace: default
Priority: 0
Node: ubuntu/192.168.1.18
Start Time: Wed, 06 May 2020 01:28:55 +0000
Labels: app=kubernetes-bootcamp
 pod-template-hash=6f6656d949
Annotations: <none>
Status: Running
IP: 10.1.46.3
IPs:
 IP: 10.1.46.3
Controlled By: ReplicaSet/kubernetes-bootcamp-6f6656d949
Containers:
 kubernetes-bootcamp:
 Container ID: containerd://
ff8aa8108b5a8cc7f82c0ef61d8729a9c7e64f30bdce55266aa30d0e20aea71a
 Image: gcr.io/google-samples/kubernetes-bootcamp:v1
 Image ID: gcr.io/google-samples/kubernetes-bootcamp@sha256:
0d6b8ee63bb57c5f5b6156f446b3bc3b3c143d233037f3a2f00e279c8fcc64af
 Port: <none>
 Host Port: <none>
 State: Running
 Started: Wed, 06 May 2020 13:04:02 +0000

Chapter 29: Deploying Applications as Containers with Kubernetes

641

29

 Last State: Terminated
 Reason: Unknown
 Exit Code: 255
 Started: Wed, 06 May 2020 01:29:33 +0000
 Finished: Wed, 06 May 2020 13:03:34 +0000
 Ready: True
 Restart Count: 1
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-
token-jjhkp (ro)
[...]

From the trimmed output, you can see the name of the pod, the namespace it is in

(default), and the node on which it is running (ubuntu/192.168.1.18). Under Con-

tainers, you can see the name of the running container (kubernetes-bootcamp), the

image it came from (...kubernetes-bootcamp:v1), and the image ID for that image.

We can now use a rather complex iteration of the export command to populate the vari-

able $POD_NAME with the full name of our pod, and then use that with CURL to request

detailed information about the pod:

$ export POD_NAME=$(kubectl get pods -o go-template --template \
 '{{range .items}}{{.metadata.name}}{{"\n"}}{{end}}') ; \
echo Name of the Pod: $POD_NAME
Name of the Pod: kubernetes-bootcamp-6f6656d949-nxgvd
$
$ curl \
 http://localhost:8001/api/v1/namespaces/default/pods/$POD_NAME
{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "kubernetes-bootcamp-6f6656d949-nxgvd",
 "generateName": "kubernetes-bootcamp-6f6656d949-",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/pods/kubernetes-bootcamp-
6f6656d949-nxgvd",
 "uid": "02cb61ca-003d-4a62-969d-e6858f1cde26",
 "resourceVersion": "28300",
 "creationTimestamp": "2020-05-06T01:28:55Z",
 "labels": {
 "app": "kubernetes-bootcamp",
 "pod-template-hash": "6f6656d949"
 },
 "ownerReferences": [
 {
 "apiVersion": "apps/v1",
 "kind": "ReplicaSet",

Continues

Part VI: Engaging with Cloud Computing

642

 "name": "kubernetes-bootcamp-6f6656d949",
 "uid": "86b0f4cd-d19e-458c-aa3d-17c09ac27729",
 "controller": true,
 "blockOwnerDeletion": true
 }
],
[...]

To see the logs for any container that is running inside the selected pod, run the follow-

ing command:

$ kubectl logs $POD_NAME
Kubernetes Bootcamp App Started At: 2020-05-06T13:04:02.782Z |
Running On: kubernetes-bootcamp-6f6656d949-nxgvd

You can use kubectl exec to run commands inside the pod. The first command here runs

env in order to view shell environment variables from inside of the pod. After that, we’ll

open a shell inside the pod so you can run commands directly:

$ kubectl exec $POD_NAME env
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a
future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=kubernetes-bootcamp-6f6656d949-nxgvd
NPM_CONFIG_LOGLEVEL=info
NODE_VERSION=6.3.1
KUBERNETES_PORT_443_TCP=tcp://10.152.183.1:443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_ADDR=10.152.183.1
KUBERNETES_SERVICE_HOST=10.152.183.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT=tcp://10.152.183.1:443
HOME=/root
$
$
$ kubectl exec -ti $POD_NAME bash
kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a
future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
root@kubernetes-bootcamp-6f6656d949-nxgvd:/# date
Wed May 6 13:33:51 UTC 2020
root@kubernetes-bootcamp-6f6656d949-nxgvd:/# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:04 ? 00:00:00 /bin/sh -c
node server.js
root 6 1 0 13:04 ? 00:00:00 node server.js
root 17 0 0 13:33 pts/0 00:00:00 bash
root 23 17 0 13:33 pts/0 00:00:00 ps -ef
root@kubernetes-bootcamp-6f6656d949-nxgvd:/# curl localhost:8080

Continued

Chapter 29: Deploying Applications as Containers with Kubernetes

643

29

Hello Kubernetes bootcamp! | Running on: kubernetes-bootcamp-
6f6656d949-nxgvd | v=1
root@kubernetes-bootcamp-6f6656d949-nxgvd:/# exit
exit

After starting a shell, you can see output from the date and ps commands. From ps, you

can see that the first process run in the container (Process ID [PID] 1) is the server.js

script. After that, the curl command is able to communicate successfully with the con-

tainer on localhost port 8080.

However, I’m sure you noticed the warning about kubectl exec being deprecated. The

new way to get stuff done here requires a couple of dashes. Science marches on.

$ kubectl exec $POD_NAME -- date
Wed May 6 13:36:33 UTC 2020

Exposing applications with services
Running pods privately on your workstation isn’t much fun if you can’t share the services

it’s providing with the outside world. To expose our kubernetes-bootcamp pod so that

it’s accessible from an external IP address from the worker node on which it is running, you

can create a NodePort object. Here’s one way to do that.

First, confirm that our kubernetes-bootcamp pod is running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubernetes-bootcamp-6f6656d949-nxgvd 1/1 Running 1 12h

Next, list the services running in the default namespace. Notice that only the kuber-
netes service is available and that there is no service exposing the kubernetes-boot-
camp pod outside of the cluster:

$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.152.183.1 <none> 443/TCP 13h

Now create a service that uses NodePort to make the pod available from an IP address on

the host at a specific port number (8080). For example, enter the following:

$ kubectl expose deployment/kubernetes-bootcamp \
> --type="NodePort" --port 8080
service/kubernetes-bootcamp exposed

Run get services once again to see the IP address and port number (8080) through

which the service is made available on the host:

$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

Continues

Part VI: Engaging with Cloud Computing

644

kubernetes ClusterIP 10.152.183.1 <none> 443/TCP 13h
kubernetes-bootcamp NodePort 10.152.183.233 <none> 8080:30484/TCP 68s
$
$ kubectl describe services/kubernetes-bootcamp
Name: kubernetes-bootcamp
Namespace: default
Labels: app=kubernetes-bootcamp
Annotations: <none>
Selector: app=kubernetes-bootcamp
Type: NodePort
IP: 10.152.183.233
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30484/TCP
Endpoints: 10.1.46.3:8080
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

To get the port assigned to the service and set the $NODE_PORT variable to that value,

enter the following:

$ export NODE_PORT=$(kubectl get services/kubernetes-bootcamp \
> -o go-template='{{(index .spec.ports 0).nodePort}}')
$
$ echo NODE_PORT=$NODE_PORT
NODE_PORT=30484

To check that the service is available through the NodePort, use the following curl

command from a computer with network access to your Kubernetes host. Use the IP address

of the host and the port number you just saw. In my case, it looked like this:

$ curl 192.168.1.18:30484
Hello Kubernetes bootcamp! | Running on: kubernetes-bootcamp-
6f6656d949-nxgvd | v=1

Scaling up an application
One of the most powerful features of Kubernetes is its ability to scale up an application as

the demand requires it. This procedure starts with the kubernetes-bootcamp deploy-

ment, which is currently running just one pod, and scales it up to have additional pods

running using the ReplicaSet feature and a different means of exposing the application to

outside access.

You’ll want to start by listing information about the kubernetes-bootcamp deploy-

ment, and note that it is set to have only one active replica set (rs):

$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-bootcamp 1/1 1 1 12h

Continued

Chapter 29: Deploying Applications as Containers with Kubernetes

645

29

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
kubernetes-bootcamp-6f6656d949 1 1 1 12h

You can scale the deployment up to four replica sets, this way:

$ kubectl scale deployments/kubernetes-bootcamp --replicas=4
deployment.apps/kubernetes-bootcamp scaled

Check your deployments output once again to make sure it actually happened, and then

view the individual pods:

$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-bootcamp 4/4 4 4 13h
$
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
kubernetes-bootcamp-6f6656d949-9dm9c 1/1 Running 0
2m43s 10.1.46.6 ubuntu <none> <none>
kubernetes-bootcamp-6f6656d949-b52nw 1/1 Running 0
2m43s 10.1.46.4 ubuntu <none> <none>
kubernetes-bootcamp-6f6656d949-jw67g 1/1 Running 0
2m43s 10.1.46.5 ubuntu <none> <none>
kubernetes-bootcamp-6f6656d949-nxgvd 1/1 Running 1
13h 10.1.46.3 ubuntu <none> <none>

Checking the load balancer
To check that traffic is being distributed appropriately across all four replicated pods, you

can get the NodePort and then use the curl command to make sure that multiple con-

nections to the NodePort result in different pods being accessed. First, though, you should

check out the individual endpoint IP addresses assigned to your four pods so you’ll be able

identify which one you’re viewing later.

$ kubectl describe services/kubernetes-bootcamp
Name: kubernetes-bootcamp
Namespace: default
Labels: app=kubernetes-bootcamp
Annotations: <none>
Selector: app=kubernetes-bootcamp
Type: NodePort
IP: 10.152.183.233
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30484/TCP
Endpoints: 10.1.46.3:8080,10.1.46.4:8080,10.1.46.5:80
80 + 1 more...
Session Affinity: None
External Traffic Policy: Cluster
Events: <none> more...

Part VI: Engaging with Cloud Computing

646

The output here lists three of the endpoints, but the sequence makes it obvious what the

fourth address will be.

Once again, get the NodePort number and use it to set the value of $NODE_PORT :

$ export NODE_PORT=$(kubectl get services/kubernetes-bootcamp \
 -o go-template='{{(index .spec.ports 0).nodePort}}')

$ echo NODE_PORT=$NODE_PORT
NODE_PORT=30484

From a computer with network access, run the curl command a few times to query the ser-

vice. By carefully examining the value of “Running on:” in the output of each operation,

you should see that it is accessing different pods. That is how you know that the load bal-

ancer is working.

$ curl 192.168.1.18:30484
Hello Kubernetes bootcamp! | Running on: kubernetes-bootcamp-
6f6656d949-nxgvd | v=1
$ curl 192.168.1.18:30484
Hello Kubernetes bootcamp! | Running on: kubernetes-bootcamp-
6f6656d949-jw67g | v=1
$ curl 192.168.1.18:30484
Hello Kubernetes bootcamp! | Running on: kubernetes-bootcamp-
6f6656d949-9dm9c | v=1

Scaling down an application
To scale the number of ReplicaSets defined in your deployment, simply change the number

of replicas to a lower number. Let’s drop it down to 2, and then check to confirm it worked:

$ kubectl scale deployments/kubernetes-bootcamp --replicas=2
deployment.extensions/kubernetes-bootcamp scaled
$
$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-bootcamp 2/2 2 2 52m
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
kubernetes-bootcamp-6f6656d949-jw67g 1/1 Running 0
22m 10.1.46.5 ubuntu <none> <none>
kubernetes-bootcamp-6f6656d949-nxgvd 1/1 Running 1
13h 10.1.46.3 ubuntu <none> <none>

Deleting a service
If you’re done using the service, you can delete it. This removes access to the service from

the NodePort, but it does not delete the deployment itself. First make sure the service is

actually still there, then delete it:

Chapter 29: Deploying Applications as Containers with Kubernetes

647

29

$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.152.183.1 <none> 443/
TCP 14h
kubernetes-bootcamp NodePort 10.152.183.233 <none>
8080:30484/TCP 67m
$
$ kubectl delete service kubernetes-bootcamp
service "kubernetes-bootcamp" deleted

Finally, make sure the service has been deleted but the deployment still exists:

$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.152.183.1 <none> 443/TCP 14h
$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-bootcamp 2/2 2 2 13h

At this point, you should feel comfortable manually querying your Kubernetes cluster in

various ways and starting up and working with deployments, pods, and replicas. To con-

tinue with more advanced Kubernetes tutorials, return to the main Kubernetes Tutorials

page (www.kubernetes.io/docs/tutorials/).

Summary
Over the past few years, Kubernetes has become the platform of choice for deploying con-

tainerized applications across large data centers. A Kubernetes cluster consists of master

nodes (that direct the activities of a cluster) and worker nodes (that actually run the con-

tainerized payloads).

As someone using Kubernetes to run containerized applications, you can create deploy-

ments that define the state of the application you are running. For example, you can

deploy an application that is configured to run multiple replicas of the pods representing

that application. You can identify the application as a service and set up the application to

be available from defined ports on the nodes from which they are run.

Supported commercial products based on Kubernetes are available when you need to run

mission-critical applications in environments that are stable and supported. Canonical, the

company behind Ubuntu, is a major player in this field. Feel free to learn more about what

it offers (www.ubuntu.com/kubernetes).

Exercises
The exercises in this section describe tasks related to trying out Kubernetes, either online

or by setting up MicroK8s on a computer. If you are stuck, solutions to the tasks are shown

https://kubernetes.io/docs/tutorials/
https://ubuntu.com/kubernetes

Part VI: Engaging with Cloud Computing

648

in Appendix A. Keep in mind that the solutions shown in Appendix A are usually just one

of many ways to complete a task.

1. Install MicroK8s on your local system.

2. Create an alias so you don’t have to type microk8s.kubectl for each command.

3. Create a deployment that manages a pod running the hello-node container image

(gcr.io/hello-minikube-zero-install/hello-node).

4. Use the appropriate kubectl commands to view the hello-node deployment and

describe the deployment in detail.

5. View the current replica set associated with your hello-node deployment.

6. Scale up the hello-node deployment to three (3) replicas.

7. Expose the hello-node deployment outside of the Kubernetes cluster using

LoadBalancer.

8. Get the port number of the exposed hello-node service.

9. Use the curl command to query the hello-node service using the IP address and

port number from the previous step.

10. Use the kubectl commands to delete the hello-node service and deployment.

649

APPENDIX

Exercise Answers

Chapter 2: Creating the Perfect Linux Desktop
The following section details some ways that these tasks can be completed on the GNOME 3 desktop.

1. To get started, you need a Linux system in front of you to do the procedures in this book.

An installed system is preferable, so you don’t lose your changes when you reboot. To

start out, you can, for instance, install Ubuntu or launch a live USB session. Here are

your choices:

a. Ubuntu (GNOME 3): Install Ubuntu and the GNOME Shell software, as described at the

beginning of Chapter 2, “Creating the Perfect Linux Desktop.”

b. Launch a live USB session as described at the beginning of Chapter 2.

2. To launch the Firefox web browser and go to the GNOME home page (www.gnome.org), there

are some easy steps to take. If your network is not working, refer to Chapter 14, “Adminis-

tering Networking,” for help on connecting to wired and wireless networks.

You can press the Windows key to get to the Activities screen. Then type Firefox to

highlight just the Firefox web browser icon. Press Enter to launch it. Type gnome.org in

the location box, and press Enter.

3. To pick a background that you like from the GNOME art site (www.gnome-look.org), down-

load it to your Pictures folder and select it as your current background. Do the following:

a. Type gnome-look.org/ in the Firefox location box and press Enter.

b. Find a background that you like and select it. Then click the Download button and

download it to your Pictures folder.

c. Open your Pictures folder, right-click the image, and select Set as Wallpaper.

The image is used as your desktop background.

4. To start a Nautilus File Manager window and move it to the second workspace on your desk-

top, do the following:

http://gnome.org
http://gnome.org
http://gnome-look.org
http://gnome-look.org/

Part VII: Appendixes

650

a. Press the Windows key.

b. Select the Files icon from the Dash (left side). A new instance of Nautilus starts

in the current workspace.

c. Right-click the title bar in the Files window and select Move to Monitor Down.

The Files window moves to the second workspace.

5. To find the image that you downloaded to use as your desktop background and

open it in any image viewer, first go to your Home folder, then open the Pictures

folder. Double-click the image to open it in an image viewer.

6. Moving back and forth between the workspace with Firefox on it and the one with

the Nautilus file manager is fairly straightforward.

If you did the previous exercises properly, Nautilus and Firefox should be in differ-

ent workspaces. Here’s how you can move between those workspaces:

a. Press the Windows key.

b. Select the workspace that you want in the right column.

c. As an alternative, you can go directly to the application that you want by

pressing Alt+Tab and pressing Tab again and also arrow keys, to highlight the

application that you want to open.

7. To open a list of applications installed on your system and select an image

viewer to open from that list using as few clicks or keystrokes as possible, do the

following:

a. Move the mouse to the upper-left corner of the screen to get to the Activities screen.

b. Select Applications, then select Utilities from the right column, and then select

Image Viewer.

8. To change the view of the windows on your current workspace to smaller views of

those windows that you can step through, do the following:

a. With multiple windows open on multiple workspaces, press the Alt+Tab keys.

b. While continuing to hold the Alt key, press Tab until you highlight the

application that you want.

c. Release the Alt key to select it.

9. To launch a music player from your desktop using only the keyboard, do the following:

a. Press the Windows key to go to the Overview screen.

b. Type Rhyth (until the icon appears and is highlighted) and press Enter.

Chapter 3: Using the Shell
1. To switch virtual consoles and return to the desktop, do the following:

a. Hold Ctrl+Alt and press F3 (Ctrl+Alt+F3). A text-based console should appear.

b. Type your username (press Enter) and password (press Enter).

Appendix: Exercise Answers

651

c. Type a few commands, such as id, pwd, and ls.

d. Type exit to exit the shell and return to the login prompt.

e. Press Ctrl+Alt+F1 to return to the virtual console that holds your desktop. (On

different Linux systems, the desktop may be on different virtual consoles.

Ctrl+Alt+F7 and Ctrl+Alt+F2 are other common places to find it.)

2. For your Terminal window, make the font red and the background yellow.

a. From the GNOME desktop, click Ctrl+Alt+T to open a Terminal window.

b. From the Terminal window, select Edit ➪ Preferences.

c. Select the Colors Tab and deselect “Use colors from system theme box.”

d. Select the box next to Text Color, click the color red that you want from the

available selections, and click Select.

e. Select the box next to Background Color, click the color yellow that you want

from the available selections, and click Select.

f. Click Close on the Profile window to go back to the Terminal window with the

new colors.

g. Go back and reselect “Use colors from system theme box” to go back to the

default Terminal colors.

3. Find the mount command and tracepath man page.

a. Run type mount to see that the mount command’s location is either /usr/
bin/mount or /bin/mount.

b. Run locate tracepath to see that the tracepath man page is at /usr/
share/man/man8/tracepath.8.gz.

4. Run, recall, and change these commands as described:

 $ cat /etc/passwd
 $ ls $HOME
 $ date

a. Press the up arrow until you see the cat /etc/passwd command. If your cur-

sor is not already at the end of the line, press Ctrl+E to get there. Backspace over

the word passwd, type the word group, and press Enter.

b. Type man ls and find the option to list by time (-t). Press the up arrow until

you see the ls $HOME command. Use the left arrow key or Alt+B to position

your cursor to the left of $HOME. Type -t, so that the line appears as ls -t
$HOME. Press Enter to run the command.

c. Type man date to view the date man page. Use the up arrow to recall the

date command and add the format indicator that you found. A single %D format

indicator gets the results you need:

 $ date +%D
 06/27/19

Part VII: Appendixes

652

5. Use tab completion to type basename /usr/share/doc/. Type basen<Tab> /

u<Tab>sh<Tab>do<Tab> to get basename/usr/share/doc/.

6. Pipe /etc/services to the less command: $ cat /etc/services | less.

7. Make output from the date command appear in this format: Today is Thursday,

April 23, 2020.

 $ echo "Today is $(date +'%A, %B %d, %Y')"

8. View variables to find your current hostname, username, shell, and home

directories.

 $ echo $HOSTNAME
 $ echo $USERNAME
 $ echo $SHELL
 $ echo $HOME

9. Add a permanent mypass alias that displays the contents of the /etc/
passwd file.

a. Type nano $HOME/.bashrc.

b. Move the cursor to an open line at the bottom of the page. (Press Enter to open

a new line if needed.)

c. On its own line, type alias m="cat /etc/passwd".

d. Type Ctrl+O to save and Ctrl+X to exit the file.

e. Type source $HOME/.bashrc.

f. Type alias m to make sure that the alias was set properly: alias m='cat /
etc/passwd'.

g. Type m. (The /etc/passwd file displays on the screen.)

10. To display the man page for the mount system call, use the man -k command to

find man pages that include the word mount. Then use the mount command with

the correct section number (8) to get the proper mount man page:

 $ man -k mount | grep ^mount
 mount (2) - mount filesystem
 mount (8) - mount a filesystem
 ...
 mountpoint (1) - see if a directory is a
mountpoint
 mountstats (8) - Displays various NFS client
per-mount statistics
 $ man 2 mount
 MOUNT(2) Linux Programmer's Manual MOUNT(2)

Continues

Appendix: Exercise Answers

653

 NAME
 mount - mount file system
 SYNOPSIS
 #include <sys/mount.h>
 .
 .
 .

Chapter 4: Moving Around the Filesystem
1. Create the projects directory, create nine empty files (house1 to house9), and

list just those files.

 $ mkdir $HOME/projects/
 $ touch $HOME/projects/house{1..9}
 $ ls $HOME/projects/house{1..9}

2. Make the $HOME/projects/houses/doors/ directory path and create some

empty files in that path.

 $ cd
 $ mkdir $HOME/projects/houses
 $ touch $HOME/projects/houses/bungalow.txt
 $ mkdir $HOME/projects/houses/doors/
 $ touch $HOME/projects/houses/doors/bifold.txt
 $ mkdir -p $HOME/projects/outdoors/vegetation/
 $ touch $HOME/projects/outdoors/vegetation/landscape.txt

3. Copy the files house1 and house5 to the $HOME/projects/houses/ directory.

 $ cp $HOME/projects/house[15] $HOME/projects/houses

4. Recursively copy the /usr/share/doc/initscripts* directory to the $HOME/
projects/ directory.

 $ cp -ra /usr/share/doc/initscripts*/ $HOME/projects/

5. Recursively list the contents of the $HOME/projects/ directory. Pipe the output

to the less command so that you can page through the output.

 $ ls -lR $HOME/projects/ | less

6. Move house3 and house4 to the $HOME/projects/houses/doors directory.

 $ mv $HOME/projects/house{3,4} $HOME/projects/houses/doors/

7. Remove the $HOME/projects/houses/doors directory and its contents.

 $ rm -rf $HOME/projects/houses/doors/

(continued)

Part VII: Appendixes

654

8. Change the permissions on the $HOME/projects/house2 file so that it can be

read and written to by the user who owns the file, only read by the group, and have

no permission for others.

 $ chmod 640 $HOME/projects/house2

9. Recursively change the permissions of the $HOME/projects/ directory so that

nobody has write permission to any files or directories beneath that point in the

filesystem.

 $ chmod -R a-w $HOME/projects/
 $ ls -lR $HOME/projects/
 /home/joe/projects/:

 total 12

 -r--r--r--. 1 joe joe 0 Jan 16 06:49 house1

 -r--r-----. 1 joe joe 0 Jan 16 06:49 house2

 -r--r--r--. 1 joe joe 0 Jan 16 06:49 house5

 -r--r--r--. 1 joe joe 0 Jan 16 06:49 house9

 dr-xr-xr-x. 2 joe joe 4096 Jan 16 06:57 houses

 dr-xr-xr-x. 2 joe joe 4096 Jul 1 2014 initscripts-9.03.40

 dr-xr-xr-x. 3 joe joe 4096 Jan 16 06:53 outdoors
 ...

Chapter 5: Working with Text Files
1. Follow these steps to create the /tmp/services file, and then edit it so that

“WorldWideWeb” appears as “World Wide Web.”

 $ cp /etc/services /tmp
 $ vi /tmp/services
 /WorldWideWeb<Enter>
 cwWorld Wide Web<Esc>

The next two lines show the before and after:

 http 80/tcp www www-http # WorldWideWeb HTTP
 http 80/tcp www www-http # World Wide Web HTTP

Appendix: Exercise Answers

655

2. One way to move the paragraph in your /tmp/services file is to search for the

first line of the paragraph, delete five lines (5dd), go to the end of the file (G), and

put in the text (p):

 $ vi /tmp/services
 /Note that it is<Enter>
 5dd
 G
 p

3. To use ex mode to search for every occurrence of the term tcp (case-sensitive)

in your /tmp/services file and change it to WHATEVER, you can enter the

following:

 $ vi /tmp/services
 :g/tcp/s//WHATEVER/g<Enter>

4. To search the /etc directory for every file named passwd and redirect errors from

your search to /dev/null, you can enter the following:

 $ find /etc -name passwd 2> /dev/null

5. Create a directory in your home directory called TEST. Create files in that directory

named one, two, and three that have full read/write/execute permissions on

for everyone (user, group, and other). Construct a find command that would find

those files and any other files that have write permission open to “others” from

your home directory and below.

 $ mkdir $HOME/TEST
 $ touch $HOME/TEST/{one,two,three}
 $ chmod 777 $HOME/TEST/{one,two,three}
 $ find $HOME -perm -002 -type f -ls
 148120 0 -rwxrwxrwx 1 chris chris 0 Jan 1 08:56 /home/
chris/TEST/two
 148918 0 -rwxrwxrwx 1 chris chris 0 Jan 1 08:56 home/
chris/TEST/three
 147306 0 -rwxrwxrwx 1 chris chris 0 Jan 1 08:56 /home/
chris/TEST/one

6. Find files under the /usr/share/doc directory that have not been modified in

more than 300 days.

 $ find /usr/share/doc -mtime +300

7. Create a /tmp/FILES directory. Find all files under the /usr/share directory

that are more than 5MB and less than 10MB and copy them to the /tmp/FILES

directory.

 $ mkdir /tmp/FILES
 $ find /usr/share -size +5M -size -10M -exec cp {} /
tmp/FILES \;

Continues

Part VII: Appendixes

656

 $ du -sh /tmp/FILES/*
 6.6M /tmp/FILES/BidiCharacterTest.txt
 7.6M /tmp/FILES/BidiTest.txt
 5.2M /tmp/FILES/day.jpg

8. Find every file in the /tmp/FILES directory and make a backup copy of each file

in the same directory. Use each file’s existing name and append .mybackup to

 create each backup file.

 $ find /tmp/FILES/ -type f -exec cp {} {}.mybackup \;

Chapter 6: Managing Running Processes
1. To list all processes running on your system with a full set of columns, while piping

the output to less, enter the following:

 $ ps -ef | less

2. To list all processes running on the system and sort those processes by the name of

the user running each process, enter the following:

 $ ps -ef --sort=user | less

3. To list all processes running on the system with the column names process ID, user-

name, group name, nice value, virtual memory size, resident memory size, and the

command, enter the following:

 $ ps -eo 'pid,user,group,nice,vsz,rss,comm' | less
 PID USER GROUP NI VSZ RSS COMMAND
 1 root root 0 19324 1236 init
 2 root root 0 0 0 kthreadd
 3 root root - 0 0 migration/0
 4 root root 0 0 0 ksoftirqd/0

4. To run the top command and then go back and forth between sorting by CPU usage

and memory consumption, enter the following:

 $ top
 P
 M
 P
 M

5. To start the gedit process from your desktop and use the System Monitor window

to kill that process, do the following:

 $ gedit &

Next, from the Activities screen, type System Monitor and press Enter. Find the

gedit process on the Processes tab. (You can sort alphabetically to make it easier

by clicking the Process Name heading.) Right-click the gedit command, and then

select either End Process or Kill Process; the gedit window on your screen should

disappear.

(continued)

Appendix: Exercise Answers

657

6. To run the gedit process and use the kill command to send a signal to pause

(stop) that process, enter the following:

 $ gedit &
 [1] 21532

 $ kill -SIGSTOP 21532

7. To use the killall command to tell the gedit command (paused in the previous

exercise) to continue working, do the following:

 $ killall -SIGCONT gedit

Make sure that the text you typed after gedit was paused now appears in

the window.

8. As a regular user, run the gedit command so that it starts with a nice value of 5.

 # nice -n 5 gedit &
 [1] 21578

9. To use the renice command to change the nice value of the gedit command you

just started to 7, enter the following:

 # renice -n 7 21578
 21578: old priority 0, new priority 7

Use any command you like to verify that the current nice value for the gedit

command is now set to 7. For example, you could type the following:

 # ps -eo 'pid,user,nice,comm' | grep gedit
 21578 chris 7 gedit

Chapter 7: Writing Simple Shell Scripts
1. Here’s an example of how to create a script in your $HOME/bin directory called

myownscript. When the script runs, it should output information that appears

as follows:

 Today is Sat Jun 10 15:45:04 EDT 2019.
 You are in /home/joe and your host is abc.example.com.

The following steps show one way to create the script named myownscript:

a. If it doesn’t already exist, create a bin directory:

 $ mkdir $HOME/bin

b. Using any text editor, create a script called $HOME/bin/myownscript that

contains the following:

 #!/bin/bash
 # myownscript
 # List some information about your current system
 echo "Today is $(date)."
 echo "You are in $(pwd) and your host is $(hostname)."

Part VII: Appendixes

658

c. Make the script executable:

 $ chmod 755 $HOME/bin/myownscript

2. To create a script that reads in three positional parameters from the command line,

assigns those parameters to variables named ONE, TWO, and THREE, respectively,

and then outputs that information in the specified format, do the following:

Replace X with the number of parameters and Y with all of the parameters entered.

Then replace A with the contents of variable ONE, B with variable TWO, and C with

variable THREE.

a. Here is an example of what that script could contain:

 #!/bin/bash
 # myposition
 ONE=$1
 TWO=$2
 THREE=$3
 echo "There are $# parameters that include: $@"
 echo "The first is $ONE, the second is $TWO, the third
is $THREE."

b. To create a script called $HOME/bin/myposition and make the script

executable, enter the following:

 $ chmod 755 $HOME/bin/myposition

c. To test it, run it with some command-line arguments, as in the following:

 $ myposition Where Is My Hat Buddy?
 There are 5 parameters that include: Where Is My Hat Buddy?
 The first is Where, the second is Is, the third is My.

3. To create the script described, do the following:

a. To create a file called $HOME/bin/myhome and make it executable, enter the

following:

 $ touch $HOME/bin/myhome
 $ chmod 755 $HOME/bin/myhome

b. Here’s what the script myhome might look like:

 #!/bin/bash
 # myhome
 read -p "What street did you grow up on? " mystreet
 read -p "What town did you grow up in? " mytown
 echo "The street I grew up on was $mystreet and the town

was $mytown."

c. Run the script to check that it works. The following example shows what the

input and output for the script could look like:

 $ myhome
 What street did you grow up on? Harrison

Appendix: Exercise Answers

659

 What town did you grow up in? Princeton
 The street I grew up on was Harrison and the town was
Princeton.

4. To create the required script, do the following:

a. Using any text editor, create a script called $HOME/bin/myos and make the

script executable:

 $ touch $HOME/bin/myos
 $ chmod 755 $HOME/bin/myos

b. The script could contain the following:

 #!/bin/bash
 # myos
 read -p "What is your favorite operating system, Mac,
Windows or Linux? " opsys
 if [$opsys = Mac] ; then
 echo "Mac is nice, but not tough enough for me."
 elif [$opsys = Windows] ; then
 echo "I used Windows once. What is that blue
screen for?"
 elif [$opsys = Linux] ; then
 echo "Great Choice!"
 else
 echo "Is $opsys an operating system?"
 fi

5. To create a script named $HOME/bin/animals that runs through the words

moose, cow, goose, and sow through a for loop and have each of those words

appended to the end of the line, “I have a…,” do the following:

a. Make the script executable:

 $ touch $HOME/bin/animals
 $ chmod 755 $HOME/bin/animals

b. The script could contain the following:

 #!/bin/bash
 # animals
 for ANIMALS in moose cow goose sow ; do
 echo "I have a $ANIMALS"
 done

c. When you run the script, the output should appear as follows:

 $ animals
 I have a moose
 I have a cow
 I have a goose
 I have a sow

Part VII: Appendixes

660

Chapter 8: Learning System Administration
1. To enable Cockpit on your system, enter the following:

systemctl enable --now cockpit.socket
Created symlink /etc/systemd/system/sockets.target.wants/
cockpit.socket
 /usr/lib/systemd/system/cockpit.socket

2. To open the Cockpit interface in your web browser, enter the hostname or IP

address of the system holding your Cockpit service, followed by port number 9090.

For example, enter this into the location box of your browser:

https://host1.example.com:9090/

3. To find all of the files under the /var/spool directory that are owned by users

other than root and do a long listing of them, enter the following. (I recommend

becoming root to find files that might be closed off to other users.)

$ su -
Password: *********
find /var/spool -not -user root -ls | less

4. To become root user and create an empty or plain-text file named /etc/test.txt,

enter the following:

$ sudo su
Password: *********
touch /etc/test.txt
ls -l /etc/test.txt
-rw-r--r--. 1 root root 0 Jan 9 21:51 /etc/test.txt

5. To become root and edit the /etc/sudoers file to allow your regular user account

(for example, bill) to have full root privilege via the sudo command, do the

following:

$ sudo su
Password: *********
visudo
o
bill ALL=(ALL) ALL
Esc ZZ

Because visudo opens the /etc/sudoers file in vi, the example types o to

open a line, and then it types in the line to allow bill to have full root privilege.

After the line is typed, press ESC to return to command mode and type ZZ to

write and quit.

6. To use the sudo command to create a file called /etc/test2.txt and verify that

the file is there and owned by the root user, enter the following:

[bill]$ sudo touch /etc/test2.txt
We trust you have received the usual lecture from the local System

Appendix: Exercise Answers

661

Administrator. It usually boils down to these three things:
 #1) Respect the privacy of others.
 #2) Think before you type.
 #3) With great power comes great responsibility.
[sudo] password for bill: *********
[bill]$ ls -l /etc/text2.txt
-rw-r--r--. 1 root root 0 Jan 9 23:37 /etc/text2.txt

7. Do the following to mount and unmount a USB drive and watch the system journal

during this process:

a. Run the journalctl -f command as root in a Terminal window and watch the

output from here for the next few steps.

journalctl -f
Jan 25 16:07:59 host2 kernel: usb 1-1.1: new high-speed USB device
 number 16 using ehci-pci
Jan 25 16:07:59 host2 kernel: usb 1-1.1: New USB device found,
 idVendor=0ea0, idProduct=2168
Jan 25 16:07:59 host2 kernel: usb 1-1.1: New USB device strings:
 Mfr=1, Product=2, SerialNumber=3
Jan 25 16:07:59 host2 kernel: usb 1-1.1: Product: Flash Disk
Jan 25 16:07:59 host2 kernel: usb 1-1.1: Manufacturer: USB
...
Jan 25 16:08:01 host2 kernel: sd 18:0:0:0: [sdb] Write Protect is off
Jan 25 16:08:01 host2 kernel: sd 18:0:0:0: [sdb]
 Assuming drive cache: write through
Jan 25 16:08:01 host2 kernel: sdb: sdb1
Jan 25 16:08:01 host2 kernel: sd 18:0:0:0: [sdb]
 Attached SCSI removable disk

b. Plug in a USB storage drive, which will mount a filesystem from that drive auto-

matically. If it does not, run the following commands in a second terminal (as

root) to create a mount point directory and mount the device:

 $ mkdir /media/test
 $ mount /dev/sdb1 /media/test
 $ umount /dev/sdb1

8. To see what USB devices are connected to your computer, enter the following:

$ lsusb

9. To load the bttv module, list the modules that were loaded, and unload it, enter

the following:

modprobe -a bttv
lsmod | grep bttv
ttv 167936 0
tea575x 16384 1 bttv
tveeprom 28672 1 bttv

Continues

Part VII: Appendixes

662

videobuf_dma_sg 24576 1 bttv
videobuf_core 32768 2 videobuf_dma_sg,bttv
v4l2_common 16384 1 bttv
videodev 233472 3 tea575x,v4l2_common,bttv
i2c_algo_bit 16384 1 bttv

Notice that other modules (v4l2_common, videodev, and others) were loaded

when you loaded bttv with modprobe -a.

10. Enter the following to remove the bttv module along with any other modules that

were loaded with it. Notice that they were all gone after running modprobe -r.

modprobe -r bttv
lsmod | grep bttv

Chapter 9: Installing Linux
1. To install Ubuntu desktop from a downloaded ISO, follow these steps:

a. If necessary, download a desktop ISO image from ubuntu.com/#download.

b. If necessary, install VirtualBox on your computer.

c. In VirtualBox, click New, enter a name for your new VM, and set the type and

version. The default memory and hard disk settings should be fine as they are.

d. With your new VM selected in the main VirtualBox menu, click the green

Start button.

e. Click the folder icon on the “Select start-up disk” page and choose the Ubuntu

ISO image you downloaded from your local filesystem.

f. A terminal will open where Ubuntu’s Ubiquity install program will guide you

through the installation process.

g. When you’re done, reboot the VM to confirm everything worked.

h. If desired, “Close” the VM from the main VirtualBox menu and then remove it.

2. To update the packages, after the Ubuntu installation is complete, do the following:

a. Reboot the computer and log in using your new primary account.

b. Using a wired or wireless connection, make sure that you have a connection

to the Internet. Refer to Chapter 14, “Administering Networking,” if you have

trouble getting your networking connection to work properly. Open a shell as

the root user and type sudo apt update.

c. When prompted, type y to accept the list of packages displayed. The system

begins downloading and installing the packages.

3. To run the Ubuntu installation in text mode, do the following:

a. If necessary, download a server ISO image from ubuntu.com/#download.

b. If necessary, install VirtualBox on your computer.

c. Follow the remaining steps from the first exercise and from the chapter.

(continued)

http://ubuntu.com/#download
http://ubuntu.com/#download

Appendix: Exercise Answers

663

4. To set the disk partitioning as described in Exercise 4 for an Ubuntu installation,

do the following:

NOTE

The procedure in Exercise 4 ultimately deletes all content on your hard disk. If you just want to use this exercise to

practice partitioning, you can reboot your computer before starting the actual installation process without harming

your hard disk. After you go forward and partition your disk, assume that all data has been deleted.

a. Using a storage drive that you can erase or a VirtualBox VM with at least 10GB of

disk space, start the Ubuntu install process.

b. Select “Something else” from the Installation type page and then select New

Partition Table.

c. If the existing disk space is already consumed, you need to delete the partitions

before proceeding (by clicking the minus (–) button at the bottom of the screen

with the appropriate drive selected).

d. To create new partitions, click the plus (+) button at the bottom of the screen.

Then add and define each of the following mount points:

 /boot - 400M
 / - 3G
 /var - 2G
 /home -2G

e. Select Done. You should see a summary of changes.

f. If the changes look acceptable, select Accept Changes. If you are just practicing

and don’t actually want to change your partitions, select Cancel & Return to

Custom Partitioning. Then simply exit the installer.

Chapter 10: Getting and Managing Software
1. To search for a package that contains the pdftoppm command, enter the

following:

apt search pdftoppm

2. To display information about the package that provides the pdftoppm command

and determine that package’s home page (URL), enter the following:

 # apt show poppler-utils

You will see that the URL to the home page for Poppler-Utils is poppler

.freedesktop.org/.

3. To install the package containing the pdftoppm command, enter the following:

 $ sudo apt install poppler-utils

http://poppler.freedesktop.org
http://poppler.freedesktop.org

Part VII: Appendixes

664

4. To delete the pdftoppm command from your system and verify its package against

the APT database to see that the command is indeed missing, enter the following:

 $ sudo apt remove poppler-utils
 $ dpkg -l poppler-utils

5. To reinstall the package that provides the pdftoppm command and make sure that

the entire package is intact again, enter the following:

 $ sudo apt install poppler-utils
 $ dpkg -l poppler-utils

Chapter 11: Managing User Accounts
1. To add a local user account to your Linux system, run adduser against jbaxter

setting the full name to John Baxter and the password, when prompted, to:

My1N1te0ut! You’ll then run usermod -s to apply the csh shell to the user.

You can confirm success by viewing the passed file.

 # adduser jbaxter
 Adding user 'jbaxter' ...
 Adding new group 'jbaxter' (1002) ...
 Adding new user 'jbaxter' (1001) with group 'jbaxter' ...
 Creating home directory '/home/jbaxter' ...
 Copying files from '/etc/skel' ...
 Enter new UNIX password:
 Retype new UNIX password:
 passwd: password updated successfully
 Changing the user information for jbaxter
 Enter the new value, or press ENTER for the default
 Full Name []: John Baxter
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
 Is the information correct? [Y/n]
 adduser -c "John Baxter" -s /bin/sh jbaxter
 # usermod -s /bin/csh jbaxter
 # grep jbaxter /etc/passwd
 jbaxter:x:1001:1001:John Baxter:/home/jbaxter:/bin/sh

2. To create a group account named testing that uses group ID 315, enter the

following:

 # addgroup --gid 315 testing
 # grep testing /etc/group
 testing:x:315:

Appendix: Exercise Answers

665

3. To add jbaxter to the testing group and the bin group, enter the following:

 # usermod -aG testing,bin jbaxter
 # grep jbaxter /etc/group
 bin:x:1:bin,daemon,jbaxter
 jbaxter:x:1001:
 testing:x:315:jbaxter

4. To become jbaxter and temporarily have the testing group be jbaxter’s

default group, run touch /home/jbaxter/file.txt so that the testing

group is assigned as the file’s group, and do the following:

 $ su - jbaxter
 Password: My1N1te0ut!
 sh-4.2$ newgrp testing
 sh-4.2$ touch /home/jbaxter/file.txt
 sh-4.2$ ls -l /home/baxter/file.txt
 -rw-rw-r--. 1 jbaxter testing 0 Jan 25 06:42 /home/
jbaxter/file.txt
 sh-4.2$ exit ; exit

5. Note what user ID has been assigned to jbaxter, and then delete the user account

without deleting the home directory assigned to jbaxter:

 $ deluser jbaxter

6. Use the following command to find any files in the /home directory (and any

subdirectories) that are assigned to the user ID that recently belonged to the user

named jbaxter. (When I did it, the UID/GID were both 1001; yours may differ.)

Notice that the username jbaxter is no longer assigned on the system, so any

files that user created are listed as belonging to UID 1001 and GID 1001, except for

a couple of files that were assigned to the testing group because of the newgrp

command run earlier:

 # find /home -uid 1001 -ls
 262184 4 drwx------ 4 1001 1001 4096 Jan 25 08:00 /
home/jbaxter
 262193 4 -rw-r--r-- 1 1001 1001 176 Jan 27 2011 /
home/jbaxter/.bash_profile
 262196 4 -rw------- 1 13602 testing 93 Jan 25 08:00 /
home/jbaxter/.bash_history
 262194 0 -rw-rw-r-- 1 13602 testing 0 Jan 25 07:59 /
home/jbaxter/file.txt
 ...

7. Run these commands to copy the /etc/services file to the /etc/skel/ direc-

tory; then add a new user to the system named mjones, with a full name of Mary

Jones and a home directory of /home/maryjones. List her home directory to

make sure that the services file is there.

 # cp /etc/services /etc/skel/
 # adduser mjones

(continues)

Part VII: Appendixes

666

 # ls -l /home/maryjones
 total 628
 -rw-r--r--. 1 mjones mjones 640999 Jan 25 06:27 services

8. Run the following command to find all files under the /home directory that belong

to mjones. If you did the exercises in order, notice that after you deleted the user

with the highest user ID and group ID, those numbers were assigned to mjones.

As a result, any files left on the system by jbaxter now belong to mjones. (For

this reason, you should remove or change ownership of files left behind when you

delete a user.)

 # find /home -user mjones -ls
 262184 4 drwx------ 4 mjones mjones 4096 Jan 25 08:00 /
home/jbaxter
 262193 4 -rw-r--r-- 1 mjones mjones 176 Jan 27 2011 /home/
jbaxter/.bash_profile
 262189 4 -rw-r--r-- 1 mjones mjones 18 Jan 27 2011 /home/
jbaxter/.bash_logout
 262194 0 -rw-rw-r-- 1 mjones testing 0 Jan 25 07:59 /home/
jbaxter/file.txt
 262188 4 -rw-r--r-- 1 mjones mjones 124 Jan 27 2011 /home/
jbaxter/.bashrc
 262197 4 drwx------ 4 mjones mjones 4096 Jan 25 08:27 /
home/maryjones
 262207 4 -rw-r--r-- 1 mjones mjones 176 Jan 27 2011 /home/
maryjones/.bash_profile
 262202 4 -rw-r--r-- 1 mjones mjones 18 Jan 27 2011 /home/
maryjones/.bash_logout
 262206 628 -rw-r--r-- 1 mjones mjones 640999 Jan 25 08:27
/home/maryjones/services
 262201 4 -rw-r--r-- 1 mjones mjones 124 Jan 27 2011 /home/
maryjones/.bashrc

9. As the user mjones, you can use the following to create a file called /tmp/mary-
file.txt and use ACLs to assign the bin user read/write permission and the lp

group read/write permission to that file:

 [mjones]$ touch /tmp/maryfile.txt
 [mjones]$ setfacl -m u:bin:rw /tmp/maryfile.txt
 [mjones]$ setfacl -m g:lp:rw /tmp/maryfile.txt
 [mjones]$ getfacl /tmp/maryfile.txt
 # file: tmp/maryfile.txt
 # owner: mjones
 # group: mjones
 user::rw-
 user:bin:rw-
 group::rw-
 group:lp:rw-

(continued)

Appendix: Exercise Answers

667

 mask::rw-
 other::r|-

10. Run this set of commands (as mjones) to create a directory named /tmp/mydir

and use ACLs to assign default permissions to it so that the adm user has read/

write/execute permission to that directory and any files or directories created in it.

Test that it worked by creating the /tmp/mydir/testing/ directory and /tmp/
mydir/newfile.txt.

 [mary]$ mkdir /tmp/mydir
 [mary]$ setfacl -m d:u:adm:rwx /tmp/mydir
 [mjones]$ getfacl /tmp/mydir
 # file: tmp/mydir
 # owner: mjones
 # group: mjones
 user::rwx
 group::rwx
 other::r-x
 default:user::rwx
 default:user:adm:rwx
 default:group::rwx
 default:mask::rwx
 default:other::r-x
 [mjones]$ mkdir /tmp/mydir/testing
 [mjones]$ touch /tmp/mydir/newfile.txt
 [mjones]$ getfacl /tmp/mydir/testing/
 # file: tmp/mydir/testing/
 # owner: mjones
 # group: mjones
 user::rwx
 user:adm:rwx
 group::rwx
 mask::rwx
 other::r-x
 default:user::rwx
 default:user:adm:rwx
 default:group::rwx
 default:mask::rwx
 default:other::r-x
 [mjones]$ getfacl /tmp/mydir/newfile.txt
 # file: tmp/mydir/newfile.txt
 # owner: mjones
 # group: mjones
 user::rw-
 user:adm:rwx #effective:rw-
 group::rwx #effective:rw-
 mask::rw-
 other::r--

Part VII: Appendixes

668

Notice that the adm user effectively has only rw- permission. To remedy that, you

need to expand the permissions of the mask. One way to do that is with the chmod

command, as follows:

 [mjones]$ chmod 775 /tmp/mydir/newfile.txt
 [mjones]$ getfacl /tmp/mydir/newfile.txt
 # file: tmp/mydir/newfile.txt
 # owner: mjones
 # group: mjones
 user::rwx
 user:adm:rwx
 group::rwx
 mask::rwx
 other::r-x

Chapter 12: Managing Disks and Filesystems
1. To determine the device name of a USB flash drive that you want to insert into

your computer, enter the following and insert the USB flash drive. (Press Ctrl+C

after you have seen the appropriate messages.)

 # journalctl -f
 kernel: [sdb] 15667200 512-byte logical blocks:
 (8.02 GB/7.47 GiB)
 Feb 11 21:55:59 cnegus kernel: sd 7:0:0:0:
 [sdb] Write Protect is off
 Feb 11 21:55:59 cnegus kernel: [sdb] Assuming
 drive cache: write through
 Feb 11 21:55:59 cnegus kernel: [sdb] Assuming
 drive cache: write through

2. To list partitions on the USB flash drive, enter the following:

 # fdisk -l /dev/sdb

3. To delete partitions on the USB flash drive, assuming device /dev/sdb, do the

following:

 # fdisk /dev/sdb
 Command (m for help): d
 Partition number (1-6): 6
 Command (m for help): d
 Partition number (1-5): 5
 Command (m for help): d
 Partition number (1-5): 4
 Command (m for help): d
 Partition number (1-4): 3
 Command (m for help): d
 Partition number (1-4): 2
 Command (m for help): d

Appendix: Exercise Answers

669

 Selected partition 1
 Command (m for help): w
 # partprobe /dev/sdb

4. To add a 100MB Linux partition, 200MB swap partition, and 500MB LVM partition to

the USB flash drive, enter the following:

 # fdisk /dev/sdb

 Command (m for help): n
 Command action
 e extended
 p primary partition (1-4)

 p

 Partition number (1-4): 1
 First sector (2048-15667199, default 2048): <ENTER>
 Last sector, +sectors or +size{K,M,G} (default 15667199): +100M
 Command (m for help): n
 Command action
 e extended
 p primary partition (1-4)

 p

 Partition number (1-4): 2
 First sector (616448-8342527, default 616448): <ENTER>
 Last sector, +sectors or +size{K,M,G} (default 15667199): +200M
 Command (m for help): n
 Command action
 e extended
 p primary partition (1-4)

 p

 Partition number (1-4): 3
 First sector (616448-15667199, default 616448): <ENTER>
 Using default value 616448
 Last sector, +sectors or +size{K,M,G} (default 15667199): +500M
 Command (m for help): t
 Partition number (1-4): 2
 Hex code (type L to list codes): 82
 Changed system type of partition 2 to 82 (Linux swap / Solaris)
 Command (m for help): t
 Partition number (1-4): 3
 Hex code (type L to list codes): 8e
 Changed system type of partition 3 to 8e (Linux LVM)
 Command (m for help): w
 # partprobe /dev/sdb
 # grep sdb /proc/partitions

Continues

Part VII: Appendixes

670

 8 16 7833600 sdb
 8 17 102400 sdb1
 8 18 204800 sdb2
 8 19 512000 sdb3

5. To put an ext4 filesystem on the Linux partition, enter the following:

 # mkfs -t ext4 /dev/sdb1

6. To create a mount point called /mnt/mypart and mount the Linux partition on it,

do the following:

 # mkdir /mnt/mypart
 # mount -t ext4 /dev/sdb1 /mnt/mypart

7. To enable the swap partition and turn it on so that additional swap space is imme-

diately available, enter the following:

 # mkswap /dev/sdb2
 # swapon /dev/sdb2

8. To create a volume group called abc from the LVM partition, create a 200MB logical

volume from that group called data, create a VFAT filesystem on it, temporarily

mount the logical volume on a new directory named /mnt/test, and then check

that it was successfully mounted, enter the following:

 # pvcreate /dev/sdb3
 # vgcreate abc /dev/sdb3
 # lvcreate -n data -L 200M abc
 # mkfs -t vfat /dev/mapper/abc-data
 # mkdir /mnt/test
 # mount /dev/mapper/abc-data /mnt/test

9. To grow the logical volume from 200MB to 300MB, enter the following:

 # lvextend -L +100M /dev/mapper/abc-data
 # resize2fs -p /dev/mapper/abc-data

10. To remove the USB flash drive safely from the computer, do the following:

 # umount /dev/sdb1
 # swapoff /dev/sdb2
 # umount /mnt/test
 # lvremove /dev/mapper/abc-data
 # vgremove abc
 # pvremove /dev/sdb3

You can now safely remove the USB flash drive from the computer.

Chapter 13: Understanding Server Administration
1. To log in to any account on another computer using the ssh command, enter the

following and then enter the password when prompted:

 $ ssh joe@localhost
 joe@localhost's password:

(continued)

Appendix: Exercise Answers

671

 [joe]$

2. To run the uname -a command on the remote system and display the output

locally using remote execution with the ssh command, do the following:

 $ ssh joe@192.168.1.5 "uname -a"
 joe@192.168.1.5's password:
 Linux workstation 5.3.0-42-generic #34~18.04.1-Ubuntu SMP
Fri Feb 28 13:42:26 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux

3. With the /etc/ssh/sshd_config file on the host system appropriately edited (as

shown in the chapter), to use X11 forwarding to display a gedit window on your

local system and then save a file on the remote home directory, do the following:

 $ ssh -X joe@localhost "gedit newfile"
 joe@localhost's password: ********
 $ ssh joe@localhost "cat newfile"
 joe@localhost's password: ********
 This is text from the file I saved in joe's remote
home directory

4. To copy all of the files from the /etc/apt/ directory recursively on a remote

system to the /tmp directory on your local system in such a way that all of the

modification times on the files are updated to the time on the local system when

they are copied, do the following:

 $ scp -r joe@localhost:/etc/apt/ /tmp
 joe@localhost's password:

 apt
 size
 $ ls -l /tmp/apt | head
 total 48
 drwxr-xr-x 2 root root 4096 Mar 29 13:40 apt.conf.d
 drwxr-xr-x 2 root root 4096 Mar 29 13:40 auth.conf.d
 drwxr-xr-x 2 root root 4096 Mar 29 13:40 preferences.d
 -rw-r--r-- 1 root root 2904 Mar 29 13:40 sources.list
 drwxr-xr-x 2 root root 4096 Mar 29 13:40 sources.list.d
 -rw-r--r-- 1 root root 11024 Mar 29 13:40 trusted.gpg
 drwxr-xr-x 2 root root 4096 Mar 29 13:40 trusted.gpg.d
 -rw-r--r-- 1 root root 9815 Mar 29 13:40 trusted.gpg~

5. To copy all of the files from the /usr/share/logwatch directory recursively on a

remote system to the /tmp directory on your local system in such a way that all of

the modification times on the files from the remote system are maintained on the

local system, try the following:

 $ rsync -av joe@localhost:/usr/share/logwatch /tmp
 joe@localhost's password: ********

Continues

Part VII: Appendixes

672

 receiving incremental file list
 logwatch/
 logwatch/default.conf/
 logwatch/default.conf/logwatch.conf
 $ ls -l /tmp/logwatch | head
 total 16
 drwxr-xr-x. 5 root root 4096 Apr 19 2011 default.conf
 drwxr-xr-x. 4 root root 4096 Feb 28 2011 dist.conf
 drwxr-xr-x. 2 root root 4096 Apr 19 2011 lib

6. To create a public/private key pair to use for SSH communications (no passphrase

on the key), copy the public key file to a remote user’s account with ssh-copy-id,

and use key-based authentication to log in to that user account without having to

enter a password, use the following code:

 $ ssh-keygen
 Generating public/private rsa key pair.
 Enter file in which to save the key (/home/joe/.ssh/id_
rsa): ENTER
 /home/joe/.ssh/id_rsa already exists.
 Enter passphrase (empty for no passphrase): ENTER
 Enter same passphrase again: ENTER
 Your identification has been saved in /home/joe/.ssh/id_rsa.
 Your public key has been saved in /home/joe/.ssh/id_rsa.pub.
 The key fingerprint is:
 58:ab:c1:95:b6:10:7a:aa:7c:c5:ab:bd:f3:4f:89:1e joe@cnegus.csb
 The key's randomart image is:
 ...
 $ ssh-copy-id -i ~/.ssh/id_rsa.pub joe@localhost
 joe@localhost's password: ********
 Now try logging into the machine, with "ssh 'joe@localhost'",
 and check in:
 .ssh/authorized_keys
 to make sure we haven't added extra keys that you weren't
expecting.
 $ ssh joe@localhost
 $ cat .ssh/authorized_keys
 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAyN2Psp5/LRUC9E8BDCx53yPUa0qoOPd

 v6H4sF3vmn04V6E7D1iXpzwPzdo4rpvmR1ZiinHR2xGAEr2uZag7feKgLn
ww2KPcQ6S
 iR7lzrOhQjV+SGb/a1dxrIeZqKMq1Tk01G4EvboIrq//9J47vI4l7iN
u0xRmjI3TTxa

(continued)

Appendix: Exercise Answers

673

 DdCTbpG6J3uSJm1BKzdUtwb413k35W2bRgMI75aIdeBsDgQBBiOdu+
zuTMrXJj2viCA
 XeJ7gIwRvBaMQdOSvSdlkX353tmIjmJheWdgCccM/1jKdoELpaevg9a
nCe/yUP3so31
 tTo4I+qTfzAQD5+66oqW0LgMkWVvfZI7dUz3WUPmcMw== chris@abc
.example.com

7. To create an entry in /etc/rsyslog.d/50-default.conf that stores all authen-

tication messages at the info level and higher into a file named /var/log/
myauth, do the following. Watch from one terminal as the data comes in.

 # vim /etc/rsyslog.conf
 authpriv.info /var/log/myauth
 # service rsyslog restart
 or
 # systemctl restart rsyslog.service
 <Terminal 1> <Terminal 2>
 # tail -f /var/log/myauth $ ssh
joe@localhost
 Apr 18 06:19:34 abc unix_chkpwd[30631] joe@
localhost's password:
 Apr 18 06:19:34 abc sshd[30631] Permission
denied,try again
 :pam_unix(sshd:auth):
 authentication failure;logname= uid=501
 euid=501 tty=ssh ruser= rhost=localhost
 user=joe
 Apr 18 06:19:34 abc sshd[30631]:
 Failed password for joe from
 127.0.0.1 port 5564 ssh2

8. To determine the largest directory structures under /usr/share, sort them from

largest to smallest, and list the top 10 of those directories in terms of size using

the du command, enter the following:

 $ du -s /usr/share/* | sort -rn | head
 527800 /usr/share/locale
 277108 /usr/share/fonts
 196232 /usr/share/help

 134984 /usr/share/backgrounds
 ...

9. To show the space that is used and available from all of the filesystems currently

attached to the local system, but exclude any tmpfs or devtmpfs filesystems by

using the df command, enter the following:

 $ df -h -x tmpfs -x devtmpfs
 Filesystem Size Used Avail Use% Mounted on
 /deev/sda4 20G 4.2G 16G 22% /

Part VII: Appendixes

674

10. To find any files in the /usr directory that are more than 10MB in size, do the

following:

 $ find /usr -size +10M
 /usr/bin/qemu-system-x86_64
 /usr/bin/lxc
 /usr/bin/pandoc
 /usr/bin/node
 /usr/bin/snap
 /usr/bin/qemu-system-i386
 /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.27.so
 /usr/lib/gcc/x86_64-linux-gnu/7/cc1
 /usr/lib/gcc/x86_64-linux-gnu/7/lto1
 /usr/lib/gcc/x86_64-linux-gnu/7/cc1plus
 /usr/lib/i386-linux-gnu/libnvidia-opencl.so.340.108
 /usr/lib/snapd/snapd
 /usr/lib/jvm/java-11-openjdk-amd64/lib/modules
 /usr/lib/jvm/java-11-openjdk-amd64/lib/server/classes.jsa
 /usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.so
 /usr/lib/mono/aot-cache/amd64/mscorlib.dll.so
 /usr/lib/libgdal.so.20.3.2
 /usr/lib/lxd/lxd

Chapter 14: Administering Networking
1. To use the desktop to check that NetworkManager has successfully started your

network interface (wired or wireless), do the following:

a. Left-click the upper-right corner of your GNOME desktop to see the drop-down

menu. Any active wired or wireless network connections should appear on

that menu.

b. If it has not connected to the network, select from the list of wired or wireless

networks available, and then enter the username and password, if prompted, to

start an active connection.

2. To run a command to check the active network interfaces available on your com-

puter, enter the following:

 $ ifconfig

or

 $ ip addr show

3. Try to contact www.google.com from the command line in a way that ensures that

DNS is working properly:

 $ ping google.com
 Ctrl-C

4. To run a command to check the routes being used to communicate outside of your

local network, enter the following:

 $ route

http://google.com

Appendix: Exercise Answers

675

5. To trace the route being taken to connect to google.com, use the traceroute

command:

 $ traceroute google.com

6. To view the network interfaces and related network activities for your Linux system

through Cockpit, open a web browser to port 9090 using an IP address or hostname.

For example: https://localhost:9090/network.

7. To create a host entry that allows you to communicate with your local host system

using the name myownhost, edit the /etc/hosts file (nano /etc/hosts) and

add myownhost to the end of the localhost entry so that it appears as follows

(then ping myownhost to see if it worked):

 127.0.0.1 localhost.localdomain localhost myownhost
 # ping myownhost
 Ctrl+C

8. To see the DNS name servers being used to resolve hostnames and IP addresses on

your system (yours will be different than those shown here), enter the following:

 # cat /etc/resolv.conf
 nameserver 10.83.14.9
 nameserver 10.18.2.10
 nameserver 192.168.1.254
 # dig google.com
 ...
 google.com. 91941 IN NS ns3.google.com.
 ;; Query time: 0 msec
 ;; SERVER: 10.18.2.9#53(10.18.2.9)
 ;; WHEN: Sat Nov 23 20:18:56 EST 2019
 ;; MSG SIZE rcvd: 276

9. To check to see if your system has been configured to allow IPv4 packets to be

routed between network interfaces on your system, enter the following:

 # cat /proc/sys/net/ipv4/ip_forward
 0

A 0 shows that IPv4 packet forwarding is disabled; a 1 shows that it is enabled.

Chapter 15: Starting and Stopping Services
1. To determine which initialization daemon your server is currently using, consider

the following:

a. In most cases today, PID 1 appears as the systemd daemon:

 # ps -e | head
 PID TTY TIME CMD
 1 ? 00:00:37 systemd

Continues

http://google.com
https://localhost:9090/network

Part VII: Appendixes

676

 2 ? 00:00:00 kthreadd
 3 ? 00:00:00 rcu_gp

b. Most likely, you have the Upstart, SysVinit, or BSD init daemon if your init

daemon is not systemd. But double-check at www.wikipedia.org/wiki/Init.

2. The tools you use to manage services depend primarily on which initialization

system is in use. Try to run the systemctl and service commands to determine

the type of initialization script in use for the ssh service on your system:

a. For systemd, a positive result, shown here, means that the sshd has been con-

verted to systemd:

 # systemctl status sshd.service
 sshd.service - OpenSSH server daemon
 Loaded: loaded (/lib/systemd/system/sshd.service;
enabled)
 Active: active (running) since Mon, 20 Apr 2020
12:35:20...

b. If you don’t see positive results for the preceding test, try the following

command for the SysVinit init daemon. A positive result here, along with neg-

ative results for the preceding tests, means that sshd is still using the Sys-
Vinit daemon.

 # service ssh status
 sshd (pid 2390) is running...

3. To determine your server’s previous and current runlevel, use the runlevel

command. It still works on all init daemons:

 $ runlevel
 N 3

4. To change the default runlevel or target unit on your Linux server, you can do one

of the following (depending upon your server’s init daemon):

a. For SysVinit, edit the file /etc/inittab and change the # in the line

id:#:initdefault: to 2, 3, 4, or 5.

b. For systemd, change the default.target to the desired runlevel#.tar-
get, where # is 2, 3, 4, or 5. The following shows you how to change the target

unit to runlevel3.target:

 # systemctl set-default runlevel3.target
 Removed /etc/systemd/system/default.target.
 Created symlink /etc/systemd/system/default.target →
 /usr/lib/systemd/system/multi-user.target.

5. To list services running (or active) on your server, you need to use different com-

mands, depending upon the initialization daemon you are using.

a. For SysVinit, use the service command as shown in this example:

(continued)

http://wikipedia.org/wiki/Init

Appendix: Exercise Answers

677

 # service --status-all | grep running | sort
 anacron (pid 2162) is running...
 atd (pid 2172) is running...

b. For systemd, use the systemctl command, as follows:

 # systemctl list-unit-files --type=service | grep
-v disabled
 UNIT FILE STATE
 abrt-ccpp.service enabled
 abrt-oops.service enabled
 ...

6. To list the running (or active) services on your Linux server, use the appropri-

ate command(s) determined in answer 5 for the initialization daemon that your

server is using.

7. For each initialization daemon, the following command(s) show a particular ser-

vice’s current status:

a. For SysVinit, the service service_name status command is used.

b. For systemd, the systemctl status service_name command is used.

8. To show the status of the cups daemon on your Linux server, use the following:

a. For the SysVinit:

 # service cups status
 cupsd (pid 8236) is running...

b. For systemd:

 # systemctl status cups.service
 cups.service — CUPS Printing Service
 Loaded: loaded (/lib/systemd/system/cups.service; enabled)
 Active: active (running) since Tue, 05 May 2020 04:43:5...
 Main PID: 17003 (cupsd)
 CGroup: name=systemd:/system/cups.service
 17003 /usr/sbin/cupsd -f

9. To attempt to restart the cups daemon on your Linux server, use the following:

a. For SysVinit:

 # service cups restart
 Stopping cups: [OK]

b. For systemd:

 # systemctl restart cups.service

Part VII: Appendixes

678

10. To attempt to reload the cups daemon on your Linux server, use the following:

a. For SysVinit:

 # service cups reload
 Reloading cups: [OK]

b. For systemd, this is a trick question. You cannot reload the cups daemon on a

systemd Linux server!

 # systemctl reload cups.service
 Failed to issue method call: Job type reload is
 not applicable for unit cups.service.

Chapter 16: Con�guring a Print Server
For questions that involve working with printers, you can use either graphical or command-

line tools in most cases. The point is to make sure that you get the correct results, shown

in the answers that follow. The answers here include a mix of graphical and command-line

ways of solving the exercises. (Use sudo when you see a # prompt.)

1. To use the Printers window to add a new printer called myprinter to your system

(generic PostScript printer, connected to a port), do the following from Ubuntu:

a. If necessary, install the system-config-printer package:

 # apt install system-config-printer

b. From the GNOME 3 desktop, select Printers from the GNOME Settings dialog.

c. Select the Add button.

d. Select a USB or other port as the device and click Forward.

e. For the driver, choose Generic and click Forward; then choose PostScript and

click Forward.

f. Click Forward to skip any installable options, if needed.

g. For the printer name, call it myprinter, give it any description and location

you like, and click Apply.

h. Click Cancel in order not to print a test page. The printer should appear in the

Print Settings window.

2. To use the lpstat -t command to see the status of all of your printers, enter the

following:

 # lpstat -t

 deskjet-5550 accepting requests since Mon 02 Mar 2020
07:30:03 PM EST

Appendix: Exercise Answers

679

3. To use the lp command to print the /etc/hosts file, enter the following:

 $ lp /etc/hosts -d myprinter

4. To check the print queue for that printer, enter the following:

 # lpstgat -a myprinter
 myprinter is not ready
 Rank Owner Job File(s) Total Size
 1st root 655 hosts 1024 bytes

5. To remove the print job from the queue (cancel it), enter the following:

 # cancel myprinter

6. To use the Printers window to set the basic server setting that publishes your

printers so that other systems on your local network can print to your printers, do

the following:

a. From the GNOME 3 desktop, select Printers from the GNOME Settings dialog.

b. Select Server ➪ Settings and type the root password if prompted.

c. Click the check box next to “Publish shared printers connected to this system”

and click OK.

7. To allow remote administration of your system from a web browser, follow

these steps:

a. From the GNOME 3 desktop, select Printers from the GNOME Settings dialog.

b. Select Server ➪ Settings and type the root password if prompted.

c. Click the check box next to “Allow remote administration” and click OK.

8. To demonstrate that you can do remote administration of your system from a web

browser on another system, do the following:

a. In the location box from a browser window from another computer on your net-

work, enter the following, replacing hostname with the name or IP address of

the system running your print service: http://hostname:631.

b. Type root as the user and the root password, when prompted. The CUPS home

page should appear from that system.

9. To use the netstat command to see on which addresses the cupsd daemon is lis-

tening, enter the following:

 # netstat -tupln | grep 631
 tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN
6492/cupsd
 tcp6 0 0 :::631 :::* LISTEN
6492/cupsd

10. To delete the myprinter printer entry from your system, do the following:

a. Click the Unlock button and type the root password when prompted.

http://hostname:631

Part VII: Appendixes

680

b. From the Print Settings window, right-click the myprinter icon and

select Delete.

c. When prompted, select Delete again.

Chapter 17: Con�guring a Web Server
1. To install all of the packages associated with the Apache web server, do the

following:

 # apt install apache2

2. To create a file called index.html in the directory assigned to DocumentRoot in

the main Apache configuration file (with the words “My Own Web Server” inside),

do the following:

a. Determine the location of DocumentRoot:

 $ cd /etc/apache2
 $ grep -nr "DocumentRoot"
 DocumentRoot "/var/www/html"

b. Echo the words “My Own Web Server” into the index.html file located in

DocumentRoot:

 # echo "My Own Web Server" > /var/www/html/index.html

3. To start the Apache web server and set it to start up automatically at boot time,

run these two commands:

 # systemctl start apache2.service
 # systemctl enable apache2.service

4. To use the netstat command to see on which ports the httpd server is listening,

enter the following:

 # netstat -tupln | grep httpd
 tcp6 0 0 :::80 :::* LISTEN 2496/httpd
 tcp6 0 0 :::443 :::* LISTEN 2496/httpd

5. Try to connect to your Apache web server from a web browser that is outside of the

local system. If it fails, correct any problems that you encounter by investigating

the firewall, AppArmor, and other security features.

If you don’t have DNS set up yet, use the IP address of the server to view your

Apache server from a remote web browser, such as http://192.168.0.1. If you are not

able to connect, retry connecting to the server from your browser after performing

each of the following steps on the system running the Apache server:

 # iptables -F
 # chmod 644 /var/www/html/index.html

http://192.168.0.1

Appendix: Exercise Answers

681

The iptables -F command flushes the firewall rules temporarily. If connecting to

the web server succeeds after that, you need to add new firewall rules to open tcp

ports 80 and 443 on the server. For systems running the iptables service, add

the following rules before the last DROP or REJECT rule:

 -A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT
 -A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT

If the chmod command works, it means that the www-data user and group did not

have read permission to the file. You should be able to leave the new permissions

as they are.

6. To use the openssl or similar command to create your own private RSA key and

self-signed SSL certificate, see instructions in the chapter. If you’ve already created

keys, try creating a new set with a new name.

7. To configure your Apache web server to use your key and self-signed certificate to

serve secure (HTTPS) content, do the following:

a. Edit the /etc/apache2/sites-available/default-ssl.conf file to

change the key and certificate locations to use the ones that you just created:

 SSLCertificateFile /etc/ssl/certs/server.crt
 SSLCertificateKeyFile /etc/ssl/private/server.key

b. Restart the Apache service:

 # systemctl restart apache2

8. To use a web browser to create an HTTPS connection to your web server and view

the contents of the certificate that you created, do the following.

From the system running the Apache server, type https://localhost in the

browser’s location box. You should see a message that reads, “This Connection is

Untrusted.” To complete the connection, do the following:

a. Click I Understand the Risks.

b. Click Add Exception.

c. Click Get Certificate.

d. Click Confirm Security Exception.

9. To add the text joe.example.org to the end of the localhost entry in your /etc/
hosts file on the machine that is running the web server and check it by typing

http://joe.example.org into the location box of your web browser to see “Welcome

to the House of Joe” when the page is displayed, do the following:

a. Reload the apache file modified in the previous exercise in one of two ways:

 # apachectl graceful
 # systemctl restart httpd

https://localhost
http://joe.example.org
http://joe.example.org

Part VII: Appendixes

682

b. Edit the /etc/hosts file with any text editor, so the local host line appears

as follows:

 127.0.0.1 localhost.localdomain localhost joe
.example.org

c. From a browser on the local system where apache is running, you should be

able to type http://joe.example.org into the location box to access the Apache

web server using name-based authentication.

Chapter 18: Con�guring an FTP Server

CAUTION

Don’t do the tasks described here on a working, public FTP server, because these tasks will interfere with its opera-

tions. (You could, however, use these tasks to set up a new FTP server.)

1. To determine which package provides the Very Secure FTP Daemon service, enter

the following as root:

 $ apt search "Very Secure FTP"
 Sorting... Done
 Full Text Search... Done
 vsftpd/bionic 3.0.3-9build1 amd64
 lightweight, efficient FTP server written for security

The search found the vsftpd package.

2. To install the Very Secure FTP Daemon package on your system and search for the

configuration files in the vsftpd package, enter the following:

 # apt install vsftpd
 # cat /var/lib/dpkg/info/vsftpd.conffiles

3. To enable anonymous FTP and disable local user login for the Very Secure FTP

Daemon service, set the following in the /etc/vsftpd.conf file:

 anonymous_enable=YES
 write_enable=YES
 anon_upload_enable=YES
 local_enable=NO

4. To start the Very Secure FTP Daemon service and set it to start when the system

boots, enter the following on a current Ubuntu Linux system:

 # systemctl start vsftpd.service
 # systemctl enable vsftpd.service

5. On the system running your FTP server, enter the following to create a file named

test in the anonymous FTP directory that contains the words “Welcome to your

vsftpd server”:

 # echo "Welcome to your vsftpd server" > /svr/ftp/test

http://joe.example.org

Appendix: Exercise Answers

683

6. To open the test file from the anonymous FTP home directory using a web browser

on the system running your FTP server, do the following.

Open a web browser, enter the following in the location box, and press Enter:

 ftp://localhost/test

The text “Welcome to your vsftpd server” should appear in the browser window.

7. To access the test file in the anonymous FTP home directory, enter the following

into the location box of a browser on a system on your network that can reach the

FTP server (replace host with your system’s fully qualified hostname or IP address):

 ftp://host/test

8. To configure your vsftpd server to allow file uploads by anonymous users to a

directory named in, do the following as root on your FTP server:

a. Create the in directory as follows:

 # mkdir /svr/ftp/in
 # chown ftp:ftp /svr/ftp/in
 # chmod 777 /svr/ftp/in

b. Restart the vsftpd service (systemctl restart vsftpd).

9. Install the lftp FTP client (if you don’t have a second Linux system, install lftp

on the same host running the FTP server). Optionally, try to upload the /etc/
hosts file to the in directory on the server, to make sure it is accessible. Run the

following commands as the root user:

 # apt install lftp
 # lftp localhost
 lftp localhost:/> cd in
 lftp localhost:/in> put /etc/hosts
 89 bytes transferred
 lftp localhost:/in> quit

You won’t be able to see that you copied the hosts file to the incoming directory.

However, enter the following from a shell on the host running the FTP server to

make sure that the hosts file is there:

 # ls /svr/ftp/in/hosts

If you cannot upload the file, troubleshoot the problem as described in Exercise 7,

recheck your vsftpd.conf settings, and review the ownership and permissions on

the /svr/ftp/in directory.

10. Using any FTP client you choose, visit the /pub/debian-meetings directory on

the ftp://ftp.gnome.org site and list the contents of that directory. Here’s how to

do that with the lftp client:

 # lftp ftp://ftp.gnome.org/pub/debian-meetings/
 cd ok, cwd=/pub/debian-meetings
 lftp ftp.gnome.org:/pub/debian-meetings>> ls

Continues

ftp://ftp.gnome.org

Part VII: Appendixes

684

 drwxr-xr-x 3 ftp ftp 3 Jan 13 2014 2004
 drwxr-xr-x 6 ftp ftp 6 Jan 13 2014 2005
 drwxr-xr-x 8 ftp ftp 8 Dec 20 2006 2006
 ...

Chapter 19: Con�guring a Windows File Sharing

(Samba) Server
1. To install the samba and samba-client packages, enter the following as root

from a shell on the local system:

 # apt install samba smbclient

2. To start and enable the smb and nmb services, enter the following as root from a

shell on the local system:

 # systemctl enable smbd
 # systemctl start smbd
 # systemctl enable nmbd
 # systemctl start nmbd

3. To set the Samba server’s workgroup to TESTGROUP and the server string to Samba
Test System, as root user in a text editor, open the /etc/samba/smb.conf file

and change two lines so that they appear as follows:

 workgroup = TESTGROUP
 server string = Samba Test System

4. To add a Linux user named phil to your system and add a Linux password and

Samba password for phil, enter the following as root user from a shell. (Be sure to

remember the passwords you set.)

 # adduser phil
 [...]
 New password: *******
 Retype new password: *******
 # smbpasswd -a phil
 New SMB password: *******
 Retype new SMB password: *******
 Added user phil.

5. To set the [homes] section so that home directories are browseable (yes) and

writeable (yes), and that phil is the only valid user, open the /etc/samba/smb.
conf file as root and change the [homes] section so that it appears as follows:

 [homes]
 comment = Home Directories

(continued)

Appendix: Exercise Answers

685

 browseable = Yes
 read only = No
 valid users = phil

6. From the local system, use the smbclient command to list that the homes share

is available:

 # smbclient -L localhost
 Enter TESTGROUP\root's password: <ENTER>
 Anonymous login successful

 Sharename Type Comment
 --------- ---- -------
 homes Disk Home Directories
 ...

7. To connect to the homes share from a Nautilus (file manager) window on the

Samba server’s local system for the user phil in a way that allows you to drag and

drop files to that folder, do the following:

a. Open the Nautilus window (select the files icon).

b. In the left pane, select Other Locations and then click in the Connect to

Server box.

c. Type the Server address. For example, smb://localhost/phil/.

d. When prompted, select Registered User, type phil as the username, enter the

domain (TESTGROUP), and enter phil’s password.

e. Open another Nautilus window and drop a file to phil’s home folder.

Chapter 20: Con�guring an NFS File Server
1. To install the packages needed to configure the NFS service on the Linux system

you choose, enter the following using sudo:

 # apt install nfs-kernel-server

2. To display the resources required by the system and to successfully run an NFS

server, run:

 $ cat /etc/systemd/system/multi-user.target.wants/
nfs-server.service
 [Unit]
 Description=NFS server and services
 DefaultDependencies=no
 Requires=network.target proc-fs-nfsd.mount
 Requires=nfs-mountd.service
 Wants=rpcbind.socket
 Wants=nfs-idmapd.service
 [...]

Part VII: Appendixes

686

3. To start and enable the NFS service, enter the following as root user on the

NFS server:

 # systemctl start nfs-server
 # systemctl enable nfs-server

4. To check the status of the NFS service that you just started on the NFS server,

enter the following as root user:

 # systemctl status nfs-server

5. To share a directory /var/mystuff from your NFS server as available to everyone,

read-only, and with the root user on the client having root access to the share, first

create the mount directory as follows:

 # mkdir /var/mystuff

Then create an entry in the /etc/exports file that is similar to the following:

 /var/mystuff *(ro,no_root_squash,insecure)

To make the share available, enter the following:

 # exportfs -v -a
 exporting *:/var/mystuff

6. To view the shares available from the NFS server, assuming that the NFS server is

named nfsserver, enter the following from the NFS client:

 # showmount -e nfsserver
 Export list for nfsserver:
 /var/mystuff *

7. To create a directory called /var/remote and temporarily mount the /var/
mystuff directory from the NFS server (named nfsserver in this example) on

that mount point, enter the following as root user from the NFS client:

 # mkdir /var/remote
 # mount -t nfs nfsserver:/var/mystuff /var/remote

8. To add an entry so that the same mount is done automatically when you reboot,

first unmount /var/remote as follows:

 # umount /var/remote

Then add an entry like the following to the /etc/fstab on the client system:

 /var/remote nfsserver:/var/mystuff nfs bg,ro 0 0

To test that the share is configured properly, enter the following on the NFS client

as the root user:

 # mount -a
 # mount -t nfs4
 nfsserver:/var/mystuff on /var/remote type nfs4
 (ro,vers=4,rsize=524288...

Appendix: Exercise Answers

687

9. To copy some files to the /var/mystuff directory, enter the following on the

NFS server:

 # cp /etc/hosts /etc/services /var/mystuff

From the NFS client, to make sure that you can see the files just added to that

directory and to make sure that you can’t write files to that directory from the

client, enter the following:

 # ls /var/remote
 hosts services
 # touch /var/remote/file1
 touch: cannot touch '/var/remote/file1': Read-only
file system

Chapter 21: Troubleshooting Linux
1. To go into Setup mode from the BIOS screen on your computer, do the following:

a. Reboot your computer.

b. Within a few seconds, you should see the BIOS screen, with an indication of

which function key to press to go into Setup mode.

c. The BIOS screen should appear. (If the system starts booting Linux, you didn’t

press the function key fast enough.)

2. From the BIOS Setup screen, do the following to determine whether your computer

is 32-bit or 64-bit, whether it includes virtualization support, and whether your

network interface card is capable of PXE booting.

Your experience may be a bit different from mine, depending on your computer and

Linux system. The BIOS Setup screen is different for different computers. In gen-

eral, however, you can use arrow keys and tab keys to move between different col-

umns and press Enter to select an entry. Here’s how that might work:

a. Under the System heading, highlight Processor Info to see whether you’re using

a 64-bit Technology. Look in the Processor Info section, or similar section on

your computer, to see the type of processor that you have.

b. Under the Onboard Devices heading, highlight Integrated NIC and press Enter.

The Integrated NIC screen that appears to the right lets you choose to enable or

disable the NIC (On or Off) or enable with PXE or RPL (if you intend to boot the

computer over the network).

3. To interrupt the boot process to get to the GRUB boot loader, do the following:

a. Reboot the computer.

b. Just after the BIOS screen disappears, when you see the countdown to booting

the Linux system, press a key (usually the Shift key).

c. The GRUB boot loader menu should appear, ready to allow you to select which

operating system kernel to boot.

Part VII: Appendixes

688

4. To boot up your computer to runlevel 1 so that you can do some system mainte-

nance, get to the GRUB boot screen (as described in the previous exercise) and then

do the following:

a. Use the arrow keys to highlight the operating system and kernel that you

want to boot.

b. Type e to see the entries needed to boot the operating system.

c. Move your cursor to the line that included the kernel. (It should include the

word vmlinuz somewhere on the line.)

d. Move the cursor to the end of that line, add a space, and then type init=bash.

e. Follow the instructions to boot the new entry. You will probably either press

Ctrl+X or press Enter; if there is another screen, type b.

If it worked, your system should bypass the login prompt and boot up directly

to a root user shell where you can do administrative tasks without providing

a password.

5. To look at the messages that were produced in the kernel ring buffer (which shows

the activity of the kernel as it booted up), enter the following from the shell after

the system finishes booting:

$ dmesg | less

Or, on a system using systemd, enter the following:

 $ journalctl -k

6. To install all available package patches using a single operation, run:

apt update && apt upgrade

7. To check to see what processes are listening for incoming connections on your

system, enter the following:

 # netstat -tupln | less

8. To check to see what ports are open on your external network interface, do the

following.

If possible, run the nmap command from another Linux system on your network,

replacing yourhost with the hostname or IP address of your system:

 # nmap yourhost

9. To clear your system’s page cache and watch the effect it has on your memory

usage, do the following:

a. Select Terminal from an application menu on your desktop (it is located on dif-

ferent menus for different systems).

b. Run the top command (to watch processes currently running on your

system), and then type a capital M to sort processes by those consuming the

most memory.

Appendix: Exercise Answers

689

c. From the Terminal window, select File and Open Terminal to open a second Ter-

minal window.

d. From the second Terminal window, become root user (su -).

e. While watching the Mem line (used column) in the first Terminal window, enter

the following from the second Terminal window:

 # echo 3 > /proc/sys/vm/drop_caches

f. The used RES memory should go down significantly on the Mem line. The

numbers in the RES column for each process should go down as well.

10. To view memory and swap usage from Cockpit through your web browser, open your

browser to Cockpit for your host (https://hostname:9090). Then select System ➪

Memory & Swap.

Chapter 22: Understanding Basic Linux Security
1. To check log messages from the systemd journal for the NetworkManager.service,

sshd.service, and auditd.service services, enter the following:

 # journalctl -u NetworkManager.service
 ...
 # journalctl -u sshd.service
 ...
 # journalctl -u auditd.service
 ...

2. User passwords are stored in the /etc/shadow file. To see its permissions, type ls

-l /etc/shadow at the command line. (If no shadow file exits, then you need to

run pwconv.)

The following are the appropriate settings:

 # ls -l /etc/shadow
 -rw-r----- 1 root shadow 1416 Apr 7 10:40 /etc/shadow

3. To determine your account’s password aging and whether it will expire using a

single command, type chage -l user_name. For example:

 # chage -l chris

4. To start auditing writes to the /etc/shadow file with the auditd daemon, enter

the following at the command line:

 # auditctl -w /etc/shadow -p w

To check your audit settings, type in auditctl -l at the command line.

5. To create a report from the auditd daemon on the /etc/shadow file, enter aus-

earch -f /etc/shadow at the command line. To turn off the auditing on that

file, enter auditctl -W /etc/shadow -p w at the command line.

https://hostname:9090

Part VII: Appendixes

690

6. To install the lemon package, damage the /usr/bin/lemon file, verify that the

file has been tampered with, and remove the lemon package, enter the following:

 # apt install lemon
 # cp /etc/services /usr/bin/lemon
 # dpkg -V lemon
 ??5?????? /usr/bin/lemon
 # apt remove lemon

From the original lemon file, the file size, the md4sum, and the modification times

(T) all differ.

7. If you suspect that you have had a malicious attack on your system today and

important binary files have been modified, you can find these modified files by

entering the following at the command line: find directory -mtime -1 for

the directories, /bin, /sbin, /usr/bin, and /usr/sbin.

8. To install and run chkrootkit to see if the malicious attack from the exercise 7

installed a rootkit, choose your distribution and do the following:

a. To install the package, enter apt install chkrootkit at the

command line.

b. To run the check, enter chkrootkit at the command line and review

the results.

9. To find files anywhere in the system with the SUID or SGID permission set, enter

find / -perm /6000 -ls at the command line.

10. To install the aide package, run the aide command to initialize the aide data-

base, copy the database to the correct location, and run the aide command to

check whether any important files on your system have been modified, enter the

following:

 # apt install aide
 # aide.wrapper -i
 # cp /var/lib/aide/aide.db.new /var/lib/aide/aide.db
 # aide.wrapper -C

To make the output more interesting, you could install the lemon package

(described in an earlier exercise) before you run aide.wrapper -i and modify it

before running aide.wrapper -C to see how a modified binary looks from aide.

Chapter 23: Understanding Advanced Linux Security
To do the first few exercises, you must have the gnupg package installed.

1. To encrypt a file using the gpg utility and a passphrase key, enter the follow-

ing command:

$ gpg --batch --output backup.tar.gz.gpg \
 --passphrase mypassword --symmetric backup.tar.gz

Appendix: Exercise Answers

691

2. To generate a key pair using the gpg utility, enter the following:

$ gpg --gen-key

You must provide the following information:

a. Your real name and email address

b. A passphrase for the private key

3. To list out the keys you generated, enter the following:

$ gpg --list-keys

4. To encrypt a file and add your digital signature using the gpg utility, do the

following:

a. You must have first generated a key ring (Exercise 2).

b. After you have generated the key ring, enter:

$ gpg --output EncryptedSignedFile --sign FiletoEncryptSign

5. From the ubuntu.com downloads page, select one of the versions to download. When

the download is complete, go to the help.ubuntu.com/community/UbuntuHashes

page to retrieve the appropriate hash for the image you just downloaded. Then run

the following:

 $ sha256sum ubuntu-20-04-focal-live-server-amd64.iso

6. To determine if the su command on your Linux system is PAM-aware, enter the

following:

 $ ldd $(which su) | grep pam
 libpam.so.0 => /lib64/libpam.so.0 (0x00007fca14370000)
 libpam_misc.so.0 => /lib64/libpam_misc.so.0 (0x00007fca1416c000

If the su command on your Linux system is PAM-aware, you should see a PAM

library name listed when you issue the ldd command.

7. To determine if the su command has a PAM configuration file, type the following:

$ ls /etc/pam.d/su
/etc/pam.d/su

If the file exists, type the following at the command line to display its contents.

The PAM context it uses is any of the following: auth, account, password,

or session.

 $ cat /etc/pam.d/su

8. To list out the various PAM modules on your system, run the following:

$ ls /lib/x86_64-linux-gnu/security/

http://ubuntu.com
http://help.ubuntu.com/community/UbuntuHashes

Part VII: Appendixes

692

9. To find the PAM “other” configuration file on your system, enter ls /etc/pam.d/

other at the command line. An “other” configuration file that enforces Implicit

Deny should look similar to the following code:

$ cat /etc/pam.d/other
#%PAM-1.0
auth required pam_deny.so
account required pam_deny.so
password required pam_deny.so
session required pam_deny.so

10. To find the PAM limits configuration file, enter the following:

$ ls /etc/security/limits.conf

Display the file’s contents by entering the following:

$ cat /etc/security/limits.conf

Settings in this file to prevent a fork bomb look like the following:

@student hard nproc 50
@student - maxlogins 4

Chapter 24: Enhancing Linux Security with AppArmor
1. You can move all AppArmor profiles to “complain” mode using:

aa-complain /etc/apparmor.d/*

2. You can move all AppArmor profiles to “enforce” mode using:

aa-enforce /etc/apparmor.d/*

3. You can list your current profile settings using:

apparmor_status

4. You can display all recent kernel events involving AppArmor using:

dmesg | grep apparmor

5. Using your knowledge of the various classes of files within the /etc/
apparmor.d/ directory, you should be able to dig deeply enough to learn that

the /etc/apparmor.d/tunables/home file can contain virtual home values

for use by profiles (much like the proc file in the same directory set the value

for procfs).

6. The aa-logprof program will scan all of your profiles and both suggest and

execute changes.

Appendix: Exercise Answers

693

Chapter 25: Securing Linux on a Network
1. To install the Network Mapper (aka nmap) utility on your local Linux system

(assuming it’s not installed by default) run sudo apt install nmap at the

command line.

2. To run a TCP Connect scan on your local loopback address, enter nmap -sT

127.0.0.1 at the command line. The ports you have running on your Linux server

will vary. However, they may look similar to the following:

 # nmap -sT 127.0.0.1
 ...
 PORT STATE SERVICE
 25/tcp open smtp
 631/tcp open ipp

3. To run a UDP Connect scan on your Linux system from a remote system:

a. Determine your Linux server’s IP address by entering ip addr at the command

line. The output will look similar to the following, and your system’s IP address

follows inet addr: in the ifconfig command’s output.

 $ ip addr
 ...
 inet 192.168.1.11/24 brd 192.168.1.255 scope global
dynamic enp0s3

b. From a remote Linux system, enter the command nmap -sU IP address at

the command line, using the IP address you obtained in step a. For example:

 # nmap -sU 10.140.67.23

4. To check to see if your system is running the UFW service run:

 systemctl status ufw

5. To open ports in your firewall to allow remote access to your local web service, run

the following:

 sudo ufw allow 443
 sudo ufw allow 80
 sudo ufw enable

6. To determine your Linux system’s current netfilter/iptables firewall policies

and rules, enter iptables -vnL at the command line.

7. To save, flush, and restore your Linux system’s current firewall rules:

a. To save your current rules:

 # iptables-save >/tmp/myiptables

Part VII: Appendixes

694

b. To flush your current rules:

 # iptables -F

c. To restore the firewall’s rules, enter:

 # iptables-restore < /tmp/myiptables

8. To set your Linux firewall’s filter table for the input chain to a policy of DROP, enter

iptables -P INPUT DROP at the command line.

9. To change your Linux firewall’s filter table policy back to accept for the input

chain, enter the following:

 # iptables -P INPUT ACCEPT

To add a rule to drop all network packets from the IP address 10.140.67.23, enter the

following:

 # iptables -A INPUT -s 10.140.67.23 -j DROP

10. To remove the rule that you just added, without flushing or restoring your Linux

firewall’s rules, enter iptables -D INPUT 1 at the command line. This is

assuming that the rule you added is rule 1. If not, change the 1 to the appropriate

rule number in your iptables command.

Chapter 26: Shifting to Clouds and Containers
1. You install LXD using sudo apt install lxd and then initialize it

with lxd init.

2. You can build an Ubuntu 18.04 image on, say, an Ubuntu 20.04 host, using:

apt launch ubuntu:18.04 ubuntu-18

3. You can open an interactive shell within a running LXD container using:

lxc exec ubuntu-18 /bin/bash

4. You can retrieve LXD container IP addresses using sudo lxc list.

5. You install Docker community edition using:

apt install docker.io

6. A Dockerfile running the latest Alpine Linux and containing a file in the /var/

directory would require only two lines:

FROM etopian/alpine-php-wordpress
ADD stats.csv /var/stats.csv

7. Build the Alpine image and launch it using run. With the container running,

you can find its name using docker ps and use that to execute an ls command

inside the container to look for your stats.csv file.

$ docker build -t alpine-stuff .
Sending build context to Docker daemon 22.53kB

Appendix: Exercise Answers

695

Step 1/2 : FROM etopian/alpine-php-wordpress
 ---> c02c59f90188
Step 2/2 : ADD stats.csv /var/stats.csv
 ---> c1f0c25818b9
Successfully built c1f0c25818b9
Successfully tagged alpine-stuff:latest
$
$ docker run -d alpine-stuff
dfc5d3e91866bf7d4e6b844155706180c19e970b89b2f102bd2d878a95f2db4c
$
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
77215eb0eaaf alpine-stuff "/run.sh" 4 seconds ago Up 3 seconds
80/tcp mystifying_joliot
$
$ docker exec mystifying_joliot ls /var
cache
empty
git
lib
local
lock
log
mail
opt
run
spool
stats.csv
tmp
www

Chapter 27: Deploying Linux to the Public Cloud
1. You can create a copy of an existing LXD profile using:

lxc profile copy default newprofile

2. You’ll want to export the existing profile text to a YAML file using profile show:

lxc profile show newprofile > newprofile.yaml

Edit the document, being careful to use appropriate indentation:

$ nano newprofile.yaml

Add:

 user.user-data: |
 #cloud-config
 package_upgrade: true

Part VII: Appendixes

696

 packages:
 - apache2

Import the new text back into the profile:

lxc profile edit newprofile < newprofile.yaml

3. Launch your instance this way:

lxc launch --profile newprofile ubuntu:20.04 newcontainer

4. You can export your image by first listing your images to retrieve your image ID

and then applying the image export command.

lxc image list
lxc image export <image ID> newimage

5. You can follow the GUI wizard through the image, instance type, storage, tags, and

security group steps. Make sure you’ve got a valid SSH key pair that will let you log

on to an SSH session once the instance is running.

Chapter 28: Automating Apps and Infrastructure

with Ansible
1. To install the ansible package, do the following:

$ sudo apt install ansible

2. To add sudo privileges for the user running Ansible commands, run visudo and

create an entry similar to the following (changing joe to your username):

joe ALL=(ALL) NOPASSWD: ALL

3. Open a file named my_playbook.yaml, and add the following content:

- name: Create web server
hosts: localhost
tasks:
- name: Install Apache
 apt:
 name: apache
 state: present

4. To run the my_playbook.yaml playbook in check mode, do the following. (It

should fail because the user does not have privilege to install a package.)

 $ ansible-playbook -C my_playbook.yaml
 ...

 TASK [Install httpd] *************************************

Appendix: Exercise Answers

697

 fatal: [localhost]: FAILED! => {"changed": false, "msg": "This
 command has to be run under the root user.", "results": []}
 ...

5. Make the following changes to the my_ playbook.yaml file:

- name: Create web server
hosts: localhost
become: yes
become_method: sudo
become_user: root
tasks:
- name: Install Apache
 apt:
 name: apache2
 state: present

6. To run the my_playbook.yaml file again to install the Apache package, enter

the following:

$ ansible-playbook my_playbook.yaml
...
TASK [Install Apache] **
changed: [localhost]
PLAY RECAP **
localhost: ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

7. Modify my_playbook.yaml as follows to start the apache2 service and set it so

that it will start every time the system boots:

- name: Create web server
hosts: localhost
become: yes
become_method: sudo
become_user: root
tasks:
- name: Install Apache
 apt:
 name: apache2
 state: present
- name: start Apache
 service:
 name: apache2
 state: started

8. To run an ansible command so that it checks whether or not the apache2 ser-

vice is up on localhost, enter the following:

Part VII: Appendixes

698

 $ ansible localhost -m service \
 -a "name=apache2 state=started" --check
 localhost | SUCCESS => {
 "changed": false,
 "name": "apache2",
 "state": "started",
 "status": { ...

9. To create an index.html file in the current directory that contains the text “Web

server is up” and runs the ansible command to copy that file to the /var/www/
html directory on localhost, do the following (changing joe to your username):

$ echo "Web server is up" > index.html
$ ansible localhost
 -m copy -a \
 "src=./index.html dest=/var/www/html/ \
 owner=www-data group=www-data mode=0644" \
 -b --user joe --become-user root --become-method sudo
host01 | CHANGED => { ...

10. To use the curl command to view the contents of the file you just copied to the

web server, do the following:

$ curl localhost
Web server is up

Chapter 29: Deploying Applications as Containers

with Kubernetes
1. To install MicroK8s on an Ubuntu system, run:

snap install microk8s --classic

2. To create an alias for microk8s.kubectl, run this:

snap alias microk8s.kubectl kubectl

3. To create a deployment that manages a pod running the hello-node container

image, enter the following:

$ kubectl create deployment hello-node \
 --image=gcr.io/hello-minikube-zero-install/hello-node

4. To view the hello-node deployment and describe the deployment in detail, enter

the following:

$ kubectl get deployment
$ kubectl describe deployment hello-node

5. To view the current replica set associated with your hello-node deployment,

enter the following:

$ kubectl get rs

Appendix: Exercise Answers

699

6. To scale up the hello-node deployment to three (3) replicas, enter the following:

$ kubectl scale deployments/hello-node --replicas=3

7. To expose the hello-node deployment outside of the Kubernetes cluster using

LoadBalancer, enter the following:

$ kubectl expose deployment hello-node \
 --type=LoadBalancer --port=8080

8. To get the port number of the exposed hello-node service, enter the following:

$ kubectl describe service hello-node | grep NodePort
NodePort: <unset> 31302/TCP

9. Use the curl command to query the hello-node service, using the IP address

and port number from the previous step. For example:

$ curl 192.168.1.18:31302
Hello World!

10. To delete the hello-node service and deployment, enter the following:

$ kubectl delete service hello-node
$ kubectl delete deployment hello-node

701

Index

((left parenthesis), 61

< (less than), 61

& (ampersand), 61

; (semicolon), 61

) (right parenthesis), 61

| (pipe) character, 119

| (pipe) character, 61, 62

{ } curly braces, 85

(root user) shell prompt, 47

$ (regular user) shell prompt, 47

> (greater than), 61

3D effects, 39

A
absolute path, 81

ACLs (Access Control Lists), 226

commands, 231

default, 228–229

directories, 231

enabling, 229–231

GID bit, 231–232

restricted deletion directory, 233

setfacl command, 227–228

addgroup command, 225

adduser command, 218–220

administration. See also network administration; server

administration; system administration

administrative accounts, 167

administrative utilities, 4

alias command, 66

aliases, 54, 58, 66

ampersand (&), 61

anonymous FTP server, 414

Ansible, 619–620

ad-hoc commands, 629–631

deployment, 623–625

exercise answers, 696–698

installation

host authentication, 626

inventories, 626

playbook creation, 627

playbook running, 628–629

inventories, 621–622

playbooks, 622–623

Apache HTTPD server, 385–386

AppArmor and, 390–393

configuration files

default settings, 395–397

directives, 393–395

firewalls, 390

installing, 386–389

publishing web content, 400–401

securing

file ownership, 389–390

file permissions, 389–390

TLS (Transport Layer Security), 401–406

virtual hosts, 398–399

apache2 package, 271

AppArmor, 275, 553–559

Apache and, 390–393

exercise answers, 692

APT, 205–206

repositories, 209–211

archives, mirror, 187

arithmetic expressions, 63–64

arithmetic in shell scripts, 138–139

ASF (Apache Software Foundation), 386

ash shell, 45

assigning variables, 136

asymmetric key cryptography, 529–530

AT&T, 7–8, 9–10

AT&T UNIX System V Interface Definition (SVID), 10

authentication, 4, 233–234

Ansible installation, 626

key-based (passwordless), 285

PAM (Pluggable Authentication Module),

274, 542–552

remote access, 285–286

user accounts, 233–234

author rights to software, 12

automation, Ansible, 619–620

AWS (Amazon Web Services), 588

EC2 (Elastic Cloud Compute), 610–611

Management Console, 611

AWS CLI (command-line interface), installing, 611–612

Index

702

B
background commands, 63

base images, containers, 590

bash shell, 45, 46–47

characters, 69

command-line editing, 56–58

configuration files, 67

untyped variables, 138–139

batch files. See shell scripts

befs filesystem, 255

Bell Laboratories, 7–9

Berkeley Internet Name Domain service, 271

Berkeley Software Distribution (BSD). See BSD (Berkeley

Software Distribution)

bin directory, 54

/bin directory, 78

BIND (Berkeley Internet Name Domain), 322

BIOS (Basic Input Output System), startup

troubleshooting, 469–471

block cipher, 526

/boot directory, 78

booting

boot order, troubleshooting, 471

dual booting, 190–191

GRUB 2 boot loader, 198

bounties, 19

Bourne, Stephen, 45

Bourne Again Shell, 45

Bourne shell, 45

BSD (Berkeley Software Distribution), 9–10, 13

FreeBSD, 13

License, 15

NetBSD, 13

OpenBSD, 13

btrfs filesystem, 255

built-in commands, 54

C
C programming, 9

CA (certificate authority), signing request,

405–406

cancel command, 379

case command, 142–143

cd command, 80

CentOS, 17

Ceph, 5

certification, 19

cgroups

limiting processes, 129–130

namespaces, 589

checksum, 526

chkconfig command, 350

chmod command, 80, 91–92

chown command, 93–94

chronyd package, 271

CIFS (Common Internet File System), 429

cifs filesystem, 255

Cinder, 609 (OpenStack)

cipher, 526

ciphertext, 525

CISA (Cybersecurity and Infrastructure Security

Agency), 522

CLI (command-line interface), installing, 611–612

cloud computing, 4, 5

exercise answers, 694–696

hybrid cloud, 602–603

private cloud, 602

public cloud, 602

cloud-based installation, 188

cloud-init, 601–603

clustering, 5

Cockpit, 154, 155–157

network interface check, 303–304

storage, 264–265

system activity, 276

user accounts, creating, 216–218

command line

network configuration

alias network interfaces, 318–319

configuration files, 314–318

custom routes, 320–321

Ethernet channel bonding, 319–320

NetworkManager TUI connection,

313–315

nmtui, 312–313

network interfaces

host and domain names, 308

routing information, 306–308

viewing, 304–306

command-line argument, 134

shell variables, 136

command-line completion, 58–59

command-line editing, 56–58

cut and paste, keystrokes, 58

editing, keystrokes, 58

navigating, keystrokes, 57

command-line recall, 59–61

commands. See also shell

~ (tilde), 59

Index

703

addgroup, 225

adduser, 218–220

alias, 66

aliases, 54, 58, 66

arguments, 50, 51

background, 63, 125–126

built-in, 54

cancel, 379

case, 142–143

cd, 80

chkconfig, 350

chmod, 80, 91–92

chown, 93–94

connecting, 61–64

cp, 94–95

cut, 145–146

date, 52

deluser, 223

directories, listing, 71

dmesg, 169

expanding, 61–64

find, 104–113

foreground, 125–126

functions, 54

grep, 113–114

groupmod, 225

history, 56–61

history, keystrokes, 61

history list, 59–61

id, 52–53

information, 71–73

journalctl, 165–166

kill, 126–127

killall, 128

less, 57

let, 138–139

locate, 55–56, 105–107

locating, 53–56

lp, 378–379

lpstat -t, 379

ls, 50, 80, 86–90

lsmod, 172–173

lsusb, 170

lxc, 590–592

metacharacters, 61

mkdir, 80

mkfs, 263–264

mv, 95

nice, 128

nmtui, 312–313

options, 50, 51

path, 53–54

PATH variable, 54

ps, 118–120

pwd, 50, 80

read, 137

renice, 128

reserved words, 54

rmdir, 95

running, 50–56

sed, 146

sequential, 62

shell history, 56–61

ssh, 279

su, 154, 159

sudo, 154, 158–160

syntax, 51–53

top, 120–121

tr, 146

troff, 62

usermod, 222–223

variables, 59

expanding, 64

vi, 56

vimtutor, 104

which, 55

whoami, 49

Compiz, 38

compliance reviews, 521

configuration

default, 272

location block, 393

shell, 67–68

configuration block, 393

configuration files, 272

system administration

/etc directory, 163

/etc/apache2 directory, 163

/etc/cron directory, 163

/etc/cups directory, 163

/etc/default directory, 163

/etc/mail directory, 163

/etc/postfix directory, 163

/etc/ppp directory, 163

/etc/rc?.d directory, 163

/etc/security directory, 163

/etc/skel directory, 163

/etc/systemd directory, 164

$HOME and, 163

text editors, 162

connecting commands, 61–64

container images, 588–590

Index

704

container registries, 588–590

containers, 587, 588. See also LXD (Linux

Container project)

deploying

Docker, 593–600

LXD, 590–592

enterprise, 600

exercise answers, 694–695, 698–699

Kubernetes, 588

namespaces, 588

copyright, 12

cp command, 94–95

cron, software updates and, 478

cryptographic ciphers, 527

asymmetric keys, 529–530

digital signatures, 533–535

email message encryption, 532–533

key pair generation, 530–532

public key sharing, 532

symmetric keys, 529

tar archive files, 529

cryptography, 525–526

block cipher, 526

cipher, 526

ciphertext, 525

decryption, 526

deskop, 541

directories, encrypting, 537–539

encryption, 525

encryption/decryption, 527–535

file integrity, 535–536

files, encrypting, 539–540

hashing, 526–527

implementing, 535–541

installation, file system encryption, 536–537

keys, 526

plain text, 525

stream cipher, 526

tools, 540–541

csh (C shell), 45

CUPS (Common UNIX Printing System), 363

configuring

from browser, 364

manually, 365

drivers, 364

IPP, 364

printer browsing, 364

printer classes, 364

implicit classes, 364

printing to Windows, 365

shared printers, 380–381

UNIX print commands, 364

web-based administration, 366

automatic detection, 367–368

remote printing, 367

cups package, 271

curly braces (), 85

cut command, 145–146

D
DAC (discretionary access controls), 553–554

daemon processes, 5, 327

group permissions, 273

init, 328–335

port numbers, 273

as service, 327

systemd, 328–335

user permissions, 273

dash shell, 45

datasources, 603

date command, 52

DEB packaging, 205

Debian, 16, 17

Debian packaging

APT, 205–206

repositories, 209–211

apt update command, 206

dpkg, 211–214

decryption, 526

default gateway, 301

defragmentation, 191

deluser command, 223

desktop computers, network administration, 300–312

desktops, 14. See also GNOME desktop; KDE desktop

exercise answers, 649–650

GNOME 3, 23

installing, 23

lightweight systems, 23

LXDE, 21, 24

Unity graphical shell, 38

window manager, 23

X Window System and, 22

Xfce, 21, 24

/dev directory, 78

devices

iSCSI, 195

multipath, 194

df command, 293–294

DHCP server

Linux as, 322

request response, 301–302

Index

705

digital signatures, 533–535

directories, 77

~ (tilde), 81

bin, 54

/bin, 78

/boot, 78

/dev, 78

encrypting, 537

/etc, 78

executable files, 87

files, 77

hidden files, 88

hierarchies, 78

home, 88

/home, 78

/lib, 78

listing, 86–90

listing contents, 71

/media, 78

/mnt, 78

number of characters, 87

/opt, 79

paths, absolute, 81

/proc, 79

regular files, 87

restricted deletion directory, 233

root, 77

/root, 79

/sbin, 79

/snap, 79

symbolic links, 87

/sys, 79

/tmp, 79

/usr, 79

/var, 79

directory server, 271

disaster recovery, 496

disk space requirements, 179

disk storage, 237–238

disks, installation and, 183

distributions, 16

DistroWatch, 17

dmesg command, 169

DNS (Domain Name System) server, 271

Linux as, 322–323

Docker, 588

Community Edition, 593

container deployment, 593–600

docker command, 588

Docker Desktop, Kubernetes, 636

Docker Hub, 593

Dockerfile, 590

domain name server, 301

donations, 20

DSA keys, 285

du command, 294

dual booting, 190–191

dumb terminal, 124

DVD drive, installation and, 179

E
EC2 (Elastic Cloud Compute), 610–618

ecryptfs utility, 538–539

emacs text editor, command-line editing and, 56

email message encryption, 532–533

encryption, 525. See also cryptography

cryptographic ciphers, 527

keys, 527–535

email messages, 532–533

enterprise, 19, 189

containers in, 600

network administration, 300

Linux as DHCP server, 322

Linux as DNS server, 322–323

Linux as proxy server, 323

Linux as router, 321–322

Samba, 444

server administration

automated deployment, 295

host systems, generic, 295

management and worker system separation, 295

user management, 225–226

permissions, 226–233

environment variables, 65–66, 70

custom, 70

PATH, 70

TMOUT, 70

escaping characters, 135

/etc directory, 78, 163

bash.bashrc file, 164

crontab file, 164

fstab file, 164

group file, 164

gshadow file, 164

host.conf file, 164

hostname file, 164

hosts file, 164

mtab file, 164

mtools.conf file, 164

nsswitch.conf file, 164

ntp.conf file, 164

Index

706

passwd file, 164

printcap file, 164

profile file, 165

protocols file, 165

rpc file, 165

rsyslog.conf file, 165

services file, 165

shadow file, 165

shells file, 165

sudoers file, 165

/etc/apache2 directory, 163

/etc/cron directory, 163

/etc/cups directory, 163

/etc/default directory, 163

/etc/mail directory, 163

/etc/postfix directory, 163

/etc/ppp directory, 163

/etc/rc?.d directory, 163

/etc/security directory, 163

/etc/skel directory, 163

/etc/systemd directory, 164

Ethernet, channel bonding, 319–320

execute permission, 90

executing, shell scripts, 134

exfat filesystem, 256

expanding commands, 61–64

expressions, arithmetic, expanding, 63–64

ext2 filesystem, 256

ext3 filesystem, 255

ext4 filesystem, 255

F
FCoE (Fibre Channel over Ethernet Devices), 195

Fedora, 17

Fibre Channel, 5

file management

exercise answers, 668–670

metacharacters

brace expansion, 85–86

file-matching, 82–84

file-redirection, 84–85

file ownership, 90

Apache, 389–390

changing, 93–94

file permissions, 90

changing, chmod, 91–93

default, 93

execute, 90

read, 90

setting, 90

umask and, 93

write, 90

files, 77

copying, 94–95

deleting, 95

encrypting, 539–540

hidden, 88

listing, 86–90

locate command, 105–107

locating

find command, 107–113

grep command, 113–114

by name, 105–107

moving, 94

filesystems, 4, 77, 237, 448

commands, 80–82

crackers, 277

creating, 263–264

directories, 77–78

exercise answers, 653–654

Linux versus Windows-based, 79–80

mkfs command, 263–264

mounting, 254–255

disk images, loopback and, 262

fstab file, 258–260

mount command, 261

supported, 255–257

swap areas, 257–258

umount command, 262

Nautilus file manager, 34

NFS, sharing, 450–454

NFS server, 454–464

security

dangerous permissions, 506–507

locking down, 508–509

password files, 507–508

system administration and, 154

Windows versus Linux, 239

find command, 104–113, 294–295

fingerprint, 526

firewalls, 570–571

Apache, 390

implementing, 572–583

iptables

chains, 574–575

Drop policy, 578–579

IP address blocking, 580–581

policies, 575–576

policy modification, 576–578

port blocking, 581–583

/etc directory (continued)

Index

707

protocol blocking, 581–583

rule modification, 576–578

rules, 575–576

tables, 574

targets, 575–576

UFW (Uncomplicated Firewall), 572–573

firmware RAID devices, 194

FOSS (Free and Open Source Software), 12, 564

free distribution, 12

free software, 12

FreeBSD, 13

FSF (Free Software Foundation), 11, 12

FTP (File Transfer Protocol), 35

client, 422–426

gFTP, 425–426

server, 271, 413–414

accessing from browser, 422–423

accessing with lftp, 423–425

active connection, 414

anonymous FTP server, 414

command-oriented, 414

configuring, 418–422

exercise answers, 682–684

graphical tools, 414

passive connection, 414

vsftpd package, 413–418

G

gedit text editor, 98

Gentoo, 16

gfs2 filesystem, 257

Gibson Research Corporation, 522

Glance (OpenStack), 610

global register expression print. See grep command

GlusterFS, 5

GNOME 3, 22, 23

Activities screen, 25

applications, 27–30

applications bar, opening windows, 26

Applications list, 26

Applications Menu, 32

Bluetooth, 31

command box, 31

desktops, 30–33

devices, 31

Esc key, 31

file management, 33–35

live image, 24–25

Live System User, 25

Music Integration, 33

Nautilus file manager, 33–35

navigation

keyboard, 30–31

mouse, 25–30

networks, configuring, 31

Notifications Alert, 33

Places Status Indicator, 32

Presentation Mode, 33

Rhythmbox, 37

search box, 31

shell extensions, 32–33

sound, 31

stopping, 37

System Settings window, 32

window list, 32

window menu, 28–29

windows

opening from applications bar, 26

selecting, 30

Windows key, 30

workspaces, multiple, 28

GNOME desktop, 14, 21, 40

gedit text editor, 98

shell extensions, 32–33

Unity graphical shell, 37–38

GNOME Terminal, 48

GNOME Tweak Tool, 33, 34

GNU Hurd project, 12

GNU project, 11–12

gpg utility, 531

GPL (GNU Public License), 12

graphical administration tools

Cockpit, 155–157

Kubernetic, 157

OpenStack, 157

Webmin, 157

graphical desktop interfaces, 4

graphical tools, FTP servers and, 414

grep command, 113–114, 145

group accounts, 223–225

groupmod account, 225

GRUB 2 boot loader, 198

troubleshooting, 471–472

GUID (Globally Unique Identifier) partition tables, 240

GUIs (graphical user interfaces), 45

H
hard drives, partitioning, 195–197, 239–249

hardware, 4

checking, 168–171

Index

708

loadable modules, 172–174

removable, 171–172

system administration, 167–174

hashing, 526–527

history command, 56–61

$HOME, 163

home directory, 88

/home directory, 78

Horizon (OpenStack), 609

hpfs filesystem, 256

HTTP (hypertext transfer protocol), 35

HTTPS (hypertext transfer protocol secure), 35

I
id command, 52–53

IDS (Intrusion Detection System), 519–521

if statements, 139–142

if ... then statements, 139–142

images, 588

Infiniband, 5

init, 328–329

BSD init, 329

runlevels, 331–333

SysVinit, 329

init systems, 327

Systemd, 328

SysVinit, 328

installation, 177

architectures, 178

boot options, 192–194

cloud-based, 188

desktops, 23

disks and, 183

exercise answers, 662–663

GRUB 2 boot loader, 198

Installation type, 182

keyboard layout, 181

Linux in enterprise, 189

partitions and, 183

permanent, 22

from scratch, 189

server, 270–271

software, 35–37, 181–182

storage, specialized, 194–195

system requirements, 178–179

Ubiquity and, 180–185

Ubuntu desktop, 180–185

upgrading from scratch, 189

virtualization, 191–192

IP addresses, 301

aliases, 309–310

manual setup, 308–309

routes, 310–311

iptables, 274

chains, 574–575

Drop policy, 578–579

IP address blocking, 580–581

policies, 575–576

policy modification, 576–578

port blocking, 581–583

protocol blocking, 581–583

rule modification, 576–578

rules, 575–576

tables, 574

targets, 575–576

iSCSI devices, 195

iso9660 filesystem, 256

J
jed text editor, 98

jfs filesystem, 257

joe text editor, 98

journalctl command, 165–166

K
kafs filesystem, 256

Kali Linux, 17

kate text editor, 98

KDE (K Desktop Environment), 14, 23

kedit text editor, 98

Kerberos, 271

kernel

first public version, 13–14

GNU project, 12

troubleshooting, 472–476

VMs (virtual machines), 587

Kernighan, Brian, 9

key pair generation, 530–532

key-based (passwordless) authentication, 285

keyboard layout, 181

keys (cryptography), 526, 527

asymmetric keys, 529–530

digital signatures, 533–535

email message encryption, 532–533

key pair generation, 530–532

public key sharing, 532

symmetric keys, 529

tar archive files, 529

hardware (continued)

Index

709

Keystone (OpenStack), 609

kill signals, 126–128

killing processes

kill command, 126–127

killall command, 128

KNOPPIX, 16

ksh (Korn shell), 45

Kubernetes, 633–634

applications, 635–636

deploying, 638–639

scaling down, 646

scaling up, 644–645

services, 643–644

clusters, 634

containers, 588

Docker Desktop, 636

exercise answers, 698–699

installing, 637–638

interfaces, 636

load balancing, 645–646

master node, 634–635

MicroK8s, 636–638

pods, 634, 639–643

services, 643–644

deleting, 646–647

storage, 634

tutorials, 636

worker node, 634, 635

Kubernetic, 157

KVM, 191

L
LAMP stack, 3

laptops, network administration, 300

LDAP (Lightweight Directory Access Protocol),

234, 271

lease time, 301

left parenthesis ((), 61

less command, 57

let command, 138–139

LGPL (GNU Lesser General Public License), 15

/lib directory, 78

lightweight systems, 23

Linux

background, 3–4

compared to other systems, 6

professional opportunities, 18–20

Torvalds, Linus, 7

Linux Mint, 17

listing processes

ps, 118–120

System Monitor, 122–123

top, 120–121

live image, GNOME 3 and, 24–25

loadable modules

listing, 172–173

loading, 173–174

lsmod command, 172

modprobe command, 173

removing modules, 174

rmmod command, 174

locate command, 55–56, 105–107

location block, 393

log files, monitoring, 510–512

logging, configuring, 275–276

lp command, 378–379

lpstat -t command, 379

ls command, 50, 80, 86–90

lsmod command, 172–173

lsusb command, 170

LTS (long term support) release, 38, 189

LUKS (Linux Unified Key Setup), 536

LVM (Logical Volume Manager), 238

creating logical volumes, 252–254

existing, 249–252

growing volumes, 254

lxc commands, 590–592

LXD (Linux Container project), 588

containers, deploying, 590–592

images, 590, 607–608

creating for deployment, 604–610

OpenStack and, 608–610

profiles, 604–607

LXDE (Lightweight X11 Desktop Environment), 21, 24

LXLE, 17

M
MaaS (Metal as a Service) server, 185–186

MAC (mandatory access control), AppArmor, 275

mail server, 271

man pages, 49, 72

sections, 73

sudo, 161

sudoers, 161

Mandiriva, 16

Mandrake, 16

MBR (master boot record) partition tables,

239

/media directory, 78

memory, 4

Index

710

killing processes, 489

page caches, dropping, 489

troubleshooting, 485–490

memory management, 4

message digest, 526

metacharacters, 61–64

((left parenthesis), 61

< (less than), 61

& (ampersand), 61

; (semicolon), 61

) (right parenthesis), 61

| (pipe) character, 61, 62

{ } curly braces, 85

> (greater than), 61

file management

brace expansion characters, 85–86

file-matching, 82–84

file-redirection, 84–85

Metacity, 38

keyboard shortcuts, 39

virtual workspaces, 39

workspace switcher, 39

meta-data, cloud computing, 603

MicroK8s, installing, 637–638

Minix, 7

minix filesystem, 256

mirroring, archives, 187

MIT license, 16

mkdir command, 80

mkfs command, 263–264

/mnt directory, 78

mount table, 589

mounting filesystems, 254–255

disk images, loopback and, 262

fstab file, 258–260

mount command, 261

supported, 255

befs, 255

btrfs, 255

cifs, 255

exfat, 256

ext2, 256

ext3, 255

ext4, 255

gfs2, 257

hpfs, 256

iso9660, 256

jfs, 257

kafs, 256

minix, 256

msdos, 256

ncpfs, 256

nfs, 256

ntfs, 256

proc, 256

reiserfs, 256

squashfs, 256

swap, 256

ufs, 256

umsdos, 256

vfat, 256

xfs, 257

swap areas, 257–258

umount command, 262

mount-level security, 447

Mozilla license, 16

msdos filesystem, 256

MTA (Mail Transport Agent),

271

multipath devices, 194

multitasking, 117, 153

multiuser features, 153

mv command, 95

N
namespaces, 588–589

nano text editor, 98

Nautilus file manager (GNOME)

Connect to Server, 35

filesystem organization, 34

folders, creating, 35

Home folder, 34

remote content, 35

ncpfs filesystem, 256

nedit text editor, 98

Net/1, 13

Net/2, 13

NetBSD, 13

network administration, 299

command line

alias network interfaces, 318–319

configuration files, 314–318

custom routes, 320–321

Ethernet channel bonding, 319–320

NetworkManager TUI connection, 313–315

nmtui, 312–313

desktop computers, 300

configuring, 300–312

enterprise, 300

Linux as DHCP server, 322

Linux as DNS server, 322–323

Index

711

Linux as proxy server, 323

Linux as router, 321–322

/etc/hostname file, 315

/etc/hosts file, 315

/etc/nsswitch.conf file, 316

/etc/resolv.conf file, 316

exercise answers, 674–675

interfaces

aliases, 318–319

Cockpit, 303–304

command line, 304–308

NetworkManager, 302–303

troubleshooting, 480

laptops, 300

servers, 300

Network Mapper, 563–566

network security

exercise answers, 693–694

firewalls, 570–571

implementing, 572–583

iptables, 574–583

UFW (Uncomplicated Firewall), 572–573

services

auditing, 561–570

nmap, 563–566

network services, 561–562

advertisements, 566–570

nmap, 563–566

port scans, 563–564

Network Time Protocol server, 271

NetworkManager

DHCP service request, 300

interfaces, activating, 300

network interface check, 302–303

TUI screen, 313–315

networks

interface

namespaces, 589

system administration, 154

proxy connections, 311–312

troubleshooting, 479–485

VPN (virtual private networks), 299

wired, 299

wireless, 299

Neutron, 609 (OpenStack)

NFS (Network File System) file server, 271, 447

/etc/exports file, 450–454

access options, 452

hostnames, 451–452

user mapping options, 453

exercise answers, 685–687

filesystems, 455

autofs, 460–463

exporting shared, 454

manual mount, 456–457

mounting at boot time, 457–460

shares, viewing, 456

sharing, 450–454

unmounting, 463–464

installation, 448–449

mount-level security, 447

network setup, 447

security, 454–455

starting service, 449–450

nfs filesystem, 256

nice command, 128

nice values, 128–129

nine-bit permissions, 90

NIS (Network Information Service),

234, 271

nmap

network service access, 563–566

network service advertisements, 566–570

port states, 564

nmtui command, 312–313

Nova, 609 (OpenStack)

ntfs filesystem, 256

ntpd package, 271

O
OEM (original equipment manufacturers), 10

one-command actions, 142

Open Source Development Labs, 14

Open Source Initiative, 12

open source license rules, 15

open source software, 12

OpenBSD, 13

OpenStack, 157

Cinder, 609

cloud images and, 608–610

Glance, 610

Horizon, 609

Keystone, 609

Neutron, 609

Nova, 609

Swift, 610

operators, test expressions, 141–142

/opt directory, 79

OSI (Open Source Initiative), 14–16

Index

712

P
packet forwarding, Linux as router, 322

PAM (Pluggable Authentication Module), 274

contexts, 543

control flags, 544–545

module interfaces, 543

modules, 545, 551

official web siste, 552

PAM-aware applications, 542, 546–547

password enforcement, 550–551

resource limits, 547–549

sudo, 551

system event configuration, 545–546

time restrictions, 549–550

types, 543

Panels, 38, 40–41

partitions, 239

GUID (Globally Unique Identifier) partition

tables, 240

installation and, 183

LVM (Logical Volume Manager), 238

creating logical volumes, 252–254

existing, 249–252

growing volumes, 254

multiple-partition disks, 245–249

partition tables, MBR (master boot record),

239–240

single-partition disks, 241–245

viewing partitions, 240–241

Windows, resizing, 190

passwordless (key-based) authentication, 285

passwords

best practices enforcement, 502–504

changing, 501–502

hashed passwords, 504

PAM (Pluggable Authentication Modules), 550–551

rainbow tables, 504–505

selecting, 500–501

server, 274

setting, 501–502

paths, absolute path, 81

PE (Physical Extent), 250

permissions, 90

Apache, 389–390

changing, chmod, 91–92

default, 93

execute, 90

group accounts, 225–226

nine-bit, 90

read, 90

setting, 90

umask and, 93

write, 90

persistence services, SysVinit, configuring, 350–353

physical security, 495–496

disaster recovery, 496

filesystem, 506–509

passwords, 500–506

services, 509–510

software, 509–510

user accounts, 496–500

PID (process ID), 117, 328

pipe (|) character, 61, 62

plain text, 525

plain-text login prompt, 46

port numbers, 273

port scans, 563

portability, 8–9

positional parameters, 136

POSIX (Portable Operating System Interface), 10

PostgreSQL, 271

postgresql package, 271

postgresql-server package, 271

print server, 271

configuring

shared CUPS printer, 380–381

shared Samba printer, 381–383

exercise answers, 678–680

Print Settings window, 368–369

local printers, 369–372

remote printers, 372–375

printing

commands

cancel, 379

lp, 378–379

lpstat -t, 379

CUPS, 363

configuring, 364–365

drivers, 364

implicit classes, 364

IPP, 364

printer browsing, 364

printer classes, 364

printing to Windows, 365

UNIX print commands, 364

printer setup

adding automatically, 365–366

Print Settings window, 368–375

web-based CUPS admin, 366–368

to Windows, 365

privileges, 158–161

Index

713

/proc directory, 79

/proc filesystem, 118, 256

process table, 589

processes, 4, 117

background, 124–126

exercise answers, 656–657

foreground, 124–126

killing, 121

limiting, groups and, 129–130

listing

ps, 118–120

System Monitor, 122–123

top, 120–121

paging through, 119

priority setting, 128–129

renicing, 121, 123

runaway, 118

running, displaying, 120–121

professional opportunities, 18–20

programming constructs, 139–142

programming tools, 5

proxy connections, 311–312

proxy servers, Linux as, 323

ps command, 118–120

public key sharing, 532

pulling container images, 589

pushing container images, 589

pwd command, 50, 80

R
RAID, firm RAID devices, 194

RAM (random access memory), 4, 237

access speed, 238

requirements, 179

read command, 137

read permission, 90

real-time computing, 5

Red Hat Linux, 16, 17

CentOS, 17

Fedora, 17

RHEL (Red Hat Enterprise Linux), 17

reference variables, 136

registries, container registries, 589–590

reiserfs filesystem, 256

remote access

Secure Shell tools, 277–278

client tools, 278–284

key-based authentication, 285–286

openssh-server package, 278

server administration and, 269

remote printers

configuring, 372–373

CUP, adding, 373

UNIX (LDP/LPR), 373

Windows (SMB), 374–375

renice command, 128

reserved words, shell, 54

restricted deletion directory, 233

RHEL (Red Hat Enterprise Linux), 17

root account, 158

Rhythmbox, 37

right parenthesis ()), 61

Ritchie, Dennis, 8, 9

rmdir command, 95

/root directory, 77, 79

root user, 153, 158–159

security, 497

routers, Linux as, 321–322

RPM packaging, 205

RSA keys, 285

RSS (resident set size), 119

rsyslog, 270–271, 287

log messages, 289

loghost, 289–290

rsyslogd, 166, 289–290

runaway processes, 118

runlevels, 331–333

S
Samba

access restriction, 440–441

configuration

[global] section, 435–436

[homes] section, 437

[printers] section, 437–441

shared folder, 438

shares, 438–439

enterprise, 444

firewall and, 434

installing, 430–431

printers, 381–383

processes, viewing, 431–435

server, 429–430

exercise answers, 684–685

shares access, 441–444

smbclient command, 433

smbd daemon, 431–435

systemctl commands, 431–435

samba package, 271

installing, 430–431

Index

714

SANS Institute, 522

sar (System Activity Reporter), 276, 291–293

/sbin directory, 79, 161

SCO (Santa Cruz Operation), 10

Secure Shell tools, 277–278

client tools, 278–284

file copy between systems, 281–282

key-based authentication, 285–286

openssh-server package, 278

rcp command, 281–284

rsync command, 281–284

scp command, 281–284

sftp command, 284

ssh command, 279

remote execution and, 280–281

Secure WebDav, 35

security

compliance reviews, 521

cryptography, 525–526

exercise answers, 689–692

filesystem monitoring

IDS (Intrusion Detection System),

519–521

rootkits, 518–519

scanning filesystem, 516–518

software package verification, 516

virus detection, 518

networks (See network security)

PAM, 541–542

authentication process, 542–546

contexts, 543

control flags, 544–545

module interfaces, 543

modules, 545

PAM-aware applications, 542

system event configuration, 545–546

types, 543

physical, 495–496

disaster recovery, 496

filesystem, 506–509

passwords, 500–506

services, 509–510

software, 509–510

user accounts, 496–500

security reviews, 522

server administration and, 270

system monitoring

bad password detection, 514–515

log files, 510–512

user accounts, 512–514

security reviews, 522

sed command, 146

self-signed certificates, 403–405

SELinux (Security Enhanced Linux), 390–393

semicolon (;), 61

sequential commands, 62

server administration, 269

checking servers, 277

chkconfig command, 343–344

enterprise, 295

exercise answers, 670–674

init, 328–343

monitoring, 270

Cockpit activity, 276

crackers in filesystem, 277

logging configuration, 275–276

system activity reports, 276

up-to-date software, 277

remote access, 269

Secure Shell tools, 277–286

runlevel, default, 353–354

securing server

AppArmor, 275

configuration file security settings, 275

firewalls, 274

passwords, 274

TCP wrappers, 274–275

security, 270

server configuration, 272

server installation, 270–271

service status, 343–346

setting servers, 277

starting server, 272–273

daemon processes, 273

system logging

configuration, 286–291

logwatch, 290–291

system resources, sar (System Activity

Reporter), 291–293

system space

checking disk usage, 294

df, 293–294

disk consumption, 294–295

displaying, 293–294

du, 294

find, 294–295

systemd, new services, 357–360

SysVinit

checking services, 343–346

default runlevel, 353–354

new services, 355–357

stopping/starting services, 346–349

Index

715

servers

network administration, 300

system administration and, 154–155

services

exercise answers, 675–678

SysVinit, 343–346

set GID bits, 232

set UID bits, 232

sh shell, 50

shell, 4, 45. See also commands

ash shell, 45

bash shell, 45

configuring, 67–68

csh (C shell), 45

dash shell, 45

escaping characters, 135

exercise answers, 650–653

exiting, 67

interface, 46

ksh (Korn shell), 45

prompt, setting, 68–69

reserved words, 54

root user, 158–159

selecting, 49–50

sh shell, 50

tcsh shell, 45

variables, environment variables, 70

shell prompt, 46

$ (regular user), 47

(root user), 47

shell scripts, 133

arithmetic in, 138–139

backup script, 148–149

case command, 142–143

command-line argument, 134

debugging, 134

executing, 134

exercise answers, 657–659

for...do loops, 143–144

if..then statements, 139–142

interpreter, 134

programming constructs, 139–145

telephone list example, 147–148

test expressions, 141–142

text manipulation, 146–147

until...do loops, 144–145

while...do loops, 144–145

shell variables, 64, 135–136

command-line arguments, 136

environment variables, 65–66

parameters

expansion, bash, 137–138

reading in, 137

positional parameters, 136

signature, 526

Slackware, 16

SMB (Server Message Block) protocol, 429

/snap directory, 79

software

downloads, 187

free software, 12

installation, 35–37, 181–182

system administration and, 154

managing additional, 35–37

open source software, 12

security advisories, 509–510

subscriptions, 19

system software administration, 277

updates, 509

troubleshooting, 478

software management, 201–202

desktop applications, 203

exercise answers, 663–664

software packaging, 204–205

dpkg, 211–214

troubleshooting, 476–479

Software window, 202

source code, UNIX, 10

specialized storage, 194–195

SQL server, 271

squashfs filesystem, 256

squid package, 323

SSH (Secure Shell), 269

ssh command, 279

SSL (Secure Sockets Layer), 401

CA (certificate authority), signing request, 405–406

configuration, 402–403

key generation, 403–405

self-signed certificates, 403–405

sticky bits, 88

storage

Cockpit, 264–265

disk storage, 237–238

LVM, 238

specialized, 5, 194–195

temporary, 237

volume groups, 238

stream cipher, 526

su command, 154

subnet masks, 301

subscriptions, 19

sudo command, 154, 158–160

Index

716

superuser, 153

SVID (System V Interface Definition), 10

swap filesystem, 256

swap partitions, 237

swap space, 4, 238, 486–487

Swift (OpenStack), 610

symmetric key cryptography, 529

/sys directory, 79

sysstat package, sar, 291–293

system administration, 153–154

administrative accounts, 167

Cockpit, 154

commands

journalctl, 165–166

/sbin directory, 161

su, 154

sudo, 154

/usr/sbin directory, 161

configuration files, 162

/etc directory, 163, 164–165

/etc/apache2 directory, 163

/etc/cron directory, 163

/etc/cups directory, 163

/etc/default directory, 163

/etc/mail directory, 163

/etc/postfix directory, 163

/etc/ppp directory, 163

/etc/rc?.d directory, 163

/etc/security directory, 163

/etc/skel directory, 163

/etc/systemd directory, 164

$HOME and, 163

exercise answers, 660–662

filesystems and, 154

graphical administration tools, 155–157

hardware, 167–168

log files, 165–166

network interface, 154

privileges, 154

invoking, 158–161

root user, 158–159

security, setup, 155

servers and, 154–155

software installation and, 154

sudoers, 160

systemd journal, 165–166

temporary access, 159–160

user accounts, 154

system administrator, 153

system logging

configuring, 286

logwatch, 290–291

rsyslog, 287–290

system logging server, 270–271

System Monitor, processes, listing, 122–123

system monitoring

bad password detection, 514–515

log files, 510–512

user accounts, 512–514

system requirements, 178–179

system resources, sar (System Activity

Reporter), 291–293

system space

checking disk usage, 294

df, 293–294

disk consumption, 294–295

displaying, 293–294

du, 294

find, 294–295

systemd, 328–329

disabling services, 352–353

enabling services, 351

initialization, 335–343

journal, 165–166

new services, 357–360

reloading services, 349

restarting services, 348–349

starting services, 348

stopping services, 347–348

SysVinit, backward compatibility, 341–343

target units, 335, 336

units, 335

SysVinit, 328, 329–330

default runlevel, 353–354

new services, 357–360

services

checking, 343–346

stopping/starting, 346–349

systemd backward compatibility, 341–343

T
tar archive files, 529

tarballs, 204–205

TCP (Transmission Control Protocol), port scans, 563

TCP Wrappers, 274–275

tcsh shell, 45

terminal emulator programs, 48

Terminal window

bash shell, 46–47

GNOME Terminal, 48

launching, 48

Index

717

virtual consoles, 49

test expressions, operators, 141–142

text editors. See also gedit text editor; vi; vim

configuration files, 162

gedit, 98

jed, 98

joe, 98

kate, 98

kedit, 98

nano, 98

nedit, 98

text files, exercise answers, 654–656

text manipulation

delete characters, 146

grep, 145

remove sections, 145–146

translate characters, 146

then statements, 139–142

Thompson, Kin, 8

~tilde, 59, 81

TLS (Transport Layer Security), 401–406

/tmp directory, 79

top command, 120–121

Torvalds, Linus, 7, 13–14

tr command, 146

training, 19

troff command, 62

troubleshooting

BIOS setup, 470–471

boot order, 471

boot-up, 467–476

exercise answers, 687–689

memory, 485–486

finding issues, 486–490

networking, 479–485

software packages, 476–479

startup

BIOS, 469–471

dependency-based, 468

from firmware, 469–471

from GRUB 2 boot loader, 471–472

kernel, 472–476

resource usage, 468

System V compatibility, 468

targets, 468

UEFI, 469–471

U
Ubiquity, desktop installation, 180–185

Ubuntu, 17

downloading, 22

installation, permanent, 22

obtaining, 22

server installation, 185–188

Ubuntu desktop, installing, 180–185

UDP port scan, 564

UEFI (Unified Extensible Firmware Interface), startup

troubleshooting, 469–471

ufs filesystem, 256

UID (user ID), 589

umask, 93

umsdos filesystem, 256

Unity graphical shell, 37–38

background, 40

Compiz, 38

desktop, 38

fonts, 40

Metacity, 38–39

Panels, 38, 40–41

themes, 40

UNIX, 7, 8–9

commercial, 9–11

source code, 10

UNIX Laboratory, 10

UnixWare, 10

until ... do loops, 144–145

untyped variables, 138–139

upgrades, from scratch, 189

USB drives, 171–172

installation and, 179

user access, 4

user accounts

ACLs (Access Control Lists), 226

default, 228–229

directories, 231

enabling, 229–231

GID bit, 231–232

restricted deletion directory, 233

setfacl command, 227–228

authentication domains, 233–234

centralized databases, 233–234

counterfeit, 512–513

creating, 215

adduser command and, 218–220

Cockpit, 216–218

defaults, setting, 220–221

deleting users, 223

enterprise, 225–226

exercise answers, 664–668

group accounts, 223–225

Index

718

modifying, 222–223

monitoring, 512–514

security, 496–500

system administration, 154

temporary account expiration, 497–498

unused, removing, 498–500

user interface, 4

user-data, cloud computing, 603

usermod command, 222–223

users

root user, 153

superuser, 153

USL (UNIX System Laboratories), 10–11

/usr directory, 79

/usr/sbin directory, 161

V
/var directory, 79

variables

assigning, 136

commands, 59

expanding, 64

environment variables, 65–66, 70

custom, 70

referencing, 136

shell, 64–67

command-line argument, 136

environment variables, 65–66

positional parameters, 136

untyped, 138–139

vfat filesystem, 256

vi command, 56

vi text editor, 98, 99

adding text, 99–100

changing text, 101–102

command mode, 99

copying text, 101–102

cursor location, 99

deleting text, 101–102

ex mode, 104

exiting, 102–103

input mode, 99

movement commands, 103

moving in text, 100–101

repeating commands, 102

searches, 103–104

vim, 99

vimtutor command, 104

virtual console, 49

shell interface, 46

virtual hosts, Apache, 398–399

virtual memory, troubleshooting, 488

VirtualBox, 191

virtualization, 5

installation and, 191–192

VMs (virtual machines), 587, 588

VMware, 191

volume groups, 238

VPN (virtual private network), 299

vsftpd package, 271, 413

default values, 416

file permissions, 418

installing, 415

lifecycle, 416–417

securing, 417

VSZ (virtual set size), 119

W
Wayland, 22

web servers, 271

access forbidden errors, 408–409

Apache HTTPD Server, 385–386

configuration errors, 406–408

exercise answers, 680–682

internal errors, 408–409

WebDav, 35

Webmin, 157

which command, 55

while...do loops, 144–145

whoami command, 49

Winbind, 234

window manager, 23

windows. See also Terminal window

Software, 202

Windows, partitions, resizing, 190

Windows file server, 271

wired networks, 299

wireless networks, 299

write permission, 90

X
X Window System, 22

Xen, 191

Xfce, 21, 24

xfs filesystem, 257

Y–Z
YAML syntax, LXD images, 605

Zorin OS, 17

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

