

2021 Edition

UNLEASHED

Matthew Helmke

with Andrew Hudson

and Paul Hudson

Ubuntu Linux

Ubuntu Linux Unleashed 2021 Edition

Copyright © 2021 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be

obtained from the publisher prior to any prohibited reproduction, storage in a retrieval

system, or transmission in any form or by any means, electronic, mechanical, photo-

copying, recording, or likewise. For information regarding permissions, request forms,

and the appropriate contacts within the Pearson Education Global Rights & Permissions

Department, please visit www.pearson.com/permissions/. No patent liability is assumed

with respect to the use of the information contained herein. Although every precaution

has been taken in the preparation of this book, the publisher and author assume no

responsibility for errors or omissions. Nor is any liability assumed for damages resulting

from the use of the information contained herein.

ISBN-13: 978-0-13-677885-1

ISBN-10: 0-13-677885-2

Library of Congress Control Number: 2020937219

ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have

been appropriately capitalized. Pearson Education cannot attest to the accuracy of this

information. Use of a term in this book should not be regarded as affecting the validity

of any trademark or service mark.

Microsoft and/or its respective suppliers make no representations about the suit-

ability of the information contained in the documents and related graphics published

as part of the services for any purpose. All such documents and related graphics are

provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers

hereby disclaim all warranties and conditions with regard to this information, including

all warranties and conditions of merchantability, whether express, implied or statutory,

fitness for a particular purpose, title and non-infringement. In no event shall Microsoft

and/or its respective suppliers be liable for any special, indirect or consequential

damages or any damages whatsoever resulting from loss of use, data or profits,

whether in an action of contract, negligence or other tortious action, arising out of or

in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccura-

cies or typographical errors. Changes are periodically added to the information herein.

Microsoft and/or its respective suppliers may make improvements and/or changes in

the product(s) and/or the program(s) described herein at any time. Partial screen shots

may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in

the U.S.A. and other countries. Screenshots and icons reprinted with permission from

the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated

with the Microsoft Corporation.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on an “as

is” basis. The author and the publisher shall have neither liability nor responsibility to

any person or entity with respect to any loss or damages arising from the information

contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales oppor-

tunities (which may include electronic versions; custom cover designs; and content

particular to your business, training goals, marketing focus, or branding interests),

please contact our corporate sales department at corpsales@pearsoned.com or

(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Mark Taub

Acquisitions Editor

Debra Williams

Managing Editor

Sandra Schroeder

Senior Project Editor

Lori Lyons

Copy Editor

Paula Lowell

Production Manager

Aswini Kumar/

codeMantra

Indexer

Ken Johnson

Proofreader

Charlotte Kughen

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

http://www.pearson.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance

Introduction . xxxi

 Part I Getting Started

 1 Installing Ubuntu and Post-Installation Configuration . 1

 2 Background Information and Resources . 23

 Part II Desktop Ubuntu

 3 Foundations of the Linux GUI . 31

 4 Ubuntu Desktop Options . 41

 5 On the Internet . 51

 6 Productivity Applications . 55

 7 Multimedia Applications . 63

 8 Games . 79

 Part III System Administration

 9 Managing Software . 91

 10 Command-Line Beginner’s Class . 105

 11 Command-Line Master Class, Part 1 . 141

 12 Command-Line Master Class, Part 2 . 167

 13 Managing Users . 201

 14 Automating Tasks and Shell Scripting . 225

 15 The Boot Process . 271

 16 System-Monitoring Tools . 281

 17 Backing Up . 301

 18 Networking . 325

 19 Remote Access with SSH and VNC . 371

 20 Securing Your Machines . 379

 21 Performance Tuning. 393

 22 Kernel and Module Management . 401

 Part IV Ubuntu as a Server

 23 Sharing Files and Printers . 421

 24 Common Web Server Stacks . 437

 25 Apache Web Server Management . 443

Ubuntu Linux Unleashed 2021 Editioniv

 26 Nginx Web Server Management ...467

 27 Other HTTP Servers . 479

 28 Administering Relational Database Services . 483

 29 NoSQL Databases . 509

 30 Virtualization on Ubuntu . 521

 31 Containers and Ubuntu . 531

 32 Ubuntu and Cloud Computing . 535

 33 Managing Sets of Servers . 543

 34 Handling Email . 547

 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs) 563

 36 Lightweight Directory Access Protocol (LDAP) . 579

 37 Name Serving with the Domain Name System (DNS) . 587

 Part V Programming Linux

 38 Using Programming Tools . 597

 39 Using Popular Programming Languages . 621

 40 Helping with Ubuntu Development . 635

 41 Helping with Ubuntu Testing and QA . 645

Index . 649

NOTE

Bonus Chapters 42–44 can be accessed online at informit.com/title/9780136778851.

 Part VI Bonus Online Chapters

 42 Using Perl . Web:1

 43 Using Python . Web:21

 44 Using PHP . Web:39

http://informit.com/title/9780136778851

Table of Contents

Introduction xxxi

 Part I Getting Started

 1 Installing Ubuntu and Post-Installation Configuration 1

Before You Begin the Installation . 1

Researching Your Hardware Specifications . 2

Installation Options . 2

32-Bit Versus 64-Bit Ubuntu . 4

Planning Partition Strategies . 5

The Boot Loader . 5

Installing from DVD or USB Drive . 6

Step-by-Step Installation . 6

Installing . 7

First Update . 11

Shutting Down . 11

Finding Programs and Files . 12

Software Updater . 12

The sudo Command . 14

Configuring Software Repositories . 15

System Settings . 17

Detecting and Configuring a Printer . 18

Configuring Power Management in Ubuntu . 18

Setting the Time and Date . 19

Configuring Wireless Networks . 20

Troubleshooting Post-Installation Configuration Problems . 21

References . 22

 2 Background Information and Resources 23

What Is Linux? . 23

Why Use Linux? . 25

What Is Ubuntu? . 27

Ubuntu for Business . 27

Ubuntu in Your Home . 28

Getting the Most from Linux and Ubuntu Documentation . 28

Linux . 29

Ubuntu . 30

vi Ubuntu Linux Unleashed 2021 Edition

 Part II Desktop Ubuntu

 3 Foundations of the Linux GUI 31

Foundations and the X Server . 31

Basic X Concepts . 32

Using X . 33

Elements of the xorg.conf File . 34

Starting X . 39

Using a Display Manager . 39

Changing Window Managers . 39

References . 40

 4 Ubuntu Desktop Options 41

Desktop Environment . 41

Using GNOME: A Primer . 42

KDE and Kubuntu . 45

Xfce and Xubuntu . 46

LXDE and Lubuntu . 47

MATE and Ubuntu MATE . 48

Ubuntu Budgie . 49

Ubuntu Kylin . 50

References . 50

 5 On the Internet 51

Getting Started with Firefox . 52

Checking Out Google Chrome and Chromium. 53

References . 54

 6 Productivity Applications 55

Introducing LibreOffice . 56

Other Useful Productivity Software . 58

Working with PDFs . 58

Writing Scripts . 59

Working with XML and DocBook . 59

Working with LaTeX . 60

Creating Mind Maps . 61

Productivity Applications Written for Microsoft Windows . 61

References . 61

 7 Multimedia Applications 63

Sound and Music . 63

Sound Cards. 64

Sound Formats . 65

Listening to Music . 65

Contents vii

Graphics Manipulation . 66

The GNU Image Manipulation Program . 66

Using Scanners in Ubuntu . 67

Working with Graphics Formats . 67

Capturing Screen Images . 69

Other Graphics Manipulation Options . 70

Using Digital Cameras with Ubuntu . 70

Handheld Digital Cameras . 70

Using Shotwell Photo Manager . 71

Burning CDs and DVDs in Ubuntu . 71

Creating CDs and DVDs with Brasero . 71

Creating CDs from the Command Line . 72

Creating DVDs from the Command Line . 73

Viewing Video . 75

Video Formats . 75

Viewing Video in Linux . 76

Recording and Editing Audio . 76

Editing Video . 77

References . 77

 8 Games 79

Ubuntu Gaming . 79

Installing Proprietary Video Drivers . 80

Online Game Sources . 81

Steam . 81

GOG.com . 82

Humble . 82

itch.io. 82

LGDB . 82

Game Jolt . 82

Installing Games from the Ubuntu Repositories . 82

Warsow . 82

Scorched 3D . 83

Frozen Bubble . 84

SuperTux . 84

Battle for Wesnoth . 85

Frets on Fire . 85

FlightGear . 87

Speed Dreams . 87

Games for Kids . 88

Commercial Games . 88

Playing Windows Games . 88

References . 89

http://GOG.com
http://itch.io

Ubuntu Linux Unleashed 2021 Editionviii

 Part III System Administration

 9 Managing Software 91

Ubuntu Software . 91

Using Synaptic for Software Management . 92

Staying Up to Date . 94

Working on the Command Line . 95

Day-to-Day APT Usage . 95

Finding Software . 98

Using apt-get Instead of apt . 99

Compiling Software from Source . 100

Compiling from a Tarball . 100

Compiling from Source from the Ubuntu Repositories 101

Configuration Management . 102

dotdee . 102

Ubuntu Core . 103

Using the Snappy Package Manager . 103

References . 104

 10 Command-Line Beginner’s Class 105

What Is the Command Line? . 106

Accessing the Command Line . 107

Text-Based Console Login . 107

Logging Out . 108

Logging In and Out from a Remote Computer . 108

User Accounts . 109

Reading Documentation . 111

Using Man Pages . 111

Using apropros . 112

Using whereis . 112

Understanding the Linux File System Hierarchy . 112

Essential Commands in /bin and /sbin . 114

Configuration Files in /etc . 114

User Directories: /home . 115

Using the Contents of the /proc Directory to Interact

with or Obtain Information from the Kernel . 115

Working with Shared Data in the /usr Directory . 117

Temporary File Storage in the /tmp Directory . 117

Accessing Variable Data Files in the /var Directory . 117

Navigating the Linux File System . 117

Listing the Contents of a Directory with ls . 118

Changing Directories with cd . 120

Finding Your Current Directory with pwd . 120

Contents ix

Working with Permissions . 120

Assigning Permissions . 121

Directory Permissions . 122

Altering File Permissions with chmod . 123

File Permissions with umask . 124

File Permissions with chgrp . 125

Changing File Permissions with chown . 125

Understanding Set User ID, Set Group ID,

and Sticky Bit Permissions . 125

Setting Permissions with Access Control Lists . 127

Working with Files . 128

Creating a File with touch . 128

Creating a Directory with mkdir . 129

Deleting a Directory with rmdir . 129

Deleting a File or Directory with rm . 130

Moving or Renaming a File with mv . 131

Copying a File with cp . 131

Displaying the Contents of a File with cat . 132

Displaying the Contents of a File with less . 132

Using Wildcards and Regular Expressions . 133

Working as Root . 133

Understanding and Fixing sudo . 134

Creating Users . 136

Deleting Users . 137

Shutting Down the System . 137

Rebooting the System . 138

Commonly Used Commands and Programs . 139

References . 139

 11 Command-Line Master Class, Part 1 141

Why Use the Command Line? . 142

Using Basic Commands . 143

Printing the Contents of a File with cat . 144

Changing Directories with cd . 145

Changing File Access Permissions with chmod . 147

Copying Files with cp . 147

Printing Disk Usage with du . 148

Using echo . 148

Finding Files by Searching with find . 149

Searches for a String in Input with grep . 151

Paging Through Output with less . 152

Creating Links Between Files with ln . 154

Ubuntu Linux Unleashed 2021 Editionx

Finding Files from an Index with locate . 156

Listing Files in the Current Directory with ls . 156

Listing System Information with lsblk, lshw, lsmod,

lspci, and neofetch . 158

Reading Manual Pages with man . 159

Making Directories with mkdir . 160

Moving Files with mv . 161

Renaming Files with rename . 161

Deleting Files and Directories with rm . 161

Sorting the Contents of a File with sort . 162

Printing the Last Lines of a File with tail . 163

Printing the Location of a Command with which . 164

Downloading Files with wget . 164

References . 165

 12 Command-Line Master Class, Part 2 167

Redirecting Output and Input . 167

stdin, stdout, stderr, and Redirection . 169

Comparing Files . 170

Finding Differences in Files with diff . 170

Finding Similarities in Files with comm. 170

Limiting Resource Use and Job Control . 171

Listing Processes with ps . 171

Listing Jobs with jobs . 173

Running One or More Tasks in the Background . 173

Moving Jobs to the Background or Foreground with bg and fg 174

Printing Resource Usage with top . 175

Setting Process Priority with nice . 177

Combining Commands . 178

Pipes . 178

Combining Commands with Boolean Operators . 180

Running Separate Commands in Sequence . 180

Process Substitution . 181

Executing Jobs in Parallel . 181

Using Environment Variables . 182

Using Common Text Editors . 185

Working with nano . 186

Working with vi . 187

Working with emacs . 188

Working with sed and awk . 189

Working with Compressed Files . 191

Using Multiple Terminals with byobu. 192

Doing a Polite System Reset Using REISUB . 194

Contents xi

Fixing an Ubuntu System That Will Not Boot . 195

Checking BIOS . 195

Checking GRUB . 195

Reinstalling GRUB . 195

Using Recovery Mode . 196

Reinstalling Ubuntu . 196

Tips and Tricks . 196

Running the Previous Command . 196

Running Any Previous Command . 197

Running a Previous Command That Started

with Specific Letters . 197

Running the Same Thing You Just Ran with

a Different First Word . 197

Viewing Your History and More . 197

Doing Two or More Things . 198

Using Shortcuts . 198

Confining a Script to a Directory . 198

Using Coreutils. 199

Reading the Contents of the Kernel Ring Buffer with dmesg 200

References . 200

 13 Managing Users 201

User Accounts . 201

The Super User/Root User . 202

User IDs and Group IDs . 204

File Permissions . 204

Managing Groups . 205

Group Listing . 205

Group Management Tools . 206

Managing Users . 207

User Management Tools . 208

Adding New Users . 209

Monitoring User Activity on the System . 211

Managing Passwords . 212

System Password Policy . 212

The Password File . 212

Shadow Passwords . 214

Managing Password Security for Users . 216

Changing Passwords in a Batch . 216

Granting System Administrator Privileges to Regular Users 217

Temporarily Changing User Identity with the su Command 217

Granting Root Privileges on Occasion: The sudo Command 219

Ubuntu Linux Unleashed 2021 Editionxii

Disk Quotas. 222

Implementing Quotas . 222

Manually Configuring Quotas. 223

Related Ubuntu Commands . 223

References . 224

 14 Automating Tasks and Shell Scripting 225

What Is a Shell? . 225

Scheduling Tasks . 226

Using at and batch to Schedule Tasks for Later . 227

Using cron to Run Jobs Repeatedly . 229

Using rtcwake to Wake Your Computer from

Sleep Automatically . 231

Basic Shell Control . 233

The Shell Command Line . 233

Shell Pattern-Matching Support . 235

Redirecting Input and Output . 236

Piping Data . 237

Background Processing . 237

Writing and Executing a Shell Script . 237

Running the New Shell Program . 239

Storing Shell Scripts for System-wide Access . 240

Interpreting Shell Scripts Through Specific Shells . 240

Using Variables in Shell Scripts . 242

Assigning a Value to a Variable . 242

Accessing Variable Values . 243

Positional Parameters . 243

A Simple Example of a Positional Parameter . 243

Using Positional Parameters to Access and Retrieve

Variables from the Command Line . 244

Using a Simple Script to Automate Tasks . 244

Built-in Variables . 246

Special Characters . 247

Comparison of Expressions in pdksh and bash . 250

Comparing Expressions with tcsh . 255

The for Statement . 259

The while Statement . 261

The until Statement . 263

The repeat Statement (tcsh) . 263

The select Statement (pdksh) . 264

The shift Statement . 264

The if Statement . 265

Contents xiii

The expr Statement . 266

The case Statement . 267

The break and exit Statements . 269

Using Functions in Shell Scripts . 269

References . 270

 15 The Boot Process 271

Running Services at Boot . 271

Beginning the Boot Loading Process . 272

Loading the Linux Kernel . 274

Starting and Stopping Services with systemd . 275

Controlling Services at Boot with Administrative Tools 278

Troubleshooting Runlevel Problems . 278

Boot-Repair . 278

References . 279

 16 System-Monitoring Tools 281

Console-Based Monitoring . 281

Using the kill Command to Control Processes . 283

Using Priority Scheduling and Control . 285

Displaying Free and Used Memory with free . 286

Disk Space . 286

Disk Quotas . 287

Checking Log Files . 287

Rotating Log Files . 289

Graphical Process- and System-Management Tools . 292

System Monitor . 292

Conky . 292

Other Graphical Process- and System-Monitoring Tools 297

KDE Process- and System-Monitoring Tools . 298

Enterprise Server Monitoring . 298

References . 299

 17 Backing Up 301

Choosing a Backup Strategy . 301

Why Data Loss Occurs . 302

Assessing Your Backup Needs and Resources . 303

Evaluating Backup Strategies . 304

Making the Choice . 308

Choosing Backup Hardware and Media . 308

External Hard Drive . 308

Network Storage . 308

Ubuntu Linux Unleashed 2021 Editionxiv

Tape Drive Backups. 309

Cloud Storage . 309

Using Backup Software . 309

tar: The Most Basic Backup Tool . 310

The GNOME File Roller . 312

The KDE ark Archiving Tool . 312

Déjà Dup . 313

Back In Time . 314

Unison . 315

Amanda . 315

Alternative Backup Software . 316

Copying Files . 316

Copying Files Using tar . 317

Compressing, Encrypting, and Sending tar Streams . 318

Copying Files Using cp . 318

Using rsync . 319

Version Control for Configuration Files . 320

System Rescue . 323

The Ubuntu Rescue Disc . 323

Restoring the GRUB2 Boot Loader . 323

Saving Files from a Nonbooting Hard Drive . 324

References . 324

 18 Networking 325

Laying the Foundation: The localhost Interface . 326

Checking for the Availability of the Loopback Interface 326

Configuring the Loopback Interface Manually . 327

Checking Connections with ping, traceroute, and mtr . 328

Networking with TCP/IP . 330

TCP/IP Addressing . 331

Using IP Masquerading in Ubuntu . 332

Ports . 333

IPv6 Basics . 334

Network Organization . 337

Subnetting . 337

Subnet Masks . 337

Broadcast, Unicast, and Multicast Addressing . 338

Hardware Devices for Networking . 338

Network Interface Cards . 338

Network Cable . 340

Hubs and Switches . 342

Routers and Bridges . 343

Initializing New Network Hardware . 343

Contents xv

Using Network Configuration Tools . 345

Command-Line Network Interface Configuration . 346

Network Configuration Files . 350

Using Graphical Configuration Tools . 355

Dynamic Host Configuration Protocol . 355

How DHCP Works . 356

Activating DHCP at Installation and Boot Time . 357

DHCP Software Installation and Configuration . 358

Using DHCP to Configure Network Hosts . 359

Other Uses for DHCP . 361

Wireless Networking . 361

Support for Wireless Networking in Ubuntu . 361

Choosing from Among Available Wireless Protocols . 363

Beyond the Network and onto the Internet . 363

Common Configuration Information . 364

Configuring Digital Subscriber Line Access . 365

Understanding PPP over Ethernet . 366

Configuring a PPPoE Connection Manually . 366

Configuring Dial-up Internet Access . 367

Troubleshooting Connection Problems . 368

References . 369

 19 Remote Access with SSH and VNC 371

Setting Up an SSH Server . 371

SSH Tools . 372

Using scp to Copy Individual Files Between Machines 372

Using sftp to Copy Many Files Between Machines . 373

Using ssh-keygen to Enable Key-Based Logins . 373

Virtual Network Computing . 375

Guacamole . 377

References . 377

 20 Securing Your Machines 379

Understanding Computer Attacks . 379

Assessing Your Vulnerability . 381

Protecting Your Machine . 382

Securing a Wireless Network . 382

Passwords and Physical Security . 383

Configuring and Using Tripwire . 384

Securing Devices . 385

Viruses . 385

Configuring Your Firewall . 386

Ubuntu Linux Unleashed 2021 Editionxvi

AppArmor . 388

Forming a Disaster Recovery Plan . 390

References . 391

 21 Performance Tuning 393

Storage Disk . 394

Linux File Systems . 394

The hdparm Command . 395

File System Tuning . 396

The tune2fs Command. 396

The e2fsck Command . 397

The badblocks Command . 397

Disabling File Access Time . 397

Kernel . 398

Tuned . 399

References . 400

 22 Kernel and Module Management 401

The Linux Kernel . 402

The Linux Source Tree . 403

Types of Kernels . 405

Managing Modules . 406

When to Recompile . 408

Kernel Versions. 409

Obtaining the Kernel Sources . 409

Patching the Kernel . 410

Compiling the Kernel . 412

Using xconfig to Configure the Kernel . 414

Creating an Initial RAM Disk Image . 418

When Something Goes Wrong . 418

Errors During Compile . 418

Runtime Errors, Boot Loader Problems, and Kernel Oops 419

References . 419

 Part IV Ubuntu as a Server

 23 Sharing Files and Printers 421

Using Network File System . 422

Installing and Starting or Stopping NFS . 422

NFS Server Configuration . 422

NFS Client Configuration . 423

Contents xvii

Putting Samba to Work . 424

Manually Configuring Samba with /etc/samba/smb.conf 426

Testing Samba with the testparm Command . 429

Starting, Stopping, and Restarting the smbd Daemon . 429

Mounting Samba Shares . 430

Network and Remote Printing with Ubuntu . 431

Creating Network Printers . 431

Using the CUPS GUI . 433

Avoiding Printer Support Problems . 434

References . 435

 24 Common Web Server Stacks 437

LAMP . 437

LEMP . 439

MEAN . 440

References . 441

 25 Apache Web Server Management 443

About the Apache Web Server . 443

Installing the Apache Server. 444

Starting and Stopping Apache . 444

Runtime Server Configuration Settings . 446

Runtime Configuration Directives . 446

Editing apache2.conf . 447

Apache Multiprocessing Modules . 449

Using .htaccess Configuration Files . 450

File System Authentication and Access Control . 452

Restricting Access with Require . 452

Authentication . 453

Final Words on Access Control . 455

Apache Modules . 455

mod_access . 456

mod_alias . 456

mod_asis . 456

mod_auth . 457

mod_auth_anon . 457

mod_auth_dbm . 457

mod_auth_digest . 457

mod_autoindex . 458

mod_cgi . 458

mod_dir and mod_env . 458

mod_expires . 458

Ubuntu Linux Unleashed 2021 Editionxviii

mod_headers . 458

mod_include . 459

mod_info and mod_log_config . 459

mod_mime and mod_mime_magic . 459

mod_negotiation . 459

mod_proxy . 459

mod_rewrite . 459

mod_setenvif . 460

mod_speling . 460

mod_status . 460

mod_ssl . 460

mod_unique_id . 460

mod_userdir . 460

mod_usertrack . 460

mod_vhost_alias . 460

Virtual Hosting . 461

Address-Based Virtual Hosts . 461

Name-Based Virtual Hosts . 461

Logging . 463

HTTPS . 464

References . 466

 26 Nginx Web Server Management 467

About the Nginx Web Server . 467

Installing the Nginx Server . 469

Installing from the Ubuntu Repositories . 469

Building the Source Yourself . 469

Configuring the Nginx Server . 470

Virtual Hosting . 473

Setting Up PHP . 474

Adding and Configuring Modules . 475

HTTPS . 476

Reference . 477

 27 Other HTTP Servers 479

lighttpd . 479

Yaws . 480

Cherokee . 480

Jetty . 481

thttpd . 481

Apache Tomcat . 482

Contents xix

WildFly . 482

Caddy . 482

References . 482

 28 Administering Relational Database Services 483

A Brief Review of Database Basics . 484

How Relational Databases Work . 486

Understanding SQL Basics . 487

Creating Tables . 488

Inserting Data into Tables . 489

Retrieving Data from a Database . 490

Choosing a Database: MySQL Versus PostgreSQL . 492

Speed . 492

Data Locking . 492

ACID Compliance in Transaction Processing

to Protect Data Integrity . 493

SQL Subqueries . 494

Procedural Languages and Triggers . 494

Configuring MySQL . 494

Setting a Password for the MySQL Root User . 495

Creating a Database in MySQL . 496

Configuring PostgreSQL . 498

Initializing the Data Directory in PostgreSQL . 498

Creating a Database in PostgreSQL . 499

Creating Database Users in PostgreSQL . 499

Deleting Database Users in PostgreSQL . 500

Granting and Revoking Privileges in PostgreSQL . 500

Database Clients . 501

SSH Access to a Database . 501

Local GUI Client Access to a Database . 503

Web Access to a Database . 503

The MySQL Command-Line Client . 504

The PostgreSQL Command-Line Client . 505

Graphical Clients . 506

References . 507

 29 NoSQL Databases 509

Key/Value Stores . 512

Berkeley DB . 512

Cassandra . 513

etcd . 513

Memcached and MemcacheDB . 513

Ubuntu Linux Unleashed 2021 Editionxx

Redis . 514

Riak . 514

Scylla . 514

Document Stores . 514

CouchDB . 515

MongoDB . 516

BaseX . 517

Wide Column Stores . 517

BigTable . 517

HBase . 518

Graph Stores . 518

Neo4j . 518

OrientDB . 519

HyperGraphDB . 519

FlockDB . 519

References . 519

 30 Virtualization on Ubuntu 521

KVM . 523

VirtualBox . 527

VMware . 528

Xen . 528

References . 529

 31 Containers and Ubuntu 531

LXC and LXD . 532

Docker . 533

Kubernetes . 534

References . 534

 32 Ubuntu and Cloud Computing 535

Why a Cloud? . 536

Software as a Service (SaaS) . 537

Platform as a Service (PaaS). 537

Infrastructure as a Service (IaaS) . 537

Metal as a Service (MaaS) . 537

Things to Consider Before You Make Any Decisions . 538

Ubuntu on the Public Cloud . 538

OpenStack . 538

Amazon Web Services . 539

Google Cloud . 539

Contents xxi

Microsoft Azure . 539

Hybrid Clouds . 539

Canonical-Specific Cloud Offerings . 540

Juju . 540

Mojo: Continuous Delivery for Juju . 541

Landscape . 541

References . 541

 33 Managing Sets of Servers 543

Puppet . 543

Chef . 544

Ansible . 544

SaltStack . 544

CFEngine . 545

Juju . 545

Landscape . 545

References . 545

 34 Handling Email 547

How Email Is Sent and Received . 547

The Mail Transport Agent . 548

Choosing an MTA . 550

The Mail Delivery Agent . 550

The Mail User Agent . 551

Basic Postfix Configuration and Operation . 552

Configuring Masquerading . 554

Using Smart Hosts . 554

Setting Message Delivery Intervals . 555

Mail Relaying . 555

Forwarding Email with Aliases . 556

Using Fetchmail to Retrieve Mail . 557

Installing Fetchmail . 557

Configuring Fetchmail . 557

Choosing a Mail Delivery Agent . 560

Procmail . 561

Spamassassin . 561

Squirrelmail . 561

Virus Scanners . 562

Autoresponders . 562

References . 562

Ubuntu Linux Unleashed 2021 Editionxxii

 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs) 563

What Is a Proxy Server? . 563

Installing Squid . 564

Configuring Clients . 564

Access Control Lists . 565

Specifying Client IP Addresses . 569

Sample Configurations . 570

Virtual Private Networks (VPNs) . 572

Setting Up a VPN Client . 573

Setting Up a VPN Server . 575

References . 577

 36 Lightweight Directory Access Protocol (LDAP) 579

Configuring the Server . 580

Creating Your Schema . 580

Populating Your Directory . 582

Configuring Clients . 584

LDAP Administration . 584

References . 585

 37 Name Serving with the Domain Name System (DNS) 587

Understanding Domain Names . 588

DNS Servers . 589

DNS Records . 590

Setting Up a DNS Server with BIND . 593

References . 595

 Part V Programming Linux

 38 Using Programming Tools 597

Programming in C with Linux . 598

Using the C Programming Project Management Tools

Provided with Ubuntu . 599

Building Programs with make . 599

Using the autoconf Utility to Configure Code . 601

Debugging Tools . 602

Using the GNU C Compiler . 603

Programming in Java with Linux . 604

Graphical Development Tools . 605

Contents xxiii

IDEs and SDKs . 605

Using the KDevelop Client . 606

The Glade Client for Developing in GNOME . 607

Beginning Mobile Development for Android . 607

Hardware . 608

Linux Kernel . 608

Libraries . 608

Android Runtime . 608

Application Framework . 608

Applications . 609

Installing Android Studio . 609

Creating Your First Android Application . 609

Version Control Systems . 609

Managing Software Projects with Git . 610

Managing Software Projects with Bazaar . 611

Managing Software Projects with Subversion . 612

Continuous Integration and Continuous Delivery and DevOps Tools 613

CI/CD Tools . 614

Chaos Engineering . 614

Canonical-created Tools . 614

Launchpad . 614

Ubuntu Make . 615

Creating Snap Packages . 615

Bikeshed and Other Tools . 616

References . 618

 39 Using Popular Programming Languages 621

Ada . 622

Clojure . 622

COBOL . 623

D . 624

Dart . 624

Elixir . 625

Elm . 625

Erlang . 625

Forth . 626

Fortran . 626

Go . 626

Groovy . 627

Haskell . 627

Ubuntu Linux Unleashed 2021 Editionxxiv

Java . 627

JavaScript . 628

Kotlin . 628

Lisp . 629

Lua . 629

Mono . 629

OCaml . 630

Perl . 630

PHP . 631

Python . 631

Raku . 631

Ruby . 631

Rust . 632

Scala . 632

Scratch . 632

Vala . 633

References . 633

 40 Helping with Ubuntu Development 635

Introduction to Ubuntu Development . 636

Setting Up Your Development System . 637

Install Basic Packages and Configure . 637

Creating a Launchpad Account . 638

Setting Up Your Environment to Work with Launchpad 638

Fixing Bugs and Packaging . 640

References . 643

 41 Helping with Ubuntu Testing and QA 645

Community Teams . 645

Ubuntu Testing Team . 646

Ubuntu QA Team . 646

Bug Squad . 647

References . 647

Index 649

NOTE

Bonus Chapters 42–44 can be accessed online at informit.com/title/9780136778851.

http://informit.com/title/9780136778851

Contents xxv

 Part VI Bonus Online Chapters

 42 Using Perl Web:1

Using Perl with Linux . Web:1

Perl Versions . Web:2

A Simple Perl Program . Web:2

Perl Variables and Data Structures . Web:4

Perl Variable Types . Web:4

Special Variables . Web:5

Perl Operators. Web:6

Comparison Operators . Web:6

Compound Operators . Web:7

Arithmetic Operators . Web:7

Other Operators . Web:8

Special String Constants . Web:8

Conditional Statements: if/else and unless . Web:9

if. Web:9

unless . Web:9

Looping . Web:10

for . Web:10

foreach . Web:10

while . Web:11

until . Web:11

last and next . Web:12

do ... while and do ... until . Web:12

Regular Expressions . Web:12

Access to the Shell . Web:13

Modules and CPAN . Web:14

Code Examples . Web:15

Sending Mail . Web:15

Purging Logs . Web:17

Posting to Usenet . Web:18

One-Liners . Web:19

Command-Line Processing . Web:19

References . Web:20

 43 Using Python Web:21

Python on Linux . Web:22

The Basics of Python . Web:23

Numbers . Web:23

More on Strings . Web:24

Lists . Web:27

Ubuntu Linux Unleashed 2021 Editionxxvi

Dictionaries . Web:30

Conditionals and Looping . Web:30

Functions . Web:33

Object Orientation . Web:34

Class and Object Variables . Web:34

Constructors and Destructors . Web:35

Class Inheritance . Web:36

The Standard Library and the Python Package Index . Web:38

References . Web:38

 44 Using PHP Web:39

Introduction to PHP . Web:39

Entering and Exiting PHP Mode . Web:40

Variables . Web:40

Arrays . Web:42

Constants . Web:43

References . Web:44

Comments . Web:44

Escape Sequences . Web:45

Variable Substitution . Web:46

Operators . Web:46

Conditional Statements . Web:48

Special Operators . Web:50

Switching . Web:51

Loops . Web:52

Including Other Files . Web:54

Basic Functions . Web:55

Strings . Web:55

Arrays . Web:58

Files . Web:60

Miscellaneous . Web:63

Handling HTML Forms . Web:66

Databases . Web:67

References . Web:69

About the Author

Matthew Helmke has used Ubuntu since 2005. He has written about Linux for several

magazines and websites, is a lead author of The Official Ubuntu Book, and has coauthored

both A Practical Guide to Linux: Commands, Editors, and Shell Programming and The VMware

Cookbook. In his day job, Matthew works for Gremlin (https://www.gremlin.com/) making

the Internet more reliable. Matthew first used UNIX in 1987, while studying Lisp on a

Vax at the university. He has run a business using only free and open source software, has

consulted, and teaches as an adjunct professor for the University of Arizona. You can find

out more about Matthew at https://www.linkedin.com/in/matthewhelmke/ or drop him a

line with errata or suggestions at matthew@matthewhelmke.com.

https://www.gremlin.com/
https://www.linkedin.com/in/matthewhelmke/
mailto:matthew@matthewhelmke.com

Dedication

To Sage, Sedona, and Philip—the most amazing kids a guy could

hope for; to Sandra and Evan, who are wonderful and welcome addi-

tions to our lives; to my grandfather for always believing in me and

teaching me to believe in myself; and to my friends in the Linux,

developer, sysadmin, cloud computing, DevOps, Site Reliability

Engineering, and Chaos Engineering communities.

Acknowledgments

I want to thank the many people who helped with past editions, helpful comments and

ideas, and technical edits and both formal and informal advice. I owe a huge debt of

gratitude to the Ubuntu community, Canonical, and Mark Shuttleworth for inviting me

to participate in the community years ago. Finally, thanks to my colleagues at Pearson,

especially Debra Williams, for the trust placed in me and the opportunity to collaborate

on projects like this one.

Register Your Book

Register your copy of Ubuntu Linux Unleashed 2021 Edition at informit.com for convenient

access to downloads, updates, and corrections as they become available. To start the regis-

tration process, go to informit.com/register and log in or create an account*. Enter the

product ISBN, 9780136778851, and click Submit.

*Be sure to check the box that you would like to hear from us to receive exclusive

discounts on future editions of this product.

http://informit.com
http://informit.com/register

Figure Credits

Figures 1-1 to 1-9, 4-7 to 4-9, 8-1, 9-1 to 9-3, 11-1, 15-1, 16-1, 17-2, 19-1, 19-2, 35-1,

35-3, 36-1: Screenshots of Ubuntu © 2020 Canonical Ltd

Figures 4-1 to 4-4: Screenshots of GNOME © The GNOME Project

Figure 4-5: Screenshot of Kubuntu © 2020 Canonical Ltd

Figure 4-6: Screenshot of Xubuntu © 2020 Canonical Ltd

Figure 5-1: Screenshot of Mozilla Firefox ©1998–2020 by individual mozilla.org

contributors.

Figure 5-2: Screenshot of Google Chrome ©2020 Google LLC.

Figure 8-2: Screenshot of Warsow © 2020, Chasseur de Bots

Figure 8-3: Screenshot of Scorched 3D © 2020 Scorched3D

Figure 8-4: Screenshot of Frozen Bubble © Guillaume Cottenceau

Figure 8-5: Screenshot of Supertux © Pelya

Figure 8-6: Screenshot of Battle of Wesnoth © 2003–2020 by The Battle for Wesnoth

Project

Figure 8-7: Screenshot of Frets on Fire offers flashy graphics and familiar

game play © Unreal Voodoo

Figure 8-8: Screenshot of FlightGear features stunning landscapes and technically accurate

control panels © Free Software Foundation

Figure 8-9: Screenshot of In Speed Dreams © Speed Dreams

Figure 12-1: Screenshot of Command Prompt © Microsoft 2020

Figures 23-1, 23-2: Screenshots of CUPS © 2020 Apple Inc

Figure 30-1: Screenshot of Oracle VM VirtualBox Manager © 2020 Oracle

Cover image: Widegren/Karlsson/Photodisc/Getty Images

http://mozilla.org

This page intentionally left blank

IN THIS INTRODUCTION

 ▶ Licensing

 ▶ Who This Book Is For

 ▶ What This Book Contains

 ▶ Conventions Used in This Book

Introduction

We are pleased to present the 2021 edition of Ubuntu

Unleashed. Ubuntu is a Linux-based computer operating

system that has taken the world by storm. From its humble

beginning in 2004, Ubuntu has risen to become a perennial

favorite for desktop Linux, as well as a popular choice for

servers.

Ubuntu descends from one of the oldest and most revered

Linux distributions, Debian. Debian is assembled by a

team of talented volunteers, is one of the most stable and

customizable distributions of Linux, and is well respected

for its quality and technological prowess. It is, however,

an operating system for geeks; the bar for entry into the

Debian realm is set high, and its user base tends to be

highly proficient and expects new users to learn the ropes

before joining in. That is both appropriate and okay.

Ubuntu has leveraged the quality of Debian to create an

operating system that ordinary people can use. This doesn’t

mean that Ubuntu users are not technologically proficient,

just that they do not have to be. In fact, many talented

and respected software developers love Ubuntu because

it enables them to concentrate on their specific interests

instead of the details of the operating system. This book

is for these people and for those who aspire to join their

ranks.

If you are new to Linux, you have made a great decision by

choosing this book. Unleashed books offer an in-depth look

at their subjects, helping both beginner and advanced users

move to a new level of knowledge and expertise. Ubuntu

is a fast-changing distribution that has an updated release

twice a year. We have tracked the development of Ubuntu

from early on to make sure the information in this book

mirrors closely the development of the distribution.

xxxii Introduction

A QUICK WORD ABOUT MARKETING

Almost all of the content in this book applies regardless of what Ubuntu release version

you are using, as long as it is reasonably current. The book has been written to try to

focus on information that is useful for the longest amount of time possible. Some chap-

ters, like those covering installation or the basics of the default Ubuntu graphical user

interface, will have their information change frequently. These chapters are the excep-

tion. The blurb on the cover of the book about which editions this book covers was added

to account for these chapters and to denote clearly when the book was most recently

revised.

Do not let the highly technical reputation of Linux discourage you, however. Many

people who have heard of Linux think that it is found only on servers, used to look after

websites and email. But that is far from the truth. Distributions like Ubuntu are making

huge inroads into the desktop market. Corporations are realizing the benefits of running

a stable and powerful operating system that is easy to maintain and easy to secure. The

best part is that as Linux distributions are improved, the majority of those improvements

are shared freely, allowing you to benefit from the additions and refinements made by

one distribution, such as Red Hat, while continuing to use a different distribution, such as

Ubuntu, which in turn shares its improvements. You can put Ubuntu to work today and

be assured of a great user experience. Feel free to make as many copies of the software as

you want; Ubuntu is freely and legally distributable all over the world, so no copyright

lawyers are going to pound on your door.

Licensing
Software licensing is an important issue for all computer users and can entail moral, legal,

and financial considerations. Many consumers think that purchasing a copy of a commer-

cial or proprietary operating system, productivity application, utility, or game conveys

ownership, but that is not true. In the majority of cases, the end user license agreement

(EULA) included with a commercial software package states that you have paid only for

the right to use the software according to specific terms. This generally means you may

not examine, make copies, share, resell, or transfer ownership of the software package.

More onerous software licenses enforce terms that preclude you from distributing or

publishing comparative performance reviews of the software. Even more insidious licens-

ing schemes (and supporting legislation, especially in the United States) contain provi-

sions allowing onsite auditing of the software’s use!

This is not the case with the open source software covered in this book. You are entirely

free to make copies, share copies, and install the software on as many computers as you

want. (We encourage you to purchase additional copies of this book to give as gifts,

however.)

You can put your copy of Ubuntu to work right away in your home or at your place of

business without worrying about software licensing, per-seat workstation or client licenses,

software auditing, royalty payments, or any other type of payments to third parties.

However, be aware that although much of the software included with Ubuntu is licensed

xxxiiiWho This Book Is For

under the GPL, some packages are licensed under other terms. Those packages are subject

to a variety of software licenses, and many of them fall under a broad definition known

as open source. Some of these licenses include the Artistic License, the BSD License, the

Mozilla Public License, and the Q Public License.

For additional information about the various GNU software licenses, browse to www.gnu.

org. For a definition of open source and licensing guidelines, along with links to the terms

of nearly three dozen open source licenses, browse to www.opensource.org.

Who This Book Is For
This book varies in coverage from deep to shallow over a wide range of topics. This is

intentional. Some topics are Ubuntu specific and are not covered by any other book, and

they deserve deep coverage here. There are some topics that every power user really must

master. Other topics are things power users should know about so that they understand

some history, know some other options, or simply have what they need to be able to

listen and participate in further discussions with other technical people without being

completely confused.

Some topics, like using the Linux command line, receive deep and extensive coverage

because we believe that information to be vital to anyone who wants to be a power user

or become a skilled DevOps guru. That topic gets three full chapters.

Other topics get only brief coverage so that people who are interested get a few guideposts

to help them continue if they are interested. For example, Chapter 39, “Using Popular

Programming Languages,” describes languages such as Ada and Fortran, along with more

than 20 other programming languages. In that chapter, dozens of programming languages

are covered in just a few pages. These are useful topics to some but not topics we would

consider vital.

In addition, some topics are just too broad to be covered in great depth in this book, but

they deserve mention because, again, an intermediate to advanced user should have at

least a foundational knowledge of them. These are covered briefly and then information is

provided to help you find more resources and expand your understanding, as needed.

Those Wanting to Become Intermediate or Advanced Users

Ubuntu Unleashed is intended for intermediate and advanced users or those who want to

become intermediate and advanced users. Our goal is to give you a nudge in the right

direction, to help you enter the higher stages by exposing you to as many different tools

and ideas as possible; we give you some thoughts and methods to consider and spur you

on to seek out more. Although the contents are aimed at intermediate to advanced users,

new users who pay attention will benefit from the advice, tips, tricks, traps, and tech-

niques presented in each chapter. Pointers to more detailed or related information are

also provided at the end of each chapter.

If you are new to Linux, you might need to learn some new computer skills, such as how

to research your computer’s hardware, how to partition a hard drive, and (occasionally)

how to use a command line. This book helps you learn these skills and shows you how

http://www.gnu.org
http://www.gnu.org
http://www.opensource.org

xxxiv Introduction

to learn more about your computer, Linux, and the software included with Ubuntu. Most

importantly, it helps you overcome your fear of the system by telling you more about

what it is and how it works.

We would like to take a moment to introduce a concept called “The Three Levels of

Listening” from Alistair Cockburn’s Agile Software Development. This concept describes how

a person learns and masters a technique, passing through three levels:

 ▶ Following—The level where the learner looks for one very detailed process that

works and sticks to it to accomplish a task.

 ▶ Detaching—The level where the learner feels comfortable with one method and

begins to learn other ways to accomplish the same task.

 ▶ Fluent—The level where the learner has experience with or understanding of many

methods and doesn’t think of any of them in particular while doing a task.

We all start at the first level and progress from there. Few reach the last level, but those

who do are incredibly effective and efficient. People aiming for this level are the very ones

for whom we intend this book.

Myriad books focus on the first set of users. This is not one of them. It is our goal in

Ubuntu Unleashed to write just enough to get you from where you are to where you want

or need to be. This is not a book for newcomers who want or need every step outlined in

detail, although we do that occasionally. This is a book for people who want help learn-

ing about what can be done and a way to get started doing it. The Internet is an amazing

reference tool, so this is not a comprehensive reference book. This book is a tool to help

you see the landscape, to learn enough about what you seek to get you started in the right

direction with a quality foundational understanding.

Sysadmins, Programmers, DevOps, and Site Reliability Engineering

System administrators, or sysadmins, are people who keep servers and networks up and

running. Their role is sometimes called operations. They deal with software installation

and configuration and security, and they do all the amazing things behind the scenes

that let others use these systems for their work. They are often given less respect than

they deserve, but the pay is good, and it is a ton of fun to wield the ultimate power over

a computer system. It is also a great responsibility, and these amazing guys and gals work

hard to make sure they do their jobs well, striving for incredible system uptime and avail-

ability. Ubuntu is an excellent operating system for servers and networks, and in this book

you can find much of the knowledge needed to get started in this role.

Programmers are people who write software. They are sometimes called developers.

Programmers work with others to create the applications that run on top of those systems.

Ubuntu is a great platform for writing and testing software. This is true whether you are

doing web application development or writing software for desktop or server systems.

It also makes a great platform for learning new programming languages and trying out

new ideas. This book can help you get started.

xxxvConventions Used in This Book

DevOps is a portmanteau of developer and operations. It signifies a blending of the two

roles already described. The information technology (IT) world is changing, and roles

are becoming less clear-cut and isolated from one another. In the past, it was common

to witness battles between programmers excited about new technology and sysadmins

in love with stability. DevOps realizes that neither goal is healthy in isolation but that

seeking a balance between the two can yield great results by removing the barriers to

communication and understanding that sometimes cause conflict within a team. Because

of the rise of cloud computing and virtualization, which are also covered in this book,

and more agile forms of development, DevOps is a useful perspective that enables people

working in IT to do an even better job of serving their ultimate clients: end users. Site

Reliability Engineering (SRE) began at a similar time as DevOps and from a distance looks

almost the same. The major difference is that the SRE focus is solely on keeping sites and

systems up and running, whereas DevOps has evolved a wider philosophy that may touch

on people processes outside of the typical scope of SRE. This book is a great foundation for

those who want to learn knowledge that will help with both roles and implementations,

hopefully presented in a way that balances them nicely.

What This Book Contains
Ubuntu Unleashed is organized into six parts, described here:

 ▶ Part I, “Getting Started,” takes you through installing Ubuntu on your computer in

the place of any other operating system you might be running, such as Windows.

 ▶ Part II, “Desktop Ubuntu,” is aimed at users who want to use Ubuntu on desktop

systems.

 ▶ Part III, “System Administration,” covers both elementary and sophisticated details

of setting up a system for specific tasks and maintaining that system.

 ▶ Part IV, “Ubuntu as a Server,” gives you the information you need to start building

your own file, web, and other servers for use in your home or office.

 ▶ Part V, “Programming Linux,” provides a great introduction to how you can extend

Ubuntu capabilities even further by using the development tools available.

 ▶ Part VI, “Bonus Chapters,” consists of three online chapters on using the Perl,

Python, and PHP languages on Ubuntu. See informit.com/title/9780136778851.

Conventions Used in This Book
It is impossible to cover every option of every command included in Ubuntu. Besides,

with the rise of the Internet and high-speed connections, reference materials are far less

valuable today than they used to be because most of these details are only a quick Google

search away. Instead, we focus on teaching you how to find information you need while

giving a quality overview worthy of intermediate and advanced users. Sometimes this

book offers tables of various options, commands, and keystrokes to help condense, orga-

nize, and present information about a variety of subjects.

http://informit.com/title/9780136778851

xxxvi Introduction

To help you better understand code listing examples and sample command lines, several

formatting techniques are used to show input and ownership. For example, if a command

or code listing example shows input that you as the user would type, the input is format-

ted in boldface after the sample command prompt, as follows:

matthew@seymour:~$ ls

If typed input is required, as in response to a prompt, the sample typed input also is in

boldface, like so:

Delete files? [Y/n] y

All statements, variables, and text that should appear on your display use the same bold-

face formatting. In addition, command lines that require root or super-user access are pref-

aced with the sudo command, as follows:

matthew@seymour:~$ sudo printtool &

Other formatting techniques include the use of italic for placeholders in computer

command syntax, as shown here:

matthew@seymour:~$ ls directoryname

Computer terms or concepts are also italicized upon first introduction in text.

The following elements provide you with useful tidbits of information that relate to the

discussion of the text:

NOTE

A note provides additional information you might find useful as you are working. A note

augments a discussion with ancillary details or may point you to an article, a white paper,

or another online reference for more information about a specific topic.

TIP

Tips contain special insights or time-saving techniques, as well as information about items

of particular interest to you that you might not find elsewhere.

CAUTION

A caution warns you about pitfalls or problems before you run a command, edit a configu-

ration file, or choose a setting when administering your system.

xxxviiConventions Used in This Book

SIDEBARS CAN BE GOLDMINES

Just because something is in a sidebar does not mean that you will not find something

new here. Be sure to watch for these elements, which bring in outside content that is an

aside to the discussion in the text. In sidebars, you will read about other technologies,

Linux-based hardware, and special procedures to make your system more robust and

efficient.

Finally, you should know that all text, sample code, and screenshots in Ubuntu Unleashed

were developed using Ubuntu and open source tools.

Read on to start learning about and using the latest version of Ubuntu.

This page intentionally left blank

IN THIS CHAPTER

 ▶ Before You Begin the

Installation

 ▶ Step-by-Step Installation

 ▶ Shutting Down

 ▶ Finding Programs and Files

 ▶ Software Updater

 ▶ The sudo Command

 ▶ Configuring Software

Repositories

 ▶ System Settings

 ▶ Configuring Wireless Networks

 ▶ Troubleshooting Post-

Installation Configuration

Problems

 ▶ References

CHAPTER 1

Installing Ubuntu
and Post-Installation

Configuration

Not that long ago, the mere mention of installing Linux

struck fear into the hearts of mortal men. Thanks to a cam-

paign of fear, uncertainty, and doubt (commonly referred

to as FUD), Linux garnered a reputation as something of an

elitist operating system that could be installed, configured,

and used only by extreme computer geeks and profession-

als. Nowadays, it is a different story entirely, and Ubuntu

is one of the easiest Linux distributions (distros) to install.

This chapter covers how to get started with an install disc,

including booting from an Ubuntu Live DVD or USB drive

to test your system. The chapter then covers the actual

installation of Ubuntu, looking at the various options avail-

able. The whole process is pain free with Ubuntu, as you are

about to learn.

This chapter covers installation on a typical desktop or lap-

top computer system.

Before You Begin the Installation
Installing a new operating system is a major event, and you

should make sure that you have properly thought through

what is going to take place. The first thing to consider is

how the hardware will be affected by the software that

you propose to install. Although Ubuntu runs well on a

variety of hardware, checking your hardware components

is worthwhile because some bits of hardware do not work

well with Ubuntu. This section provides some areas for

you to investigate and think about; it might even save you

hours of frustration when something goes wrong. Problems

are becoming much less frequent, but they still crop up

occasionally.

2 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

You start by researching and documenting your hardware. This information will prove

helpful later on, during the installation.

Researching Your Hardware Specifications

At the absolute minimum, you should know the basics of your system, such as how much

RAM you have installed and what type of mouse, keyboard, and monitor you have. Know-

ing the storage capacity and type of hard drive you have is important because it helps

you plan how you will divide it for Ubuntu and troubleshoot if problems occur. A small

detail, such as whether your mouse uses the USB or PS/2 interface, ensures proper pointer

configuration—something that should happen without any problem, but you will be glad

you know it in case something does go wrong. The more information you have, the better

prepared you are for any problems.

You can make an inventory or at least a quick list of some basic features of your system.

Again, the items you most want to know include the type and speed of your processor,

the amount of installed memory, the size of your hard drive, the type of mouse, the capa-

bilities of the display monitor (such as maximum resolution), and the number of installed

network interfaces (if any).

DVD INSTALLATION JUMP START

To install Ubuntu Desktop from an install disc, you should first test whether your system

is compatible by running Ubuntu from the DVD live. In general, a system must have at

least a 2GHz dual-core processor, 25GB of hard drive space, 2GiB RAM, and a monitor

with a display resolution of at least 1024×768. You also need a DVD drive or USB stick,

memory card, or external drive for the installer media. Internet access is not required but

is very helpful and strongly recommended. See https://help.ubuntu.com/community/

Installation/SystemRequirements for a more detailed list of requirements.

Installation Options

Ubuntu is made available in two main forms: the Desktop DVD and the Server install DVD.

(This list does not include derivative distributions like Kubuntu or Lubuntu or less commonly

used methods such as the network install disk.) For most people, the Desktop DVD is what

you want. The Server install DVD can get a LAMP (Linux, Apache, MySQL, and PHP) server

up and running in about 20 minutes, but, as you learn in this book, all these components

are available to the Ubuntu default distribution. An ISO image contains the entire contents

of a CD or DVD in a single file that can be used as if it were a CD or DVD and that can be

burned to a physical CD or DVD if desired; see Chapter 7, “Multimedia Applications,” to

learn how to burn CDs and DVDs in Ubuntu. You can find a list of the currently available

ISO images in a couple of places. The place that is best for most people to download from is

www.ubuntu.com/download, which includes a nice graphical menu system and links to easy-

to-read information and detailed instructions. Those with more specific requirements, such as

a desire to use one of the official alternative Ubuntu versions, like Kubuntu or Lubuntu, can

find what they need by navigating the menus at https://cdimage.ubuntu.com.

https://help.ubuntu.com/community/Installation/Systemrequirements
https://help.ubuntu.com/community/Installation/Systemrequirements
http://www.ubuntu.com/download
https://cdimage.ubuntu.com

3

1

Before You Begin the Installation

OFFICIAL UBUNTU FLAVORS

Ubuntu has several official variants, called flavors, as follows:

 ▶ Ubuntu

 ▶ Kubuntu

 ▶ Lubuntu

 ▶ Ubuntu Budgie

 ▶ Ubuntu Kylin

 ▶ Ubuntu Mate

 ▶ Ubuntu Studio

 ▶ Xubuntu

Almost everything in this book applies to any of these flavors. The exceptions include

GUI-specific content, such as GNOME-specific descriptions, and content that refers to pro-

grams not installed by default, such as many of the server and programming options. For

more information about Ubuntu flavors, see https://wiki.ubuntu.com/UbuntuFlavors.

To install via a USB thumb drive (one that holds at least 2GB), download the ISO image you

need. You also need to download a program that enables you to use this image to create

a bootable USB drive. For Windows, try Universal USB Installer (www.pendrivelinux.com/

universal-usb-installer-easy-as-1-2-3/) or ISO Recorder (https://isorecorder.alexfeinman.com/)

and follow the instructions given by the authors. For macOS, use Disk Utility to erase and for-

mat the USB drive and Etcher (www.balena.io/etcher/) to write. For Ubuntu, use the installed

Startup Disk Creator program available in the default install. After the ISO is written to the

USB drive, use it as you follow the installation instructions in this section. To install using a

DVD that you create, download the ISO image you need from www.ubuntu.com/download

or https://cdimage.ubuntu.com. You need to download a program to enable you to burn this

image to physical media. For Windows, try either InfraRecorder (https://infrarecorder.org)

or ISO Recorder (https://isorecorder.alexfeinman.com/) and follow the instructions given by

the authors. For macOS, you can use Apple’s Disk Utility, which is installed by default. For

Ubuntu, right-click the icon for an ISO image and select Write to Disc. After the DVD is cre-

ated, use it as you follow the installation instructions in this section.

UBUNTU ON MAC HARDWARE

There are sometimes problems installing Ubuntu on Mac hardware. Apple designs and

configures its devices with the intent that only its own software should be run on its hard-

ware. Be warned if you want to try to install Ubuntu or anything else on Mac hardware:

Here be dragons. It can work, but be prepared to search the web and maybe ask ques-

tions in some of the places listed in Chapter 2, “Background Information and Resources.”

In addition, it is not currently possible to install Ubuntu or any Linux distro on modern

Mac computers that have the Apple T2 storage controller because there is no Linux driver

available for that hardware.

https://wiki.ubuntu.com/UbuntuFlavors
http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/
http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/
https://isorecorder.alexfeinman.com/
http://www.balena.io/etcher/
http://www.ubuntu.com/download
https://cdimage.ubuntu.com
https://infrarecorder.org
https://isorecorder.alexfeinman.com/

4 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

32-Bit Versus 64-Bit Ubuntu

Starting with Ubuntu 20.04 LTS, Ubuntu is only officially releasing a 64-bit version. How-

ever, we are keeping this section for the moment for those using an older release on older

hardware. Nearly all consumer and enterprise hardware released in the last 15+ years is

64-bit, the exception being in specific categories using specific processors (certain embed-

ded applications on ARM or Atom chips, for example), which are not the focus for pretty

much anyone reading this book. If you have special needs like these, you may need to

contact Canonical for ideas and support and may just be out of luck with Ubuntu.

All users who can use it are better off using the 64-bit version of Ubuntu. The main dif-

ference has to do with how a computer processor is able to register and use memory, but

speed is also a factor. Here is why.

A computer with a 32-bit processor will be able to use a maximum of 4GB of memory

(actually a bit less, but this is a more practical-focused book and not a computer science

text, so the approximation is close enough for our uses; and yes, there are exceptions such

as when using physical address extension (PAE), but this is a reasonable general rule for

those just getting started). A computer with a 64-bit processor will be able to use up to a

theoretical limit of 17 billion GB. More memory addresses means that you can store more

data in RAM, which is much faster than processing it while reading from and writing to

disks or other storage media.

If you are dealing with large amounts of data, this is a huge benefit. Processing audio or

video, manipulating large databases of weather data, or playing 3D video games will be

much smoother. It will also happen faster.

Speed is increased for another reason. When you have more memory addresses, it is kind

of like when the supermarket has more checkout lines open. You can process more opera-

tions simultaneously. As a result of the extra capacity, variables and arrays in programs are

processed more efficiently, function arguments are passed more easily, and even new data

models are available for programmers and languages to use.

This requires some adaptation. Programs written for 32-bit operating systems must gener-

ally be adapted to take advantage of the capabilities of 64-bit processors. Although it is

(usually, or at least often) possible to run 32-bit programs on a 64-bit processor, doing so

is not always advantageous. However, in the Linux world, including Ubuntu, most soft-

ware has been refactored and recompiled to take advantage of 64-bit processors and their

capabilities. Software written for 64-bit processors is not backward compatible with 32-bit

processors.

Early on, driver support and adaptation of software took time and was not complete

enough to recommend using 64-bit Ubuntu by default. For about a decade, nearly all

Intel- and AMD-based computer systems sold have been 64-bit, and the software has

caught up. There is no reason to use anything else on this equipment.

If you browse to https://ubuntu.com/releases, you will find downloadable .iso files that

will allow you to create a DVD from which you can boot/install Ubuntu.

https://ubuntu.com/releases

5

1

Before You Begin the Installation

If you are using a moder consumer- or enterprise-focused processor (for example, AMD

Ryzen, Intel Core i3/5/7/9, or Xeon) you are all set.

Planning Partition Strategies

Partitioning is a topic that can make novice Linux users nervous. Coming from a Micro-

soft world, where you might be used to having just one hard drive, it can seem a bit

strange to use an operating system that makes partitioning a hard drive possible or even

preferable and common.

Depending on your needs, you can opt to have a single large partition to contain every-

thing, which is the official recommendation of the Ubuntu community and develop-

ers. You might prefer to segment your installation across several partitions if you have

advanced knowledge and specific needs.

If you are installing Ubuntu in a corporate or business environment, the needs of the

business should be a primary concern. Be careful to ensure that you build in an adequate

upgrade path that allows you to extend the life of the system and add any additional stor-

age or memory.

Knowing how software is placed on your hard drive for Linux involves knowing how

Ubuntu organizes its file system. This knowledge helps you make the most of hard drive

space. In some instances, such as when you’re planning to have user directories mounted

via NFS or other means, this information can help head off data loss, increase security,

and accommodate future needs. Create a great system, and you’ll be the hero of informa-

tion services. The Linux file system is covered along with commands to manipulate files

and directories in Chapter 10, “Command-Line Beginner’s Class.”

To plan the best partitioning scheme, research and know the answers to these questions:

 ▶ How much disk space does your system require?

 ▶ Do you expect your disk space needs to grow significantly in the future?

 ▶ Will the system boot only Ubuntu, or do you need a dual-boot system?

 ▶ How much data requires backup, and what backup system will work best? (See

Chapter 17, “Backing Up,” for more information about backing up your system.)

The Boot Loader

If your system does not have a UEFI BIOS, then during installation, Ubuntu automatically

installs GRUB2 (Grand Unified Boot Loader) to the Master Boot Record (MBR) or to the GPT

(GUID Partition Table) of your hard drive. Handily enough, it also detects any other operat-

ing systems, such as Windows, and adds entries in GRUB2 as appropriate. If you have a

specific requirement not to install GRUB2 to the MBR, you need to install using the

Alternate disc, which enables you to specify the install location for GRUB2.

6 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

DUAL BOOT NOT RECOMMENDED, BUT YOU CAN TRY IT IF YOU WANT

If you are attempting to create a dual-boot system using both Windows and Ubuntu—a

system in which multiple operating systems exist on the hard drive and the user selects

which one to use at boot time—it depends on your system as to whether this is easy

or difficult. For systems that do not have a UEFI BIOS, you should install Windows first

because it will overwrite the MBR and ignore any other operating systems on the disk.

Ubuntu also overwrites the MBR, but it does so in a way that creates a boot menu that

includes all operating systems it detects on the disk. If you do have a UEFI system, then

GRUB2 is installed as an EFI application on the EFI system partition, which makes dual

booting much less painful and more reliable.

Either way, you can get dual-booting to work, but in the past few years options have arisen

that are better for most people.

If you decide you must dual boot, make sure you have your Windows recovery media

available and that you either already have enough free space on your hard drive or know

how to shrink the existing Windows partition and create a new partition on the hard drive

for Ubuntu. No support or instructions for doing this are given in this book. If you need

to use more than one operating system on the same hardware, this book recommends

virtualization.

See Chapter 30, “Virtualization on Ubuntu,” for more information.

Installing from DVD or USB Drive

On most PCs, the BIOS supports booting directly from a CD, DVD, or USB drive and

enables you to set a specific order of devices (such as hard drive, CD-ROM, or USB)

to search for bootable software. Turn on your PC and set its BIOS if required (usually

accessed by pressing a function key or the Del key after powering on) and then insert your

Ubuntu install media and boot to install Ubuntu.

UEFI

If you have hardware that is from 2010 or newer, it probably includes a firmware interface

called UEFI. The Unified Extensible Firmware Interface is a specification that defines how

an operating system and the hardware interact. It replaces the BIOS mentioned earlier,

although some manufacturers and most end users continue to use the term BIOS, just for

consistency over time, even when they are using UEFI. In the past, UEFI has also been

known to cause problems when you try to install a different operating system than the

default one it came with on one of these machines. The 64-bit version of Ubuntu is typi-

cally quite reliable in supporting installation regardless. However, if you encounter difficul-

ties, see https://help.ubuntu.com/community/UEFI for assistance.

Step-by-Step Installation
This section describes a basic step-by-step installation of Ubuntu from an install DVD or

USB drive you create yourself using an ISO image you downloaded and wrote to a disk

https://help.ubuntu.com/community/UeFI

7

1

Step-by-Step Installation

or USB drive using the instructions provided earlier; just replace mentions of DVD with

your install medium. The install process itself is fairly straightforward, and you should not

encounter any real problems.

CAUTION

If you have anything at all on your computer that you want to save, back it up first.

Installing an operating system has become easier to do, but it is still a major change.

Your entire hard drive will be erased, and new information will be written to it. This is

expected when installing Ubuntu to the entire hard drive, but it can even happen due to

user error or gremlins (unexplained problems) when attempting a dual-boot installation.

Back up anything you want to preserve. Save data and files to an external hard drive or

other medium. You may even want to back up your entire operating system and current

installation using something like Clonezilla (http://clonezilla.org). Whatever you do, go

in with the perspective that everything currently on the computer will disappear. If this is

okay, continue.

Having your computer connected to the Internet as you proceed is useful and recom-

mended so that you can download updates while installing.

Installing

To get started, insert the install DVD into your drive and reboot your computer.

NOTICE

The installation process occasionally changes when new releases occur, but the overall

idea is consistent. The screenshots you see here are probably accurate, but it is possible

you may see a change or two. If you understand what you need to do, any changes should

be trivial to you.

The initial screen offers a variety of languages for you to use during installation (see

Figure 1.1) and two options. The Try Ubuntu option boots and runs Ubuntu from the

DVD without making any changes to your system so that when you remove the DVD and

reboot, everything will be as it was before. Install Ubuntu installs Ubuntu instead of your

current operating system or alongside it (for dual-booting). Select Install Ubuntu to begin.

Figure 1.2 shows the Preparing to Install Ubuntu screen. If you select the two check boxes

at the bottom, Ubuntu downloads extra software, such as multimedia codecs and any soft-

ware updates that have been released since the disk was created, and includes them in the

installation. Doing so is recommended.

http://clonezilla.org

8 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

FIGURE 1.1 Choose a language for the installation in this opening screen.

FIGURE 1.2 Before proceeding, decide whether you want to download updates during

installation.

If other operating systems are found on your system, you are given the option to install

Ubuntu alongside them or to erase them and use the whole disk for Ubuntu. See the dual-

boot note and backup warning earlier in this chapter before continuing.

9

1

Step-by-Step Installation

Next, as shown in Figure 1.3, you have the option either to erase and use the entire hard

disk for your installation (recommended for people who are new to Linux and are nervous

about partitioning a hard drive) or to specify partitions manually, which is not as dif-

ficult as it sounds. You also have the opportunity to have the entire Ubuntu installation

encrypted; this is very secure, but if you lose your password, you are eternally out of luck,

so choose wisely.

FIGURE 1.3 What do you want to do with your storage drive?

NOTE

More complex partitioning schemes might be useful for more complex systems, such as

servers, especially when multiple hard drives are available. Read Chapter 10, “Command-

Line Beginner’s Class,” for a quick discussion of the parts of the Linux file system to get

an idea of parts of the file system that could benefit from residing on their own (or even

multiple!) partitions or disks.

NOTE

Adding, formatting, and partitioning a hard drive can be done at any time, not only during

installation. You should not try to modify a drive you are currently using, such as the one

on which you have installed Ubuntu, because doing so could make the computer unus-

able, and you would have to start over. However, if you are adding a second drive or if you

want to reformat a flash drive, partitioning the drive you’re using is a useful skill to know.

In any case, this is an instance where the standard warning applies: Pay attention to what

you are doing and know why you are doing it because this powerful tool both is useful and

has the potential to cause you serious problems and data loss if used incorrectly.

10 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

The easiest and simplest method is to use GParted, which is a graphical partition man-

ager. GParted is not installed by default, but it is available in the Ubuntu software reposi-

tories; see Chapter 9, “Managing Software,” if you need help installing it.

In addition to being useful for adding drives, GParted can also assist you in recovering

from problems. You can run it after booting Ubuntu in a live session or running from a live

CD or a USB drive. In this case, the system’s hard drives are not mounted, and you can

manage them from the live session.

After you have made your partitioning selections, installation continues by asking about

your current location; it helps you select the most appropriate keyboard layout for your

system, based on that location and the most common language used there, and it asks you

to enter your name, a username that you will use to log in to the system, and a password.

You can even choose to encrypt your /home folder during the process.

A QUICK ASIDE ON PASSWORDS

When you create your password, be sure to remember what you entered. If you forget it,

you cannot use your new system because you will not be able to log on to it.

When setting a password, the common advice is to make sure it has a mixture of letters and

numbers to make it more secure. For instance, a good example of a historically recommended

style of password is T1a5c0p. Although this might seem like garbage at first glance, you can

remember it easily by thinking of the phrase This Is A Good Choice Of Password, shortened to

Tiagcop, and substituting some of the letters with similar-looking numbers.

There are some reasons this might not be the best recommendation anymore because

computer systems are much faster than they used to be. It is a true statement that the

longer a password is, the harder it is to break. For this reason, the newest recommenda-

tion is to use a passphrase consisting of at least four words, perhaps something like

green monkeys chortle often. There is no doubt that a password the length of four com-

mon words combined together would be harder to break than the T1a5c0p example. From

that perspective, it seems like a no-brainer. On the other hand, a longer password that

does not use any words found in a dictionary would be even better, but the problem here

is that these passwords, and even the T1a5c0p example, can be hard to remember and

may end up being written down on a sticky note next to the computer, perhaps even stuck

to the monitor. That is worse, especially if you use good security and create a different

password for every website and computer system that requires one.

One solution is to choose a really good password for your system, one that you will

remember, like the four-word example or a long passphrase like PeanutButterandJelly

$andwiches, and then create one more good password to use with a password manager

program like KeePassX (available in the Ubuntu software repositories; see Chapter 9,

“Managing Software,” for details on how to find and install it), which can generate long,

completely random passwords for you and keep them in a list that can only be viewed by

accessing your system and then accessing the program, both of which will use good pass-

words. Let’s get back to the installation.

While you are answering the questions asked by the installer, the Ubuntu install begins

to copy files to your hard drive. Performing these tasks in parallel makes the process

even faster than it used to be. When you have input all necessary information and as the

11

1

Shutting Down

installation completes, you see a series of information screens that are filled with interest-

ing content about Ubuntu and are worth reading while you wait.

When the process is complete, you are prompted to restart the computer. Do so and remove

the install media when it is ejected. Then log in when the reboot is complete. That’s it.

In previous editions of this book, this chapter was longer and described a process that was

sometimes confusing and fraught with peril. The Ubuntu developers deserve high praise

for making the installation so incredibly easy and fast. The Linux kernel supports more

hardware than ever before, and the Ubuntu kernel gurus (who make the decisions about

what hardware modules to enable, among other things) do a great job, and most hardware

works out of the box.

First Update

It used to be that the first thing you needed to do with your new system was update it to

the latest package versions. You would do this mainly to ensure that you had the latest

security updates available. Remember the first installation step, where we recommended

checking the box to have software updates download during the installation process?

If you did, the updates were acquired during the installation, and your system should

already be up-to-the-minute current.

If you want to double-check that you have all the current versions of software and security

updates installed, read Chapter 9 and Chapter 10 for more information.

Shutting Down
At some point, you are going to want to shut down your computer. As with most other

things in Linux, there are different ways to do it. You can use the power icon located in

the upper-right corner of your screen to access the power menu, shown in Figure 1.4.

FIGURE 1.4 You can also lock the screen, access settings, and more from the power menu.

12 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

If you are working at the command line, you can immediately shut down your system by

using the shutdown command, like this:

matthew@seymour:~$ sudo shutdown -h now

You can also use the shutdown command to restart your computer, as follows:

matthew@seymour:~$ sudo shutdown -r now

For new users, installing Ubuntu is the beginning of a new and highly rewarding journey

on the path to learning Linux. For Ubuntu system administrators, the tasks ahead are to

fine-tune the installation and to customize the server or user environment.

NOTE

Now that you have completed the primary task of installing Ubuntu, you can begin to

customize your new operating system. This chapter looks at getting up and running with

Ubuntu. Chapter 3, “Foundations of the Linux GUI,” gives you a tour around the desktop.

Next, this chapter describes some basic administration tasks. By the end of this chapter,

you should feel comfortable enough to move on through the rest of the book.

Finding Programs and Files
In the past, Ubuntu used a system of menus to guide users in searching for programs,

but now there is an easier, faster way: Use search to find programs. You access search by

clicking Activities at the upper left of the screen, and then start typing in the search box

to find specific programs or documents on your system (see Figure 1.5). The desktop (also

known as the GNOME user interface) is covered in more detail in Chapter 3.

FIGURE 1.5 Search is the place to find programs and files.

Software Updater
Software Updater is covered in greater detail in Chapter 9, but it is worthy of a quick men-

tion now so that from the start you can benefit from any available security and bug fixes.

The easiest way to check for updates is to use Software Updater. Open Software Updater

from search by typing software updater to search for it. When the window opens,

Update Manager checks the Ubuntu software repositories to determine whether any

updates are available. When it detects that new versions of installed software are available,

it displays them in the window. Uncheck the check box next to any item if you don’t

13

1

Software Updater

want to install that particular software update. Click Install Now to complete the process

(see Figure 1.6). Software repositories are discussed later in this chapter.

FIGURE 1.6 Software Updater, showing available software updates.

Another way of updating your system is to use the command line. This is vital on servers

that do not have a GUI installed, and it is sometimes quicker than using Software Updater

on a desktop computer. I like to use the command line to manage all the computers on

my home network because I can use Secure Shell (SSH) to connect to each from a terminal

and perform updates from another room in the house; anyone using that computer is left

undisturbed while I’m making updates. You find out how to connect using the command

line in Chapter 19, “Remote Access with SSH and VNC.”

NOTE

In the second half of the “Software Updater” section and in “The sudo Command” sec-

tion that follows, we introduce some commands that must be entered from the command

line, also known as the terminal. Rather than a graphics-based user interface, the com-

mand line is a more traditional text-based user interface. Chapter 10, “Command-Line

Beginner’s Class,” Chapter 11, “Command-Line Master Class, Part 1,” and Chapter 12,

“Command-Line Master Class, Part 2,” cover this topic is much greater detail.

For now, the goal is to introduce you to the idea and let you know what can be done. You

are not yet expected to know what a lot of this means.

To use the command line, open search and type terminal.

When you open the terminal, you are greeted with a prompt similar to the one here:

matthew@seymour:~$

A blinking cursor also displays. Ubuntu is awaiting your first command. Issue the follow-

ing command:

matthew@seymour:~$ sudo apt update

14 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

This command tells the package management utility apt to check the Ubuntu repositories

and look for any updates to your installed software. In a matter of seconds, Ubuntu com-

pletes all of this, and your screen should look something like this:

matthew@seymour:~$ sudo apt update

[sudo] password for matthew:

Hit:1 http://security.ubuntu.com bionic-security InRelease

Hit:2 http://us.archive.ubuntu.com bionic InRelease

Hit:3 http://us.archive.ubuntu.com/ubuntu bionic-updates InRelease

Hit:4 http://us.archive.ubuntu.com/ubuntu bionic-backports InRelease

Reading package lists... Done

Building dependency tree

Reading state information... Done

67 packages can be upgraded. Run 'apt list --upgradable' to see them.

matthew@seymour:~$

Upgrade your software by entering the following:

matthew@seymour:~$ sudo apt full-upgrade

Because you have already checked for updates, Ubuntu automatically knows to download

and install only the packages it needs. The full-upgrade option works intelligently to

ensure that any dependencies that are needed can be satisfied and will be installed, even

if major changes are needed. You can also use the option upgrade, which isn’t as smart

as full-upgrade, but it might be a better choice on a production server because upgrade

does not make major changes to software installations. It only makes changes that are

necessary for security and simple package updates. This allows the systems administrator

more flexibility to keep up to date with security while keeping running setups otherwise

unchanged.

The sudo Command
You will find as you work through this book that Ubuntu relies on the sudo command

while you work at the command line. This command is used in front of other commands

to tell Ubuntu that you want to run the specified command with super user powers. This

sounds really special, and it actually is. When you work using the sudo command, you

can make wide-ranging changes to your system that affect the way it runs. Be extra careful

when running any command prefixed with sudo, however; a wrong option or an incorrect

command can have devastating consequences.

The use of sudo is straightforward. All you have to do is enter it like this:

matthew@seymour:~$ sudo command commandoptions

Just replace the word command with the command you want to run and commandoptions

with any options. For example, the following command opens your xorg.conf file in vi

and enables you to make any changes as the super user before being able to save it:

matthew@seymour:~$ sudo vi /etc/X11/xorg.conf

http://security.ubuntu.com
http://us.archive.ubuntu.com
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu

15

1

Configuring Software Repositories

Whenever you execute a command using sudo, you are prompted for your password. This

is the same password that you use to log in to Ubuntu, so it is important that you remem-

ber it.

Sometimes, however, you might want to work with a classic root prompt instead of hav-

ing to type sudo in front of every command (if you have to work with lots of commands

at the command line that require super user access, for example). sudo enables you to do

this by using the sudo -i command. Again, you are prompted for your password, which

you should enter, after which Ubuntu gives you the standard root prompt, as follows:

matthew@seymour:~#

From here, you can execute any command without having to keep entering sudo.

WARNING

Working from the root prompt can be really dangerous unless you know what you are

doing. Until you are experienced, we recommend that you stick to using sudo, which is

covered in more detail in Chapter 10.

Configuring Software Repositories
Ubuntu uses software repositories to get information about available software that can

be installed on your system. Ubuntu is based on a much older Linux distribution called

Debian. Debian has access to tens of thousands of different packages, which means that

Ubuntu has access to these packages, too. The Debian packages are made available in

Ubuntu’s Universe repository. A set of volunteers called Masters of the Universe (MOTUs) are

well trained and follow strict guidelines to package software and make even more pack-

ages available to Ubuntu users in the Universe repository. (See Chapter 40, “Helping with

Ubuntu Development,” for more information about the MOTUs and how you can become

one of them.) The Universe repository is filled with optional and often useful or fun soft-

ware; it is enabled by default, along with other official repositories containing security

updates, software updates, and software necessary for Ubuntu to be installed and run in all

of its various official forms.

You can adjust which repositories are enabled using the Software & Updates GUI tool,

available in Software Updater by clicking Settings. On the first tab (Ubuntu Software), you

have five options to choose from. The default settings are shown in Figure 1.7. Which

options you check is entirely up to you, but make sure that at least the first check box is

selected to allow you access to Canonical-supported open source software, which includes

all the packages necessary for a basic Ubuntu installation and a few more that are com-

monly used. (Canonical is the company the funds much of Ubuntu development.) The

more boxes you check, the wider your selection of software. Making sure that the Propri-

etary Drivers for Devices box is checked is also a good idea so that you can benefit from

drivers that might enhance your system’s performance.

16 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

FIGURE 1.7 You can find or add other options under the Other Software, Updates, Additional

Drivers, and other tabs.

OPEN SOURCE VERSUS PROPRIETARY

You might hear some arguments about using proprietary drivers or other software in

Ubuntu. Some people feel that the use of such drivers goes against what open source

stands for because the program code used for the drivers or software cannot be viewed

and modified by the wider community but only by the original developers or company that

owns it. There is also a strong argument that users should have to undergo the least

amount of work for a fully functional system.

Ubuntu takes a middle-of-the-road stand on this and leaves it up to the user to decide.

Open source software is installed by default, but options are given to allow proprietary

software to be installed easily.

When you are happy with your selections, switch to the Updates tab to configure Ubun-

tu’s behavior when updates are available (see Figure 1.8). By default, both the important

security updates and recommended updates are checked to ensure that you have the lat-

est bug fixes and patches. You can also choose to receive proposed updates and backports

(software that is released for a newer version of Ubuntu but reprogrammed to be com-

patible with the current release), but we recommend this only if you are happy to carry

out testing for the community because any updated software from these repositories can

adversely affect your system.

Ubuntu also enables you to configure how often it checks for updates and how they are

installed. By default, Ubuntu checks daily for updates and, if any are available, notifies

you. However, you can change the frequency and the actions Ubuntu carries out when

it finds available updates. We recommend keeping the notification-only option because

this enables you to see what updates are available prior to their installation. If you want

to save time, choose Download All Updates in the Background to configure Ubuntu to

silently download the updates before it gives you the option to install them.

17

1

System Settings

FIGURE 1.8 In the Updates tab of Software & Updates, configure which updates you want and

how you want them to be handled.

Part of the magic of Ubuntu is the ease in which you can upgrade from major version to

major version, such as moving from 19.04 to 19.10. Some Ubuntu releases are called LTS,

for long-term support, and are intended for production use by most people. The interim

releases are for those who feel they must have the most recent version of everything or

those who help work on Ubuntu development. These releases are stable, but they are sup-

ported for only a short time, so if you choose to use them, you should plan to upgrade to

the new release every six months. By ensuring that the release upgrade option is set to LTS

releases only, you’ll be prompted to upgrade your version of Ubuntu only every two years;

the current LTS version used to write this book, 20.04, was released in April 2020, and the

next LTS is scheduled to be released in April 2022.

The Other Software tab enables you to add other repositories. It comes by default with

everything you need to connect to and use Canonical’s partner repository, with nonfree

(usually in the licensing sense, but occasionally for payment) software from companies

that have an agreement with Canonical to make it easily available to interested users. This

repository is disabled by default, and if you want to use it, you must enable it by checking

a box next to its entry in the Other Software tab.

System Settings
To configure system settings, search for System Settings or click the settings logo in the

power menu (refer to Figure 1.4). This opens the Settings window, shown in Figure 1.9,

from which you can select entries from the menu at the left and then make adjustments

as desired. A couple of the options are described in the following sections.

18 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

FIGURE 1.9 Adjust your system settings.

Detecting and Configuring a Printer

Setting up a printer in Linux used to be so difficult that previous editions of this book

included an entire chapter filled with command-line magic and scary-looking configura-

tion files. The setup is no longer that difficult in most cases.

Ubuntu includes drivers for many printers, and installing and using a printer in Ubuntu

is usually easier than in other operating systems. (This is not an absolute rule, though.)

Some printer manufacturers do not write and release drivers for Linux, and for some print-

ers, no open source driver exists. Before you buy a printer, spending some time on the

Internet searching for printers that are known to work with Linux is a good idea. One

great resource is the Open Printing database from The Linux Foundation, at www.

openprinting.org/printers.

If you choose wisely, all you need to do is plug your printer into the computer and turn it

on. In many cases, Ubuntu finds the printer and adds the driver automatically. Within a

couple of minutes, you should be able to use it. From the Settings window, select Devices

and then select Printers to add a printer, to see all installed and configured printers, and

to change printer settings. From here you can choose to enable printer sharing on a net-

work, set options for default print quality, print a test page, and more.

Configuring Power Management in Ubuntu

Select Power from the Settings window to control how Ubuntu handles power-saving fea-

tures in specific situations.

Ubuntu provides good support for suspend, which means your computer writes its current

state to memory and goes into a low-power mode. Your computer will start much faster

http://www.openprinting.org/printers
http://www.openprinting.org/printers

19

1

System Settings

the next time you use it because it does not need to perform a full boot; it brings the sys-

tem up to its previous state out of memory instead of loading and starting every program

again from scratch.

Setting the Time and Date

Linux provides a system time and date; your computer hardware provides a hardware

clock-based time. In many cases, it is possible for the two times to drift apart. Linux

system time is based on the number of seconds elapsed since January 1, 1970. Your

computer’s hardware time depends on the type of clock chips installed on your PC’s

motherboard, and many motherboard chipsets are notoriously subject to drift.

Keeping accurate time is important on a single workstation, but it is critically important in

a network environment. Backups, scheduled downtimes, and other network-wide actions

need to be accurately coordinated.

The Ubuntu installer sets the time and date during the installation process when it asks

for your location. If you move or just want to change the settings (for example, to have

your computer automatically synchronize its clock with official time servers on the

Internet), you can do so.

Changing the Time and Date

Using Ubuntu’s graphical tool is the simplest way to set your system date and time and

the most obvious for a desktop user. From the Settings window, select Details and then

select Date & Time to make changes. You can manually set the date and time in the GUI

or have your computer obtain updated date and time information via the Internet.

Using the date Command

Use the date command to display or set your Linux system time. This command requires

you to use a specific sequence of numbers to represent the desired date and time. To see

your Linux system’s idea of the current date and time, use the date command like this:

matthew@seymour:~$ date

Tue Sep 28 21:03:14 CDT 2021

To adjust your system’s time (for example, to September 28, 2021 at 10:33 a.m.), use a

command line with the month, day, hour, minute, and year, like so:

matthew@seymour:~$ sudo date 092810332021

Tue Sep 28 21:03:14 CDT 2021

Using the hwclock Command

Use the hwclock command to display or set your Linux system time, display or set your

PC’s hardware clock, or synchronize the system and hardware times. To see your hardware

time and date, use hwclock with the --show option, like so:

matthew@seymour:~$ sudo hwclock --show

Tue 28 Sep 2021 06:04:43 PM CDT -0.281699 seconds

20 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

Use hwclock with its --set and --date options to manually set the hardware clock, as

follows:

matthew@seymour:~$ sudo hwclock --set --date "09/28/21 10:33:00"

matthew@seymour:~$ hwclock --show

Tue 28 Sep 2021 10:33:09 AM MST -0.904668 seconds

In these examples, the hardware clock has been set using hwclock, which is then used

again to verify the new hardware date and time. You can also use hwclock to set the Linux

system time and date, using your hardware clock’s values, with the Linux system time and

date.

For example, to set the system time from your PC’s hardware clock, use the --hctosys

option, like so:

matthew@seymour:~$ sudo hwclock --hctosys

To set your hardware clock using the system time, use the --systohc option, like so:

matthew@seymour:~$ sudo hwclock --systohc

Configuring Wireless Networks
To manage networking from the GUI in Ubuntu, click the power icon (refer to Figure 1.4

earlier in this chapter). Entries in the menu that appears allow you to handle and monitor

network connections.

Click the networking icon in the toolbar to connect to a wireless network. If your wire-

less access point broadcasts its service set identifier (SSID), it should appear in the list under

wireless networks. Click the desired network, and Network Manager detects what encryp-

tion (if any) is in use and asks you for the passkey. Enter this, and Network Manager starts

the wireless connection. The passkey is then stored in the default keyring, a secure area

that is unique to your login. From now on, whenever you log in to Ubuntu and are in

range of this network, Network Manager will start the connection automatically.

If for some reason your wireless network does not appear (you might have your SSID hid-

den), you must use the Connect to Other Wireless Network option, in which case you

enter the network name, wireless security type, and, when needed, the password for the

connection.

Network Manager can also connect to Cisco VPN connections through use of the vpnc

software. Install this from the Ubuntu repositories (see Chapter 9), and you can specify

connection settings as appropriate, or if you have access to a predefined configuration

file (PCF), you can import it directly into Network Manager.

21

1

Troubleshooting Post-Installation Configuration Problems

Troubleshooting Post-Installation Configuration
Problems
A lot of work has gone into making Ubuntu as versatile as possible, but sometimes you

might come across a piece of hardware that Ubuntu is not sure about. Knowing what to

do in these situations is important, especially when you are new to working with Ubuntu.

Because Ubuntu (and Linux in general) is built on a resilient UNIX foundation, it is much

more stable than some other operating systems. However, even though things might seem

to be working fine, Ubuntu could have a problem that might not affect the appearance

of the system. In this section, you learn how to examine some of Ubuntu’s built-in error

logs, which can help you discover or diagnose unseen problems.

Ubuntu has a command that responds with detailed messages that are output directly

by the operating system: the dmesg command, which we introduce here and cover more

completely in Chapter 12. This command is commonly used with the grep command to

filter output. The dmesg command takes its output directly from the /var/log/syslog file,

so you can choose to either run dmesg or read the file directly by typing less /var/log/

syslog. The output is fairly detailed, so be prepared for an initial shock when you see how

much information is generated. You might find it easier to generate a file with the dmesg

output by using the following command:

matthew@seymour:~$ dmesg > dmesg.txt

This takes the output from the dmesg command and stores it in a new text file called

dmesg.txt. You can then browse it at your leisure, using your choice of text editor, such

as vi or emacs. You can even use the less command, like so:

matthew@seymour:~$ less dmesg.txt

The messages are generated by the kernel, by other software run by /etc/init.d, and by

Systemd scripts. You might find what appear at first glance to be errors, but some errors

are not really problems (for example, if a piece of hardware is configured but not present

on your system).

Thanks to Google, troubleshooting is no longer the slow process it used to be. You can

copy and paste error messages into Google’s search bar to bring up a whole selection of

results similar to the problem you face. You are likely to come across people who have had

the same problem as you.

It is important to work on finding and testing only one solution to one problem at a time;

otherwise, you might end up getting no work done whatsoever. You should also get into

the habit of making backup copies of all files that you modify, just in case you make a bad

situation worse. Use the copy (cp) command like this:

matthew@seymour:~$ cp file file.backup20210101

22 CHAPTER 1 Installing Ubuntu and Post-Installation Configuration

You should not use a .bak extension on your backup files because this could get overwrit-

ten by another automatic process and leave you frustrated when you try to restore the

original file. I like to use the convention backupYYYYMMDD, as in the preceding code, where

I used the date for New Year’s Day 2021: 2021(year)01(month)01(day).

If something breaks as a result of your changes to the original file, you can always copy

the original back into place by using the command like this:

matthew@seymour:~$ cp file.backup20210101 file

NOTE

Something as simple as copying the original back into place can really save you, espe-

cially when you are under pressure because you’ve changed something you shouldn’t have

changed on a production system. The best practice is not to make sweeping changes on

a production system.

If you are having trouble with booting your system, you may find it helpful to read Chap-

ter 15, “The Boot Process,” as it details aspects like the boot loader and startup process.

Understanding what happens during this process will give you an idea of what to look for

and how to solve problems.

References
 ▶ www.ubuntu.com—This is the place to start when looking for news, information,

and documentation about installing, configuring, and using Ubuntu.

 ▶ https://ubuntu.com/download—This page has specific information and links

for downloading, burning, and installing the current release of Ubuntu.

 ▶ www.gnu.org/software/grub/—This is the home page for the GRUB boot

loader.

http://www.ubuntu.com
https://ubuntu.com/download�
http://www.gnu.org/software/grub/

IN THIS CHAPTER

 ▶ What Is Linux?

 ▶ Why Use Linux?

 ▶ What Is Ubuntu?

 ▶ Ubuntu for Business

 ▶ Ubuntu in Your Home

 ▶ Getting the Most from Linux

and Ubuntu Documentation

CHAPTER 2

Background Information
and Resources

As with any new thing, finding out a bit about its history

is worthwhile. Ubuntu is no different, and in this chapter

you learn a little more about where Linux and Ubuntu

came from. In addition, this chapter gives you resources to

help you learn more on your own.

What Is Linux?
Linux is the core, or kernel, of a free operating system first

developed and released to the world by Linus Benedict

Torvalds in 1991. Torvalds, then a graduate student at the

University of Helsinki, Finland, is now a Fellow at the Linux

Foundation (www.linuxfoundation.org). He is an engineer

and previously worked for the CPU design and fabrication

company Transmeta, Inc., before leaving in 2003 to work

for Open Source Development Labs (ODSL), a consortium

created by many high-tech companies to support Linux

development, which has enabled him to focus on the Linux

kernel full time. Fortunately for all Linux users, Torvalds

chose to distribute Linux under a free software license

called the GNU General Public License (GPL).

NOTE

The free online resource Wikipedia has a great biogra-

phy of Linus Torvalds that examines his life and notable

achievements. You can find it at https://en.wikipedia.

org/wiki/Linus_Torvalds.

The GNU GPL is the brainchild of Richard M. Stallman,

the founder of the Free Software Foundation. Stallman, the

famous author of the emacs editing environment and GCC

http://www.linuxfoundation.org
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linus_Torvalds

24 CHAPTER 2 Background Information and Resources

compiler system, crafted the GPL to ensure that software that used the GPL for licensing

would always be free and available in source-code form. The GPL is the guiding document

for Linux and its ownership, distribution, and copyright. Torvalds holds the rights to the

Linux trademark, but thanks to a combination of his generosity, the Internet, thousands

of programmers around the world, GNU software, and the GNU GPL, Linux will remain

forever free and unencumbered by licensing or royalty issues.

DISTRIBUTION VERSION AND KERNEL NUMBERING SCHEMA

There is a numbering system for Linux kernels, kernel development, and Ubuntu’s kernel

versions. Note that these numbers bear no relation to the version number of your Ubuntu

Linux distribution. Ubuntu distribution version numbers are assigned by the Ubuntu devel-

opers, whereas most of the Linux kernel version numbers are assigned by Linus Torvalds

and his legion of kernel developers.

To see the date your Linux kernel was compiled, use the uname command with its -v

command-line option. To see the version of your Linux kernel, use the -r option. The

numbers, such as 4.14.0-22-generic, represent the major version (4), minor version (14),

and patch level (0). The final number (22-generic) is the developer patch level and in our

context is what is assigned by the Ubuntu developers.

Even minor numbers are considered “stable” and fit for use in production environments.

You will find only stable versions of the Linux kernel included in this book. You can

choose to download and install a beta (test) version of the kernel, but doing so is not

recommended for a system destined for everyday use. Developers use beta kernels to

test support of new hardware or operating system features.

Linux, pronounced “lih-nucks,” is free software. Combining the Linux kernel with GNU

software tools—drivers, utilities, user interfaces, and other software such as the X.Org

Foundation’s X Window System—creates a Linux distribution. There are many different

Linux distributions from different vendors, but many derive from or closely mimic the

Debian Linux distribution, on which Ubuntu is based.

NOTE

Debian lists several dozen other Linux distributions as being based on Debian Linux (see

www.debian.org/misc/children-distros).

While it is really the kernel itself that is most appropriately referred to as “Linux,” col-

loquial language uses the term to refer to more than just the kernel. Most people who say

they “use Linux” are referring to, at a minimum, a suite of software that includes several

things. We have listed some of the more necessary ones here, in the order in which they

are loaded into your computer’s memory during the boot cycle, after your computer’s

BIOS or UEFI firmware (which was included by the manufacturer of the motherboard and

which runs from where it is stored on the motherboard) has run to get things started:

 ▶ A boot loader, like GRUB2, which is described in Chapter 1, “Installing Ubuntu and

Post-Installation Configuration”

http://X.Org
http://www.debian.org/misc/children-distros

25

2

Why Use Linux?

 ▶ The Linux kernel, which is described in Chapter 22, “Kernel and Module

Management”

 ▶ Daemons, which are background processes that the system runs to perform tasks like

logging or listening for attempted network connections and so on; daemons may be

more easily understood as programs that are not run or invoked directly by a user

but that lie dormant until any of a specific set of conditions occurs

 ▶ The shell, which is a command processor that most people know best because it is

what they see when they log in to the terminal; the shell is described in Chapter 14,

“Automating Tasks and Shell Scripting”

 ▶ Shell utilities, such as most of the commands in Chapter 10, “Command-Line

Beginner’s Class,” Chapter 11, “Command-Line Master Class, Part 1,” and

Chapter 12, “Command-Line Master Class, Part 2”

 ▶ A graphical server, such as the X server, which is described in Chapter 3,

“Foundations of the Linux GUI”

 ▶ A desktop environment, such as GNOME, which is also described in Chapter 3, and

others such as those discussed in Chapter 4, “Ubuntu Desktop Options”

 ▶ Desktop software, such as web browsers, office suites, media players, games, and

so on

A Linux distribution, like Ubuntu, collects all of these together, packages them, and makes

them available to end users as a convenient set.

Why Use Linux?
Millions of clever computer users have been putting Linux to work for nearly 30 years.

In recent years, many individuals, small office/home office (SOHO) users, businesses and

corporations, colleges, nonprofits, and government agencies (local, state, and federal) in

a number of countries have incorporated Linux with great success. And, today, Linux is

being incorporated into many information service/information technology (IS/IT) environ-

ments as part of improvements in efficiency, security, and cost savings. Using Linux is a

good idea for a number of reasons, including the following:

 ▶ Linux provides an excellent return on investment (ROI)—There is little or

no cost on a per-seat basis. Unlike commercial operating systems, Linux has no roy-

alty or licensing fees, and a single Linux distribution on a CD-ROM or in a network

shared folder can form the basis of an enterprise-wide software distribution, replete

with applications and productivity software. Custom corporate CD-ROMs can be eas-

ily crafted, or network shares can be created to provide specific installs on enterprise-

wide hardware. This feature alone can save hundreds of thousands, if not millions,

of dollars in IS/IT costs—all without the threat of a software audit from the com-

mercial software monopoly or the need for licensing accounting and controls of base

operating system installations.

26 CHAPTER 2 Background Information and Resources

 ▶ Linux can be put to work on the desktop—Linux, in conjunction with its

supporting graphical networking protocol and interface (the X Window System), has

worked well as a consumer UNIX-like desktop operating system since the mid-1990s.

The fact that UNIX is ready for the consumer desktop is clear as Apple’s macOS is a

POSIX-compliant operating system built on top of the Apple-developed XNU kernel.

XNU stands for “X is Not Unix,” which is amusing because Apple eventually sought

and achieved UNIX 03 certification, making macOS (then Mac OS X) an official ver-

sion of UNIX.

 ▶ Linux can be put to work as a server platform—Linux is fast, secure, stable,

scalable, and robust. The latest versions of the Linux kernel easily support multiple-

processor computers, large amounts of system memory, individual file sizes in excess

of hundreds of gigabytes, a choice of modern journaling file systems, hundreds of

process-monitoring and control utilities, and the (theoretical) capability to simulta-

neously support more than 4 billion users. IBM, Oracle, and other major database

vendors all have versions of their enterprise software available for Linux.

 ▶ Linux has a low entry-and-deployment cost barrier—Maintenance costs can

also be reduced because Linux works well on a variety of PCs. Although the best

program performance will be realized with newer hardware, base installs can even

be performed on lower-end computers or embedded devices. This provides for a

much wider user base, extends the life of older working hardware, and can help save

money for home, small business, and corporate users.

 ▶ Linux appeals to a wide audience in the hardware and software

industry—Versions of Linux exist for nearly every CPU. Embedded-systems devel-

opers now turn to Linux when crafting custom solutions using ARM, MIPS, and

other low-power processors on platforms such as Raspberry Pi. Linux is also available

for Intel’s Itanium CPU, as well as the AMD64 group of CPUs.

 ▶ Linux provides a royalty-free development platform for cross-platform

development—Because of the open source development model and availability of

free, high-quality development tools, Linux provides a low-cost entry point to bud-

ding developers and tech industry startups.

 ▶ Big-player support in the computer hardware industry from such titans

as IBM now lends credibility to Linux as a viable platform—IBM has

enabled Linux on the company’s entire line of computers, from low-end laptops

to “big iron” mainframes. New corporate customers are using Linux as part of

enterprise-level computing solutions. It has been used on some of the world’s fastest

computers. Companies like HP and Dell also certify Linux across a large portion of

their hardware offerings.

Look forward to even more support as Linux usage spreads worldwide throughout all

levels of businesses in search of lower costs, better performance, and stable and secure

implementations.

27

2

Ubuntu for Business

What Is Ubuntu?
Ubuntu is an operating system based on the Linux kernel, created, improved, refined, and

distributed by the Ubuntu Community at www.ubuntu.com. Sponsored by Canonical Ltd.

(www.canonical.com), Ubuntu is an open source project supported by a worldwide com-

munity of software developers.

Ubuntu released its first version in October 2004. It quickly gained a reputation for ease

of installation and use, combined with the slightly wacky code names given to each

release. However, Ubuntu itself is based on Debian, which is a much older distribution,

well-respected by the wider Linux community. Debian is the rock on which Ubuntu is

founded.

Sponsored by Canonical Software and with the formidable resources of Mark Shuttle-

worth, Ubuntu got off to a great start with version 4.10, the Warty Warthog. From the

start, Ubuntu specified clear goals: to provide a distribution that was easy to install and

use, that did not overly confuse the user, and that came on a single CD (now one DVD

image). Releasing every six months, Ubuntu made rapid progress into the Linux commu-

nity and is now one of the most popular Linux distros in the world.

UBUNTU VERSION NUMBERS

As mentioned earlier, Ubuntu has chosen a unique numbering scheme and some peculiar

code names for releases since the first launch in October 2004. Doing away with the

typical version numbering found elsewhere, Ubuntu decided to take the month and year

of release and reverse them. Hence, the first release in October 2004 became 4.10, fol-

lowed quickly by 5.04 (April 2005), 5.10, 6.06LTS, and so on up to the current 20.04.

The version covered in this book was released in April 2020 and therefore bears the ver-

sion number 20.04. What’s even more special about some releases is that they also

carry the LTS (long-term support): Canonical will support LTS versions for three years on

the desktop version and a total of five years for the server version after its release. LTS

releases come out every two years, and the most recent LTS version is 20.04.

The code names during development are even better: 4.10 was christened the Warty

Warthog, in recognition of the fact that it was a first release, warts and all. The second

release, 5.04, was dubbed the Hoary Hedgehog. Things got slightly better with 5.10, code-

named the Breezy Badger. 6.06 was announced as the Dapper Drake and was the first

Ubuntu distribution to carry the LTS badge. Beyond Dapper, there was the Edgy Eft (6.10)

followed by the Feisty Fawn (7.04), and more. For a full list of development code names,

see https://wiki.ubuntu.com/DevelopmentCodeNames.

Ubuntu for Business
Linux has matured over the years. It includes all the essential features for use in enterprise-

level environments, such as CPU architecture support, file systems, and memory handling.

Linux provides the foundation for cloud computing, containers, and even Android.

http://www.ubuntu.com
http://www.canonical.com
https://wiki.ubuntu.com/DevelopmentCodeNames

28 CHAPTER 2 Background Information and Resources

Small business owners can earn great rewards by stepping off the software licensing and

upgrade treadmill and adopting a Linux-based solution. A business using Ubuntu not only

avoids the need for licensing accounting and the threat of software audits but also has

viable alternatives to many types of commercial productivity software, often for free.

Using Ubuntu in a small business setting makes a lot of sense for other reasons, too, such

as not having to invest in cutting-edge hardware to set up a productive shop. Ubuntu eas-

ily supports older, or legacy, hardware, and savings are compounded over time by avoiding

unnecessary hardware upgrades. Additional savings will be realized because OS software

and upgrades are free. New versions of applications can be downloaded and installed at

little or no cost, and office suite software is free.

Ubuntu is easy to install on a network and plays well with others, meaning it works well

in a mixed-computing situation with other operating systems such as Windows, macOS,

and of course, UNIX. A simple Ubuntu server can be put to work as an initial partial solu-

tion or made to mimic file, mail, or print servers of other operating systems. Clerical staff

should quickly adapt to using familiar Internet and productivity tools, while your business

gets the additional benefits of stability, security, and a virus-free computing platform.

By carefully allocating monies spent on server hardware, a productive and efficient

multiuser system can be built for much less than the cost of comparable commercial

software. Combine these benefits with support for laptops, mobile devices, and remote

access, and you will find that Ubuntu supports the creation and use of an inexpensive yet

efficient work environment.

Ubuntu in Your Home
Ubuntu installs a special set of preselected software packages onto your hard drive. These

packages, which are suitable for small office/home office (SOHO) users, provide a wealth

of productivity tools for document management, printing, communication, and personal

productivity.

The standard installation requires only a small amount of drive space. Despite the small

footprint, the install also contains administrative tools, additional authoring and publish-

ing clients, a variety of editors, a lovely desktop, and much more.

Getting the Most from Linux and
Ubuntu Documentation
You can find links to Ubuntu documentation at www.ubuntu.com.

You will find traditional Linux software package documentation, such as manual pages,

under the /usr/share/man directory, with documentation for each installed software

package under /usr/share/doc.

http://www.ubuntu.com

29

2

Getting the Most from Linux and Ubuntu Documentation

Linux

Linux manual pages are compressed text files that contain succinct information about

how to use a program. Each manual page generally provides a short summary of a com-

mand’s use, a synopsis of command-line options, an explanation of the command’s pur-

pose, potential caveats or bugs, the name of the author, and a list of related configuration

files and programs.

For example, you can learn how to read manual pages by using the man command to

display its own manual page, as follows:

matthew@seymour:~$ man

After you press Enter, a page of text appears on the screen or in your window on the desk-

top. You can scroll through the information by using your keyboard’s cursor keys, read,

and then press the Q key to quit reading.

Many of the software packages also include separate documents known as HOWTOs that

contain information regarding specific subjects or software. With a HOWTO document

that is a simple text file in compressed form (with a filename ending in .gz), you can eas-

ily read the document by using the zless command, which is a text pager that enables

you to scroll back and forth through documents. (Use the less command to read plain-

text files.) You can start the command by using less, followed by the complete directory

specification and name of the file, or pathname, like this:

matthew@seymour:~$ less /usr/share/doc/httpd-2.0.50/README

To read a compressed version of this file, use the zless command in the same way:

matthew@seymour:~$ zless /usr/share/doc/attr-2.4.1/CHANGES.gz

After you press Enter, you can scroll through the document using your cursor keys. Press

the Q key to quit.

With a HOWTO document in HTML format, you can simply read the information using

a web browser, such as Firefox. If you are reading from a console, you can use the links or

Lynx text-only web browsers, like this:

matthew@seymour:~$ links /usr/share/doc/stunnel-4.0.5/stunnel.html

The links browser offers drop-down menus, accessed by clicking at the top of the screen.

You can also press the Q key to quit.

With documentation in PostScript format (with filenames ending in .ps), you can use the

gv client to read or view the document, like this:

matthew@seymour:~$ gv /usr/share/doc/iproute-2.4.7/ip-crefs.ps

http://5/stunnel.html

30 CHAPTER 2 Background Information and Resources

Finally, if you want to read a document in Portable Document Format (with a filename

ending in .pdf), use the evince client, as follows:

matthew@seymour:~$ evince /usr/share/doc/xfig/xfig-howto.pdf

NOTE

This book was developed and written using software from Ubuntu. You can download your

own copy, available as ISO9660 images (with filenames ending in .iso), and burn it onto

a DVD or create a bootable USB stick.

Along with the full distribution, you get access to the complete source code for the Linux

kernel and source for all software in the distribution—more than 55 million lines of C and

nearly 5 million lines of C++ code. Browse to www.ubuntu.com/download/ to get started.

Ubuntu

The best place to start for Ubuntu-specific information is at Ubuntu-focused websites.

Where better to start than the main website for the distribution and the official web

forums? Although these are not the only official Ubuntu resources, they are likely to be

immediately useful. You can easily find others under the Support tab on the Ubuntu.com

website:

 ▶ www.ubuntu.com—This is the home page for Ubuntu, Canonical’s community-

based free Linux distribution. Ubuntu is the main release of this Linux distribution

and includes thousands of software packages that form the core of an up-to-date,

cutting-edge Linux-based desktop. You can also find links to the other *buntus, such

as Kubuntu, Xubuntu, and EdUbuntu.

 ▶ https://help.ubuntu.com—This is the place to start for official Ubuntu

documentation.

 ▶ www.ubuntuforums.org—This is a good place to go if you need specific

community-provided Ubuntu support.

 ▶ https://askubuntu.com—This is another good place to go if you need specific

community-provided Ubuntu support.

 ▶ https://tutorials.ubuntu.com—This is a newer resource with Canonical-

provided guides to performing specific tasks.

 ▶ https://community.ubuntu.com—This is a light-traffic site designed to help

coordinate work in the Ubuntu community.

 ▶ https://answers.launchpad.net/ubuntu—This is the official bug reporting

system and tracker for Ubuntu.

http://www.ubuntu.com/download/
http://Ubuntu.com
http://www.ubuntu.com
https://help.ubuntu.com
http://www.ubuntuforums.org
https://askubuntu.com
https://tutorials.ubuntu.com
https://community.ubuntu.com
https://answers.launchpad.net/ubuntu

IN THIS CHAPTER

 ▶ Foundations and the X Server

 ▶ Starting X

 ▶ References

CHAPTER 3

Foundations of the
Linux GUI

Imagine a world of black screens with white text or dark

green screens with light green text. You may or may not

remember it, but that used to be the primary interface for

users to access computers. Computing has moved on signif-

icantly and has adopted the graphical user interface (GUI) as

standard on most desktop and workstation platforms. Not

only that, but GUIs have gradually changed and evolved

over time. This chapter covers low-level information about

what lies underneath the GUI, whereas Chapter 4, “Ubuntu

Desktop Options,” covers desktop software options, starting

with the default, GNOME.

Foundations and the X Server
Many Linux distributions are switching to Wayland (see

the nearby sidebar). For 20.04 LTS, however, Ubuntu con-

tinues to use the X Window System, the classic and stable

graphical networking interface that provides the foundation

for a wide range of graphical tools and window managers.

More commonly known as just X, it can also be referred

to as X11R7 and X11. Coming from the world-renowned

Massachusetts Institute of Technology, X has gone through

several versions, each of which has extended and enhanced

the technology. The open source implementation is man-

aged by the X.Org foundation, whose board includes several

key figures from the open source world. On September 15,

2017, X11 turned 30 years old, which is a very long time

for any software to remain usable and be in active develop-

ment. Ubuntu will eventually move away from X to Way-

land by default, but that is not yet the case as of the release

of Ubuntu 20.04 LTS, and many third-party applications are

not yet fully adapted to work as well on Wayland as they

http://X.Org

32 CHAPTER 3 Foundations of the Linux GUI

do on X. Wayland is available to users as an option on the login screen, should you prefer

to give it a try.

WHAT IS WAYLAND?

The short answer is that Wayland is intended as a simpler window manager replacement

for X.

The more complex answer is that Wayland is a compositing window manager protocol that

defines how to communicate between the compositor in the Wayland window manager

server and its application window clients. It also includes a C library implementation of

that protocol. A compositor is an application that provides a separate region of physical

memory storage for each GUI window (this memory location is called a buffer). Each frame

of each running application uses a separate memory location, and the window manager

then composites them together. When done well, this provides a smoother desktop experi-

ence with little or no flickering, along with the ability to perform additional processing on

buffered windows, such as flashy effects. Compositing is different from how X works, as

X builds bitmaps to create the graphical user interface, where each item on the screen

corresponds to one or more bits of information, most often defining a display place and

color for each pixel.

To learn more about Wayland, see https://wayland.freedesktop.org and https://wiki.

ubuntu.com/Wayland for Ubuntu-specific plans and details.

The best way to think about how X works is to see it as a client-server system. The

X server provides services to programs that have been developed to make the most of the

graphical and networking capabilities that are available under the server and in the sup-

ported libraries. X.Org provides versions for many platforms, including Linux and macOS.

A desktop environment for X provides one or more window managers and a suite of cli-

ents that conform to a standard graphical interface based on a common set of software

libraries. When used to develop associated clients, these libraries provide graphical con-

sistency for the client windows, menus, buttons, and other onscreen components, along

with some common keyboard controls and client dialogs.

Basic X Concepts

The underlying engine of X11 is the X protocol, which provides a system of managing

displays on local and remote desktops. The protocol uses a client-server model that allows

an abstraction of the drawing of client windows and other decorations locally and over a

network. An X server draws client windows, dialog boxes, and buttons that are specific to

the local hardware and in response to client requests. The client, however, does not have

to be specific to the local hardware. This means that system administrators can set up a

network with a large server and clients and enable users to view and use those clients on

workstations with totally different CPUs and graphics displays.

Because X offers users a form of distributed processing, Ubuntu can be used as a very

cheap desktop platform for clients that connect to a powerful X server. The more power-

ful the X server, the larger the number of X-based clients that can be accommodated. This

functionality can breathe new life into older hardware, pushing most of the graphical

https://wayland.freedesktop.org
https://wiki.ubuntu.com/Wayland
https://wiki.ubuntu.com/Wayland
http://X.Org

33

3

Foundations and the X Server

processing on to the server. A fast network is a must if you intend to run many X clients,

because X can become bandwidth hungry.

X is hugely popular in the UNIX and Linux world for a variety of reasons. That it supports

nearly every hardware graphics system is a strong point. This and strong multiplatform

programming standards give it a solid foundation of developers committed to X. Another

key benefit of X is its networking capability, which plays a central role in administration

of many desktops and can also assist in the deployment of a thin-client computing envi-

ronment. Being able to launch applications on remote desktops and being able to stan-

dardize installations are examples of the versatility of this powerful application.

More recent versions of X have also included support for shaped windows (that is, non-

rectangular), graphical login managers (also known as display managers), and compressed

fonts. Each release of X brings more features designed to enhance the user experience,

including being able to customize how X client applications appear, right down to but-

tons and windows. Most office and home environments run Linux and X on their local

machines. Enlightened companies and users harness the power of the networking features

of X, enabling thin-client environments and allowing the use of customized desktops

designed specifically for them. Having applications launch from a single location makes

the lives of system administrators a lot easier because they have to work on only one

machine rather than several.

Using X

X.Org (www.x.org) is the X server that is used with Ubuntu. The base distribution consists

of many packages, including the server, support and development libraries, fonts, various

clients, and documentation. An additional 1,000 or more X clients, fonts, and documenta-

tion are also available in the Ubuntu repositories.

The /usr directory and its subdirectories contain the majority of the Xorg software (along

with a lot of other stuff; the location is not exclusive to X). Some important subdirectories

are as follows:

 ▶ /usr/bin—This is the location of the X server and various X clients. (Note that not

all X clients require active X sessions.)

 ▶ /usr/include—This is the path to the files necessary for developing X clients and

graphics such as icons.

 ▶ /usr/lib—This directory contains software libraries required to support the X server

and clients.

 ▶ /usr/lib/X11—This directory contains fonts, default client resources, system

resources, documentation, and other files that are used during X sessions and for

various X clients. You will also find a symbolic link to this directory, named X11,

under the /usr/lib directory.

The main components required for an active local X session are installed on your system

if you choose to use a graphical desktop. These components are the X server, miscella-

neous fonts, a terminal client (that is, a program that provides access to a shell prompt),

http://X.Org
http://www.x.org

34 CHAPTER 3 Foundations of the Linux GUI

and a client known as a window manager. Window managers administer onscreen dis-

plays, including overlapping and tiling windows, command buttons, title bars, and other

onscreen decorations and features.

Elements of the xorg.conf File

Traditionally, the most important file for Xorg has been the xorg.conf configuration file.

This file used to contain configuration information that was vital for X to function cor-

rectly and was usually created during the installation of Ubuntu.

BULLETPROOF X

Ubuntu is designed to work no matter what might happen. So in the event of some cata-

clysmic event that destroys your main X system, you still have some graphical way of get-

ting yourself back into a fully functional X-based system. An additional upside is that much

of the complexity of the information in this chapter is unnecessary for most users; in fact,

the files are not even created or used by default and are used only if you create them. The

downside to this is that much of the configurability of the X server is now overwritten when

an upgrade happens.

Modern versions of Xorg do not create an xorg.conf file by default. Instead, various files

ending in *.conf reside in the /usr/share/X11/xorg.conf.d directory and are automati-

cally loaded by X at boot, prior to reading any xorg.conf. These files can each contain

one or more sections in the same format used by xorg.conf. Users can create the file and

continue making custom configurations in /etc/xorg.conf as has been traditionally done,

but the file is not created by default. What is included in the previously mentioned indi-

vidual files should not be changed, but you may override those settings by creating your

own /etc/xorg.conf file.

NOTE

We refer to using an xorg.conf file from here on, but you should keep the preceding

information in mind to prevent confusion.

Let’s take a look at the potential contents of xorg.conf so that you can get an idea of

what X is looking for. The components, or sections, of the xorg.conf file specify the

X session or server layout, along with pathnames for files that are used by the server, any

options related directly to the server, any optional support modules needed, information

relating to the mouse and keyboard attached to the system, the graphics card installed,

the monitor in use, and the resolution and color depth that Ubuntu uses. These are the

essential components:

 ▶ ServerLayout—Defines the display, defines one or more screen layouts, and names

input devices.

 ▶ Files—Defines the locations of colors, fonts, or port number of the font server.

35

3

Foundations and the X Server

 ▶ Module—Tells the X server what graphics display support code modules to load.

 ▶ InputDevice—Defines the input devices, such as the keyboard and mouse; multiple

devices can be used.

 ▶ Monitor—Defines the capabilities of any attached display; multiple monitors can be

used.

 ▶ Device—Defines one or more graphics cards and specifies what optional features

(if any) to enable or disable.

 ▶ Screen—Defines one or more resolutions, color depths, perhaps a default color

depth, and other settings.

The following sections provide short descriptions of these elements; the xorg.conf man

page contains full documentation of all the options and other keywords you can use to

customize your desktop settings.

The ServerLayout Section

As noted previously, the ServerLayout section of the xorg.conf file defines the display

and screen layouts, and it names the input devices. A typical ServerLayout section from

an automatically configured xorg.conf file might look like this:

Section "ServerLayout"

 Identifier "single head configuration"

 Screen 0 "Screen0" 0 0

 InputDevice "Mouse0" "CorePointer"

 InputDevice "Keyboard0" "CoreKeyboard"

 InputDevice "DevInputMice" "AlwaysCore"

EndSection

In this example, a single display is used (the numbers designate the positions of a screen),

and two default input devices, Mouse0 and Keyboard0, are used for the session.

The Files Section

The Files section of the xorg.conf file might look like this:

Section "Files"

 RgbPath "/usr/lib/X11/rgb"

 FontPath "unix/:7100"

EndSection

This section lists available session colors (by name, in the text file rgb.txt) and the port

number to the X font server. The font server, xfs, is started at boot and does not require

an active X session. If a font server is not used, the FontPath entry could instead list each

font directory under the /usr/lib/X11/fonts directory, as in this example:

FontPath "/usr/lib/X11/fonts/100dpi"

FontPath "/usr/lib/X11/fonts/misc"

FontPath "/usr/lib/X11/fonts/75dpi"

36 CHAPTER 3 Foundations of the Linux GUI

FontPath "/usr/lib/X11/fonts/type1"

FontPath "/usr/lib/X11/fonts/Speedo"

...

These directories contain the default compressed fonts that are available for use during the

X session. The font server is configured by using the file named config under the /etc/

X11/fs directory. This file contains a listing, or catalog, of fonts for use by the font server.

By adding an alternate-server entry in this file and restarting the font server, you can

specify remote font servers for use during X sessions. This can help centralize font support

and reduce local storage requirements (even though only 25MB is required for the almost

5,000 fonts installed with Ubuntu and X).

The Module Section

The Module section of the xorg.conf file specifies loadable modules or drivers to load for

the X session. This section might look like this:

Section "Module"

 Load "dbe"

 Load "extmod"

 Load "fbdevhw"

 Load "glx"

 Load "record"

 Load "freetype"

 Load "type1"

 Load "dri"

EndSection

These modules can range from special video card support modules to font rasterizers. The

modules are located in subdirectories under the /usr/lib/modules directory.

The InputDevice Section

The InputDevice section configures a specific device, such as a keyboard or mouse, as in

this example:

Section "InputDevice"

 Identifier "Keyboard0"

 Driver "kbd"

 Option "XkbModel" "pc105"

 Option "XkbLayout" "us"

EndSection

Section "InputDevice"

 Identifier "Mouse0"

 Driver "mouse"

 Option "Protocol" "IMPS/2"

 Option "Device" "/dev/input/mice"

 Option "ZAxisMapping" "4 5"

 Option "Emulate3Buttons" "yes"

EndSection

37

3

Foundations and the X Server

You can configure multiple devices, and multiple InputDevice sections might exist. The

preceding example specifies a basic keyboard and a two-button PS/2 mouse (actually, a

Dell touchpad pointer). An InputDevice section that specifies use of a USB device could be

used at the same time (to enable mouse use with PS/2 and USB pointers) and might look

like this:

Section "InputDevice"

 Identifier "Mouse0"

 Driver "mouse"

 Option "Device" "/dev/input/mice"

 Option "Protocol" "IMPS/2"

 Option "Emulate3Buttons" "off"

 Option "ZAxisMapping" "4 5"

EndSection

The Monitor Section

The Monitor section configures the designated display device as declared in the Server-

Layout section, as shown in this example:

Section "Monitor"

 Identifier "Monitor0"

 VendorName "Monitor Vendor"

 ModelName "Monitor Model"

 DisplaySize 300 220

 HorizSync 31.5-48.5

 VertRefresh 50-70

 Option "dpms"

EndSection

Note that the X server automatically determines the best video timings according to the

horizontal and vertical sync and refresh values in this section. If required, old-style mode-

line entries (used by distributions and servers prior to XFree86 4.0) might still be used. If

the monitor is automatically detected when you configure X, its definition and capabili-

ties are inserted in your xorg.conf file from the MonitorsDB database. This database con-

tains more than 600 monitors and is located in the /usr/share/hwdata directory.

The Device Section

The Device section provides details about the video graphics chipset used by the

computer, as in this example:

Section "Device"

 Identifier "Intel Corporation Mobile 945GM/GMS,\943/940GML Express

Integrated Graphics Controller"

 Driver "intel"

 BusID "PCI:0:2:0"

EndSection

38 CHAPTER 3 Foundations of the Linux GUI

This example identifies an installed video card as using an integrated Intel 945 graphics

chipset. The Driver entry tells the Xorg server to load the intel kernel module. Differ-

ent chipsets have different options. For example, here’s the entry for a NeoMagic video

chipset:

Section "Device"

 Identifier "NeoMagic (laptop/notebook)"

 Driver "neomagic"

 VendorName "NeoMagic (laptop/notebook)"

 BoardName "NeoMagic (laptop/notebook)"

 Option "externDisp"

 Option "internDisp"

EndSection

In this example, the Device section specifies the driver for the graphics card (neomagic_

drv.o) and enables two chipset options (externDisp and internDisp) to allow display on

the laptop’s LCD screen and an attached monitor.

The Xorg server supports hundreds of different video chipsets. If you configure X11 but

subsequently change the installed video card, you need to edit the existing Device section

or generate a new xorg.conf file, using one of the X configuration tools discussed in this

chapter, to reflect the new card’s capabilities. You can find details about options for some

chipsets in a companion man page. You should look at these sources for hints about

optimizations and troubleshooting.

The Screen Section

The Screen section ties together the information from the previous sections (using the

Screen0, Device, and Monitor Identifier entries). It can also specify one or more color

depths and resolutions for the session. Here’s an example:

Section "Screen"

 Identifier "Screen0"

 Device "Videocard0"

 Monitor "Monitor0"

 DefaultDepth 24

 SubSection "Display"

 Viewport 0 0

 Depth 16

 Modes "1024x768" "800x600" "640x480"

 EndSubSection

EndSection

In this example, a color depth of thousands of colors and a resolution of 1024ë768 is the

default, with optional resolutions of 800×600 and 64ë480. Multiple Display subsection

entries with different color depths and resolutions (with settings such as Depth 24 for mil-

lions of colors) can be used if supported by the graphics card and monitor combination.

39

3

Starting X

You can also use a DefaultDepth entry (which is 24, or thousands of colors, in the exam-

ple), along with a specific color depth to standardize display depths in installations.

You can also specify a desktop resolution larger than that supported by the hardware in

your monitor or notebook display. This setting is known as a virtual resolution in the

Display subsection. This allows, for example, an 800×600 display to pan (that is, slide

around inside) a virtual window of 1024×768.

Starting X
You can start X sessions in a variety of ways. The Ubuntu installer sets up the system to

have Linux boot directly to an X session using a display manager called GDM, for GNOME

Display Manager. This is an X client that provides a graphical login. After you log in, you

use a local session (running on your computer) or, if the system is configured to do so, an

X session running on a remote computer on the network.

If you log in via a display manager, you must enter a username and password. You can

also start X sessions from the command line. The following sections describe these two

methods.

NOTE

If you have used the Server install, your system boots to a text login. See Chapter 10,

“Command-Line Beginner’s Class,” for more information about what to do here.

Using a Display Manager

An X display manager presents a graphical login that requires a username and password to

be entered before access is granted to the X desktop. It also enables you to choose a differ-

ent desktop for your X session.

Changing Window Managers

Ubuntu makes it fairly painless to switch to another window manager or desktop environ-

ment. Desktop environment refers to not only the window manager but also the suite of

related applications, such as productivity or configuration tools.

You need to ensure that you have the relevant desktop environment installed on your

system; the easiest way to do this is by installing the relevant *-desktop package. You

can do this by installing the package kubuntu-desktop, for example (in the case of a KDE

desktop); just search for “desktop” and look for Xubuntu or Kubuntu, and so on. After the

download and installation is complete (you might want to grab a coffee while you wait

because these packages include a ton of dependencies and take some time to download,

install, and configure), you are all set to change environments.

Next, you need to log out of Ubuntu. When you return to the login page, select your

name as usual and then select the session named for the desktop you want to use.

Chapter 4 provides a brief introduction to some of the most common desktop environ-

ments available, including the default, GNOME.

40 CHAPTER 3 Foundations of the Linux GUI

References
 ▶ www.x.org—Curators of the X Window System

 ▶ www.x.org/Downloads_mirror.html—A list of mirror sites for downloading

the source to the latest revision of X

 ▶ www.xfree86.org—Home of The XFree86 Project, Inc., which provided a graphi-

cal interface for Linux for nearly 10 years

 ▶ https://wiki.ubuntu.com/X—The place to get started when learning about X

and Ubuntu

 ▶ https://wiki.ubuntu.com/X/Config—Great information about configuring X

on Ubuntu

http://www.x.org
http://www.x.org/Downloads_mirror.html
http://www.xfree86.org
https://wiki.ubuntu.com/X�
https://wiki.ubuntu.com/X/Config�

IN THIS CHAPTER

 ▶ Desktop Environment

 ▶ Using GNOME: A Primer

 ▶ KDE and Kubuntu

 ▶ Xfce and Xubuntu

 ▶ LXDE and Lubuntu

 ▶ MATE and Ubuntu MATE

 ▶ Ubuntu Budgie

 ▶ Ubuntu Kylin

 ▶ References

CHAPTER 4

Ubuntu Desktop
Options

When you install Ubuntu, by default you use the

GNOME graphical user interface (GUI). This is generally

called a desktop. GNOME has specific strengths that appeal

to many users. However, some of us have unique require-

ments or just like to tinker. This chapter discusses both

GNOME and some of the alternatives to GNOME, with a

brief mention of some of their strengths and weaknesses

and information on how to install each. This is not a com-

plete list of all the options available but rather a brief sur-

vey of some of the most popular options.

GNOME IS NOT THE ONLY OPTION

When you install standard desktop Ubuntu, you also

install GNOME. Not only is this is not your only option

but you are also not limited to having only one desktop

environment installed at a time. Each of the options

we discuss in this chapter may be installed alongside

GNOME in standard Ubuntu, and you are allowed to

choose which one to use each time you log in and which

one to use by default. This makes testing a new option

less risky because switching back to what you already

know is simple.

Desktop Environment

Traditionally, a GUI for computers has used a desktop meta-

phor; specifically, the interface uses the idea of a physical

office desk as a metaphor to make interacting with the

computer simple to comprehend. As in a real-world office,

42 CHAPTER 4 Ubuntu Desktop Options

a computer desktop environment uses files to store documents that contain information

that is necessary for office tasks to be done. Computer systems take the metaphor further

by adding applications, programs that enable users to create, manipulate, and delete those

documents as needed, much as might be done in the real world, but with greater effi-

ciency and often with greater power.

A computer desktop includes a windowing system, another metaphoric way to deal with

information that makes conceptualizing the complexity occurring behind the scenes in

the digital realm easier. Files, folders (or directories), and applications open in a graphic

display that may be moved around the user’s desktop just as paper documents and file

folders may be moved to different locations on a physical desktop for convenience and

efficiency. This windowing system includes the graphical bits (called widgets) needed to

draw the windows on the screen and all the program code needed to perform the actions

desired behind the scenes while displaying those actions using the pretty metaphor of

a physical desktop. For example, moving a document from one folder to another on a

desktop involves little more than a mouse click followed by a drag and drop. Behind the

scenes, the desktop environment is listening to the window manager’s instructions to

move a file from one directory to another and then telling the window manager to draw

the event on the screen as it is accomplished.

The Ubuntu software repositories include all the popular desktop environments available

for Linux and make installing and trying them out easy to do. It is also possible for an

adventurous person to find other desktop environments that will work on Ubuntu and

download and install them. We don’t cover that process here.

It is also possible to use one desktop environment while substituting a different window

manager into that environment instead of using the one that comes with the desktop

environment by default. For example, the standard GNOME window manager is called

Mutter. It is stable and works quite well. Other interfaces may use different window man-

agers, such as Compiz. To make matters more interesting, you can replace either of those

with other window managers such as Enlightenment, which does things in a unique man-

ner, such as having menus pop up on the screen when you right-click rather than being

anchored to a specific location.

This chapter focuses on complete desktop environments, using each one’s default window

manager. In addition, because this is an Ubuntu-focused book, this chapter concentrates

on Ubuntu-refined versions of environments such as KDE and Xfce rather than their

default versions, although the default versions are also available in the Ubuntu reposito-

ries in case you want to seek them out.

Using GNOME: A Primer
The default desktop in Ubuntu is GNOME 3. It is used not only by Ubuntu but also by

several other Linux distributions, such as Debian, Fedora, Red Hat Enterprise Linux, and

Oracle Linux.

43

4

Using GNOME: A Primer

The official GUI for GNOME 3 is called GNOME Shell. For this chapter, the only thing

that has been changed from the default Ubuntu 18.04 installation is the background; the

background used here is plain and simple to make the screen captures clear.

Upon logging in, the desktop is displayed (see Figure 4.1).

FIGURE 4.1 The GNOME Shell desktop.

From the desktop, you can do the following:

 ▶ Click Activities at the upper left to search the computer for installed programs.

 ▶ Select a program from the Dash (sometimes called the Favorites menu), which is the

vertical tool bar on the left, starting just below the Activities link (see Figure 4.2). To

add or remove an item from the Dash, right-click while hovering over an icon and

select Add or Remove from the pop-up menu.

 ▶ Click the Show Applications icon at the bottom left (which looks like a square made

of dots) to reveal an icon-rich array of installed programs (see Figure 4.3). Click any

icon in this list to open the program.

 ▶ Click the power icon at the upper right to reveal a list of networking, settings, screen

lock, and shutdown options (see Figure 4.4).

At the top center of the desktop you see a day and time that you can click to reveal

a calendar. Any notifications you have from Ubuntu are also displayed and available

here.

44 CHAPTER 4 Ubuntu Desktop Options

FIGURE 4.2 The GNOME Dash, with the Activities link at the top.

FIGURE 4.3 Click the Show Applications icon to reveal an array of installed programs.

45

4

KDE and Kubuntu

FIGURE 4.4 Adjust volume, account settings, and much more from the power menu.

KDE and Kubuntu
The KDE project began back in 1996, with the goal of creating a quality desktop envi-

ronment for Linux that was free, worked well, and was well integrated, meaning that

programs and interfaces would have a consistent look and feel, with all the parts fitting

together seamlessly rather than looking like a jumbled compilation of a bunch of assorted

bits.

The KDE project has always been focused on end users rather than creating a simple GUI

for the system administrator. This is an important point because since the beginning, the

intent has been to make any computer user comfortable and able to do what he or she

wants to do without necessarily requiring a full grasp of what is happening behind the

scenes. This focus continues today and is shared by other desktop environments, notably

GNOME, which was started in 1997 by people once involved in the KDE project, who left

after a dispute over software licensing.

The cause of that dispute no longer exists as the licenses today are equivalently free, but

the projects diverged a bit in their focus: GNOME offers a desktop of zenlike simplicity

with simple and elegant defaults and use, whereas KDE presents more flash and configura-

tion options. Honestly, they are both great desktop environments that are well integrated

with a high degree of professionalism and quality and are easily the top two in the Linux

world. If you have never used either, try them both and see which you prefer.

Kubuntu is a project that started in the Ubuntu community very early, on with the simple

goal of enabling users to install and use KDE in Ubuntu. To make this even easier for

people who already know they prefer KDE over GNOME, you can download and install

disk for Kubuntu, which is Ubuntu minus GNOME plus KDE plus a few Kubuntu-specific

enhancements. You may also install Kubuntu in standard Ubuntu and alongside GNOME

by installing the kubuntu-desktop package from the Ubuntu software repositories.

Kubuntu (see Figure 4.5) uses a different set of default programs for most tasks: web brows-

ing, email, and so on. Most were written specifically for the KDE desktop environment,

making KDE one of the most closely integrated and consistent Linux desktops available.

46 CHAPTER 4 Ubuntu Desktop Options

FIGURE 4.5 The Kubuntu desktop.

Xfce and Xubuntu
Xfce is a lighter desktop environment that requires less memory and processing power

than either GNOME or KDE and is therefore often suggested for use on older machines. It

does not deserve to be relegated to that role because it also works great on current hard-

ware and is often a quality choice for a different reason. Xfce has been developed using

the traditional UNIX philosophy of software: Do one thing, do it well, and play well with

others.

The parts of the Xfce desktop environment are modular; you can add or remove bits at

will and substitute other programs that perform the same function. Everything created

by or included in Xfce is expected to work according to simple standards that allow other

programs to interact with it easily.

On one hand, this sometimes means that people look at Xfce and think it isn’t as seam-

lessly integrated and smooth as the two main desktop environments. On the other hand,

it means that if you prefer the GNOME file manager (Nautilus) over the one included with

Xfce (Thunar), you can just install Nautilus and use it side-by-side with Thunar or remove

Thunar completely. This is a huge part of what makes Xfce so lightweight that it has very

few dependency requirements and is highly flexible.

Originally, Xubuntu (see Figure 4.6) was designed to create a lighter-weight version of

Ubuntu that would run well on older hardware because of the lighter code dependencies

of Xfce. Over time, some people discovered that they liked the desktop environment for

47

4

LXDE and Lubuntu

other reasons, and the older hardware use case became less of a focus. It was the modu-

larity of Xfce combined with a smoothness of operation that won people over, and the

distribution began to take some of the favored bits from Ubuntu’s customized version of

GNOME and added them to Xfce to replace some of its defaults. What we have today is a

nice amalgamation of Ubuntu GNOME bits, Xfce bits, and a few other things not included

by default in either.

FIGURE 4.6 The Xubuntu desktop.

Xubuntu still uses less memory and fewer CPU cycles than a standard Ubuntu or Kubuntu

install; however, thinking of it only in those terms doesn’t do it justice. To install

Xubuntu with the Xfce desktop environment, install the xubuntu-desktop package.

LXDE and Lubuntu
Lubuntu is based on LXDE, an extremely fast desktop environment that uses less memory

and fewer CPU cycles than any of the others discussed. It is developed specifically with

lower-powered computers such as netbooks in mind, but that isn’t the sole use case. For

example, Knoppix, which is a Linux distribution that runs from a live, bootable CD or

DVD, now uses LXDE. Knoppix is a longtime favorite of sysadmins for emergency repairs

of unbootable systems and for its portability. It recently switched from KDE to LXDE to

benefit from this lightness because running an operating system from a CD or DVD is

generally much slower than when it is installed on a hard drive.

48 CHAPTER 4 Ubuntu Desktop Options

As the focus in Xubuntu turned from speed and lightness to enjoying the flexibility of

Xfce, a gap was created. Users and developers interested in less-expensive hardware, such

as mobile Internet devices and ARM or MIPS processor-based computers, wanted to find

a way to run a distribution of Linux that shared the community of Ubuntu, that had a

beautiful and useful desktop, and that did not get bogged down on slower machines.

LXDE is quite new, and its development philosophy fits quite well with the hopes and

dreams of these users, so it seems a perfect fit.

The Lubuntu (see Figure 4.7) distribution is still very new. The developers are working

within the Ubuntu community and making consistent progress, and they are also appeal-

ing for interested people to join the development team and help out. Install lubuntu-

desktop from the Ubuntu repositories to check it out.

FIGURE 4.7 The Lubuntu desktop is quite attractive.

MATE and Ubuntu MATE
GNOME 2 was well loved, but it is no longer supported and therefore not recommended.

However, its code was forked into MATE (pronounced like the tea-like drink from South Amer-

ica, “mah-tay”). Basically, MATE is a continuation of GNOME 2, the older version of GNOME

before GNOME 3 was released. MATE has the features, look, and feel of the older version of

GNOME and the same code foundation but with continued development (see Figure 4.8).

49

4

Ubuntu Budgie

FIGURE 4.8 The MATE desktop.

Ubuntu Budgie
Ubuntu Budgie uses the Budgie desktop (see Figure 4.9) from https://budgie-desktop.org.

It is a new spin on desktops in general and is designed for simplicity and elegance. It is

beautiful and interesting, and while it started back in 2013, it has just begun to reach

maturity and genuine usefulness over the past few years. It is well worth a look!

FIGURE 4.9 The Budgie desktop.

https://budgie-desktop.org

50 CHAPTER 4 Ubuntu Desktop Options

Ubuntu Kylin
Ubuntu Kylin is Ubuntu localized for China. It starts out the same as standard Ubuntu

and is modified with Chinese language, calendar, and cultural customizations for the

world’s largest market. As it is in a different language than this book, we are only giving

it a cursory mention. However, if you are a Chinese speaker, you will probably find this

interesting and worth a look.

References
 ▶ www.gnome.org—The official site of GNOME

 ▶ www.compiz.org—The official site of Compiz

 ▶ www.enlightenment.org—The official site of Enlightenment

 ▶ www.kde.org—The official site for the KDE desktop

 ▶ www.kubuntu.org—The official Kubuntu site

 ▶ www.xfce.org—The official site for the Xfce desktop

 ▶ www.xubuntu.org—The official Xubuntu site

 ▶ www.lxde.org—The official site for the LXDE desktop

 ▶ http://lubuntu.net—The official Lubuntu site

 ▶ www.gnome.org—The official site for the GNOME desktop

 ▶ http://ubuntubudgie.org—The official Ubuntu Budgie site

 ▶ https://ubuntu-mate.org—The official Ubuntu MATE site

 ▶ https://wiki.ubuntu.com/UbuntuKylin—The English language resource for

Ubuntu Kylin

 ▶ http://www.ubuntu.com/project/about-ubuntu/derivatives—The official

Ubuntu list of recognized derivatives

 ▶ www.knoppix.net—The site for the live CD/DVD Linux distribution,

Knoppix

 ▶ http://en.wikipedia.org/wiki/Desktop_environment—A detailed definition

of desktop environment, how they work, why they exist, and so on

 ▶ http://en.wikipedia.org/wiki/Comparison_of_X_Window_System_

desktop_environments—An amazing list of available desktop environments,

complete with a comparison of features

http://www.gnome.org
http://www.compiz.org
http://www.enlightenment.org
http://www.kde.org
http://www.kubuntu.org
http://www.xfce.org
http://www.xubuntu.org
http://www.lxde.org
http://lubuntu.net
http://www.gnome.org
http://ubuntubudgie.org
https://ubuntu-mate.org
https://wiki.ubuntu.com/UbuntuKylin
http://www.ubuntu.com/project/about-ubuntu/derivatives
http://www.knoppix.net
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/Comparison_of_X_Window_System_desktop_environments
http://en.wikipedia.org/wiki/Comparison_of_X_Window_System_desktop_environments

IN THIS CHAPTER

 ▶ Getting Started with Firefox

 ▶ Checking Out Google Chrome

and Chromium

 ▶ References

CHAPTER 5

On the Internet

The Internet is used everywhere. From cell phones to

offices, from game consoles to tablets, we are surrounded by

multiple access routes to online information and commu-

nication. Ubuntu is no outsider when it comes to accessing

information through the Internet; it comes equipped with

all the tools you need to connect to other people around

the globe.

A BRIEF INTRODUCTION TO THE INTERNET

The Internet itself was first brought to life by the U.S.

Department of Defense in 1969. It was called ARPANET,

after the Department of Defense’s Advanced Research

Projects Agency. Designed to build a network that would

withstand major catastrophe (this was the peak of the

Cold War), the agency soon grew to encompass more and

more networks to build the Internet, essentially a massive

network comprised of all these other networks. Then, in

1991, Tim Berners-Lee of CERN developed the idea of

the World Wide Web, including Hypertext Transfer Protocol

(HTTP) and Hypertext Markup Language (HTML). What

most people think of today as “the Internet” is really just

part of it, the World Wide Web.

The Internet used to mean using many applications and

protocols to interact with others, acquire information, and

do things. Programs such as Archie and Gopher were used

to retrieve information, elm and pine were used for inter-

acting with email, and Usenet was the place for interacting

with others via the first worldwide messaging board. All of

these have been long surpassed by one protocol, HTTP, and

one idea, the World Wide Web.

52 CHAPTER 5 On the Internet

With that in mind, we don’t cover the older technologies that most people will never use

that were covered in previous editions of this book. Most interaction today is via the Web.

Entire operating systems have been superseded in some cases by just a minimal OS layer

and a platform powered by web access, as in inexpensive laptops running Chrome OS. So

instead of covering antiquated programs, we present a short chapter on some web browser

options.

Getting Started with Firefox
One of the most popular web browsers, and, in fact, the default web browser in Ubuntu, is

Mozilla Firefox (see Figure 5.1). Built on a solid code base that is derived from the Mozilla

suite, Firefox offers an open source and secure option for surfing the Internet, regardless of

operating system.

FIGURE 5.1 Mozilla Firefox enables you to add numerous extensions to further enhance your

web experience.

In Ubuntu, you can find Firefox from the sidebar or by searching under Activities for

“firefox.”

Beyond the basic program are a plethora of plug-ins and extensions that can increase

the capabilities of Firefox beyond simple web browsing. Plug-ins such as Java are available

for installation instantly, offered to you when first needed, as are multimedia codecs for

viewing video content. Extensions provide useful additions to the browsing experience.

For example, ForecastFox is an extension that provides your local weather conditions,

and Bandwidth Meter and Diagnostics is a tool that calculates your current bandwidth.

53

5

Checking Out Google Chrome and Chromium

There are many more extensions and plug-ins that you can use to enhance your browsing

experience, and you can find them by pressing Shift+Ctrl+A while in Firefox.

You can find and obtain plug-ins and extensions easily because Mozilla developers have

created a site dedicated to helping you get more from Firefox. You don’t have to search

to find the site as there is a link in the Firefox menu at Tools, Add-ons, Get Add-ons that

takes you directly to it. A particular favorite is the Adblock Plus plug-in, which enables

you to nuke all those annoying banners and animations that take up so much bandwidth

while you are browsing.

Checking Out Google Chrome and Chromium
The most popular browser today is Google Chrome (see Figure 5.2), which also runs on

Linux. This browser is fast, secure, expandable with extensions, and the hottest new toy

on geek desktops. It is based on WebKit and other technologies, and it downloads and

renders quickly while being compliant with standards. You can learn more about the easy

installation of Google Chrome at www.google.com/chrome.

FIGURE 5.2 Google Chrome running in Ubuntu.

Chrome is not completely open source, but the main foundational parts are open source

and are made available as Google Chromium, which has most of the functionality of

Chrome but is missing the Google branding and automatic updates; it is used as the test

and development foundation for Chrome releases. (As a point of interest, chromium is the

metal from which chrome is made—hence the names.)

http://www.google.com/chrome

54 CHAPTER 5 On the Internet

You can learn more about Chromium at www.chromium.org. You can install chromium-

browser from the Ubuntu repositories.

References
 ▶ www.mozilla.com—The home page for Firefox

 ▶ www.google.com/chrome—The home page for Chrome

 ▶ www.chromium.org/Home—The home page for Chromium

http://www.chromium.org
http://www.mozilla.com
http://www.google.com/chrome
http://www.chromium.org/Home

IN THIS CHAPTER

 ▶ Introducing LibreOffice

 ▶ Other Useful Productivity

Software

 ▶ Productivity Applications

Written for Microsoft Windows

 ▶ References

CHAPTER 6

Productivity Applications

Many businesses have already found a way to benefit

from free and open source software, such as office pro-

ductivity suites like LibreOffice, instead of paying license

fees for business use of either traditional locally installed

options or web apps. However, more applications beyond

these are available in Ubuntu. In this chapter, we explore

some of them.

NOTE

It’s important to understand that even though free and

open source software does very well most of the time,

especially with less-complex documents, it is not 100

percent compatible with Microsoft Office. Why is this?

Microsoft is notoriously secretive about its proprietary

file formats, and the only way that free and open source

alternatives could ensure compatibility would be to

reverse-engineer each file format, an exercise akin to tak-

ing apart a telephone to see how it works. This reverse-

engineering is difficult to do in a legal way and is rarely

perfect. However, many open source alternatives manage

to maintain a very high standard of importing and export-

ing, so you should not experience too many problems

except with documents of great complexity. For example,

this book was written using LibreOffice, whereas the post-

production at the publisher uses Microsoft tools.

The biggest compatibility issue between Microsoft Office

and suites like LibreOffice is that Microsoft’s Visual Basic

for Applications (VBA) and scripts produced using it do not

always transfer. If you use VBA scripts, you should test

as most are compatible, but occasionally you may need

to find another way to perform the functions for which

they were written.

56 CHAPTER 6 Productivity Applications

A productivity suite is defined as two or more applications bundled together and used for

creating documents, presentations, spreadsheets, and databases. Other applications that

might be included in such a bundle are email clients, calculators/formula editors, and

illustration or drawing software. Commonly, they are all tied together with a common

look and feel, which makes sticking to one particular suite much easier. Because Ubuntu

uses LibreOffice as its standard office suite, we introduce you to that first. We also take a

brief look at some of the other Linux-based productivity applications.

PRODUCTIVITY FOR THE TYPICAL USER

For the majority of users of productivity suites, LibreOffice should fulfill most, if not all,

requirements. However, the first hurdle is not whether it can do what you require of it but

rather whether it can successfully import and export to proprietary Microsoft formats at a

standard that is acceptable to your needs. Most of the time, LibreOffice should import and

export with minimal hassle, perhaps getting a bit stuck with some of the more esoteric

Microsoft Office formatting. Given that most users do not go much beyond tabs, columns,

and tables, this level of compatibility should suffice.

However, you are strongly advised to round up a selection of documents and spread-

sheets that seem the most likely to be difficult for the import/export filter and test them

thoroughly (of course, keeping a backup of the originals). A system administrator who has

deployed a new productivity suite does not want to suddenly get users complaining that

they cannot read their files. This would quickly destroy any benefits gained from the other

useful functions within LibreOffice and could even cause a return to proprietary formats

and expensive office suites.

On the positive side, LibreOffice supports a huge array of file formats and can export to

nearly 70 types of documents. Such a variety of file formats means that you should be

able to successfully use LibreOffice in nearly any environment, including formats no longer

used by currently produced and maintained software, so it may be able to open some old

files and documents you had once given up for lost.

Introducing LibreOffice
LibreOffice contains a number of productivity applications for use in creating text docu-

ments, preparing spreadsheets, organizing presentations, managing projects, and so on.

The following components of the LibreOffice package are included with Ubuntu:

 ▶ Writer—This word processing program enables you to compose, format, and orga-

nize text documents. If you are accustomed to using Microsoft Word, the functional-

ity of LibreOffice Writer will be familiar to you.

 ▶ Calc—This spreadsheet program enables you to manipulate numbers in a spread-

sheet format. Support for all but the most esoteric Microsoft Excel functions means

that trading spreadsheets with Excel users should be successful. Calc offers some

limited compatibility with Excel macros, but those macros generally have to be

rewritten.

57

6
Introducing LibreOffice

 ▶ Impress—This presentation program, which is similar to Microsoft PowerPoint,

enables you to create slideshow presentations that include graphs, diagrams, and

other graphics. Impress also works well with most PowerPoint files.

NOTE

The following five applications are not included by default with Ubuntu but are quite use-

ful. All but Dia are a part of the LibreOffice project and add features to the suite that are

not used as often as those Ubuntu installs by default. You must install them from the

Ubuntu repositories if you want or require their functionality.

 ▶ Math—This math formula editor enables you to write mathematical formulas with

a number of math fonts and symbols for inclusion in a word processing document.

Such symbols are highly specialized and not easily included in the basic functional-

ity of a word processor. This is of interest primarily to math and science writers, but

Math can be useful to anyone who needs to include a complex formula in text.

 ▶ Base—This is a fully functional database application.

 ▶ Draw—This graphics application allows you to create images for inclusion in the

documents produced with LibreOffice. It saves files only in LibreOffice format, but it

can import most common image formats.

 ▶ Dia—This technical drawing editor enables you to create measured drawings, such

as those used by architects and engineers. Its functionality is similar to that of

Microsoft Visio.

 ▶ Planner—You can use this project management application for project plan-

ning, scheduling, and tracking; this application is similar to, but not compatible

with, Microsoft Project. After you install it, you will find it under the name Project

Management.

A BRIEF HISTORY OF LIBREOFFICE

LibreOffice started as a fork of the OpenOffice.org office suite. The OpenOffice.org office

suite is based on a commercial suite called StarOffice. Originally developed by a German

company, StarOffice was purchased by Sun Microsystems in the United States. One of the

biggest complaints about the old StarOffice was that all the component applications were

integrated under a StarOffice “desktop” that looked very much like a Microsoft Windows

desktop, including a Start button and menus. This meant that to edit a simple document,

unneeded applications had to be loaded, making the office suite slow to load, slow to run,

and quite demanding on system resources.

After the purchase of StarOffice, Sun Microsystems released a large part of the StarOffice

code under the GNU General Public License, and development began on what has become

OpenOffice.org, which was freely available under the GPL. Sun also continued develop-

ment on StarOffice. The significant differences between the free and commercial ver-

sions of the software were that StarOffice provided more fonts and even more import/

export file filters than OpenOffice.org (these filters were not provided in the GPL version

http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org

58 CHAPTER 6 Productivity Applications

because of licensing restrictions), and StarOffice provided its own relational database,

Software AG’s Adabas D database. Sun was bought by Oracle. Oracle suffered from a

major disagreement with the developer community surrounding OpenOffice.org, and the

developers left to form The Document Foundation, hoping that Oracle would eventually

join. Because the code for OpenOffice.org was licensed using a free software license, The

Document Foundation created a fork, or a new version of the same software, using what

they intended as a temporary name, LibreOffice. The hope was merely to change how the

project was governed, from being led by one company to being led by a community with

many companies and individuals participating. Oracle chose not to join The Document

Foundation and instead relicensed the OpenOffice.org code for all future versions, which it

may do as the owner of that code, and gave the code to the Apache Software Foundation,

which is licensing it under the less-restrictive Apache license that allows open source

code to be used in proprietary products. To make things more interesting, IBM is using

this Apache-licensed version of OpenOffice.org as the foundation for its own free (in terms

of cost) office suite based on it, called Lotus Symphony, which also has some proprietary

additions.

As the saga continues, the ultimate winner may be the end user as there are now effec-

tively three competing office suites. For now, LibreOffice has the most developers, the

strongest community, and the most mature software with the most rapid addition of new

or improved features.

Other Useful Productivity Software
The office suites already discussed in this chapter are ideal for typical office-focused file

interactions: creating basic documents, spreadsheets, and so on. However, some users have

more complex or precise needs. This section covers some of the options available to help

you be productive in those instances.

Working with PDFs

Reading a PDF in Ubuntu is simple. The functionality is available by default, thanks to an

installed program called Evince. If you open a PDF, it opens in Evince, where you can read

the document. Sometimes filling out forms is less straightforward as the form might have

been created using functionality available only with Adobe. You can install Adobe Reader

from the Ubuntu Software Center from the Canonical Partners section. Adobe Reader

should work with any PDF form created using Adobe software, whether it was created on

Windows, macOS, or Linux.

On occasion, you may have a PDF file that you want to edit. That is a little more complex

than reading PDFs, but it’s not as difficult as it used to be. There is a program created just

for editing PDF files: PDF Edit (pdfedit).

Install pdfedit from the Ubuntu Software Center. On the surface, this program seems

simple, but it has great power that is not immediately obvious. Advanced users can learn

to use pdfedit in scripts to make sweeping changes quickly. Of course, as with most other

powerful tools, it comes with the cost of complexity and a learning curve.

http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org

59

6
Other Useful Productivity Software

Writing Scripts

While you can write scripts using any standard word processing program, Celtx is a com-

plex and powerful tool for serious writers and production managers. This is useful because

scripts require keeping track of more than just words.

The application comes with options to help you organize your scenes; annotate those

scenes with notes; create index cards; maintain your list of characters, locations, and

props; and far more.

At first glance, Celtx seems overwhelming, but due to the inclusion of some sample proj-

ects, learning how to use it is not as difficult as it sounds. Install celtx from the Ubuntu

Software Center.

Working with XML and DocBook

Like its ancestor SGML and cousin HTML, XML is a markup language. It is designed for

use in a plain-text document. Tags surround specific sections of the text to denote how

those sections are to be displayed. Listing 6.1 contains a short example.

LISTING 6.1 Sample XML Excerpt

<?xml version="1.0"?>

<xml-stylesheet type="text/css" href="book.css"?>

<book>

<title>Ubuntu Unleashed 2013</title>

<edition>8</edition>

<chapter>

 <number>1</number>

 <title>Installing Ubuntu</title>

 <text>

 <paragraph><dropcap>N</dropcap>ot that long ago,the mere mention...

 </paragraph>

 ...

 </text>

</chapter>

...

</book>

This could easily be written using a simple text editor like the one installed by default,

gedit (called Text Editor in the Dash and the listings in the Ubuntu Software Center).

However, doing it that way would be tedious for most people. A better option is to use an

editor expressly designed and intended for dealing with XML files. Because DocBook is an

open source standard form of XML that has been designed explicitly for use with docu-

mentation, many editors that can work with one will work with both. If you only need to

do something quick, one of these should be suitable. Start with gedit, which is installed

by default. If it is not suitable, look in the Ubuntu Software Center for other options, like

the ones discussed next.

60 CHAPTER 6 Productivity Applications

If you intend to write a lot of complicated documentation in only the DocBook format,

the most common recommendation for Ubuntu is a program called Publican. Publican is

not just an editor; it is also a publication system for DocBook. It tests your XML to ensure

that it is in a valid DocBook form so that your output conforms to publication standards.

It automates output into multiple formats such as HTML and PDF, and it allows complete

control for custom skinning and formatting. You can install Publican from the Ubuntu

Software Center.

A more powerful option is XML Copy Editor. It is designed for editing most markup lan-

guages, including XML, DocBook, DITA, and more. It also features schema validation, syn-

tax highlighting, tag completion, and spell checking. This is the most useful option for a

professional documentation specialist. You can install XML Copy Editor from the Ubuntu

software repositories, where you can find a version for use on Windows. See http://

xml-copy-editor.sourceforge.net.

Working with LaTeX

LaTeX was created for and is widely used in academia. It is a WYGIWYW (“what you get is

what you want”) document markup language created for the TeX typesetting system. Mul-

tiple editors are available for use with LaTeX, and they are likely to be found for just about

every operating system in existence.

NOTE

WYSIWYG is an acronym for “what you see is what you get” that has often been used to

describe word processors and document creation systems that use a graphical interface.

Unfortunately, anyone who has created documents with these programs, including the

ones mentioned earlier in this chapter, such as LibreOffice, knows that what you see on

the screen is not always what appears in the printed version on paper. There are no prom-

ises about how things will or will not look on the screen while using a LaTeX editor for

your TeX document, but the format promises that the ultimate output will be exactly what

you ask for.

A couple of the more popular LaTeX editors available from the Ubuntu Software Center

are discussed in this section. You can also create and edit using any text editor, including

gedit.

Texmaker not only has a version in the Ubuntu Software Center but also offers versions

for Windows and macOS from www.xm1math.net/texmaker/. It is free, easy to use, and

mature. The program has been around for a while, and it is stable, has many useful fea-

tures, and is rather popular in the TeX world.

LyX follows suit with both a version in the Ubuntu Software Center and versions available

for Windows and macOS from its website, at www.lyx.org. The main appeal for LyX users

is its graphical interface, which makes it an interesting bridge from WYSIWYG to LaTeX.

It also has many plug-ins available to expand functionality.

http://xml-copy-editor.sourceforge.net
http://xml-copy-editor.sourceforge.net
http://www.xm1math.net/texmaker/
http://www.lyx.org

61

6
References

Kile was written and designed for use with KDE. As such, it blends in well with Kubuntu

but also runs well on a standard Ubuntu installation. It also has a Windows version avail-

able. See https://kile.sourceforge.net for details.

Creating Mind Maps

Sometimes the best way to help you gather your thoughts and ideas is to create a mind

map. Heimer helps you do exactly that quickly and with an interface designed for simplic-

ity and speed. There are not a ton of options. Instead, the focus is on providing blocks

that you can fill in with text, color code if you want to, then drag and drop the blocks,

associate them with other blocks, and so on to create the map you need. You can even

export the maps to be used in other applications. Install heimer from the Ubuntu Software

Center.

Productivity Applications Written
for Microsoft Windows
Microsoft Windows is fundamentally different from Linux, yet you can install and run

some Microsoft Windows applications in Linux by using an application named Wine.

Wine enables you to use Microsoft Windows and DOS programs on UNIX-based systems.

Wine includes a program loader that you can use to execute a Windows binary, along

with a DLL library that implements Windows command calls, translating them to the

equivalent UNIX and X11 command calls. Because of frequent updates to the Wine code

base, Wine is not included with Ubuntu. Download a current version of Wine from www.

winehq.org. To see whether your favorite application is supported by Wine, you can look

at the Wine application database at https://appdb.winehq.org.

Other solutions, primarily CrossOver Office from CodeWeavers, enable use of Microsoft

productivity applications. If you are after a closer-to-painless way of running not only

Microsoft Office but also Apple iTunes and other software, you should investigate

CodeWeavers. CrossOver Office is one of the simplest programs you can use to get

Windows-based programs to work. Check out www.codeweavers.com to download a

trial version of the latest software.

References
 ▶ www.libreoffice.org—The home page for the LibreOffice suite

 ▶ www.documentfoundation.org—The home page for The Document Foundation

 ▶ www.openoffice.org—The home page for the OpenOffice.org office suite

 ▶ www.pdfedit.cz/en/index.html—The home page for PDF Edit

 ▶ www.codeweavers.com—The home page for CrossOver Office from CodeWeavers

that enables you to run some Windows programs under Linux

https://kile.sourceforge.net
http://www.winehq.org
http://www.winehq.org
https://appdb.winehq.org
http://www.codeweavers.com
http://www.libreoffice.org
http://www.documentfoundation.org
http://www.openoffice.org
http://OpenOffice.org
http://www.pdfedit.cz/en/index.html
http://www.codeweavers.com

This page intentionally left blank

IN THIS CHAPTER

 ▶ Sound and Music

 ▶ Graphics Manipulation

 ▶ Using Digital Cameras with

Ubuntu

 ▶ Burning CDs and DVDs in

Ubuntu

 ▶ Viewing Video

 ▶ Recording and Editing Audio

 ▶ Editing Video

 ▶ References

CHAPTER 7

Multimedia Applications

The twenty-first century has become the century of the

digital lifestyle, with millions of computer users around the

world embracing new technologies. It started with the rise

of digital cameras, MP3 players, and other assorted mul-

timedia gadgets. Fifteen years ago you might have had a

small collection of WAV files scattered about your Windows

installation, and ten years ago you were more likely to have

hundreds, if not thousands, of MP3 files scattered across

various computers. Today, most people enjoy music and

video via their web browsers or their mobile phones, con-

suming from sites like YouTube and Spotify.

If you are a media creator or collector, however, you may

have a large collection of audio files, video clips, anima-

tions, and other graphics. In this case, organizing and main-

taining these vast libraries is not a problem.

This chapter provides an overview of some of the basic mul-

timedia tools included with or available for Ubuntu.

Sound and Music
Linux once had a reputation for lacking good support for

sound and multimedia applications in general. However, this

really isn’t true anymore and hasn’t been for years. (It might

make you smile to know that while Microsoft no longer sup-

ports the Microsoft Sound Card, Linux users still enjoy sup-

port for it—no doubt just to annoy the folks in Redmond.)

UNIX, however, has always had good multimedia support, as

David Taylor, UNIX author and guru, points out:

The original graphics work for computers was

done by Evans and Sutherland on UNIX sys-

tems. The innovations at MIT’s Media Lab were

done on UNIX workstations. In 1985, we at HP

Labs were creating sophisticated multimedia

64 CHAPTER 7 Multimedia Applications

immersive work environments on UNIX workstations, so maybe UNIX is more

multimedia than suggested. Limitations in Linux support doesn’t mean UNIX

had the same limitations. I think it was more a matter of logistics, with hun-

dreds of sound cards and thousands of different possible PC configurations.

That last sentence sums it up quite well: UNIX had a limited range of hardware to sup-

port, whereas Linux has hundreds of sound cards. Sound card device driver support has

been long lacking from manufacturers, and there is still no single standard for the sound

subsystem in Linux.

In this section, you learn about sound cards, sound file formats, and the sound applica-

tions provided with Ubuntu.

Sound Cards

Ubuntu supports a wide variety of sound hardware and software. Two models of sound

card drivers compete for prominence in today’s market:

 ▶ ALSA, the Advanced Linux Sound Architecture, which is entirely open source

 ▶ OSS, the Open Sound System, which offers free and commercial drivers

Ubuntu uses ALSA because ALSA is the sound architecture for the Linux kernel, starting

with the 2.6 series, all the way to the current 5.x series. OSS might still be found here and

there, but it is no longer in widespread use and should be considered deprecated.

ALSA supports a long list of sound cards. You can review the list at www.alsa-project.org/

main/index.php/Main_Page if you are interested, but Ubuntu detects most sound cards

during the original installation and should detect any new additions to the system during

boot. To configure the sound card at any other time, use the sound preferences graphical

tool by searching the Dash for “sound.”

In addition, Ubuntu uses an additional layer of software called PulseAudio. PulseAudio,

which is a sound server, acts as a mediator between the various multimedia programs that

have sound output and the ALSA kernel drivers. Over the years, many different sound

servers have been used in Linux, each with different strengths, usability issues, and lev-

els of documentation. These various sound servers have often been forced to run side by

side on the same computer, causing all sorts of confusion and issues. PulseAudio aims

to replace all of them and work as a single handler to accept output from applications

that use the APIs for any of the major sound servers already in use, such as ESD, OSS,

GStreamer, and aRts, and route the various output streams together through one handler.

This provides several advantages, including the ability to control the output volume of

various programs individually.

PulseAudio has matured over the past several releases and is better and more powerful

than ever before. Although there were stability issues and complaints early on, they don’t

seem to be problematic anymore except in unusual hardware combinations and special

cases, and more and more features have been implemented. For more information about

PulseAudio, see www.pulseaudio.org.

http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.pulseaudio.org

65

7

Sound and Music

Sound Formats

A number of formats exist for storing sound recordings. Some of these formats are asso-

ciated with specific technologies, and others are used strictly for proprietary reasons.

Ubuntu supports all the most popular sound formats, including the following:

 ▶ RAW (.raw)—RAW is more properly known as headerless format, and audio files

using this format contain an amorphous variety of specific settings and encodings.

All other sound files contain a short section of code at the beginning—a header—

that identifies the format type.

 ▶ MP3 and MP4 (.mp3,.mp4)—These popular commercially licensed formats for the

digital encoding are used by many Linux and Windows applications.

 ▶ WAV (.wav)—This popular uncompressed Windows audiovisual sound format is

often used as an intermediate file format when encoding audio.

 ▶ Ogg-Vorbis (.ogg)—Ogg is the free software community’s preferred audio encoding

format. You enjoy better compression and audio playback and freedom from propri-

etary licensing concerns when you use this open source encoding format for your

audio files.

 ▶ FLAC (.flac)—This lossless format is popular with audiophiles. The name stands

for Free Lossless Audio Format, and it is a compressed format, like MP3, but does not

suffer from any loss of quality.

Ubuntu also includes software in the repositories (such as the sox command, used to con-

vert between sound formats) so that you can more easily listen to audio files provided in

a wide variety of formats, such as AU (from NeXT and Sun), AIFF (from Apple and SGI),

IFF (originally from Commodore’s Amiga), RA (from Real Audio), and VOC (from Creative

Labs).

TIP

For an introduction to audio formats, check out the list of audio file formats at www.

fileinfo.com/filetypes/audio, which provides links to detailed information for the various

formats.

Ubuntu also offers several utilities for converting sound files from one format to another.

Conversion utilities come in handy when you want to use a sound in a format not

accepted by your current application of choice. The easiest one to use is also the easiest to

install. Install the soundconverter package and then search for Sound Converter. It has a

clear graphical interface and easy-to-understand configuration options.

Listening to Music

If you’re anything like us, you might be a huge music fan. Beyond using your web browser

with your favorite sites, which is simple and common, you can also play music without an

Internet connection.

http://www.fileinfo.com/filetypes/audio
http://www.fileinfo.com/filetypes/audio

66 CHAPTER 7 Multimedia Applications

Rhythmbox

Rhythmbox is a useful application that plays CDs and music files. It can also rip music

from CDs into your favorite format.

Banshee

Banshee is another music application that can handle ripping and playing back music,

download cover art, sync with portable players, and even play video.

GETTING MUSIC INTO UBUNTU WITH SOUND JUICER

A handy utility that is included with Ubuntu is Sound Juicer, found under Applications,

Sound & Video as the Audio CD Extractor. Sound Juicer automatically detects when you

install a CD and attempts to retrieve the track details from the Internet. From there, it rips

the CD tracks into .ogg files for storage on your file system.

Graphics Manipulation
Over a short period of time, digital cameras, camera apps on mobile phones, and digital

imagery have become extremely popular—so popular that almost all traditional film cam-

era manufacturers have switched solely to digital or gone out of business. This meteoric

rise has led to an increase in the number of applications that can handle digital imagery.

Linux, thanks to its rapid pace of development, is now highly regarded as a multimedia

platform for editing digital images.

By default, Ubuntu installs the useful Shotwell Photo Manager. This application is simi-

lar to other photo managers, such as iPhoto, and includes simple tools that are adequate

for many users, such as red-eye reduction, cropping, color adjustment, and the ability to

interact with online photo hosts such as Facebook, Flickr, and Instagram.

The GNU Image Manipulation Program

One of the best graphics clients available is the GNU Image Manipulation Program

(GIMP). GIMP is a free, GPL-licensed image editor with sophisticated capabilities that can

import and export more than 30 different graphics formats, including files created with

Adobe Photoshop. It is often compared with Photoshop, and GIMP represents one of

the first significant successes of GNU Project. Many images in Linux were prepared using

GIMP.

GIMP is not installed by default, but you can easily install it from the Ubuntu software

repositories.

You see an installation dialog box when GIMP is started for the first time, followed by a

series of dialog boxes that display information regarding the creation and contents of a

local GIMP directory. This directory can contain personal settings, preferences, external

application resource files, temporary files, and symbolic links to external software tools

used by the editor.

67

7

Graphics Manipulation

WHAT DOES PHOTOSHOP HAVE THAT GIMP DOES NOT?

Although GIMP is powerful, it does lack two features Adobe Photoshop offers that are

important to some graphics professionals.

The first of these is the capability to generate color separations for commercial press

printers (CMYK, for the colors cyan, magenta, yellow, and key [or black]). GIMP uses

RGB (red, green, and blue), which is great for video display but not so great for printing

presses. The second feature GIMP lacks is the use of Pantone colors (a patented color

specification) to ensure accurate color matching. These deficiencies might not last long.

A CMYK plug-in is in the works (an early version is available from https://cue.yellow-

magic.info/softwares/separate-plus/index.html), and the Pantone issues are likely to be

addressed in the near future, as well.

If these features are unimportant to you, you will find GIMP to be an excellent tool. If you

must use Adobe Photoshop, you might want to explore using Wine or CodeWeavers; there

have been consistent reports of success running Photoshop on Linux with these tools.

Bear in mind, though, that both Ubuntu and Photoshop release regularly, so check www.

winehq.org and www.codeweavers.com for current info before assuming it will work.

Using Scanners in Ubuntu

With the rise of digital photography, there has been an equal decline in the need for

image scanners. However, there are still times when you want to use a scanner, and

Ubuntu makes it easy with a program installed by default called Simple Scan. Simple

Scan is designed to do one thing: scan photos or documents easily. It has few settings or

options but does all the things most people would want or need.

You can also use many types of image scanners with GIMP, which is likely to be the

choice of people who like to tinker with settings and options or who need greater flexibil-

ity than is offered by Simple Scan. If it wasn’t installed when you installed GIMP, install

the xsane package. Then, when you scan from GIMP, you will have an abundance of set-

tings and options that you can use. You can also use XSane by itself.

Working with Graphics Formats

Image file formats are developed to serve a specific technical purpose (lossless compres-

sion, for example, where the file size is reduced without sacrificing image quality) or to

meet a need for a proprietary format for competitive reasons. Many file formats are cov-

ered by one or more patents. For example, at one time the GIF format fell into disfavor

with the open source crowd because the patent holder waited a while before deciding to

enforce his patent rights rather than being up front with requests for patent royalties. The

GIF format is no longer patented, however.

If you want to view or manipulate an image, you need to identify the file format so you

can choose the proper tool for working with the image. The file’s extension is your first

https://cue.yellow-magic.info/softwares/separate-plus/index.html
https://cue.yellow-magic.info/softwares/separate-plus/index.html
http://www.winehq.org
http://www.winehq.org
http://www.codeweavers.com

68 CHAPTER 7 Multimedia Applications

indicator of the file’s format. The graphics image formats supported by the applications

included with Ubuntu include the following:

 ▶ BMP (.bmp)—Bitmapped graphics, commonly used in Microsoft Windows

 ▶ GIF (.gif)—CompuServe Graphics Interchange Format

 ▶ JPG (.jpg)—Joint Photographic Experts Group

 ▶ PCX (.pcx)—IBM Paintbrush

 ▶ PNG (.png)—Portable Network Graphics

 ▶ SVG (.svg)—Scalable Vector Graphics

 ▶ TIF (.tif)—Tagged Image File format

You can find an extensive list of image file extensions in the man page for ImageMagick,

an excellent application included with Ubuntu, which you read more about in upcoming

sections of this chapter.

TIP

Ubuntu includes dozens of graphics conversion programs in its software repositories that

are accessible through the command line and from a graphical user interface (GUI), and

there are few, if any, graphics file formats that cannot be manipulated when using Linux.

These programs can be called in Perl scripts, shell scripts, or command-line pipes to sup-

port many types of complex format-conversion and image-manipulation tasks. See the

man pages for the ppm, pbm, pnm, and pgm families of commands. Also see the man page

for the convert command, which is part of the extremely capable ImageMagick suite of

programs.

Sometimes, a file you want to manipulate in some way is in a format that cannot be used

by either your graphics application or the final application. The solution is to convert the

image file—sometimes through several formats. The convert utility from ImageMagick

is useful, as is the netpbm family of utilities. If it is not already installed, you can easily

install ImageMagick from the Ubuntu repositories; the netpbm tools are always installed by

default.

convert is super simple to use from the command line. Here is an example:

matthew@seymour~:$ convert image.gif image.png

The convert utility converts between image formats recognized by ImageMagick.

You can also manipulate color depth and size during the conversion process. You can

use ImageMagick to append images, surround them with borders, add labels, rotate

and shade them, and perform other manipulations well suited to scripting. Other com-

mands associated with ImageMagick include display, animate, identify, and import.

69

7

Graphics Manipulation

The application supports more than 130 different image formats (all listed in the man

page for ImageMagick).

The netpbm tools are installed by default because they compose the underpinnings of

graphics format manipulation. The man page for each image format lists related conver-

sion utilities; the number of those utilities gives you some indication of the way each for-

mat is used and shows how one is built on another:

 ▶ ppm—The man page for .ppm, the portable pixmap file format, lists 47 conversion

utilities related to .ppm. This makes sense because ppm is considered the lowest com-

mon denominator for color image files. It is therefore often used as an intermediate

format.

 ▶ pgm—The man page for .pgm, the portable graymap file format, lists 22 conversion

utilities. This makes sense because .pgm is the lowest common denominator for

grayscale image files.

 ▶ pnm—The man page for .pnm, the portable anymap file format, lists 31 conversion utili-

ties related to it. However, there is no format associated with .pnm because it operates

in concert with .ppm, .pgm, and .pbm.

 ▶ pbm—An examination of the man page for .pbm, the portable bitmap file format,

reveals no conversion utilities. It’s a monochrome format and serves as the founda-

tion of the other related formats.

The easiest way to resize or rotate image files is to install the nautilus-image-converter

package from the repositories. This enables you to right-click an image when you are view-

ing files in the File Browser (for example, from Places, Pictures) and choose menu options

to resize or rotate one or multiple images without opening another program.

Capturing Screen Images

You can use graphics-manipulation tools to capture images that are displayed on your

computer screen. Although this technique was used for the production of this book, it has

broader uses; there is truth to the cliché that a picture is worth a thousand words. Some-

times showing an example is easier than describing it.

You can use a captured screen image (also called a screen grab or a screenshot) to illustrate

an error in the display of an application (a font problem, for example) or an error mes-

sage that is too complex to copy down by hand. You might just want to share an image of

your beautifully crafted custom desktop configuration with your friends or illustrate your

written documents.

When using the default desktop, you can take advantage of the built-in screenshot

mechanism (gnome-screenshot). You can use this tool by pressing the Print Screen key.

(Alt+Print Screen takes a screenshot of only the window that has focus on a desktop.)

Captured images are saved in PNG format.

70 CHAPTER 7 Multimedia Applications

Other Graphics Manipulation Options

If you have very specific requirements for working with graphics, you may find one of the

following options better suits your needs than the preceding general options and com-

ments. Some, but not all, of these are in the Ubuntu repositories:

 ▶ Blender—A 3-D image and animation editor that you can find at www.blender.org

 ▶ CinePaint—A powerful and complex tool used by many Hollywood studios that

you can find at www.cinepaint.org

 ▶ darktable—A RAW editor that can be found at www.darktable.org

 ▶ digiKam—Photo management software that can be found at www.digikam.org

 ▶ Hugin—A panoramic photo stitcher that can be found at

https://hugin.sourceforge.net

 ▶ Inkscape—A vector graphics creation and editing tool that you can find at

https://inkscape.org

 ▶ Krita—A raster graphics creation and editing tool that you can find at

https://krita.org

 ▶ POV-Ray—A powerful and complex 3D graphics program that uses ray tracing and

can be found at www.povray.org

 ▶ Radiance—Intended for the analysis and visualization of lighting in design and can

be found at www.radiance-online.org

 ▶ Xara Xtreme—A general-purpose graphics editor that you can find at

www.xaraxtreme.org

Using Digital Cameras with Ubuntu
Most digital cameras used with Ubuntu fall into one of two categories: webcams or digital

cameras and phone cameras. Ubuntu supports both types. Other types of cameras, such as

surveillance cameras that connect directly to a network via wired or wireless connections,

need no special support (other than a network connection and viewing software) to be

used with a Linux computer.

Ubuntu supports hundreds of different digital cameras, from early parallel-port (CPiA

chipset-based) cameras to today’s USB-based cameras. You can even use Intel’s QX3 USB

microscope with Ubuntu.

Handheld Digital Cameras

Because of the good development carried out in the Linux world, you can plug almost

any digital camera or camera phone in to your computer through a USB interface, and

Ubuntu automatically recognizes the camera as a USB mass storage device. You can even

set Ubuntu to recognize when a camera is plugged in so that it automatically imports your

photographs for you.

http://www.blender.org
http://www.cinepaint.org
http://www.darktable.org
http://www.digikam.org
https://hugin.sourceforge.net
https://inkscape.org
https://krita.org
http://www.povray.org
http://www.radiance-online.org
http://www.xaraxtreme.org

71

7

Burning CDs and DVDs in Ubuntu

Using Shotwell Photo Manager

Shotwell Photo Manager, mentioned earlier in this chapter, includes simple adjustment

tools. You can import your photos into Shotwell, assign tags to them, sort and arrange

them, and even upload them to your favorite Internet photo-hosting sites such as

Instagram.

Burning CDs and DVDs in Ubuntu
Linux is generally distributed via the Internet as disc images called ISOs that are ready

to be written to CDs or DVDs. Therefore, learning how to burn discs is essential if you

have to download and install a Linux distribution. You can use CDs and DVDs to do the

following:

 ▶ Record and store multimedia data, such as backup files, graphics images, and music.

 ▶ Rip audio tracks from music CDs and compile your own music CDs for your per-

sonal use. (Ripping refers to extracting music tracks from a music CD.)

Although USB storage devices such as thumb drives are making CDs and DVDs almost as

rare as floppy disks, they aren’t quite gone, and many people still find them useful. As

long as that remains true, we want to make sure this information is available.

Creating CDs and DVDs with Brasero

Although adequate for quick burns and use in shell scripting, the command-line tech-

nique for burning CDs and DVDs is an awkward choice for many people (but we still

cover it later in this chapter because others find it useful and desirable). Fortunately,

Ubuntu provides several graphical clients; the most useful is Brasero.

Brasero is an easy-to-use graphical CD and DVD burning application that is installed by

default. Brasero takes a project-based approach to disc burning, opening up with a wizard

that offers four different tasks that people commonly want to do. Brasero also remembers

previous “projects,” enabling you to quickly create several copies of a disc, which is ideal

if you’re planning to pass on copies of Ubuntu to your friends and family.

Burning a data CD or DVD is as easy as selecting the option in the opening screen and

dragging and dropping the files you want to include from the directory tree on the left to

the drop area on the right. If you insert a blank CD or DVD in your writer, Brasero keeps

an eye on the disc size and tells you when you reach or exceed the limits. It also creates

ISO files, which are disc images that contain everything that would exist on the medium

if you burned a real CD or DVD in one file that can be mounted by computer file systems,

which is useful if you want to create multiple copies of the same disc or if you want to

share a disc image, perhaps using a USB thumb drive or over the Internet.

Finally, click the Burn button, input a label for the disc, and Brasero starts creating your

new CD or DVD or image file. How long it takes to create a CD or DVD depends on the

amount of data you are writing and the speed of your drive.

72 CHAPTER 7 Multimedia Applications

Creating CDs from the Command Line

In Linux, creating a CD at the command line is a two-step process. You first create the

ISO9660-formatted image, and then you burn or write the image onto the CD. The

ISO9660 is the default file system for CD-ROMs.

Use the mkisofs command to create the ISO image. The mkisofs command has many

options (see the man page for a full listing), and you use the following for quick burns:

matthew@seymour~:$ mkisofs -r -v -J -l -o /tmp/our_special_cd.iso /

source_directory

The options used in this example are as follows:

 ▶ -r—Sets the permission of the files to more useful values. UID and GID (individual

and group user ID requirements) are set to 0, all files are globally readable and

searchable, and all files are set as executable (for Windows systems).

 ▶ -v—Displays verbose messages (rather than terse messages) so that you can see what

is occurring during the process; these messages can help you resolve any problems

that occur.

 ▶ -J—Uses the Joliet extensions to ISO9660 so that your Windows-using buddies can

more easily read the CD. The Joliet (for Windows), Rock Ridge (for UNIX), and HSF

(for Mac) extensions to the ISO9660 standard are used to accommodate long filenames

rather than the eight-character DOS filenames that the ISO9660 standard supports.

 ▶ -l—Allows 31-character filenames; DOS does not like it, but everyone else does.

 ▶ -o—Defines the directory where the image will be written (that is, the output) and

its name. The /tmp directory is convenient for this purpose, but the image could go

anywhere you have write permissions.

 ▶ /source_directory—Indicates the path to the source directory—that is, the directory

containing the files you want to include. There are ways to append additional paths

and exclude directories (and files) under the specified path; it is all explained in the

man page, so check there if you need that level of complexity. The simple solution is

to construct a new directory tree and populate it with the files you want to copy and

then make the image using that directory as the source.

Many more options are available, including options to make the CD bootable.

After you have created the ISO image, you can write it to the CD with the cdrecord

command:

matthew@seymour~:$ sudo cdrecord -eject -v speed=12 dev=0,0,0 /tmp/

our_special_cd.iso

The options used in this example are as follows:

 ▶ -eject—Ejects the CD when the write operation is finished.

 ▶ -v—Displays verbose messages.

73

7

Burning CDs and DVDs in Ubuntu

 ▶ speed=—Sets the speed; the rate depends on the individual drive’s capabilities. If

the drive or the recordable medium is poor, you can use lower speeds to get a good

burn.

 ▶ dev=—Specifies the device number of the CD writer.

NOTE

You can also use the blank = option with the cdrecord command to erase CD-RW

discs. The cdrecord command has fewer options than mkisofs does, but it offers

the -multi option, which enables you to make multisession CDs. A multisession CD

enables you to write a data track, quit, and then add more data to the CD later. A single-

session CD can be written to only once; any leftover CD capacity is wasted. Read about

other options in the cdrecord man page.

Current capacity for CD media is 700MB of data or 80 minutes of music. (There are

800MB/90-minute CDs, but they are rare.) Some CDs can be overburned—that is,

recorded to a capacity in excess of the standard. The cdrecord command and some

graphical programs are capable of overburning if your CD-RW drive supports it. You

can learn more about overburning CDs at www.cdmediaworld.com/hardware/cdrom/

cd_oversize.shtml/.

Creating DVDs from the Command Line

There are several competing formats for DVD, as follows:

 ▶ DVD+R

 ▶ DVD-R

 ▶ DVD+RW

 ▶ DVD-RW

Differences in the + and - formats mostly have to do with how the data is modulated onto

the DVD itself, with the + format having an edge in buffer underrun recovery. How this is

achieved affects the playability of the newly created DVD on any DVD player. The DVD+

format also has some advantages in recording on scratched or dirty media. Most drives

support the DVD+ format. As with any other technology, your mileage may vary.

We focus on the DVD+RW drives because most drives support that standard. The software

supplied with Ubuntu has support for writing to DVD-R/W (rewritable) media, as well.

It will be useful for you to review the DVD+RW/+R/-R[W] for Linux HOWTO at https://

fy.chalmers.se/~appro/linux/DVD+RW/ before you attempt to use dvd+rw-tools, which

you need to install to enable DVD creation (also known as mastering) and the cdrtools

package. You can ignore the discussion in the HOWTO about kernel patches and

compiling the tools.

http://www.cdmediaworld.com/hardware/cdrom/cd_oversize.shtml/
http://www.cdmediaworld.com/hardware/cdrom/cd_oversize.shtml/
https://fy.chalmers.se/~appro/linux/DVD+RW/
https://fy.chalmers.se/~appro/linux/DVD+RW/

74 CHAPTER 7 Multimedia Applications

TIP

The 4.7GB size of DVD media is measured as 1,000 megabytes per gigabyte instead

of the more traditionally used, but not entirely accurate, 1,024 megabytes per gigabyte

(more appropriately written GiB), so do not be surprised when the actual formatted capac-

ity, about 4.4GB, is less than you anticipated. Most hard drive manufacturers have also

made the switch. dvd+rw-tools does not allow you to exceed the capacity of the disc.

You need to have the dvd+rw-tools package installed, as well as the cdrtools package.

The dvd+rw-tools package contains the growisofs application (which acts as a front end

to mkisofs) and the DVD formatting utility.

You can use DVD media to record data in two ways. The first way is much the same as

that used to record CDs in a session, and the second way is to record the data as a true file

system, using packet writing.

Session Writing

To record data in a session, you use a two-phase process:

 1. Format the disc with dvd+rw-format /dev/scd0 (which is necessary only the first

time you use a disc, where /dev/scd0 is the device name for your drive).

 2. Write your data to the disc with growisofs -Z /dev/scd0 -R -J /your_files.

The growisofs command simply streams the data to the disc. For subsequent sessions, use

the -M argument rather than -Z. The -Z argument is used only for the initial session record-

ing; if you use the -Z argument on an already-used disc, it erases the existing files.

CAUTION

Some DVDs come preformatted; formatting them again when you use them for the first

time can make the DVDs useless. Always be sure to carefully read the packaging your

DVD comes in to ensure that you are not about to create another coaster.

TIP

Writing a first session of at least 1GB helps maintain compatibility of your recorded data

with other optical drives. DVD players calibrate themselves by attempting to read from spe-

cific locations on the disc; you need data there for the drive to read it and calibrate itself.

Also, because of limitations to the ISO9660 file system in Linux, do not start new sessions

of a multisession DVD that would create a directory past the 4GB boundary. If you do so, it

causes the offsets used to point to the files to “wrap around” and point to the wrong files.

Packet Writing

Packet writing treats the CD or DVD like a hard drive, in which you create a file system

(like ext3) and format the disc and then write to it randomly as you would to a con-

ventional hard drive. This method, although commonly available on Windows-based

75

7

Viewing Video

computers, was long considered experimental for Linux and was never used much anyway

because USB thumb drives became common before the use of CD or DVD-RWs had the

opportunity. We do not cover this in detail here, but a quick overview is appropriate.

TIP

DVD+RW media are capable of only about 1,000 writes, so it is useful to mount them with

the noatime option to eliminate any writing to update their inodes or simply mount them

as read-only when it’s not necessary to write to them.

Piping data to the growisofs command is possible:

matthew@seymour~:$ sudo your_application | growisofs -Z /dev/scd0=/dev/fd/0

Burning from an existing image (or file, or named pipe, or device) is also possible:

matthew@seymour~:$ sudo growisofs -Z /dev/scd0=image

The dvd+rw-tools documentation, found at /usr/share/doc/dvd+rw-tools/index.html, is

required reading before your first use of the program. We also suggest that you experiment

with DVD-RW (rewritable) media first because if you make mistakes, you can still reuse

the discs instead of creating several new coasters for your coffee mug.

Viewing Video
You can use Ubuntu tools and applications to view videos.

Video Formats

Ubuntu recognizes a variety of video formats. The formats created by the MPEG group,

Apple, and Microsoft dominate, however. At the heart of video formats are the codecs—the

encoders and decoders of video and audio information. Codecs are typically proprietary,

but free codecs do exist. Here is a list of the most common video formats and their associ-

ated file extensions, although many more exist:

 ▶ AVI (.avi)—The Windows audiovisual format

 ▶ FLV (.flv)—Used in Adobe Flash; supports H.264 and others

 ▶ MPEG (.mpeg)—The MPEG video format; also known as .mpg

 ▶ MOV (.mov)—A QuickTime video format

 ▶ OGV/OGG (.ogv/.ogg)—The Ogg Theora freely licensed video format

 ▶ QT (.qt)—The QuickTime video format from Apple

 ▶ WEBM (.webm)—Google’s royalty-free container for audio and video (such as in VP8

format) designed for HTML5

http:///usr/share/doc/dvd+rw-tools/index.html

76 CHAPTER 7 Multimedia Applications

Viewing Video in Linux

Out of the box, Ubuntu does not support any of the proprietary video codecs due to

licensing restrictions. However, this functionality can be acquired if you install the

ubuntu-restricted-extras package from the Ubuntu software repositories. You can learn

more about it at https://help.ubuntu.com/community/RestrictedFormats.

You can watch video files and video DVDs with Totem Movie Player, which is installed by

default. This may also be used with several other file formats and for both video and audio

and is especially well suited for almost anything you are likely to want to use after you

install the ubuntu-restricted-extras package.

A more powerful video viewer application is VLC, which is available in the software repos-

itories and also for other operating systems, like Windows and macOS. VLC uses its own

set of audio and video codecs and supports a wider range of video formats than any other

media player we have encountered. If VLC can’t play it, it probably can’t be played.

Recording and Editing Audio
Recording and editing audio files in Ubuntu is possible using a number of applications.

For professional-grade production, you will want a digital audio workstation (DAW) like

Ardour or LMMS. For most of us, something simpler like Audacity will suffice and still pro-

duce excellent results. These are often used to record and edit audio tracks that are then

imported into one of the video editors described in the following section.

These are the most respected audio recording and editing applications for Linux:

 ▶ Audacity—This cross-platform (Linux, macOS, and Windows) audio editor for

Linux is one of the most commonly used and can be found at www.audacityteam.

org/.

 ▶ Ardour—This cross-platform (Linux, macOS, and Windows) DAW app is used by

many professionals and can be found at https://ardour.org/.

 ▶ Cecilia—This cross-platform (Linux, macOS, and Windows) audio signal processing

software is aimed at sound designers and can be found at https://ajaxsoundstudio.

com/software/cecilia/.

 ▶ LMMS—Also cross-platform (Linux, macOS, and Windows) this DAW is made and

maintained by musicians; find it at https://lmms.io/.

 ▶ Mixxx—This virtual DJ tool can be found at www.mixxx.org/.

 ▶ Rosegarden—Too simple to be called a DAW, but not entirely basic, this audio edi-

tor might be appreciated by casual users and can be found at www.rosegardenmusic.

com/.

Most of these are available in the Ubuntu repositories, so check there before you install

from the website.

https://help.ubuntu.com/community/RestrictedFormats
http://www.audacityteam.org/
http://www.audacityteam.org/
https://ardour.org/
https://ajaxsoundstudio.com/software/cecilia/
https://ajaxsoundstudio.com/software/cecilia/
https://lmms.io/
http://www.mixxx.org/
http://www.rosegardenmusic.com/
http://www.rosegardenmusic.com/

77

7

References

Editing Video
Recording and editing video in Ubuntu is possible using a number of applications. For

professional-grade production, you will want something like Blender. For most of us,

something simpler like PiTiVi will suffice and still produce excellent results.

These are the most respected video editing applications for Linux:

 ▶ Avidemux—This tool designed for people with simple needs can be found at

https://fixounet.free.fr/avidemux/.

 ▶ Blender—This cross-platform (Linux, macOS, and Windows) professional-grade

video production package can be found at www.blender.org.

 ▶ Cinelerra—This tool has been around for years but recently made some big changes

and is rebuilding its community. Find it at https://cinelerra.org.

 ▶ DaVinci Resolve—This cross-platform (Linux, macOS, and Windows) professional-

grade video production package is commonly used in Hollywood and can be found

at www.blackmagicdesign.com/products/davinciresolve/.

 ▶ Kdenlive—This comes from the KDE folks and can be found at https://kdenlive.org.

 ▶ Lightworks—This cross-platform (Linux, macOS, and Windows) professional-grade

video production package can be found at www.lwks.com/.

 ▶ OpenShot Video Editor—This editor can be found at www.openshot.org.

 ▶ PiTiVi—Find this tool at www.pitivi.org/.

 ▶ Shotcut—This cross-platform (Linux, macOS, and Windows) editor can be found at

https://shotcut.org/.

Most of these options are in the Ubuntu repositories, so check there first, but some you

have to download directly from their websites. Not all of them are free software.

References
 ▶ www.videolan.org—A multimedia player project with good documentation that

will play almost anything

 ▶ www.gimp.org—Home page of GIMP (GNU Image Manipulation Program)

 ▶ www.sane-project.org—Home page of the SANE (Scanner Access Now Easy) project

 ▶ www.imagemagick.org—Home page for ImageMagick

 ▶ https://gimp.net/tutorials/—Official tutorials for GIMP

https://fixounet.free.fr/avidemux/
http://www.blender.org
https://cinelerra.org
http://www.blackmagicdesign.com/products/davinciresolve/
https://kdenlive.org
http://www.lwks.com/
http://www.openshot.org
http://www.pitivi.org/
https://shotcut.org/
http://www.videolan.org
http://www.gimp.org
http://www.sane-project.org
http://www.imagemagick.org
https://gimp.net/tutorials/

This page intentionally left blank

IN THIS CHAPTER

▶ Ubuntu Gaming

▶ Installing Proprietary Video

Drivers

▶ Online Game Sources

▶ Installing Games from the

Ubuntu Repositories

▶ Playing Windows Games

▶ References

CHAPTER 8

Games

Playing games is a fun part of computing. For some of us,

games are a big part of the appeal of any operating system,

at least for uses beyond the business or corporate environ-

ment. From the humble card games that once entertained

millions during their coffee breaks to the heavily involved

first-person shooters that involve players dotted around the

globe, Linux offers a quality gaming platform that might

surprise you.

In this chapter, we explore some of the common games

available for you to download and install easily in Ubuntu.

Ubuntu Gaming
A small number of games come installed by default with

standard desktop Ubuntu, mostly simple games to divert

your attention for a few minutes between tasks, such as

Solitaire and Mahjongg. These are easy to try out and learn,

and you might find them enjoyable.

Most of us who enjoy games will want to find something

more. Thankfully, games for Linux do not stop there; sev-

eral popular games have native Linux support. We discuss a

small number of our favorites here.

Emulators enable you to play classic games, such as the clas-

sic LucasArts ScummVM’s Secret of Monkey Island, natively

under Linux. There are emulators for DOS, NES, SNES, and

many more platforms. If you are interested in them, search

online for DGen/SDL, DOSBox, xtrs, FCE Ultra, GnGeo,

SDLMame, ScummVM, and Stella. The documentation for

emulators is hit or miss, but if you are lucky, you might be

able to play your favorite old games for consoles or operat-

ing systems that no longer exist or that current OS versions

do not support.

80 CHAPTER 8 Games

More importantly for most of us, a large number of current releases of great games are

available for Linux.

First, if we have an AMD or NVIDIA video card, we need to upgrade the default video driv-

ers to the proprietary drivers that have greater capabilities.

Installing Proprietary Video Drivers
A major gripe of Linux users has been the difficulty involved in getting modern 3D graph-

ics cards to work. Thankfully, both AMD and NVIDIA support Linux, albeit NVIDIA does

so by using proprietary drivers. Ubuntu will install on either type of system, but with

NVIDIA cards it will use the open source Nouveau driver, which works for most things but

does not include all the functionality of the highest-end cards. This means that Ubuntu

does not ship with native proprietary drivers activated for either graphics card, but they

can easily be installed, often during or just after the operating system is installed. These

drivers are needed for most visually spectacular games. The open source AMD drivers work

well for gaming, although for some professional use cases like computer-aided design

(CAD), a person might want to upgrade to the proprietary AMD drivers available from

their website.

Proprietary drivers are hard for some Linux distros to include as part of their standard

installation. The Ubuntu community has taken a pragmatic approach of including the

NVIDIA drivers within the main Ubuntu distro, but they’re disabled by default. Therefore,

anyone who has NVIDIA hardware can activate those drivers to take advantage of their

features.

NOTE

If you think that using proprietary drivers is the only way on Linux, we should mention that

a lot of development is going into providing totally free and open source drivers for slightly

older graphics cards. Ubuntu automatically selects the best “free” driver for your system

and allows you to switch the proprietary driver if you want to. Although the open source

drivers provide 3D acceleration, this support doesn’t always extend to a full feature set or

to more recent graphics cards.

Activating the proprietary driver if you need to is easy: Open Software Updater, click

Settings, and then select the Additional Drivers tab, as shown in Figure 8.1.

Installing a different hardware driver requires super user privileges, so you are asked for

your password. When the drivers list appear, read the descriptions and look for the recom-

mended entry for your hardware, highlight it, and click Apply Changes at the lower right.

Ubuntu confirms that you want to use the proprietary driver and, if you agree, automati-

cally downloads and configures the relevant driver. If you want to revert to the open

driver, do the same thing but select the activated driver and click Remove at the lower

right, in the same place where the previously mentioned Apply Changes button appeared.

81

8

Online Game Sources

FIGURE 8.1 Use the Additional Drivers tab to activate or deactivate the appropriate proprietary

graphics driver for your graphics card.

Online Game Sources
Many websites provide downloadable games, typically for pay, although some titles are

free. The following sites all have games available that will run on Ubuntu, as of this

writing.

Steam

Steam is a cross-platform entertainment platform. When you install it on Ubuntu, you get

access to a ton of games and other fun things. Some of them are free, but most require

you to pay.

Using Steam has become the primary method that most current Linux-based gamers use

to find, install, and play games.

Steam has grown into the premier source for quality professional games on Linux and for

a lot of indie content as well. Steam is created by Valve Software, usually referred to as just

“Valve,” a well-established gaming company with a great reputation because of games like

Half-Life.

In 2013, Gabe Newell, the cofounder and managing director of Valve, said that Linux is

the future of gaming, despite its current minuscule share of the market, and the Steam

website proclaims Ubuntu as Steam’s favorite version of Linux. Steam is Newell’s com-

pany’s means of pursuing that future.

To learn more about Valve and Steam, see www.valvesoftware.com and https://store.

steampowered.com.

http://www.valvesoftware.com
https://store.steampowered.com
https://store.steampowered.com

82 CHAPTER 8 Games

GOG.com

GOG.com offers a collection of thousands of games that run on multiple platforms,

including Linux. The games are all DRM-free, which means that no digital rights manage-

ment is included, making free and open source (FOSS) proponents happy. Take a look at

www.gog.com/games.

Humble

The Humble store has a number of FOSS games for sale. The site is known for its bundles,

selling games for a much-cheaper-than-usual price when you buy them in a package. To

see options available, visit www.humblebundle.com/store.

itch.io

This cross-platform site offers many Linux-compatible games. Visit https://itch.io/games/

platform-linux.

LGDB

The Linux Game Database (LGDB) has more than 2,000 games available to download,

along with emulators, tools, and a web forum to discuss games, gaming, and Q&A with

other users. You can find the games list at https://lgdb.org/games.

Game Jolt

The games on this site are all indie games, meaning they were created by individuals or

small companies. Like the other sites, this site offers many cross-platform games. You can

find a list of the Linux options at https://gamejolt.com/games/best?os=linux.

Installing Games from the Ubuntu Repositories
In this section, you learn how to install some of the popular games for Ubuntu, all of

which can be easily installed from Ubuntu software repositories. Alongside the usual

shoot-’em-up games, you’ll also find one or two strategy-focused titles.

Warsow

Warsow is a free and fast-paced first-person shooter (FPS) game that is available on Win-

dows, macOS, and Linux. Members of the Ubuntu community have packaged the game

and made it available directly and easily for Ubuntu users from the software repositories.

The game involves moving quickly, grabbing power-ups and weapons before your enemies

do, and trying to plant a bomb and steal your enemy’s flag without anyone seeing you.

You can jump, dash, dodge, and even wall jump your way throughout the colorful 3D

environment. Figure 8.2 shows a game just getting started, with lots of weapons, platforms

and ramps, and power-ups in sight. Many other FPS games are available, such as Alien

Arena, Urban Terror, Wolfenstein: Enemy Territory, Smokin’ Guns, Nexuiz, World of Padman,

and Cube 2: Sauerbraten.

http://GOG.com
http://GOG.com
http://www.gog.com/games
http://www.humblebundle.com/store
http://itch.io
https://itch.io/games/platform-linux
https://itch.io/games/platform-linux
https://lgdb.org/games
https://gamejolt.com/games/best?os=linux

83

8

Installing Games from the Ubuntu Repositories

FIGURE 8.2 Warsow is one of the newest and fastest FPS games available.

Scorched 3D

Scorched 3D is based on an old DOS game called Scorched Earth. The object and game play

are similar: There are multiple players, and you enter targeting details to try to destroy

the other players using a variety of missile-like weapons. You earn points for each win

and can buy new weapons at the end of each round. The game offers an amazing array of

weapons, and the game play is completely in stunning 3D, as shown in Figure 8.3.

FIGURE 8.3 Scorched 3D in action.

84 CHAPTER 8 Games

Scorched 3D is based on turns. Each player shoots once, and then each of the other players

takes a shot before the first player shoots again. The game allows you to have more than

20 players at the same time, including both human and computer-controlled players. You

may play a local game, over a LAN, or even over the Internet. Scorched 3D runs on Win-

dows, macOS, and Linux, so you may play with your friends regardless of what platforms

their computers use.

Frozen Bubble

Frozen Bubble is an amusing little game with sharp graphics, nice music, and easy game

play. You may play alone or against another player. The goal is to use your colored mar-

bles to knock down the ones above you within a certain amount of time. You have to hit

at least two at a time that are the same color as the one you shoot for anything to fall;

otherwise, your shot joins the menagerie above and brings about your demise somewhat

more quickly, as illustrated in Figure 8.4. There is a lot more to Frozen Bubble, but even

with all the details, it is easy enough for a child to play and interesting enough to hold

the interest of most adults.

FIGURE 8.4 Move left or right to aim and press up to fire.

SuperTux

Many of us grew up in the era when game play was more important than graphics. Even

so, we still liked flashy and pretty-looking games. SuperTux is a throwback to the Mario

era. It is a 2D side-scroller in which you jump, run, and occasionally shoot something if

you have the appropriate power-up. The hero is Tux, the Linux penguin. More than

85

8

Installing Games from the Ubuntu Repositories

25 levels are available, as is a level editor for you to create your own. If you enjoy running,

jumping, hitting your head to get money, and jumping on your enemies, this game is for

you. Figure 8.5 gives you the basic look and feel.

FIGURE 8.5 Although the look and feel of SuperTux takes you back to the Mario era, it is far

from dull or boring.

Battle for Wesnoth

One of the most popular games currently available for Linux is Battle for Wesnoth (see

Figure 8.6), a strategy game featuring both single-player and multiplayer options. Based in

a fantasy land, you are responsible for building armies to wage war against foes who are

attacking you. Game play may be based on scenarios, such as in single-player mode, where

some scenarios are preinstalled and others may be easily downloaded, or based on trying

to better your friends at a LAN party or online.

Battle for Wesnoth comes with a map editor that lets you create your own scenarios. An

active community shares their work and welcomes new contributions. You can find more

information about Battle for Wesnoth at https://wesnoth.org.

Frets on Fire

Frets on Fire, shown in Figure 8.7, is similar to Guitar Hero. Players try to keep up with a

song and “play” it correctly. The game supports songs from Guitar Hero I and Guitar Hero II

but, unlike those proprietary games, is expandable by the community, as well, with more

songs available for download from the Internet. Frets on Fire is completely open source and

has content-compatible versions for Linux, Windows, and macOS.

https://wesnoth.org

86 CHAPTER 8 Games

FIGURE 8.6 Flex your strategic brain by playing Battle for Wesnoth, a rich and full land

of fantasy of adventure.

FIGURE 8.7 Frets on Fire offers flashy graphics and familiar game play.

87

8

Installing Games from the Ubuntu Repositories

FlightGear

If you like flight simulators, you should try out FlightGear (see Figure 8.8). It is cross-

platform, sophisticated, and fun. It is completely open source and developed by volun-

teers, and it’s also very professional looking and smooth. If you like this, you can also try

other similar games, such as Thunder and Lightning, GL-117, and Search and Rescue II.

FIGURE 8.8 FlightGear features stunning landscapes and technically accurate control panels.

Speed Dreams

Many racing games are available. One of the newer ones is Speed Dreams (see Figure 8.9),

which started as a fork of an older racing game, TORCS. It features a variety of tracks,

vehicles, and options. Speed Dreams is open source, free, and multiplatform. Similar games

include TORCS, Rigs of Rods, vDrift, Tile Racer, Trigger, and Mania Drive.

FIGURE 8.9 In Speed Dreams, many views of the race are available, including one from your

car’s hood.

88 CHAPTER 8 Games

Games for Kids

Kids, both young and old, have Linux game options. Check out game packages such as

gCompris, Childsplay, and Tux Paint to get started. Some of these are educational, some

teach computer skills such as using a mouse or a keyboard, and others are just for amuse-

ment. Many developers are also parents who have placed a high priority on making

quality software for their children to enjoy on their favorite platform. You can search for

children’s games in the Ubuntu Software Center and find lots of great things to try.

Commercial Games

In the past few years, Ubuntu and Canonical have made a way for commercial software

companies to make their products—including games—available for installation in Ubuntu

via the Ubuntu Software Center. A special section of the Ubuntu Software Center labeled

For Purchase has been created. Look there for some new and flashy options from com-

mercial vendors. Payment is required, and the details are taken care of within the Ubuntu

Software Center.

One interesting and cool commercial game option is the Humble Indie Bundle from www.

humblebundle.com, which is a collection of cross-platform software made by independent

developers with a “pay what you can” price tag. These bundles are made available inter-

mittently, and sometimes you can find them available directly from the Ubuntu Software

Center. This is a great way to find some fun games with a low cost while feeling good

about supporting people who write software for fun.

Playing Windows Games
Ubuntu is primarily aimed at desktop computer users who want a system that is stable,

powerful, and easy to use. It is not primarily a gaming platform. In fact, compared to

Windows, there are not nearly as many games available or being developed for Linux

(although the number is growing and has improved). This doesn’t mean hard-core gamers

need to feel left out, though. Two projects exist to help game lovers play most Windows-

based games on Linux.

A project called Wine uses application interfaces to make Windows programs believe they

are running on a Windows platform and not a Linux platform. Bear in mind that Wine,

which is a compatibility layer, stands for Wine Is Not an Emulator, so you should not think

of it as one; the community can get quite touchy about it! Although the open source, free

software project Wine won’t run everything, it does run a very large number of Windows

programs, including many games.

Crossover Games is another commercial option available in the Ubuntu Software Center

under For Purchase.

http://www.humblebundle.com
http://www.humblebundle.com

89

8

References

TIP

The keys to successful gaming in Linux are to always read the documentation thoroughly,

always investigate the Internet resources thoroughly, and always understand your system.

Installing games is a great way to learn about your system because the reward of success

is so much fun.

References
▶ www.warsow.net—The official site of Warsow

▶ www.scorched3d.co.uk—The official site of Scorched 3D

▶ www.frozen-bubble.org—The official site of Frozen Bubble

▶ https://supertux.lethargik.org—The official site of SuperTux

▶ https://wesnoth.org—The official site of Battle for Wesnoth

▶ https://gcompris.net—The official site of gCompris

▶ https://fretsonfire.sourceforge.net—The official site of Frets on Fire

▶ https://childsplay.sourceforge.net/index.php—The official site of Childsplay

▶ www.tuxpaint.org—The official site of Tux Paint

▶ www.flightgear.org—The official site of FlightGear

▶ www.speed-dreams.org—The official site of Speed Dreams

▶ https://help.ubuntu.com/community/Games—Ubuntu community

documentation for playing games on Ubuntu

▶ www.nvidia.com/object/unix.html—The home page for NVIDIA UNIX/Linux

drivers

▶ https://help.ubuntu.com/community/Wine—Ubuntu community documen-

tation for Wine

▶ www.winehq.org—The official site of Wine, which includes good information

about software that is known to work with the current version in an application

database subsite at https://appdb.winehq.org

http://www.warsow.net
http://www.scorched3d.co.uk
http://www.frozen-bubble.org
https://supertux.lethargik.org
https://wesnoth.org
https://gcompris.net
https://fretsonfire.sourceforge.net
https://childsplay.sourceforge.net/index.php
http://www.tuxpaint.org
http://www.flightgear.org
http://www.speed-dreams.org
https://help.ubuntu.com/community/Games
http://www.nvidia.com/object/unix.html
https://help.ubuntu.com/community/wine
http://www.winehq.org
https://appdb.winehq.org

This page intentionally left blank

IN THIS CHAPTER

 ▶ Ubuntu Software

 ▶ Using Synaptic for Software

Management

 ▶ Staying Up to Date

 ▶ Working on the Command Line

 ▶ Compiling Software from

Source

 ▶ Configuration Management

 ▶ Using the Snappy Package

Manager

 ▶ References

CHAPTER 9

Managing Software

In this chapter, we look at the options for managing your

software in Ubuntu. If you are used to an environment

where you are reliant on visiting different vendor websites

to download updates, you are in for a pleasant surprise.

Updating a full Ubuntu installation, including all the appli-

cation software, is as simple as running the Update Manager

program. You will discover just how easy it is to install and

even remove various software packages.

Ubuntu provides a variety of tools for system resource man-

agement. The following sections introduce the graphical

software management tools you will use for most of your

software management. This chapter also covers monitoring

and managing memory and disk storage on your system.

Ubuntu Software
Ubuntu Software is a graphical utility for package manage-

ment in Ubuntu. You can find it by searching Activities for

“Ubuntu Software”; the package and executable program is

named ubuntu-software. Ubuntu Software enables you to

easily select and install a large array of applications by using

the intuitive built-in search and easy one-click installation.

When you open the program, you see the main screen, as

shown in Figure 9.1.

Along the top side of the screen, you have three menu

options: All, Installed, and Updates. To the right is a search

icon you can use to search for packages. Scroll down to find

software listed by categories.

Installing new software via Ubuntu Software is as simple as

finding the software in the package list, double-clicking it,

and then clicking the Install button. When you do so, you

may be asked for your password; then the application is

downloaded and installed. You can remove an application

by finding it in Ubuntu Software and clicking the Remove

button.

92 CHAPTER 9 Managing Software

FIGURE 9.1 The initial Ubuntu Software screen enables you to browse through packages

sorted into categories.

Using Synaptic for Software Management
Ubuntu Software works just fine for adding and removing applications, but if you need

to install something specific—such as a library—you need to use the command line or

Synaptic (see Figure 9.2). You can install Synaptic by using Ubuntu Software; it is not

installed by default.

FIGURE 9.2 For more advanced software management in a GUI, Synaptic is the preferred tool.

93

9

Using Synaptic for Software Management

Along the left are software categories, along the top right are the package selections for

that category, and on the bottom right is the Package Information window, which shows

information about the currently selected package. To install or remove software, click the

check box to the left of its name, and you see a menu that offers the following options:

 ▶ Unmark—If you have marked the package for installation, upgrade, or one of the

other options, this option removes that mark.

 ▶ Mark for Installation—Click this option to add this package to the list that will

be installed.

 ▶ Mark for Re-installation—If you have some software already installed, but for

some reason it’s not working, click this option to reinstall it from scratch. Existing

configuration files are retained, so any edits you have made are safe.

 ▶ Mark for Upgrade—If the software has updates available, select this option to

download and install them.

 ▶ Mark for Removal—Select this option to delete the selected package from your

system but leave its configuration files intact so that if you ever reinstall it, you do

not have to reconfigure it.

 ▶ Mark for Complete Removal—Select this option to delete the selected package

from your system and also remove any configuration files and purge everything

from the system.

After you have made your changes, click the Apply button to have Synaptic download,

install, upgrade, and uninstall as necessary. If you close the program without clicking

Apply, your changes are lost.

Beneath the categories on the left side of the screen are six buttons: Sections, Status, Ori-

gin, Custom Filters, Search Results, and Architecture. These customize the left list: Sections

is the Categories view; Status enables you to view packages that are installed or upgrad-

able; Origin lists the different repositories available to download packages; Custom Filters

has some esoteric groupings that are useful only to advanced users; Search Results stores

results of your searches; and Architecture shows the packages specific to each architecture

of Ubuntu.

You can press Ctrl+F at any time to search for a particular package. By default, it is set to

search by package description and name. You may change the Look In box setting to only

search for name. As mentioned earlier, your search terms are saved under the Search view

(the button on the bottom left), and you can click from that list to search again on that

term.

As well as providing the method of installing and removing software, Synaptic provides

the means to configure the servers you want to use for finding packages. In fact, this is

where you can make one of the most important changes to your Ubuntu system: You can

open it up to the Ubuntu Universe and Multiverse.

Ubuntu is based on the Debian distribution, which has thousands of software packages

available for installation. Ubuntu uses only a subset of that number but makes it easy

94 CHAPTER 9 Managing Software

for you to install the others, along with many packages that are not available in Debian.

When you use Synaptic, you see small orange Ubuntu logos next to many packages,

which identify them as being officially supported by the Canonical-supported Ubuntu

developers. The packages that do not have this logo are supported by the wider Ubuntu

community of developers.

To enable the Universe and Multiverse repositories, go to Settings, Repositories. This list shows

all the servers you have configured for software installation and updates and includes the Uni-

verse and Multiverse repositories. When you find them, check them, and then click Close.

Synaptic shows a message box, warning you that the repository listings have changed

and that you need to click the Reload button (near the top left of the Synaptic window)

to have it refresh the package lists. Go ahead and do that, and you should see a lot more

software options appear for your selection. However, notice that only some software

options have the official Ubuntu seal attached, and for anything that does not have the

seal, you may want to be cautious when installing it.

NOTE

Much of the software discussed in this book is available only through the Universe reposi-

tory. Therefore, we highly recommend enabling it to get full use out of this book and your

Ubuntu installation.

Staying Up to Date
Although you can manage your software updates through Synaptic, Ubuntu provides

a dedicated tool called Software Updater (shown in Figure 9.3). This tool is designed to

be simple to use: When you run it, Software Updater automatically downloads the list

of updates available and checks them all in the list it shows. All you need to do is click

Install Now to bring your system up to date. If you want a little more information about

the updates, click Technical Description to see what has changed in the update.

FIGURE 9.3 If you need to update your software to apply bug fixes and security upgrades, use

Software Updater.

95

9

Working on the Command Line

Ubuntu automatically checks for updates periodically and notifies you when critical

updates are available. However, there’s no harm in running Software Updater yourself

every so often, just to make sure; it’s better to be safe than sorry.

Working on the Command Line
With so much software available for installation, it is no surprise that Debian-based distros

provide many ways to manage software installation. At their root, however, they all use

Debian’s world-renowned Advanced Package Tool (APT). A person posting on Slashdot.com

once said, “Welcome to Slashdot. If you can’t think of anything original, just say how

much APT rocks and you’ll fit right in.” You see, even though many other distros have

tried to equal the power of APT, nothing else even comes close.

Why is APT so cool? Well, it was the first system to properly handle dependencies in soft-

ware. Other distros use files that have dependencies. For example, Red Hat used RPM files

that had dependencies. An RPM for GIMP would have a dependency on GTK, the graphi-

cal toolkit on which GIMP is based. As a result, if you tried to install your GIMP RPM

without having the GTK RPM, your install would fail. So, you grab the GTK RPM and try

again. Aha: GTK has a dependency on three other things that you need to download, and

those three other things have dependencies on 20 other things…and so on, usually until

you can’t find a working RPM for a dependency, and you give up.

APT, on the other hand, was designed to automatically find and download dependencies

for your packages. So, if you want to install GIMP, APT downloads GIMP’s package and

any other software it needs to work. No more hunting around by hand, no more worrying

about finding the right version, and certainly no more need to compile things by hand.

APT also handles installation resuming, which means that if you lose your Internet con-

nection partway through an upgrade (or if your battery runs out, or if you have to quit, or

whatever), APT picks up where it left off the next time you run it.

Day-to-Day APT Usage

To enable you to search for packages both quickly and thoroughly, APT uses a local cache

of the available packages. Try running this command:

matthew@seymour:~$ sudo apt update

The apt update command instructs APT to contact all the servers it is configured to use

and download the latest list of file updates. If your lists are outdated, it takes a minute or

two for APT to download the updates. Otherwise, this command executes it in a couple of

seconds.

After the latest package information has been downloaded, you are returned to the com-

mand line. You can now ask APT to automatically download any software that has been

updated, using this command:

matthew@seymour:~$ sudo apt upgrade

http://Slashdot.com

96 CHAPTER 9 Managing Software

If you have a lot of software installed on your machine, there is a greater chance of things

being updated. APT scans your software and compares it to the latest package information

from the servers and produces a report something like this:

mmatthew@seymour:~$ sudo apt upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages will be upgraded:

 cabextract google-chrome-beta icedtea6-plugin language-pack-en

 language-pack-en-base language-pack-gnome-en language-pack-gnome-en-base

 libfreetype6 libfreetype6-dev libsmbclient libwbclient0 openjdk-6-jre

 openjdk-6-jre-headless openjdk-6-jre-lib samba-common samba-common-bin

 smbclient upstart winbind xserver-common xserver-xorg-core

21 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Need to get 84.8MB of archives.

After this operation, 623kB of additional disk space will be used.

Do you want to continue [Y/n]?

Each part of this report tells you something important. Starting at the top, the line, “The

following packages will be upgraded,” gives you the exact list of packages for which

updates are available. If you’re installing new software or removing software, you see lists

titled, “The following packages will be installed” and “The following packages will be

removed.” A summary at the end shows a total of 21 packages that APT will upgrade, with

0 new packages, 0 to remove, and 0 not upgraded. Because this is an upgrade rather than

an installation of new software, all those new packages take up only 623KB of additional

space. Although you have an 84.8MB download, the packages are overwriting existing files.

It’s important to understand that a basic apt upgrade never removes software or adds new

software. As a result, it is safe to use this command to keep your system fully patched because

it should never break things. However, occasionally you will see the “0 not upgraded” status

change, which means some things cannot be upgraded. This happens when some software

must be installed or removed to satisfy the dependencies of the updated package, which,

as previously mentioned, an apt upgrade never does. In this situation, you need to use apt

dist-upgrade, so named because it’s designed to allow users to upgrade from one version of

Debian/Ubuntu to a newer version—an upgrade that inevitably involves changing just about

everything on the system, removing obsolete software, and installing the latest features. This

is one of the most-loved features of Debian because it enables you to move from version to

version without your having to download and install new CDs. Keeping regular upgrades

and distro upgrades separate is very useful for making sure that security updates and simple

bug fixes don’t change software configurations that you may be counting on, especially on a

machine that needs to be consistently available and working, such as a server.

Whereas apt upgrade and apt dist-upgrade are available for upgrading packages, apt

install is responsible for adding new software. For example, if you want to install the

MySQL database server, you run this:

matthew@seymour:~$ sudo apt install mysql-server

97

9

Working on the Command Line

Internally, APT queries mysql-server against its list of software and finds that it matches

the mysql-server-5.7 package. It then finds which dependencies it needs that you don’t

already have installed and gives you a report like this one:

matthew@seymour:~$ sudo apt install mysql-server

[sudo] password for matthew:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 libaio1 libevent-core-2.1.6 libhtml-template-perl mysql-client-5.7

 mysql-client-core-5.7 mysql-common mysql-server mysql-server-5.7

 mysql-server-core-5.7

Suggested packages:

 libipc-sharedcache-perl tinyca mailx

The following NEW packages will be installed:

 libaio1 libevent-core-2.1.6 libhtml-template-perl mysql-client-5.7

 mysql-client-core-5.7 mysql-common mysql-server mysql-server-5.7

 mysql-server-core-5.7

0 upgraded, 9 newly installed, 0 to remove and 0 not upgraded.

Need to get 20.3 MB of archives.

After this operation, 160 MB of additional disk space will be used. Do you want to

continue [Y/n]?

This time, you can see that APT has picked up and selected all the dependencies required

to install MySQL Server 5.7, but it has also listed one recommended package and two sug-

gested packages that it has not selected for installation. The “recommended” package is

just that: The person who made the MySQL package (or its dependencies) thinks it would

be a smart idea for you to also have the mailx package. If you want to add it, press N to

terminate apt and rerun it like this:

matthew@seymour:~$ sudo apt install mysql-server mailx

The “suggested” packages are merely a lower form of recommendation. They don’t add

any crucial features to the software you selected for install, but it’s possible that you might

need them for certain noncrucial (to the main piece of software being installed) features

or tasks.

NOTE

APT maintains a package cache where it stores DEB files it has downloaded and installed.

This usually lives in /var/cache/apt/archives and can sometimes take up many hun-

dreds of megabytes on your computer. You can have APT clean out the package cache

by running apt clean, which deletes all the cached DEB files. Alternatively, you can run

apt autoclean, which deletes cached DEB files that are beyond a certain age and keeps

newer packages.

98 CHAPTER 9 Managing Software

If you try running apt install with packages you already have installed, APT considers your

command to be apt update and looks to see whether new versions are available for download.

Another important day-to-day package operation is removing things you no longer want,

which you do by using the apt remove command, as follows:

matthew@seymour:~$ sudo apt remove firefox

Removing packages can be dangerous because APT also removes any software that relies

on the packages you selected. For example, if you were to run apt remove libgtk2.0-0

(the main graphical toolkit for Ubuntu), you would probably find that APT insists on

removing more than 100 other things. The moral of the story is this: When you remove

software, read the APT report carefully before pressing Y to continue with the uninstall.

A straight apt remove leaves behind the configuration files of your program so that if you

ever reinstall it, you do not also need to reconfigure it. If you want to remove the configu-

ration files as well as the program files, run this command instead:

matthew@seymour:~$ sudo apt remove -purge firefox

Or run this:

matthew@seymour:~$ sudo apt purge firefox

Both of these commands will perform a full uninstall.

NOTE

You can see a more extensive list of apt parameters by running apt without any param-

eters. The cryptic line at the bottom, “This APT has Super Cow Powers,” is made even

more cryptic if you run the command apt moo.

Finding Software

With so many packages available, it can be hard to find exactly what you need by using

APT at the command line. The general search tool apt-cache is used like this:

matthew@seymour:~$ apt-cache search kde

Depending on which repositories you have enabled, the tool returns about 1,000 pack-

ages. Many of those results do not even have KDE in the package name but are matched

because the description contains the word KDE.

You can filter through this information in several ways. First, you can instruct apt-cache to

search only in the package names, not in their descriptions by using the –n parameter, like this:

matthew@seymour:~$ apt-cache –n search kde

99

9

Working on the Command Line

Now the search goes down from more than 1,000 packages to a few hundred.

Another way to limit search results is to use some basic regular expressions, such as ^,

meaning “start,” and $, meaning “end.” For example, you might want to search for pro-

grams that are part of the main KDE suite and not libraries (usually named something like

libkde), additional bits (such as xmms-kde), and things that actually have nothing to do

with KDE yet still match the search (for example, tkdesk). Do this by searching for pack-

ages that have a name starting with kde, as follows:

matthew@seymour:~$ apt-cache –n search ^kde

Perhaps the easiest way to find packages is to combine apt-cache with grep to search

within search results. For example, if you want to find all games-related packages for KDE,

you can run this search:

matthew@seymour:~$ apt-cache search games | grep kde

When you’ve found the package you want to install, run it through apt install as usual.

If you first want a little more information about that package, you can use apt-cache

showpkg, like this:

matthew@seymour:~$ apt-cache showpkg mysql-server-5.7

This shows information on “reverse depends” (which packages require, recommend, or

suggest mysql-server-5.7), “dependencies” (which packages are required, recommended,

or suggested to install mysql-server-5.7), and “provides” (which functions this package

gives you). The “provides” list is quite powerful because it allows different packages to pro-

vide given resources. For example, a MySQL database-based program requires MySQL to

be installed, but it isn’t fussy about whether you install MySQL 4.1 or MySQL 5.7. In this

situation, the Debian packages for MySQL 4.1 and MySQL 5.7 would both have mysql-

server-4.1 in the provides list, meaning that they would offer the functionality provided

by MySQL 4.1. Therefore, you could install either version to satisfy the MySQL-based

application.

Using apt-get Instead of apt

While the new, simplified interface to APT that removes the hyphen and the second part

of the command works great and includes lovely updates like a progress bar, it does not

yet include all functionality of the venerable apt-get. Table 9-1 lists some of the new

commands and what they replace, in case you are more familiar with the old commands.

Both versions work, so no relearning is necessary if you do not want to switch. Today,

apt-get is used only for much more advanced package management tasks beyond the

needs of what we cover in this book.

100 CHAPTER 9 Managing Software

Table 9.1 apt-get Versus apt

apt-get Command apt Command

apt-get install apt install

apt-get remove apt remove

apt-get update apt update

apt-get upgrade apt upgrade

apt-get dist-upgrade apt full-upgrade

apt-get remove --purge apt purge

apt-get autoremove apt autoremove

apt-get search apt search

apt-get show apt show

dpkg --get-selections apt list --installed

apt-get purge apt purge

Compiling Software from Source
Compiling applications from source is not difficult. There are two ways to do it: You

can use the source code available in the Ubuntu repositories, or you can use source code

provided by upstream developers (which is most useful for projects that are not available

in the Ubuntu repositories). For either method, you need to install the build-essential

package to ensure that you have the tools you need for compilation. You may also need to

install automake and checkinstall, which are build tools.

Compiling from a Tarball

Most source code that is not in the Ubuntu repositories is available from the original

writer or from a company’s website as compressed source tarballs—that is, tar files that

have been compressed using gzip or bzip. The compressed files typically uncompress into

a directory containing several files. It is always a good idea to compile source code as a

regular user to limit any damage that broken or malicious code might inflict, so create a

directory named source in your home directory.

From wherever you downloaded the source tarball, uncompress it into the ~/source direc-

tory by using the -C option to tar:

matthew@seymour:~$ tar zxvf packagename.tgz -C ~/source

matthew@seymour:~$ tar zxvf packagename.tar.gz -C ~/source

matthew@seymour:~$ tar jxvf packagename.bz -C ~/source

matthew@seymour:~$ tar jxvf packagename.tar.bz2 -C ~/source

If you are not certain what file compression method was used, use the file command to

figure it out:

matthew@seymour:~$ file packagename

101

9

Compiling Software from Source

Now, change directories to ~/source/packagename and look for a file named README,

INSTALL, or something similar. Print out the file, if necessary, because it contains specific

instructions on how to compile and install the software. Typically, the procedure to com-

pile source code is as follows:

matthew@seymour:~/source/packagename$./configure

This runs a script to check whether all dependencies are met and whether the build envi-

ronment is correct. If you are missing dependencies, the configure script normally tells

you exactly which ones it needs. If you have the Universe and Multiverse repositories

enabled in Synaptic, chances are you will find the missing software (usually libraries) in

there.

When your configure script succeeds, run the following to compile the software:

matthew@seymour:~/source/packagename$ make

Finally, run the following:

matthew@seymour:~/source/packagename$ sudo make install

If the compile fails, check the error messages for the reason and run the following before

you start again:

matthew@seymour:~/source/packagename$ make clean

You can also run the following to remove the software if you do not like it:

matthew@seymour:~/source/packagename$ sudo make uninstall

Compiling from Source from the Ubuntu Repositories

You might sometimes want to recompile a package, even though a binary package is avail-

able in the Ubuntu repositories. For example, a program might have been compiled into a

binary with a specific feature disabled that you would like to use. Here is how you can do

this, using a software package named foo that you want to compile.

First, get the source from the Ubuntu repositories:

matthew@seymour:~$ apt source foo

Install the build dependencies for the package:

matthew@seymour:~$ sudo apt build-dep foo

Change to the directory for the source code (which may include the version number):

matthew@seymour:~$ cd foo-4.5.2

Make whatever changes you want to make to the package or to the compilation flags. You

can do this by using ./configure and make, or sometimes you can make manual changes

102 CHAPTER 9 Managing Software

to a configuration file. Each package has the potential to do this differently, so you need

to see that program’s documentation. Try looking for a README file in the source code to

get started.

Next, create a new debian/changelog entry. After you enter this command, you need to

enter a message that tells why a new version was made, perhaps something like Matthew’s

flight of fancy with extra sauce.

matthew@seymour:~$ dch -i

NOTE

Ubuntu package numbering follows a specific pattern. To help yourself later, you should

stick to this pattern. Using the foo numbers shown here, a typical Ubuntu package that

was inherited from Debian with no changes would then be 4.5.2-1. A package inherited

from Debian but changed for Ubuntu would be 4.5.2-1ubuntu1 (and then ubuntu2 for a

second version, and so on). A package that did not have a version in Debian but which

was created for Ubuntu would be 4.5.2-0ubuntu1 (and ubuntu2 and so on).

Build the source package. This creates all the files necessary for uploading a package:

matthew@seymour:~$ debuild -S

Finally, you are left with a foo-4.5.2-1ubuntu1custom.deb package (using whatever ver-

sion number or suffix you created earlier) that you can install—and later uninstall as

well—using your package manager. In some instances, multiple DEB files might be cre-

ated, in which case you replace the individual package name in the example here with

*.deb:

matthew@seymour:~$ sudo dpkg -Oi foo-4.5.2-1ubuntu1custom.deb

Configuration Management
This section provides a quick introduction to a couple tools that might be useful to you

if you want more control over system configuration management. For larger needs, see

Chapter 33, “Managing Sets of Servers.”

dotdee

If you run Linux-based systems, you will find a series of directories that end with a .d and

that store configuration files. These are sometimes called .d or “dotdee” directories. If you

look in /etc/, you find many such directories (such as apparmor.d and pam.d). Opening

these directories reveals a large number of configuration files and perhaps other directories

containing even more. In Ubuntu or other Debian-based systems, it is a violation of eti-

quette (and Debian policy) for any software package to be allowed to directly change the

configuration files of another package. This can be problematic if you want to use system

configuration management software.

103

9

Using the Snappy Package Manager

dotdee solves this problem by allowing you to replace any flat file in your file system with

a symlink pointing to a file that is generated from a .d-style directory. It saves the origi-

nal file and then updates the generated file automatically and dynamically any time any

file in the original .d directory is added, deleted, or modified. This way, the Debian policy

and general etiquette standards are met, but configurations can be modified as needed by

an external program.

dotdee works its magic using inotify to dynamically and instantly update the master file.

The master file can be built three different ways: using flat files, which are concatenated;

using diff/patch files, which are applied in a quiltlike manner; and using executables,

which process stdin and dump to stdout. This flexibility should make any system admin-

istrator or developer guru happy.

Ubuntu Core

Ubuntu Core adds the absolute minimum of files and code necessary for a usable Ubuntu

server image to it as a new means of managing software packages. The idea is similar to

how smart phones like Android-based phones provide software: The software packages

include everything they need to run on the operating system, effectively making it so

that a package is isolated from the operating system more completely. This is designed to

protect against the possibility of a package breaking other packages or an entire operating

system installation. It is also intended to make updates easier and cleaner for use cases like

cloud deployment or IoT (Internet of things). This feature first appeared in Ubuntu 16.04

LTS.

Using the Snappy Package Manager
Software bundles that can be packaged using the Snappy package manager are called

snaps. Snaps can be installed using Ubuntu Software or from the command line, as

described in this section.

To show a list of snap packages that are available to be installed, use the following:

matthew@seymour:~$ snap find

Because snaps are new, few packages are available today. However, the list is growing and

is likely to become unwieldy at some point. Sure, you can use grep to search through the

output to try to find a specific package in the list, but you can also use this:

matthew@seymour:~$ snap find searchterm

To install a snap package, use the following:

matthew@seymour:~$ sudo snap install packagename

To show a list of snap packages that are currently installed, use the following:

matthew@seymour:~$ snap list

104 CHAPTER 9 Managing Software

To update a snap package, use the following:

matthew@seymour:~$ sudo snap refresh packagename

To remove a snap package, use the following:

matthew@seymour:~$ sudo snap remove packagename

To display a list of changes, such as when snaps were installed, updated, or removed, use

the following:

matthew@seymour:~$ snap changes

References
 ▶ www.debian.org/doc/manuals/project-history/ch-detailed.en.html—

History of the Debian Linux package system

 ▶ www.nongnu.org/synaptic/—Home of the Synaptic package manager

http://www.debian.org/doc/manuals/project-history/ch-detailed.en.html$$$�
http://www.nongnu.org/synaptic/

IN THIS CHAPTER

 ▶ What Is the Command Line?

 ▶ Accessing the Command Line

 ▶ User Accounts

 ▶ Reading Documentation

 ▶ Understanding the Linux File

System Hierarchy

 ▶ Navigating the Linux File

System

 ▶ Working with Permissions

 ▶ Working with Files

 ▶ Working as Root

 ▶ Commonly Used Commands

and Programs

 ▶ References

CHAPTER 10

Command-Line
Beginner’s Class

The Linux command line is one of the most powerful

tools available for computer system administration and

maintenance. The command line is also known as the ter-

minal, shell, console, command prompt, and command-line

interface (CLI). For the purposes of this chapter and the

next, these terms are interchangeable, although fine-grained

differences do exist between them.

Using the command line is an efficient way to perform

complex tasks accurately and much more easily than it

would seem at a first glance. Knowledge of the commands

available to you and also how to string them together

makes using Ubuntu easier for many tasks. Many of the

commands were created by the GNU Project as free software

analogs to previously existing proprietary UNIX commands.

You can learn more about the GNU Project at www.gnu.

org/gnu/thegnuproject.html.

This chapter covers some of the basic commands that you

need to know to be productive at the command line. You

find out how to get to the command line and discover

some of the commands used to navigate the file system and

perform basic operations with files, directories, and users.

This chapter does not give comprehensive coverage of all

the commands discussed, but it does give you enough to

get started. Chapter 11, “Command-Line Master Class,

Part 1,” advances the subject further and expands on some

of the commands from this chapter. The skills you discover

in this chapter help you get started using the command line

with confidence.

http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/gnu/thegnuproject.html

106 CHAPTER 10 Command-Line Beginner’s Class

What Is the Command Line?
If you have spent any amount of time with experienced Linux users, you have heard them

mention the command line. Some, especially those who began their journey in the Linux

world using distributions that make it easy to complete many tasks using a graphical user

interface (GUI), such as Ubuntu, might speak with trepidation about the mysteries of the

text interface. Others either praise its power or comment about doing something via the

command line as if it were the most natural and obvious way to complete a task.

Embracing either extreme is not necessary. You might develop an affinity for the com-

mand line when performing some tasks and might prefer using the GUI for others. This

is where most users end up today. Some might say that you will never need to access the

command line because Ubuntu offers a slew of graphical tools that enable you to config-

ure most things on your system. Although the premise might be true most of the time,

some good reasons exist to acquire a fundamental level of comfort with the command line

that you should consider before embracing that view.

Sometimes things go wrong, and you might not have the luxury of a graphical interface to

work with. In such situations, a fundamental understanding of the command line and its

uses can be a real lifesaver. Also, some tasks end up being far easier and faster to accom-

plish from the command line. More importantly, though, you will be able to make your

way around a command-line-based system, which you will encounter if you ever work

with a Linux server because most Linux servers have no GUI, and all administration is

done using a command-line interface.

NOTE

Don’t be tempted to skip over this chapter as irrelevant. You should take the time to work

through the chapter and ensure that you are comfortable with the command line before

moving on. Doing so will benefit you greatly for years to come.

Initially, you might be tempted to think of the command line as the product of some sort

of black and arcane art; in some ways, it can appear to be extremely difficult and compli-

cated to use. However, with a little perseverance, by the end of this chapter, you will start

to feel comfortable using the command line, and you’ll be ready to move on to Chapter 11,

“Command-Line Master Class, Part 1,” and Chapter 12, “Command-Line Master Class,

Part 2.”

This chapter introduces you to commands that enable you to perform the following:

 ▶ Routine tasks—Logging in and out, changing passwords, and listing and navigat-

ing file directories

 ▶ Basic file management—Creating files and folders, copying or moving them

around the file system, and renaming and deleting them

 ▶ Basic system management—Shutting down or rebooting, changing file permis-

sions, and reading man pages, which are entries for commands included as files

already on your computer in a standardized manual format

107

1
0

Accessing the Command Line

The information in this chapter is valuable for individual users and system administrators

who are new to Linux and are learning to use the command line for the first time.

TIP

If you have used a computer for many years, you have probably come into contact with

MS-DOS, in which case being presented with a black screen will fill you with a sense of

nostalgia. Don’t get too comfy; the command line in Linux is different from (and actually

more powerful than) its distant MS-DOS cousin. Even cooler is that whereas MS-DOS skills

are transferable only to other MS-DOS environments, the skills you learn at the Linux com-

mand line can be transferred easily to other UNIX and UNIX-like operating systems, such

as Solaris, OpenBSD, FreeBSD, and even macOS, which provides access to the terminal.

Accessing the Command Line
You can quickly access the terminal by using the desktop menu option Terminal. This

opens gnome-terminal, from which you can access the terminal while remaining in a GUI

environment. This time, the terminal appears as white text on an aubergine (dark purple)

background. This is the most common method for accessing the terminal for most desk-

top users.

NOTE

Finding and running programs, such as Terminal, from a GUI is covered in Chapter 4,

“Ubuntu Desktop Options,” as is logging in to a Linux system using a graphical interface.

This chapter focuses on text-based logins and the use of Linux.

Text-Based Console Login

If you access the terminal as described previously, by opening the Terminal app, you will

not need to log in because you are already logged in to your account.

If you are accessing the terminal remotely, such as from another computer using SSH (see

Chapter 19, “Remote Access with SSH and VNC”) you will start with a prompt similar to

this one:

login:

Your prompt might vary, depending on the version of Ubuntu you are using and the

method you are using to connect. In any event, at this prompt, type in your username

and press Enter. When you are prompted for your password, type it in and press Enter.

NOTE

Your password is not echoed back to you, which is a good idea. Why is it a good idea?

Security. This prevents any shoulder surfers from seeing what you’ve typed or the length

of the password.

108 CHAPTER 10 Command-Line Beginner’s Class

Pressing the Enter key drops you to a shell prompt, signified by the dollar sign:

matthew@seymour:~$

This particular prompt says that the user is logged in as the user matthew on the system

seymour and is currently in the home directory; Linux uses the tilde (~) as shorthand for

the home directory, which would usually be something like /home/matthew.

Note that throughout this book we use the default shell for the command line, but other

shells exist. The default and other shells are discussed in more detail in Chapter 14, “Auto-

mating Tasks and Shell Scripting.”

TIP

Navigating through the system at the command line can get confusing at times, especially

when a directory name occurs in several places. Fortunately, Linux includes a simple com-

mand that tells you exactly where you are in the file system. It’s easy to remember that

this command is pwd because it is an abbreviation of print working directory. You simply

type pwd at any point to get the full path of your location. For example, typing pwd after

following the preceding instructions shows /home/yourusername, meaning that you are

currently in your home directory.

Using the pwd command can save you a lot of frustration when you have changed directory

half a dozen times and have lost track of where you are.

Logging Out

Use the exit or logout command or press Ctrl+D to exit your session. You are then

returned to the login prompt. If you use virtual consoles, remember to exit each console

before leaving your PC. (Otherwise, someone could easily sit down and use your account.)

Logging In and Out from a Remote Computer

You can happily log in on your computer, an act known as a local login. In addition, you

can log in to your computer via a network connection from a remote computer. Linux-

based operating systems provide a number of remote access commands you can use to log

in to other computers on your local area network (LAN), wide area network (WAN), or the

Internet. Note that you must have an account on the remote computer, and the remote

computer must be configured to support remote logins; otherwise, you won’t be able to

log in.

NOTE

See Chapter 18, “Networking,” to see how to set up network interfaces with Linux to sup-

port remote network logins and Chapter 19 to see how to start remote access services

(such as sshd).

The best and most secure way to log in to a remote Linux computer is to use ssh, the

Secure Shell client. Your login and session are then encrypted while you work on the

109

1
0

User Accounts

remote computer. The ssh client features many command-line options but can be simply

used with the name or IP address of the remote computer, as follows:

matthew@seymour:~$ ssh 192.168.0.41

The authenticity of host '192.168.0.41 (192.168.0.41)' can't be established.

RSA key fingerprint is e1:db:6c:da:3f:fc:56:1b:52:f9:94:e0:d1:1d:31:50.

Are you sure you want to continue connecting (yes/no)?

yes

The first time you connect with a remote computer using ssh, Linux displays the remote

computer’s encrypted identity key and asks you to verify the connection. After you type

yes and press Enter, you are warned that the remote computer’s identity (key) has been

entered in a file named known_hosts under the .ssh directory in your home directory. You

are also prompted to enter your password:

Warning: Permanently added '192.168.0.41' (RSA) \

to the list of known hosts.

matthew@192.168.0.41's password:

matthew@babbage~$

After entering your password, you can work on the remote computer, which you can con-

firm by noticing the changed prompt that now uses the name of the remote computer

on which you are working. Again, because you are using ssh, everything you enter on the

keyboard in communication with the remote computer is encrypted. When you log out,

you return to the shell on your computer:

matthew@babbage~$ logout

matthew@seymour:~$

User Accounts
A good place to start this section is with the concept of user-based security. For the most

part, only two types of people access the system as users. (Although there are other

accounts that run programs and processes, here we are talking about accounts that rep-

resent human beings rather than something like an account created for a web server pro-

cess.) Most people have a regular user account. These users can change anything that is

specific to their accounts, such as the wallpaper on the desktop, their personal preferences,

and the configuration for a program when it is run by them using their account. Note that

the emphasis is on anything that is specific to their accounts. This type of user cannot make

system-wide changes that could affect other users.

To make system-wide changes, you need to use super user privileges, such as can be done

using the account you created when you started Ubuntu for the first time (see Chapter 1,

“Installing Ubuntu and Post-Installation Configuration”). With super user privileges you

have access to the entire system and can carry out any task—even destructive tasks. To

help prevent this from happening, this user does not run with these powers enabled at all

times but instead spends most of the time as a regular user.

110 CHAPTER 10 Command-Line Beginner’s Class

To use super user privileges from the command line, you need to preface the command

you want to execute with another command, sudo, followed by a space and the command

you want to run. As a mnemonic device, some think of this as “super user do.” When you

press Enter (after typing the remaining command), you are prompted for your password,

which you should type, and then press the Enter key. As usual on any UNIX-based system,

the password does not appear on the screen while you are typing it as a security measure,

in case someone is watching over your shoulder. Ubuntu then carries out the command

but with super user privileges.

An example of the destructive nature of working as the super user is the age-old example

sudo rm -rf /, which would erase everything on your hard drive if it did not require

appending --no-preserve-root to work—which was added specifically to prevent people

from accidentally doing this. If you enter a command using sudo as a regular user who

does not have an account with super user privileges, an error message appears, and noth-

ing happens because the command will not run. We recommend that you don’t try this

particular command as a test, though. If you enter this command using an account with

super user privileges, you will soon find yourself starting over with a fresh installation and

hoping you have a current backup of all your data. You need to be especially careful when

using your super user privileges; otherwise, you might do irreparable damage to your

system.

However, the ability to work as the super user is fundamental to a healthy Linux system

and should not be feared but rather respected, even while used only with focused atten-

tion. Without this ability, you could not install new software, edit system configura-

tion files, or do a large number of important administration tasks. By the way, you have

already been performing operations with super user privileges from the GUI if you have

ever been asked to enter your password to complete a specific task, such as installing soft-

ware updates. The difference is that most graphical interfaces limit the options that users

have and make it a little more difficult to do some of the big, disruptive tasks, even the

ones that are incredibly useful.

Ubuntu works slightly differently from many other Linux distributions. If you study some

other Linux distros, especially older or more traditional ones, you will hear about a spe-

cific user account called root, which is a super user account. In those distros, instead of

typing sudo before a command while using a regular user account with super user privi-

leges, you log in to the root account and issue the command without entering a password

(at least by default; in almost all cases, sudo can be installed and configured in these dis-

tros). In those cases, you can tell when you are using the root account at the command

line because you see a pound sign (#) in the command-line prompt in place of the dollar

sign ($). For example, you see matthew@seymour:~# instead of the usual matthew@seymour:~$

prompt.

In Ubuntu, the root account is disabled by default because forcing regular users with

super user privileges to type a specific command every time they want to execute a com-

mand as a super user should have the benefit of making them carefully consider what

they are doing when they use that power. It is easy to forget to log out of a root account,

111

1
0

Reading Documentation

and entering a powerful command while logged in to root can be catastrophic. However,

if you are more experienced and comfortable with the more traditional method of using

super user privileges and want to enable the root account, you can use the command sudo

passwd. When prompted, enter your user password to confirm that your user account has

super user privileges. You are then asked for a new UNIX password, which will be the pass-

word for the root account, so make sure to remember it. You are also prompted to repeat

the password, in case you’ve made any mistakes. After you’ve typed it in and pressed

Enter, the root account is active. You find out how to switch to root later on.

An alternative way of getting a root prompt, without having to enable the root account,

is to issue the command sudo -i. After entering your password, you find yourself at a

root prompt (#). Do what you need to do, and when you are finished, type exit and press

Enter to return to your usual prompt. You can learn more about sudo and root from an

Ubuntu perspective at https://help.ubuntu.com/community/RootSudo.

Reading Documentation
Although you learn the basics of using Ubuntu in this book, you need time and practice

to master and troubleshoot more complex aspects of the Linux operating system and your

distribution. As with any other operating system, you can expect to encounter some prob-

lems or perplexing questions as you continue to work with Linux. The first place to turn

for help with these issues is the documentation included with your system; if you cannot

find the information you need there, check Ubuntu’s website.

Using Man Pages

To learn more about a command or program, use the man command followed by the name

of the command. Man pages are stored in places like /usr/share/man and /usr/local/

share/man, but you don’t need to know that. To read a man page, such as the one for the

rm command, use the man command like this:

matthew@seymour:~$ man rm

After you press Enter, the less command (a Linux command known as a pager) displays

the man page. The less command is a text browser you can use to scroll forward and

backward (even sideways) through the document to learn more about the command. Type

the letter h to get help, use the forward slash (/) to enter a search string, or press q to quit.

No one can remember everything. Even the best and most experienced systems adminis-

trators use man pages regularly. Looking up complicated information is easy because this

frees you from having to recall it all, enabling you to focus on your task rather than pun-

ishing you for not remembering syntax.

NOTE

Nearly every one of the hundreds of commands included with Linux has a man page; how-

ever, some do not have man pages or have only simple ones. You can use the info com-

mand to read more detailed information about some commands or as a replacement for

https://help.ubuntu.com/community/RootSudo

112 CHAPTER 10 Command-Line Beginner’s Class

others. For example, to learn even more about info (which has a rather extensive manual

page), use the info command like this:

matthew@seymour:~$ info info

Use the arrow keys to navigate through the document and press q to quit reading.

Using apropros

Linux, like UNIX, is a self-documenting system, with man pages accessible through the

man command. Linux offers many other helpful commands for accessing its documenta-

tion. You can use the apropos command (for example, with a keyword such as partition)

to find commands related to partitioning, like this:

matthew@seymour:~$ apropos partition

addpart (8) - Simple wrapper around the "add partition" ioctl

all-swaps (7) - Event signaling that all swap partitions have been ac...

cfdisk (8) - Curses/slang based disk partition table manipulator fo...

delpart (8) - Simple wrapper around the "del partition" ioctl

fdisk (8) - Partition table manipulator for Linux

gparted (8) - Gnome partition editor for manipulating disk partitions.

Mpartition (1) - Partition an MSDOS hard disk

Partprobe (8) - Inform the OS of partition table changes

Partx (8) - Telling the kernel about presence and numbering of on-...

Pvcreate (8) - Initialize a disk or partition for use by LVM

Pvresize (8) - Resize a disk or partition in use by LVM2

Sfdisk (8) - Partition table manipulator for Linux

For the record, apropos is the equivalent of using man -k.

Using whereis

To find a command and its documentation, you can use the whereis command. For

example, if you are looking for the fdisk command, you can use this:

matthew@seymour:~$ whereis fdisk

fdisk: /sbin/fdisk /usr/share/man/man8/fdisk.8.gz

Understanding the Linux File System Hierarchy
Linux has inherited from UNIX a well-planned hierarchy for organizing things. It isn’t

perfect, but it is generally logical and mostly consistent, although distributions do tend

to make some modifications that force some thinking and adaptation when moving

between, say, Fedora, Slackware, and Ubuntu. Table 10.1 shows some of the top-level

directories that are part of a standard Linux distro.

113

1
0

Understanding the Linux File System Hierarchy

Table 10.1 Basic Linux Directories

Directory Description

/ The root directory

/bin Essential commands

/boot Boot loader files, Linux kernel

/dev Device files

/etc System configuration files

/home User home directories

/lib Shared libraries, kernel modules

/lost+found Recovered files (if found after a file system check)

/media Mount point for removable media, such as DVDs and floppy disks

/mnt Usual mount point for local, remote file systems, file systems that are

additional to the standard, such as a DVD-ROM or another HDD

/opt Add-on software packages

/proc Kernel information, process control

/root Super user (root) home

/sbin System commands (mostly root only)

/sys Real-time information on devices used by the kernel

/tmp Temporary files

/usr Software not essential for system operation, such as applications

/var Variable files relating to services that run on the system, but whose

contents are expected to change regularly during normal operation

Knowing these directories can help you find files when you need them. This knowledge

can even help you partition hard drives when you install new systems; you can choose to

put certain directories on their own distinct partition, which can be useful for things like

isolating directories from one another (for example, for server security you might put a

directory like /boot that doesn’t change often on its own partition and make it read-only

and unchangeable without specific operations being done by a super user during a main-

tenance cycle). Desktop users probably don’t need to think about such operations, but

knowing the directory tree is still quite useful when you want to find the configuration

file for a specific program and set some program options system-wide to affect all users.

NOTE

This is a lot to remember, especially at first. For reference, there is a man page for the

Linux file system hierarchy:

matthew@seymour:~$ man hierssn

This returns a detailed listing, with a description of each part.

More information about file systems is available in Chapter 21, “Performance Tuning.”

114 CHAPTER 10 Command-Line Beginner’s Class

Some of the important directories in Table 10.1, such as those containing user and root

commands or system configuration files, are discussed in the following sections. You may

use and edit files under these directories when you use Ubuntu.

Essential Commands in /bin and /sbin

The /bin directory contains essential commands used by the system for running and boot-

ing the system. In general, only the root operator uses the commands in the /sbin direc-

tory. The software in both locations is essential to the system; it makes the system what

it is, and changing or removing this software could cause instability or a complete system

failure. Often, the commands in these two directories are statically linked, which means

the commands do not depend on software libraries residing under the /lib or /usr/lib

directories. Nearly all the other applications on your system are dynamically linked, mean-

ing that they require the use of external software libraries (also known as shared libraries)

to run. This is a feature for both sets of software.

The commands in /bin and /sbin are kept stable to maintain foundational system integ-

rity and do not need to be updated often, if at all. For the security of the system, these

commands are kept in a separate location and isolated so that changes are more difficult

and so it will be more obvious to the system administrator if unauthorized changes are

attempted or made.

Application software changes more frequently, and applications often use the same func-

tions that other pieces of application software use. This was the genesis of shared libraries.

When a security update is needed for something that is used by more than one program,

it has to be updated in only one location, a specific software library. This enables easy and

quick security updates that will affect several pieces of non-system-essential software at the

same time by updating one shared library, contained in one file on the computer.

Configuration Files in /etc

System configuration files and directories reside under the /etc directory. Some major

software packages, such as Apache, OpenSSH, and xinetd, have their own subdirectories in

/etc, filled with configuration files. Others, like crontab or fstab, use one file. Examples

of system-related configuration files in /etc include the following:

 ▶ fstab—The file system table is a text file that lists each hard drive, CD-ROM, or

other storage device attached to your PC. The table indexes each device’s partition

information with a place in your Linux file system (directory layout) and lists other

options for each device when used with Linux (see Chapter 22, “Kernel and Module

Management”). Nearly all entries in fstab can be manipulated by root using the

mount command.

 ▶ modprobe.d/—This folder holds all the instructions to load kernel modules that are

required as part of system startup.

 ▶ passwd—This file holds the list of users for the system, including special-purpose

nonhuman users like syslog and CouchDB, along with user account information.

 ▶ sudoers—This file holds a list of users or user groups with super user access.

115

1
0

Understanding the Linux File System Hierarchy

User Directories: /home

The most important data on a non-server Linux system often resides in the user’s direc-

tories, found under the /home directory. User directories are named by default according

to account usernames, so on a computer where you have an account named matthew,

your home directory would generally be found in /home/matthew. This can be changed, as

described in Chapter 11.

Segregating the system and user data can be helpful in preventing data loss and making

the process of backing up easier. For example, having user data reside on a separate file

system or mounted from a remote computer on the network might help shield users from

data loss in the event of a system hardware failure. For a laptop or desktop computer at

home, you might place /home on a separate partition from the rest of the file system so

that if the operating system is upgraded, damaged, or reinstalled, /home would be more

likely to survive the event intact.

Using the Contents of the /proc Directory to Interact with or
Obtain Information from the Kernel

The contents of the /proc directory are created from memory and exist only while Linux

is running. This directory contains special files that either extract information from or

send information to the kernel. Many Linux utilities extract information from dynami-

cally created directories and files under this directory, also known as a virtual file system.

For example, the free command obtains its information from a file named meminfo:

matthew@seymour:~$ free

 total used free shared buffers cached

Mem: 4055680 2725684 1329996 0 188996 1551464

-/+ buffers/cache: 985224 3070456

Swap: 8787512 0 8787512

This information constantly changes as the system is used. You can get the same informa-

tion by using the cat command to see the contents of the meminfo file:

matthew@seymour:~$ cat /proc/meminfo

MemTotal: 4055680 KB

MemFree: 1329692 KB

Buffers: 189208 KB

Cached: 1551488 KB

SwapCached: 0 KB

Active: 1222172 KB

Inactive: 1192244 KB

Active(anon): 684092 KB

Inactive(anon): 16 KB

Active(file): 538080 KB

Inactive(file): 1192228 KB

Unevictable: 48 KB

116 CHAPTER 10 Command-Line Beginner’s Class

Mlocked: 48 KB

SwapTotal: 8787512 KB

SwapFree: 8787512 KB

Dirty: 136 KB

Writeback: 0 KB

AnonPages: 673760 KB

Mapped: 202308 KB

Shmem: 10396 KB

Slab: 129248 KB

SReclaimable: 107356 KB

SUnreclaim: 21892 KB

KernelStack: 2592 KB

PageTables: 30108 KB

NFS_Unstable: 0 KB

Bounce: 0 KB

WritebackTmp: 0 KB

CommitLimit: 10815352 KB

Committed_AS: 1553172 KB

VmallocTotal: 34359738367 KB

VmallocUsed: 342300 KB

VmallocChunk: 34359387644 KB

HardwareCorrupted: 0 KB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 KB

DirectMap4k: 38912 KB

DirectMap2M: 4153344 KB

The /proc directory can also be used to dynamically alter the behavior of a running Linux

kernel by “echoing” numerical values to specific files under the /proc/sys directory. For

example, to “turn on” kernel protection against one type of denial-of-service (DoS) attack

known as SYN flooding, use the echo command to send the number 1 to the following

/proc path:

matthew@seymour:~$ sudo echo 1 >/proc/sys/net/ipv4/tcp_syncookies

Other ways to use the /proc directory include the following:

 ▶ Getting CPU information, such as the family, type, and speed from /proc/cpuinfo.

 ▶ Viewing important networking information under /proc/net, such as active inter-

faces information in /proc/net/dev, routing information in /proc/net/route, and

network statistics in /proc/net/netstat.

117

1
0

Navigating the Linux File System

▶ Retrieving file system information.

▶ Reporting media mount point information via USB; for example, the Linux ker-

nel reports what device to use to access files (such as /dev/sda) if a USB camera or

hard drive is detected on the system. You can use the dmesg command to see this

information.

▶ Getting the kernel version in /proc/version, performance information such as

uptime in /proc/uptime, or other statistics such as CPU load, swap file usage, and

processes in /proc/stat.

Working with Shared Data in the /usr Directory

The /usr directory contains software applications, libraries, and other types of shared data

for use by anyone on the system. Many Linux system administrators give /usr its own

partition. A number of subdirectories under /usr contain manual pages (/usr/share/man),

software package shared files (/usr/share/name_of_package, such as /usr/share/emacs),

additional application or software package documentation (/usr/share/doc), and an

entire subdirectory tree of locally built and installed software, /usr/local.

Temporary File Storage in the /tmp Directory

As its name implies, the /tmp directory is used for temporary file storage. As you use

Linux, various programs create files in this directory. Files in this directory are cleared

daily by a cron job and every time the system is booted.

Accessing Variable Data Files in the /var Directory

The /var directory contains subdirectories used by various system services for spooling

and logging. Many of these variable data files, such as print spooler queues, are temporary,

whereas others, such as system and kernel logs, are renamed and rotated in use. Incoming

email is usually directed to files under /var/spool/mail.

NOTE

Linux also uses /var for other important system services, such as the Apache web

server’s initial home page directory for the system, /var/www/html. (See Chapter 25,

“Apache Web Server Management,” for more information about using Apache.)

Navigating the Linux File System
In the Linux file system, as with its predecessor UNIX, everything is a file: data files,

binary files, executable programs, and even input and output devices. These files are

placed in a series of directories that act like file folders. A directory is nothing more than a

special type of file that contains a list of other files/directories. These files and directories

118 CHAPTER 10 Command-Line Beginner’s Class

are used to create a hierarchical structure that enables logical placement of specific types

of files. Later this chapter discusses the standard hierarchy of the Linux file system. First,

you learn how to navigate and interact with the file system.

NOTE

A directory with contents is called a parent, and its contents are called children, as in

“/home/matthew/Documents is a child directory of /home/matthew, its parent.”

Listing the Contents of a Directory with ls

The ls command lists the contents of the current directory. It is commonly used by itself,

but a number of options (also known as switches) are available for ls and give you more

information. If you have just logged in as described earlier, the ls command lists the files

and directories in your home directory:

matthew@seymour:~$ ls

Documents Music file.txt Pictures Music

NOTE

All directory listings in this chapter are abbreviated to save space.

By itself, the ls command shows just a list of names. Some are files, some are directories.

This is useful if you know what you are looking for but cannot remember the exact name.

However, using ls in this matter has some limitations. First, it does not show hidden files.

Hidden files use filenames that start with a period (.) as the first character. They are often

used for configuration of specific programs and are not accessed frequently. For this rea-

son, they are not included in a basic directory listing. You can see all the hidden files by

adding a switch to the command, like this:

matthew@seymour:~$ ls -a

. .bash_logout Documents Music

.. .bashrc file.txt Pictures

.bash_history .config .local .profile

There is still more information available about each item in a directory. To include details

such as the file/directory permissions, owner and group (discussed later in this chapter),

size, and the date and time it was last modified, enter the following:

matthew@seymour:~$ ls -al

total 608

drwxr-xr-x 38 matthew matthew 4096 2015-06-04 08:20 .

drwxr-xr-x 3 root root 4096 2015-05-16 16:48 ..

-rw------- 1 matthew matthew 421 2015-06-04 10:27 .bash_history

119

1
0

Navigating the Linux File System

-rw-r--r-- 1 matthew matthew 220 2015-05-16 16:48 .bash_logout

-rw-r--r-- 1 matthew matthew 3353 2015-05-16 16:48 .bashrc

drwxr-xr-x 13 matthew matthew 4096 2015-05-21 10:42 .config

drwxr-xr-x 2 matthew matthew 4096 2015-05-16 17:07 Documents

-rw-r--r-- 1 matthew matthew 335 2015-05-16 16:48 file.txt

drwxr-xr-x 3 matthew matthew 4096 2015-05-16 17:07 .local

drwxr-xr-x 2 matthew matthew 4096 2015-05-16 17:07 Music

drwxr-xr-x 3 matthew matthew 4096 2015-05-16 18:07 Pictures

-rw-r--r-- 1 matthew matthew 675 2015-05-16 16:48 .profile

The listing (abbreviated here) is now given with one item per line but with multiple col-

umns. The listing starts with the number of items in the directory. (Both files and subdi-

rectories are included; remember that the listing here is abbreviated.) Then, the details are

as shown in Figure 10.1.

FIGURE 10.1 Decoding the output of a detailed directory listing.

These details are discussed more completely later in the chapter, in the “Working with

Permissions” section.

Another useful switch is this:

matthew@seymour:~$ ls -R

This command scans and lists all the contents of the subdirectories of the current direc-

tory. This is likely to be a lot of information, so you might want to redirect the output to

a text file so that you can browse through it at your leisure by using the following:

matthew@seymour:~$ ls -laR > listing.txt

TIP

The previous command sends the output of ls -laR to a file called listing.txt and

demonstrates part of the power of the Linux command line. At the command line, you

can use files as inputs to commands, or you can generate files as outputs, as shown.

For more information about redirects and combining commands, see Chapter 14. In the

meantime, note that you can read the contents of the text file by using the command

less listing.txt, which lets you read the file bit by bit, using the arrow keys to

navigate in the file (or Enter to move to the next line), the spacebar to move to the next

page, and q to exit when done.

120 CHAPTER 10 Command-Line Beginner’s Class

Changing Directories with cd

Use the cd command to move within the file system from one directory to another. It

might help you remember this command to think of it meaning change directory. The most

basic usage of cd is as follows:

matthew@seymour:~$ cd somedir

This command looks in the current directory for the somedir subdirectory and then moves

you into it. You can also specify an exact location for a directory, like this:

matthew@seymour:~$ cd /home/matthew/stuff/somedir

You can also use the cd command with several shortcuts. For example, to quickly move up

to the parent directory, the one above the one you are currently in, use the cd command

like this:

matthew@seymour:~$ cd ..

To return to your home directory from anywhere in the Linux file system, use the cd com-

mand like this:

matthew@seymour:~$ cd

You can also use the $HOME shell environment variable to accomplish the same thing.

Environment variables are discussed in greater detail in Chapter 12. To return to your

home directory, type this command and press Enter:

matthew@seymour:~$ cd $HOME

You can accomplish the same thing by using the tilde (~), like this:

matthew@seymour:~$ cd ~

Finding Your Current Directory with pwd

Use pwd to determine you where you are within the file system:

matthew@seymour:~$ pwd

Working with Permissions
Under Linux (and UNIX), everything in the file system, including directories and devices,

is a file. And every file on your system has an accompanying set of permissions based on

ownership. These permissions provide data security by giving specific permission settings

to every single item denoting who may read, write, or execute the file. These permissions

are set individually for the file’s owner, for members of the group the file belongs to, and

for all others on the system.

121

1
0

Working with Permissions

You can examine the default permissions for a file you create by using the umask com-

mand, which lists default permissions using the number system explained next, or by

using the touch command and then the ls command’s long-format listing, like this:

matthew@seymour:~$ touch file

matthew@seymour:~$ ls -l file

-rw-r--r-- 1 matthew matthew 0 2015-06-30 13:06 file

In this example, the touch command quickly creates a file. The ls command then reports

on the file, displaying the following (from left to right):

 ▶ The type of file created—Common indicators of the type of file are in the lead-

ing letter in the output. A blank (which is represented by a dash, as in the preceding

example) designates a plain file, d designates a directory, c designates a character

device (such as /dev/ttyS0), l indicates a symbolic link, and b is used for a block

device (such as /dev/sda).

 ▶ Permissions—Read, write, and execute permissions may be assigned for the owner,

group, and all others on the system. (You learn more about these permissions later

in this section.) Permissions are traditionally called the mode, which is where the

chmod command we will discuss later comes from.

 ▶ Number of hard links to the file—The number 1 designates that there is only

one file, and any other number indicates that there might be one or more hard-

linked files. Links are created with the ln command. A hard-linked file is a pointer

to the original file, which might be located elsewhere on the system. Only the root

operator can create a hard link of a directory.

 ▶ The owner—This is the account that owns the file; it is originally the file creator,

but you can change this designation by using the chown command.

 ▶ The group—This is the group of users allowed to access the file; it is originally the

file creator’s main group, but you can change this designation by using the chgrp

command.

 ▶ File size and creation/modification date—The last two elements indicate the

size of the file in bytes and the date the file was created or last modified.

Assigning Permissions

Under Linux, permissions are grouped by owner, group, and others, with read, write, and

execute permission assigned to each, as follows:

Owner Group Others

rwx rwx rxw

Permissions can be indicated by mnemonic or octal characters. Mnemonic characters are

listed here:

 ▶ r indicates permission for an owner, a member of the owner’s group, or others to

open and read the file.

122 CHAPTER 10 Command-Line Beginner’s Class

 ▶ w indicates permission for an owner, a member of the owner’s group, or others to

open and write to the file.

 ▶ x indicates permission for an owner, a member of the owner’s group, or others to

execute the file (or read a directory).

In the previous example for the file named file, the owner, matthew, has read and write

permission. Any member of the group named matthew may only read the file. All other

users may only read the file. Also note that default permissions for files created by the root

operator (while using sudo or a root account) will differ because of umask settings assigned

by the shell.

Many users prefer to use numeric codes, based on octal (base 8) values, to represent per-

missions. Here’s what these values mean:

 ▶ 4 indicates read permission.

 ▶ 2 indicates write permission.

 ▶ 1 indicates execute permission.

In octal notation, the previous example file has a permission setting of 644 (read + write

or 4 + 2, read-only or 4, read-only or 4). Although you can use either form of permissions

notation, octal is easy to use quickly when you visualize and understand how permissions

are numbered.

NOTE

In Linux, you can create groups to assign a number of users access to common directo-

ries and files, based on permissions. You might assign everyone in accounting to a group

named accounting and allow that group access to accounts payable files while disallow-

ing access by other departments. Defined groups are maintained by the root operator, but

you can use the newgrp command to temporarily join other groups to access files (as long

as the root operator has added you to the other groups). You can also allow or deny other

groups’ access to your files by modifying the group permissions of your files.

Directory Permissions

Directories are also files under Linux. For example, again use the ls command to show

permissions, like this:

matthew@seymour:~$ mkdir directory

matthew@seymour:~$ ls -ld directory

drwxr-xr-x 2 matthew matthew 4096 2015-06-30 13:23 directory

In this example, the mkdir command is used to create a directory. The ls command, with

its -ld option, is used to show the permissions and other information about the directory

(not its contents). Here you can see that the directory has permission values of 755 (read +

write + execute or 4 + 2 + 1, read + execute or 4 + 1, and read + execute or 4 + 1).

123

1
0

Working with Permissions

This shows that the owner can read and write to the directory and, because of execute per-

mission, also list the directory’s contents. Group members and all other users can list only

the directory contents. Note that directories require execute permission for anyone to be

able to view their contents.

You should also notice that the ls command’s output shows a leading d in the permis-

sions field. This letter specifies that this file is a directory; normal files have a blank field

in its place. Other files, such as those specifying a block or character device, have a differ-

ent letter.

For example, if you examine the device file for a Linux serial port, you see the following:

matthew@seymour:~$ ls -l /dev/ttyS0

crw-rw---- 1 root dialout 4, 64 2015-06-30 08:13 /dev/ttyS0

Here, /dev/ttyS0 is a character device (such as a serial communications port and desig-

nated by a c) owned by root and available to anyone in the dialout group. The device has

permissions of 660 (read + write, read + write, no permission).

On the other hand, if you examine the device file for an IDE hard drive, you see this:

matthew@seymour:~$ ls -l /dev/sda

brw-rw-- -- 1 root disk 8, 0 2015-06-30 08:13 /dev/sda

In this example, b designates a block device (a device that transfers and caches data in

blocks) with similar permissions. Other device entries you will run across on your Linux

system include symbolic links, designated by s.

Altering File Permissions with chmod

You can use the chmod command to alter a file’s permissions. This command uses vari-

ous forms of command syntax, including octal or a mnemonic form (such as u, g, o, or a

and rwx, and so on) to specify a desired change. You can use the chmod command to add,

remove, or modify file or directory permissions to protect, hide, or open up access to a file

by other users (except for the root account or a user with super user permission and using

sudo, either of which can access any file or directory on a Linux system).

The mnemonic forms of chmod’s options are (when used with a plus character, +, to add,

or a minus sign, -, to remove):

 ▶ u—Adds or removes user (owner) read, write, or execute permission

 ▶ g—Adds or removes group read, write, or execute permission

 ▶ o—Adds or removes read, write, or execute permission for others not in a file’s group

 ▶ a—Adds or removes read, write, or execute permission for all users

 ▶ r—Adds or removes read permission

 ▶ w—Adds or removes write permission

 ▶ x—Adds or removes execution permission

124 CHAPTER 10 Command-Line Beginner’s Class

For example, if you create a file, such as a readme.txt, the file has the following default

permissions (set by the umask setting in /etc/bashrc, covered in the next section):

-rw-r--r-- 1 matthew matthew 0 2015-06-30 13:33 readme.txt

As you can see, you can read and write the file. Anyone else can only read the file (and

only if it is outside your home directory, which will have read, write, and execute per-

mission set only for you, the owner). You can remove all write permission for anyone by

using chmod, the minus sign (-), and aw, as follows:

matthew@seymour:~$ chmod a-w readme.txt

matthew@seymour:~$ ls -l readme.txt

-r--r--r-- 1 matthew matthew 0 2015-06-30 13:33 readme.txt

Now, no one can write to the file (except you, if the file is in your /home or /tmp directory

because of directory permissions). To restore read and write permission for only you as the

owner, use the plus sign (+) and the u and rw options, like so:

matthew@seymour:~$ chmod u+rw readme.txt

matthew@seymour:~$ ls -l readme.txt

-rw-r--r-- 1 matthew matthew 0 2015-06-30 13:33 readme.txt

You can also use the octal form of the chmod command (for example, to modify a file’s

permissions so that only you, the owner, can read and write a file). Use the chmod com-

mand and a file permission of 600, like this:

matthew@seymour:~$ chmod 600 readme.txt

matthew@seymour:~$ ls -l readme.txt

-rw------- 1 matthew matthew 0 2015-06-30 13:33 readme.txt

If you take away execution permission for a directory, files will be hidden inside and may

not be listed or accessed by anyone else (except the root operator, of course, who has

access to any file on your system). By using various combinations of permission settings,

you can quickly and easily set up a more secure environment, even as a normal user in

your /home directory.

File Permissions with umask

When you create a file, it is created with a default set of permissions, 666. Directories

have a default set of permissions, 777. You can view and modify the default permissions

for either with umask, which works like a filter. When a file is created by a user account,

whether that account is owned by a human like matthew or a process like init, the file

will be created using specific permissions.

The numbers we used earlier when discussing file permissions are also used with umask,

but with an interesting change. Now, the numbers defined in umask are subtracted from

the ultimate file permissions. So, if you wanted all new directories to be created with a

default permission of 777, you would type this:

matthew@seymour:~$ umask 000

125

1
0

Working with Permissions

Of course, you would never want to have all your directories or files accessible by default

because that would be incredibly insecure and unsafe. The default umask is 022, which

means that files are created by default with 644 permissions, except in the /home directory

(for all user directories under it) where the umask is 002 and files are created with 775.

Note: The umask is a file system–wide variable for each user session, so you cannot have

a different setting for specific directories, such as one for /home and another for /home/

seymour.

To find the current umask setting, use this:

matthew@seymour:~$ umask

This may list four digits instead of three. If so, don’t be confused. The additional digit is

the first one; it is explained later in this chapter, in the section “Understanding Set User

ID, Set Group ID, and Sticky Bit Permissions.”

To change the umask setting—for example, if you wanted the default for files to be 640—

use the following:

matthew@seymour:~$ umask 037

File Permissions with chgrp

You can use the chgrp command to change the group to which a file belongs:

matthew@seymour:~$ chgrp sudo filename

Changing File Permissions with chown

You can use the chown command to change the owner of a file:

matthew@seymour:~$ chown matthew filename

You can also use the chown command to change the group of a file at the same time:

matthew@seymour:~$ chown matthew:sudo filename

Understanding Set User ID, Set Group ID, and Sticky Bit Permissions

The first two of the three listed types of permission are “set user ID,” known as suid, and

“set group ID,” or sgid. These settings, when used in a program, enable any user running

that program to have program owner or group owner permissions for that program. These

settings enable the program to be run effectively by anyone, without requiring that each

user’s permissions be altered to include specific permissions for that program.

One commonly used program with suid permissions is the passwd command:

matthew@seymour:~$ ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 42856 2015-01-26 10:09 /usr/bin/passwd

126 CHAPTER 10 Command-Line Beginner’s Class

This setting allows normal users to execute the command (as root) to make changes to a

root-only-accessible file /etc/passwd.

By default, suid and sgid are turned off on files. To set them, add an extra digit to the

beginning of a number in a chmod command. Suid uses 4. Sgid uses 2. You can set both at

the same time by using 6 (4 + 2). For example, for a file owned by root with current 711

permissions allowing anyone to run it, you can make it run as root with the following:

matthew@seymour:~$ chmod 4711 filename

NOTE

Other files that might have suid or guid permissions include at, rcp, rlogin, rsh, chage,

chsh, ssh, crontab, sudo, sendmail, ping, mount, and several UNIX-to-UNIX Copy (UUCP)

utilities. Many programs (such as games) might also have this type of permission to

access a sound device.

Sgid has an additional function when set on directories; in this case, new directory con-

tents are automatically assigned the group owner on the directory.

Files or programs that have suid or guid permissions can sometimes present security holes

because they bypass normal permissions. This problem is compounded if the permission

extends to an executable binary (a command) with an inherent security flaw because it

could lead to any system user or intruder gaining root access. In past exploits, this typi-

cally happened when a user fed a vulnerable command with unexpected input (such as

a long pathname or option); the command would fail, and the user would be presented

with a root prompt. Although Linux developers are constantly on the lookout for poor

programming practices, new exploits are found all the time and can crop up unexpect-

edly, especially in newer software packages that haven’t had the benefit of peer developer

review.

Savvy Linux system administrators keep the number of suid or guid files present on a sys-

tem to a minimum. The find command can be used to display all such files on a system:

matthew@seymour:~$ sudo find / -type f -perm /6000 -exec ls -l {} \;

NOTE

The find command is quite helpful and can be used for many purposes, such as before

or during backup operations.

Note that the programs do not necessarily have to be removed from your system. If

your users really do not need to use the program, you can remove a program’s execute

permission for anyone. As the root operator, you have to decide whether your users are

allowed, for example, to mount and unmount CD-ROMs or other media on your system.

Although Linux-based operating systems can be set up to accommodate ease of use and

convenience, allowing programs such as mount to be suid might not be the best security

127

1
0

Working with Permissions

policy. Other candidates for suid permission change could include the chsh, at, or chage

commands.

An additional setting called the sticky bit is available using this same additional first digit.

A sticky bit limits who may rename or delete files within a directory. When it is set, files

in that directory may be unlinked or renamed only by a super user, the directory owner,

or the file owner. Set the sticky bit to on by using a 1, like this for a directory with 755

permissions:

matthew@seymour:~$ chmod 1755 directoryname

You can set the sticky bit concurrently with suid and sgid, like this (4 + 2 + 1):

matthew@seymour:~$ chmod 7755 directoryname

Setting Permissions with Access Control Lists

POSIX is a family of standards created to maintain stability and consistency across oper-

ating systems for UNIX and UNIX-like systems, such as Linux. One important feature of

POSIX is the access control list (ACL; often pronounced “AK-el”). ACLs permit even more

fine-grained control over access permissions.

By default, all files have an ACL. To view the ACL for a file, use this:

matthew@seymour:~$ getfacl filename

Typical getfacl output includes multiple lines, like this for filename.txt:

file: filename.txt

owner: matthew

group: matthew

user::rw-

group::rw-

other::r--

The information listed here is standard and clear, based on what you already know. The

real power of ACLs is that you can add to them. You are not restricted to the standard set

of user, group, other. You can add multiple users and groups with permissions specific to

each.

To add the user sandra with read, write, and execute permissions to the ACL for a file

named secrets.txt, use the following:

matthew@seymour:~$ setfacl -m u:sandra:rwx secrets.txt

To remove and reset sandra’s permissions on the file to the file’s defaults, use the

following:

matthew@seymour:~$ setfacl -x u:sandra: secrets.txt

128 CHAPTER 10 Command-Line Beginner’s Class

From these two examples, you can see that -m is for modify and -r is for remove.

ACLs permit similar actions with groups and others as with a user. Instead of the u: before

the name, use a g: for groups and an o: for others, like this:

matthew@seymour:~$ setfacl -m g:groupname:rwx secrets.txt

matthew@seymour:~$ setfacl -m o:r secrets.txt

Notice that with others, there is no username or group name to include in the commands.

A useful feature is masking, which allows you to list only the permissions that are avail-

able, as in this example:

matthew@seymour:~$ setfacl -m m:rx secrets.txt

This limits everyone, regardless of any other settings. So, in this case, a group may have

rwx settings on the file, but the mask here says to permit only rx, so rx will be the only

settings that are available.

As an exercise, see if you can figure out the meaning of this output from getfacl for a file

named coffeecup.conf:

file: coffeecup.conf

owner: matthew

group: yirgacheffe

user::rw-

group::rw-

other::r--

group:qa:rwx

group:uat:rwx

mask::rwx

Working with Files
Managing files in your home directory involves using one or more easily remembered

commands.

Creating a File with touch

If you are the user matthew, to create an empty file called myfile within your current

directory, use the following command:

matthew@seymour:~$ touch myfile

To edit this file, you must use a text editor. (Several text editors are discussed in

Chapter 14. However, it is sometimes useful to create an empty file as doing so also

creates an access record because of the time and date information that is connected to

the file. You can also use touch to update this information, called a timestamp, without

otherwise accessing or modifying a file.

129

1
0

Working with Files

You can create a file in a different location by changing what is after touch. To create a

new file in /home/matthew/randomdirectory, if you are already in your home directory,

you can use the following:

matthew@seymour:~$ touch randomdirectory/newfile

Or from anywhere using an absolute path, you can use this:

matthew@seymour:~$ touch /home/matthew/randomdirectory/newfile

Or from anywhere using a path shortcut, you can use the following command:

matthew@seymour:~$ touch ~/randomdirectory/newfile

Creating a Directory with mkdir

To create an empty directory called newdirectory within your current directory, use this

command:

matthew@seymour:~$ mkdir newdirectory

If you are the user matthew, you can create a directory in a different location by changing

what is after mkdir. To create a new directory in /home/matthew/music, if you are already

in your /home directory, you can use the following:

matthew@seymour:~$ mkdir music/newdirectory

Or from anywhere using an absolute path, you can use this:

matthew@seymour:~$ mkdir /home/matthew/music/newdirectory

Or from anywhere using a path shortcut, you can use the following command:

matthew@seymour:~$ mkdir ~/music/newdirectory

The -p option is valuable. It enables you to create a directory and its parent directories

at the same time, if they do not already exist. This can be a real time saver. If the parent

directories exist, the command works normally. For example, suppose you want to make a

new directory with two layers of subdirectories. In this example, music and newdirectory

already exist, but subdir1 and subdir2 are to be created:

matthew@seymour:~$ mkdir -p ~/music/newdirectory/subdir1/subdir2

Deleting a Directory with rmdir

If you are the user matthew, to delete an empty directory named directoryname, use the

following command:

matthew@seymour:~$ rmdir directoryname

130 CHAPTER 10 Command-Line Beginner’s Class

You can remove a directory in a different location by changing what is after rmdir. To

remove a directory in /home/matthew/music, if you are already in your /home directory,

you can use the following:

matthew@seymour:~$ rmdir music/directoryname

Or from anywhere using an absolute path, you can use this:

matthew@seymour:~$ rmdir /home/matthew/music/directoryname

Or from anywhere using a path shortcut, you can use the following command:

matthew@seymour:~$ rmdir ~/music/directoryname

The directory must be empty to be removed using rmdir. However, you can remove a

directory with its contents by using rm.

CAUTION

You cannot easily recover anything that has been deleted using rmdir or rm, so proceed

carefully. Be absolutely certain you will never need what you are about to delete before

you do so. Only a professional data recovery service is likely to be able to recover the

files, and even then at great expense.

Deleting a File or Directory with rm

If you are the user matthew, to delete a file named filename, use this command:

matthew@seymour:~$ rm filename

You can remove a file in a different location by changing what is after rm. To remove a

directory in /home/matthew/randomdirectory, if you are already in your /home directory,

you can use the following:

matthew@seymour:~$ rm randomdirectory/filename

Or from anywhere using an absolute path, you can use this:

matthew@seymour:~$ rm /home/matthew/randomdirectory/filename

Or from anywhere using a path shortcut, you can use the following command:

matthew@seymour:~$ rm ~/randomdirectory/filename

If you try to use rm to remove an empty directory, you receive an error message:

rm: cannot remove `random/': Is a directory. In this case, you must use rmdir.

However, you can remove a directory and its contents by using rm.

CAUTION

Be sure that all the contents of a directory are known and unwanted if you choose to

delete them. There is no way to recover them later. Also, be careful to ensure that you

131

1
0

Working with Files

don’t have extra spaces, mistype the name of the directory, or use sudo to delete some-

thing that you shouldn’t be deleting. Linux gives you great power, and it lets you use that

power without questioning you about it; that’s the human’s job.

To delete a directory and all its contents, use the -r recursive switch (which works with

many commands, not only rm):

matthew@seymour:~$ rm -r /home/matthew/randomdirectory/

Everything in randomdirectory as well as the directory itself will be deleted, including

other subdirectories, without considering whether they are empty or have contents.

Moving or Renaming a File with mv

In Linux land, moving and renaming a file are the same thing. It doesn’t matter whether

you are moving the directory to another or from one filename to another filename in the

same directory; there is only one command to remember. To move a file named filename

from ~/documents to ~/archive, use this command:

matthew@seymour:~$ mv documents/filename archive

Notice that the filename is not included in the destination. The destination here must be

an existing directory. If it is not, the file is renamed to the term used. Some examples will

make this clear.

Assuming that you are the user matthew, to rename a file that is in your current directory,

you could use the following:

matthew@seymour:~$ mv oldfilename newfilename

To rename a file as you move it from ~/documents to ~/archive, you could use this:

matthew@seymour:~$ mv documents/oldfilename archive/newfilename

Or from anywhere using an absolute path, you could use the following command:

matthew@seymour:~$ mv /home/matthew/documents/oldfilename

[ccc]/home/matthew/archive/newfilename

Or from anywhere using a path shortcut, you could use this:

matthew@seymour:~$ mv ~/documents/oldfilename ~/archive/newfilename

Copying a File with cp

Copying works similarly to moving, but it retains the original in the original location.

Assuming that you are the user matthew, to copy a file named filename from ~/documents

to ~/archive, use this command:

matthew@seymour:~$ cp documents/filename archive

132 CHAPTER 10 Command-Line Beginner’s Class

Notice that the filename is not included in the destination. The destination here must be

an existing directory. If it is not, the file is renamed to the term used. Some examples will

make this clear.

To copy a file that is in your current directory, you could use the following, and it will

work exactly the same as mv, except that both files will exist afterward:

matthew@seymour:~$ cp oldfilename newfilename

To rename a file as you copy it from ~/documents to ~/archive, you could use this:

matthew@seymour:~$ cp documents/oldfilename archive/newfilename

Or from anywhere using an absolute path, you could use the following command:

matthew@seymour:~$ cp /home/matthew/documents/oldfilename

[ccc]/home/matthew/archive/newfilename

Or from anywhere using a path shortcut, you could use this:

matthew@seymour:~$ cp ~/documents/oldfilename ~/archive/newfilename

Displaying the Contents of a File with cat

To view the contents of a text file named filename on your screen, assuming that you are

the user matthew, use this command:

matthew@seymour:~$ cat filename

Notice that the text is displayed on your screen but that you cannot edit or work with

the text in any way. This command is convenient when you want to know the contents

of a file but don’t need to make any changes. Text editors for the terminal are covered in

Chapter 12. This command works best with short files because the contents of longer files

scroll off the screen too quickly to be read.

Displaying the Contents of a File with less

When you need to view the contents of a longer text file from the command line, you can

use less. This produces a paged output, meaning that output stops each time your screen

is full. You can then use your up- and down-arrow keys and page-up and page-down keys

to scroll through the contents of the file. Then, use q to quit and return to the command

line:

matthew@seymour:~$ less filename

In the early days of UNIX, a program called more gave paged output. It was the first paged

output program but did not include the ability to scroll up and down. less was written to

add that capability and was named as a bit of hacker humor because “less is more.”

133

1
0

Working as Root

Using Wildcards and Regular Expressions

Each of the commands in the previous sections can be used with pattern-matching strings

known as wildcards or regular expressions. For example, to delete all files in the current

directory beginning with the letters abc, you can use an expression beginning with the

first three letters of the desired filenames. An asterisk (*) is then appended to match all

these files. Use a command line with the rm command like this:

matthew@seymour:~$ rm abc*

Linux shells recognize many types of file-naming wildcards, but this is different from the

capabilities of Linux commands supporting the use of more complex expressions. You

learn more about using wildcards in Chapter 11 and in Chapter 14.

NOTE

You can also learn more about using expressions by reading the grep manual pages

(man grep), but because both man and grep are covered in Chapter 11, this mention is

included only to whet your appetite.

Working as Root
The root, or super user, account is a special account and user on UNIX and Linux sys-

tems. Super user permissions are required in part because of the restrictive file permissions

assigned to important system configuration files. You must have root permission to edit

these files or to access or modify certain devices (such as hard drives). When logged in as

root, you have total control over your system, which can be dangerous.

When you work in root, you can destroy a running system with a simple invocation of

the rm command like this:

matthew@seymour:~$ sudo rm -rf / --no-preserve-root

This command line not only deletes files and directories but also could wipe out file sys-

tems on other partitions and even remote computers. This alone is reason enough to take

precautions when using root access.

The only time you should run Linux as the super user is when you are configuring the file

system, for example, or to repair or maintain the system. Logging in and using Linux as

the root operator isn’t a good idea because it defeats the entire concept of file permissions.

Knowing how to run commands as the super user (root) without logging in as root can

help avoid serious missteps when configuring your system. In Ubuntu, you can use sudo to

execute single commands as root and then immediately return to normal user status. For

example, if you would like to edit your system’s file system table (a text file that describes

local or remote storage devices, their type, and location), you can use sudo like this:

matthew@seymour:~$ sudo nano -w /etc/fstab

[sudo] password for matthew:

134 CHAPTER 10 Command-Line Beginner’s Class

After you press Enter, you are prompted for a password that gives you access to root. This

extra step can also help you think before you leap into the command. Enter the root pass-

word, and you are then editing /etc/fstab, using the nano editor with line wrapping dis-

abled (thanks to the -w).

CAUTION

Before editing any important system or software service configuration file, make a backup

copy. Then make sure to launch your text editor with line wrapping disabled. If you edit

a configuration file without disabling line wrapping, you could insert spurious carriage

returns and line feeds into its contents, causing the configured service to fail when

restarting. By convention, nearly all configuration files are formatted for 80-character text

width, but this is not always the case. By default, the vi and emacs editors don’t use line

wrapping.

Understanding and Fixing sudo

Most Ubuntu users never have problems with sudo, but sometimes, people who like to

experiment break things, especially while learning. This section helps you understand

more completely how sudo works and also how to restore sudo access to a specific user

when, for some reason, it has ceased to function for that user.

NOTE

You usually can tell that a problem has occurred because an error message like this

appears when a user tries to issue a command using sudo:

matthew@seymour:~$ sudo shutdown -h now

[sudo] password for matthew:

matthew is not in the sudoers file. This incident will be reported.

Sometimes, you might not even receive an error message, but the command issued sim-

ply does nothing. Either way, you can fix the problem by using the following knowledge and

procedure.

In order for a user to use sudo, the user account must belong to the sudo group and must

also be listed in the /etc/sudoers file. If both conditions are met, the user will be permit-

ted to temporarily use root powers for specific commands that are issued at the command

line by that user account by prefacing the command with the word sudo.

A problem can occur for a specific user with sudo in several situations:

 ▶ When the user is taken out of the sudo group but should not have been

 ▶ When the permissions for the /etc/sudoers file have been changed to anything

other than 440

 ▶ When the /etc/sudoers file has been changed in a way that does not allow mem-

bers of the sudo group to use root powers

135

1
0

Working as Root

These problems generally result from users doing something they should not have done,

such as changing the permissions on all files rather than taking the time to figure out a

specific file that is causing problems due to permissions issues. Take heed: It is better to

spend a bit more time learning than it is to take a shortcut that causes bigger problems.

Fixing any of these problems requires the use of root powers. This is an obvious problem

because if sudo is not working, the account does not have access to root. To fix it, you must

gain root access. You can do this by booting into recovery mode, using the following steps:

 1. Hold down the Shift key while the computer is booting.

 2. When the GRUB menu page appears, use the arrow keys on your keyboard to scroll

to the entry that ends with (recovery mode) and press Enter to select it.

 3. When the boot process finishes, and have several options, select the menu entry for

root: Drop to Root Shell Prompt. You are now at the command line, with full root

access to the computer.

 4. Because Ubuntu mounts file systems as read-only by default in recovery mode, you

need to remount the root file system, /, as read/write so that you can fix the prob-

lem. Enter the following:

root@seymour:~# mount -o rw,remount /

NOTE

You now have complete root access and read/write privileges on the machine. This is

an example of why security of a physical machine is important. If someone has physical

access to your computer and knows what he or she is doing, that person can easily and

quickly gain full control over the machine and all it contains.

If the problem exists because the user account was removed from the admin group, enter

the following:

root@seymour:~# adduser username admin

If the problem exists because the permissions for /etc/sudoers are wrong, enter this:

root@seymour:~# chmod 440 /etc/sudoers

If the problem exists because of an internal problem in /etc/sudoers, make a backup of the

existing file and use visudo to edit it. (This is a special use of the vi editor, covered in

Chapter 12, that runs a check on the file after editing to be certain it is correct; this particular

problem usually occurs when someone edits the file using another editor that does not make

this check.) The contents of the file should be as follows:

#

This file MUST be edited with the 'visudo' command as root.

#

Please consider adding local content in /etc/sudoers.d/ instead of

directly modifying this file.

136 CHAPTER 10 Command-Line Beginner’s Class

#

See the man page for details on how to write a sudoers file.

#

Defaults env_reset

Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

Host alias specification

User alias specification

Cmnd alias specification

User privilege specification

root ALL=(ALL:ALL) ALL

Members of the admin group may gain root privileges

%admin ALL=(ALL) ALL

Allow members of group sudo to execute any command

%sudo ALL=(ALL:ALL) ALL

See sudoers(5) for more information on "#include" directives:

#includedir /etc/sudoers.d

After your fix is complete, exit the root command line:

root@seymour:~# exit

You return to the recovery mode menu. Select Resume Normal Boot to finish and return to

a normal boot. When the boot completes, you should be able to use sudo correctly again.

Creating Users

When a Linux system administrator creates a user, an entry is created in /etc/passwd for

the user. The system also creates a directory, labeled with the user’s username, in the

/home directory. For example, if you create a user named sandra, the user’s home directory

is /home/sandra.

NOTE

In this chapter, you learn how to manage users from the command line. See Chapter 13,

“Managing Users,” for more information on user administration, including administration

using graphical administration utilities.

Use the adduser command, along with a user’s name, to quickly create a user:

matthew@seymour:~$ sudo adduser sandra

137

1
0

Working as Root

After creating a user, you must also create the user’s initial password with the passwd

command:

matthew@seymour:~$ sudo passwd sandra

Changing password for user sandra.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Enter the new password twice. If you do not create an initial password for a new user, the

user cannot log in.

The adduser command has many command-line options. The command can be used to

set policies and dates for the new user’s password, assign a login shell, assign group mem-

bership, and other aspects of a user’s account. See man adduser as well as Chapter 13 for

more info.

Deleting Users

Use the deluser command to delete users from your system. This command removes

a user’s entry in the system’s /etc/passwd file. You should also use the command’s

--remove-all-files and --remove-home options to remove all the user’s files and directo-

ries (such as the user’s mail spool file under /var/spool/mail):

matthew@seymour:~$ sudo deluser --remove-all-files --remove-home andrew

If you do not use the -remove-home option, you have to manually delete the user’s direc-

tory under /home, along with the user’s /var/spool/mail queue.

Shutting Down the System

Use the shutdown command to shut down your system. The shutdown command has a

number of different command-line options (such as shutting down at a predetermined

time), but the fastest way to cleanly shut down Linux is to use the -h (or halt) option,

followed by the word now:

matthew@seymour:~$ sudo shutdown -h now

You can also follow -h with the numeral zero (0), like this, to get the same effect:

matthew@seymour:~$ sudo shutdown -h 0

To incorporate a timed shutdown and a pertinent message to all active users, use

shutdown’s time and message options, as follows:

matthew@seymour:~$ sudo shutdown -h 18:30 "System is going down for maintenance

this evening at 6:30 p.m. Please make sure you have saved your work and logged

out by then or you may lose data."

138 CHAPTER 10 Command-Line Beginner’s Class

This example shuts down your system and provides a warning to all active users 15 min-

utes before the shutdown (or reboot). Shutting down a running server can be considered

drastic, especially if there are active users or exchanges of important data occurring (such

as a backup in progress). One good approach is to warn users ahead of time. This can be

done by editing the system Message of the Day (MOTD) motd file, which displays a message

to users when they log in using the command-line interface, as is common on multiuser

systems.

It used to be that to create a custom MOTD file, you only had to use a text editor and

change the contents of /etc/motd. However, this has changed in Ubuntu, as the devel-

opers have added a way to automatically and regularly update some useful information

contained in the MOTD file by using cron. To modify how the MOTD file is updated, you

should install update-motd and read the man page.

You can also make downtimes part of a regular schedule, perhaps to coincide with security

audits, software updates, or hardware maintenance.

You should shut down Ubuntu for only a few very specific reasons:

 ▶ You are not using the computer, no other users are logged in or expected to need or

use the system (as with your personal desktop or laptop computer), and you want to

conserve electrical power.

 ▶ You need to perform system maintenance that requires any or all system services to

be stopped.

 ▶ You want to replace integral hardware.

TIP

Do not shut down your computer if you suspect that intruders have infiltrated your system;

instead, disconnect the machine from any or all networks and make a backup copy of your

hard drives. You might want to also keep the machine running to examine the contents

of memory and to examine system logs. Exceptions to this are when the system contains

only trivial data files and nonessential services, such as a personal computer that is only

used to run a web browser, and when you have no intention of trying to track down what

an intruder might have changed, either to repair the damage or to try to catch the intruder

by using computer forensics, but rather plan to merely wipe everything clean and rebuild

or reinstall the system from scratch.

Rebooting the System

You should use the shutdown command to reboot your system. The fastest way to cleanly

reboot Linux is to use the -r option and the word now:

matthew@seymour:~$ sudo shutdown -r now

You can also follow -r with the numeral zero (0), like this, to get the same effect:

matthew@seymour:~$ sudo shutdown -r 0

139

1
0

References

Both rebooting and shutting down can have dire consequences if performed at the wrong

time (such as during backups or critical file transfers, which arouses the ire of your sys-

tem’s users). However, Linux-based operating systems are designed to properly stop active

system services in an orderly fashion. Other commands you can use to shut down and

reboot Linux are the halt, poweroff, and reboot commands, but the shutdown command

is more flexible.

Commonly Used Commands and Programs
A number of programs and built-in shell commands are commonly used when working at

the command line. These commands are organized here by category to help you under-

stand the purpose of each category:

 ▶ Managing users and groups—chage, chfn, chsh, edquota, gpasswd, groupadd,

groupdel, groupmod, groups, mkpasswd, newgrp, newusers, passwd, umask, useradd,

userdel, usermod

 ▶ Managing files and file systems—cat, cd, chattr, chmod, chown, compress, cp,

dd, fdisk, find, gzip, ln, mkdir, mksfs, mount, mv, rm, rmdir, rpm, sort, swapon,

swapoff, tar, touch, umount, uncompress, uniq, unzip, zip

 ▶ Managing running programs—bg, fg, kill, killall, nice, ps, pstree, renice,

top, watch

 ▶ Getting information—apropos, cal, cat, cmp, date, diff, df, dir, dmesg, du,

env, file, free, grep, head, info, last, less, locate, ls, lsattr, man, more, pinfo,

ps, pwd, stat, strings, tac, tail, top, uname, uptime, vdir, vmstat, w, wc, whatis,

whereis, which, who, whoami

 ▶ Console text editors—ed, jed, joe, mcedit, nano, red, sed, vim

 ▶ Console Internet and network commands—bing, elm, ftp, host, hostname,

ifconfig, links, lynx, mail, mutt, ncftp, netconfig, netstat, pine, ping, pump,

rdate, route, scp, sftp, ssh, tcpdump, traceroute, whois, wire-test

If you need to find full information for using the command, you can find that informa-

tion under the command’s man page.

References
 ▶ https://help.ubuntu.com/community/UsingTheTerminal—The Ubuntu

community help page for using the terminal

 ▶ https://help.ubuntu.com/community/LinuxFilesystemTreeOverview—

The Ubuntu community help page for and overview of the Linux file system tree

 ▶ https://help.ubuntu.com/community/RootSudo—An Ubuntu community

page explaining sudo, the philosophy behind using it by default, and how to use it

https://help.ubuntu.com/community/UsingTheTerminal
https://help.ubuntu.com/community/LinuxFilesystemTreeOverview
https://help.ubuntu.com/community/RootSudo

This page intentionally left blank

IN THIS CHAPTER

 ▶ Why Use the Command Line?

 ▶ Using Basic Commands

 ▶ References

CHAPTER 11

Command-Line
Master Class, Part 1

Some Linux users like to focus on the graphical environ-

ments that are available; they rush to tell new users that the

command line isn’t vital when using Linux. Although there

are some amazing graphical user interface (GUI) desktops, and

this statement is mostly true, avoiding the command line

limits your options and makes some tasks more difficult.

The command-line interface offers the greatest power and

flexibility, and those who actively avoid learning how to

use it are also actively limiting their abilities and options.

You learned the basics in Chapter 10, “Command-Line

Beginner’s Class.” In this chapter, we dig in deeper.

It is with some trepidation that we retain the classic title

“Command-Line Master Class” for this two-chapter set.

Entire books have been published covering the depth and

breadth of the command line. To believe that two short

chapters make any reader a true master is foolish. Our great-

est hope is to give enough information to enable any reader

to perform all basic and vital tasks from the command line

while inspiring readers to go on a quest to discover all the

beauty and grandeur that we do not have space to cover

here. Please keep this in mind as you continue.

In his book The Art of Unix Programming, Eric Raymond

wrote a short story that perfectly illustrates the power of the

command line versus the GUI. It’s reprinted here with per-

mission, for your reading pleasure:

One evening, Master Foo and Nubi attended a

gathering of programmers who had met to learn

from each other. One of the programmers asked

Nubi to what school he and his master belonged.

Upon being told they were followers of the Great

Way of Unix, the programmer grew scornful.

142 CHAPTER 11 Command-Line Master Class, Part 1

“The command-line tools of Unix are crude and backward,” he scoffed.

“Modern, properly designed operating systems do everything through a

graphical user interface.”

Master Foo said nothing, but pointed at the moon. A nearby dog began to bark

at the master’s hand.

“I don’t understand you!” said the programmer.

Master Foo remained silent, and pointed at an image of the Buddha. Then he

pointed at a window. “What are you trying to tell me?” asked the programmer.

Master Foo pointed at the programmer’s head. Then he pointed at a rock.

“Why can’t you make yourself clear?” demanded the programmer.

Master Foo frowned thoughtfully, tapped the programmer twice on the nose,

and dropped him in a nearby trash can.

As the programmer was attempting to extricate himself from the garbage, the

dog wandered over and piddled on him.

At that moment, the programmer achieved enlightenment.

Whimsical as the story is, it does illustrate that there are some things that the GUI just

does not do well. Enter the command line: It is a powerful and flexible operating environ-

ment and—if you practice—can actually be quite fun, too!

In this chapter, you learn more commands to help you master the command line so that

you can perform common tasks through it.

Why Use the Command Line?
Moving from the GUI to the command line is a conscious choice for most people,

although it is increasingly rare that it is an absolute choice accompanied by complete

abandonment of GUIs.

Reasons for using the command line include the following:

 ▶ You want to chain together two or more commands.

 ▶ You want to use a command or parameter available only on the shell.

 ▶ You are working on a text-only system.

 ▶ You have used it for a long time and feel comfortable there.

 ▶ You want to automate a task.

Chaining together two or more commands, or piping, is what gives the shell its real power.

Hundreds of commands are available, and by combining them in different ways, you get

tons of new options. Some of the shell commands are available through the GUI, but

143

1
1

Using Basic Commands

these commands usually have only a small subset of their parameters available, which lim-

its what you can do with them.

Working from a text-only system is useful both for working locally with a broken GUI and

for connecting to a remote, text-only system. If your Linux server is experiencing prob-

lems, the last thing you want to do is load it down with a GUI connection; working in

text mode is faster and more efficient.

Many people use the shell simply because it is familiar to them. Some people even use the

shell to start GUI applications just because it saves them taking their hands off the key-

board for a moment. This is not a bad thing; it provides fluency and ease with the system

and is a perfectly valid way of working. Working from the command line is faster. The

mouse is slow, and taking your fingers away from the keyboard makes your work even

slower. Anyone looking to achieve the Zen-like power user state hinted at by Eric Ray-

mond will understand this after making the effort to learn.

Knowing how to work in the shell is also essential if you want to automate tasks on

your system without use of the GUI. Whether you want to add a periodic task to cron or

update a configuration management system, you need to know what text commands to

give to run programs from the command line.

Using Basic Commands
It is impossible to know how many commands the average command-line citizen uses,

but if we had to guess, we would place it at about 25. Some of these were introduced in

Chapter 10 but are covered here in greater depth. Others may be new to you. Still others

are mentioned in this list only to provide ideas for further study. Here are some com-

mands that every command-line user will want to learn:

 ▶ cat—Prints the contents of a file

 ▶ cd—Changes directories

 ▶ chmod—Changes file access permissions

 ▶ cp—Copies files

 ▶ du—Prints disk usage

 ▶ emacs—Edits text files

 ▶ find—Finds files by searching

 ▶ grep—Searches for a string in input or files

 ▶ head—Prints the first lines of a file

 ▶ less—Displays files or input interactively

 ▶ ln—Creates links between files

 ▶ locate—Finds files from an index

 ▶ ls—Lists files in the current directory

144 CHAPTER 11 Command-Line Master Class, Part 1

 ▶ make—Compiles and installs programs

 ▶ man—Displays manual pages for reading

 ▶ mkdir—Makes directories

 ▶ mv—Moves files

 ▶ nano—Edits text files

 ▶ rm—Deletes files and directories

 ▶ sort—Takes a text file as input and outputs the contents of the file in the order you

specify

 ▶ ssh—Connects to other machines using a secure shell connection

 ▶ tail—Prints the last lines of a file

 ▶ vim—Edits text files

 ▶ which—Prints the location of a command

Many other commands are also used fairly often—cut, diff, gzip, history, ping, su, tar,

uptime, who, and so on—but if you can understand the ones listed here, you have suffi-

cient skill to concoct your own command combinations.

Note that we say understand the commands—not know all their possible parameters and

usages. This is because several of the commands, although commonly used, are used

only in any complex manner by people with specific needs. make is a good example of

this: Unless you plan to become a programmer, you need not worry about this command

beyond just using make and make install now and then. If you want to learn more, see

Chapter 38, “Using Programming Tools.”

Similarly, emacs, nano, and vim are text editors that have text-based interfaces all their

own and are covered later in this chapter. ssh is covered in detail in Chapter 19, “Remote

Access with SSH and VNC.”

The rest of this list is composed of commands that each have many parameters you can

use to customize what the commands actually do. Again, many of the parameters are eso-

teric and rarely used, and the few times in your Linux life that you need them, you can

just read the manual page.

We go over these commands one by one, explaining the most common ways to use them.

Printing the Contents of a File with cat

Many of Ubuntu’s shell commands manipulate text strings, so if you want to be able to

feed them the contents of files, you need to be able to output those files as text. Enter the

cat command, which prints the contents of any files you pass to it.

Its most basic use is like this:

matthew@seymour:~$ cat myfile.txt

145

1
1

Using Basic Commands

This prints the contents of myfile.txt. For this usage, two extra parameters are often

used: -n numbers the lines in the output, and -s (“squeeze”) prints a maximum of one

blank line at a time. That is, if your file has 1 line of text, 10 blank lines, 1 line of text,

10 blank lines, and so on, -s shows the first line of text, a single blank line, the next line

of text, a single blank line, and so forth. When you combine -s and -n, cat numbers

only the lines that are printed—the 10 blank lines shown as 1 will count as 1 line for

numbering.

Assuming that you are the user matthew, the following command prints information about

your CPU, stripping out multiple blank lines and numbering the output:

matthew@seymour:~$ cat -sn /proc/cpuinfo

You can also use cat to print the contents of several files at once, like this:

matthew@seymour:~$ cat -s myfile.txt myotherfile.txt

In this command, cat merges myfile.txt and myotherfile.txt on the output and strips

out multiple blank lines. The important thing is that cat does not distinguish between the

files in the output; there are no filenames printed and no extra breaks between the two.

This allows you to treat the 2 files as 1 or, by adding more files to the command line, to

treat 20 files as 1.

Changing Directories with cd

Changing directories is surely something that has no options, right? Well, cd is actually

more flexible than most people realize. Unlike most of the other commands here, cd is

not a command in itself—it is built in to bash (or whichever shell interpreter you are

using), but it is still used like a command.

The most basic usage of cd is this:

matthew@seymour:~$ cd somedir

This looks in the current directory for the somedir subdirectory and then moves you into

it. You can also specify an exact location for a directory, like this:

matthew@seymour:~$ cd /home/matthew/stuff/somedir

The first part of cd’s magic lies in the characters (- and ~, a dash and a tilde). The first

means “switch to my previous directory,” and the second means “switch to my home

directory.” The following conversation with cd shows this in action:

matthew@seymour:~$ cd /usr/local

matthew@seymour/usr/local$ cd bin

matthew@seymour/usr/local/bin$ cd -

/usr/local

matthew@seymour/usr/local$ cd ~

matthew@seymour:~$

146 CHAPTER 11 Command-Line Master Class, Part 1

In the first line, you change to /usr/local and get no output from the command. In the

second line, you change to bin, which is a subdirectory of /usr/local. Next, cd - is used

to change back to the previous directory. This time bash prints the name of the previous

directory so you know where you are. Finally, cd ~ is used to change back to your /home/

matthew directory, although if you want to save an extra few keystrokes, you can just type

cd by itself, which is equivalent to cd ~.

The second part of cd’s magic is its capability to look for directories in predefined locations.

When you specify an absolute path to a directory (that is, one starting with a /), cd always

switches to that exact location. However, if you specify a relative subdirectory—for example,

cd subdir—you can tell cd where you would like that to be relative to. This is accomplished

with the CDPATH environment variable. If this variable is not set, cd always uses the current

directory as the base; however, you can set it to any number of other directories.

This next example shows a test of this. It starts in /home/matthew/empty, an empty direc-

tory, and the lines are numbered for later reference:

1 matthew@seymour:~/empty$ pwd

2 /home/matthew/empty

3 matthew@seymour:~/empty$ ls

4 matthew@seymour:~/empty$ mkdir local

5 matthew@seymour:~/empty$ ls

6 local

7 matthew@seymour:~/empty$ cd local

8 matthew@seymour:~/empty/local$ cd ..

9 matthew@seymour:~/empty$ export CDPATH=/usr

10 matthew@seymour:~/empty$ cd local

11 /usr/local

12 matthew@seymour:/usr/local$ cd -

13 /home/matthew/empty

14 matthew@seymour:~/empty$ export CDPATH=.:/usr

15 matthew@seymour:~/empty$ cd local

16 /home/matthew/empty/local

17 matthew@seymour:~/empty/local$

Lines 1–3 show that you are in /home/matthew/empty and that it is indeed empty; ls had

no output. Lines 4–6 show the local subdirectory being made, so that /home/matthew/

empty/local exists. Lines 7 and 8 show that you can cd into /home/matthew/empty/local

and back out again.

In line 9, CDPATH is set to /usr. This was chosen because Ubuntu has the directory /usr/

local, which means your current directory (/home/matthew/empty) and your CDPATH direc-

tory (/usr) both have local subdirectories. In line 10, while in the /home/matthew/empty

directory, you use cd local. This time, bash switches you to /usr/local and even prints

the new directory to ensure that you know what it has done.

Lines 12 and 13 move you back to the previous directory, /home/matthew/empty. In

line 14, CDPATH is set to be .:/usr. The : is the directory separator, so this means bash

should look first in the current directory, ., and then in the /usr directory. In line 15 cd

147

1
1

Using Basic Commands

local is issued again, this time moving to /home/matthew/empty/local. Note that bash

has still printed the new directory; it does that whenever it looks up a directory in CDPATH.

Changing File Access Permissions with chmod

Your use of chmod can be greatly extended through one simple parameter: -c. This

instructs chmod to print a list of all the changes it made as part of its operation, which

means you can capture the output and use it for other purposes. Consider this example:

matthew@seymour:~$ chmod -c 600 *

mode of '1.txt' changed to 0600 (rw------)

mode of '2.txt' changed to 0600 (rw------)

mode of '3.txt' changed to 0600 (rw------)

matthew@seymour:~$ chmod -c 600 *

matthew@seymour:~$

Here the chmod command is issued with -c, and you can see it has output the result of

the operation: Three files were changed to rw------ (read and write by user only). How-

ever, when the command is issued again, no output is returned. This is because -c prints

only the changes it made. Files that already match the permissions you are setting are left

unchanged and therefore are not printed.

Two other parameters of interest are --reference and -R. The first allows you to specify

a file to use as a template for permissions rather than specifying permissions yourself. For

example, if you want all files in the current directory to have the same permissions as the

file /home/matthew/myfile.txt, you use this:

chmod --reference /home/matthew/myfile.txt *

You can use -R to enable recursive operation, which means you can use it to chmod a direc-

tory, and it will change the permissions of that directory as well as all files and subdirec-

tories under that directory. You could use chmod -R 600 /home to change every file and

directory under /home to become read/write to its owner(s).

Copying Files with cp

Like mv, which is covered later in this chapter, cp is a command that is easily used and

mastered. However, two marvelous parameters rarely see much use, despite their power—

which is a shame. These are --parents and –u. The first copies the full path of the file into

the new directory; the second copies only if the source file is newer than the destination.

Using --parents requires a little explanation, so here is an example. Say that you have a file,

/home/matthew/desktop/documents/work/notes.txt, and want to copy it to your /home

/matthew/backup folder. You could do a normal cp, but that would give you /home/matthew

/backup/notes.txt, so how would you know where that came from later? If you use --parents,

the file is copied to /home/matthew/backup/desktop/documents/work/notes.txt.

The -u parameter is perfect for synchronizing two directories because it allows you to run

a command like cp -Ru myfiles myotherfiles and have cp recopy only files that have

changed. The -R parameter means recursive and enables you to copy directory contents.

148 CHAPTER 11 Command-Line Master Class, Part 1

Printing Disk Usage with du

The du command prints the size of each file and directory that is inside the current direc-

tory. Its most basic usage is as easy as it gets:

matthew@seymour:~$ du

This outputs a long list of directories and how much space their files take up. You can

modify it with the -a parameter, which instructs du to print the sizes of individual files as

well as directories. Another useful parameter is -h, which makes du use human-readable

sizes like 18M (18MB) rather than 17532 (the same number in bytes, unrounded). The

final useful basic option is -c, which prints the total sizes of files.

So, by using du you can get a printout of the size of each file in your /home directory, in

human-readable format, and with a summary at the end, like this:

matthew@seymour:~$ du -ahc /home/matthew

Two advanced parameters deal with filenames you want excluded from your count. The first

is --exclude, which enables you to specify a pattern that should be used to exclude files. This

pattern is a standard shell file-matching pattern as opposed to a regular expression, which

means you can use ? to match a single character or * to match zero or many characters. You

can specify multiple --exclude parameters to exclude several patterns. Here is an example:

matthew@seymour:~$ du --exclude="*.xml" --exclude="*.xsl"

However, typing numerous --exclude parameters repeatedly is a waste of time, and you can use

-X to specify a file that has the list of patterns you want excluded. The file should look like this:

*.xml

*.xsl

That is, each pattern you want excluded should be on a line by itself. If that file were

called xml_exclude.txt, you could use it in place of the previous example, like this:

matthew@seymour:~$ du -X xml_exclude.txt

You can make your exclusion file as long as you need, or you can just specify multiple -X

parameters.

TIP

If you run du in a directory where several files are hard-linked to the same inode, you

count the size of the file only once. If you want to count each hard link separately for

some reason, use the -l parameter (lowercase L).

Using echo

You can do many things with echo, especially with redirection (see Chapter 12, “Com-

mand-Line Master Class, Part 2,” for more about redirecting output). In its simplest use,

echo sends whatever you tell it to send to standard output. If you want to repeat text on

149

1
1

Using Basic Commands

the screen (which is useful in a shell script, for example), just enter the text string in sin-

gle quotation marks ('), and the output appears below it, like this:

matthew@seymour:~$ echo 'I have the power!'

I have the power!

If you want to know the value of a system variable, such as TERM, enter the variable name

to output the value, like this:

matthew@seymour:~$ echo $TERM

xterm

You can redirect the output of echo into a text file, as is done here to add a new directory

to PATHs:

matthew@seymour:~$ echo 'export PATH=$PATH:/usr/local/bin' >> ~/.bashrc

You can change or set a kernel setting (1 = on, 0 = off) in /proc, like this:

matthew@seymour:~$ sudo sh -c 'echo "1" > /proc/sys/location/of/setting'

Note that you can read the setting of a kernel value in /proc by using cat.

Finding Files by Searching with find

The find command is one of the darkest and least understood areas of Linux, but it is also

one of the most powerful. Admittedly, the find command does not help itself by using

X-style parameters. The UNIX standard is -c, -s, and so on, whereas the GNU standard is

--dosomething, --mooby, and so forth. X-style parameters merge the two by having words

preceded by only one dash.

However, the biggest problem with find is that it has more options than most people can

remember; it truly is capable of doing most things you could want. The most basic usage

is as follows:

matthew@seymour:~$ find -name "*.txt"

This option searches the current directory and all subdirectories for files that end in .txt.

The previous search finds files ending in .txt but not .TXT, .Txt, or other case variations.

To search without case-sensitivity, use -iname rather than -name. You can optionally spec-

ify where the search should start before the -name parameter, like this:

matthew@seymour:~$ find /home -name "*.txt"

Another useful test is -size, which you use to specify how big the files should be in order

to match. You can specify the size in kilobytes and optionally use + or - to specify greater

than or less than. Consider these examples:

matthew@seymour:~$ find /home -name "*.txt" -size 100k

matthew@seymour:~$ find /home -name "*.txt" -size +100k

matthew@seymour:~$ find /home -name "*.txt" -size -100k

150 CHAPTER 11 Command-Line Master Class, Part 1

The first example brings up files of exactly 100KB, the second only files larger than 100KB,

and the last only files under 100KB.

Moving on, the -user option enables you to specify the user who owns the files you are

looking for. So, to search for all files in /home that end with .txt, that are under 100KB,

and that are owned by user matthew, you use this:

matthew@seymour:~$ find /home -name "*.txt" -size -100k -user matthew

You can flip any of the conditions by specifying -not before them. For example, you can

add -not before -user matthew to find matching files owned by everyone except matthew:

matthew@seymour:~$ find /home -name "*.txt" -size -100k -not -user matthew

You can add as many -not parameters as you need, and you can even use -not -not to

cancel out the first -not. (Yes, that is pointless.) Keep in mind, though, that -not -size

-100k is essentially equivalent to -size +100k, with the exception that the former will

match files of exactly 100KB, whereas the latter will not.

You can use -perm to specify which permissions a file should have in order to match it.

This is tricky, so read carefully. The permissions are specified in the same way as with

the chmod command: u for user, g for group, o for others, r for read, w for write, and x for

execute. However, before you give the permissions, you need to specify a plus, a minus,

or a blank space. If you specify neither a plus nor a minus, the files must exactly match

the mode you give. If you specify -, the files must match all the modes you specify. If you

specify +, the files must match any the modes you specify. Confused yet?

The confusion can be cleared up with some examples. This following command finds all

files that have permission o=r (readable for other users). Notice that if you remove the

-name parameter, it is equivalent to * because all filenames are matched:

matthew@seymour:~$ find /home -perm -o=r

Any files that have o=r set are returned from this query. Those files also might have u=rw

and other permissions, but as long as they have o=r, they will match. This next query

matches all files that have o=rw set:

matthew@seymour:~$ find /home -perm -o=rw

However, this query does not match files that are o=r or o=w. To be matched, a file must

be readable and writable by other users. If you want to match readable or writable (or

both), you need to use +, like this:

matthew@seymour:~$ find /home -perm +o=rw

Similarly, the next query matches only files that are readable by the user, the group, and

others:

matthew@seymour:~$ find /home -perm -ugo=r

151

1
1

Using Basic Commands

On the other hand, the following query matches files as long as they are readable by the

user, or by the group, or by others, or by any combination of the three:

matthew@seymour:~$ find /home -perm +ugo=r

If you use neither + nor -, you are specifying the exact permissions to search for. For

example, the following query searches for files that are readable by the user, the group,

and others but not writable or executable by anyone:

matthew@seymour:~$ find /home -perm ugo=r

You can be as specific as you need to be with the permissions. For example, this query

finds all files that are readable for the user, the group, and others and writable by the user:

matthew@seymour:~$ find /home -perm ugo=r,u=w

To find files that are not readable by others, use the -not condition, like this:

matthew@seymour:~$ find /home -not -perm +o=r

Now, on to the most advanced aspect of the find command: the -exec parameter. This

parameter enables you to execute an external program each time a match is made, pass-

ing in the name of the matched file wherever you want it. This has very specific syntax:

Your command and its parameters should follow immediately after -exec, terminated by

\;. You can insert the filename match at any point by using {} (an opening and a closing

brace side by side).

So, you can match all text files on the entire system (that is, searching recursively from /

rather than from /home, as in the earlier examples) over 10KB, owned by matthew, that are

not readable by other users, and then use chmod to enable reading, like this:

matthew@seymour:~$ find / -name "*.txt" -size +10k -user matthew -not -perm +o=r

-exec chmod o+r {} \;

When you type your own -exec parameters, be sure to include a space before \;. Other-

wise, you might see an error such as missing argument to '-exec'.

Do you see now why some people think the find command is scary? Many people learn

just enough about find to be able to use it in a very basic way, but hopefully you will see

how much it can do if you give it chance.

Searches for a String in Input with grep

The grep command, like find, is an incredibly powerful search tool in the right hands.

Unlike find, though, grep processes any text, whether in files or just in standard input.

The basic usage of grep is as follows:

matthew@seymour:~$ grep "some text" *

152 CHAPTER 11 Command-Line Master Class, Part 1

This searches all files in the current directory (but not subdirectories) for the string some

text and prints matching lines along with the name of the file. To enable recursive

searching in subdirectories, use the -r parameter, as follows:

matthew@seymour:~$ grep -r "some text" *

Each time a string is matched within a file, the filename and the match are printed. If a

file contains multiple matches, each of the matches is printed. You can alter this behavior

with the -l parameter (lowercase L), which forces grep to print the name of each file that

contains at least one match without printing the matching text. If a file contains more

than one match, it is still printed only once. Alternatively, the -c parameter prints each

filename that was searched and includes the number of matches at the end, even if there

were no matches.

You have a lot of control when specifying the pattern to search for. You can, as shown

previously, specify a simple string like some text, or you can invert that search by specify-

ing the -v parameter. For example, the following returns all the lines of the file myfile.

txt that do not contain the word hello:

matthew@seymour:~$ grep -v "hello" myfile.txt

You can also use regular expressions for search terms. For example, you can search

myfile.txt for all references to cat, sat, or mat with this command:

matthew@seymour:~$ grep "[cms]at" myfile.txt

Adding the -i parameter to this removes case-sensitivity, matching Cat, CAT, MaT, and

so on:

matthew@seymour:~$ grep -i [cms]at myfile.txt

You can also control the output to some extent with the -n and --color parameters.

The first tells grep to print the line number for each match, which is where it appears in

the source file. The --color parameter tells grep to color the search terms in the output,

which helps them stand out from among all the other text on the line. You choose which

color you want by using the GREP_COLOR environment variable; for example, export GREP_

COLOR=36 gives you cyan, and export GREP_COLOR=32 gives you lime green.

This next example shows how to use these two parameters to number and color all

matches to the previous command:

matthew@seymour:~$ grep -in --color [cms]at myfile.txt

Later you learn how important grep is for piping with other commands.

Paging Through Output with less

The less command enables you to view large amounts of text in a more convenient way

than by using the cat command. For example, your /etc/passwd file is probably more

than a screen long, so if you run cat /etc/passwd, you are not able to see the lines at the

153

1
1

Using Basic Commands

top. Using less /etc/passwd enables you to use the cursor keys to scroll up and down the

output freely. Type q to quit and return to the shell.

On the surface, less sounds like an easy command; however, it has the infamy of being

one of the few Linux commands to have a parameter for every letter of the alphabet. That

is, -a does something, -b does something else, -c, -d, -e,…-x, -y, -z; they all do things,

with some letters even differentiating between upper- and lowercase. Furthermore, these

parameters are only used when invoking less. After you are viewing your text, even more

commands are available. Make no mistake; less is a complex beast to master.

Input to less can be divided into two categories: what you type before running less and

what you type while running it. The former category is easy, so we start there.

We have already discussed how many parameters less can take, but they can be distilled

down to three that are very useful: -M, -N, and +. Adding -M (which is different from -m)

enables verbose prompting in less. Instead of just printing a colon and a flashing cursor,

less prints the filename, the line numbers being shown, the total number of lines, and

the how far you are through the file, as a percentage. Adding -N (which is different from

-n) enables line numbering.

The last option, +, enables you to pass a command to less for it to execute as it starts. To

use it, you first need to know the commands available to you in less, which means it’s

time to move to the second category of less input: what you type while less is running.

The basic navigation keys are the up, down, left, and right arrows; Home and End (for

navigating to the start and end of a file); and Page Up and Page Down. Beyond that, the

most common command is /, which initiates a text search. You type what you want to

search for and press Enter to have less find the first match and highlight all subsequent

matches. Type / again and press Enter to have less jump to the next match. The inverse

of / is ?, which searches backward for text. Type ?, enter a search string, and press Enter to

go to the first previous match of that string, or just use ? and press Enter to go to the next

match preceding the current position. You can use / and ? interchangeably by searching

for something with / and then using ? to go backward in the same search.

Searching with / and ? is commonly used with the + command-line parameter from ear-

lier, which passes less a command for execution after the file has loaded. For example,

you can tell less to load a file and place the cursor at the first match for the search hello,

like this:

matthew@seymour:~$ less +/hello myfile.txt

Or, you can use this to place the cursor at the last match for the search hello:

matthew@seymour:~$ less +?hello myfile.txt

Beyond the cursor keys, the controls primarily involve typing a number and then pressing

a key. For example, to go to line 50, you type 50g, or to go to the 75 percent point of the

file, you type 75p. You can also place invisible mark points through the file by pressing

m and then typing a single letter. Later, while in the same less session, you can press

154 CHAPTER 11 Command-Line Master Class, Part 1

' (a single quote) and then type the letter, and it moves you back to that letter’s position.

You can set up to 52 marks, named a–z and A–Z.

One clever feature of less is that you can, at any time, press v to have your file open

inside your text editor. This defaults to vim, but you can change it by setting the EDITOR

environment variable to something else.

If you have made it this far, you can already use less better than most users. You can, at

this point, justifiably skip to the next section and consider yourself proficient with less.

However, if you want to be a less guru, there are two more things to learn: how to view

multiple files simultaneously and how to run shell commands.

Like most other file-based commands in Linux, less can take several files as its param-

eters, as in this example:

matthew@seymour:~$ less -MN 1.txt 2.txt 3.txt

This loads all three files into less, starting at 1.txt. When viewing several files, less usu-

ally tells you which file you are in and numbers the files: 1.txt (file 1 of 3) should

be at the bottom of the screen. However, certain things make that go away, so you should

use -M anyway.

You can navigate between files by typing a colon and then pressing n to go to the next

file or pressing p to go to the previous file; these are referred to from now on as :n and :p.

You can open another file for viewing by typing :e and providing a filename. This can be

any file you have permission to read, including files outside the local directory. Use Tab

to complete filenames. Files you open in this way are inserted one place after your current

position, so if you are viewing file 1 of 4 and open a new file, the new file is numbered

2 of 5 and is opened for viewing right away. To close a file and remove it from the list,

use :d.

Viewing multiple files simultaneously has implications for searching. By default, less

searches within only one file, but it is easy to search within all files. When you type / or ?

to search, follow it with a *. You should see EOF-ignore followed by a search prompt. You

can now type a search, and it runs through the current file; if nothing is found, the search

looks in subsequent files until it finds a match. You can repeat searches by pressing Esc

and then either n or N. The lowercase option repeats the search forward across files, and

the uppercase option repeats it backward.

The last thing you need to know is that you can get to a shell from less and execute

commands. The simplest way to do this is just to type ! and press Enter. This launches a

shell and leaves you free to type all the commands you want, as per normal. Type exit to

return to less. You can also type specific commands by entering them after the exclama-

tion point (!), using the special character % for the current filename. For example, du -h %

prints the size of the current file. Finally, you can use !! to repeat the previous command.

Creating Links Between Files with ln

Linux allows you to create links between files that look and work like normal files for the

most part. Moreover, it allows you to make two types of links, known as hard links and

155

1
1

Using Basic Commands

symbolic links (symlinks). The difference between the two is crucial, although it might not

be obvious at first.

Each filename on your system points to what is known as an inode, which is the absolute

location of a file. Linux allows you to point more than one filename to a given inode, and

the result is a hard link—two filenames pointing to the same file. These two files share the

same contents and attributes. So, if you edit one, the other changes because they are both

the same file.

On the other hand, a symlink—sometimes called a soft link—is a redirect to the real file.

When a program tries to read from a symlink, it automatically is redirected to what the

symlink is pointing at. The fact that symlinks are really just dumb pointers has two advan-

tages: You can link to something that does not exist (and create it later if you want), and

you can link to directories.

Both types of links have uses. Instead of using redirection, a hard link instead creates a

second reference to (name for) the same file, which means that it saves a little bit of time

when accessing the file using the symlink. The big difference, however, is that you are

able to delete the “original” filename used to create a hard link and the symlinks will still

reference the original data file; if you delete the original filename for a soft link, it actually

does delete the original data and so all the soft symlinks will break. So why have soft links

at all? The reason is that not all file systems permit the use of hard links, and sometimes

that matters; for example, when hierarchical data needs to be backed up from a file system

that does permit hard links to a file system that does not. In addition, only the root user

or a user with sudo privileges can create a hard link, whereas soft links are permitted to be

created by regular users. Symlinks are popular because they allow a file to appear to

be in a different location; you could store your website in /var/www/live and an under-

construction holding page in /var/www/construction. Then you could have Apache point

to a symlink /var/www/html that is redirected to either the live directory or the construc-

tion directory, depending on what you need.

TIP

The shred command overwrites a file’s contents with random data, allowing for safe

deletion. Because this directly affects a file’s contents, rather than just a filename, this

means that all filenames hard linked to an inode are affected.

Both types of link are created using the ln command. By default, it creates hard links, but

you can create symlinks by passing it the -s parameter. The syntax is ln [-s] something

somewhere, as shown in this example:

matthew@seymour:~$ ln -s myfile.txt mylink

This creates the symlink mylink that points to myfile.txt. You don’t see it here, but the

file created here is 341 bytes. This is important later. Remove the -s to create a hard link.

You can verify that your link has been created by running ls -l. Your symlink should

look something like this:

lrwxrwxrwx 1 matthew matthew 5 Feb 19 12:39 mylink -> myfile.txt

156 CHAPTER 11 Command-Line Master Class, Part 1

Note how the file properties start with l (lowercase L) for link and how ls -l also prints

where a link is going. Symlinks are always very small in size; the previous link is 5 bytes. If

you created a hard link, it should look like this:

-rw-rw-r 2 matthew matthew 341 Feb 19 12:39 mylink

This time the file has normal attributes, but the second number is 2 rather than 1. That

number is how many hard links point to this file, which is why it is 2 now. The file size

is also the same as that of the previous filename because it is the file, as opposed to just

being a pointer.

Symlinks are used extensively in Linux. Programs that have been superseded, such as sh,

now point to their replacements (in this case bash). Sometimes versioning is accomplished

through symlinks. For example, applications that link against a fictional program called

snowflake could load /usr/bin/snowflake. Internally, however, that is just a symlink that

points to the actual snowflake release: /usr/bin/snowflake.7.2.5. This enables multiple

versions of libraries to be installed without application developers needing to worry about

the specific details.

Finding Files from an Index with locate

When you use the find command, it searches recursively through each directory each

time you request a file. As you can imagine, this is slow. Fortunately, Ubuntu ships with

a cron job that creates an index of all the files on your system every night. Searching this

index is extremely fast, which means that if the file you are looking for has been around

since the last index, this is the preferable way of searching.

To look for a file in your index, use the command locate followed by the names of the

files you want to find, like this:

matthew@seymour:~$ locate myfile.txt

On a relatively modern computer (say, with at least one processor that runs at 1.5GHz or

higher), locate should be able to return all the matching files in less than one second.

The trade-off for this speed is lack of flexibility. You can search for matching filenames,

but, unlike with find, you cannot search for sizes, owners, access permissions, or other

attributes. The one thing you can change is case sensitivity; use the -i parameter to do a

search that is not case sensitive.

Although Ubuntu rebuilds the filename index nightly, you can force a rebuild whenever

you want by running the command updatedb with sudo. This usually takes a few minutes,

but when it’s done, the new database is immediately available.

Listing Files in the Current Directory with ls

The ls command, like ln, is a command that most people expect to be very straightfor-

ward. It lists files, but how many options can it possibly have? In true Linux style, the

answer is many, although again you need only know a few to wield great power!

157

1
1

Using Basic Commands

The basic usage is simply ls, which lists the files and directories in the current location.

You can filter that by using normal wildcards, so all these are valid:

matthew@seymour:~$ ls *

matthew@seymour:~$ ls *.txt

matthew@seymour:~$ ls my*ls *.txt *.xml

Any directories that match these filters are recursed into one level. That is, if you run ls

my* and you have the files myfile1.txt and myfile2.txt and a directory mystuff, the

matching files are printed first. Then ls prints the contents of the mystuff directory.

The most popular parameters for customizing the output of ls are as follows:

 ▶ -a—Includes hidden files

 ▶ -h—Uses human-readable sizes

 ▶ -l (lowercase L)—Enables long listing

 ▶ -r—Reverse order

 ▶ -R—Recursively lists directories

 ▶ -s—Shows sizes

 ▶ --sort—Sorts the listing

All files that start with a period are hidden in Linux, so that includes the .gnome directory

in your /home directory, as well as .bash_history and the . and .. implicit directories

that signify the current directory and the parent. By default, ls does not show these files,

but if you run ls -a, they are shown. You can also use ls -A to show all the hidden files

except . and

The -h parameter needs to be combined with the -s parameter, like this:

matthew@seymour:~$ ls -sh *.txt

This outputs the size of each matching file in a human-readable format, such as 108KB or

4.5MB.

Using the -l parameter enables you to get much more information about your files.

Instead of just getting the names of the files, you get output like this:

drwxrwxr-x 24 matthew matthew 4096 Dec 24 21:33 arch

-rw-r--r-- 1 matthew matthew 18691 Dec 24 21:34 COPYING

-rw-r--r-- 1 matthew matthew 88167 Dec 24 21:35 CREDITS

drwxrwxr-x 2 matthew matthew 4096 Dec 24 21:35 crypto

This output shows four matches and prints a lot of information about each of them. The

first row shows the arch directory; you can tell it is a directory because its file attributes

start with a d. The rwxrwxr-x following that shows the access permissions, and this has

158 CHAPTER 11 Command-Line Master Class, Part 1

special meanings because it is a directory. Read access for a directory enables users to see

the directory contents, write access enables you to create files and subdirectories, and exe-

cute access enables you to cd into the directory. If a user has execute access but not read

access, the user can cd into the directory but cannot list files.

Moving on, the next number on the line is 24, which also has a special meaning for

directories: It is the number of subdirectories (including . and ..). After that is matthew

matthew, which is the name of the user owner and the group owner for the directory.

Next are the size and modification time, and finally the directory name itself.

The next line shows the file COPYING, and most of the numbers have the same meaning,

with the exception of the 1 immediately after the access permissions. For directories, this

is the number of subdirectories, but for files it is the number of hard links to this file. A 1

in this column means this is the only filename pointing to this inode, so if you delete it,

it is gone.

Ubuntu comes configured with a shortcut command for ls -l: ll.

The --sort parameter enables you to reorder the output from the default alphabetic sort-

ing. You can sort by various things, although the most popular are extension (alphabeti-

cally), size (largest first), and time (newest first). To flip the sorting (making size sort by

smallest first), use the -r parameter also. So, the following command lists all .ogg files,

sorted smallest to largest:

matthew@seymour:~$ ls --sort size -r *.ogg

Finally, the -R parameter recurses through subdirectories. For example, ls /etc lists all

the files and subdirectories in /etc, but ls -R /etc lists all the files and subdirectories in

/etc, all the files and subdirectories in /etc/acpi, all the files and subdirectories in /etc/

acpi/actions, and so on until every subdirectory has been listed.

Listing System Information with lsblk, lshw, lsmod, lspci,
and neofetch

The commands lsblk, lshw, lsmod, lspci, and neofetch are not really related to ls, but

they work in a similar way. Here, the focus is on listing information about your system

rather than the contents of a directory.

To list the storage, or block, devices that are attached to your system, use the following:

matthew@seymour:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 465.8G 0 disk

├─sda1 8:1 0 1K 0 part

├─sda2 8:2 0 453.7G 0 part /

└─sda5 8:5 0 12.1G 0 part [SWAP]

sdb 8:16 0 1.4T 0 disk

└─sdb1 8:17 0 1.4T 0 part

sr0 11:0 1 1024M 0 rom

159

1
1

Using Basic Commands

The next command must be run as root for a full listing. Note that the output may be

quite long, so this command may be most useful if you pipe it into grep and search for a

specific bit of text, as described in Chapter 12. To list the hardware detected in your

system, use the following:

matthew@seymour:~$ sudo lshw

To list the status of modules in the Linux kernel, use this, which takes the contents of

/proc/modules and formats it nicely:

matthew@seymour:~$ lsmod

To list the PCI devices attached to your system, use the following:

matthew@seymour:~$ lspci

For an interesting, high-level listing of system information, use this, which will return

output similar to Figure 11.1:

matthew@seymour:~$ neofetch

FIGURE 11.1 Neofetch screenshots are a popular way to share info about your system with

online friends in places like Reddit.

Reading Manual Pages with man

It’s time for a much-needed mental break, and the man command is easy to use. Most peo-

ple use only the topic argument, like this: man gcc. However, two other commands that

work closely with man are very useful: whatis and apropos.

160 CHAPTER 11 Command-Line Master Class, Part 1

The whatis command returns a one-line description of another command, which is the

same text you get at the top of that command’s man page. Here is an example:

matthew@seymour:~$ whatis ls

ls (1) - list directory contents

The output explains what ls does and also provides the man page section number for the

command so you can query it further.

The apropos command takes a search string as its parameter and returns all man pages

that match the search. For example, apropos mixer returns this list:

alsamixer (1) - soundcard mixer for ALSA soundcard driver

mixer (1) - command-line mixer for ALSA soundcard driver

aumix (1) - adjust audio mixer

So, you can use apropos to help find commands and use whatis to find out what a com-

mand does.

One neat trick is that many of the tips and tricks you learned for less also work when view-

ing man pages (for example, using / and ? to search). This is one of the beautiful things

about UNIX systems: Gaining knowledge in one area often benefits you in other areas.

You can use a number of other commands to search the file system, including the following:

 ▶ whereis command—Returns the location of command (for example, /bin, /sbin, or /

usr/bin/command) and its man page, which is an entry for the command included as

a file already on your computer in a standardized manual format.

 ▶ whatis command—Returns a one-line synopsis from command’s man page.

 ▶ type name—Returns how a name would be interpreted if used as a command. This

generally shows options or the location of the binary that will be used. For example,

type ls returns ls is aliased to 'ls –color=auto'.

Making Directories with mkdir

Making directories is as easy as it sounds, although there is one parameter you should be

aware of: -p. If you are in /home/matthew and you want to create the directory /home/

matthew/audio/sound, you get an error like this:

mkdir: cannot create directory 'audio/sound': No such file or directory

At first glance, this seems wrong; mkdir cannot create the directory because it does not

exist. What it actually means is that it cannot create the directory sound because the direc-

tory audio does not exist. This is where the -p parameter comes in: If you try to make a

directory within another directory that does not exist, as in the preceding example,

-p creates the parent directories, too, if you use it like this:

matthew@seymour:~$ mkdir -p audio/sound

This first creates the audio directory and then creates the sound directory inside it.

161

1
1

Using Basic Commands

Moving Files with mv

The mv command is one of the easiest around. There are two helpful parameters to mv:

-f, which overwrites files without asking; and -u, which moves the source file only if it is

newer than the destination file. That’s it. You can use absolute paths to indicate the desti-

nation directory (starting from /):

matthew@seymour:~$ mv filename /newdirectory/newfilename

Or you can use relative paths from the current directory (starting without a slash). This is

generally entered in the source directory, but it doesn’t have to be; you can use an abso-

lute path to indicate the source directory, too.

Renaming Files with rename

We often use mv to rename a single file. This would be tedious, however, for renaming

multiple files. For this, you use rename. The basic syntax is simple:

matthew@seymour:~$ rename 's/filename/newfilename/'

The part in the single quotes is a Perl expression, which means the command is far more

powerful than this example suggests. Let’s say you have a directory filled with files that

end with the extension .htm, and you want to rename them all to .html:

matthew@seymour:~$ rename 's/\.htm/\.html/' *.htm

Notice here that the . characters must be preceded with a \ to let the command know

they are part of the text being searched and replaced rather than part of the command.

This is called “escaping” the characters. Next, notice that the replace part of the command

is followed by a wildcard character (*) and the remainder of the filename to search for in

the directory. Anything matching the combination of filename.htm will be renamed to

filename.html.

rename is incredibly powerful. See the man page for more.

Deleting Files and Directories with rm

The rm command has only one parameter of interest: --preserve-root. You should know

that issuing rm -rf / with sudo will try to delete your entire Linux installation because -r

means recursive and -f means force (that is, do not prompt for confirmation before delet-

ing). It used to be possible for a clumsy person to issue this command by accident—not by

typing the command on purpose but by putting a space in the wrong place; for example:

matthew@seymour:~$ rm -rf /home/matthew

This command deletes the /home directory of the user matthew. This is not an uncommon

command; after you have removed a user and backed up the user’s data, you will probably

want to issue something similar. However, if you accidentally add a space between the /

and the h in home, you get this:

matthew@seymour:~$ rm -rf / home/matthew

http://.html
http://\.html/
http://filename.html

162 CHAPTER 11 Command-Line Master Class, Part 1

This time, the command means “delete everything recursively from / and then delete

home/matthew”—quite a different result! To stop this from happening, the rm command

was changed to use --preserve-root by default, meaning that it is impossible to do this

accidentally, and root now protects you from catastrophe with this message:

rm: it is dangerous to operate recursively on '/'

rm: use --no-preserve-root to override this failsafe.

Because --preserve-root is the default for the command, if you actually do want

to remove the contents of your entire file system (this is dangerous), you use

--no-preserve-root.

Sorting the Contents of a File with sort

Say that you have a text file, and you want to sort its contents alphabetically. That is easy.

Assume that your text file is filled with one letter on each line, upper- or lowercase. Here

is what you get when you run the sort command on this file:

matthew@seymour:~$ sort testfile.txt

a

A

b

B

This is useful. You can also sort in reverse order:

matthew@seymour:~$ sort -r testfile.txt

This command outputs the same contents but this time from Z to a.

You can use sort with files of numbers, but it doesn’t give you a numerical sort. It gives

you output like this:

matthew@seymour:~$ sort numberfile.txt

1

14

5

58

6

You can see here that the sort command performs a rather useless alphabetic-style sort on

the numbers. Fortunately, there is a switch you can use to fix this:

matthew@seymour:~$ sort -n numberfile.txt

1

5

6

14

58

163

1
1

Using Basic Commands

There are tons of neat tricks you can do with sort and many more parameters explained in

the man file. For files with a number of columns, such as a directory listing, you can specify the

-k switch and the number of the column that you want to sort. Let’s look at an example of a

directory of old conky files and start with an ls command for comparison:

matthew@seymour:~/conky$ ls -la

total 60

drwxr-xr-x 2 matthew matthew 4096 Dec 25 2012 .

drwxr-xr-x 91 matthew matthew 4096 Jul 28 18:42 ..

-rwxr-xr-x 1 matthew matthew 5526 Dec 25 2012 conkyrc_main

-rwxr-xr-x 1 matthew matthew 5502 Dec 25 2012 conkyrc_main~

-rwxr-xr-x 1 matthew matthew 5387 Apr 16 2008 conkyrc_main (old)

-rwxr-xr-x 1 matthew matthew 1326 Mar 15 2008 conkyrc_weather

-rwxr-xr-x 1 matthew matthew 2549 Oct 23 2009 sample_conky.conf

-rwxr-xr-x 1 matthew matthew 128 Apr 8 2008 start_conky (copy).sh

-rwxr-xr-x 1 matthew matthew 139 Dec 25 2012 start_conky.sh

-rwxr-xr-x 1 matthew matthew 140 Dec 25 2012 start_conky.sh~

-rwxr-xr-x 1 matthew matthew 1503 Sep 30 2007 weather.sh

-rwxr-xr-x 1 matthew matthew 2379 Sep 30 2007 weather.xslt

Here is the same listing, this time sorted by file size:

matthew@seymour:~$ ls -la | sort -n -k5

total 60

-rwxr-xr-x 1 matthew matthew 128 Apr 8 2008 start_conky (copy).sh

-rwxr-xr-x 1 matthew matthew 139 Dec 25 2012 start_conky.sh

-rwxr-xr-x 1 matthew matthew 140 Dec 25 2012 start_conky.sh~

-rwxr-xr-x 1 matthew matthew 1326 Mar 15 2008 conkyrc_weather

-rwxr-xr-x 1 matthew matthew 1503 Sep 30 2007 weather.sh

-rwxr-xr-x 1 matthew matthew 2379 Sep 30 2007 weather.xslt

-rwxr-xr-x 1 matthew matthew 2549 Oct 23 2009 sample_conky.conf

drwxr-xr-x 2 matthew matthew 4096 Dec 25 2012 .

drwxr-xr-x 91 matthew matthew 4096 Jul 28 18:42 ..

-rwxr-xr-x 1 matthew matthew 5387 Apr 16 2008 conkyrc_main (old)

-rwxr-xr-x 1 matthew matthew 5502 Dec 25 2012 conkyrc_main~

-rwxr-xr-x 1 matthew matthew 5526 Dec 25 2012 conkyrc_main

Printing the Last Lines of a File with tail

If you want to watch a log file as it is written to, or if you want to monitor a user’s actions

as they are occurring, you need to be able to track log files as they change. In these situa-

tions, you need the tail command, which prints the last few lines of a file and updates as

new lines are added. The following command tells tail to print the last few lines of /var/

log/apache2/access.log, the Apache hit log:

matthew@seymour:~$ tail /var/log/apache2/access.log

164 CHAPTER 11 Command-Line Master Class, Part 1

To get tail to remain running and update as the file changes, add the -f (follow)

parameter:

matthew@seymour:~$ tail -f /var/log/apache2/access.log

You can tie the life span of a tail -f to the existence of a process by specifying the --pid

parameter. When you do this, tail continues to follow the file you asked for until it sees

that the process identified by process ID (PID) is no longer running, at which point it stops

tailing.

If you specify multiple files on the command line, tail follows them all, printing file

headers whenever the input source changes. Press Ctrl+C to terminate tail when in

follow mode.

Printing the Location of a Command with which

The purpose of which is to tell you exactly which command would be executed if you

typed it. For example, which mkdir returns /bin/mkdir, telling you that running the

command mkdir runs /bin/mkdir.

Downloading Files with wget

Let’s say you see a website with useful content that you need to download to your server—

(for example, https://releases.ubuntu.com) because you want to make available to students

who work in your computer lab a copy of the ISO of the current release of Ubuntu. This

practice, called mirroring, is commonly accepted. Or, maybe you want to download the

latest Minecraft server file to your server and don’t want to download it from the website

to your local machine first before you upload it to your server. You can do this with wget,

which exists to download files using HTTP, HTTPS, and FTP, like this:

matthew@seymour:~$ wget http://releases.ubuntu.com/20.04/ubuntu-20.04-desktop-

amd64.iso

This downloads the linked file directly to the directory in which you issue the command.

What if you want to copy all the content files from your existing web server onto a new

server? You can use the -m or the --mirror flag to do this. This example downloads all

the contents of the directory you specify, assuming that you have access, to your current

directory:

matthew@seymour:~$ wget http://youroldserver.com/website/files

TIP

You can use wget with any standard URL syntax, including specifying ports and user-

names and passwords, but you should realize that the username and password informa-

tion will be transmitted in plain text; therefore, this is not considered a secure method

of data transfer. For that, use scp, which is covered in Chapter 19, "Remote Access with

SSH and VNC."

https://releases.ubuntu.com

165

1
1

References

References
 ▶ www.gnu.org—The website of the GNU project, which contains manuals and

downloads for lots of command-line software

 ▶ Linux in a Nutshell by Stephen Figgins, Arnold Robbins, Ellen Siever, and

Robert Love—A dictionary of Linux commands that includes a wide selection of

Linux commands and explanations of what they do

 ▶ www.linuxcommand.org—A “one-stop command-line shop” that contains a

wealth of useful information about the console

 ▶ The Art of UNIX Programming by Eric Raymond—Focuses on the philosophy

behind UNIX and manages to mix in much about the command line

http://www.gnu.org
http://www.linuxcommand.org

This page intentionally left blank

IN THIS CHAPTER

 ▶ Redirecting Output and Input

 ▶ stdin, stdout, stderr,

and Redirection

 ▶ Comparing Files

 ▶ Limiting Resource Use

and Job Control

 ▶ Combining Commands

 ▶ Executing Jobs in Parallel

 ▶ Using Environment Variables

 ▶ Using Common Text Editors

 ▶ Working with Compressed Files

 ▶ Using Multiple Terminals with

byobu

 ▶ Doing a Polite System Reset

using REISUB

 ▶ Fixing an Ubuntu System that

Will Not Boot

 ▶ Tips and Tricks

 ▶ References

CHAPTER 12

Command-Line
Master Class, Part 2

In Chapter 11, “Command-Line Master Class, Part 1,” you

learned a number of useful commands. This chapter follows

up with information about how to link commands together

to create new command groups. It also looks at the three

most popular Linux text editors: vim, emacs, and nano, as

well as the sed and awk tools. This chapter also covers more

commands and command-line interface (CLI) tools to help

you become successful and efficient. Let’s jump right in.

Redirecting Output and Input
Sometimes, the output of a command is too long to view

on one screen. At other times, there might be an advantage

to preserving the output as a file, perhaps to be edited later.

You can’t do that using cat or less, at least not using them

as described so far. The good news is that it is possible using

redirection.

Commands take their input and give their output in a stan-

dard place. This is called standard input and standard output.

By default, this is configured as the output of a keyboard for

standard input because it comes in to the computer from

the keyboard and the screen for standard output because

the computer displays the results of a command to the user

using that screen. Standard input and standard output can

be redirected.

To redirect output, you use > on the command line. Some-

times people read this as “in to.” Here is an example:

matthew@seymour:~$ cat /proc/cpuinfo > file.txt

168 CHAPTER 12 Command-Line Master Class, Part 2

You know the first part of this line reads the information about the CPU from the file

/proc/cpuinfo. Usually this would print it to the screen, but here the output is redirected

into a file called file.txt, created in your /home directory, because that is the directory in

which you issued the command. You can now read, edit, or use this file in any way you

like.

CAUTION

Be aware that you can overwrite the contents of a file by using a redirect in this manner,

so be certain that either the destination file you name does not exist or that its current

contents do not need to be preserved.

What if you want to take the contents of an existing file and use that data as an input to a

command? It is as simple as reversing the symbol from > to <:

matthew@seymour:~$ cat < file.txt

This displays the contents of file.txt on the screen. At first glance, that does not seem

useful because the command is doing the same thing it usually does: It is printing the

contents of a file to the screen. Perhaps a different example would be helpful.

Ubuntu uses a software packaging system called apt, which is discussed in Chapter 9,

“Managing Software.” By using a command from the apt stable, dpkg, you can quickly list

all software that has been installed using apt on a system and record that info into a file

by using a redirect:

matthew@seymour:~$ sudo dpkg --get-selections > pkg.list

This creates a text file named pkg.list that contains the list you want. You can open it

with a text editor to confirm this. Then you can use this file as input to dpkg, perhaps on

another system on which you want exactly the same software to be installed:

matthew@seymour:~$ sudo dpkg --set-selections < pkg.list

This tells dpkg to mark for installation any of the items in the list that are not already

installed on the second system. One more quick command (included here for complete-

ness of the example, even though it has nothing to do with redirection), and these will be

installed:

matthew@seymour:~$ sudo apt-get -u dselect-upgrade

Earlier in the chapter you saw an example of using cat to display several files simultane-

ously. This example can be modified slightly to redirect the output into a file, thereby

making a new file that includes the contents of the previous two, using the order in which

they are listed:

matthew@seymour:~$ cat myfile.txt myotherfile.txt > combinedfile.txt

169

1
2

stdin, stdout, stderr, and Redirection

If you want to append information to the end of a text file, rather than replace its con-

tents, use two greater-than signs, like this:

matthew@seymour:~$ echo "This is a new line being added." >> file.txt

If you want to suppress the output that you do not want to keep from a process, so that it

does not get sent to standard output or saved, send it instead to a special location called

the Null Device, like this, where verboseprocess is an example of a process that produces

lots of output:

matthew@seymour:~$ verboseprocess > /dev/null

Add the power of redirection to the information in the next section, and you will begin to

understand the potential and the power that a command-line-savvy user has and why so

many who learn the command line absolutely love it.

stdin, stdout, stderr, and Redirection
When a program runs, it automatically has three input/output streams opened for it: one

for input, one for output, and one for error messages. Typically, these are attached to the

user’s terminal (so they take input from or give output to the command line), but they

can be directed elsewhere, such as to or from a file. These three streams are referred to and

abbreviated as shown here, and each of these is assigned a number, shown in the third

column:

Stream Abbreviation Number

Standard input stdin 0

Standard output stdout 1

Standard error, or

error stream

stderr 2

In the earlier section “Redirecting Output and Input,” you learned how to redirect input

and output without needing to know about stdin or stdout. In addition, you can redirect

where the stderr messages are sent and also do some more powerful things.

If you are running a program and want any error messages that appear to be directed into

a text file instead of having them printed on a screen that might not be monitored, you

can use the following command when starting the program or running a command (sub-

stitute program with the name of the program or command you are running):

matthew@seymour:~$ program 2> error.log

Here, any error messages from program are added to the end of a file named error.log in

the current working directory.

If you want to redirect both stderr and stdout to a file, use the following:

matthew@seymour:~$ program &> filename

170 CHAPTER 12 Command-Line Master Class, Part 2

You can do the same thing by using the following:

matthew@seymour:~$ program >> filename 2>&1

In this case, any output from program is added to the end of a file named filename.

To redirect stderr to stdout, so that error messages are printed to the screen instead of

another location (such as when a program or command is written in a way that already

redirects those error messages to a file), use the following:

matthew@seymour:~$ program 2>&1

Comparing Files
The two things users most commonly want to know when comparing two files are what in

the files is the same and what is different. This is especially useful when comparing current

versions of configuration files with backup versions of the same files. There are commands

to make these tasks easy. Because looking for differences is more common, we start there.

Finding Differences in Files with diff

The diff command compares files line by line and outputs any lines that are not identi-

cal. For example, this command outputs every line that is different between two files:

matthew@seymour:~$ diff file1 file2

If file1 and file2 are different versions of a configuration file—say the current file and a

backup—the output quickly tells you what, if anything, has changed. This can help when

a config file is automatically updated during an operating system upgrade or when you

make a change that doesn’t work as well as you had planned and then go back a couple

weeks later to change the configuration back.

There are several options you may use when running diff. (The original UNIX-style ver-

sions, like -i, and the newer-style versions, like --ignore-case, are identical in what they

do; it might simply be easier for you to remember one than the other.) Here are a few of

the most useful ones to get you started:

 ▶ -i or –ignore-case—Ignores case differences in file contents

 ▶ -b or –ignore-space-change—Ignores changes in the amount of white space

 ▶ -w or –ignore-all-space—Ignores all white space

 ▶ -q or --brief—Outputs only whether the files differ

 ▶ -l or --paginate—Passes the output through pr to paginate it

Finding Similarities in Files with comm

The comm command compares files line by line and outputs any lines that are identical.

For example, this command displays output in three columns, where column 1 shows

171

1
2

Limiting Resource Use and Job Control

lines only in file1, column 2 shows lines only in file2, and column 3 shows every line

that is the same between the two files:

matthew@seymour:~$ comm file1 file2

This is a much more detailed comparison than with diff, and the output can be over-

whelming when all you want is to find or check for one or two simple changes. However,

it can be incredibly useful when you aren’t terribly familiar with either file, and you want

to see how they compare.

Fewer options are available when running comm. These three are the ones you are most

likely to be interested in:

 ▶ -1—Suppresses the output of column 1

 ▶ -2—Suppresses the output of column 2

 ▶ -3—Suppresses the output of column 3

Limiting Resource Use and Job Control
Computer systems run many processes at the same time. This is a good thing and allows

users to multitask. Some processes require more system resources than others. Occa-

sionally, a resource-intensive process may take up or require so many resources that it

slows down the system for other processes. There are ways to deal with this. This sec-

tion describes a few of the basics. You must have admin privileges to perform any of the

actions in this section.

Listing Processes with ps

The ps command lists processes and gives you an extraordinary amount of control over its

operation. A process is any running program or instance of a running program. There can

be many copies of the same program running at the same time, and when that happens,

each has its own process. Every process has its own address space or designated part of

the computer’s memory that is reserved just for this process and its needs. A process group

is created when any process begins, and it includes that process and any processes started

by it.

In the UNIX/Linux world, a process (parent) has the ability to create another process

(child) that executes some given code independently. This can be really useful for pro-

grams that need a lot of time to finish. For example, if you have a program that needs to

calculate some complex equation, search large databases, or delete and clean up a lot of

files, you can write it so that it will “spawn” a child process that performs the task, while

the parent returns control to the user. In such a case, the user does not have to wait for

the task to finish because the child process is running in the background.

It is important to know is that ps is typically used with what are known as BSD-style

parameters. In the section “Finding Files by Searching with find” in Chapter 11, we

discussed UNIX-style, GNU-style, and X-style parameters (-c, --dosomething, and

172 CHAPTER 12 Command-Line Master Class, Part 2

-dosomething, respectively); BSD-style parameters are different because they use single let-

ters without dashes.

So, the default use of ps lists all processes that you are running that are attached to the

terminal. However, you can ask it to list all your processes attached to any terminal (or,

indeed, no terminal) by adding the x parameter: ps x. You can ask it to list all processes

for all users with the a parameter or combine that with x to list all processes for all users,

attached to a terminal or otherwise: ps ax.

However, both of these are timid compared with the almighty u option, which enables

user-oriented output. In practice, this makes a huge difference because you get important

fields such as the username of the owner, how much CPU time and RAM are being used,

when the process was started, and more. This outputs a lot of information, so you might

want to try adding the f parameter, which creates a process forest by using ASCII art to

connect parent commands with their children. You can combine all the options so far

with this command: ps faux. (Yes, with a little imagination, you can spell words with the

parameters.)

You can control the order in which the data is returned by using the --sort parameter.

This takes either a + or a - (although the + is the default) followed by the field you want

to sort by: command, %cpu, pid, and user are all popular options. If you use the minus sign,

the results are reversed. The following command lists all processes, ordered by CPU usage

in descending order (with output abridged to conserve space):

matthew@seymour:~$ ps aux –sort=-%cpu

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

matthew 17669 10.2 3.8 5256448 1603116 ? Sl 08:30 5:23 /usr/lib/virtua

matthew 6761 4.4 0.0 1226128 17544 ? SNl Jan26 951:13 conky -d -c /ho

matthew 30849 3.8 0.7 1425084 310356 ? Sl 09:20 0:04 /opt/google/chr

matthew 18668 3.2 5.5 3692116 2297988 ? SLl Feb05 227:08 /opt/google/chr

matthew 31211 3.0 0.0 698532 39348 ? Sl 09:22 0:00 /usr/bin/xfce4-

matthew 14553 2.8 1.0 2881828 422216 ? Sl 08:17 1:50 /usr/lib/libreo

root 1379 2.3 0.7 780372 304860 tty7 Ssl+ Jan26 490:58 /usr/lib/xorg/X

matthew 31215 0.4 0.0 21952 5524 pts/0 Ss 09:22 0:00 bash

systemd+ 1316 0.2 0.0 66008 6284 ? Ss Jan26 54:00 /lib/systemd/sy

matthew 5369 0.1 0.0 457476 39304 ? SLl Jan26 31:23 /usr/bin/gnome-

matthew 5589 0.1 0.0 210212 30692 ? S Jan26 22:40 xfwm4 --replace

matthew 5661 0.1 0.0 1840276 13292 ? S<l Jan26 26:51 /usr/bin/pulsea

root 1 0.0 0.0 220548 8952 ? Ss Jan26 0:15 /sbin/init spla

root 2 0.0 0.0 0 0 ? S Jan26 0:00 [kthreadd]

root 4 0.0 0.0 0 0 ? S< Jan26 0:00 [kworker/0:0H]

root 7 0.0 0.0 0 0 ? S< Jan26 0:00 [mm _ percpu _ wq]

root 8 0.0 0.0 0 0 ? S Jan26 0:08 [ksoftirqd/0]

root 9 0.0 0.0 0 0 ? S Jan26 5:22 [rcu _ sched]

root 10 0.0 0.0 0 0 ? S Jan26 0:00 [rcu _ bh]

root 11 0.0 0.0 0 0 ? S Jan26 0:01 [migration/0]

root 12 0.0 0.0 0 0 ? S Jan26 0:01 [watchdog/0]

root 13 0.0 0.0 0 0 ? S Jan26 0:00 [cpuhp/0]

173

1
2

Limiting Resource Use and Job Control

There are many other parameters for ps, including a large number of options for compat-

ibility with other UNIXes, all of which can be found in the man page.

Listing Jobs with jobs

A job is any program you interactively start that doesn’t then detach from the user and

run on its own (like a daemon does). If you’re running an interactive program, you can

press Ctrl+Z to suspend it. Then you can start it back in the foreground (using fg, covered

next) or in the background (using bg, covered with fg).

While the program is suspended or running in the background, you can start another pro-

gram. You then have two jobs running. You can also start a program running in the back-

ground by appending an & like this:

matthew@seymour:~$ programname &

When started this way, a program runs as a background job. To list all the jobs you are

running, you can use jobs:

matthew@seymour:~$ jobs

You can use several useful parameters with jobs, including the following:

 ▶ -l—Lists the process IDs along with the normal output

 ▶ -n—Displays information only about jobs that have changed status since the user

was last notified of their status

 ▶ -r—Restricts output to running jobs

 ▶ -s—Restricts output to stopped jobs

Running One or More Tasks in the Background

Put the & (ampersand) symbol at the end of any command to make it run in the

background:

matthew@seymour:~$ command &

[1] 11423

A background process runs without any user input. The shell is not forced to wait until

the process is complete before it is freed up to allow more commands to be input and run.

When you tell a command to run in the background, you are given its job number in

brackets followed by its PID, or process ID number. You can use this to manage the pro-

cess later, if necessary.

You can input a list of several commands to run in the background. Each will run sepa-

rately and have its own PID. In this sample, a, b, and c represent commands:

matthew@seymour:~$ a & b & c &

[1] 11427

174 CHAPTER 12 Command-Line Master Class, Part 2

[2] 11428

[3] 11429

You can even use pipes within background processes, and you can combine multiples of

each. The letters here represent individual commands:

matthew@seymour:~$ d & | e & f & g & | h &

[1] 11432

[2] 11433

[3] 11434

Notice that the line above becomes three separate background processes, even though five

commands were issued. That is because commands that are piped together are treated as

one process.

Moving Jobs to the Background or Foreground with bg and fg

The shell has the concept of foreground jobs and background jobs. Foreground jobs are pro-

cess groups with control of the terminal, and background jobs are process groups without

control of the terminal.

Let’s say you start a job by running a program at the command line—maybe something

like this, which could take a while to run:

matthew@seymour:~$ find . -type f -printf "%s\t%p\n" | sort -n

When you run this, it starts in the foreground, meaning the terminal is interactive with

you only for this job, until the job is complete. This particular job will find all files in the

current directory and its subdirectories and list them according to their size. You wouldn’t

likely want to tie up your terminal session the whole time the job is running. Say that you

mean to run it with an & at the end so that it will run in the background, but you forget.

No worries. You can press Ctrl+Z to suspend the job, and then you type this:

matthew@seymour:~$ bg

That’s it. This causes the process to resume, but this time running in the background.

Both bg and fg, if entered with no further arguments, operate on the job you have most

recently interacted with.

Remember that the jobs command lists all current jobs and their status (running, stopped,

and so on). If you want to move a job running in the background to the foreground, first

list the running jobs. Each one has a number next to it in the listing. Use the job number

to move a job to the foreground, like this:

matthew@seymour:~$ fg %2

If you want to move a specific job to the background, just press Ctrl+Z and add the job

number the same way:

matthew@seymour:~$ bg %2

175

1
2

Limiting Resource Use and Job Control

Remember that jobs running in this manner terminate when the shell is closed. If you

want a job to continue after you exit, you should consider using a tool such as byobu,

covered later in this chapter, or learn to run the process as a daemon, which is beyond the

scope of this chapter and requires you to do some further research.

Printing Resource Usage with top

The top command is unusual in this list because the few parameters it takes are rarely, if

ever, used. Instead, it has a number of commands you can use while it is running to cus-

tomize the information it shows you. To get the most from these instructions, open two

terminal windows. In the first one, run the program yes and leave it running; in the sec-

ond one, run top.

When you run top, you see a display like the one shown in Figure 12.1.

FIGURE 12.1 Use the top command to monitor and control processes.

The default sort order in top shows the most CPU-intensive tasks first. The first command

there should be the yes process you just launched from the other terminal, but there

should be many others also. Say that you want to filter out all the other users and focus

on the user running yes. To do this, press u and enter the username you used when you

ran yes. When you press Enter, top filters out processes not being run by that user.

The next step is to kill the PID of the yes command, so you need to understand what each

of the important fields means:

 ▶ PID—The process ID

 ▶ User—The owner of the process

 ▶ PR—Priority

 ▶ NI—Niceness

176 CHAPTER 12 Command-Line Master Class, Part 2

 ▶ Virt—Virtual image size, in kilobytes

 ▶ Res—Resident size, in kilobytes

 ▶ Shr—Shared memory size, in kilobytes

 ▶ S—Status

 ▶ %CPU—CPU usage

 ▶ %Mem—Memory usage

 ▶ Time+—CPU time

 ▶ Command—The command being run

Several of these fields are unimportant unless you have a specific problem. The important

ones in this case are PID, User, Niceness, %CPU, %MEM, Time+, and Command. The Niceness

of a process is how much time the CPU allocates to it compared to everything else on the

system; 19 is the lowest, and -20 is the highest.

With the columns explained, you should be able to find the PID of the errant yes com-

mand launched earlier; it is usually the first number below PID. Now type k, enter that

PID, and press Enter. You are prompted for a signal number (the manner in which

you want the process killed), with 15 provided as the default. Signal 15 (also known as

 SIGTERM, for terminate) is a polite way of asking a process to shut down, and all processes

that are not wildly out of control should respond to it. Give top a few seconds to update

itself, and hopefully the yes command should be gone. If not, you need to be more force-

ful: Type k again, enter the PID, and press Enter. When prompted for a signal to send,

enter 9 and press Enter to send SIGKILL, or “terminate whether you like it or not.”

You can choose the fields to display by pressing f. A new screen appears, listing all pos-

sible fields, along with the letter you need to press to toggle their visibility. Selected fields

are marked with an asterisk and have their letter, as follows:

* A: PID = Process Id

If you now press the a key, the screen changes to this:

a: PID = Process Id

When you have made your selections, press Enter to return to the normal top view with

your normal column selection.

You can also press F to select the field you want to use for sorting. This works the same

way as the field selection screen, except that you can select only one field at a time. Again,

press Enter to get back to top after you have made your selection, and it is updated with

the new sorting.

If you press B, text bolding is enabled. By default, this bolds some of the header bar as well

as any programs that are currently running (as opposed to sleeping), but if you press x,

you can also enable bolding of the sorted column. You can use y to toggle bolding of run-

ning processes.

177

1
2

Limiting Resource Use and Job Control

The last command to try is r, which enables you to renice—or adjust the niceness value

of—a process. You need to enter the PID of the process, press Enter, and enter a new nice-

ness value. Remember that 19 is the lowest and -20 is the highest; anything less than 0 is

considered “high” and should be used sparingly.

You can combine the information you learn here with the information in Chapter 16,

“System-Monitoring Tools,” for even more power over your system.

Setting Process Priority with nice

You can set the priority for individual processes to tell the kernel either to limit or give

extra priority to a specific process. This is most useful when multiple concurrent processes

are demanding more resources than are actually available because this is the condition

that generally causes slowdowns and bottlenecks. Processes set with a higher priority get a

larger portion of the CPU time than lower-priority processes.

You can set the process priority when you first run a program by putting the command

nice before whatever you are going to run and assigning the process a value that desig-

nates its priority. By default, all processes start with a priority of 0 (zero). nice can be set

that to a maximum of -20, which is the highest priority, to a minimum of 19, the lowest

priority. Only root can increase the priority of a process (set negative nice values) but any

user can lower the priority of a process (set positive values).

Here is an example that takes the tar command used earlier in this chapter and sets its

priority very low, because tar can demand significant system resources but is often not

something whose output you require immediately. You could run the same command as

earlier but with nice set to 19 to allow you to do something else with the system at the

same time:

matthew@seymour:~$ sudo nice -n 19 tar czf compressedfilename.tgz directoryname

If a process is already running, you can reset the priority (some say “renice it”) by using

renice. To adjust a specific process, first use top to learn the PID for the process and then

use -p PID, as shown in this example that renices PID 20136 to priority 19:

matthew@seymour:~$ sudo renice 19 -p 20136

This command is a little more flexible, as it also allows priority adjustments to be made on

all processes owned by a specific user or group in the system. Notice that renice is most

commonly used to lower the priority of a system-slowing task, but it can also be used to

bump up the priority for an urgent task, as shown in these examples. Here you first give

all tasks by the user mysql (using -u username) a priority of -20 (top priority, remember?)

and then give all tasks belonging to system users in the website group (using -g group-

name) a priority of -20:

matthew@seymour:~$ sudo renice -20 -u mysql

matthew@seymour:~$ sudo renice -20 -g website

178 CHAPTER 12 Command-Line Master Class, Part 2

With the ionice command, you can adjust priority for disk access, similar to how nice and

renice set priority for CPU access. The difference here is that there are only three class set-

tings for priority. The lowest priority is Idle (3), which permits the process to access the disk

only when other processes are not using the disk. In the middle is Best Effort (2), which is

the default and allows the kernel to schedule access as its algorithms deem appropriate. The

highest priority is Real Time (1), which gives this process the first access to the disk when-

ever it demands it, regardless of what other processes are running. The Real Time setting can

be dangerous because it can cause other processes to lose their data; this isn’t guaranteed to

happen, but you should consider yourself warned, and you probably want to spend some

time studying the man page for ionice before you set anything to Real Time.

To use ionice, find the PID for a process and use it to set the priority. Notice that there

are no spaces between the flag and the value using this command. Here is an example of

setting set the priority (using the -c flag, for class) to 3 for PID 24351 (using the -p flag):

matthew@seymour:~$ sudo ionice -c3 -p24351

You can find other useful tips for managing your system in Chapter 16.

Combining Commands
So far in this chapter, you have been using commands only individually—and for the

most part, that is what you do in practice. However, some of the real power of these com-

mands lies in the capability to join them together to get exactly what you want. There are

some extra little commands that we have not looked at that are often used as glue because

they do one very simple thing that enables a more complex process to work.

Pipes

All the commands we have looked at have printed their information to the screen, but

this is often flexible.

A pipe is a connector between one command’s output and another command’s input.

Instead of sending its output to your terminal, you can use a pipe to send that output

directly to another command as input.

Two of the commands we have looked at so far are ps and grep: the process lister and the string

matcher. You can combine the two to find out which users are playing NetHack right now:

matthew@seymour:~$ ps aux | grep nethack

This creates a list of all the processes running right now and sends that list to the grep

command, which filters out all lines that do not contain the word nethack. Ubuntu allows

you to pipe as many commands as you can sanely string together. For example, you could

add the wc command, which counts the numbers of lines, words, and characters in its

input, to count precisely how many times NetHack is being run:

matthew@seymour:~$ ps aux | grep nethack | wc -l

179

1
2

Combining Commands

The -l (lowercase L) parameter to wc prints only the line count.

Using pipes in this way is often preferable to using the -exec parameter with find, simply

because many people consider find to be a black art, and using it less frequently is better.

This is where the xargs command comes in: It converts output from one command into

arguments for another.

For a good example, consider this mammoth find command from earlier:

matthew@seymour:~$ find / -name "*.txt" -size +10k -user matthew -not -perm +o=r

[ccc]-exec chmod o+r {} \;

This searches every directory from / onward for files matching *.txt that are greater than

10KB, are owned by user matthew, and do not have read permission for others. Then it

executes chmod on each of the files. It is a complex command, and people who are not

familiar with the workings of find might have problems understanding it. You can break

it into two—a call to find and a call to xargs. The simplest conversion would look like

this:

matthew@seymour:~$ find / -name "*.txt" -size +10k -user matthew -not -perm +o=r |

[ccc]xargs chmod o+r

This has eliminated the confusing {} \; from the end of the command, but it does the

same thing—and faster, too. The speed difference between the two is because using -exec

with find causes it to execute chmod once for each file. However, chmod accepts many

files at a time and, because you are using the same parameter each time, you should take

advantage of that. The second command, using xargs, is called once with all the output

from find, and it therefore saves many command calls. The xargs command automati-

cally places the input at the end of the line, so the previous command might look some-

thing like this:

matthew@seymour:~$ xargs chmod o+r file1.txt file2.txt file3.txt

Not every command accepts multiple files, though, and if you specify the -l parameter,

xargs executes its command once for each line in its input. If you want to check what it is

doing, use the -p parameter to have xargs prompt you before executing each command.

For even more control, the -i parameter allows you to specify exactly where the match-

ing lines should be placed in your command. This is important if you need the lines to

appear before the end of the command or need it to appear more than once. Either way,

using the -i parameter also enables the -l parameter so each line is sent to the command

individually. The following command finds all files in /home/matthew that are larger than

10,000KB (10MB) and copies them to /home/matthew/archive:

matthew@seymour:~$ find /home/matthew -size +10000k | xargs -i cp {} ./home/

matthew/

[ccc]archive

180 CHAPTER 12 Command-Line Master Class, Part 2

Using find with xargs is a unique case. All too often, people use pipes when parameters

would do the job just as well. For example, the following two commands are identical:

matthew@seymour:~$ ps aux --sort=-%cpu | grep -v `whoami`

matthew@seymour:~$ ps -N ux --sort=-%cpu

The former prints all users and processes and then pipes that to grep, which in turn filters

out all lines that contain the output from the program whoami (the username in this case). So,

the first line prints all processes being run by other users, sorted by CPU use. The second line

does not specify the a parameter to ps, which makes it list only your parameters. It then uses

the -N parameter to flip that, which means it is everyone but you, without the need for grep.

The reason people use the former is often just simplicity: Many people know only a hand-

ful of parameters to each command, so they can string together two commands simply

rather than write one command properly. Unless the command is to be run regularly, this

is not a problem. Indeed, the first line would be better because it does not drive people to

the manual pages to find out what ps -N does.

You can string together any commands that use standard input and output formats.

Another useful example is the following series, which verifies the installation of a named

software package (in this example, a search for FTP-related software):

matthew@seymour:~$ dpkg --get-selections | grep ftp | sort

ftp install

lftp install

Here, dpkg is being told to list all installed packages, grep is searching that list for any

line containing ftp, and sort is sorting alphabetically (which is not vital in this two-line

example, but it is really useful if you have a large number of results).

Combining Commands with Boolean Operators

If you want to run a second command only if the first command is successfully com-

pleted, you can. Every command you issue to the system outputs an exit status: 0 for true

(successful) and 1 for false (failed). The system receives these even if they are not displayed

to the user. The && operator, when added to the end of a command, reads that exit status

and confirms its value as 0 for true before allowing the next command to be run. Again,

the letters represent commands:

matthew@seymour:~$ i && k

You can do exactly the opposite with ||, which runs the following command only if the

first one returns an exit status of 1 for false:

matthew@seymour:~$ m || n

Running Separate Commands in Sequence

If you want to have a set of commands run in order but not use the output from one as

the input to the next one, you can. Separating commands with a ; (semicolon) causes the

181

1
2

Executing Jobs in Parallel

system to treat each item as if it were entered on a new line after the previous item fin-

ished running. Let’s say you have three commands: doctor, rose, and tardis. You could

run each in order by using this command:

matthew@seymour:~$ doctor ; rose ; tardis

Note that the spaces before and after the semicolons are optional, but they do make the

line easier to read.

Process Substitution

Sometimes the output of one or more commands is precisely what you want to use as the

input to another command. You can use output redirection for this purpose, using what

we call process substitution. In process substitution, you surround one or more commands

with () and precede each list with a <. When you do this, do not insert a space between

the < and the opening (. The resulting command looks like this:

matthew@seymour:~$ cat <(ls -al)

This first example is really the same as ls -al | cat. With only the output of one process

being involved, it doesn’t seem worth learning an additional command.

In the following example, you take the output of two ls commands as input to a diff

command to compare the contents of two directories:

matthew@seymour:~$ diff <(ls firstdirectory) <(ls seconddirectory)

This is faster because you don’t have to wait for temporary files to be written and then

read; it saves both disk space and the time needed to clean up temporary files. One espe-

cially neat advantage of doing this is that bash automatically runs the multiple tasks being

used as input in parallel, which is faster than doing them sequentially with redirects, like

this:

matthew@seymour:~$ ls firstdirectory > file1.txt

matthew@seymour:~$ ls seconddirectory > file2.txt

matthew@seymour:~$ diff file1.txt file2.txt

Executing Jobs in Parallel
When you issue a command in the terminal, it is executed by the CPU (the central process-

ing unit, or processor). Common processors include Intel’s i3, i5, i7, and Xeon series as well

as AMD’s Ryzen and Epyc. Most computers today have more than one processor (more accu-

rately stated as “processor core,” each of which essentially functions as a separate processor).

This allows multiple jobs to run at the same time. Programs that are written to take advan-

tage of multiple processors or cores concurrently can run much faster by splitting large tasks

into chunks and sending the chunks to multiple processors or cores in parallel.

Most terminal commands are not (yet?) written to take advantage of multiple proces-

sors or cores. So, when you execute a command, generally the command uses whatever

182 CHAPTER 12 Command-Line Master Class, Part 2

percentage it requires of one core until the task is complete. Doing something that

requires significant amounts of processing can take a long time.

GNU parallel is a shell tool for executing jobs in parallel across multiple processors,

cores, or even multiple connected computers. The jobs can be simple single commands or

even scripts, as long as they are executables or functions. The tool is powerful and com-

plex and deserves a book of its own. For more information, see the official documentation

at www.gnu.org/software/parallel/ and the official tutorial at www.gnu.org/software/paral-

lel/parallel_tutorial.html.

Using Environment Variables
A number of in-memory variables are assigned and loaded by default when you log in.

These variables, known as environment variables, can be used by various commands to get

information about your environment, such as the type of system you are running, your

/home directory, and the shell in use. Environment variables are used to help tailor the

computing environment of your system and include helpful specifications and setup, such

as default locations of executable files and software libraries. If you begin writing shell

scripts, you might use environment variables in your scripts. Until then, you need to be

aware only of what environment variables are and do.

The following list includes a number of environment variables, along with descriptions of

how the shell uses them:

 ▶ PWD—Provides the full path to your current working directory, used by the pwd com-

mand, such as /home/matthew/Documents

 ▶ USER—Declares the user’s name, such as matthew

 ▶ LANG—Sets the default language, such as English

 ▶ SHELL—Declares the name and location of the current shell, such as /bin/bash

 ▶ PATH—Sets the default locations of executable files, such as /bin, /usr/bin, and so on

 ▶ TERM—Sets the type of terminal in use, such as vt100, which can be important when

using screen-oriented programs, such as text editors

You can print the current value of any environment variable by using echo $VARIABLE-

NAME, like this:

matthew@seymour:~$ echo $USER

matthew

matthew@seymour:~$

NOTE

Each shell can have its own feature set and language syntax, as well as a unique set of

default environment variables.

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/paral-lel/parallel_tutorial.html
http://www.gnu.org/software/paral-lel/parallel_tutorial.html

183

1
2

Using Environment Variables

You can use the env or printenv command to display all environment variables, as

follows:

matthew@seymour:~$ env

ORBIT_SOCKETDIR=/tmp/orbit-matthew

SSH_AGENT_PID=1729

TERM=xterm

SHELL=/bin/bash

WINDOWID=71303173

GNOME_KEYRING_CONTROL=/tmp/keyring-qTEFTw

GTK_MODULES=canberra-gtk-module

USER=matt

hew

SSH_AUTH_SOCK=/tmp/keyring-qTEFTw/ssh

DEFAULTS_PATH=/usr/share/gconf/gnome.default.path

SESSION_MANAGER=local/seymour:/tmp/.ICE-unix/1695

USERNAME=matthew

XDG_CONFIG_DIRS=/etc/xdg/xdg-gnome:/etc/xdg

DESKTOP_SESSION=gnome

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

PWD=/home/matthew

hew

GDM_KEYBOARD_LAYOUT=us

LANG=en_US.utf8

GNOME_KEYRING_PID=1677

MANDATORY_PATH=/usr/share/gconf/gnome.mandatory.path

GDM_LANG=en_US.utf8

GDMSESSION=gnome

HISTCONTROL=ignoreboth

SPEECHD_PORT=7560

SHLVL=1

HOME=/home/matthew

hew

LOGNAME=matthew

hew

LESSOPEN=| /usr/bin/lesspipe %s

DISPLAY=:0.0

LESSCLOSE=/usr/bin/lesspipe %s %s

XAUTHORITY=/var/run/gdm/auth-for-matthew-PzcGqF/database

COLORTERM=gnome-terminal

OLDPWD=/var/lib/mlocate

_=/usr/bin/env

This abbreviated list shows some of the common variables, which are set by configuration,

or resource, files contained in /etc and /etc/skel and are copied to the user’s /home direc-

tory when it is created. You can find default settings for bash, for example, in

184 CHAPTER 12 Command-Line Master Class, Part 2

/etc/profile and /etc/bashrc as well as .bashrc or .bash_profile files in your /home

directory. Read the man page for bash for details about using these configuration files.

One of the most important environment variables is $PATH, which defines the location of exe-

cutable files. For example, if, as a regular user, you try to use a command that is not located in

your $PATH (such as the imaginary command command), you see something like this:

matthew@seymour:~$ command

-bash: command: command not found

If the command you’re trying to execute exists in the Ubuntu software repositories but is

not yet installed on your system, Ubuntu responds with the correct command to install

the command:

matthew@seymour:~$ command

The program 'command' is currently not installed. You can install it by typing:

sudo apt-get install command

However, you might know that the command is definitely installed on your system, and

you can verify it by using the whereis command, like this:

matthew@seymour:~$ whereis command

command: /sbin/command

You can also run the command by typing its full pathname or complete directory specifi-

cation, as follows:

matthew@seymour:~$ sudo /sbin/command

As you can see in this example, the command command is indeed installed. What happened

is that by default, the /sbin directory is not in your $PATH. One of the reasons for this is

that commands under the /sbin directory are normally intended to be run only by root.

You can add /sbin to your $PATH by editing the file .bash_profile in your /home direc-

tory (if you use the bash shell by default, as most Linux users). Look for the following line:

PATH=$PATH:$HOME/bin

You can then edit this file, perhaps using one of the text editors discussed later in this

chapter, to add the /sbin directory, like so:

PATH=$PATH:/sbin:$HOME/bin

Save the file. The next time you log in, the /sbin directory is in your $PATH. One way to

use this change right away is to read in the new settings in .bash_profile by using the

bash shell’s source command, as follows:

matthew@seymour:~$ source .bash_profile

185

1
2

Using Common Text Editors

You can now run commands located in the /sbin directory without the need to explicitly

type the full pathname.

Some Linux commands also use environment variables to acquire configuration informa-

tion (such as a communications program looking for a variable such as BAUD_RATE, which

might denote a default modem speed).

To experiment with the environment variables, you can modify the PS1 variable to manip-

ulate the appearance of your shell prompt. If you are working with bash, you can use its

built-in export command to change the shell prompt. For example, say that your default

shell prompt looks like this:

matthew@seymour:~$

You can change its appearance by using the PS1 variable, like this:

matthew@seymour:~$ export PS1='$OSTYPE r00lz ->'

After you press Enter, you see the following:

linux-gnu r00lz ->

NOTE

See the bash man page for other variables you can use for prompt settings.

Using Common Text Editors
Linux distributions include a number of applications known as text editors that you can

use to create text files or edit system configuration files. Text editors are similar to word

processing programs but generally have fewer features, work only with text files, and

might or might not support spell checking or formatting. Text editors range in features

and ease of use and are found on nearly every Linux distribution. The number of editors

installed on a system depends on what software packages you’ve installed on the system.

The most popular console-based text editors include the following:

 ▶ emacs—The comprehensive GNU emacs editing environment, which is much more

than an editor; see the section “Working with emacs,” later in this chapter

 ▶ nano—A simple text editor similar to the classic pico text editor that was included

with the once-common pine email program

 ▶ vim—An improved compatible version of the vi text editor (which we call vi in

the rest of this chapter because it has a symbolic link named vi and a symbolically

linked manual page)

186 CHAPTER 12 Command-Line Master Class, Part 2

Note that not all text editors are screen oriented, meaning designed for use from a terminal.

The following are some of the text editors designed to run from a graphical desktop and

that provides a graphical interface with menu bars, buttons, scrollbars, and so on:

 ▶ gedit—A GUI text editor for GNOME, which is installed by default with Ubuntu

 ▶ kate—A simple KDE text editor

 ▶ kedit—Another simple KDE text editor

A good reason to learn how to use a text-based editor, such as vi or nano, is that system

maintenance and recovery operations almost never take place during GUI sessions, negat-

ing the use of a GUI editor. Many larger, more complex and capable editors do not work

when Linux is booted to its single-user or maintenance mode. If anything goes wrong

with your system, and you can’t log in to the GUI, knowledge and experience of using

both the command line and text editors will be very important. Make a point of opening

some of the editors and playing around with them. You never know; you might just thank

us someday.

Another reason to learn how to use a text-based editor under the Linux console mode is

so that you can edit text files through remote shell sessions because many servers do not

host graphical desktops.

NOTE

Before you take the time to get familiar with a nonstandard text editor, consider this: All

three of the editors discussed here are readily available and common. Two of them, nano

and vi, are almost universally installed. If you spend your time learning a nonstandard

editor, you will find yourself having to install it on every system or fighting against the

software that is already there instead of using your time productively. Feel free to use any

text editor you prefer, but we strongly recommend that you make sure you have at least a

basic working knowledge of these standard editors so that you can walk up to any system

and start working when necessary.

Working with nano

We discuss nano first because it has the easiest learning curve. It is neither the most pow-

erful nor the most “guru approved,” but nano is a respectable text editor that you can run

from the command line, and it’s often perfect for quick tasks such as editing configuration

files.

Learning how to use nano is quick and easy. You might need to edit files on a Linux

system with a minimal install or a remote server without a more extensive offering of

installed text editors. Chances are nearly 100 percent that nano will be available.

You can start an editing session by using the nano command like this:

matthew@seymour:~$ nano file.txt

187

1
2

Using Common Text Editors

When you first start editing, you see the text on the screen with a title bar across the top

and a list of simple commands across the bottom. The editor is simple enough that you

can use it without any instruction. Here are the basic commands, just so you can compare

them with other editors discussed here:

 ▶ Cursor movement—Arrow keys (left, down, up, and right), Page Up and Page

Down keys, or Ctrl+Y and Ctrl+V page up and down

 ▶ Add characters—Type at the cursor location

 ▶ Delete character—Backspace or Delete

 ▶ Exit—Ctrl+X (prompts to ask whether to save changes)

 ▶ Get Help—Ctrl+G

NOTE

nano really is very easy to use, but this does not mean it cannot be used by power users.

Take a little time and read the contents of Help to discover some of the interesting and

powerful capabilities of this editor.

Working with vi

The one editor found on nearly every UNIX and Linux system is the vi editor, originally

written by Bill Joy. This simple-to-use but incredibly capable editor features a somewhat

cryptic command set, but you can put it to use with only a few commands. Although

many experienced UNIX and Linux users use vi extensively during computing sessions,

many users who do only quick and simple editing might not need all its power and might

prefer an easier-to-use text editor such as nano. Diehard GNU fans and programmers often

use emacs for pretty much everything.

However, learning how to use vi is a good idea. You might need to edit files on a Linux

system with a minimal install or on a remote server without a more extensive offering of

installed text editors. Chances are nearly 100 percent that vi will be available.

You can start an editing session by using the vi command like this:

matthew@seymour:~$ vi file.txt

The vi command works by using an insert (or editing) mode and a viewing (or command)

mode.

When you first start editing, you are in the viewing mode. You can use your arrow or

other navigation keys (as shown later) to scroll through the text. To start editing, press the

i key to insert text or the a key to append text. When you’re finished, use the Esc key to

toggle out of the insert or append modes and into the viewing (or command) mode. To

enter a command, type a colon (:), followed by the command, such as w to write the file,

and press Enter.

188 CHAPTER 12 Command-Line Master Class, Part 2

Although vi supports many complex editing operations and numerous commands, you

can accomplish work by using a few basic commands. These basic vi commands are as

follows:

 ▶ Cursor movement—h, j, k, l (left, down, up, and right)

 ▶ Delete character—x

 ▶ Delete line—dd

 ▶ Mode toggle—Esc, Insert (or i)

 ▶ Quit—:q

 ▶ Quit without saving—:q!

 ▶ Run a shell command—:sh (use 'exit' to return)

 ▶ Save file—:w

 ▶ Text search—/

NOTE

Use the vimtutor command to quickly learn how to use vi’s keyboard commands. The

tutorial takes less than 30 minutes, and it teaches new users how to start or stop the

editor; navigate files; insert and delete text; and perform search, replace, and insert

operations.

Working with emacs

Richard M. Stallman’s GNU emacs editor, like vi, is available with Ubuntu and nearly

every other Linux distribution. Unlike other UNIX and Linux text editors, emacs is much

more than a simple text editor. It’s an editing environment, and you can use it to compile

and build programs and act as an electronic diary, appointment book, and calendar. Use

it to compose and send email, read Usenet news, and even play games. The reason for this

capability is that emacs contains a built-in language interpreter that uses the Elisp (emacs

LISP) programming language. emacs is not installed in Ubuntu by default. To use emacs,

the package you need to install is called emacs. See Chapter 9, “Managing Software.”

You can start an emacs editing session like this:

matthew@seymour:~$ emacs file.txt

TIP

If you start emacs when using X11, the editor launches in its own floating window. To

force emacs to display inside a terminal window instead of its own window (which can be

useful if the window is a login at a remote computer), use the -nw command-line option

like this: emacs -nw file.txt.

189

1
2

Using Common Text Editors

The emacs editor uses an extensive set of keystroke and named commands, but you can

work with it by using a basic command subset. Many of these basic commands require

you to hold down the Ctrl key, or to first press a meta key (generally mapped to the Alt

key). The basic emacs commands are listed as follows:

 ▶ Cursor left—Ctrl+B

 ▶ Cursor down—Ctrl+N

 ▶ Cursor right—Ctrl+F

 ▶ Cursor up—Ctrl+P

 ▶ Delete character—Ctrl+D

 ▶ Delete line—Ctrl+K

 ▶ Go to start of line—Ctrl+A

 ▶ Go to end of line—Ctrl+E

 ▶ Help—Ctrl+H

 ▶ Quit—Ctrl+X, Ctrl+C

 ▶ Save as—Ctrl+X, Ctrl+W

 ▶ Save file—Ctrl+X, Ctrl+S

 ▶ Search backward—Ctrl+R

 ▶ Search forward—Ctrl+S

 ▶ Start tutorial—Ctrl+H, T

 ▶ Undo—Ctrl+X, U

One of the best reasons to learn how to use emacs is that you can use nearly all the same

keystrokes to edit commands on the bash shell command line, although it is possible to

change the default to use vi key bindings. Another reason is that like vi, emacs is univer-

sally available for installation on nearly every UNIX and Linux system, including Apple’s

macOS.

Working with sed and awk

sed, which is short for stream editor, is a command that is used to perform transforma-

tions on text. It works from the command line and processes text via standard in and

standard out. It does not modify the original input and does not save the output unless

you redirect that output to a file. It is most useful this way or when piped between other

commands.

awk is a small programming language for processing strings. It takes in text, transforms

it in whatever way you tell it to, and then outputs the transformed text. It doesn’t do as

much as other languages, but what it does do it does with elegance and speed.

190 CHAPTER 12 Command-Line Master Class, Part 2

Both sed and awk run from the command line. There is a lot to them—more than can be

covered in a short section of one chapter of a long book—but you can learn enough about

each in just a few minutes to find them useful. If you want to continue learning about

them, great resources are available online and in the aptly named book sed & awk by Dale

Dougherty and Arnold Robbins.

sed and awk aren’t used much anymore, at least not by people who have entered the pro-

fession in the twenty-first century, but they are beloved by those who take the time to

learn them. For this edition of the book, we are including only a brief mention and a cou-

ple quick examples—certainly not enough to really learn to use either in a large capacity.

If there is significant interest, we may break this out and expand it into a separate chapter

in a future edition.

You use sed with sed commands, like this:

matthew@seymour:~$ sed sedcommand inputfile

matthew@seymour:~$ sed -e sedcommand inputfile

matthew@seymour:~$ sed -e sedcommand -e anothersedcommand inputfile

The second example does the same thing as the first example, except that it specifically

denotes the command to run. This is optional when there is only one command, but it is

useful when you want to run other commands, as in the third example.

Let’s say you want to change every instance of camel in the text file transportation.txt

to dune buggy. Here is how you do that:

matthew@seymour:~$ sed -e 's/camel/dune buggy/g' transportation.txt

The s command stands for substitution. It is surrounded by ' marks to prevent confusion

with spaces or other characters in the strings it contains. The s is followed by / (slash),

which is a delimiter separating the parts of the command from one another. Next is the

pattern to match, followed by what it will be changed to. Finally, the letter g means to

replace it globally, or everywhere in the text file that camel occurs.

You can process text based on line numbers in the file. If you wanted to delete lines 4

through 17 in the file longtext.txt, you would do this:

matthew@seymour:~$ sed -e '4,17d' longtext.txt

The characters used for sed commands are generally obvious, like the d in this example

standing for delete. You can use a regular expression in place of the line numbers. You can

also use other commands besides substitute and delete. You can use sed in scripts and

chain commands together.

The most common use of awk is to manipulate files that consist of fields separated by

delimiters, such as a comma-separated values (CSV) file output from a spreadsheet pro-

gram or a configuration file that assigns default values to program variables.

You define the delimiter that awk will look for, and it then assigns an internal awk variable

to each item on a line. That is, if you have a set of parameters and values in a file where

191

1
2

Working with Compressed Files

each parameter is listed, followed by an equals sign as the delimiter, then a value, you

define this for awk in your command, and the parameter will be assigned, for example, as

$1 and the value as $2.

Most files contain more than lists of parameters and values, though. What if you had a

comma-delimited file containing names of things on your desk, a category for each, a

color for each, and a date corresponding to the last time you picked up each item? That is

four columns: name, category, color, and date. If you only really cared about the names

and dates, you could use awk to process the file quickly and list just these, like this:

matthew@seymour:~$ awk -F',' '{print $1, "was last picked up on", $4}' desk-

stuff.txt

The output would be displayed on the screen (but could be redirected to a file) and would

contain a list of only the information you wanted. In the preceding command, -F defines

the delimiter, which is placed in ' marks, and the pair of { } within a set of ' marks

defines what to output—first variable 1, then the text was last picked up on, followed

by variable 4. At the end, the text file to process is named.

You can define multiple delimiters by using [], like this: -F'[;,-]'. You can adjust how

to format the text that is output. You can output placeholders when there are blank vari-

ables. You can place several awk statements in a file and then run it as if it were a shell

script.

To close this introduction, say that you have a large text file containing delimited lists

of data, and that file contains far more information than you need. After you extract

the data you need from the file, you want to replace a subset of that data with a differ-

ent value. Give yourself a minute to think at a high level about how you might be able

to process the file through awk, then pipe it into sed, and then redirect the output to a

file. Think about how long that would take you to perform by hand or even with most

programming languages, like Python or Perl. Consider how long those programs would

be and, in the case of Perl, how difficult it might be to read it later. Now you know why

people who know them love sed and awk.

Working with Compressed Files
Another file management operation is compression and decompression of files, or the

creation, listing, and expansion of file and directory archives. Linux distributions usually

include several compression utilities you can use to create, compress, expand, or list the

contents of compressed files and archives. These commands include the following:

 ▶ bunzip2—Expands a compressed file

 ▶ bzip2—Compresses or expands files and directories

 ▶ gunzip—Expands a compressed file

 ▶ gzip—Compresses or expands files and directories

192 CHAPTER 12 Command-Line Master Class, Part 2

 ▶ tar—Creates, expands, or lists the contents of compressed or uncompressed file or

directory archives known as tape archives or tarballs

 ▶ xz—Creates or expands files or directories

Most of these commands are easy to use. However, the tar command, which is the most

commonly used of the bunch, has a somewhat complex set of command-line options and

syntax. This flexibility and power are part of its popularity: You can quickly learn to use

tar by remembering a few of the simple command-line options. For example, to create a

compressed archive of a directory, use tar’s czf options, like this:

matthew@seymour:~$ tar czf compressedfilename.tgz directoryname

The result is a compressed archive (a file ending in .tgz) of the specified directory (and all

files and directories under it). Add the letter v to the preceding options to view the list of

files added during compression and archiving while the archive is being created. To list

the contents of the compressed archive, substitute the c option with the letter t, like this:

matthew@seymour:~$ tar tzf archive

However, if many files are in the archive, a better invocation (to easily read or scroll

through the output) is this:

matthew@seymour:~$ tar tzf archive | less

To expand the contents of a compressed archive, use tar’s zxf options, as follows:

matthew@seymour:~$ tar zxf archive

The tar utility decompresses the specified archive and extracts the contents in the current

directory.

Using Multiple Terminals with byobu
Many Linux veterans have enjoyed and use the GNU screen command, which was

designed to enable you to use one terminal to control several terminal sessions easily (see

www.gnu.org/software/screen/ for more info). Although screen has been and is a welcome

and useful tool, you should consider byobu, which is an enhanced version of screen.

Byobu is a Japanese term for decorative, multipanel, vertically folding screens that are

often used as room dividers.

Picture this scene: You connect to a server via Secure Shell (SSH) and are working at the

remote shell. You need to open another shell window so you can have the two running

side by side; perhaps you want the output from top in one window while you’re typing

in another. What do you do? Most people would open another SSH connection, but that

is both wasteful and unnecessary. Like screen, byobu is a terminal multiplexer, which is a

fancy term for a program that enables you to run multiple terminals inside one terminal.

http://www.gnu.org/software/screen/

193

1
2

Using Multiple Terminals with byobu

The best way to learn byobu is to try it yourself. So, open a console, type byobu, and then

press Enter. Your display blinks momentarily and is then replaced with a new console

with new information in a panel at the bottom. Now do something with that terminal:

Run top and leave it running for the time being. Press F2. Your prompt clears again, leav-

ing you able to type. Run the uptime command.

Pop quiz: What happened to the old terminal running top? It is still running, of course.

You can press F3 to return to it. Press F4 to go back to your uptime terminal. While you

are viewing other terminals, the commands in the other terminals carry on running as

normal so you can multitask. Here are some of the basic commands in byobu:

 ▶ F2—Creates a new window

 ▶ F3—Goes to the previous window

 ▶ F4—Goes to the next window

 ▶ F9—Opens the byobu menu for help and configuration

To close a terminal within byobu, simply log out of it normally, using exit or Ctrl+D.

When you exit the last terminal session that is open in byobu, the program closes as well

and drops you to the regular terminal session you used to start byobu.

However, there are two alternatives to quitting a byobu session: locking and disconnecting.

The first, activated with F12, locks access to your screen data until you enter your system

password.

The second is the most powerful feature of screen and also works beautifully in byobu:

You can exit it and do other things for a while and then reconnect later; both screen

and byobu allow you to pick up where you left off. For example, you could be typing at

your desk, detach from a session and go home, reconnect, and carry on as if nothing had

changed. What’s more, all the programs you ran from screen or byobu carry on running

even while screen or byobu is disconnected. They even automatically disconnect for you if

someone closes your terminal window while it is in a locked state (with Ctrl+A+X).

To disconnect, press F6. You are returned to the prompt from which you launched screen

or byobu and can carry on working, close the terminal you had opened, or even log out

completely. When you want to reconnect, run the command screen -r or byobu -r. You

can, in the meantime, just run screen or byobu and start a new session without resuming

the previous one, but that is not wise if you value your sanity. You can disconnect and

reconnect the same session as many times you want, which potentially means you need

never lose your session again.

Although this has been a mere taste of what byobu and screen can do, hopefully you can

see how useful they can be. Check the man pages for each to learn more. You can also

find byobu documentation at https://byobu.co and https://help.ubuntu.com/community/

Byobu.

https://byobu.co
https://help.ubuntu.com/community/Byobu
https://help.ubuntu.com/community/Byobu

194 CHAPTER 12 Command-Line Master Class, Part 2

Doing a Polite System Reset Using REISUB
Sometimes computer systems freeze. We’re not talking about the times when one pro-

gram starts acting weird and the program freezes and everything else works fine. In those

cases, you can use kill to terminate the program and move on, as described in the sec-

tion “Printing Resource Usage with top,” earlier in this chapter or you can use the kill

command as described in Chapter 16. The freezing we’re talking about is when nothing

will work. Nothing responds to any keyboard or other input, not even a Ctrl+Alt+Del key

combination. What then? The absolute worst-case scenario is to perform a power cycle,

which is a fancy way of saying “Turn it off and back on again.” The problem is that power

cycling can cause you to lose data because it can corrupt the file system. This doesn’t

always happen, but it is a large enough risk that you want to avoid performing a power

cycle unless absolutely necessary. Instead, you can try using REISUB.

NOTE

Before you can use the REISUB feature, it must be enabled. The feature is enabled when

the value of /proc/sys/kernel/sysrq is set to 1. You must have this enabled before you

encounter a problem in order for REISUB to work.

To check the current value of this variable, run the following:

matthew@seymour:~$ cat /proc/sys/kernel/sysrq

To change the value, first edit the /etc/sysctl.conf file by uncommenting the line in

the file by removing the # in front of it and saving to set kernel.sysrq=1. Then run the

following:

matthew@seymour:~$ sudo sysctl -p /etc/sysctl.conf

The Linux kernel has a set of key combination commands that are built in at the kernel

level. These are referred to using the name of one of the keys, the SysRq key, often labeled

PrtScr. The Magic SysRq Key combinations send commands directly to the kernel, bypass-

ing any programs running on top of the kernel, including your window manager and

probably anything that is frozen. To use these commands, press SysRq+Alt+ one other key.

Here we focus on the six keys that are most useful to most people; you can find full lists

of available commands at www.kernel.org/doc/html/latest/admin-guide/sysrq.html.

REISUB is an acronym used as a mnemonic device to help users remember the Magic

SysRq Key sequence that is best to use when trying to restart a frozen system without risk-

ing damage to the file system. You hold down SysRq+Alt and press the R, E, I, S, U, B keys

one at a time, in order. This performs the following series of actions, listed in order here,

with the letter corresponding to the command capitalized:

 ▶ unRaw—Takes control of the keyboard back from the X server

 ▶ tErminate—Sends a SIGTERM command to all processes, which allows time for the

processes to terminate gracefully

http://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

195

1
2

Fixing an Ubuntu System That Will Not Boot

 ▶ kIll—Sends a SIGKILL to all processes, forcing any that are still running to termi-

nate immediately

 ▶ Sync—Flushes data from memory to disk

 ▶ Unmount—Unmounts and remounts all file systems as read-only

 ▶ reBoot—Turns off and back on again, restarting the computer

If you have to use REISUB, allow several seconds for each step. Be patient. Doing it this

way can save you from the heartache of lost data.

Fixing an Ubuntu System That Will Not Boot
Although it’s uncommon, it happens: Sometimes a system will not boot. There are many

reasons a system won’t boot. The goal here is to help you discover one that may help you

recover your system. The ideas in this section are for computers that have had a working

Ubuntu installation; however, they may also be useful if you attempted an install that did

not work. The options described here are not going to help with troubleshooting comput-

ers running Windows or other operating systems.

Checking BIOS

If your computer is unable to boot at all—not even from a known-good bootable USB

drive or live DVD—there are two options. It is possible that you accidentally reset the boot

devices and/or order in your system BIOS. If making sure those settings are correct does

not help, you may have a hardware problem.

Checking GRUB

If you are able to turn on the computer on and get past the initial BIOS startup, then you

should consider whether you can access GRUB. As discussed in greater detail in Chapter

15, “The Boot Process,” the GRUB boot loader takes over after the BIOS has completed its

initial work. Hold down the Shift key after the BIOS part is done to bring up the GRUB

menu. If GRUB does not appear, then perhaps it has been overwritten, in which case

the next section will help. If GRUB is working fine, skip to the “Using Recovery Mode”

section.

Reinstalling GRUB

To restore GRUB, follow these steps:

NOTE

If you have a dual-boot system, you must be extremely careful with the steps in this sec-

tion because the details in step 2 may differ depending on the other operating system

residing on your system. Troubleshooting dual-boot systems is beyond the scope of this

book.

196 CHAPTER 12 Command-Line Master Class, Part 2

 1. Boot Ubuntu from a live DVD or bootable USB drive that has the same Ubuntu

release as your system, such as 16.04.

 2. Determine the boot drive on your system:

 a. Open a terminal and use sudo fdisk -l to list the drives attached to the system.

 b. Look for an entry in the output with an * in the Boot column. This is your boot

device. It will look something like /dev/sda1 or /dev/nvmen0p1.

 3. Mount the Ubuntu partition at /mnt by using this command, replacing /dev/sda1

with the information you just found:

 matthew@seymour:~$ sudo mount /dev/sda1 /mnt

 4. Reinstall GRUB with this command, again replacing /dev/sda1 with what you found

earlier:

 matthew@seymour:~$ sudo grub-install --boot-directory=/mnt/boot /dev/sda1

 5. Restart the computer, and Ubuntu should boot properly.

Using Recovery Mode

If GRUB is already working but you are unable to access Ubuntu, you may be able to use recov-

ery mode. Press Shift after the BIOS is done to access the GRUB menu. Select Advanced Options

for Ubuntu. From the new menu, select an entry with the words recovery mode. This boots

into a recovery menu with options to automatically fix several possible problems, or at least it

lets you boot into a minimal recovery-mode version of Ubuntu with only the most necessary

processes loaded. From here, you may be able to fix disks, check file systems, drop to a root

prompt to fix file permissions, and so on. If you don’t understand the entries in this menu,

they aren’t likely to help you much, and you should consider the next option.

Reinstalling Ubuntu

If you are able to boot using a live DVD or bootable USB drive using the same Ubuntu release

or one just newer than the one on the hard drive, and if there are no hardware problems

with your system, you can usually recover all your files by reinstalling Ubuntu. Boot from the

install medium and select Install Ubuntu. Make sure you are paying attention. The installer

will detect an existing Ubuntu installation and give you the option to reinstall Ubuntu. When

you do this, it should not overwrite existing files in your /home directory. Note that we said

should not—not will not—and you should consider this an option of last resort.

Tips and Tricks
This last section is a motley collection of useful command-line tidbits that don’t really fit

well in the other categories but that are worth sharing. Enjoy.

Running the Previous Command

You can rerun the previous command with the up arrow and Enter. You can also rerun it

with!! (referred to as “bang bang”). This is especially useful for times when you typed a

command correctly but forgot to preface it with sudo, as shown here:

matthew@seymour:~$ apt-get update

E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)

197

1
2

Tips and Tricks

E: Unable to lock directory /var/lib/apt/lists/

E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission denied)

E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?

matthew@seymour:~$ sudo !!

This runs sudo apt-get update.

Running Any Previous Command

You found a neat trick and ran it, but you can’t remember it. That is frustrating. You

know you can use the up and down arrows to search through your command history and

try to find it, but you last ran it earlier in the week, and you aren’t sure how long that will

take. No worries. You can search your command history.

Type Ctrl+R at the command line to start what is called a “reverse-i search” and begin typ-

ing. Whatever you type will be matched to previously run commands, so if you know it

was a cool combination of commands piped together that had sort in the middle, start

typing “sort” and watch as the displayed commands from your history appear. When you

find it, press Enter and run it again.

Running a Previous Command That Started with Specific Letters

Say that you are listing the contents of a directory that is several layers deep, and you last

ran it about nine commands ago, but you don’t feel like scrolling. No sweat. Use ! (exclama-

tion point) and the letters that make up that command or its beginning, as shown here:

matthew@seymour:~$!ls

This runs the most recently run command that started with ls.

Running the Same Thing You Just Ran with a Different First Word

Say that you just used ls to list a file, and you have confirmed that it is present. Now you

want to use nano to edit the file. Use !* (exclamation point asterisk):

matthew@seymour:~$ ls stuff/article.txt

article.txt

matthew@seymour:~$ nano !*

Viewing Your History and More

By default, the previous 1,000 commands you have run are saved in your /home direc-

tory in a file called .bash_history. You can edit this file. You can delete this file. You can

change the number of commands saved in your history by editing this line in the .bashrc

file in your /home directory to whatever number you want:

HISTSIZE=1000

198 CHAPTER 12 Command-Line Master Class, Part 2

Doing Two or More Things

There are a few ways you can do two or more things on one line.

Separating commands with a ; (semicolon) causes the second command to execute after

the first command is complete, regardless of the result of the first command. Here is an

example:

matthew@seymour:~$ command1 ; command2

If you want the second command to be run only if the first command exited with no

errors, use && (two ampersands):

matthew@seymour:~$ command1 && command2

If you want the second command to be run only if the first command fails, use || (two

pipes):

matthew@seymour:~$ command1 || command2

Using Shortcuts

We all make typing errors while entering commands. When you notice an error in a long

line of text, just before you press Enter, it is frustrating to use the Backspace key to erase

the entire line one character at a time. There are faster ways.

 ▶ Ctrl+U—Erases the entire line

 ▶ Ctrl+W—Erases word by word

 ▶ Left and right arrow keys—Move along the line to where the error is

 ▶ Ctrl+A—Moves the cursor to the beginning of the line

 ▶ Ctrl+E—Moves the cursor to the end of the line

 ▶ Ctrl+K—Erases everything to the right of the cursor’s position

 ▶ Ctrl+Y—Restores something you just deleted but shouldn’t have

Confining a Script to a Directory

Sometimes you want to isolate a process from the rest of the system, such as when you

want to test a script you have written, but you also want to make sure the script is only

able to affect what you want it to and not anything else. To do this, you can set up what

is called a chroot jail. Really, all you are doing is creating a new directory, copying the

files you need for the process to run into that directory, and then using the chroot com-

mand to change the root directory to the base of this new file system tree. Explained dif-

ferently, you are making the system act temporarily as if the directory you just named is

root, when in reality nothing in the file system has changed.

199

1
2

Tips and Tricks

For example, let’s say you have a simple file system like this:

/

├─etc

├─home

| └─testing

| └─fakeetc

| └─www

└─var

└─www

If you enter this:

matthew@seymour:~$ chroot testing

And follow it with this:

matthew@seymour:~$ ls /

You receive this output:

/

├─fakeetc

└─www

TIP

It is possible for processes that run as root to “break out” of a chroot environment, so

maybe chroot jail is not the most accurate term, but it is commonly used. It is better to

think of this as a means to do some isolated testing but not truly secure testing.

Using Coreutils

You have already learned about some of the contents of a package of useful command-line

tools called GNU Coreutils. It includes some of the most commonly used commands, like

ls, mv, cp, rm, and cat. It also contains a ton of lesser-known but incredibly useful

tools. This package is installed by default. Few people ever make use of its richness. You

will want to explore it more deeply. Coreutils contains so much, it is worthy of a chap-

ter and maybe a book of its own. What we can do here is point you to the GNU website

entry for Coreutils, at www.gnu.org/software/coreutils/, and also the info page at info

coreutils (there is no man page for Coreutils).

Coreutils includes so many useful commands, many of which are covered across this

book’s command-line chapters. For a version of the Coreutils manual that is easier to read

than the info page, see https://www.gnu.org/software/coreutils/manual/coreutils.html.

http://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/manual/coreutils.html

200 CHAPTER 12 Command-Line Master Class, Part 2

Reading the Contents of the Kernel Ring Buffer with dmesg

Although it sounds fancy and ominous, the kernel ring buffer is actually quite simple—at

least conceptually. It records a limited set of messages related to the operation of the

Linux kernel. When it reaches a certain number of messages, it deletes the oldest message

every time a new message is written to the list. Looking at the contents of the kernel ring

buffer with dmesg can be helpful in determining what is happening with your system. If

you enter the following, you will receive an incredibly long and scary-looking list of data:

matthew@seymour:~$ dmesg

This is too much information to be really helpful. The best use of dmesg, then, is to com-

bine it with a filter and look for specific entries in the output. You might search for a part

of the system, like “memory,” or a specific vendor, like “nvidia,” to read messages con-

taining that text, like so:

matthew@seymour:~$ dmesg | grep nvidia

References
 ▶ www.vim.org—Home page for the vim (vi clone) editor included with Linux dis-

tributions, which provides updates, bug fixes, and news about this editor

 ▶ www.gnu.org/software/emacs/emacs.html—Home page for the FSF’s GNU

emacs editing environment, where you can find additional documentation and links

to the source code for the latest version

 ▶ www.nano-editor.org—Home page for the GNU nano editor environment

 ▶ sed & awk by Dale Dougherty and Arnold Robbins—The standard book for

learning sed and awk

 ▶ The UNIX CD Bookshelf—Seven highly respected books in one, which retails for

more than $120 but is incomparable in its depth and breadth of coverage

http://www.vim.org
http://www.gnu.org/software/emacs/emacs.html
http://www.nano-editor.org

IN THIS CHAPTER

 ▶ User Accounts

 ▶ Managing Groups

 ▶ Managing Users

 ▶ Managing Passwords

 ▶ Granting System Administrator

Privileges to Regular Users

 ▶ Disk Quotas

 ▶ Related Ubuntu Commands

 ▶ References

CHAPTER 13

Managing Users

System administrators would have a boring, but much

easier, life without users. In reality, having a system with

absolutely no users is impossible, so learning how to effec-

tively manage and administer your users as they work with

your system is important. Whether you are creating a single

user account or modifying a group that holds hundreds of

user accounts, the fundamentals of user administration are

the same.

User management and administration includes allocat-

ing and managing /home directories, putting in place good

password policies, and applying effective security policies

that include things such as disk quotas and file and direc-

tory access permissions. This chapter covers all these areas

as well as some of the different types of users that you are

likely to find on a typical Linux system.

User Accounts
You normally find three types of users on Linux systems:

the super user, the day-to-day user, and the system user.

Each type is essential to the smooth running of your sys-

tem. Learning the differences between the three is essential

if you are to work efficiently and safely within your Linux

environment.

All users who access your system must have accounts on

the system. Ubuntu uses the /etc/passwd file to store

information on the user accounts that are present on the

system. All users, regardless of their type, have a one-line

entry in this file that contains their username (typically

used for logging in to the system), an encrypted field for

the password (which contains an X to indicate that a pass-

word is present), a user ID (commonly referred to as the

UID), and a group ID (commonly referred to as the GID).

202 CHAPTER 13 Managing Users

The last two fields show the location of the /home directory (usually /home/username) and

the default shell for the user (/bin/bash is the default for new users). There is also a field

called GECOS that uses a comma-delimited list to record information about the account

or the user; most often when this field is used, it records the user’s full name and contact

information.

NOTE

Although the Password field contains an X, this doesn’t mean that what you read here is

the actual password. All passwords are stored in /etc/shadow in an encrypted format for

safekeeping. Ubuntu automatically refers to this file whenever a password is required. You

can read more about this later in the chapter, in the “Shadow Passwords” section.

In keeping with long-standing tradition in UNIX-style operating systems, Ubuntu makes

use of the well-established UNIX file ownership and permission system. To start with,

everything in these systems is treated as a file, and all files (which can include directories

and devices) can be assigned one or more read, write, and execute permissions. These

three “flags” can also be assigned as desired to each of three categories: the owner of the

file, a member of a group, or anyone else on the system. The security for a file is drawn

from these permissions and from file ownership. As the system administrator (also com-

monly referred to as the super user), it is your responsibility to manage these settings effec-

tively and ensure that the users have proper UIDs and GIDs. Perhaps most importantly,

the system administrator can use these file permissions to lock away sensitive files from

users who should not have access to them.

The Super User/Root User

No matter how many system administrators there are for a system, there can be only one

super user account. The super user account, more commonly referred to as the root user,

has total and complete control over all aspects of the system. That account can access any

part of the file system; read, change, or delete any file; grant and revoke access to files and

directories; and carry out any operation on the system, including destroying it. The root

user is unique in that it has a UID of 0 and GID of 0.

Because the root user has supreme power over a system, it’s important that you not work

as root all the time because you might inadvertently cause serious damage to your system,

perhaps even making it totally unusable. Instead, work as root only when you need to

make specific changes to your system that require root privileges. As soon as you’ve fin-

ished that work, you can switch back to your normal user account to carry on working.

In Ubuntu, you execute a command with root, or super user, privileges by using the sudo

command, like this:

matthew@seymour:~$ sudo apt-get update

You are then prompted for your password, which does not show on the screen as you

enter it. After typing in your password, press Enter. Ubuntu then carries out the command

203

1
3

User Accounts

(in this case updating information about available software) as if you were running it as

root.

THE ROOT USER

If you’ve used other Linux distros, you might be a little puzzled by the use of the sudo

command because not all distros use it. In short, Ubuntu allows the first user on the

system access to full root privileges using the sudo command. It also disables the root

account so that no one can actually log in with the username root.

In other Linux distros, you change to the root user by issuing the command su – and then

entering the root password when prompted. This lands you at the root prompt, which is

shown as a pound sign (#). From here, you can execute any command you want. To get to

a root prompt in Ubuntu, you need to execute the command sudo -i, and after you enter

your password, you get the prompt so familiar to other Linux distros. When you’ve finished

working as root, type exit and press Enter to get back to a normal user prompt ($).

A regular user is someone who logs on to the system to use it for nonadministrative tasks

such as word processing or email. These users do not need to make system-wide changes

or manage other users. However, they might want to be able to change settings specific to

their accounts (for instance, a desktop background). Depending on how much control the

system administrator (the root or super user) likes to wield, regular users might not even

be able to do that.

The super user grants privileges to regular users using file and directory permissions (as

covered in Chapter 10, “Command-Line Beginner’s Class”). For example, if the super user

does not want you to change your settings in ~/.profile (the ~ is a shell shortcut repre-

senting your /home directory), then as root she can alter the permissions so that you may

read from, but not write to, that file.

CAUTION

Because of the potential for making a catastrophic error as the super user, use your sys-

tem as a regular user most of the time and use your super user powers only temporarily

to do specific administration tasks. This is easier to remember in Ubuntu than in some

other distros because the root account is initially disabled, and you must manually choose

to use sudo. If you work on a multiuser system, consider this advice an absolute rule; if

root were to delete the wrong file or kill the wrong process, the results could be disas-

trous for the system (and likely the business that owns and operates it). On your home

system, you can do as you please. Running as root makes many things easier—but much

less safe—and we still do not recommend using it all the time. In any setting, the risks

of running as root are significant, and we cannot stress enough how important it is to be

careful when working as root.

The third type of user is the system user. The system user is not a person but rather an

administrative account that the system uses during day-to-day running of various services.

For example, the system user named www-data owns the Apache web server and all the

associated files. Only that user and root can have access to these files; no one else can

204 CHAPTER 13 Managing Users

access or make changes to these files. System users do not have a home directory or pass-

word, nor do they permit access to the system through a login prompt.

You can find a list of all the users on a system in the /etc/passwd file.

User IDs and Group IDs

A computer is, by its very nature, a number-oriented machine. It identifies users and

groups by numbers known as the user ID (UID) and group ID (GID). The alphabetic names

display on your screen just for ease of use.

As previously mentioned, the root user is UID 0. Numbers from 1 through 499 and num-

ber 65,534 are the system, sometimes called logical users, or pseudo-users. Regular users

have UIDs beginning with 1,000; Ubuntu assigns them sequentially, beginning with this

number.

With only a few exceptions, the GID is the same as the UID.

Ubuntu creates a private GID for every UID of 1,000 and greater. The system administrator

can add other users to a GID or create a totally new group and add users to it. Unlike in

Windows NT and some UNIX variants, a group in Ubuntu (or any other Linux distribu-

tion) cannot be a member of another group.

File Permissions

There are three types of permissions: read, write, and execute (r, w, x). For any file or direc-

tory, permissions are assigned to three categories: user, group, and other. This section

focuses on group permissions. First, though, we want to highlight three commands used

to change the group, user, or access permissions of a file or directory:

 ▶ chgrp—Changes the group ownership of a file or directory

 ▶ chown—Changes the owner of a file or directory

 ▶ chmod—Changes the access permissions of a file or directory

You can use these commands to reproduce organizational structures and permissions in the

real world in your Ubuntu system (see the next section, “Managing Groups”). For example,

a human resources department can share health-benefit memos to all company employees

by making the files readable (but not writable) by anyone in an accessible directory. Pro-

grammers in the company’s research and development section, although able to access each

other’s source code files, would not have read or write access to HR pay scale or personnel

files—and certainly would not want HR or marketing poking around R&D.

These commands are used to easily manage group and file ownerships and permissions from

the command line. It is essential that you know these commands because there are times

when you are likely to have only a command-line interface to work with. (There was a time

when a well-meaning but fat-fingered system administrator set incorrect permissions on X11,

rendering the system incapable of working with a graphical interface. No, we won’t tell that

story, but if you press them, most systems administrators have similar tales of woe.)

205

1
3

Managing Groups

USER STEREOTYPES

As is the case in many other professions, exaggerated stereotypes have emerged for

users and system administrators. Many stereotypes contain elements of truth mixed with

generous amounts of hyperbole and humor and serve to assist us in understanding the

characteristics of and differences in the stereotyped subjects. The stereotypes of the luser

and the BOFH (not-so-nice terms for users and administrators, respectively) serve as cau-

tionary tales describing what behavior is acceptable and unacceptable in the computing

community.

Understanding these stereotypes enables you to better define the appropriate and

inappropriate roles of system administrators, users, and others. You can find descrip-

tions of these terms on Wikipedia at https://en.wikipedia.org/wiki/Luser and https://

en.wikipedia.org/wiki/BOFH.

Managing Groups
Groups can make managing users a lot easier. Instead of having to assign individual per-

missions to every user, you can use groups to grant or revoke permissions to a large num-

ber of users quickly and easily. Setting group permissions enables you to set up workspaces

for collaborative working and to control what devices can be used, such as external drives

or DVD writers. This approach also represents a secure method of limiting access to system

resources to only those users who need them. As an example, the system administrator

could put the users matthew, ryan, sandra, holly, debra, and mark in a new group named

unleashed. Those users could each create files intended for their group work and chgrp

those files to unleashed.

Now, everyone in the unleashed group—but no one else except root—can work with

those files. The system administrator would probably create a directory owned by that

group so that its members could have an easily accessible place to store those files. The

system administrator could also add other users such as chris and shannon to the group

and remove existing users when their part of the work is done. The system administrator

could make the user matthew the group administrator so that matthew could decide how

group membership should be changed. You could also put restrictions on the DVD writer

so that only matthew could burn DVDs, thus protecting sensitive material from falling into

the wrong hands.

Group Listing

Different UNIX operating systems implement the group concept in various ways. Ubuntu

uses a scheme called UPG (user private group) in which the default is that each user is

assigned to a group with his or her own name. (The user’s username and group name are

identical.) All the groups on a system are listed in /etc/group file.

Here is an example of a portion of the /etc/group file:

matthew@seymour:~$ cat /etc/group

root:x:0:

daemon:x:1:

https://en.wikipedia.org/wiki/Luser
https://en.wikipedia.org/wiki/BOFH
https://en.wikipedia.org/wiki/BOFH

206 CHAPTER 13 Managing Users

bin:x:2:

sys:x:3:

adm:x:4:matthew

tty:x:5:

disk:x:6:

mail:x:8:

news:x:9:

fax:x:21:matthew

voice:x:22:

cdrom:x:24:matthew

floppy:x:25:matthew

tape:x:26:matthew

www-data:x:33:

crontab:x:107:

ssh:x:109:

admin:x:115:matthew

saned:x:116:

gdm:x:119:

matthew:x:1000:

ntp:x:122:

In this example, you see a number of groups, mostly for services (mail, news, and so on)

and devices (disk and so on). As previously mentioned, the system services groups allow

those services to have ownership and control of their files. For example, adding Postfix

to the mail group enables the Postfix application to access mail’s files such that mail can

decide about group access to its file. Adding a regular user to a device’s group permits the

regular user to use the device with permissions granted by the group owner. Adding user

matthew to the group cdrom, for example, allows matthew to use the optical drive device.

You learn how to add and remove users from groups in the next section.

FINDING YOUR GROUPS

You can find which groups your user account belongs to by using the groups command,

like this:

matthew@seymour:~$ groups

matthew adm cdrom sudo audio dip plugdev lpadmin sambashare

Add a username after the command to list the groups for that user.

Group Management Tools

Ubuntu provides several command-line tools for managing groups, and it also provides

graphical tools for doing so. Most experienced system administrators prefer the command-

line tools because they are quick and easy to use, they are always available (even when

there is no graphical user interface), and they can be included in scripts that system

administrators may want to write to perform repetitive tasks.

207

1
3

Managing Users

Here are the most commonly used group management command-line tools:

 ▶ groupadd—This command creates and adds a new group.

 ▶ groupdel—This command removes an existing group.

 ▶ groupmod—This command creates a group name or GIDs but doesn’t add or delete

members from a group.

 ▶ gpasswd—This command creates a group password. Every group can have a group pass-

word and an administrator. Use the -A argument to assign a user as group administrator.

 ▶ useradd -G—The -G argument adds a user to a group during the initial user creation.

(More arguments are used to create a user.)

 ▶ usermod -G—This command allows you to add a user to a group as long as the user

is not logged in at the time.

 ▶ grpck—This command checks the /etc/group file for typos.

Let’s say there is a DVD-RW device (/dev/scd0) on your computer that the system admin-

istrator wants a regular user named ryan to have permission to access. This is the process

for granting ryan that access:

 1. Add a new group with the groupadd command:

 matthew@seymour:~$ sudo groupadd dvdrw

 2. Change the group ownership of the device to the new group with the chgrp command:

 matthew@seymour:~$ sudo chgrp dvdrw /dev/scd0

 3. Add the approved user to the group with the usermod command:

 matthew@seymour:~$ sudo usermod -G dvdrw ryan

 4. Make user ryan the group administrator with the gpasswd command so that he can

add new users to the group:

 matthew@seymour:~$ sudo gpasswd -A ryan

Now ryan has permission to use the DVD-RW drive, as would anyone else added to the

group by either the super user or ryan because he is now also a group administrator and

can add users to the group.

Managing Users
A user must be created, assigned a UID, provided a /home directory, provided an initial set of files for

his or her /home directory, and assigned to groups in order to use the system resources securely and

efficiently. The system administrator in some situations might want or need to restrict not only a

user’s access to specific files and folders but also the amount of disk space an account may use.

208 CHAPTER 13 Managing Users

User Management Tools

As with groups, Ubuntu provides several command-line tools for managing users, and it

also provides graphical tools for doing so. As mentioned earlier, most experienced system

administrators prefer the command-line tools because they are quick and easy to use,

they are always available (even when there is no graphical user interface), and they can

be included in scripts that system administrators may want to write to perform repetitive

tasks. Here are the most common commands to manage users:

 ▶ useradd—This command adds a new user account to the system. Its options permit

the system administrator to specify the user’s /home directory and initial group or to

create the user with the default /home directory and group assignments (based on the

new account’s username).

 ▶ useradd -D—This command sets the system defaults for creating the user’s /home

directory, account expiration date, default group, and command shell. See the specific

options in the useradd man page. Used without any arguments, the useradd command

displays the defaults for the system. The default files for a user are in /etc/skel.

NOTE

The set of files initially used to populate a new user’s home directory is kept in /etc/

skel. This is convenient for the system administrator because any special files, links, or

directories that need to be universally applied can be placed in /etc/skel and will be

duplicated automatically with appropriate permissions for each new user:

matthew@seymour:~$ ls -la /etc/skel

total 32

drwxr-xr-x 2 root root 4096 2010-04-25 12:14 .

drwxr-xr-x 154 root root 12288 2010-07-01 16:30 ..

-rw-r--r-- 1 root root 220 2009-09-13 22:08 .bash_logout

-rw-r--r-- 1 root root 3103 2010-04-18 19:15 .bashrc

-rw-r--r-- 1 root root 179 2010-03-26 05:31 examples.desktop

-rw-r--r-- 1 root root 675 2009-09-13 22:08 .profile

Each line provides the file permissions, the number of files housed under that file or direc-

tory name, the file owner, the file group, the file size, the creation date, and the filename.

As you can see, root owns every file here. The useradd command copies everything in /etc/

skel to the new home directory and resets file ownership and permissions to the new user.

Certain user files might exist that the system administrator doesn’t want the user to

change; the permissions for those files in /home/username can be reset so that the user

can read them but can’t write to them.

209

1
3

Managing Users

 ▶ deluser—This command removes a user’s account (thereby eliminating that user’s

home directory and all files it contains). There is an older version of this command,

userdel, that previous versions of this book discussed. deluser is preferred because it

provides finer control over what is deleted. Whereas userdel automatically removes

both the user account and also all the user’s files, such as the associated /home direc-

tory, deluser deletes only the user account, unless you use a command-line option

to tell it to do more. deluser includes options such as --remove-home, --remove-

all-files, --backup, and more. See the man page for more information.

 ▶ passwd—This command updates the authentication tokens used by the password

management system.

TIP

To lock a user out of his or her account, use the following command:

matthew@seymour:~$ sudo passwd -l username

This prepends an ! (exclamation point, also called a bang) to the user’s encrypted pass-

word; the command to reverse the process uses the -u option.

 ▶ usermod—This command changes several user attributes. The most commonly used

arguments are -s to change the shell and -u to change the UID. No changes can be

made while the user is logged in or running a process.

 ▶ chsh—This command changes the user’s default shell. For Ubuntu, the default shell

is /bin/bash, known as the Bash, or Bourne Again Shell.

Adding New Users

The command-line approach to adding a user is quite simple and can be accomplished on

a single line. In the following example, the system administrator uses the useradd com-

mand to add the new user sandra:

matthew@seymour:~$ sudo useradd sandra -p c00kieZ4ME -u 1042

The command adduser (a variant found on some UNIX systems) and useradd are simi-

lar and do the same thing. This example uses the -p option to set the password the user

requested and the -u option to specify her UID. (If you create a user with the default set-

tings, you do not need to use these options.) As you can see, all this can be accomplished

on one line.

The system administrator can also use the graphical interface that Ubuntu provides to add

the same account as shown in the preceding command but with fewer setting options

available:

 1. From the menu at the upper right of the desktop, select the Settings icon, which

looks like a gear (see Figure 13.1). In the Settings application, from the bottom left

select Users (see Figure 13.2).

210 CHAPTER 13 Managing Users

 2. Click Unlock at the upper right and enter your password to authorize making

changes to user accounts.

 3. Click Add User at the upper right, where Unlock was, to open the Add Account

window.

 4. Fill in the form with the new user’s name and desired username, select whether to

set a password now or have the new user create a password the first time he or she

logs in, and designate whether the new user is a standard user or an administrator,

and click Add (see Figure 13.3).

FIGURE 13.1 Open the menu at the upper right to find the Settings icon.

FIGURE 13.2 Select Users.

211

1
3

Managing Users

FIGURE 13.3 Adding a new user is simple. The GUI provides a set of options for user manage-

ment spread over several screens.

NOTE

A Linux username can be any alphanumeric combination that does not begin with a spe-

cial character reserved for shell script use (mostly <space> and punctuation characters;

see Chapter 14, “Automating Tasks and Shell Scripting,” for disallowed characters). A

username is often the user’s first name plus the first initial of her last name or the first

initial of the user’s first name and his entire last name. These are common practices on

larger systems with many users because it makes life simpler for the system administra-

tor, but neither convention is a rule or a requirement.

Monitoring User Activity on the System

Monitoring user activity is part of a system administrator’s duties and an essential task in

tracking how system resources are being used. The w command tells the system admin-

istrator who is logged in, where he is logged in, and what he is doing. No one can hide

from the super user. The w command can be followed by a specific user’s name to show

only that user.

The ac command provides information about the total connect time of a user, measured

in hours. It accesses the /var/log/wtmp file for the source of its information. The ac com-

mand is most useful in shell scripts to generate reports on operating system usage for

management review. Note that to use the ac command, you must install the acct package

from the Ubuntu repositories.

212 CHAPTER 13 Managing Users

TIP

Interestingly, a phenomenon known as time warp can occur, where an entry in the wtmp

files jumps back into the past, and ac shows unusual amounts of time accounted for

users. Although this can be attributed to some innocuous factors having to do with the

system clock, it is worthy of investigation by the system administrator because it can also

be the result of a security breach.

The last command searches through the /var/log/wtmp file and lists all the users logged

in and out since that file was first created. The user reboot exists so that you might know

who has logged in since the last reboot. A companion to last is the command lastb,

which shows all failed, or bad, logins. It is useful for determining whether a legitimate

user is having trouble or a hacker is attempting access.

NOTE

The accounting system on your computer keeps track of user usage statistics and is kept

in the current /var/log/wtmp file. That file is managed by the systemd processes. If you

want to explore the depths of the accounting system, use the GNU info system: info

accounting.

Managing Passwords
Passwords are an integral part of Linux security, and they are the most visible part to the

user. In this section, you learn how to establish a minimal password policy for your sys-

tem, where the passwords are stored, and how to manage passwords for your users.

System Password Policy

An effective password policy is a fundamental part of a good system administration plan.

The policy should cover the following:

 ▶ Allowed and forbidden passwords

 ▶ Frequency of mandated password changes

 ▶ Retrieval or replacement of lost or forgotten passwords

 ▶ Password handling by users

The Password File

The password file is /etc/passwd, and it is the database file for all users on the system. The

format of each line is as follows:

username:password:uid:gid:gecos:homedir:shell

213

1
3

Managing Passwords

The fields are self-explanatory except for the gecos field. This field is for miscellaneous

information about the user, such as the user’s full name, office location, office and home

phone numbers, and possibly a brief text note. For security and privacy reasons, this

field is little used today, but the system administrator should be aware of its existence

because the gecos field is used by traditional UNIX programs such as finger and mail.

For that reason, it is commonly referred to as the finger information field. The data in this

field is comma delimited; you can change the gecos field with the chfn (change finger)

command.

Note that colons separate all fields in the /etc/passwd file. If no information is available

for a field, that field is empty, but all the colons remain.

If an asterisk appears in the password field, that user is not permitted to log on. This fea-

ture exists so that a user can be easily disabled and (possibly) reinstated later without the

need to create the user all over again. The traditional UNIX way of accomplishing this task

is for the system administrator to manually edit this field. Ubuntu provides a more elegant

method with the passwd -l command, mentioned earlier in this chapter.

Several services run as pseudo-users, usually with root permissions. These are the system,

or logical, users mentioned previously. You would not want these accounts to be available

for general login for security reasons, so they are assigned /sbin/nologin or /bin/false as

their shell, which prohibits any logins from these accounts.

A list of /etc/passwd reveals the following (abridged for brevity):

matthew@seymour:~$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh

www-data:x:33:33:www-data:/var/www:/bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

messagebus:x:102:106::/var/run/dbus:/bin/false

avahi:x:105:111:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

couchdb:x:106:113:CouchDB Administrator,,,:/var/lib/couchdb:/bin/bash

haldaemon:x:107:114:Hardware abstraction layer,,,:/var/run/hald:/bin/false

kernoops:x:109:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false

gdm:x:112:119:Gnome Display Manager:/var/lib/gdm:/bin/false

matthew:x:1000:1000:Matthew Helmke,,,,:/home/matthew:/bin/bash

sshd:x:114:65534::/var/run/sshd:/usr/sbin/nologin

ntp:x:115:122::/home/ntp:/bin/false

pulse:x:111:117:PulseAudio daemon,,,:/var/run/pulse:/bin/false

214 CHAPTER 13 Managing Users

Note that none of the password fields show a password but rather contain an X. This is

because they are shadow passwords, a useful security enhancement to Linux.

Shadow Passwords

Keeping passwords in /etc/passwd is considered a security risk because anyone with

read access could run a cracking program on the file and obtain the passwords with little

trouble. To avoid this risk, shadow passwords are used so that only an X appears in the

password field of /etc/passwd; the real passwords are kept in /etc/shadow, a file that can

be read only by the system administrator (and PAM, the Pluggable Authentication Modules

authentication manager; see the “PAM Explained” sidebar, later in this chapter, for an

explanation of PAM).

Special versions of the traditional password and login programs must be used to enable

shadow passwords. Shadow passwords are automatically enabled during installation of

Ubuntu. Examine the following abbreviated listing of the shadow companion to /etc/

passwd, the /etc/shadow file:

matthew@seymour:~$ sudo cat /etc/shadow

root:!:14547:0:99999:7:::

daemon:*:14544:0:99999:7:::

bin:*:14544:0:99999:7:::

sys:*:14544:0:99999:7:::

games:*:14544:0:99999:7:::

man:*:14544:0:99999:7:::

mail:*:14544:0:99999:7:::

www-data:*:14544:0:99999:7:::

irc:*:14544:0:99999:7:::

nobody:*:14544:0:99999:7:::

libuuid:!:14544:0:99999:7:::

syslog:*:14544:0:99999:7:::

messagebus:*:14544:0:99999:7:::

kernoops:*:14544:0:99999:7:::

gdm:*:14544:0:99999:7:::

matthew:6wtML.mV4$.I5WeTp9tgGkIjJM4uLR5p6TVUqPrSvJ0N2W/t//0jVBrWQrOySEEDvXsA/sKSEl

QsfmNmfPJYxVrjZ21/Ir70:14564:0:99999:7:::

sshd:*:14547:0:99999:7:::

ntp:*:14548:0:99999:7:::

usbmux:*:14724:0:99999:7:::

pulse:*:14725:0:99999:7:::

The fields are separated by colons and are, in order:

 ▶ The user’s login name.

 ▶ The encrypted password for the user.

 ▶ The day on which the last password change occurred, measured in the number

of days since January 1, 1970. This date is known in UNIX circles as the epoch.

215

1
3

Managing Passwords

Just so you know, the billionth second since the epoch occurred was in September

2001; that was the UNIX version of Y2K—and as with the real Y2K, nothing much

happened.

 ▶ The number of days before the password can be changed (which prevents changing

a password and then changing it back to the old password right away—a dangerous

security practice).

 ▶ The number of days after which the password must be changed. This can be set to

force the change of a newly issued password known to the system administrator.

 ▶ The number of days before the password expiration that the user is warned it will

expire.

 ▶ The number of days after the password expires that the account is disabled (for

security).

 ▶ Similar to the password change date, although this is the number of days since

January 1, 1970, that the account has been disabled.

 ▶ A “reserved” field that is not currently allocated for any use.

Note that password expiration dates and warnings are disabled by default in Ubuntu.

These features are not often used on home systems and usually are not even used for small

offices. It is the system administrator’s responsibility to establish and enforce password

expiration policies if they are to exist.

The permissions on the /etc/shadow file should be set so that it is not writable or readable

by regular users: The permissions should be 600.

PAM EXPLAINED

Pluggable Authentication Modules (PAM) is a system of libraries that handle the tasks of

authentication on a computer. It uses four management groups: account management,

authentication management, password management, and session management. This

allows the system administrator to choose how individual applications will authenticate

users. Ubuntu has preinstalled and preconfigured all the necessary PAM files for you.

The configuration files in Ubuntu are in /etc/pam.d. Each of these files is named for the

service it controls, using the following format:

type control module-path module-arguments

The type field is the management group that the rule corresponds to. The control field

tells PAM what to do if authentication fails. The final two items deal with the PAM module

used and any arguments it needs. Programs that use PAM typically come packaged with

appropriate entries for the /etc/pam.d directory. To achieve greater security, the system

administrator can modify the default entries. Misconfiguration can have unpredictable

results, so back up the configuration files before you modify them. The defaults provided

by Ubuntu are adequate for home and small office users.

216 CHAPTER 13 Managing Users

An example of a PAM configuration file with the formatted entries as described previously

is shown next. Here are the contents of /etc/pam.d/gdm:

#%PAM-1.0

auth requisite pam_nologin.so

auth required pam_env.so readenv=1

auth required pam_env.so readenv=1 envfile=/etc/default/locale

auth sufficient pam_succeed_if.so user ingroup nopasswdlogin

@include common-auth

auth optional pam_gnome_keyring.so

@include common-account

session [success=ok ignore=ignore module_unknown=ignore default=bad]

[ccc]pam_selinux.so open

session required pam_limits.so

@include common-session

session [success=ok ignore=ignore module_unknown=ignore default=bad]

[ccc]pam_selinux.so close

session optional pam_gnome_keyring.so auto_start

@include common-password

Amusingly, even the PAM documents state that you do not really need (or want) to know a

lot about PAM to use it effectively.

You will likely need only the PAM system administrator’s guide. You can find it at www.

linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html.

Managing Password Security for Users

Selecting appropriate user passwords is always an exercise in trade-offs. A password such

as password (do not laugh, it has been used often in the real world and with devastating

consequences) is just too easy to guess by an intruder. So are simple words or number

combinations (the numbers from a street address or date of birth, for example). You would

be surprised how many people use easily guessed passwords such as 123456, iloveyou,

Qwerty, and abc123.

In contrast, a password such as 2a56u'"F($84u&#^Hiu44Ik%$([#EJD is sure to present great

difficulty to an intruder (or an auditor). However, that password is so difficult to remem-

ber that it would be likely that the password owner would write that password down on a

sticky note attached to his monitor.

The system administrator has control, with settings in the /etc/shadow file, over how

often the password must be changed. The settings can be changed by the super user using

a text editor or the chage command. (See the shadow and chage man pages for details.)

Changing Passwords in a Batch

On a large system, there might be times when a large number of users and their pass-

words need some attention. The super user can change passwords in a batch by using the

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html

217

1
3

Granting System Administrator Privileges to Regular Users

chpasswd command, which accepts input as a name/password pair per line in the follow-

ing form:

matthew@seymour:~$ sudo chpasswd username:password

Passwords can be changed en masse by redirecting a list of name and password pairs to the

command. An appropriate shell script can be constructed with the information gleaned

from Chapters 11 and 12, “Command-Line Master Class, Part 1” and “Command-Line

Master Class, Part 2,” combined with information on writing scripts from Chapter 14.

However, Ubuntu also provides the newusers command to add users in a batch from a

text file. This command also allows a user to be added to a group, and a new directory can

be added for the user, too.

Granting System Administrator Privileges
to Regular Users
On occasion, regular users might need to run a command as if they were the root user.

They usually do not need these powers, but a user might require such abilities on special

occasions—for example, to temporarily access certain devices or run a command for test-

ing purposes.

There are two ways to run commands with root privileges. The first way is useful if you

are the owner of both the super user account (an enabled root account) and a regular user;

the second way is useful if you are a regular user but are not privileged to access all super

user functions. (This might happen on a large, multiuser network with senior and junior

administrators as well as regular users.) Let’s look at each.

Temporarily Changing User Identity with the su Command

This first scenario requires the existence of a root account, which is not enabled by default

on Ubuntu systems and is not generally recommended in the Ubuntu community. How-

ever, there are times when it makes sense. Discussing that is beyond the scope of this

chapter, but for the sake of argument, for the scenario and details in this section, assume

that you are operating in one of those special cases and that a root account has been

enabled.

What if you have access to an enabled root account as a super user but are logged on as a

regular user because you are performing nonadministrative tasks, and you find that you

need to do something that only the super user can do? The su command is available for

this purpose.

NOTE

A popular misconception is that the su command is short for super user; it really just

means substitute user. An important but often overlooked distinction is that between su

and su -. In the former instance, you become that user but keep your own environmental

variables (such as paths). In the latter, you inherit the environment of that user. This is

218 CHAPTER 13 Managing Users

most noticeable when you use su to become the super user, root. Without appending the

-, you do not inherit the path variable that includes /bin or /sbin, so you must always

enter the full path to those commands when you just su to root.

Don’t forget that on a standard Ubuntu system, the first created user is classed as root,

whereas the true root account is disabled. To enable the root account, you enter the

command sudo passwd at the command line and enter your password and a new root

password. After this has been completed, you can su to root. We suggest you read the

information at https://help.ubuntu.com/community/RootSudo before doing so to ensure

that you understand the reason the root account is not enabled by default.

Because almost all Linux file system security revolves around file permissions, it can be

useful to occasionally become a different user with permission to access files belonging

to other users or groups or to access special files (such as the communications port /dev/

ttyS0 when using a modem or the sound device /dev/audio when playing a game). You

can use the su command to temporarily switch to another user identity and then switch

back.

The su command spawns a new shell, changing both the UID and GID of the existing user

and automatically changing the environmental variables associated with that user, known

as inheriting the environment. For more information about environment variables, see Chap-

ter 6, “Productivity Applications.”

The syntax for the su command is as follows:

matthew@seymour:~$ su option username arguments

The man page for su gives more details, but some highlights of the su command are as

follows:

-c, --command

 pass a single COMMAND to the shell with –c

-m, --preserve-environment

 do not reset environment variables

-l a full login simulation for the substituted user,

 the same as specifying the dash alone

You can invoke the su command in different ways that yield diverse results. By using su

alone, you can become root, but you keep your regular user environment. This can be ver-

ified by using the printenv command before and after the change. Note that the working

directory (you can execute pwd at the command line to print the current working direc-

tory) has not changed. By executing the following, you become root and inherit root’s

environment:

matthew@seymour:~$ su –

By executing the following, you become that user and inherit the super user’s environ-

ment—a pretty handy tool. (Remember: Inheriting the environment comes from using

https://help.ubuntu.com/community/RootSudo

219

1
3

Granting System Administrator Privileges to Regular Users

the dash in the command; omit that, and you keep your “old” environment.) To become

another user, specify a different user’s name on the command line:

matthew@seymour:~$ su - other_user

When leaving an identity to return to your usual user identity, use the exit command.

For example, while logged on as a regular user, use the following:

matthew@seymour:~$ su – root

The system prompts for a password:

Password:

When the password is entered correctly, the root user’s prompt appears:

root~#

To return to the regular user’s identity, just type the following:

root~# exit

This takes you to the regular user’s prompt:

matthew@seymour:~$

If you need to allow other users access to certain commands with root privileges, you

must give them the password for the root account (often referred to as the root password)

so that they can use su; that definitely is not a secure solution. The next section describes

a more flexible and secure method of allowing normal users to perform selected root tasks

and the preferred method for sharing and using super user privileges in Ubuntu.

NOTE

The su command is often seen as bad because what it is supposed to do is a bit ambigu-

ous. On one hand, it is supposed to open a new session and change a number of execu-

tion parameters while also inheriting parameters from the session in which it was issued.

It does give you a new execution shell, but that is not really the same thing as a full login.

systemd has added a new command, machinectl shell, that is intended to do this

“properly,” according to its creators. Because systemd is covered in Chapter 15, “The

Boot Process,” this new command is also covered there.

Granting Root Privileges on Occasion: The sudo Command

Delegating some of the authority that root wields on a system is often necessary. For a

large system, this makes sense because no single individual will always be available to

perform super user functions. The problem is that UNIX permissions come with all-or-

nothing authority. Enter sudo, an application that permits the assignment of one, several,

or all the root-only system commands.

220 CHAPTER 13 Managing Users

NOTE

As mentioned earlier, the sudo command is pervasive in Ubuntu because it is used by

default. If you want to get to a root shell, thereby removing the need to type sudo for

every command, just enter sudo -i to get the root prompt. To return to a normal user

prompt, enter exit, and press Enter. Again, this is a bit dangerous because if you are not

paying attention and forget to exit root, you could cause severe damage to the system.

It is usually better to choose one method or the other and use it consistently, and the

Ubuntu community consistently uses and recommends using sudo for each command,

even if it gets tedious, because it is a good reminder to think about what you are doing.

After it is configured, using sudo is simple. An authorized user merely precedes a super

user authority–needed command with sudo, like this:

matthew@seymour:~$ sudo command

When the command is entered, sudo checks the /etc/sudoers file to see whether the

user is authorized to wield super user privileges; if so, sudo use is authorized for a specific

length of time. The user is then prompted for her password (to preserve accountability

and provide some measure of security), and then the command is run as if root had issued

it. During the time allotted, which is 15 minutes by default in Ubuntu, sudo can be used

again once or multiple times without a password. If an unauthorized user attempts to

execute a sudo command, a record of the unauthorized attempt is kept in the system log,

and a mail message is sent to the super user.

Three man pages are associated with sudo: sudo, sudoers, and visudo. The first covers the

command itself, the second the format of the /etc/sudoers file, and the third the use of

the special editor for /etc/sudoers. You should use the special editing command because

it checks the file for parse errors and locks the file to prevent others from editing it at the

same time. The visudo command uses the vi editor, so you might need a quick review

of the vi editing commands found in Chapter 12 in the section “Working with vi.” You

begin the editing by executing the visudo command with this:

matthew@seymour:~$ sudo visudo

The default /etc/sudoers file looks like this:

/etc/sudoers

#

This file MUST be edited with the 'sudo' command as root.

#

See the man page for details on how to write a sudoers file.

#

Defaults env_reset

Defaults mail_badpass

Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:

 /bin:/snap/bin"

221

1
3

Granting System Administrator Privileges to Regular Users

Host alias specification

User alias specification

Cmnd alias specification

User privilege specification

root ALL=(ALL) ALL

Allow members of group sudo to execute any command

%sudo ALL=(All:ALL) ALL

See sudoers(5) for more information on "#include" directives:

#includedir /etc/sudoers.d

The basic format of a sudoers line in the file is as follows:

user host_computer=command

The user can be an individual user or a group. (A % in front identifies a name as a group.)

The host_computer is normally ALL for all hosts on the network and localhost for the local

machine, but the host computer can be referenced as a subnet or any specific host. The

command in the sudoers line can be ALL, a list of specific commands, or a restriction on

specific commands (formed by prepending a ! to the command). A number of options are

available for use with the sudoers line, and aliases can be used to simplify the assignment of

privileges. Again, the sudoers man page gives the details, but let’s look at a few examples.

Suppose that you want to give user john permission across the network to be able to add

users with the graphical interface. You would add the following line:

john ALL=/users-admin

Or perhaps you would grant permission only on the user’s local computer:

john 192.168.1.87=/usr/bin/users-admin

If you want to give the editor group system-wide permission with no password required to

delete files, you use the following:

%editors ALL=NOPASSWD: /bin/rm

If you want to give every user permission with no password required to mount the CD

drive on the localhost, you do so as follows:

ALL localhost=NOPASSWD:/sbin/mount /dev/scd0 /mnt/cdrom /sbin/umount /mnt/cdrom

Using wildcards in the construction of the sudoers file is also possible. Aliases can be used,

as well, to make it easier to define users and groups. The man page for sudoers contains

222 CHAPTER 13 Managing Users

some examples, and www.komar.org/pres/sudo/toc.html provides illustrative notes and

comments about sudo use at a large company. The sudo home page at www.sudo.ws is

also a useful resource for additional explanations and examples.

The following command presents users with a list of the commands they are entitled to use:

matthew@seymour:~$ sudo –l

Disk Quotas
On large systems with many users, you often need to control the amount of disk space a

user can use. Disk quotas are designed specifically for this purpose. Quotas, managed per

partition, can be set for both individual users and groups; quotas for groups need not be

as large as the aggregate quotas for the individuals in the groups.

When a file is created, both a user and a group own it. Ownership of files is always part of the

metadata about the files. This makes quotas based on both users and groups easy to manage.

NOTE

Disk quota management is not really useful or needed on a home system and rarely, if

ever, on a small office system. It is unlikely that you will see or implement this in either

circumstance.

To manage disk quotas, you must have the quota and quotatool packages installed on

your system. Quota management with Ubuntu is not enabled by default and has tradi-

tionally been enabled and configured manually by system administrators. System admin-

istrators use the family of quota commands, such as quotacheck to initialize the quota

database files, edquota to set and edit user quotas, setquota to configure disk quotas, and

quotaon or quotaoff to control the service. (Other utilities include warnquota for automat-

ically sending mail to users over their disk space usage limit.)

Implementing Quotas

Quotas are not enabled by default, even if the quota software package is installed on your

Ubuntu system. When quotas are installed and enabled, you can see which partitions have

either user quotas, group quotas, or both by looking at the fourth field in the /etc/fstab file.

For example, one line in /etc/fstab shows that quotas are enabled for the /home partition:

/dev/hda5 /home ext3 defaults,usrquota,grpquota 1 1

The root of the partition with quotas enabled will have the file quota.user or the file

quota.group in it (or both files, if both types of quotas are enabled), and the files will con-

tain the actual quotas. The permissions of these files should be 600 so that users cannot

read or write to them. (Otherwise, users would change them to allow ample space for their

music files and Internet art collections.) To initialize disk quotas, the partitions must be

remounted. This is easily accomplished with the following:

matthew@seymour:~$ sudo mount -o ro,remount partition_to_be_remounted mount_point

http://www.komar.org/pres/sudo/toc.html
http://www.sudo.ws

223

1
3

Related Ubuntu Commands

The underlying console tools (all of which have man pages) are as follows:

 ▶ quotaon and quotaoff—Toggle quotas on a partition

 ▶ repquota—Provides a summary status report on users and groups

 ▶ quotacheck—Updates the status of quotas (compares new and old tables of disk

usage); run after fsck

 ▶ edquota—Enables basic quota management

Manually Configuring Quotas

Manual configuration of quotas involves changing entries in your system’s file system

table, /etc/fstab, to add the usrquota mount option to the desired portion of your file

system. As an example, in a simple file system, you can enable quota management like

this:

LABEL=/ / ext3 defaults,usrquota 1 1

You can also enable group-level quotas by using the grpquota option. Then, as the root

operator in the example of creating user quotas, you must create a file named quota.user

in the designated portion of the file system, like so:

matthew@seymour:~$ sudo touch /quota.user

You should then turn on the use of quotas by using the quotaon command:

matthew@seymour:~$ sudo quotaon –av

You can then edit user quotas with the edquota command to set hard and soft limits on

file system use. The default system editor (vi unless you change your EDITOR environment

variable) is launched when editing a user’s quota.

Users can find out what their quotas are with the following:

matthew@seymour:~$ quota –v

NOTE

Ubuntu does not support any graphical tools that enable you to configure disk quotas. A

Quota mini-HOWTO is maintained at www.tldp.org/HOWTO/Quota.html.

Related Ubuntu Commands
You use these commands to manage user accounts in Ubuntu:

 ▶ ac—Provides user account statistics

 ▶ change—Sets or modifies user password expiration policies

http://www.tldp.org/HOWTO/Quota.html

224 CHAPTER 13 Managing Users

 ▶ chfn—Creates or modifies user finger information in /etc/passwd

 ▶ chgrp—Modifies group memberships

 ▶ chmod—Changes file permissions

 ▶ chown—Changes file ownerships

 ▶ chpasswd—Modifies user passwords in batches

 ▶ chsh—Modifies a user’s shell

 ▶ groups—Displays existing group memberships

 ▶ logname—Displays a user’s login name

 ▶ newusers—Batches user management command

 ▶ passwd—Creates or modifies user passwords

 ▶ su—Executes a shell or command as another user

 ▶ sudo—Manages selected user execution permissions

 ▶ useradd—Creates, modifies, or manages users

 ▶ usermod—Edits a user’s login profile

References
 ▶ https://tldp.org/HOWTO/User-Authentication-HOWTO/—A HOWTO that

describes how user and group information is stored and used for authentication

 ▶ https://tldp.org/HOWTO/Shadow-Password-HOWTO.html—A HOWTO

that delves into the murky depths of shadow passwords and even discusses why you

might not want to use them.

 ▶ https://tldp.org/HOWTO/Security-HOWTO/—A must-read HOWTO that

provides a good overview of security issues, including creating accounts, file permis-

sions, and password security.

 ▶ https://tldp.org/LDP/sag/html/index.html—A general guide, the Linux Sys-

tem Administrator’s Security Guide has interesting sections on limiting and monitor-

ing users.

 ▶ www.kernel.org/pub/linux/libs/pam—The Pluggable Authentication Modules

suite contains complex and highly useful applications that provide additional secu-

rity and logging for passwords. PAM is installed by default in Ubuntu. Understand-

ing the intricacies of PAM isn’t necessary to use it effectively.

https://tldp.org/HOWTO/User-Authentication-HOWTO
https://tldp.org/HOWTO/Shadow-Password-HOWTO.html
https://tldp.org/HOWTO/Security-HOWTO
https://tldp.org/LDP/sag/html/index.html
http://www.kernel.org/pub/linux/libs/pam

IN THIS CHAPTER

 ▶ What Is a Shell?

 ▶ Scheduling Tasks

 ▶ Basic Shell Control

 ▶ Writing and Executing a Shell

Script

 ▶ References

CHAPTER 14

Automating Tasks and
Shell Scripting

This chapter covers ways to automate tasks on your sys-

tem by using task schedulers. This chapter also provides an

introduction to the basics of creating shell scripts, or execut-

able text files written to conform to shell syntax. Shell

scripting and automation are useful on your local machine,

but they are vital in DevOps and Site Reliability Engineer-

ing where the goal is to automate anything that can be

automated to save human brain power for tasks that require

imaginative thinking.

Shell scripts run like any other command under Linux

and can contain complex logic or a simple series of Linux

command-line instructions. You can also run other shell

scripts from within a shell program. The features and func-

tions for several Linux shells are discussed in this chapter

after a short introduction to working from the shell com-

mand line. You find out how to write and execute a simple

shell program using bash, one of the most popular Linux

shells and the default shell in Ubuntu and most other

distributions.

What Is a Shell?
We have used the shell since Chapter 10, “Command-Line

Beginner’s Class,” but have only glossed over the idea, call-

ing it a command line and terminal. Simply put, a shell is a

program that users employ to type commands. In our case,

it is an interpreter that supplies both a command language

and a program scripting language that can control what the

operating system does.

Several shells are available for users. The most widely

known and widely distributed shells early in the UNIX

226 CHAPTER 14 Automating Tasks and Shell Scripting

era were the Bourne Shell, sh, and the C Shell, csh. The C Shell used syntax from the C

programming language whereas the Bourne Shell developed a unique set of features that

today have become standard to all UNIX/Linux shells.

Here is a list of the most commonly found shells these days:

 ▶ Almquist Shell (ash): This was written as a BSD-licensed replacement for the

Bourne Shell, with just slightly fewer features (mostly eliminating those not fre-

quently used).

 ▶ Bourne-Again Shell (bash): This was written by the GNU Project as a GPL-

licensed version of the Bourne Shell with some enhancements.

 ▶ Debian Almquist Shell (dash): This is written for use in resource-constrained

environments and is considered a modern replacement for the Almquist Shell.

 ▶ Korn Shell (ksh or pdcsh): This was written by David Korn while he worked at

Bell Labs and is based on the Bourne Shell source code. It has been released under

the Eclipse Public License; the pdcsh version is the one you are most likely to

encounter as it is released with a public domain license.

 ▶ TENEX C Shell (tcsh): This is based on and compatible with the C Shell, but

released with a BSD license.

 ▶ Z Shell (zsh): This is a modern Bourne-Again Shell replacement with some

improvements and is the default shell in macOS.

The automation and tasks described in this chapter should work on most shells.

By default, Ubuntu uses the Bourne-Again Shell (bash). It is also aliased to /bin/sh, so

whenever you run a shell script using sh notation, you are using bash unless you have

chosen to use a different shell.

To temporarily change your shell, just for your current session, enter the name of the shell

you want to use. If it is not yet installed, most of them are available in the Ubuntu soft-

ware repositories via apt.

To permanently change your shell, you use an interactive program, chsh, which stands for

“change shell.”

Scheduling Tasks
There are three ways to schedule commands in Ubuntu, all of which work in different

ways. The first is the at command, which specifies a command to run at a specific time

and date relative to today. The second is the batch command, which is actually a script

that redirects you to the at command with some extra options set so your command runs

when the system is quiet. The last option is the cron daemon, which is the Linux way of

executing tasks at a given time.

227

1
4

Scheduling Tasks

Using at and batch to Schedule Tasks for Later

If you want to run a time-intensive task, but you do not want to do it while you are

logged in, you can tell Ubuntu to run it later with the at command, which you must

install. The package name is the same as the tool: at. To use at, you need to tell it the

time at which you want the task to run and then press Enter. You then see a new prompt

that starts with at>, and everything you type there until you press Ctrl+D will be the com-

mands that at will run.

When the designated time arrives, at performs each action individually and in order,

which means later commands can rely on the results of earlier commands. In the fol-

lowing example, run at just after 8:00 p.m., at is used to download and extract the latest

Linux kernel at a time when the network should be quiet:

matthew@seymour:~$ at now + 7 hours

at> wget http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.0.tar.bz2

at> tar xvfjp linux-3.0.tar.bz2

at> <EOT>

job 2 at 2011-07-08 20:01

Specifying now + 7 hours as the time does what you would expect: at was run at 8:00

p.m., so the command will run just after 3:00 a.m.

If you have a more complex job, you can use the –f parameter to have at read its com-

mands from a file, like this:

echo wget http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.00.tar.bz2\;

tar xvfjp linux-3.0.tar.bz2 > myjob.job

at –f myjob.job tomorrow

As you can see, at is flexible about the time format it takes; you can specify it in three

ways:

 ▶ Using the now parameter, you can specify a number of minutes, hours, days, or

weeks relative to the current time. For example, now + 4 weeks runs the command

four weeks from today.

 ▶ You can also specify several special times, including tomorrow, midnight, noon, or

teatime (4:00 p.m.). If you do not specify a time with tomorrow, your job is set for

precisely 24 hours from the current time.

 ▶ You can specify an exact date and time by using HH:MM MM/DD/YY format (for exam-

ple, 16:40 22/12/20 for 4:40 p.m. on December 22, 2020).

When your job is submitted, at reports the job number, date, and time that the job will

be executed; the queue identifier; and the job owner (you). It also captures all your envi-

ronment variables and stores them along with the job so that when your job runs, it can

restore the variables, preserving your execution environment.

228 CHAPTER 14 Automating Tasks and Shell Scripting

The job number and job queue identifier are both important. When you schedule a job

using at, it is placed into queue a by default, which means it runs at your specified time

and takes up a normal amount of resources.

An alternative command, batch, is really just a shell script that calls at with a few extra

options. These options (-q b -m now, in case you are interested) set at to run on queue

b (-q b), mail the user on completion (-m), and run immediately (now). The queue part

is what is important: Jobs scheduled on queue b will only be executed when system

load falls below 0.8—that is, when the system is not running at full load. Furthermore,

those jobs run with a lower niceness, meaning a queue jobs usually have a niceness of 2,

whereas queue b jobs have a niceness of 4.

Because batch always specifies now as its time, you need not specify your own time; the

task will simply run as soon as the system is quiet. Having a default niceness of 4 means

that batched commands get fewer system resources than a queue job gets (at’s default)

and fewer system resources than with most other programs. You can optionally specify

other queues by using at. Queue c runs at niceness 6, queue d runs at niceness 8, and

so on. However, it is important to note that the system load is only checked before the

command is run. If the load is lower than 0.8, your batch job runs. If the system load

subsequently rises beyond 0.8, your batch job continues to run, albeit in the background,

thanks to its niceness value.

When you submit a job for execution, you are also returned a job number. If you forget

this or just want to see a list of other jobs you have scheduled to run later, use the atq

command with no parameters. If you run this as a normal user, it prints only your jobs;

running it as a super user prints everyone’s jobs. The output is in the same format as

when you submit a job, so you get the ID number, execution time, queue ID, and owner

of each job.

If you want to delete a job, use the atrm command followed by the ID number of the job

you want to delete. This next example shows atq and atrm being used to list jobs and

delete one:

matthew@seymour:~$ atq

14 2012-01-20 23:33 a matthew

16 2012-02-03 22:34 a matthew

17 2012-01-25 22:34 a matthew

15 2012-01-22 04:34 a matthew

18 2012-01-22 01:35 b matthew

matthew@seymour:~$ atrm 16

matthew@seymour:~$ atq

14 2012-01-20 23:33 a matthew

17 2012-01-25 22:34 a matthew

15 2012-01-22 04:34 a matthew

18 2012-01-22 01:35 b matthew

In this example, job 16 is deleted using atrm, and so it does not show up in the second

call to atq.

229

1
4

Scheduling Tasks

The default configuration for at and batch is to allow everyone to use it, which is not

always the desired behavior. Access is controlled through two files: /etc/at.allow and /

etc/at.deny. By default, at.deny exists but is empty, which allows everyone to use at

and batch. You can enter usernames into at.deny, one per line, to stop those users from

scheduling jobs.

Alternatively, you can use the at.allow file; this does not exist by default. If you have

a blank at.allow file, no one except root is allowed to schedule jobs. As with at.deny,

you can add usernames to at.allow, one per line, and those users are able to schedule

jobs. You should use either at.deny or at.allow: When someone tries to run at or batch,

Ubuntu checks for her username in at.allow. If it is in there, or if at.allow does not

exist, Ubuntu checks for her username in at.deny. If her username is in at.deny or if

at.deny does not exist, the user is not allowed to schedule jobs.

Using cron to Run Jobs Repeatedly

The at and batch commands work well if you just want to execute a single task at a later

date, but they are less useful if you want to run a task frequently. Instead, the cron dae-

mon exists for running tasks repeatedly based on system (and user) requests. The cron

daemon has a similar permissions system to at: Users listed in the cron.deny file are not

allowed to use cron, and users listed in the cron.allow file are. An empty cron.deny file—

the default—means everyone can set jobs. An empty cron.allow file means that no one

(except root) can set jobs.

There are two types of jobs: system jobs and user jobs. Only root can edit system jobs,

whereas any user whose name appears in cron.allow or does not appear in cron.deny can

run user jobs. System jobs are controlled through the /etc/crontab file, which by default

looks like this:

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17 * * * * root cd / && run-parts -report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts –report

[ccc]/etc/cron.daily)

47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts –report

[ccc]/etc/cron.weekly)

52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts –report

[ccc]/etc/cron.monthly)

The first two lines specify which shell should be used to execute the job (it defaults to the

shell of the user who owns the crontab file, usually /bin/bash) and the search path for

executables that will be used. It’s important that you avoid using environment variables in

this path statement because they might not be set when the job runs.

The next line starts with a pound sign (#) and so is treated as a comment and ignored. The

next four lines are the important parts: They are the jobs themselves.

230 CHAPTER 14 Automating Tasks and Shell Scripting

Each job is specified in seven fields that define the time to run, owner, and command.

The first five commands specify the execution time in quite a quirky order: minute (0–59),

hour (0–23), day of the month (1–31), month of the year (1–12), and day of the week

(0–7). For day of the week, both 0 and 7 are Sunday, which means that 1 is Monday,

3 is Wednesday, and so on. If you want to specify “all values” (that is, every minute,

every hour, every day, and so on), use an asterisk, *.

The next field specifies the username of the owner of the job. When a job is executed, it

uses the username specified here. The last field is the command to execute.

So, the first job runs at minute 17, every hour of every day of every month, and executes

the command run-parts /etc/cron.hourly. The run-parts command is a simple script

that runs all programs inside a given directory (in this case, /etc/cron.hourly). So, in this

case, the job executes at 00:17 (17 minutes past midnight), 01:17, 02:17, 03:17, and so on

and uses all the programs listed in the cron.hourly directory.

The next job runs at minute 25 and hour 6 of every day of every month, running run-

parts /etc/cron.daily. Because of the hour limitation, this script runs only once per

day, at 6:25 a.m. Note that it uses minute 25 rather than minute 17 so that daily jobs do

not clash with hourly jobs. You should be able to guess what the next two jobs do simply

by looking at the commands they run.

Each of those four directories (cron.hourly, cron.daily, cron.weekly, and cron.monthly)

contains a collection of shell scripts that are run by run-parts. For example, in cron.

daily you have scripts like logrotate, which handles backing up of log files, and make-

whatis, which updates the whatis database. You can add other system tasks to these direc-

tories if you want to, but be careful to ensure that your scripts are correct.

CAUTION

The cron daemon reads all the system crontab files and all user crontab files once a

minute (on the minute; that is, at 6:00:00, 6:01:00, and so on) to check for changes.

However, any new jobs it finds will not be executed until at least 1 minute has passed.

For example, if it is 6:01:49 (that is, 49 seconds past 1 minute past 6:00 a.m.) and you

set a cron job to run at 6:02, it does not execute. At 6:02, the cron daemon rereads its

configuration files and sees the new job, but it is not able to execute it. If you set the job

to run at 6:02 a.m. every day, it is executed the following morning and every subsequent

morning.

This same situation exists when deleting jobs. If it is 6:01:49 and you have a job sched-

uled to run at 6:02, deleting it makes no difference: cron runs it before it rereads the

crontab files for changes. However, after it has reread the crontab file and noticed that

the job is no longer there, it will not be executed in subsequent days.

There are alternative ways of specifying dates. For example, you can use sets of dates and

times by using hyphens or commas; for example, hours 9–15 would execute at 9, 10, 11,

12, 13, 14, and 15 (from 9:00 a.m. to 3:00 p.m.), whereas 9, 11, 13, 15 would skip the

even hours. Note that it is important that you not put spaces into these sets because the

cron daemon interprets a space as the next field. You can define a step value with a slash

231

1
4

Scheduling Tasks

(/) to show time division; for example, */4 for hours means “every 4 hours all day,” and

0-12/3 means “every 3 hours from midnight to noon.” You can also specify day and

month names rather than numbers, using three-character abbreviations: Sun, Mon, Tue,

Fri, Sat for days or Jan, Feb, Mar, Oct, Nov, Dec for months.

As well as system jobs, there are user jobs for those users who have the correct permis-

sions. User jobs are stored in the /var/spool/cron directory, with each user having his

own file named after his username (for instance, /var/spool/cron/philip or /var/spool/

cron/root). These files contain the jobs the user wants to run and take roughly the same

format as the /etc/crontab file, with the exception that the owner of the job should

not be specified because it is always the same as the filename.

To edit your own crontab file, type crontab -e. This brings up a text editor, where you

can enter your entries. (By default the editor is vim, also known by its older name vi, but

you can set the EDITOR environment variable to change that.) The format of this file is a

little different from the format for the main crontab file because in this case there is no

need to specify the owner of the job, as it is always you.

So, this time each line is made up of six fields: minute (0–59), hour (0–23), day of the

month (1–31), month of the year (1–12), day of the week (0–7), and the command to

run. If you are using vim and are new to it, press i to enter insert mode to edit your text;

then press Esc to exit insert mode. To save and quit, type a colon followed by wq and press

Enter.

When programming, we tend to use a sandbox subdirectory in our home directory where

we keep all sorts of temporary files that we were just playing around with. We can use a

personal job to empty that directory every morning at 6:00 a.m. to get a fresh start each

morning. Here is how that would look in our crontab file:

0 6 * * * rm –rf /home/matthew/sandbox/*

If you are not allowed to schedule jobs, you will be stopped from editing your crontab

file.

After your jobs are placed, you can use the command crontab -l to list your jobs. This

just prints the contents of your crontab file, so its output is the same as the line you just

entered.

If you want to remove just one job, the easiest thing to do is type crontab -e to edit your

crontab file in vim; then, after having moved the cursor to the job you want to delete,

type dd to delete that line. If you want to delete all your jobs, you can use crontab -r to

delete your crontab file.

Read the man page for more about cron.

Using rtcwake to Wake Your Computer from Sleep Automatically

Some of us keep our computers running 24/7. Perhaps you don’t want to do so, and you

need to have your system up and running at a certain time every day, but you can’t guar-

antee that you will be able to be present to turn it on. It is possible to use rtcwake to place

232 CHAPTER 14 Automating Tasks and Shell Scripting

the computer in sleep or suspend mode instead of turning it off and then wake up the

computer later. To do this, you must have sudo permissions. Here is an example:

matthew@seymour:~$ sudo rtcwake -m mem -s -3600

This command tells the computer to suspend to RAM, or sleep, which means to save the

current state of the computer in memory and shut down everything else and then to wake

the computer after 3600 seconds, which is one hour.

Here is the basic syntax of the command:

sudo rtcwake -m [type of suspend] -s [number of seconds]

There are five types of suspend available to use with -m:

 ▶ disk—(hibernate) The current state of the computer is written to disk, and the com-

puter is powered off.

 ▶ mem—(sleep) The current state of the computer is written to RAM, and the com-

puter is put into a low-power state, using just enough power to keep the memory

preserved.

 ▶ no—The computer is not suspended immediately. Only the wakeup time is set. This

allows you to continue working; you have to remember to put the computer to sleep

manually.

 ▶ off—The computer is turned off completely. Wake will not work with this setting

for everyone and is not officially supported, but it does work with some computers.

It is included here for those who like to live dangerously.

 ▶ standby—The computer is put into standby mode, which saves some power over

running normally but not nearly as much as the other options. This is the default

setting and will be used if you omit -m.

Setting the wake time can be done more than one way:

 ▶ As shown earlier, you can use -s, which specifies the number of seconds before

waking.

 ▶ You can also use -t, which allows you to set a specific time to wake but format-

ted in the number of seconds since the beginning of UNIX time (00:00:00 UTC on

1/1/1970). The date command can help you find this number, which is a commonly

used method of performing time-related tasks in the UNIX/Linux world. You can do

so like this: sudo rtcwake -m no -t $(date +%s -d 'tomorrow 06:30').

See the man files for rtcwake and date for help and more options.

Here are a few tips to help you get started:

 ▶ The letters RTC stand for “real-time clock,” which refers to the hardware clock that

is set in your BIOS and is kept running by the battery on your motherboard. If your

233

1
4

Basic Shell Control

computer needs a new battery, as evidenced by the time needing to be reset every

time you turn the computer back on, or if you have other clock-related problems,

this command will not work for you.

 ▶ If you have problems using sleep, hibernate, or suspend on your system, this com-

mand will not work for you.

 ▶ You probably want to avoid using this command on a notebook computer.

Overheating and/or dead batteries are a real possibility if a system wakes itself while

the computer is in a laptop bag.

 ▶ If you want to run a specific command when the computer wakes up, you can do

this the same way you chain other commands to run in a series: Put && after rtc-

wake and before the command you want to run when rtcwake has completed, as

discussed in Chapter 12, “Command-Line Master Class, Part 2.”

Basic Shell Control
Ubuntu includes a rich assortment of capable, flexible, and powerful shells. Each shell is

different but has numerous built-in commands and configurable command-line prompts

and might include features such as command-line history, the ability to recall and use a

previous command line, and command-line editing. As an example, the bash shell is so

powerful that it is possible to write a minimal web server entirely in bash’s language using

114 lines of script. (See the link for the bash home page at the end of this chapter.)

The Shell Command Line

Having a basic understanding of the capabilities of the shell command line can help you

write better shell scripts. If, after you have finished reading this short introduction, you

want to learn more about the command line, check out Chapter 11, “Command-Line

Master Class, Part 1.” You can use the shell command line to perform a number of differ-

ent tasks, including the following:

 ▶ Searching files or directories with programs using pattern matching or expressions.

These commands include the GNU gawk (linked as awk) and the grep family of com-

mands, including egrep and fgrep.

 ▶ Getting data from and sending data to a file or command, known as input and output

redirection.

 ▶ Feeding or filtering a program’s output to another command (called using pipes).

A shell can also have built-in job-control commands to launch the command line as a

background process, suspend a running program, selectively retrieve or kill running or sus-

pended programs, and perform other types of process control.

234 CHAPTER 14 Automating Tasks and Shell Scripting

You can run multiple commands on a single command line by using a semicolon to

separate commands:

matthew@seymour:~$ w ; free ; df

 18:14:13 up 4:35, 2 users, load average: 0.97, 0.99, 1.04

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

matthew tty7 :0 13:39 4:35m 24:34 0.32s gnome-session

matthew pts/0 :0.0 17:24 0.00s 1.19s 4.98s gnome-terminal

 total used free shared buffers cached

Mem: 4055692 1801104 2254588 0 134096 757532

-/+ buffers/cache: 909476 3146216

Swap: 8787512 0 8787512

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 14421344 6509276 7179508 48% /

none 2020136 336 2019800 1% /dev

none 2027844 3004 2024840 1% /dev/shm

none 2027844 224 2027620 1% /var/run

none 2027844 0 2027844 0% /var/lock

none 2027844 0 2027844 0% /lib/init/rw

/dev/sda6 284593052 144336704 125799860 54% /home

This example displays the output of the w, free, and df commands. You can extend long

shell command lines inside shell scripts or at the command line by using the backslash

character (\), as follows:

matthew@seymour:~$ echo "this is a long \

> command line and" ; echo "shows that multiple commands \

> may be strung out."

this is a long command line and

shows that multiple commands may be strung out.

The first three lines of this example are a single command line. In that single line are two

instances of the echo command. Note that when you use the backslash as a line-continuation

character, it must be the last character on the command line (or in your shell script, as

you see later in this chapter, in the “Writing and Executing a Shell Script” section).

Using the basic features of the shell command line is easy, but mastering the use of all fea-

tures can be difficult. Entire books have been devoted to using shells, writing shell scripts,

and using pattern-matching expressions. The following sections provide an overview of

some features of the shell command line related to writing scripts.

UNDERSTANDING grep

If you plan to develop shell scripts to expand the capabilities of pattern-matching com-

mands such as grep, you will benefit from learning more about using expressions. One

of the definitive guides to using the pattern-matching capabilities of UNIX and Linux com-

mands is Mastering Regular Expressions by Jeffrey E. F. Friedl.

235

1
4

Basic Shell Control

Shell Pattern-Matching Support

The shell command line enables you to use strings of specially constructed character pat-

terns for wildcard matches. This is a different, simpler capability than that supported by

GNU utilities such as grep, which can use more complex patterns, known as expressions, to

search through files or directories or to filter data input to or out of commands.

The shell’s pattern strings can be simple or complex, but even using a small subset of the

available characters in simple wildcards can yield constructive results at the command

line. Common characters used for shell pattern matching include the following:

 ▶ *—Matches any character. For example, to find all files in the current directory end-

ing in .txt, you could use this:

matthew@seymour:~$ ls *.txt

 ▶ ?—Matches a single character. For example, to find all files in the current directory

ending in the extension .d?c (where ? could be 0–9, a–z, or A–Z), you could use the

following:

matthew@seymour:~$ ls *.d?c

 ▶ [xxx] or [x-x]—Matches a range of characters. For example, to list all files in a

directory with names containing numbers, you could use this:

matthew@seymour:~$ ls *[0-9]*

 ▶ \x—Matches or escapes a character such as ? or a tab character. For example, to cre-

ate a file with a name containing a question mark, you could use the following:

matthew~$ touch foo\?

Note that the shell might not interpret some characters or regular expressions in the

same manner as a Linux command, and mixing wildcards and regular expressions in shell

scripts can lead to problems unless you’re careful. For example, finding patterns in text is

best left to regular expressions used with commands such as grep; simple wildcards should

be used for filtering or matching filenames on the command line. And although both

Linux command expressions and shell scripts can recognize the backslash as an escape

character in patterns, the dollar sign ($) has two wildly different meanings (single-character

pattern matching in expressions and variable assignment in scripts).

CAUTION

Make sure you read your command carefully when using wildcards; an all-too-common

error is to type something like rm -rf * .txt with a space between the * and .txt. By

the time you wonder why the command is taking so long, Bash will already have deleted

most of your files. The problem is that it will treat the * and the .txt separately. * will

match everything, so Bash will delete all your files.

236 CHAPTER 14 Automating Tasks and Shell Scripting

Redirecting Input and Output

You can create, overwrite, and append data to files at the command line, using a process

called input and output redirection. The shell recognizes several special characters for this

process, such as >, <, or >>.

In this example, the output of the ls command is redirected to create a file named

textfiles.listing:

matthew@seymour:~$ ls *.txt >textfiles.listing

Use output redirection with care because it is possible to overwrite existing files.

For example, specifying a different directory but using the same output filename

overwrites the existing textfiles.listing:

matthew@seymour:~$ ls /usr/share/doc/mutt-1.4/*.txt >textfiles.listing

Fortunately, most shells are smart enough to recognize when you might do something

foolish. Here, the bash shell warns that the command is attempting to redirect output to a

directory:

matthew@seymour:~$ mkdir foo

matthew@seymour:~$ ls >foo

bash: foo: Is a directory

Output can be appended to a file without overwriting existing content by using the

append operator, >>. In this example, the directory listing is appended to the end of

textfiles.listing instead of overwriting its contents:

matthew@seymour:~$ ls /usr/share/doc/mutt-1.4/*.txt >>textfiles.listing

You can use input redirection to feed data into a command by using the < like this:

matthew@seymour:~$ cat < textfiles.listing

You can use the shell here operator, <<, to specify the end of input on the shell command

line:

matthew@seymour:~$ cat >simple_script <<DONE

> echo ""this is a simple script""

> DONE

matthew@seymour:~$ cat simple_script

echo ""this is a simple script""

In this example, the shell feeds the cat command you are typing (input) until the pattern

DONE is recognized. The output file simple_script is then saved and its contents verified.

You can use this same technique in scripts to create content based on the output of vari-

ous commands and define an end-of-input or delimiter.

237

1
4

Writing and Executing a Shell Script

Piping Data

Many Linux commands can be used in concert in a single, connected command line to

transform data from one form to another. Stringing together Linux commands in this

fashion is known as using or creating pipes. Pipes are created on the command line with

the bar operator (|). For example, you can use a pipe to perform a complex task from a

single command line like this:

matthew@seymour:~$ find /d2 -name '*.txt' -print | xargs cat | \

tr ' ' '\n' | sort | uniq >output.txt

This example takes the output of the find command to feed the cat command (via xargs)

the names of all text files in the /d2 directory. The content of all matching files is then fed

through the tr command to change each space in the data stream into a carriage return.

The stream of words is then sorted, and identical adjacent lines are removed using the

uniq command. The output, a raw list of words, is then saved in the file named output.

txt.

Background Processing

The shell allows you to start a command and then launch it into the background as a

process by using an ampersand (&) at the end of a command line. This technique is often

used at the command line of an X terminal window to start a client and return to the

command line. For example, to launch another terminal window using the xterm client,

you can use the following:

matthew@seymour:~$ xterm &

[3] 1437

The numbers echoed back show a number (3 in this example), which is a job number, or

reference number for a shell process, and a process ID number, or PID (1437 in this exam-

ple). You can kill the xterm window session by using the shell’s built-in kill command,

along with the job number, like this:

matthew@seymour:~$ kill %3

Or you can kill the process by using the kill command, along with the PID, as follows:

matthew@seymour:~$ kill 1437

You can use background processing in shell scripts to start commands that take a long

time, such as backups:

matthew@seymour:~$ tar -czf /backup/home.tgz /home &

Writing and Executing a Shell Script
Why should you write and use shell scripts? Shell scripts can save you time and typ-

ing, especially if you routinely use the same command lines multiple times every day.

238 CHAPTER 14 Automating Tasks and Shell Scripting

Although you could also use the history function (by pressing the up or down arrow keys

while using bash or using the history command), a shell script can add flexibility with

command-line argument substitution and built-in help.

Although a shell script doesn’t execute faster than a program written in a computer lan-

guage such as C, a shell program can be smaller in size than a compiled program. The

shell program does not require any additional library support other than the shell or, if

used, existing commands installed on your system. The process of creating and testing

shell scripts is also generally simpler and faster than the development process for equiva-

lent C language commands.

NOTE

Hundreds of commands included with Ubuntu are actually shell scripts, and many other

good shell script examples are available over the Internet; a quick search yields numerous

links to online tutorials and scripting guides from fellow Linux users and developers. For

example, the startx command, used to start an X Window session from the text console,

is a shell script used every day by most users. To learn more about shell scripting with

bash, see the “Advanced Bash-Scripting Guide,” listed in the “References” section at the

end of this chapter. You’ll also find Teach Yourself Shell Programming in 24 Hours a help-

ful guide to learning more about using the shell to build your own commands.

When you are learning to write and execute your first shell scripts, start with scripts for

simple but useful tasks. Begin with short examples and then expand the scripts as you

build on your experience and knowledge. Make liberal use of comments (lines preceded

with a pound sign, #) to document each section of your script. Include an author state-

ment and an overview of the script as additional help, along with a creation date or

version number. Write shell scripts using a text editor such as vi because it does not auto-

matically wrap lines of text. Line wrapping can break script syntax and cause problems. If

you use the nano editor, include its -w flag to disable line wrapping.

In this section, you learn how to write a simple shell script to set up a number of aliases

(command synonyms) whenever you log on. Instead of typing all the aliases every time

you log on, you can put them in a file by using a text editor, such as vi, and then execute

the file. Normally these changes are saved in system-wide shell configuration files under

the /etc directory to make the changes active for all users or in your .bashrc, .cshrc (if

you use tcsh), or .bash_profile files in your home directory.

Here is what is contained in myenv, a sample shell script created for this purpose (for bash):

#!/bin/sh

alias ll='ls –L'

alias ldir='ls –aF'

alias copy='cp'

This simple script creates command aliases, or convenient shorthand forms of commands,

for the ls and cp commands. The ll alias provides a long directory listing: The ldir alias

is the ls command but prints indicators (for directories or executable files) in listings.

239

1
4

Writing and Executing a Shell Script

The copy alias is the same as the cp command. You can experiment and add your own

options or create aliases of other commands with options you frequently use.

You can execute myenv in a variety of ways under Linux. As shown in this example, you

can make myenv executable by using the chmod command and then execute it as you

would any other native Linux command:

matthew@seymour:~$ chmod +x myenv

This line turns on the executable permission of myenv, which can be checked with the ls

command and its -l option like this:

matthew@seymour:~$ ls -l myenv

-rwxr-xr-x 1 matthew matthew 0 2010-07-08 18:19 myenv

Running the New Shell Program

You can run your new shell program in several ways. Each method produces the same

results, which is a testament to the flexibility of using the shell with Linux. One way to

run your shell program is to execute the file myenv from the command line as if it were a

Linux command:

matthew@seymour:~$./myenv

A second way to execute myenv under a particular shell, such as pdksh, is as follows:

matthew@seymour:~$ pdksh myenv

This invokes a new pdksh shell and passes the filename myenv as a parameter to execute

the file. A third way requires you to create a directory named bin in your home directory

and to then copy the new shell program into this directory. You can then run the pro-

gram without the need to specify a specific location or to use a shell. You do so like this:

matthew@seymour:~$ mkdir bin

matthew@seymour:~$ mv myenv bin

matthew@seymour:~$ myenv

This works because Ubuntu is set up by default to include the executable path $HOME/bin

in your shell’s environment. You can view this environment variable, named PATH, by pip-

ing the output of the env command through fgrep, like so:

matthew@seymour:~$ env | fgrep PATH

/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin: \

/usr/X11R6/bin:/sbin:/home/matthew/bin

As you can see, the user (matthew in this example) can use the new bin directory to hold

executable files. Another way to bring up an environment variable is to use the echo com-

mand along with the variable name (in this case, $PATH):

matthew@seymour:~$ echo $PATH

/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home/bball/bin

240 CHAPTER 14 Automating Tasks and Shell Scripting

CAUTION

Never put . in your $PATH to execute files or a command in the current directory; doing so

presents a serious security risk, especially for the root operator, and even more so if . is

first in your $PATH search order. Trojan scripts placed by crackers in directories such as

/tmp can be used for malicious purposes and will be executed immediately if the current

working directory is part of your $PATH.

Storing Shell Scripts for System-wide Access

After you execute the command myenv, you should be able to use ldir from the command

line to get a list of files under the current directory and ll to get a list of files with attri-

butes displayed. However, the best way to use the new commands in myenv is to put them

into your shell’s login or profile file. For Ubuntu users, and nearly all Linux users, the

default shell is bash, so you can make these commands available for everyone on your sys-

tem by putting them in the /etc/bashrc file. System-wide aliases for tcsh are contained in

files with the extension .csh under the /etc/profile.d directory. The pdksh shell can use

these command aliases, as well.

NOTE

To use a shell other than bash after logging in, use the chsh command from the com-

mand line or the system-config-users client during an X session. You’ll be asked for

your password (or the root password, if using system-config-users) and the location

and name of the new shell. The new shell will become your default shell, but only if its

name is in the list of acceptable system shells in /etc/shells.

Interpreting Shell Scripts Through Specific Shells

The majority of shell scripts use a shebang line (#!) at the beginning to control the type of

shell used to run the script; this bang line calls for an sh-incantation of bash:

#!/bin/sh

A shebang line (it is short for “sharp” and “bang,” two names for # and !) tells the Linux

kernel that a specific command (a shell, or in the case of other scripts, perhaps awk or

Perl) is to be used to interpret the contents of the file. Using a shebang line is common

practice for all shell scripting. For example, if you write a shell script using bash but want

the script to execute as if run by the Bourne shell, sh, the first line of your script contains

#!/bin/sh, which is a link to the dash shell. Running dash as sh causes dash to act as a

Debian Almquist shell. This is the reason for the symbolic link sh, which points to dash.

THE SHEBANG LINE

The shebang line is a magic number, as defined in /usr/share/misc/magic—a text data-

base of magic numbers for the Linux file command. Magic numbers are used by many

different Linux commands to quickly identify a type of file, and the database format is

241

1
4

Writing and Executing a Shell Script

documented in the section five manual page named magic (read by using man 5 magic).

For example, magic numbers can be used by the Linux file command to display the iden-

tity of a script (no matter what filename is used) as a shell script using a specific shell or

other interpreter, such as awk or Perl.

You might also find different or new environmental variables available to your scripts

by using different shells. For example, if you launch csh from the bash command line,

you find several new variables or variables with slightly different definitions, such as the

following:

matthew@seymour:~$ env

...

VENDOR=intel

MACHTYPE=i386

HOSTTYPE=i386-linux

HOST=thinkpad.home.org

On the other hand, bash might provide these variables or variables of the same name with

a slightly different definition, such as the following:

matthew@seymour:~$ env

...

HOSTTYPE=i386

HOSTNAME=thinkpad.home.org

Although the behavior of a shebang line is not defined by POSIX, variations of its use can

prove helpful when you are writing shell scripts. For example, as described in the wish

man page, you can use a shell to help execute programs called within a shell script with-

out needing to hardcode pathnames of programs. The wish command is a windowing Tool

Control Language (tcl) interpreter that can be used to write graphical clients. Avoiding the

use of specific pathnames to programs increases shell script portability because not every

UNIX or Linux system has programs in the same location.

For example, if you want to use the wish command, your first inclination might be to

write this:

#!/usr/local/bin/wish

Although this works on many other operating systems, the script fails under Linux

because wish is located in the /usr/bin directory. However, if you write the command line

this way, you can use the wish command (as a binary or a shell script itself):

#!/bin/sh

exec wish "$@"

http://HOST=thinkpad.home.org
http://HOSTNAME=thinkpad.home.org

242 CHAPTER 14 Automating Tasks and Shell Scripting

Using Variables in Shell Scripts

When writing shell scripts for Linux, you work with three types of variables:

 ▶ Environment variables—You can use these variables, which are part of the sys-

tem environment, in your shell program. You can define new variables, and you can

also modify some of them, such as PATH, within a shell program.

 ▶ Built-in variables—Variables such as options used on the command (interpreted

by the shell as a positional argument) are provided by Linux. Unlike environment

variables, you cannot modify built-in variables.

 ▶ User variables—These variables are defined within a script when you write a shell

script. You can use and modify them at will within the shell script, but they are not

available to be used outside the script.

A major difference between shell programming and other programming languages is that

in shell programming, variables are not typed—that is, you do not have to specify whether

a variable is a number or a string, and so on.

Assigning a Value to a Variable

Suppose that you want to use a variable called lcount to count the number of iterations in

a loop within a shell program. You can declare and initialize this variable as follows:

Command Environment

lcount=0 pdksh and bash

set lcount=0 tcsh

NOTE

Under pdksh and bash, you must ensure that the equals sign (=) does not have spaces

before and after it.

To store a string in a variable, you can use the following:

Command Environment

myname=Sedona pdksh and bash

set myname=Sedona tcsh

Use the preceding variable form if the string doesn’t have embedded spaces. If a string has

embedded spaces, you can do the assignment as follows:

Command Environment

myname="Sage" pdksh and bash

set myname="Sage" tcsh

243

1
4

Writing and Executing a Shell Script

Accessing Variable Values

You can access the value of a variable by prefixing the variable name with a dollar

sign ($). That is, if the variable name is var, you can access the variable by using $var.

If you want to assign the value of var to the variable lcount, you can do so as follows:

Command Environment

lcount=$var pdksh and bash

set lcount=$var tcsh

Positional Parameters

Passing options from the command line or from another shell script to your shell program

is possible.

These options are supplied to the shell program by Linux as positional parameters, which

have special names provided by the system. The first parameter is stored in a variable

called 1 (number 1) and can be accessed by using $1 within the program. The second

parameter is stored in a variable called 2 and can be accessed by using $2 within the pro-

gram, and so on. One or more of the higher-numbered positional parameters can be omit-

ted while you’re invoking a shell program.

Understanding how to use these positional parameters and how to access and use vari-

ables retrieved from the command line is necessary when developing more advanced shell

programs.

A Simple Example of a Positional Parameter

Consider this example: If a shell program mypgm expects two parameters—such as a first

name and a last name—you can invoke the shell program with only one parameter, the

first name. However, you cannot invoke it with only the second parameter, the last name.

Here is a shell program called mypgm1, which takes only one parameter (a name) and dis-

plays it on the screen:

#!/bin/sh

#Name display program

if [$# -eq 0]

then

 echo "Name not provided"

else

 echo "Your name is "$1

fi

If you execute mypgm1, as follows:

matthew@seymour:~$ bash mypgm1

244 CHAPTER 14 Automating Tasks and Shell Scripting

you get the following output:

Name not provided

However, if you execute mypgm1 as follows:

matthew@seymour:~$ bash mypgm1 Sandra

you get this output:

Your name is Sandra

The shell program mypgm1 also illustrates another aspect of shell programming: the built-

in variables provided to the shell by the Linux kernel. In mypgm1, the built-in variable $#

provides the number of positional parameters passed to the shell program. You learn more

about working with built-in variables in the next major section of this chapter.

Using Positional Parameters to Access and Retrieve Variables
from the Command Line

Using positional parameters in scripts can be helpful if you need to use command lines

with piped commands requiring complex arguments. Shell programs containing positional

parameters can be even more convenient if the commands are infrequently used. For

example, if you use your Ubuntu system with an attached voice modem as an answering

machine, you can write a script to issue a command that retrieves and plays the voice

messages. The following lines convert a saved sound file (in .rmd or voice-phone format)

and pipe the result to your system’s audio device:

#!/bin/sh

play voice message in /var/spool/voice/incoming

rmdtopvf /var/spool/voice/incoming/$1 | pvfspeed -s 8000 | \

pvftobasic >/dev/audio

You can then easily play back a voice message by using this script (in this case named

pmm):

matthew@seymour:~$ pmm name_of_message

Shell scripts that contain positional parameters are often used for automating routine

and mundane jobs, such as system log report generation, file system checks, user resource

accounting, printer use accounting, and other system, network, or security administration

tasks.

Using a Simple Script to Automate Tasks

You could use a simple script, for example, to examine your system log for certain key-

words. If the script is run via your system’s scheduling table, /etc/crontab, it can help

automate security monitoring. By combining the output capabilities of existing Linux

commands with the language facilities of the shell, you can quickly build a useful script to

245

1
4

Writing and Executing a Shell Script

perform a task that normally requires a number of command lines. For example, you can

create a short script, named greplog, like this:

#!/bin/sh

name: greplog

use: mail grep of designated log using keyword

version: v.01 08aug02

#

author: bb

#

usage: greplog [keyword] [logpathname]

#

bugs: does not check for correct number of arguments

build report name using keyword search and date

log_report=/tmp/$1.logreport.`date '+%m%d%y'`

build report header with system type, hostname, date and time

echo "==" \

 >$log_report

echo " S Y S T E M O N I T O R L O G" >>$log_report

echo uname -a >>$log_report

echo "Log report for" `hostname -f` "on" `date '+%c'` >>$log_report

echo "==" \

 >>$log_report ; echo "" >>$log_report

record log search start

echo "Search for->" $1 "starting" `date '+%r'` >>$log_report

echo "" >>$log_report

get and save grep results of keyword ($1) from logfile ($2)

grep -i $1 $2 >>$log_report

build report footer with time

echo "" >>$log_report

echo "End of" $log_report at `date '+%r'` >>$log_report

mail report to root

mail -s "Log Analysis for $1" root <$log_report

clean up and remove report

rm $log_report

exit 0

In this example, the script creates the variable $log_report, which will be the filename of

the temporary report. The keyword ($1) and first argument on the command line are used

as part of the filename, along with the current date (with perhaps a better approach being

246 CHAPTER 14 Automating Tasks and Shell Scripting

to use $$ instead of the date, which will append the script’s PID as a file extension). Next,

the report header containing some formatted text, the output of the uname command, and

the hostname and date are added to the report. The start of the search is then recorded,

and any matches of the keyword in the log are added to the report. A footer containing

the name of the report and the time is then added. The report is mailed to root with the

search term as the subject of the message, and the temporary file is deleted.

You can test the script by running it manually and feeding it a keyword and a pathname

to the system log, /var/log/syslog, like this:

matthew@seymour:~$ sudo greplog FAILED /var/log/syslog

Note that your system should be running the syslogd daemon. If any login failures have

occurred on your system, the root operator might get an email message that looks like

this:

Date: Sun, 23 Oct 2016 16:23:24 -0400

From: root <root@righthere.home.org>

To: root@righthere.home.org

Subject: FAILED

==

 S Y S T E M M O N I T O R L O G

Linux system 4.4.0-22-generic #1 Sun Oct 9 20:21:24 EDT 2016

+GNU/Linux

Log report for righthere.home.org on Sun 23 Oct 2016 04:23:24 PM EDT

==

Search for-> FAILED starting 04:23:24 PM

Oct 23 16:23:04 righthere login[1769]: FAILED LOGIN 3 FROM (null) FOR bball,

+Authentication failure

End of /tmp/FAILED.logreport.102303 at 04:23:24 PM

To further automate the process, you can include command lines using the script in

another script to generate a series of searches and reports.

Built-in Variables

Built-in variables are special variables that Linux provides to the shell that you can use to

make decisions within a shell program. You cannot modify the values of these variables

within the shell program.

The following are some of the built-in variables:

 ▶ $#—The number of positional parameters passed to the shell program

mailto:<root@righthere.home.org
mailto:root@righthere.home.org
http://righthere.home.org

247

1
4

Writing and Executing a Shell Script

 ▶ $?—The completion code of the last command or shell program executed within the

shell program (returned value)

 ▶ $0—The name of the shell program

 ▶ $*—A single string of all arguments passed at the time of invocation of the shell

program

To show these built-in variables in use, here is a sample program called mypgm2:

#!/bin/sh

#my test program

echo "Number of parameters is $#"

echo "Program name is $0"

echo "Parameters as a single string is $*"

If you execute mypgm2 from the command line in pdksh and bash as follows:

matthew@seymour:~$ bash mypgm2 Alan Turing

you get the following result:

Number of parameters is 2

Program name is mypgm2

Parameters as a single string is Alan Turing

Special Characters

Some characters have special meaning to Linux shells; these characters represent com-

mands, denote specific use for surrounding text, or provide search parameters. Special

characters provide a sort of shorthand by incorporating rather complex meanings into

simple characters. Table 14.1 shows some special characters.

Table 14.1 Special Shell Characters

Character Explanation

$ Indicates the beginning of a shell variable name

| Pipes standard output to the next command

Starts a comment

& Executes a process in the background

? Matches one character

* Matches one or more characters

> Redirects output

< Redirects input

` Indicates command substitution (the backquote or backtick—the

key above the Tab key on most keyboards)

>> Redirects output (to append to a file)

248 CHAPTER 14 Automating Tasks and Shell Scripting

Character Explanation

<< Waits until the following end-of-input string (HERE operator)

[] Specifies a range of characters

[a-z] Specifies all characters a through z

[a,z] or [az] Specifies characters a or z

Space Acts as a delimiter between two words

Special characters are very useful when you’re creating shell scripts, but if you inadver-

tently use a special character as part of a variable name or string, your program behaves

incorrectly. As you learn in later parts of this chapter, you can use one of the special char-

acters in a string if you precede it with an escape character (\, or backslash) to indicate that

it isn’t being used as a special character and shouldn’t be treated as such by the program.

A few special characters deserve special note: double quotes (") ,single quotes ('), backs-

lash (\), and backtick (`), all of which are discussed in the following sections.

Using Double Quotes to Resolve Variables in Strings with Embedded Spaces

If a string contains embedded spaces, you can enclose the string in double quotes (") so

that the shell interprets the whole string as one entity instead of as more than one.

For example, if you assigned the value abc def (abc followed by one space, followed by

def) to a variable called x in a shell program as follows, you would get an error because

the shell would try to execute def as a separate command:

Command Environment

x=abc def pdksh and bash

set x = adb def tcsh

The shell executes the string as a single command if you surround the string in double

quotes, as follows:

Command Environment

x="abc def" pdksh and bash

set x="abc def" tcsh

The double quotes resolve all variables within the string. Here is an example for pdksh and

bash:

var="test string"

newvar="Value of var is $var"

echo $newvar

Here is the same example for tcsh:

set var="test string"

set newvar="Value of var is $var"

echo $newvar

249

1
4

Writing and Executing a Shell Script

If you execute a shell program containing the preceding three lines, you get the following

result:

Value of var is test string

Using Single Quotes to Maintain Unexpanded Variables

You can surround a string with single quotes (') to stop the shell from expanding vari-

ables and interpreting special characters. When used for the latter purpose, the single

quote is an escape character, similar to the backslash, which you learn about in the next

section. Here, you learn how to use the single quote to avoid expanding a variable in a

shell script. An unexpanded variable maintains its original form in the output.

In the following examples, the double quotes from the preceding examples have been

changed to single quotes:

For pdksh and bash:

var='test string'

newvar='Value of var is $var'

echo $newvar

For tcsh:

set var = 'test string'

set newvar = 'Value of var is $var'

echo $newvar

If you execute a shell program containing these three lines, you get the following result:

Value of var is $var

As you can see, the variable var maintains its original format in the results rather than

being expanded.

Using the Backslash as an Escape Character

As you learned earlier, the backslash (\) serves as an escape character that stops the shell

from interpreting the succeeding character as a special character. Say that you want to

assign the value $test to a variable called var. If you use the following command, the

shell reads the special character $ and interprets $test as the value of the variable test.

No value has been assigned to test; a null value is stored in var as follows:

Command Environment

var=$test pdksh and bash

set var=$test tcsh

250 CHAPTER 14 Automating Tasks and Shell Scripting

Unfortunately, this assignment might work for bash and pdksh, but it returns an “unde-

fined variable” error if you use it with tcsh. Use the following commands to correctly

store $test in var:

Command Environment

var=\$test pdksh and bash

set var = \$test tcsh

The backslash before the dollar sign (\$) signals the shell to interpret the $ as any other

ordinary character and not to associate any special meaning to it. You could also use single

quotes (') around the $test variable to get the same result.

Using the Backtick to Replace a String with Output

You can use the backtick (`) character to signal the shell to replace a string with its output

when executed. This is called command substitution. You can use this special character in

shell programs when you want the result of the execution of a command to be stored in a

variable. For example, if you want to count the number of lines in a file called test.txt in

the current directory and store the result in a variable called var, you can use the follow-

ing commands:

Command Environment

var=`wc -l test.txt` pdksh and bash

set var = `wc -l test.txt` tcsh

Comparison of Expressions in pdksh and bash

Comparing values or evaluating the differences between similar bits of data—such as file

information, character strings, or numbers—is a task known as comparison of expressions.

Comparison of expressions is an integral part of using logic in shell programs to accom-

plish tasks. The way the logical comparison of two operators (numeric or string) is done

varies slightly in different shells. In pdksh and bash, a command called test can be used

to achieve comparisons of expressions. In tcsh, you can write an expression to accomplish

the same thing.

This section covers comparison operations using the pdksh or bash shells. Later in the

chapter, you learn how to compare expressions in the tcsh shell.

The pdksh and bash shell syntax provide a command named test to compare strings,

numbers, and files. The syntax of the test command is as follows:

test expression

or

[expression]

Both forms of the test commands are processed the same way by pdksh and bash. The

test commands support the following types of comparisons:

 ▶ String comparison

 ▶ Numeric comparison

251

1
4

Writing and Executing a Shell Script

 ▶ File operators

 ▶ Logical operators

String Comparison

You can use the following operators to compare two string expressions:

 ▶ =—Compares whether two strings are equal

 ▶ !=—Compares whether two strings are not equal

 ▶ -n—Evaluates whether the string length is greater than zero

 ▶ -z—Evaluates whether the string length is equal to zero

Next are some examples using these operators when comparing two strings, string1 and

string2, in a shell program called compare1:

#!/bin/sh

string1="abc"

string2="abd"

if [$string1 = $string2]; then

 echo "string1 equal to string2"

else

 echo "string1 not equal to string2"

fi

if [$string2 != string1]; then

 echo "string2 not equal to string1"

else

 echo "string2 equal to string2"

fi

if [$string1]; then

 echo "string1 is not empty"

else

 echo "string1 is empty"

fi

if [-n $string2]; then

 echo "string2 has a length greater than zero"

else

 echo "string2 has length equal to zero"

fi

252 CHAPTER 14 Automating Tasks and Shell Scripting

if [-z $string1]; then

 echo "string1 has a length equal to zero"

else

 echo "string1 has a length greater than zero"

fi

If you execute compare1, you get the following result:

string1 not equal to string2

string2 not equal to string1

string1 is not empty

string2 has a length greater than zero

string1 has a length greater than zero

If two strings are not equal in size, the system pads out the shorter string with trailing

spaces for comparison. That is, if the value of string1 is "abc" and that of string2 is

"ab", string2 is padded with a trailing space for comparison purposes; it has the value

"ab " (with a space after the letters).

Numeric Comparison

The following operators can be used to compare two numbers:

 ▶ -eq—Compares whether two numbers are equal

 ▶ -ge—Compares whether one number is greater than or equal to the other number

 ▶ -le—Compares whether one number is less than or equal to the other number

 ▶ -ne—Compares whether two numbers are not equal

 ▶ -gt—Compares whether one number is greater than the other number

 ▶ -lt—Compares whether one number is less than the other number

The following shell program compares three numbers, number1, number2, and number3:

#!/bin/sh

number1=5

number2=10

number3=5

if [$number1 -eq $number3]; then

 echo "number1 is equal to number3"

else

 echo "number1 is not equal to number3"

fi

if [$number1 -ne $number2]; then

 echo "number1 is not equal to number2"

253

1
4

Writing and Executing a Shell Script

else

 echo "number1 is equal to number2"

fi

if [$number1 -gt $number2]; then

 echo "number1 is greater than number2"

else

 echo "number1 is not greater than number2"

fi

if [$number1 -ge $number3]; then

 echo "number1 is greater than or equal to number3"

else

 echo "number1 is not greater than or equal to number3"

fi

if [$number1 -lt $number2]; then

 echo "number1 is less than number2"

else

 echo "number1 is not less than number2"

fi

if [$number1 -le $number3]; then

 echo "number1 is less than or equal to number3"

else

 echo ""number1 is not less than or equal to number3"

fi

When you execute the shell program, you get the following results:

number1 is equal to number3

number1 is not equal to number2

number1 is not greater than number2

number1 is greater than or equal to number3

number1 is less than number2

number1 is less than or equal to number3

File Operators

You can use the following operators as file comparison operators:

 ▶ -d—Determines whether a file is a directory

 ▶ -f—Determines whether a file is a regular file

 ▶ -r—Determines whether read permission is set for a file

 ▶ -s—Determines whether a file exists and has a length greater than zero

254 CHAPTER 14 Automating Tasks and Shell Scripting

 ▶ -w—Determines whether write permission is set for a file

 ▶ -x—Determines whether execute permission is set for a file

Assume that a shell program called compare3 is in a directory with a file called file1 and a

subdirectory dir1 under the current directory. Assume that file1 has a permission of r-x

(read and execute permission) and dir1 has a permission of rwx (read, write, and execute

permission). The code for the shell program would look like this:

#!/bin/sh

if [-d $dir1]; then

 echo ""dir1 is a directory"

else

 echo ""dir1 is not a directory"

fi

if [-f $dir1]; then

 echo ""dir1 is a regular file"

else

 echo ""dir1 is not a regular file"

fi

if [-r $file1]; then

 echo ""file1 has read permission"

else

 echo ""file1 does not have read permission"

fi

if [-w $file1]; then

 echo ""file1 has write permission"

else

 echo ""file1 does not have write permission"

fi

if [-x $dir1]; then

 echo ""dir1 has execute permission"

else

 echo ""dir1 does not have execute permission"

fi

If you execute the shell program, you get the following results:

dir1 is a directory

file1 is a regular file

file1 has read permission

file1 does not have write permission

dir1 has execute permission

255

1
4

Writing and Executing a Shell Script

Logical Operators

You use logical operators to compare expressions using Boolean logic—that is, comparing

values using characters representing NOT, AND, and OR:

 ▶ !—Negates a logical expression

 ▶ -a—Logically ANDs two logical expressions

 ▶ -o—Logically ORs two logical expressions

This example named logic uses the file and directory mentioned in the previous compare3

example:

#!/bin/sh

if [-x file1 -a -x dir1]; then

 echo file1 and dir1 are executable

else

 echo at least one of file1 or dir1 are not executable

fi

if [-w file1 -o -w dir1]; then

 echo file1 or dir1 are writable

else

 echo neither file1 or dir1 are executable

fi

if [! -w file1]; then

 echo file1 is not writable

else

 echo file1 is writable

fi

If you execute logic, it yields the following result:

file1 and dir1 are executable

file1 or dir1 are writable

file1 is not writable

Comparing Expressions with tcsh

As stated earlier, the method for comparing expressions in tcsh is different from the

method used under pdksh and bash. The comparison of expression demonstrated in this

section uses the syntax necessary for the tcsh shell environment.

String Comparison

You can use the following operators to compare two string expressions:

 ▶ ==—Compares whether two strings are equal

 ▶ !=—Compares whether two strings are not equal

256 CHAPTER 14 Automating Tasks and Shell Scripting

The following examples compare two strings, string1 and string2, in the shell program

compare1:

#!/bin/tcsh

set string1 = "abc"

set string2 = "abd"

if (string1 == string2) then

 echo "string1 equal to string2"

else

 echo "string1 not equal to string2"

endif

if (string2 != string1) then

 echo "string2 not equal to string1"

else

 echo "string2 equal to string1"

endif

If you execute compare1, you get the following results:

string1 not equal to string2

string2 not equal to string1

Number Comparison

You can use the following operators to compare two numbers:

 ▶ >=—Determines whether one number is greater than or equal to the other number

 ▶ <=—Determines whether one number is less than or equal to the other number

 ▶ >—Determines whether one number is greater than the other number

 ▶ <—Determines whether one number is less than the other number

The next examples compare three numbers, number1, number2, and number3, in a shell pro-

gram called compare2:

#!/bin/tcsh

set number1=5

set number2=10

set number3=5

if (number1 > number2) then

 echo "number1 is greater than number2"

else

 echo "number1 is not greater than number2"

endif

257

1
4

Writing and Executing a Shell Script

if (number1 >= number3) then

 echo "number1 is greater than or equal to number3"

else

 echo "number1 is not greater than or equal to number3"

endif

if (number1 < number2) then

 echo "number1 is less than number2"

else

 echo "number1 is not less than number2"

endif

if (number1 <= number3) then

 echo "number1 is less than or equal to number3"

else

 echo "number1 is not less than or equal to number3"

endif

When executing the shell program compare2, you get the following results:

number1 is not greater than number2

number1 is greater than or equal to number3

number1 is less than number2

number1 is less than or equal to number3

File Operators

You can use the following operators as file comparison operators:

 ▶ -d—Determines whether a file is a directory

 ▶ -e—Determines whether a file exists

 ▶ -f—Determines whether a file is a regular file

 ▶ -o—Determines whether a user is the owner of a file

 ▶ -r—Determines whether read permission is set for a file

 ▶ -w—Determines whether write permission is set for a file

 ▶ -x—Determines whether execute permission is set for a file

 ▶ -z—Determines whether the file size is zero

The following examples are based on a shell program called compare3, which is in a direc-

tory with a file called file1 and a subdirectory dir1 under the current directory. Assume

that file1 has a permission of r-x (read and execute permission), and dir1 has a permis-

sion of rwx (read, write, and execute permission).

258 CHAPTER 14 Automating Tasks and Shell Scripting

The following is the code for the compare3 shell program:

#!/bin/tcsh

if (-d dir1) then

 echo "dir1 is a directory"

else

 echo "dir1 is not a directory"

endif

if (-f dir1) then

 echo "file1 is a regular file"

else

 echo "file1 is not a regular file"

endif

if (-r file1) then

 echo "file1 has read permission"

else

 echo "file1 does not have read permission"

endif

if (-w file1) then

 echo "file1 has write permission"

else

 echo "file1 does not have write permission"

endif

if (-x dir1) then

 echo "dir1 has execute permission"

else

 echo "dir1 does not have execute permission"

endif

if (-z file1) then

 echo "file1 has zero length"

else

 echo "file1 has greater than zero length"

endif

If you execute the file compare3, you get the following results:

dir1 is a directory

file1 is a regular file

file1 has read permission

file1 does not have write permission

dir1 has execute permission

file1 has greater than zero length

259

1
4

Writing and Executing a Shell Script

Logical Operators

You use logical operators with conditional statements. You use the following operators to

negate a logical expression or to perform logical ANDs and ORs:

 ▶ !—Negates a logical expression

 ▶ &&—Logically ANDs two logical expressions

 ▶ ||—Logically ORs two logical expressions

This example named logic uses the file and directory mentioned in the previous compare3

example:

#!/bin/tcsh

if (-x file1 && -x dir1) then

 echo file1 and dir1 are executable

else

 echo at least one of file1 or dir1 are not executable

endif

if (-w file1 || -w dir1) then

 echo file1 or dir1 are writable

else

 echo neither file1 or dir1 are executable

endif

if (! -w file1) then

 echo file1 is not writable

else

 echo file1 is writable

endif

If you execute logic, it yields the following result:

file1 and dir1 are executable

file1 or dir1 are writable

file1 is not writable

The for Statement

You use the for statement to execute a set of commands once each time a specified condi-

tion is true. The for statement has a number of formats. The first format used by pdksh

and bash is as follows:

for curvar in list

do

 statements

done

260 CHAPTER 14 Automating Tasks and Shell Scripting

You should use this format if you want to execute statements once for each value in list.

For each iteration, the current value of the list is assigned to vcurvar. list can be a vari-

able containing a number of items or a list of values separated by spaces. The second for-

mat is as follows:

for curvar

do

 statements

done

In this format, the statements are executed once for each of the positional parameters

passed to the shell program. For each iteration, the current value of the positional param-

eter is assigned to the variable curvar. You can also write this format as follows:

for curvar in $

do

 statements

done

Remember that $@ gives you a list of positional parameters passed to the shell program,

quoted in a manner consistent with the way the user originally invoked the command.

Under tcsh, the for statement is called foreach, and the format is as follows:

foreach curvar (list)

 statements

end

In this format, statements are executed once for each value in list, and, for each itera-

tion, the current value of list is assigned to curvar.

Suppose that you want to create a backup version of each file in a directory to a subdirec-

tory called backup. You can do the following in pdksh and bash:

#!/bin/sh

for filename in *

do

 cp $filename backup/$filename

 if [$? -ne 0]; then

 echo "copy for $filename failed"

 fi

done

In this example, a backup copy of each file is created. If the copy fails, a message is

generated.

The same example in tcsh is as follows:

#!/bin/tcsh

foreach filename (`/bin/ls`)

261

1
4

Writing and Executing a Shell Script

 cp $filename backup/$filename

 if ($? != 0) then

 echo "copy for $filename failed"

 endif

end

The while Statement

You can use the while statement to execute a series of commands while a specified condi-

tion is true. The loop terminates as soon as the specified condition evaluates to false. It

is possible that the loop will not execute at all if the specified condition initially evaluates

to false. You should be careful with the while command because the loop never termi-

nates if the specified condition never evaluates to false.

ENDLESS LOOPS HAVE A PLACE IN SHELL PROGRAMS

Endless loops can sometimes be useful. For example, you can easily construct a simple

command that constantly monitors the 802.11 link quality of a network interface by using

a few lines of script:

#!/bin/sh

while :

 do

 /sbin/iwconfig wlan0 | grep Link | tr '\n' '\r'

 Done

The script outputs the search, and then the tr command formats the output. The result is

a simple animation of a constantly updated single line of information:

Link Quality:92/92 Signal level:-11 dBm Noise level:-102 dBm

You can also use this technique to create a graphical monitoring client for X that outputs

traffic information and activity about a network interface:

#!/bin/sh

xterm -geometry 75x2 -e \

bash -c \

 "while :; do \

 /sbin/ifconfig eth0 | \

 grep 'TX bytes' |

 tr '\n' '\r' ; \

done"

This simple example uses a bash command-line script (enabled by -c) to execute a com-

mand line repeatedly. The command line pipes the output of the ifconfig command

through grep, which searches the output of ifconfig and then pipes a line containing

the string “TX bytes” to the tr command. The tr command then removes the carriage

return at the end of the line to display the information inside an /xterm X11 terminal win-

dow, automatically sized by the -geometry option:

RX bytes:4117594780 (3926.8 Mb) TX bytes:452230967 (431.2 Mb)

262 CHAPTER 14 Automating Tasks and Shell Scripting

Endless loops can be so useful that Linux includes a command that repeatedly executes a

given command line. For example, you can get a quick report about a system’s hardware

health by using the sensors command. Instead of using a shell script to loop the output

endlessly, you can use the watch command to repeat the information and provide simple

animation:

matthew@seymour:~$ watch “sensors -f | cut -c 1-20”

In pdksh and bash, use the following format for the while flow control construct:

while expression

do

 statements

done

In tcsh, use the following format:

while (expression)

 statements

End

If you want to add the first five even numbers, you can use the following shell program in

pdksh and bash:

#!/bin/bash

loopcount=0

result=0

while [$loopcount -lt 5]

do

 loopcount=`expr $loopcount + 1`

 increment=`expr $loopcount * 2`

 result=`expr $result + $increment`

doneecho "result is $result"

In tcsh, you can write this program as follows:

#!/bin/tcsh

set loopcount = 0

set result = 0

while ($loopcount < 5)

 set loopcount = `expr $loopcount + 1`

 set increment = `expr $loopcount * 2`

 set result = `expr $result + $increment`

end

echo "result is $result"

263

1
4

Writing and Executing a Shell Script

The until Statement

You can use the until statement to execute a series of commands until a specified condi-

tion is true.

The loop terminates as soon as the specified condition evaluates to true.

In pdksh and bash, the following format is used:

until expression

do

 statements

done

As you can see, the format of the until statement is similar to that of the while state-

ment, but the logic is different: In a while loop, you execute until an expression is false,

whereas in an until loop, you loop until the expression is true. An important part of this

difference is that while is executed zero or more times (so it is potentially not executed at

all), but until is repeated one or more times, meaning it is executed at least once.

If you want to add the first five even numbers, you can use the following shell program in

pdksh and bash:

#!/bin/bash

loopcount=0

result=0

until [$loopcount -ge 5]

do

 loopcount=`expr $loopcount + 1`

 increment=`expr $loopcount * 2`

 result=`expr $result + $increment`

done

echo "result is $result"

The example here is identical to the example for the while statement except that the con-

dition being tested is just the opposite of the condition specified in the while statement.

The tcsh shell does not support the until statement.

The repeat Statement (tcsh)

You use the repeat statement to execute only one command a fixed number of times.

If you want to print a hyphen (-) 80 times with one hyphen per line on the screen, you

can use the following command:

repeat 80 echo '-'

264 CHAPTER 14 Automating Tasks and Shell Scripting

The select Statement (pdksh)

You use the select statement to generate a menu list if you are writing a shell program

that expects input from the user online. The format of the select statement is as follows:

select item in itemlist

do

 Statements

Done

itemlist is optional. If it isn’t provided, the system iterates through the item entries one

at a time. If itemlist is provided, however, the system iterates for each entry in itemlist,

and the current value of itemlist is assigned to item for each iteration, which then can

be used as part of the statements being executed.

If you want to write a menu that gives the user a choice of picking a Continue or a Finish,

you can write the following shell program:

#!/bin/ksh

select item in Continue Finish

do

 if [$item = "Finish"]; then

 break

 fi

done

When the select command is executed, the system displays a menu with numeric

choices—in this case, 1 for Continue and 2 for Finish. If the user chooses 1, the vari-

able item contains the value Continue; if the user chooses 2, the variable item contains

the value Finish. When the user chooses 2, the if statement is executed, and the loop

terminates.

The shift Statement

You use the shift statement to process the positional parameters, one at a time, from left

to right. Recall that the positional parameters are identified as $1, $2, $3, and so on. The

effect of the shift command is that each positional parameter is moved one position to

the left, and the current $1 parameter is lost.

The shift statement is useful when you are writing shell programs in which a user can

pass various options. Depending on the specified option, the parameters that follow can

mean different things or might not be there at all.

The format of the shift command is as follows:

shift number

The parameter number is the number of places to be shifted and is optional. If it is not

specified, the default is 1; that is, the parameters are shifted one position to the left. If it is

specified, the parameters are shifted number positions to the left.

265

1
4

Writing and Executing a Shell Script

The if Statement

The if statement evaluates a logical expression to make a decision. An if condition has

the following format in pdksh and bash:

if [expression]; then

 Statements

elif [expression]; then

 Statements

else

 Statements

fi

if conditions can be nested. That is, an if condition can contain another if condition

within it. It isn’t necessary for an if condition to have an elif or else part. The else

part is executed if none of the expressions that are specified in the if statement are true

and are not evaluated if preceding elif statements are true. The word fi is used to indi-

cate the end of the if statements, which is very useful if you have nested if conditions.

In such a case, you should be able to match fi to if to ensure that all if statements are

properly coded.

In the following example for bash or pdksh, a variable var can have either of two values:

Yes or No. Any other value is invalid. This can be coded as follows:

if [$var = "Yes"]; then

 echo "Value is Yes"

elif [$var = "No"]; then

 echo "Value is No"

else

 echo "Invalid value"

fi

In tcsh, the if statement has two forms. The first form, similar to the one for pdksh and

bash, is as follows:

if (expression) then

 Statements

else if (expression) then

 Statements

else

 Statements

endif

Using the example of the variable var having only two values, Yes and No, here is how it

is coded with tcsh:

if ($var == "Yes") then

 echo "Value is Yes"

266 CHAPTER 14 Automating Tasks and Shell Scripting

else if ($var == "No") then

 echo "Value is No"

else

 echo "Invalid value"

endif

The second form of the if condition for tcsh is as follows:

if (expression) command

In this format, only a single command can be executed if the expression evaluates to true.

The expr Statement

You use expr to evaluate an expression. It can evaluate numbers and mathematic expres-

sions. It can also be used to evaluate strings and perform comparisons. Some examples

follow.

To add or subtract, multiply or divide, use one of the following:

expr 12 + 2

expr 26-24

expr 6 * 3

expr 11 / 3

There are two things to note in this set of operations.

 ▶ When you multiply, you must use an escape character before the multiplication

operator for the command to parse correctly, which is why you see \ (the escape

character) before the * (the multiplication character).

 ▶ When you divide, only the whole number result will be returned, so, for example,

expr 11 / 2 returns 3. To get the remainder, use the following, which returns 2:

expr 11 / 2

A number of string-related operations are available. Each involves adding a second word

to the command before the string to be evaluated.

To find the length of a string, use the following:

expr length string

If the string includes spaces, you must again use the escape character, like this:

expr length linux\ is\ cool

13

You can do many more things with expr. Read the man page for more information.

267

1
4

Writing and Executing a Shell Script

The case Statement

You use the case statement to execute statements depending on a discrete value or a

range of values matching the specified variable. In most cases, you can use a case state-

ment instead of an if statement if you have a large number of conditions.

The format of a case statement for pdksh and bash is as follows:

case str in

 str1 | str2)

 Statements;;

 str3|str4)

 Statements;;

 *)

 Statements;;

esac

You can specify a number of discrete values—such as str1, str2, and so on—for each con-

dition, or you can specify a value with a wildcard. The last condition should be an asterisk

(*) and is executed if none of the other conditions are met. For each of the specified con-

ditions, all the associated statements until the double semicolon (;;) are executed.

You can write a script that echoes the name of the month if you provide the month num-

ber as a parameter. If you provide a number that isn’t between 1 and 12, you get an error

message. The script is as follows:

#!/bin/sh

case $1 in

 01 | 1) echo "Month is January";;

 02 | 2) echo "Month is February";;

 03 | 3) echo "Month is March";;

 04 | 4) echo "Month is April";;

 05 | 5) echo "Month is May";;

 06 | 6) echo "Month is June";;

 07 | 7) echo "Month is July";;

 08 | 8) echo "Month is August";;

 09 | 9) echo "Month is September";;

 10) echo "Month is October";;

 11) echo "Month is November";;

 12) echo "Month is December";;

 *) echo "Invalid parameter";;

esac

You need to end the statements under each condition with a double semicolon (;;). If

you do not, the statements under the next condition are also executed.

268 CHAPTER 14 Automating Tasks and Shell Scripting

The format for a case statement for tcsh is as follows:

switch (str)

 case str1|str2:

 Statements

 breaksw

 case str3|str4:

 Statements

 breaksw

 default:

 Statements

 breaksw

endsw

You can specify a number of discrete values—such as str1, str2, and so on—for each con-

dition, or you can specify a value with a wildcard. The last condition should be the default

and is executed if none of the other conditions are met. For each of the specified condi-

tions, all the associated statements until breaksw are executed.

You can write the example that echoes the month when a number is given, shown earlier

for pdksh and bash, in tcsh as follows:

#!/bin/tcsh

set month = 5

switch ($month)

 case 1: echo "Month is January" ; breaksw

 case 2: echo "Month is February" ; breaksw

 case 3: echo "Month is March" ; breaksw

 case 4: echo "Month is April" ; breaksw

 case 5: echo "Month is May" ; breaksw

 case 6: echo "Month is June" ; breaksw

 case 7: echo "Month is July" ; breaksw

 case 8: echo "Month is August" ; breaksw

 case 9: echo "Month is September" ; breaksw

 case 10: echo "Month is October" ; breaksw

 case 11: echo "Month is November" ; breaksw

 case 12: echo "Month is December" ; breaksw

 default: echo "Oops! Month is Octember!" ; breaksw

endsw

You need to end the statements under each condition with breaksw. If you do not, the

statements under the next condition are also executed.

269

1
4

Writing and Executing a Shell Script

The break and exit Statements

You should be aware of two other statements: the break statement and the exit

statement.

You can use the break statement to terminate an iteration loop, such as a for, until, or

repeat command.

You can use exit statement to exit a shell program. You can optionally use a number after

exit. If the current shell program has been called by another shell program, the calling

program can check for the code (the $? or $status variable, depending on shell) and make

a decision accordingly.

Using Functions in Shell Scripts

As with other programming languages, in Ubuntu shell programs also support functions.

A function is a piece of a shell program that performs a particular process; you can reuse

the same function multiple times within the shell program. Functions help eliminate the

need for duplicating code as you write shell programs.

The following is the format of a function in pdksh and bash:

func(){

 Statements

}

You can call a function as follows:

func param1 param2 param3

The parameters param1, param2, and so on are optional. You can also pass the parameters

as a single string—for example, $@. A function can parse the parameters as if they were

positional parameters passed to a shell program from the command line as command-

line arguments but instead use values passed inside the script. For example, the following

script uses a function named Displaymonth() that displays the name of the month or an

error message if you pass a month number out of the range 1 to 12. This example works

with pdksh and bash:

#!/bin/sh

Displaymonth() {

 case $1 in

 01 | 1) echo "Month is January";;

 02 | 2) echo "Month is February";;

 03 | 3) echo "Month is March";;

 04 | 4) echo "Month is April";;

 05 | 5) echo "Month is May";;

 06 | 6) echo "Month is June";;

 07 | 7) echo "Month is July";;

270 CHAPTER 14 Automating Tasks and Shell Scripting

 08 | 8) echo "Month is August";;

 09 | 9) echo "Month is September";;

 10) echo "Month is October";;

 11) echo "Month is November";;

 12) echo "Month is December";;

 *) echo "Invalid parameter";;

 esac

}

Displaymonth 8

The preceding program displays the following output:

Month is August

References
 ▶ www.gnu.org/software/bash/—The bash home page at the GNU Software

Project

 ▶ www.tldp.org/LDP/abs/html/—Mendel Cooper’s “Advanced Bash-Scripting

Guide”

 ▶ www.freeos.com/guides/lsst/—Linux shell scripting tutorial

 ▶ https://kornshell.com—The KornShell website

 ▶ https://web.cs.mun.ca/~michael/pdksh/—The pdksh home page

 ▶ www.tcsh.org—Find out more about tcsh here

 ▶ www.zsh.org/—Examine zsh in more detail here

http://www.gnu.org/software/bash/
http://www.tldp.org/LDP/abs/html/
http://www.freeos.com/guides/lsst/
https://kornshell.com
https://web.cs.mun.ca/~michael/pdksh/
http://www.tcsh.org
http://www.zsh.org/

IN THIS CHAPTER

 ▶ Running Services at Boot

 ▶ Beginning the Boot Loading

Process

 ▶ Loading the Linux Kernel

 ▶ Starting and Stopping Services

with systemd

 ▶ Boot-Repair

 ▶ References

CHAPTER 15

The Boot Process

In this chapter, you learn about making tasks into services

that run as your system starts and making them into ser-

vices you can start and stop by hand. You also learn about

the entire boot process.

After you turn on the power switch, the boot process begins

with the computer executing code stored in a chip called

the BIOS, or basic input/output system; this process occurs no

matter what operating system you have installed. The Linux

boot process begins when the code known as the boot loader

starts loading the Linux kernel and ends when the login

prompt appears.

As a system administrator, you will use the skills you learn

in this chapter to control your system’s services and man-

age runlevels on your computer. Understanding the man-

agement of the system services and states is essential to

understanding how Linux works (especially in a multiuser

environment) and helps untangle the mysteries of a few

of your Ubuntu system’s configuration files. Furthermore,

a good knowledge of the cron daemon that handles task

scheduling is essential for administrators at all skill levels,

so you will want to combine this knowledge with what

you learned in Chapter 14, “Automating Tasks and Shell

Scripting.”

Running Services at Boot
Although most people consider a computer to be either on

or off, in Ubuntu and Linux in general, there are a num-

ber of states in between. Known as runlevels, they define

what system services are started upon boot. These services

are simply applications running in the background that

provide some needed function to a system, such as getting

information from the mouse and sending it to the display;

272 CHAPTER 15 The Boot Process

or a service could monitor the partitions to see whether they have enough free space left

on them. Services are typically loaded and run (also referred to as being started) during

the boot process, in the same way as Microsoft Windows services are. For a while, Ubuntu

used a system known as Upstart instead of the classic and venerable SysVinit; Upstart had

a special backward-compatibility layer that could use runlevels in the way that Linux vet-

erans are accustomed to doing for services not otherwise handled by Upstart. Starting in

2015, Ubuntu switched to another system called systemd. You’ll learn more about runlev-

els, Upstart, and systemd later in this chapter.

Init SYSTEMS

There are many ways to describe init systems, but this quote from a thread at Reddit.

com is hard to beat (capitalization and spelling errors are from the original):

“To understand the fuss, there are 3 init systems that you should be aware of: sysvinit,

upstart and systemd. SysVinit is really old, outdated and only allows for a sequential

startup of services, that is, all services started by init must wait for the previous service

to have completed their startup process before the next can startup. Both upstart and

systemd are designed to tackle the limitations of init, and allows for concurrent service

initialization, that is, multiple services can startup at the same time, as long as they are

not dependent on each other, and allows taking advantage of multi core processing. They

also allow for services to startup and shutdown for specific events, such as a network

connection going up or another service has started. Upstart was developed by Canonical

was initially released in 2006 and was used in Ubuntu, Debian, Fedora, RHEL, CentOS,

and many others. Systemd is a much younger system that was initially released in 2011,

however, most major distros has already migrated to using systemd by default.

“Both Upstart and Systemd are event based, however their architecture and configuration

setup are very different and this is where the worrying comes from. If the configurations

aren’t ported correctly then systems are going to behave differently to what’s expected

and this can lead to issues for many users.”

—hitsujiTMO in www.reddit.com/r/Ubuntu/comments/2yeyyi/grab_your_pitchforks_

ubuntu_to_switch_to_systemd/cp92iro

You can manage nearly every aspect of your computer and how it behaves after booting

via configuring and ordering boot scripts and by using various system administration utili-

ties included with Ubuntu. In this chapter, you learn how to work with these boot scripts

and system administration utilities. This chapter also offers advice for troubleshooting

and fixing problems that might arise with software configuration or the introduction or

removal of various types of hardware from your system.

Beginning the Boot Loading Process
Although the actual boot loading mechanism for Linux varies on different hardware plat-

forms (such as SPARC, Alpha, and PowerPC systems), Intel-based PCs running Ubuntu

most often use the same mechanism throughout product lines. This process is tradition-

ally accomplished through a BIOS. The BIOS is an application stored in a chip on the

motherboard that initializes the hardware on the motherboard (and often the hardware

http://Reddit.com
http://Reddit.com
http://www.reddit.com/r/Ubuntu/comments/2yeyyi/grab_your_pitchforks_ubuntu_to_switch_to_systemd/cp92iro
http://www.reddit.com/r/Ubuntu/comments/2yeyyi/grab_your_pitchforks_ubuntu_to_switch_to_systemd/cp92iro

273

1
5

Beginning the Boot Loading Process

that’s attached to the motherboard). The BIOS gets the system ready to load and run the

software that we recognize as the operating system.

As a last step, the BIOS code looks for a special program known as the boot loader or boot

code. The instructions in this little bit of code tell the BIOS where the Linux kernel is

located, how it should be loaded into memory, and how it should be started.

If all goes well, the BIOS looks for a bootable volume such as a CD-ROM, hard drive, RAM

disk, USB drive, or other media. The bootable volume contains a special hexadecimal

value written to the volume by the boot loader application (such as Ubuntu’s default,

GRUB2) when the boot loader code was first installed in the system’s drives. The BIOS

searches volumes in the order established by the BIOS settings (for example, USB first, fol-

lowed by a DVD-ROM, and then a hard drive) and then boots from the first bootable vol-

ume it finds. Modern BIOSs allow considerable flexibility in choosing the device used for

booting the system.

NOTE

If the BIOS detects a hardware problem, the boot process fails, and the BIOS generates a

few beeps from the system speaker. These “beep codes” indicate the nature of the prob-

lem the BIOS has encountered. The codes vary among manufacturers, and the diagnosis

of problems occurring during this phase of the boot process is beyond the scope of this

book and does not involve Linux. If you encounter a problem, consult the motherboard

manual or contact the manufacturer of the motherboard. Another good source for learning

about beep codes is www.computerhope.com/beep.htm.

Next, the BIOS looks on the bootable volume for boot code in the partition boot sec-

tor, also known as the master boot record (MBR), of the first hard disk. The MBR contains

the boot loader code and the partition table; you can think of it as an index for a book,

plus a few comments on how to start reading the book. If the BIOS finds a boot loader, it

loads the boot loader code into memory. At that point, the BIOS’s job is completed, and it

passes control of the system to the boot loader.

As computing evolved, the BIOS began to be a limiting factor because some of its limita-

tions were not easy to overcome. Intel was the first company to notice this as it developed

its Itanium systems in the late 1990s. That work eventually became the foundation for the

Unified Extensible Firmware Interface (UEFI).

UEFI serves a similar role to BIOS and has replaced BIOS in most modern systems. For

most end users, the difference is negligible, except that if you have a UEFI computer, you

may need to do some research to install Ubuntu. UEFI firmware often has a BIOS mode

that allows the firmware to work like a traditional BIOS and that is more easily compat-

ible, especially if you are installing Ubuntu as the sole operating system on the computer

rather than as a dual-boot. There were some significant problems early on, but they seem

to have lessened as the Linux community has learned more about UEFI and made things

more easily compatible. To learn more, especially if you are having trouble, see https://

help.ubuntu.com/community/UEFI.

http://www.computerhope.com/beep.htm
https://help.ubuntu.com/community/UEFI
https://help.ubuntu.com/community/UEFI

274 CHAPTER 15 The Boot Process

One interesting aspect of using UEFI involves hard disk partitioning. When UEFI is used

with Windows 8.x or 10, often the partitioning is set up using GPT (GUID Partition Table)

rather than the existing MBR standard. You can use GPT with Ubuntu, but if only Ubuntu

is to be installed on the drive, reformatting the hard disk to use MBR is often easier. As

with BIOS and UEFI, most people do not need to know or care whether they are using

MBR or GPT. To learn more, see www.howtogeek.com/193669/whats-the-difference-

between-gpt-and-mbr-when-partitioning-a-drive/. If the system has a UEFI BIOS, GRUB is

stored as an EFI application on the EFI system partition and not the MBR/GPT.

The boot loader locates the Linux kernel on the disk and loads it into memory. After that

task is completed, the boot loader passes control of the system to the Linux kernel. You

can see how one process builds on another in an approach that enables many different

operating systems to work with the same hardware.

NOTE

Linux is very flexible and can be booted from multiple images on a CD-ROM, over a net-

work using PXE (pronounced “pixie”) or NetBoot, or on a headless server with the console

display sent over a serial or network connection. Work is even under way at www.core-

boot.org to create a special Linux BIOS that will expedite the boot process because Linux

does not need many of the services offered by the typical BIOS.

This kind of flexibility enables Linux to be used in a variety of ways, such as for remote

servers or diskless workstations, which are not generally seen in personal home use.

Loading the Linux Kernel
In a general sense, the kernel manages the system resources. As the user, you do not often

interact with the kernel, but instead you interact with the applications you are using.

Linux refers to each application as a process, and the kernel assigns each process a number

called a process ID (PID). Traditionally, the Linux kernel loads and runs a process named

init, which is also known as the “ancestor of all processes” because it starts every subse-

quent process. The traditional init system was SysVinit. It has been replaced by newer

options. One of these options was Upstart, which was written by Ubuntu developers and

made available for any distribution to use. Upstart was replaced by systemd as of Ubuntu

15.04. This chapter walks through the traditional SysVinit method first and then provides

details on Upstart and systemd.

The next step of the boot process traditionally begins with a message that the Linux ker-

nel is loading and a series of messages that are printed to the screen, giving the status

of each command. A failure should display an error message. The quiet option may be

passed to the kernel at boot time to suppress many of these messages. Ubuntu does not

display these messages by default but instead uses a boot process created by the Fedora/

Red Hat developers called Plymouth that is fast and incorporates a beautiful boot screen.

If the boot process were halted at this point, the system would just sit idle, and the screen

would be blank. To make the system useful for users, you need to start the system services.

Those services are some of the applications that enable you to interact with the system.

http://www.howtogeek.com/193669/whats-the-difference-between-gpt-and-mbr-when-partitioning-a-drive/
http://www.howtogeek.com/193669/whats-the-difference-between-gpt-and-mbr-when-partitioning-a-drive/
http://www.core-boot.org
http://www.core-boot.org

275

1
5

Starting and Stopping Services with systemd

Starting and Stopping Services with systemd
Ubuntu uses systemd as a modern replacement for init. It was created by Red Hat and has

seen near-universal adoption across Linux distributions. The job of systemd is to manage

services that run on the system and is comprised of a set of basic building blocks.

systemd is the mother of all processes and is responsible for bringing the Linux kernel up

to a state where work can be done. To do this, it starts by mounting the file systems that

are defined in /etc/fstab, including swap files or partitions.

From here, the configuration files in /etc are available and are loaded, starting with the con-

figuration file for systemd itself at /etc/systemd/system/default.target, which is actually

just a symbolic link to the actual .target file, which depends on how the system is set up.

For a typical desktop system, that symlink will point to the graphical.target file. For a

server, it will likely point to multi-user.target, which is command line only. There are

other target files, which loosely correspond to SystemV runlevels, as shown in Table 15.1.

Table 15.1 Systemd Targets and How They Relate to SystemV Runlevels

systemd Target systemd Target

Alias

SystemV

Runlevel

Description

default.target This is a symlink to whichever of

the following targets is set to load

by default.

graphical.

target

runlevel5.

target
5 For a desktop system, this is the

default and loads a multiuser sys-

tem with a GUI.

multi-user.

target

runlevel3.

target
3 This will load and run all services

for a multiuser system but is com-

mand line only. This is typical for a

server.

emergency.

target
S Loads single-user mode with no run-

ning services, no mounted file sys-

tems, and only an emergency shell.

rescue.target runlevel1.

target
1 Loads a base system with basic

services running, mounted file sys-

tems, and a rescue shell.

halt.target Halts the system without powering

down.

poweroff.

target

runlevel0.

target
0 Halts the system and powers down.

reboot.target runlevel6.

target
6 Reboots the system.

runlevel2.

target
2 Boots a multiuser system with all

non-GUI services running except

NFS (network file system).

runlevel4.

target
4 Unused by systemd.

276 CHAPTER 15 The Boot Process

Using these targets and target aliases, you can change the running mode similar to how

in the past we would change runlevels using SystemV init commands. When systemd

is engaged during the boot process, it uses the set target to discover and load expected

dependencies, the services required to run the Linux system at the expected level of

functionality.

To change the system state using target files, use the following commands (see

Table 15.2):

Table 15.2 systemd State-Related Commands

Command Description

systemctl get-default Lists the currently set default target

sudo systemctl set-default

new.target
Changes the default to a different target; for example,

replace new with something from the preceding list,

but never set the default to halt.target, poweroff.

target, or reboot.target

sudo systemctl isolate new.

target
Changes to a different target; this is like changing run-

level in SystemV.

sudo systemctl list-

dependencies some.target
Lists the dependencies of a specific target, which is a

good idea before you run an isolate command to make

sure you will have what you require after you switch.

After the base services are loaded and running, systemd will also load any user-defined

services. All of these services are called units. To list every available unit file on your

system, use

$ systemctl list-unit-files

A word of warning: The output will include hundreds of unit files in the listing. On the

positive side, it will tell you whether each one is enabled, disabled, or in some other state.

States include

 ▶ disabled, which means it is not currently available.

 ▶ enabled, which means it is currently available.

 ▶ masked, which means the unit file has been marked as unstartable and is linked

to /dev/null. This prevents a unit file from being started, either automatically or

manually, until it is unmarked.

 ▶ static, which means the unit file does not include an “install” section, which is nec-

essary to enable a unit; these are usually not meant to be run by users and generally

perform a one-time action in the startup process or work as a dependency of another

unit and are not intended to be run alone. To interact with systemd, you typically

use the systemctl command. The main interactions you are likely to have with

systemd involve starting and stopping services. Table 15.3 shows commands related

to services.

277

1
5

Starting and Stopping Services with systemd

Table 15.3 systemd Service-Related Commands

Command Description

systemctl List running services

systemctl start

servicename service
Start a service

systemctl stop servicename

service

Stop a service

systemctl restart

servicename service
Restart a service

systemctl reload

servicename service
Reload a service (this only tells the service to reload its

configuration files, rather than restart the entire service;

typically, restarting is a safer option)

systemctl status

servicename service
Show the status of a service

systemctl condrestart

servicename service
Restart a service if it is already running

systemctl enable

servicename service
Enable a service at startup

systemctl disable

servicename service
Disable a service at startup (typically to remove a ser-

vice from the list of those starting automatically at boot)

systemctl mask servicename

service

Make a service unavailable for use

systemctl unmask

servicename service
Make a service available for use again

A few standard commands are replaced in systemd, including the ones listed in Table 15.4.

Table 15.4 Other systemd Commands

Command Description

systemctl halt Halt the system

systemctl reboot Reboot the system

systemctl cat servicename Display the unit file for a service

systemctl list-dependencies

servicename

Display the dependencies for a service

systemctl show servicename Display the low-level properties of a service, anything

that is set using a key=value format

sudo systemctl edit

servicename

Temporarily edit a service file just in memory

sudo systemctl edit --full

servicename

Permanently edit a service file; to remove any changes

you have made, delete the unit’s .d configuration direc-

tory or the modified service file from /etc/systemd/

system and the default file will be used

journalctl -f Follow the system log file; replaces tail -f /var/log/

message

278 CHAPTER 15 The Boot Process

Services are defined in systemd unit files, which end with .service. Many examples of

these are found in /lib/systemd/system.

There is much more to learn about systemd than is appropriate for a book with such a

wide range of topics to cover—especially as few people need to know more than is covered

here. See the official documentation listed in “References” section to learn more if you

find yourself in need.

Controlling Services at Boot with Administrative Tools

You can configure what services run at startup with Startup Applications Preferences

(shown in Figure 15.1). Here Ubuntu lists all the services that you can have automatically

start at boot time. Checked programs are enabled by default, but you can uncheck the

ones you don’t want. Disabling services randomly “to make things go faster” is not rec-

ommended. Some services might be vital for the continuing operation of your computer,

such as the graphical login manager and the system communication bus.

FIGURE 15.1 You can enable and disable Ubuntu’s boot services by toggling the check boxes

in the Startup Applications Preferences dialog box.

Troubleshooting Runlevel Problems

Reordering or changing system services is rarely necessary when using Ubuntu unless

some disaster occurs, but system administrators should have a basic understanding of how

Linux boots and how services are controlled to perform troubleshooting or diagnose prob-

lems. By using utilities such as the dmesg | less command to read kernel output after

booting or by examining system logging with cat /var/log/syslog | less, it is possible

to gain a bit more detail about what is going on when faced with troublesome drivers or

service failure.

Boot-Repair
Sometimes, such as when you install both Windows and Ubuntu on the same hard drive,

boot problems can develop. Boot-Repair is a simple GUI tool you can use to fix such

problems. Typically, it just reinstalls GRUB2, but using Boot-Repair is a much easier solu-

tion for many users. The program is not yet in the Ubuntu repositories, although plans

279

1
5

References

for including it have been discussed. In the meanwhile, should you need it, take a look at

https://help.ubuntu.com/community/Boot-Repair or the official documentation at https://

sourceforge.net/projects/boot-repair/.

References
 ▶ /usr/src/linux/init/main.c—A file that appears on your computer after you

install the kernel source code, which is the best place to learn about how Linux

boots

 ▶ https://help.ubuntu.com/community/Grub2—Ubuntu community

documentation for GRUB2

 ▶ https://wiki.freedesktop.org/www/Software/systemd/—The official system

documentation

https://help.ubuntu.com/community/Boot-Repair
https://sourceforge.net/projects/boot-repair/
https://sourceforge.net/projects/boot-repair/
https://help.ubuntu.com/community/Grub2
https://wiki.freedesktop.org/www/Software/systemd/

This page intentionally left blank

IN THIS CHAPTER

 ▶ Console-Based Monitoring

 ▶ Graphical Process- and

System-Management Tools

 ▶ KDE Process- and System-

Monitoring Tools

 ▶ Enterprise Server Monitoring

 ▶ References

CHAPTER 16

System-Monitoring Tools

To keep your system in optimum shape, you need to be

able to monitor it closely. This is imperative in a corporate

environment, where uptime is vital and any system fail-

ures and downtime can be quite expensive. Whether for

checking processes for errant daemons or keeping a close

eye on CPU and memory usage, Ubuntu provides a wealth

of utilities designed to give you as little or as much feed-

back as you want. This chapter looks at some of the basic

monitoring tools, along with some tactics designed to keep

your system up longer. Some of the monitoring tools cover

network connectivity, memory, and hard drive usage, and

in this chapter you learn how to manipulate active system

processes using a mixture of graphical and command-line

tools.

Console-Based Monitoring
Those familiar with UNIX system administration already

know about the ps, or process display, command com-

monly found on most flavors of UNIX. Because of the

close relationship between Linux and UNIX, Ubuntu also

includes this command, which enables you to see the cur-

rent processes running on the system, who owns them, and

how resource-hungry they are.

Although the Linux kernel has its own distinct architecture

and memory management, it also benefits from enhanced

use of the /proc file system, the virtual file system found on

many UNIX flavors. Through the /proc file system, you can

communicate directly with the kernel to get a deep view of

what is currently happening. Developers tend to use the

/proc file system as a way of extracting information from

the kernel and for their programs to manipulate that infor-

mation into human-readable formats. A full discussion of

the /proc file system is beyond the scope of this book. To

get a better idea of what it contains, you can take a look at

282 CHAPTER 16 System-Monitoring Tools

https://en.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html, which provides an

excellent and in-depth guide.

Processes can also be controlled at the command line, which is important because you

might sometimes have only a command-line interface. Whenever an application or a com-

mand is launched, either from the command line or a clicked icon, the process that comes

from the kernel is assigned an identification number called a process ID (PID). This number

is shown in the shell if the program is launched via the command line:

matthew@seymour:~$ gedit &

[1] 9649

In this example, gedit has been launched in the background, and the (bash) shell

reported a shell job number ([1] in this case). A job number or job control is a shell-

specific feature that allows a different form of process control, such as sending or suspend-

ing programs to the background and retrieving background jobs to the foreground. (See

your shell’s man pages for more information if you are not using bash.)

The second number displayed (9649 in this example) represents the PID. You can get a

quick list of your processes by using the ps command, like this:

matthew@seymour:~$ ps

 PID TTY TIME CMD

 9595 pts/0 00:00:00 bash

 9656 pts/0 00:00:00 gedit

 9657 pts/0 00:00:00 ps

As you can see, the output includes the PID along with other information, such as the

name of the running program. As with any other UNIX command, many options are

available; the proc man page has a full list. One useful option is -e, which lists all pro-

cesses running on the system. Another is aux, which provides a more detailed list of all

the processes. You should also know that ps works not by polling memory but through

the interrogation of the Linux /proc, or process file system.

The /proc directory contains many files, some of which include constantly updated hard-

ware information (such as battery power levels). Linux administrators often pipe the out-

put of ps through grep to display information about a specific program, like this:

matthew@seymour:~$ ps aux | grep bash

matthew 9656 0.0 0.1 21660 4460 pts/0 Ss 11:39 0:00 bash

This example returns the owner (the user who launched the program) and the PID, along

with other information such as the percentage of CPU and memory usage, the size of the

command (code, data, and stack), the time (or date) the command was launched, and the

https://en.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

283

1
6

Console-Based Monitoring

name of the command for any process that includes the match bash. Processes can also be

queried by PID as follows:

matthew@seymour:~$ ps 9656

 PID TTY STAT TIME COMMAND

 9656 pts/0 S 0:00 gedit

You can use the PID to stop a running process by using the shell’s built-in kill command.

This command asks the kernel to stop a running process and reclaim system memory. For

example, to stop gedit in the preceding example, use the kill command like this:

matthew@seymour:~$ kill 9656

After you press Enter and then press Enter again, the shell reports the following:

[1]+ Terminated gedit

Note that users can kill only their own processes, but root can kill all users’ processes.

Controlling any other running process requires root permission, which you should use

judiciously (especially when forcing a kill by using the -9 option); by inadvertently kill-

ing the wrong process through a typo in the command, you could bring down an active

system.

Using the kill Command to Control Processes

The kill command is a basic UNIX system command. You can communicate with a run-

ning process by entering a command into its interface, such as when you type into a text

editor. But some processes (usually system processes rather than application processes) run

without such an interface, and you need a way to communicate with them as well, so you

use a system of signals. The kill system accomplishes that by sending a signal to a pro-

cess, and you can use it to communicate with any process. The general format of the kill

command is as follows:

matthew@seymour:~$ kill option PID

Note that if you are using kill on a process you do not own, you need to have super user

privileges and preface the kill command with sudo.

A number of signal options can be sent as words or numbers, but most are of interest only

to programmers. One of the most common is the one used previously to kill gedit:

matthew@seymour:~$ kill PID

This tells the process with PID to stop (where you supply the actual PID). Issuing the com-

mand without a signal option issues the default, which is kill -15 (more on that later),

and gives us no guarantee that a process will be killed because programs can catch, block,

or ignore some terminate signals (and this is a good thing, done by design).

284 CHAPTER 16 System-Monitoring Tools

The following example includes a signal for kill that cannot be caught (9 is the number

of the SIGKILL signal):

matthew@seymour:~$ kill -9 PID

You can use this combination when the plain kill shown previously does not work. Be

careful, though. Using this does not allow a process to shut down gracefully, and shutting

down gracefully is usually preferred because it closes things that the process might have

been using and ensures that things such as logs are written before the process disappears.

Instead, try this first:

matthew@seymour:~$ kill -1 PID

This is the signal to “hang up”—stop—and then clean up all associated processes as well

(1 is the number of the SIGHUP signal).

In fact, some system administrators and programmers prefer something like this progres-

sion of signals:

 ▶ kill -15—This command sends a SIGTERM, which is a clean shutdown that flushes

data that needs to be written to disk, cleans up memory registers, and closes the PID.

 ▶ kill -1—As mentioned earlier, this command sends a SIGHUP, which cleans up and

usually also causes the program to restart.

 ▶ kill -2—This command sends a SIGINT, which is an interrupt from the keyboard,

the equivalent to sending Ctrl+C. For example, if you want to stop a program that is

running in the background as a daemon instead of in the terminal foreground, this

is a good way to do it.

 ▶ kill -11—This command sends a SIGSEGV, which causes the problem to experience

a segmentation fault and close. It does not flush data to disk, but it may create a core

dump file that could be useful for debugging and learning why the program is misbehav-

ing (or behaving exactly as you told it to behave and not as you intended it to behave).

 ▶ kill -9—This command sends a SIGKILL, which should be used as a last resort

because it does not sync any data. Nothing is written to disk—no logging, no debug-

ging, nothing. You stop the PID (usually, but not always), but you get nothing that

helps you either save data that needed to be written to disk or assists you in figuring

out what happened.

As you become proficient at process control and job control, you will learn the utility of a

number of kill options. You can find a full list of signal options in the kill man page.

USING killall

The killall command allows you to kill a process by name, as in killall gedit, which

would kill any and all gedit processes that are currently running. You can also kill all

processes being run by a specific user (assuming that you have authority to do so) with

 killall -u username. See the killall man page for more options.

285

1
6

Console-Based Monitoring

Using Priority Scheduling and Control

Two useful applications included with Ubuntu are the nice and renice commands. They

are covered in Chapter 12, “Command-Line Master Class, Part 2.” Along with nice, system

administrators can also use the time command to get an idea of how much time and what

proportion of a system’s resources are required for a task, such as a shell script. (Here,

time is used to measure the duration of elapsed time; the command that deals with civil

and sidereal time is the date command.) This command is used with the name of another

command (or script) as an argument, like this:

matthew@seymour:~$ sudo time -p find / -name conky

/home/matthew/conky

/etc/conky

/usr/lib/conky

/usr/bin/conky

real 30.19

user 1.09

sys 2.77

Output of the command displays the time from start to finish, along with the user and

system time required. Other factors you can query include memory, CPU usage, and file

system input/output (I/O) statistics. See the time command’s man page for more details.

The top command is covered in Chapter 12. It has some even-more-powerful cousins

worth mentioning here.

One option for monitoring resource usage is called htop. It is not installed by default but

is available from the Ubuntu software repositories and is worth a minute or two of your

consideration when you’re familiar with top. Here are some key differences:

 ▶ With htop, you can scroll the list vertically and horizontally to see all processes and

complete command lines.

 ▶ With top, you are subject to a delay for each unassigned key you press (which is

especially annoying when multikey escape sequences are triggered by accident).

 ▶ htop starts faster. (top seems to collect data for a while before displaying anything.)

 ▶ With htop, you don’t need to type the process number to kill a process; with top,

you do.

 ▶ With htop, you don’t need to type the process number or the priority value to renice

a process; with top, you do.

 ▶ htop supports mouse operation; top doesn’t.

 ▶ top is older and therefore more used and tested.

See https://hisham.hm/htop/ for more details.

https://hisham.hm/htop/

286 CHAPTER 16 System-Monitoring Tools

Displaying Free and Used Memory with free
Although top includes some memory information, the free utility displays the amount

of free and used memory in the system, in kilobytes. (The -m switch causes it to display in

megabytes.) On one system, the output looks like this:

matthew@seymour:~$ free

 total used free shared buffers cached

Mem: 4055680 3327764 727916 0 280944 2097568

-/+ buffers/cache: 949252 3106428

Swap: 8787512 0 8787512

This output describes a machine with 4GB of RAM memory and a swap partition of

8GB. Note that none of the swap is being used and that the machine is not heavily

loaded. Linux is very good at memory management and “grabs” all the memory it can

in anticipation of future work.

TIP

A useful trick is to employ the watch command, which repeatedly reruns a command every

two seconds by default. If you use the following, you can see the output of the free com-

mand updated every two seconds:

matthew@seymour:~$ watch free

Use Ctrl+C to quit.

Another useful system-monitoring tool is vmstat (virtual memory statistics). This command

reports on processes, memory, I/O, and CPU, typically providing an average since the last

reboot; or you can make it report usage for a current period by telling it the time interval,

in seconds, and the number of iterations you desire, like this:

matthew@seymour:~$ vmstat 5 10

This causes vmstat to run every five seconds for 10 iterations.

Use the uptime command to see how long it has been since the last reboot and to get an

idea of what the load average has been; higher numbers mean higher loads.

Disk Space

Along with system load, it is important to keep an eye on the amount of free hard drive

space that your computer has remaining. It is easy to do this, mainly by using the df

command, as follows:

matthew@seymour:~$ df

Just using the command alone returns this output:

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 14421344 6584528 7104256 49% /

none 2020124 348 2019776 1% /dev

287

1
6

Console-Based Monitoring

none 2027840 2456 2025384 1% /dev/shm

none 2027840 220 2027620 1% /var/run

none 2027840 0 2027840 0% /var/lock

none 2027840 0 2027840 0% /lib/init/rw

/dev/sda6 284593052 147323812 122812752 55% /home

Here you can see each drive as mounted on your system, as well as the used space, the

available space, the percentage of the total usage of the disk, and where it is mounted on

your system.

Unless you are good at doing math in your head, you might find it difficult to work out

exactly what the figures mean in megabytes and gigabytes, so it is recommended that you

use the -h switch to make the output human readable, like this:

matthew@seymour:~$ df –h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 14G 6.3G 6.8G 49% /

none 2.0G 348K 2.0G 1% /dev

none 2.0G 2.4M 2.0G 1% /dev/shm

none 2.0G 220K 2.0G 1% /var/run

none 2.0G 0 2.0G 0% /var/lock

none 2.0G 0 2.0G 0% /lib/init/rw

/dev/sda6 272G 141G 118G 55% /home

Disk Quotas

Disk quotas enable you to restrict the usage of disk space either by users or by groups.

Although rarely—if ever—used on a local or standalone workstation, quotas are definitely

a way of life at the enterprise level of computing. Usage limits on disk space not only con-

serve resources but also provide a measure of operational safety by limiting the amount of

disk space any user can consume.

Disk quotas are more fully covered in Chapter 13, “Managing Users.”

Checking Log Files

Many of the services and programs that run on your computer save data in log files. Typi-

cal data include success and error messages for processes that are attempted and lists of

actions. Some of these log files are extremely technical, whereas others are easily read and

parsed by regular users who know what they are looking for. Most log files can be found

in /var/log/ or its subdirectories.

Typically, log files are used to learn about something that happened recently, so most

admins are interested in the most recent entries. In this case, using tail is commonly

used to read just the most recent 10 lines:

matthew@seymour:~$ tail /var/log/boot.log

 * Starting [OK] *

Starting save kernel messages [OK] * Starting

288 CHAPTER 16 System-Monitoring Tools

 [OK] * Starting [OK] *

Starting deferred execution scheduler [OK] *

Starting regular background program processing daemon [OK] * Stopping

save kernel messages [OK] * Stopping

anac(h)ronistic cron [OK] * Starting CUPS

printing spooler/server [OK] * Starting CPU interrupts

balancing daemon [OK]

There isn’t anything terribly interesting in this quote of today’s boot.log on this machine,

but it is sufficient to show how reading the last few lines of a log file works.

You are more likely to want to be able to find out whether something specific is men-

tioned in a log. The following example shows how to use cat and grep to look for men-

tions of pnp in dmesg, the display message buffer log for the Linux kernel, to see if there

is any mention of a plug-and-play device:

matthew@seymour:~$ cat /var/log/dmesg | grep pnp

[0.426212] pnp: PnP ACPI init[0.426223] ACPI: bus type pnp registered[

0.426303] pnp 00:01: [dma 4][0.426315] pnp 00:01: Plug and Play ACPI device, IDs

PNP0200 (active)[0.426338] pnp 00:02: Plug and Play ACPI device, IDs PNP0b00

(active)[0.426351] pnp 00:03: Plug and Play ACPI device, IDs PNP0800 (active)[

0.426369] pnp 00:04: Plug and Play ACPI device, IDs PNP0c04 (active)[0.426531] pnp

00:05: [dma 0 disabled][0.426568] pnp 00:05: Plug and Play ACPI device, IDs PNP0501

(active)[0.426872] pnp 00:08: Plug and Play ACPI device, IDs PNP0103 (active)[

0.427298] pnp: PnP ACPI: found 12 devices[0.427299] ACPI: ACPI bus type pnp

unregistered

Here are a few of the most commonly used log files. Your system will have many others,

in addition to these:

 ▶ /var/log/apport.log—Saves information about system crashes and reports

 ▶ /var/log/auth.log—Saves information about system access and authentication,

including when a user does something using sudo

 ▶ /var/log/kern.log—Saves information from kernel messages, such as warnings and

errors

 ▶ /var/log/syslog—Saves information from system events

 ▶ /var/log/ufw.log—Saves information from the Ubuntu Firewall

 ▶ /var/log/apt/history.log—Saves information about package installation and

removal

Notice that the last one is in its own subdirectory. Many applications create their own

directories and may even create multiple log files within their directories.

289

1
6

Console-Based Monitoring

A couple of special cases deserve separate mention. These two are not read using standard

methods, but each has its own program for reading from the command line. The com-

mands are the same as the log names:

 ▶ faillog—Reads from /var/log/faillog and lists recent login failures

 ▶ lastlog—Reads from /var/log/lastlog and lists the most recent login for each

account

For those who love GUI applications, there is a log reader installed by default in Ubuntu.

Find System Log in the Dash to run it. It does not include every log in /var/log, but it

does include the most important ones that serve the widest audience.

Rotating Log Files

Log files are great, but sometimes they can get unwieldy as time passes and more infor-

mation is logged. Rotating log files prevents that problem. Rotating a log file means

archiving the current log file, starting a fresh log, and deleting older log files. This means

you always have a current log file to peruse (the previous log file), and the log files never

grow too large.

Typically, log rotation is set up by an administrator to happen nightly, at a time when

the system is not being heavily used. This is done with a utility called logrotate run-

ning as a cron job. (cron is described in Chapter 14, “Automating Tasks and Shell

Scripting.”)

Ubuntu comes with logrotate installed. There is a cron job already set as well. You can

find the script at /etc/cron.daily/logrotate. This file is a bash script and looks like

this:

#!/bin/sh

Clean nonexistent log file entries from status filecd /var/lib/logrotatetest -e

status || touch statushead -1 status > status.cleansed 's/"//g' status | while read

logfile datedo [-e "$logfile"] && echo "\"$logfile\" $date"done >> status.

cleanmv

status.clean status

test -x /usr/sbin/logrotate || exit 0/usr/sbin/logrotate /etc/logrotate.conf

Don’t worry if you don’t yet understand everything in this script. You don’t need to

understand it to configure logrotate to do what you want. You can learn more about

bash and shell scripting in Chapter 14.

The important line right now is that last one, which lists the location of the configuration

file for logrotate. Here are the default contents of /etc/logrotate.conf.

see "man logrotate" for details

rotate log files weekly

290 CHAPTER 16 System-Monitoring Tools

weekly

use the syslog group by default, since this is the owning group# of /var/log/

syslog.su root syslog

keep 4 weeks’ worth of backlogsrotate 4

create new (empty) log files after rotating old onescreate

uncomment this if you want your log files compressed#compress

packages drop log rotation information into this directoryinclude /etc/logrotate.d

no packages own wtmp, or btmp -- we'll rotate them here/var/log/wtmp { missingok

monthly create 0664 root utmp rotate 1}

/var/log/btmp { missingok monthly create 0660 root utmp rotate 1}

system-specific logs may be configured here

This file includes useful comments, and what it can configure is straightforward. If you

can read the file, you probably already have a pretty accurate guess as to what the vari-

ous settings do. As the first comment in the file says, the man page for logrotate has an

explanation of everything that you can consult if it is not already clear.

One interesting entry says that packages drop log rotation information into /etc/

logrotate.d. This is worth a closer look. The directory contains a config file for applica-

tions that are installed using the package manager and that log information. These files

are named after the applications whose log files they control. Let’s look at two examples.

This first one is for apt, the package manager:

/var/log/apt/term.log { rotate 12 monthly compress missingok notifempty}

/var/log/apt/history.log { rotate 12 monthly compress missingok notifempty}

There are two entries here, each for a different log file that is created and used by apt. The

entries define how many old versions of the log files to keep, how frequently logrotate will

rotate the logs, whether to compress the log files, whether it is okay for the log file to be

missing, and whether to bother rotating if the file is empty. Again, this is pretty straightfor-

ward. Here is a more complex example, for rsyslog, the system logging program:

/var/log/syslog

{

 rotate 7

 daily

 missingok

 notifempty

 delaycompress

 compress

 postrotate

 reload rsyslog >/dev/null 2>&1 || true

 endscript

}

291

1
6

Console-Based Monitoring

/var/log/mail.info

/var/log/mail.warn

/var/log/mail.err

/var/log/mail.log

/var/log/daemon.log

/var/log/kern.log

/var/log/auth.log

/var/log/user.log

/var/log/lpr.log

/var/log/cron.log

/var/log/debug

/var/log/messages

{

 rotate 4

 weekly

 missingok

 notifempty

 compress

 delaycompress

 sharedscripts

 postrotate

 reload rsyslog >/dev/null 2>&1 || true

 endscript

}

The man page for logrotate defines all the commands used in these configuration files,

but many are probably clear to you already. Here are some of the most important ones:

 ▶ rotate—Defines how many archived logs are kept at any one time

 ▶ interval—Defines how often to rotate the log; the actual setting will be daily,

weekly, monthly, or yearly

 ▶ size—Defines how large a log file can become before it is rotated; this setting super-

sedes the preceding time interval setting, and the format will be a number and a

unit, such as size 512k or size 128M or size 100G

 ▶ compress—Configures the log file to be compressed

 ▶ nocompress—Configures the log file not to be compressed

What is more important to cover here than all the individual options, which you can look

up in the man page, is that these individual configuration files for specific applications

will override the default settings in /etc/logrotate.conf. If a setting is assigned a value

in that file, it will be used by all applications that logrotate affects unless an application-

specific file in /etc/logrotate.d includes the same setting.

http:///var/log/mail.info

292 CHAPTER 16 System-Monitoring Tools

Graphical Process- and System-Management Tools
The GNOME and KDE desktop environments offer a rich set of network and system-

monitoring tools. Graphical interface elements, such as menus and buttons, and graphical

output, including metering and real-time load charts, make these tools easy to use. These

clients, which require an active X session and in some cases root permission, are included

with Ubuntu.

If you view the graphical tools locally while they are being run on a server, you must have

X properly installed and configured on your local machine. Although some tools can be

used to remotely monitor systems or locally mounted remote file systems, you have to

properly configure pertinent X11 environment variables, such as $DISPLAY, to use the soft-

ware or use the ssh client’s -X option when connecting to the remote host.

System Monitor

System Monitor is a graphical monitoring tool that is informative, easy to use and under-

stand, and very useful. It has tabs for information about running processes, available

resources, and local file systems.

Conky

Conky is a highly configurable, rather complex system monitor that is light on system

resources and can give you information about nearly anything. The downside is that you

need to learn how to configure it. Simply installing Conky from the software repositories

only gets you started. However, for those who want specific information displayed on

their desktop at all times, it is invaluable and well worth the time it takes to figure it out.

We give an example here, but to truly appreciate the power, flexibility, and possibilities of

Conky, visit https://github.com/brndnmtthws/conky.

Conky uses text files for configuration and is often started using a short script. The exam-

ple shown in Figure 16.1 is from Matthew’s personal configuration on his workstation and

is intended as a simple example to get you started.

In this example, Conky gives information about the kernel, the operating system, the

hostname of the system, and the current time and date. It continually updates with infor-

mation on load averages, CPU usage and temperature, battery status, and RAM and disk

usage. In addition, it shows networking details, including the internal network IP address

and the IP address assigned to the outside-facing router the network uses to connect to the

wider world and current inbound and outbound network connections. (The IP address is

assigned by the ISP, and it changes, so if you try to attack Matthew’s home network using

it, you will find that the IP address is being used by someone else now.) That is a lot of

information in a small space. This setup is not as pretty as some you will see at the previ-

ous links, nearly all of which have their setup details made freely available by the person

who wrote the configurations.

https://github.com/brndnmtthws/conky

293

1
6

Graphical Process- and System-Management Tools

FIGURE 16.1 You can configure Conky to give up-to-the-moment information about anything.

In this example, Matthew is using two files to run Conky. The first one, called conkyrc, is

a text file that includes the configuration details for what you see in Figure 16.1:

conky.config = {

-- Use Xft?

 use _ xft = true,

294 CHAPTER 16 System-Monitoring Tools

-- Xft font when Xft is enabled

--font = 'HackBold:size=9',

 font = 'Ubuntu:size=8',

-- Text alignment, other possible values are commented

--minimum _ size 10 10

 gap _ x = 13,

 gap _ y = 45,

--alignment top _ left

 alignment = 'top _ right',

--alignment bottom _ left

--alignment bottom _ right

-- Add spaces to keep things from moving about? This only affects certain objects.

 use _ spacer = 'right',

-- Subtract file system buffers from used memory?

 no _ buffers = true,

-- Use double buffering (reduces flicker, may not work for everyone)

 double _ buffer = true,

-- Allows icons to appear, window to be moved, and transparency

 own _ window = true,

 own _ window _ class = 'Conky',--new

--own _ window _ type override

 own _ window _ transparent = true,

--own _ window _ hints undecorated,below,skip _ taskbar

 own _ window _ type = 'normal',--new

 own _ window _ hints = 'undecorated,below,sticky,skip _ taskbar',--new

 own _ window _ argb _ visual = true,--new

 own _ window _ argb _ value = 0,--new

-- set temperature units, either "farenheit" or "celsius"

 temperature _ unit = "fahrenheit",

-- set to yes if you want Conky to be forked in the background

 background = true,

-- Update interval in seconds

 update _ interval = 1,

 cpu _ avg _ samples = 1,

 net _ avg _ samples = 1,

-- ----- start display config -----

295

1
6

Graphical Process- and System-Management Tools

};

conky.text = [[

${alignc}${color c68be8}$sysname kernel $kernel

${alignc}${color c68be8}${exec cat /etc/issue.net} on $machine host $nodename

${color c68be8}Time:${color E7E7E7} $time

${color c68be8}Updates: ${color E7E7E7}${execi 3600 /usr/lib/update-

[ccc]notifier/apt _ check.py --human-readable | grep updated}

${color c68be8}Security: ${color E7E7E7}${execi 3600 /usr/lib/update-

[ccc]notifier/apt _ check.py --human-readable | grep security}

${color c68be8}Disk Usage:

 Samsung SSD 850 PRO 256GB: ${color E7E7E7}/

 ${fs _ used /}/${fs _ size /} ${fs _ bar /}

 ${color c68be8}Crucial _ CT1050MX300SSD1 1.1TB: ${color E7E7E7}/home

 ${fs _ used /home}/${fs _ size /home} ${fs _ bar /home}

 ${color c68be8}Hitachi Ultrastar A7K2000 HUA722010CLA330 1TB: ${color E7E7E7}/home/matt/

Media

 ${fs _ used /home/matt/Media}/${fs _ size /home/matt/Media} ${fs _ bar /home/matt/Media}

 ${color c68be8}Seagate Expansion Disk (External) 5TB: ${color E7E7E7}/media/matt/Backups

 ${fs _ used /media/matt/Backups}/${fs _ size /media/matt/Backups} ${fs _ bar /media/matt/

Backups}

${color c68be8}RAM Usage:${color E7E7E7} $mem/$memmax - $memperc% $membar

${color c68be8}Swap Usage:${color E7E7E7} $swap/$swapmax - $swapperc% ${swapbar}

${color c68be8}Load average:${color E7E7E7} $loadavg

${color c68be8}Processes:${color E7E7E7} $processes ${color c68be8}Running:${color E7E7E7}

$running _ processes ${color c68be8}

${color c68be8}CPU usage ${alignr}PID CPU% MEM%

${color E7E7E7} ${top name 1}${alignr}${top pid 1} ${top cpu 1} ${top mem 1}

${color E7E7E7} ${top name 2}${alignr}${top pid 2} ${top cpu 2} ${top mem 2}

${color E7E7E7} ${top name 3}${alignr}${top pid 3} ${top cpu 3} ${top mem 3}

${color c68be8}Memory usage

${color E7E7E7} ${top _ mem name 1}${alignr}${top _ mem pid 1} ${top _ mem cpu 1}

${top _ mem mem 1}

${color E7E7E7} ${top _ mem name 2}${alignr}${top _ mem pid 2} ${top _ mem cpu 2}

${top _ mem mem 2}

${color E7E7E7} ${top _ mem name 3}${alignr}${top _ mem pid 3} ${top _ mem cpu 3}

${top _ mem mem 3}

http://cat/etc/issue.net}
http://cat/etc/issue.net}

296 CHAPTER 16 System-Monitoring Tools

${color c68be8}Current CPU usage:

 ${color c68be8}CPU0:${color E7E7E7} ${cpu cpu0}% ${color c68be8}CPU1:${color E7E7E7}

${cpu cpu1}% ${color c68be8}CPU2:${color E7E7E7} ${cpu cpu2}% ${color c68be8}

CPU3:${color E7E7E7} ${cpu cpu3}%

 ${color c68be8}CPU4:${color E7E7E7} ${cpu cpu4}% ${color c68be8}CPU5:${color E7E7E7}

${cpu cpu5}% ${color c68be8}CPU6:${color E7E7E7} ${cpu cpu6}% ${color c68be8}

CPU7:${color E7E7E7} ${cpu cpu7}%

 ${color c68be8}CPU8:${color E7E7E7} ${cpu cpu8}% ${color c68be8}CPU9:${color E7E7E7}

${cpu cpu9}% ${color c68be8}CPU10:${color E7E7E7} ${cpu cpu10}% ${color c68be8}

CPU11:${color E7E7E7} ${cpu cpu11}%

 ${color c68be8}CPU12:${color E7E7E7} ${cpu cpu12}% ${color c68be8}CPU13:${color

E7E7E7} ${cpu cpu13}% ${color c68be8}CPU14:${color E7E7E7} ${cpu cpu14}% ${color c68be8}

CPU15:${color E7E7E7} ${cpu cpu15}%

 ${color c68be8}CPU16:${color E7E7E7} ${cpu cpu16}% ${color c68be8}CPU17:${color E7E7E7}

${cpu cpu17}% ${color c68be8}CPU18:${color E7E7E7} ${cpu cpu18}% ${color c68be8}

CPU19:${color E7E7E7} ${cpu cpu19}%

 ${color c68be8}CPU20:${color E7E7E7} ${cpu cpu20}% ${color c68be8}CPU21:${color E7E7E7}

${cpu cpu21}% ${color c68be8}CPU22:${color E7E7E7} ${cpu cpu22}% ${color c68be8}

CPU23:${color E7E7E7} ${cpu cpu23}%

${color c68be8}Current CPU core temps (cores with sensors):

${color E7E7E7}${execi 2 sensors | grep "Core" | cut -c 1-22}

${color c68be8}Wired Networking:

 ${color c68be8}Local IP: ${color E7E7E7}${addr enp1s0} ${color c68be8}

 ${color c68be8}total download: ${color E7E7E7}${totaldown enp1s0}

 ${color c68be8}total upload: ${color E7E7E7}${totalup enp1s0}

 ${color c68be8}download speed: ${color E7E7E7}${downspeed enp1s0}${color E7E7E7} ${color

c68be8} upload speed: ${color E7E7E7}${upspeed enp1s0}

 ${color E7E7E7}${downspeedgraph enp1s0 15,150 E7E7E7 DA9347} $alignr${color

E7E7E7}${upspeedgraph enp1s0 15,150 DA9347 E7E7E7}

${color c68be8}Public IP: ${color E7E7E7}${execi 600 bash /home/matt/conky/myip.sh}

${color c68be8}Port(s) / Connections:

${color c68be8}Inbound: ${color E7E7E7}${tcp _ portmon 1 32767 count} ${color c68be8}Out-

bound: ${color E7E7E7}${tcp _ portmon 32768 61000 count} ${color c68be8}Total: ${color

E7E7E7}${tcp _ portmon 1 65535 count}

${color c68be8}Outbound Connection ${alignr} Remote Service/Port${color E7E7E7}

 ${tcp _ portmon 1 65535 rhost 0} ${alignr} ${tcp _ portmon 1 65535 rservice 0}

 ${tcp _ portmon 1 65535 rhost 1} ${alignr} ${tcp _ portmon 1 65535 rservice 1}

 ${tcp _ portmon 1 65535 rhost 2} ${alignr} ${tcp _ portmon 1 65535 rservice 2}

 ${tcp _ portmon 1 65535 rhost 3} ${alignr} ${tcp _ portmon 1 65535 rservice 3}

 ${tcp _ portmon 1 65535 rhost 4} ${alignr} ${tcp _ portmon 1 65535 rservice 4}

 ${tcp _ portmon 1 65535 rhost 5} ${alignr} ${tcp _ portmon 1 65535 rservice 5}

]];

297

1
6

Graphical Process- and System-Management Tools

Most of these details are clear, but one is particularly interesting. There are commercial

and other sites that, if you visit them, will return your IP address. This is easily accom-

plished several ways. Matthew chose to put the following PHP in a file named myip.php

on a server he owns, and he calls it directly:

 <?

 $remote = $_SERVER["REMOTE_ADDR"];

 echo $remote;

 ?>

Doing this can help you not feel guilty about constantly hitting someone else’s server for

this information.

Finally, although you can run Conky from the command line at any time after it is set up,

to make it more convenient, many people choose to keep their config files in their /home

directory somewhere and then write a script with the custom location. If you add a pause

to the beginning of the script, you can add the script to Startup Applications and have

it come up after all your other desktop processes are up and running. Here is a simple

example:

#!/bin/bash

sleep 45 &&

exec conky -d -c ~/conky/conkyrc &

exit

Save it in /home/username/conky along with all your Conky config files, make it execut-

able, and then have the Startup Applications process call it at bootup. Note that this way,

you can also run more than one instance of Conky at a time, perhaps having your regular

instance in the upper right of the screen and a weather instance or something else in a

different location. The possibilities are vast.

A lovely GUI program for creating and managing Conky configurations exists, but it is not

in the Ubuntu software repositories. If you are interested in exploring it further, there is a

PPA from which you can install Conky Manager at https://launchpad.net/conky-manager.

Installation directions and other documentation are available from the maintainer’s web-

site, at www.teejeetech.in/p/conky-manager.html.

Other Graphical Process- and System-Monitoring Tools

Graphical system- and process-monitoring tools that are available for Ubuntu include the

following:

 ▶ vncviewer—AT&T’s open-source remote session manager (part of the Xvnc pack-

age), which you can use to view and run a remote desktop session locally. This soft-

ware (discussed in more detail in Chapter 19, “Remote Access with SSH and VNC”)

requires an active background X session on the remote computer.

 ▶ gnome-nettool—A GNOME-developed tool that enables system administrators to

carry out a wide range of diagnostics on network interfaces, including port scanning

and route tracing.

https://launchpad.net/conky-manager
http://www.teejeetech.in/p/conky-manager.html

298 CHAPTER 16 System-Monitoring Tools

 ▶ wireshark—A graphical network protocol analyzer that can be used to save or dis-

play packet data in real time and that has intelligent filtering to recognize data sig-

natures or patterns from a variety of hardware and data captures from third-party

data-capture programs, including compressed files. Some protocols include Internet

Protocol (IP), Transmission Control Protocol (TCP), Domain Name System (DNS),

Hypertext Transfer Protocol (HTTP), Secured Shell (SSH), Transport Layer Security

(TLS), and Hypertext Transfer Protocol over SSL/TLS (HTTPS).

KDE Process- and System-Monitoring Tools
KDE provides several process- and system-monitoring clients. Integrate the KDE graphical

clients into the desktop taskbar by right-clicking the taskbar and following the menus.

These KDE monitoring clients include the following:

 ▶ kdf—A graphical interface to your system’s file system table that displays free disk

space and enables you to mount and unmount file systems with a pointing device

 ▶ ksysguard—Another panel applet that provides CPU load and memory use informa-

tion in animated graphs

Enterprise Server Monitoring
Servers used in enterprise situations require extreme uptime. Monitoring is vital to know

how your system is performing and to have observability into the general health of your

system components and services.

It is beyond the scope of this book to discuss topics such as observability, redundancy,

failsafe and failover safeguards, and so on in any depth. However, the tools listed in this

section can help enterprise sysadmins get started in their search for the proper tool(s) for

their setting.

Datadog

Datadog is one of several young monitoring companies that have designed their products

as software as a service (SaaS) cloud-native applications. Datadog requires you to install an

agent in your system. You can do the rest using their web UI (an API is available to also

programmatically access their platform, if you prefer). Then, you learn about the various

integrations and decide which metrics you want to track, and finally you create dash-

boards, graphs, and monitors. It is proprietary and has multiple pricing options depending

on your needs.

Nagios

Nagios has an open source foundation and some core monitoring options that are free

to download, use, and modify. The paid option offers far more features and flexibility. In

both cases, you must download the Nagios software and install on dedicated resources

within your IT infrastructure. Nagios has been at the forefront of monitoring for years but

is gradually giving way to SaaS newcomers in the new cloud computing era.

299

1
6

References

New Relic

New Relic is another of the several young monitoring companies that have designed their

products as software as a service (SaaS) cloud-native applications. It is flexible, configu-

rable, and designed to work across your cloud deployments. New Relic’s products are pro-

prietary, and the company offers multiple pricing options depending on your needs.

SignalFx

SignalFx is another of the several young monitoring companies that have designed their

products as software as a service (SaaS) cloud-native applications. It is flexible, configu-

rable, and designed to work across your cloud deployments. SignalFx’s products are propri-

etary, and the company offers multiple pricing options depending on your needs. SignalFx

was recently bought by Splunk, who is a long-time player in the on-site monitoring busi-

ness and wants to stay relevant with the transition to cloud computing.

Splunk

Once a big player in enterprise monitoring, Splunk has had to shift course of late as enter-

prises have been moving to cloud computing, and they have faced strong competition

from the smaller, young monitoring companies already mentioned. They are still, with

Nagios, one of the mainstays of on-premise data analytics solutions. Splunk is the stan-

dard for some unique features like security information and event management (SIEM),

artificial intelligence for IT operations (AIOps), and compliance monitoring.

Zabbix

Zabbix is more popular in Europe than in North America. Similar to Splunk, it is a mature

enterprise platform designed to monitor large-scale IT environments, specifically on-

premise, but the company has broadened its abilities and works across all the various

popular cloud platforms. It is free and open source, with paid support, services, and train-

ing available.

References
 ▶ https://and.sourceforge.net—Home page of the auto nice daemon (AND), which

can be used to prioritize and reschedule processes automatically

 ▶ https://sourceforge.net/projects/schedutils/—Home page for various projects

offering scheduling utilities for real-time scheduling

 ▶ www.datadoghq.com/—Home page for Datadog

 ▶ www.nagios.com/—Home page for Nagios

 ▶ https://newrelic.com/—Home page for New Relic

 ▶ www.signalfx.com/—Home page for SignalFx

 ▶ www.splunk.com/—Home page for Solarwinds

 ▶ https://sourceforge.net/projects/schedutils/—Home page for Zabbix

https://and.sourceforge.net
https://sourceforge.net/projects/schedutils/
http://www.datadoghq.com/
http://www.nagios.com/
https://newrelic.com/
http://www.signalfx.com/
http://www.splunk.com/
https://sourceforge.net/projects/schedutils/

This page intentionally left blank

IN THIS CHAPTER

 ▶ Choosing a Backup Strategy

 ▶ Choosing Backup Hardware

and Media

 ▶ Using Backup Software

 ▶ Copying Files

 ▶ Version Control for

Configuration Files

 ▶ System Rescue

 ▶ References

CHAPTER 17

Backing Up

This chapter examines the practice of safeguarding data

by creating backup copies, restoring that same data if neces-

sary, and recovering data in case of a catastrophic hardware

or software failure. The chapter gives you a full understand-

ing of the reasons for sound backup practices. You can use

the information here to make intelligent choices about

which strategies are best for you. The chapter also shows

you how to perform some types of data recovery and sys-

tem restoration on your own and provides advice about

when to seek professional assistance.

Choosing a Backup Strategy
Backups are always trade-offs. Any backup consumes time,

money, and effort on an ongoing basis; backups must be

monitored, validated, indexed, and stored, and you must

continuously purchase new media. Sound expensive? The

cost of not having backups is the loss of your critical data.

Re-creating data from scratch costs time and money, and if

the cost of doing it all again is greater than the cost associ-

ated with backing up, you should be performing backups.

At their most basic, backups are insurance against financial

loss for you or your business.

Your first step in formulating and learning to use an effec-

tive backup strategy is to choose the strategy that is right

for you. First, you must understand some of the most com-

mon (and not-so-common) causes of data loss so that you

can better understand the threats your system faces. Then,

you need to assess your own system, how it is used and by

whom, your available hardware and software resources, and

your budget constraints. The following sections look at each

of these issues in detail and provide some backup system

examples.

302 CHAPTER 17 Backing Up

Why Data Loss Occurs

Files may disappear for any number of reasons: They can be lost because hardware fails

and causes data loss; or if your attention wanders, you might accidentally delete or over-

write a file. Some data loss occurs as a result of natural disasters and other circumstances

beyond your control. A tornado, a flood, or an earthquake could strike; the water pipes

could burst; or the building could catch on fire. Your data, as well as the hardware, would

likely be destroyed in such a disaster. A disgruntled employee might destroy files or hard-

ware in an attempt at retribution. Equipment can be stolen, or it might fail; all equipment

fails at some time—most likely when it is extremely important for it not to fail.

A CASE IN POINT

A recent Harris poll of Fortune 500 executives found that roughly two-thirds of them had

problems with their backup and disaster recovery plans. How about you?

Data can also be lost because of malfunctions that corrupt the data as it is being written

to the disk. Other applications, utilities, and drivers might be poorly written, buggy (the

phrase most often heard today is “still beta quality”), or might suffer some corruption and

fail to correctly write that all-important data you have just created. If that happened, the

contents of your data file would be indecipherable garbage of no use to anyone.

All these accidents and other disasters offer important reasons for having a good backup

strategy; however, the most frequent cause of data loss is human error. Who among us has

not overwritten a new file with an older version or unintentionally deleted a needed file?

This applies not only to data files, but also to configuration files and binaries. In mail lists,

Usenet newsgroup postings, and online forums, stories about deleting entire directories

such as /home, /usr, or /lib are all too common. On a stable server that is not frequently

modified or updated, you can choose to mount /usr read-only to prevent writing over or

deleting anything in it. Incorrectly changing a configuration file and not saving the origi-

nal in case it has to be restored (which happens more often than not because the person

reconfigured it incorrectly) is another common error.

TIP

To make a backup of a configuration file you are about to edit, use the cp command:

matthew@seymour:~$ cp filename filename.original

To restore it, use the following:

matthew@seymour:~$ cp filename.original filename

Never edit or move the *.original file, or the original copy will be lost. You can

change the file’s mode to be unwritable; then if you try to delete it, you are prevented

from doing so and receive a warning.

Proper backups can help you recover from these problems with a minimum of hassle, but

you have to put in the effort to keep backups current, verify that they are intact, and prac-

tice restoring the data in different disaster scenarios.

303

1
7

Choosing a Backup Strategy

Assessing Your Backup Needs and Resources

By now you have realized that some kind of plan is needed to safeguard your data, and,

like most others, you may be overwhelmed by the prospect. Entire books, as well as

countless articles and white papers, have been written on the subject of backing up and

restoring data. What makes the topic so complex is that each solution is truly individual.

However, the proper approach to making the decision is very straightforward. You start

the process by answering two questions:

 ▶ What data must be safeguarded?

 ▶ How often does the data change?

The answers to these two questions help you determine how important the data is, under-

stand the volume of the data, and determine the frequency of the backups. This informa-

tion, in turn, helps you choose the backup medium. Only then can you select the software

to accommodate all these considerations. (You learn about choosing backup software,

hardware, and media later in this chapter.)

Available resources are another important consideration when selecting a backup strategy.

Backups require time, money, and personnel. Begin your planning activities by determin-

ing what limitations you face for all these resources. Then construct your plan to fit those

limitations—or be prepared to justify the need for more resources with a careful assess-

ment of both backup needs and costs.

TIP

If you are not willing or able to assess your backup needs and choose a backup solution,

you can choose from the legions of consultants, hardware vendors, and software vendors

that are available to assist you. The best way to choose one in your area is to ask other

UNIX and Linux system administrators (located through user groups, discussion groups, or

mail lists) who are willing to share their experiences and make recommendations. If you

cannot get a referral, ask consultants for references and check them out.

Many people also fail to consider the element of time when formulating backup plans.

Some backup devices are faster than others, and some recovery methods are faster than

others. You need to consider that when making choices.

To formulate a backup plan, you need to determine the frequency of backups. The neces-

sary frequency of backups should be determined by how quickly the important data on

your system changes. On a home system, most files never change, a few change daily, and

some change weekly. No elaborate strategy needs to be created to deal with that. A good

strategy for home use is to back up (to any kind of removable media) critical data fre-

quently and back up configuration and other files weekly.

At the enterprise level on a larger system with multiple users, a different approach is called

for. Some critical data changes constantly, and it could be expensive to re-create this data

because doing so typically involves elaborate and expensive solutions. Most of us exist

somewhere in between these extremes. Assess your system and its use to determine where

you fall in this spectrum.

304 CHAPTER 17 Backing Up

Backup schemes and hardware can be elaborate or simple, but they all require a work-

able plan and faithful follow-through. Even the best backup plan is useless if the pro-

cess is not carried out, data is not verified, and data restoration is not practiced on a

regular basis. Whatever backup scheme you choose, be sure to incorporate in it these

three principles:

 ▶ Have a plan—Design a plan that is right for your needs and have equipment

appropriate to the task. This involves assessing all the factors that affect the data you

are backing up. We delve into more detail later in the chapter.

 ▶ Follow the plan—Faithfully complete each part of your backup strategy and verify

the data stored in the backups. Backups with corrupt data are of no use to anyone.

Even backup operations can go wrong.

 ▶ Practice your skills—Practice restoring data from your backup systems from time

to time so that when disaster strikes, you are ready (and able) to benefit from the

strength of your backup plan. (For restoring data, see the section “Using Backup

Software.”) Keep in mind that it is entirely possible that the flaws in your backup

plan will become apparent only when you try restoring.

SOUND PRACTICES

You have to create your own best backup plan, but here are some building blocks that go

into the foundation of any sound backup program:

 ▶ Maintain more than one copy of critical data.

 ▶ Label backups.

 ▶ Store backups in a climate-controlled and secure area.

 ▶ Use secure offsite storage of critical data. Many companies choose bank vaults for

their offsite storage, and this is highly recommended.

 ▶ Establish a backup policy that makes sense and can be followed religiously. Try to

back up your data when the system is consistent (that is, no data is being written),

which is usually overnight.

 ▶ Keep track of who has access to your backup media and keep the total number

of people as low as possible. If you can, allow only trusted personnel near your

backups.

 ▶ Routinely verify backups and practice restoring data from them.

 ▶ Routinely inspect backup media for defects and regularly replace them (after

destroying the data on them if it is sensitive).

Evaluating Backup Strategies

When you are convinced that you need backups, you need a strategy. Being specific about

an ideal strategy is difficult because each user’s or administrator’s strategy will be highly

individualized, but here are a few general examples:

305

1
7

Choosing a Backup Strategy

 ▶ Home user—At home, the user has the Ubuntu installation media that takes less

than an hour to reinstall, so the time issue is not a major concern. The home user

will want to back up any configuration files that have been altered, keep an archive

of any files that have been downloaded, and keep an archive of any data files cre-

ated while using any applications. Unless the home user has a special project in

which constant backups are useful, a weekly backup is probably adequate. The home

user will likely use a consumer-focused online cloud service like Dropbox, an exter-

nal hard drive, or other removable media for backups.

 ▶ Small office—Many small offices tend to use the same strategy as home users but

are more likely to back up critical data daily and use an automated cloud service.

Although they will use scripts to automate backups, some of this is probably still

being done by hand.

 ▶ Small enterprise—Here is where backups begin to require higher-end equipment

with fully automated on- and off-site backups. Commercial backup software usually

makes an introduction at this level, but a skillful system administrator on a budget

can use one of the basic applications discussed in this chapter. Backups are highly

structured and supervised by a dedicated system administrator. You might have

guessed that small enterprises are also moving their backups to online cloud services.

 ▶ Large enterprise—Large enterprises are the most likely candidates for the use of

expensive, proprietary, highly automated backup solutions. At this level, data means

money, lost data means lost money, and delays in restoring data means money lost

as well. These system administrators know that backups are necessary insurance and

plan accordingly. Often, they own their own online, distributed cloud systems, with

multiple redundant data centers in geographically diverse locations.

Does all this mean that enterprise-level backups are better than those done by a home

user? Not at all. The “little guy” with Ubuntu can do just as well as the enterprise opera-

tion by investing more time in the process. By examining the higher-end strategies in this

chapter, therefore, we can apply useful concepts across the board.

This chapter focuses on local-level activities, not the cloud-services activities that are based

on techniques like those listed here, but combined with networking and cloud-service-

specific additional details. This chapter also discusses some technologies that are a bit

outdated for the enterprise but might be useful to a hobbyist with cheap and easy access

to older equipment. If you want to use an online cloud service, take what you learn here,

read everything made available by your cloud service provider, and then do your home-

work to design a suitable backup solution for your unique needs. This could be as simple

as putting all your important files in a Dropbox-style cloud folder that automatically

updates to another computer you own. This can work well if you are a casual consumer-

grade user backing up simple documents and a few media files and remember that ser-

vices like these generally do not guarantee that your data will be permanently backed up

(especially with the free versions). Although we’ve not had problems with these solutions,

we warn that they are not enterprise backup solutions. You might need to study up on

306 CHAPTER 17 Backing Up

Amazon Web Services, OpenStack, or other cloud providers and learn the fine details of

their services to see if they suit your needs.

NOTE

If you are a new system administrator, you might inherit an existing backup strategy. Take

some time to examine it and see if it meets the current needs of the organization. Think

about what backup protection your organization really needs and determine whether the

current strategy meets that need. If it does not, change the strategy. Consider whether

the current policy is being practiced by the users, and, if not, why it is not.

BACKUP LEVELS

UNIX uses the concept of backup levels as a shorthand way of referring to how much data

is backed up in relation to a previous backup. It works this way: A level 0 backup is a full

backup. The next backup level is 1.

Backups at the other numbered levels will back up everything that has changed since the

last backup at that level or a numerically higher level. (The dump command, for example,

offers 10 different backup levels.) For example, a level 3 followed by a level 4 backup

generates an incremental backup from the full backup, and a level 4 followed by a level 3

generates a differential backup between the two.

The following sections examine a few of the many strategies in use today. Many strategies

are based on these sample schemes; one of them can serve as a foundation for the strategy

you construct for your own system.

Simple Strategy

If you need to back up just a few configuration files and some small data files, copy them

to a USB stick, label it, and keep it someplace safe. Most users have switched to using an

external hard drive for backups because they are becoming less and less expensive and

hold a great amount of data, or they have moved backups online.

In addition to configuration and data files, you should archive each user’s /home direc-

tory and entire /etc directory. Between the two, that backup would contain most of the

important files for a small system. Then, if necessary, you can easily restore this data from

the backup media device you have chosen after a complete reinstall of Ubuntu.

Experts used to say that if you have more data than can fit on a floppy disk, you really

need a formal backup strategy. Because a floppy disk only held a little over 1MB (and is

now incredibly obsolete), perhaps we should change that to “if you have more data than

can fit on a cheap USB stick.” In any case, some formal backup strategies are discussed in

the following sections.

Full Backup on a Periodic Basis

A full backup on a periodic basis is a strategy that involves a backup of the complete

file system on a weekly, biweekly, or other periodic basis. The frequency of the backup

307

1
7

Choosing a Backup Strategy

depends on the amount of data being backed up, the frequency of changes to the data,

and the cost of losing those changes.

This backup strategy is not complicated to perform, and it can be accomplished with the

swappable disk drives discussed later in the chapter. If you are connected to a network,

it is possible to mirror the data on another machine (preferably offsite); the rsync tool

is particularly well suited to this task. Recognize that this does not address the need for

archives of the recent state of files; it only presents a snapshot of the system at the time

the update is done.

Full Backups with Incremental Backups

Another scheme involves performing a full backup of the entire system once a week, along

with a daily incremental backup of only those files that have changed in the previous day,

and it begins to resemble what a system administrator of a medium to large system tradi-

tionally uses.

This backup scheme can be advanced in two ways. First, each incremental backup can be

made with reference to the original full backup. In other words, a level 0 backup is fol-

lowed by a series of level 1 backups. The benefit of this backup scheme is that a restora-

tion requires only two tapes (the full backup and the most recent incremental backup).

But because it references the full backup, each incremental backup might be large (and

could grow ever larger) on a heavily used system.

Alternatively, each incremental backup could reference the previous incremental backup.

This is a level 0 backup followed by a level 1, followed by a level 2, and so on. Incremen-

tal backups are quicker (less data each time) but require every tape to restore a full system.

Again, it is a classic trade-off decision.

Modern commercial backup applications such as Amanda or BRU assist in organizing

the process of managing complex backup schedules and tracking backup media. Doing it

yourself using the classic dump or employing shell scripts to run tar requires that system

administrators handle all the organization themselves. For this reason, complex backup

situations are typically handled with commercial software and specialized hardware pack-

aged, sold, and supported by vendors.

Mirroring Data or RAID Arrays

Given adequate (and often expensive) hardware resources, you can always mirror the

data somewhere else, essentially maintaining a real-time copy of your data on hand. This

is often a cheap, workable solution if no large amounts of data are involved. The use of

redundant array of independent disks (RAID) arrays (in some of their incarnations) provides

for recovery if a disk fails.

Note that RAID arrays and mirroring systems just as happily write corrupt data as valid

data. Moreover, if a file is deleted, a RAID array will not save it. RAID arrays are best suited

for protecting the current state of a running system, not for backup needs.

308 CHAPTER 17 Backing Up

Making the Choice

Only you can decide what is best for your situation. After reading about the backup

options in this book, put together some sample backup plans; then run through a few

likely scenarios and assess the effectiveness of your choice.

In addition to all the other information you have learned about backup strategies, here are

a couple good rules of thumb to remember when making your choice:

 ▶ If the backup strategy and policy is too complicated (and this holds true for most

security issues), it will eventually be disregarded and fall into disuse.

 ▶ The best scheme is often a combination of strategies; use what works.

Choosing Backup Hardware and Media
Any device that can store data can be used to back it up, but that is like saying that any-

thing with wheels can take you on a cross-country trip. Trying to fit 10GB worth of data

on a big stack of CD-RWs or DVD-RWs is an exercise in frustration, and using an expen-

sive automated tape device to save a single copy of an email is a waste of resources. In

addition, those technologies are rapidly disappearing.

In this section, you find out about some of the most common backup hardware available

and how to evaluate its appropriateness for your backup needs. With large storage devices

becoming increasingly affordable (you can now get multiple-TB hard drives for around

$100), decisions about backup hardware for small businesses and home users have become

more interesting.

External Hard Drive

This is an easy option. Buy an external hard drive that connects to your system via USB

and copy important data to it regularly. This has replaced past recommendations for most

home users.

Network Storage

For network backup storage, remote arrays of hard drives provide one solution to data

storage. With the declining cost of mass storage devices and the increasing need for larger

storage space, network storage (NAS, or network-attached storage) is available and supported

in Linux. Network storage involves cabinets full of hard drives and their associated con-

trolling circuitry, as well as special software to manage all of it. NAS systems are connected

to the network and act as huge (and expensive) mass storage devices.

More modest and simple network storage can be done on a remote desktop-style machine

that has adequate storage space (up to eight 1TB drives is a lot of storage space, eas-

ily accomplished with off-the-shelf parts), but then that machine and the local system

administrator have to deal with all the problems of backing up, preserving, and restoring

the data. Several hardware vendors offer such products in varying sizes.

309

1
7

Using Backup Software

Tape Drive Backups

While this is becoming less common, tape drive backup is a viable technology that is still in

use. Tape drives have been used in the computer industry from the beginning. Tape drive

storage has been so prevalent in the industry that the tar command (the most commonly

used command for archiving) is derived from the words tape archive. Capacities and durabil-

ity of tapes vary from type to type and range from a few gigabytes to hundreds of gigabytes,

with commensurate increases in cost for the equipment and media. Autoloading tape-drive

systems can accommodate archives that exceed the capacity of the file systems.

TIP

Older tape equipment is often available in the used equipment market and might be use-

ful for smaller operations that have outgrown more limited backup device options.

Tape equipment is well supported in Linux and, when properly maintained, is extremely

reliable. The tapes themselves are inexpensive, given their storage capacity and the ability

to reuse them. Be aware, however, that tapes do deteriorate over time and, being mechani-

cal, tape drives can and will fail.

CAUTION

Neglecting to clean, align, and maintain tape drives puts your data at risk. The tapes

themselves are also susceptible to mechanical wear and degradation. Hardware mainte-

nance is part of a good backup policy. Do not ever forget that it is a question of when—

not if—hardware will fail.

Cloud Storage

Services such as Dropbox and Amazon’s AWS and S3 offer a way to create and store back-

ups offsite. Larger companies may create their own offsite, online storage options as well.

In each of these and similar cases, data is copied and stored remotely on a file server set

aside specifically for that purpose. The data backups may be scheduled with great flexibil-

ity and according to the plans and desires of the customer.

Cloud storage is a backup solution that is recent and growing in popularity, but it is also

a technology that is changing rapidly. To learn more about the options mentioned here,

take a look at www.dropbox.com and https://aws.amazon.com/s3/. Although these are not

the only services of the kind available, they offer a good introduction to the concept. If

you like to “roll your own,” you definitely want to take a look at Ubuntu Enterprise Cloud

at www.ubuntu.com/cloud.

Using Backup Software
Because there are thousands of unique situations requiring as many unique backup solu-

tions, it is not surprising that Linux offers many backup tools. Along with command-line

http://www.dropbox.com
https://aws.amazon.com/s3/
http://www.ubuntu.com/cloud

310 CHAPTER 17 Backing Up

tools such as tar and dd, Ubuntu also provides a graphical archiving tool for desktop

installations called Déjà Dup that is quite powerful. Another excellent but complicated

alternative is the Amanda backup application—a sophisticated backup application that

works well over network connections and can be configured to automatically back up all

the computers on a network. Amanda works with drives as well as tapes.

NOTE

The software in a backup system must support the hardware, and this relationship can

determine which hardware or software choices you make. Many system administrators

choose particular backup software not because they prefer it to other options but because

it supports the hardware they own.

The price seems right for free backup tools, but consider the software’s ease of use and

automation when assessing costs. If you must spend several hours implementing, debug-

ging, documenting, and otherwise dealing with overly elaborate automation scripts, the

real costs go up.

tar: The Most Basic Backup Tool

The tar tool, the bewhiskered old man of archiving utilities, is installed by default. It is an

excellent tool for saving entire directories full of files. For example, here is the command

used to back up the /etc directory:

matthew@seymour:~$ sudo tar cvf etc.tar /etc

This example uses tar to create an archive, calls for verbose message output, and uses the

filename etc.tar as the archive name for the contents of the directory /etc.

Alternatively, if the output of tar is sent to the standard output and redirected to a file,

the command appears as follows:

matthew@seymour:~$ sudo tar cv /etc > etc.tar

The result is the same as with the preceding tar options: All files in the /etc directory will

be saved to a file named etc.tar.

With an impressive array of options (see the man page), tar is quite flexible and powerful

in combination with shell scripts. With the -z option, it can even create and restore gzip

compressed archives, and the -j option works with bzipped files and tarballs compressed

with xz.

Creating Full and Incremental Backups with tar

If you want to create a full backup, the following creates a bzip2 compressed tarball

(the j option) of the entire system:

matthew@seymour:~$ sudo tar cjvf fullbackup.tar.bz2 /

311

1
7

Using Backup Software

To perform an incremental backup, you must locate all the files that have been changed

since the last backup. For simplicity, assume that you do incremental backups on a daily

basis. To locate the files, use the find command:

matthew@seymour:~$ sudo find / -newer name_of_last_backup_file ! -a –type f –print

When run alone, find generates a list of files system-wide and prints it to the screen. The

! -a -type eliminates everything but regular files from the list; otherwise, the entire

directory is sent to tar, even if the contents were not all changed.

Pipe the output of the find command to tar as follows:

matthew@seymour:~$ sudo find / -newer name_of_last_backup_file ! –type d -print |

 \tar czT - backup_file_name_or_device_name

Here, the T - option gets the filenames from a buffer (where the - is the shorthand name

for the buffer).

NOTE

The tar command can back up to a raw device (one with no file system) and to a format-

ted partition. For example, the following command backs up those directories to device

/dev/hdd (not /dev/hda1, but to the unformatted device itself):

matthew@seymour:~$ sudo tar cvzf /dev/hdd /boot /etc /home

Restoring Files from an Archive with tar

The xp option with tar restores the files from a backup and preserves the file attributes,

as well, and tar creates any subdirectories it needs. Be careful when using this option

because the backups might have been created with either relative or absolute paths. You

should use the tvf option with tar to list the files in the archive before extracting them

so that you know where they will be placed.

For example, to restore a tar archive compressed with bzip2, use the following:

matthew@seymour:~$ sudo tar xjvf ubuntutest.tar.bz2

To list the contents of a tar archive compressed with bzip2, use this:

matthew@seymour:~$ sudo tar tjvf ubuntutest.tar.bz2

tar: Record size = 8 blocks

drwxr-xr-x matthew/matthew 0 2013-07-08 14:58 other/

-rwxr-xr-x matthew/matthew 1856 2013-04-29 14:37 other/matthew helmke

cccv]public.asc

312 CHAPTER 17 Backing Up

-rwxr-xr-x matthew/matthew 170 2013-05-28 18:11 backup.sh

-rwxr-xr-x matthew/matthew 1593 2013-10-11 10:38 backup method

Note that because the pathnames do not start with a backslash, they are relative path-

names and will install in your current working directory. If they were absolute pathnames,

they would install exactly where the paths state.

The GNOME File Roller

The GNOME desktop file archiving graphical application File Roller (file-roller) views,

extracts, and creates archive files using tar, gzip, bzip, compress, zip, rar, lha, and sev-

eral other compression formats. Note that File Roller is only a front end to the command-

line utilities that actually provide these compression formats; if a format is not installed,

File Roller cannot use that format.

CAUTION

File Roller does not complain if you select a compression format that is not supported by

installed software until after you attempt to create the archive. So be sure to install any

needed compression utilities before you use File Roller.

File Roller is well integrated with the GNOME desktop environment to provide convenient

drag-and-drop functionality with the Nautilus file manager. To create a new archive, select

Archive, New to open the New Archive dialog box and navigate to the directory where

you want the archive to be kept. Type your archive’s name in the Selection: /root text box

at the bottom of the New Archive dialog box. Use the Archive Type drop-down menu to

select a compression method. Then drag the files that you want to be included from Nau-

tilus into the empty space of the File Roller window, and the animated icons show that

files are being included in the new archive. When you have finished, a list of files appears

in the previously blank File Roller window. To save the archive, select Archive, Close.

Opening an archive is as easy as using the Archive, Open dialog to select the appropriate

archive file. You can learn more at https://help.ubuntu.com/community/File%20Roller.

The KDE ark Archiving Tool

Ubuntu also offers the KDE ark and kdat GUI tools for backups; they are installed only if

you select the KDE desktop during installation, but you can search through Synaptic to

find them. Archiving has traditionally been a function of system administrator and not

seen as a task for individual users, so no elaborate GUI was believed necessary. Backing

up has also been seen as a script-driven, automated task in which a GUI is not as useful.

Although that’s true for system administrators, home users usually want something a little

more attractive and easier to use, and that’s the gap ark was created to fill.

You launch ark by launching it from the command line. It is integrated with the KDE

desktop (as File Roller is with GNOME), so it might be a better choice if you use KDE. This

application provides a graphical interface for viewing, creating, adding to, and extract-

ing from archived files. Several configuration options are available with ark to ensure its

https://help.ubuntu.com/community/File%20Roller

313

1
7

Using Backup Software

compatibility with Microsoft Windows. You can drag and drop from the KDE desktop or

Konqueror file browser to add or extract files, or you can use the ark menus.

As long as the associated command-line programs are installed, ark can work with tar,

gzip, bzip2, zip, and lha files (the last four being compression methods used to save

space through compaction of the archived files).

Existing archives are opened after launching the application itself. You can add files and

directories to the archive or delete them from the archive. After opening the archive, you

can extract all of its contents or individual files. You can also perform searches by using

patterns (all *.jpg files, for example) to select files.

To create new archives, choose File, New, and then type the name of the archive, provid-

ing the appropriate extension (.tar, .gz, and so on). Then you can add files and directories

as you desire.

Déjà Dup

Déjà Dup is a simple backup tool with a useful GUI. It supports local, remote, or cloud

backups. It can encrypt and compress your data for secure and fast transfers and more. In

the applications list, Ubuntu just calls it Backups (see Figure 17.1).

FIGURE 17.1 The Backups icon is easy to find.

After you open the Backups application, go through the menu items on the left to set

where the backup will be stored, what will be backed up, a schedule for automatic back-

ups, and more (see Figure 17.2). When you have set everything to your taste, remember to

turn on Déjà Dup by toggling the setting at the upper right from Off to On.

314 CHAPTER 17 Backing Up

FIGURE 17.2 Backup settings are accessed using the menu entries on the left.

Back In Time

Back In Time is a viable alternative to Déjà Dup for many users. It is easily available

from the Ubuntu software repositories, is stable, and has a clear and easy-to-understand

interface.

Back In Time uses rsync, diff, and cp to monitor, create, and manipulate files, and it uses

cron to schedule when it will run. Using these command-line tools is described later in

this chapter. Back In Time is little more than a well-designed GUI front end designed for

GNOME and also offers a separate package in the repositories with a front end for KDE. If

you use the standard Ubuntu interface, install a package called nautilus-actions to get

context menu access to some of the backup features.

The first time you run Back In Time, it takes a snapshot of your drive. This may take a

long time, depending on the amount of data you have. You designate which files and

directories to back up and where to back them up. Then set when to schedule the backup.

The program takes care of the rest.

To restore, select the most recent snapshot from the list in Back In Time. Then browse

through the list of directories and files until you find the file that interests you. You may

right-click the file to view a pop-up menu, from which you may open a file, copy a file to

a desired location, or view the various snapshots of a file and compare them to determine

which one you might want to restore.

Back In Time keeps multiple logs of actions and activities, file changes, and versions, and

it is a useful tool.

You can find the official documentation for Back In Time at https://backintime.readthedocs.io/.

https://backintime.readthedocs.io/

315

1
7

Using Backup Software

Unison

Unison is a file-synchronization tool that works on multiple platforms, including Linux,

other flavors of UNIX such as Solaris and macOS, and Windows. After Unison is set up,

it synchronizes files in both directions and across platforms. If changes are made on both

ends, files are updated in both directions. When file conflicts arise, such as when the same

file was modified on each system, the user is prompted to decide what to do. Unison can

connect across a network using many protocols, including ssh. It can connect with and

synchronize many systems at the same time and even to the cloud.

Unison was developed at the University of Pennsylvania as a research project among sev-

eral academics. It is no longer under active development as a research project, but it does

appear to continue to be maintained with bug fixes and very occasional feature additions.

The original developers claim to still be using it daily, so it is not completely abandoned.

Unison is powerful and configurable. The foundation is based on rsync, but with some addi-

tions that enable functionality that is generally available only from a version control system.

Even though the project is no longer the primary focus of any of the developers, many

people still use Unison. For that reason, it gets a mention in this chapter and might be

worthy of your time and effort if you are interested. Unison is released under the free GPL

license, so you might decide you want to dig in to the code. The developers have publicly

stated that they do not have time to maintain it regularly but welcome patches and con-

tributions. If this is a project that interests you, see www.cis.upenn.edu/~bcpierce/unison/.

Amanda

Amanda is a powerful network backup application created by the University of Maryland

at College Park. Amanda is a robust backup and restore application best suited to unat-

tended backups with an autoloading tape drive of adequate capacity. It benefits from good

user support and documentation.

Amanda’s features include compression and encryption. It is intended for use with high-

capacity tape drives, floptical, CD-R, and CD-RW devices.

Amanda uses GNU tar and dump; it is intended for unattended, automated tape backups and

is not well suited for interactive or ad hoc backups. The support for tape devices in Amanda

is robust, and file restoration is relatively simple. Although Amanda does not support older

Macintosh clients, it uses Samba to back up Microsoft Windows clients, as well as any UNIX

client that can use GNU tools (including macOS). Because Amanda runs on top of standard

GNU tools, file restoration can be made using those tools on a recovery disk even if the

Amanda server is not available. File compression can be done on either the client or server,

thus lightening the computational load on less-powerful machines that need to be backed up.

CAUTION

Amanda does not support dump images larger than a single tape and requires a new tape

for each run. If you forget to change a tape, Amanda continues to attempt backups until

you insert a new tape, but those backups will not capture the data as you intended them

to. Do not use a tape that is too small or forget to change a tape, or you will not be happy

with the results.

http://www.cis.upenn.edu/~bcpierce/unison/

316 CHAPTER 17 Backing Up

There is no GUI for Amanda. Configuration is done in the time-honored UNIX tradi-

tion of editing text configuration files located in /etc/amanda. The default installation in

Ubuntu includes a sample cron file because it is expected that you will be using cron to

run Amanda regularly. The client utilities are installed with the package amanda-client;

the Amanda server is called amanda-server. Install both. As far as backup schemes are con-

cerned, Amanda calculates an optimal scheme on-the-fly and schedules it accordingly. It

can be forced to adhere to a traditional scheme, but other tools are possibly better suited

for that job.

The man page for Amanda (the client is amdump) is well written and useful, explaining

both the configuration of Amanda and detailing the several programs that actually make

up Amanda. The configuration files found in /etc/amanda are well commented; they pro-

vide a number of examples to assist you with configuration.

The program’s home page is www.amanda.org. There you can find information about sub-

scribing to the mail list and links to Amanda-related projects and a FAQ.

Alternative Backup Software

Commercial and other freeware backup products do exist; BRU and Veritas are good exam-

ples of effective commercial backup products. Here are some useful free software backup

tools that are not installed with Ubuntu:

 ▶ flexbackup—This backup tool is a large file of Perl scripts that makes dump and

restore easier to use. flexbackup’s command syntax can be found by using the

command with the -help argument. It also can use afio, cpio, and tar to create and

restore archives locally or over a network using rsh or ssh if security is a concern.

Its home page is www.edwinh.org/flexbackup/. Note that it has not received any

updates or changes in a very long time.

 ▶ afio—This tool creates cpio formatted archives but handles input data corruption

better than cpio (which does not handle data input corruption very well at all). It

supports multivolume archives during interactive operation and can make com-

pressed archives. If you feel the need to use cpio, you might want to check out afio.

Many other alternative backup tools exist, but covering all of them is beyond the scope of

this book.

Copying Files
Often, when you have only a few files that you need to protect from loss or corruption,

it might make sense to simply copy the individual files to another storage medium rather

than create an archive of them. You can use the tar, cp, rsync, and even cpio commands

to do this; you can also use a handy file management tool known as mc. tar is the tradi-

tional choice because older versions of cp did not handle symbolic links and permissions

well at times, causing those attributes (characteristics of the file) to be lost; tar handled

those file attributes in a better manner. cp has been improved to fix those problems, but

http://www.amanda.org
http://www.edwinh.org/flexbackup/

317

1
7

Copying Files

tar is still more widely used. rsync is an excellent choice for mirroring sets of files, espe-

cially when done over a network.

To illustrate how to use file copying as a backup technique, the examples here show how

to copy (not archive) a directory tree. This tree includes symbolic links and files that have

special file permissions you need to keep intact.

Copying Files Using tar

One choice for copying files into another location is to use the tar command; you just

create a tar file that is piped to tar to be uncompressed in the new location. To accom-

plish this, first change to the source directory. Then the entire command resembles this:

matthew@seymour:~$ tar -cvf files | (cd target_directory ; tar -xpf)

In this command, files is the filenames you want to include; you can use * to include

the entire current directory.

When you change to the source directory and execute tar, you use the cvf arguments to

do the following:

 ▶ c—Creates an archive.

 ▶ v—Specifies verbose; that is, lists the files processed so you can see that it is working.

 ▶ f—Specifies the filename of the archive. (In this case, it is -.)

The following tar command options can be useful for creating file copies for backup

purposes:

 ▶ l—Stay in the local file system (so that you do not include remote volumes).

 ▶ atime-preserve—Do not change access times on files, even though you are access-

ing them now (to preserve the old access information for archival purposes).

The contents of the tar file (held for you temporarily in the buffer, which is named -) are

then piped to the second expression, which extracts the files to the target directory. In

shell programming (refer to Chapter 14), enclosing an expression in parentheses causes it

to operate in a subshell and be executed first.

After you change to the target directory, you use the following options with tar:

 ▶ x—Extracts files from a tar archive.

 ▶ p—Preserves permissions.

 ▶ f—Specifies the filename, which in this case is -, the temporary buffer that holds the

files archived with tar.

318 CHAPTER 17 Backing Up

Compressing, Encrypting, and Sending tar Streams

The file copy techniques using the tar command in the previous section can also be used

to quickly and securely copy a directory structure across a LAN or the Internet (using the

ssh command). One way to make use of these techniques is to use the following com-

mand line to first compress the contents of a designated directory and then decompress

the compressed and encrypted archive stream into a designated directory on a remote

host:

matthew@seymour:~$ tar -cvzf data_folder | ssh remote_host '(cd ~/mybackup_dir;

tar -xvzf)'

The tar command is used to create, list, and compress the files in the directory named

data_folder. The output is piped through the ssh (Secure Shell) command and sent to

the remote computer named remote_host. On the remote computer, the stream is then

extracted and saved in the directory named /mybackup_dir. You are prompted for a pass-

word to send the stream.

Copying Files Using cp

To copy files, you could use the cp command. The general format of the command when

used for simple copying is as follows:

matthew@seymour:~$ cp -a source_directory target_directory

The -a argument is the same as -dpR:

 ▶ -d—Preserves symbolic links (by not dereferencing them) and copies the files that

they point to instead of copying the links.

 ▶ -p—Preserves all file attributes, if possible. (File ownership might interfere.)

 ▶ -R—Copies directories recursively.

You can also use the cp command to quickly replicate directories and retain permissions

by using it with the -avR command-line options. Using these options preserves file and

directory permissions, gives verbose output, and recursively copies and re-creates subdirec-

tories. You can also create a log of the backup during the backup by redirecting the stan-

dard output like this:

matthew@seymour:~$ sudo cp -avR directory_to_backup destination_vol_or_dir 1 > /

root/backup_log.txt

You can get the same effect this way:

matthew@seymour:~$ sudo cp -avR ubuntu /test2 1 > /root/backup_log.txt

This example makes an exact copy of the directory named /ubuntu on the volume named

/test2 and saves a backup report named backup_log.txt under /root.

319

1
7

Copying Files

Using rsync

An old favorite for backing up is rsync. One big reason for this is that rsync enables you

to copy only files that have changed since the last backup. With this tool, although the

initial backup might take a long time, subsequent backups are much faster. rsync is also

highly configurable and can be used with removable media such as USB hard drives or

over a network. Let’s look at one way to use rsync.

First, create an empty file and call it backup.sh:

matthew@seymour:~$ sudo touch backup.sh

Then, using your favorite text editor, enter the following command into the file and save

it:

rsync --force --ignore-errors --delete --delete-excluded --exclude-

from=/home/matthew-exclude.txt --backup --backup-dir=`date +%Y-%m-%d` -av /

/media/externaldrive/backup/Seymour

Make the file executable:

matthew@seymour:~$ sudo chmod +x backup.sh

This command uses several options with rsync and puts them in a script that is quick and

easy to remember and run. You can run the script at the command line by using sudo sh

./backup.sh or as an automated cron job.

Here is a rundown of what is going on in the command. Basically, rsync is told to copy

all new and changed files (what to back up) and delete from any existing backup any files

that have been deleted on the source (and back them up in a special directory, just to be

safe). It is told where to place the backup copy and is given details on how to deal with

specific issues in the process. (Read the rsync man page for more options and to custom-

ize to your needs.)

Following are the options used here:

 ▶ --force—Forces deletion of directories in the target location that are deleted in the

source, even if the directories in the destination are not empty.

 ▶ --ignore-errors—Tells --delete to go ahead and delete files even when there are

I/O errors.

 ▶ --delete—Deletes extraneous files from destination directories.

 ▶ --delete-excluded—Also deletes excluded files from destination directories.

 ▶ --exclude-from=/home/matt-exclude.txt—Prevents backing up files or directories

listed in this file. (It is a simple list with each excluded directory on its own line.)

 ▶ --backup—Creates backups of files before deleting them from a currently existing

backup.

320 CHAPTER 17 Backing Up

 ▶ --backup-dir='date +%Y-%m-%d'—Creates a backup directory for the previously

mentioned files that looks like this: 2013-07-08. Why this format for the date?

Because it is standard, as outlined in ISO 8601 (see www.iso.org/iso/home/standards/

iso8601.htm). It is clear, works with scripts, and sorts beautifully, making your files

easy to find.

 ▶ -av—Tells rsync to use archive mode and verbose mode.

 ▶ /—Denotes the directory to back up. In this case, it is the root directory of the

source, so everything in the filesystem is being backed up. You could put /home here

to back up all user directories or make a nice list of directories to exclude in the

filesystem.

 ▶ /media/externaldrive/backup/seymour—Sets the destination for the backup as

the /backup/seymour directory on an external hard drive mounted at /mount/

externaldrive.

To restore from this backup to the same original location, you reverse some of the details

and may omit others. Something like this works nicely:

matthew@seymour:~$ rsync --force --ignore-errors --delete --delete-excluded

/media/externaldrive/backup/seymour /

This becomes even more useful when you think of ways to script its use. You could create

an entry in crontab, as described in Chapter 14. Even better, you could set two comput-

ers to allow for remote SSH connections using private keys created with ssh-keygen, as

described in Chapter 19, so that one could back up the files from one computer to the

other computer without requiring manual login. Then you could place that in an auto-

mated script.

Version Control for Configuration Files
For safety and ease of recovery when configuration files are corrupted or incorrectly

edited, the use of a version control system is recommended. In fact, this is considered an

industry best practice. Many top-quality version control systems are available, such as Git,

Subversion, Mercurial, and Bazaar. If you already have a favorite, perhaps one that you use

for code projects, you can do what we describe in this section using that version control

system. The suggestions here are to get you thinking about the idea of using version con-

trol for configuration files and to introduce a few well-used and documented options for

those who are unfamiliar with version control. First, some background.

Version control systems are designed to make it easy to revert changes made to a file, even

after the file has been saved. Each system does this a little bit differently, but the basic

idea is that not only is the current version of the file saved, but each and every version

that existed previously is also saved. Some version control systems do this by saving the

entire file every time. Some use metadata to describe just the differences between versions.

In any case, it is possible to roll back to a previous version of the file to restore a file to

a state before changes were made. Developers who write software are well aware of the

http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm

321

1
7

Version Control for Configuration Files

power and benefit to being able to do this quickly and easily; it is no longer required that

the file editor remember the technical details of where, what, or even how a file has been

edited. When a problem occurs, the file is simply restored to its previous state. The ver-

sion control system is also able to inform the user where and how each file has changed at

each save.

Using a version control system for configuration files means that every time a configura-

tion is changed, those changes are recorded and tracked. This enables easy discovery of

intruders (if a configuration has been changed by an unauthorized person trying to reset,

say, the settings for Apache so that the intruder can allow a rogue web service or site to

run on your server), easy recovery from errors and glitches, and easy discovery of new

features or settings that have been enabled or included in the configuration by software

upgrades.

Many older and well-known tools do this task, such as changetrack, which is quite a good

example. All such tools seek to make the job of tracking changes to configuration files

more easily and quickly, but with the advances in version control systems, most provide

very little extra benefit. Instead of suggesting any of these tools, we think you are proba-

bly better off learning a modern and good version control system. One exception is worth

a bit of discussion because of its ability to work with your software package manager,

which saves you the task of remembering to commit changes to your version control sys-

tem each time the package manager runs. This exception is etckeeeper.

etckeeper takes all of your /etc directory and stores the configuration files from it in

a version control system repository. You can configure the program by editing the

etckeeper.conf file to store data in a Git, Mercurial, Bazaar, or Subversion repository. In

addition, etckeeper connects automatically to the APT package management tool used by

Ubuntu and automatically commits changes made to /etc and the files in it during nor-

mal software package upgrades. Other package managers, such as Yum, can also be tracked

when using other Linux distributions such as Fedora. It even tracks file metadata that is

often not easily tracked by version control systems, like the permissions in /etc/shadow.

CAUTION

Using any version control system to track files that contain sensitive data such as pass-

words can be a security risk. Tracked files and the version control system itself should be

treated with the same level of care as the sensitive data itself.

By default, etckeeper uses Git. On Ubuntu, this is changed to Bazaar (bzr) because it is

the version control system used by Ubuntu developers. Because this is configurable, we

mention just the steps here and leave it to you to adapt them for your particular favorite

version control system.

First, edit /etc/etckeeper/etckeeper.conf to use your desired settings, such as the ver-

sion control system to use, the system package manager being used, and whether to have

changes automatically committed daily. After etckeeper is installed from the Ubuntu

repositories, it must be initiated from the command line:

matthew@seymour:~$ etckeeper init

322 CHAPTER 17 Backing Up

If you are only going to use etckeeper to track changes made to /etc when software

updates are made using APT, you do not need to do anything else. If you edit files by

hand, make sure you use your version control system’s commands to commit those

changes or use the following:

matthew@seymour:~$ etckeeper commit "Changed prompt style"

The message in quotes should reflect the change just made. This makes reading logs and

finding exact changes much easier later.

Recovering or reverting file changes is then done using your version control system

directly. Suppose, for example, that you have made a change in /etc/bash.bashrc, the file

that sets the defaults for your bash shell. You read somewhere how to change the prompt

and did not like the result. However, because the changes are being tracked, you can roll

it back to the previous version. Because bzr is the default for etckeeper in Ubuntu, here is

how you do that with bzr. First, check the log to find the commit number for the previ-

ous change:

matthew@seymour:~$ bzr log /etc/bash.bashrc

--

revno: 2

committer: matthew <matthew@seymour>

branch nick: seymour etc repository

timestamp: Fri 2021-07-16 11:08:22 -0700

message:

 Changed /etc/bash.bashrc

--

revno: 1

committer: matthew <matthew@seymour>

branch nick: seymour etc repository

timestamp: Fri 2021-07-16 11:00:16 -0700

message:

 Changed /etc/bash.bashrc

--

If you know the change was made in the most recent revision, denoted revno 2 (for revi-

sion number two), you can revert to that version:

matthew@seymour:~$ bzr revert –revision 2 /etc/bash.bashrc

Today it is common for programmers, systems administrators, and developer types to back

up their dotfiles using version control. Dotfiles are the configuration files and directories

in a user’s /home directory, all of which begin with a dot, like .bashrc. These are not nec-

essarily backed up by all software, and because they are often customized by highly tech-

nical people to suit their desires, backing them up is a good idea. Version control systems

are commonly used. A program for Ubuntu called dotdee performs this task for a different

type of configuration file or directory that ends with .d and is stored in /etc. You can

find more information about dotdee in Chapter 9, “Managing Software.”

323

1
7

System Rescue

System Rescue
There will come a time when you need to engage in system rescue efforts. This need arises

when the system will not even start Linux so that you can recover any files. This problem

is most frequently associated with the boot loader program or partition table, but it could

be that critical system files have been inadvertently deleted or corrupted. If you have been

making backups properly, these kinds of system failures are easily, though not quickly,

recoverable through a full restore. Still, valuable current data might not have been backed

up since the last scheduled backup, and the backup archives may be found to be corrupt,

incomplete, or missing. A full restore also takes time you might not have. If the problem

causing the system failure is simply a damaged boot loader, a damaged partition table, a

missing library, or misconfiguration, a quick fix can get the system up and running, and

the data can then be easily retrieved.

In this section, you learn a couple of quick things to try to restore a broken boot loader or

recover your data when your system fails to boot.

The Ubuntu Rescue Disc

The Ubuntu installation DVD or USB drive works quite well as a live rescue system. To use

it, insert the medium and reboot the computer, booting from it just as you did when you

installed Ubuntu originally.

Restoring the GRUB2 Boot Loader

The easiest way to restore a broken system’s GRUB2 files is simply to replace them. Your

best bet is to use installation media from the same release as what you have installed on

the hard drive.

To get started, boot using the live DVD and open a terminal. Then determine which of

the hard drive’s partitions holds the Ubuntu installation, which you can discover by using

the following:

matthew@seymour:~$ sudo fdisk –l

You may find this block ID command useful, as it tends to return a bit more information:

matthew@seymour:~$ sudo blkid

Unless you customized your installation—in which case you probably already know your

partitioning scheme and the location of your Ubuntu installation—the partition will prob-

ably be on a drive called sda on the first partition, which you can mount now by using

this:

matthew@seymour:~$ sudo mount /dev/sda1 /mnt

This mounts the drive in the current file system (running from the live DVD) at /mnt,

where it will be accessible to you for reading and modifying as needed. Next, you reinstall

GRUB2 on this device:

matthew@seymour:~$ sudo grub-install -–boot-directory=/mnt/boot /dev/sda

324 CHAPTER 17 Backing Up

At this point, reboot (using your hard drive and not the live DVD), and all should be well.

After the reboot is complete, enter the following:

matthew@seymour:~$ sudo update-grub

This refreshes the GRUB2 menu and completes the restoration. You can find a lot of great

information about GRUB2 at https://help.ubuntu.com/community/Grub2.

Saving Files from a Nonbooting Hard Drive

If restoring the GRUB2 boot loader fails and you still cannot boot from the hard drive, try

to use the live DVD to recover your data. Boot and mount the hard drive as shown previ-

ously and then attach an external storage device such as a USB thumb drive or an external

hard drive. Then copy the files you want to save from the mounted drive to the external

drive.

If you cannot mount the drive at all, your options become more limited and possibly

more expensive. In this case, it is likely that either the hardware has failed or the file

system has become badly corrupted. Either way, recovery is either impossible or more dif-

ficult and best left to experts if the data is important to you. But, the good news is that

you have been making regular backups, right? So, you probably lost only a day or maybe

a week of work and can buy a new drive, install it, and start from scratch, putting the data

from your backup on your new Ubuntu installation on the new hardware.

Every experienced system administrator has had a drive fail; no hardware is infallible. We

expect occasional hardware failures, and that’s why we have good backup and recovery

schemes in place for data. There are two types of system administrators: those who lose

data when this happens and those who have good schemes in place. Be forewarned and

be wise.

If you cannot boot a drive and do not have a backup, which happens to most system

administrators only once in their lives (because they learn from the mistake), immediately

stop messing with the hard drive. Your best bet to recover the data will be very expensive,

but you should look for a company that specializes in the task and pay them to do it. If

your data is not worth the expense for recovery and you want to try to recover it yourself,

you can try, but this is not a task for the faint of heart, and more often than not, the data

is simply lost. Again, the best course is to back up regularly, check your backups to be sure

they are valid, and repeat. Practice restoring from backups before you need to do it, per-

haps with a test system that is not vital and will not hurt anything if you make a mistake.

References
 ▶ https://help.ubuntu.com/community/BackupYourSystem—An excellent

place to start for learning and examining backup methods in Ubuntu

 ▶ www.tldp.org—The Linux Documentation Project, which offers several useful

HOWTO documents that discuss backups and disk recovery

https://help.ubuntu.com/community/Grub2
https://help.ubuntu.com/community/BackupYourSystem
http://www.tldp.org

IN THIS CHAPTER

 ▶ Laying the Foundation: The

localhost Interface

 ▶ Checking Connections with

ping, traceroute, and mtr

 ▶ Networking with TCP/IP

 ▶ IPv6 Basics

 ▶ Network Organization

 ▶ Hardware Devices for

Networking

 ▶ Using Network Configuration

Tools

 ▶ Dynamic Host Configuration

Protocol

 ▶ Wireless Networking

 ▶ Beyond the Network and onto

the Internet

 ▶ Common Configuration

Information

 ▶ References

CHAPTER 18

Networking

One of the benefits of open source technology in general

and Linux is particular is that it can be used effortlessly

across several networking environments and the Internet.

With strong support for the standard Internet protocol

TCP/IP, Linux can talk to all the UNIX flavors, includ-

ing macOS, Windows (with the help of Samba), NetWare

(IPX), and even older protocols such as DECnet and Banyan

VINES. Many organizations use Linux as an Internet gate-

way, allowing many different clients to access the Internet

through Linux, as well as communicate via email and

instant messaging. Most important is its built-in support

for IPv6, which has begun to see a significant uptake in the

commercial/enterprise world. It’s safe to say that whatever

networking protocol you come across, Linux will be able to

work with it in some way.

This chapter covers network and Internet connectivity, as

most networks invariably end up connected to the Internet

in some shape or form. You learn how to get the basics

right, including configuration and management of net-

work interface cards (NICs) and other network services with

Ubuntu. You also find out how to manage network services

from the command line—which is important in case you

are ever confined to a command prompt. We also look at

connectivity options, both for inbound and outbound net-

work traffic, such as Point-to-Point Protocol (PPP).

We focus on the use of text interfaces and manual con-

figurations in this chapter. We also include an overview of

basic graphical network management in Ubuntu, which is

becoming more and more popular. The graphical user inter-

face (GUI) option has become much more stable, useful, and

easy to comprehend, and most desktop users now use the

GUI to interact with networking. However, this is a book

326 CHAPTER 18 Networking

for power users who want to learn about the guts of their system, so roll up your sleeves

and prepare to get your hands dirty.

Laying the Foundation: The localhost Interface
The first thing that needs to be in place before you can successfully connect to the Inter-

net or any other network is a localhost interface, sometimes called a loopback interface,

and commonly referenced as lo. The TCP/IP protocol suite (see the section “Networking

with TCP/IP,” later in this chapter) uses this interface to assign an IP address to your com-

puter and is needed for Ubuntu to establish a PPP interface.

Checking for the Availability of the Loopback Interface

You should not normally have to manually create a loopback interface because Ubuntu

creates one automatically for you during installation. To check that one is set up, you can

use the ip command with a couple parameters to list all networking interfaces available,

including the lo interface if it exists. This example shows only the information for lo:

matthew@seymour:~$ ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

What you see in this example is evidence that the loopback interface is present and active.

The inet listed is the IP number assigned to the localhost, typically 127.0.0.1, along

with the broadcast mask 255.0.0.0. You can also see the IPv6 address that is assigned to

lo, which is ::1/128, referred to as the inet6.

NOTE

Previously you checked for the availability of the loopback interface by using the now-

deprecated ifconfig, like so:

matthew@seymour:~$ ifconfig

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:270 errors:0 dropped:0 overruns:0 frame:0

 TX packets:270 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:20748 (20.7 KB) TX bytes:20748 (20.7 KB)

ifconfig still works but is slowly disappearing and is no longer installed by default. If you

learned ifconfig, we strongly recommend spending the time to learn ip and use it instead.

327

1
8

Laying the Foundation: The localhost Interface

Configuring the Loopback Interface Manually

The localhost interface’s IP address is specified in a text configuration file that is used

by Ubuntu to keep records of various network-wide IP addresses. The file is called

/etc/hosts and usually exists on a system, even if it is empty. The Linux kernel and

other networking tools use this file to access local IP addresses and hostnames. If you

have not configured any other networking interfaces, you might find that the file looks

something like this:

127.0.0.1 localhost

127.0.1.1 seymour

The following lines are desirable for IPv6 capable hosts

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

The first line defines the special localhost interface and assigns it IP address 127.0.0.1.

You might hear or read about terms such as localhost, loopback, and dummy interface;

all these terms refer to the use of the IP address 127.0.0.1. The term loopback interface is

used because, to Linux networking drivers, it looks as though the machine is talking to a

network that consists of only one machine; the kernel sends network traffic to and from

itself on the same computer. This is sometimes referred to as a dummy interface because

the interface doesn’t really exist; it is not a real address as far as the outside world is con-

cerned; it exists only for the local machine, to trick the kernel into thinking that it and

any network-aware programs running that require a network interface to operate have one

available without them actually being aware that the connection is a connection to the

same machine. It is a dummy not in the sense of stupid or silent, but in the sense that it

is a mockup or substitute for something real.

Each networked Ubuntu machine on a LAN uses this same IP address for its localhost. If

for some reason you discover that an Ubuntu computer does not have this interface, per-

haps because some well-meaning person deleted it without understanding it was needed,

you can use sudo and edit the /etc/hosts file to add the localhost entry as you saw pre-

viously and then use the ifconfig and route commands using your sudo permissions to

create the interface, like this:

matthew@seymour:~$ sudo ip addr add 127.0.0.1/24 dev lo

matthew@seymour:~$ sudo ip route add 127.0.0.1/24 dev lo

These commands create the localhost interface in memory (all interfaces, such as eth0 or

ppp0, are created in memory when using Linux) and then add the IP address 127.0.0.1 to

an internal (in-memory) table so that the Linux kernel’s networking code can keep track

of routes to different addresses.

Use the ip command as shown previously to test the interface.

328 CHAPTER 18 Networking

Checking Connections with ping, traceroute,
and mtr
If all worked properly in the preceding section, you should now be able to use the ping

command to check that the interface is responding properly like this (using either

localhost or its IP address):

matthew@seymour:~$ ping -c 3 localhost

PING localhost (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.047 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.060 ms

64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64 time=0.045 ms

--- localhost ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2030ms

rtt min/avg/max/mdev = 0.045/0.050/0.060/0.010 ms

You use the -c option to set the number of pings, and the command, if successful (as it

was here), returns information regarding the round-trip speed of sending a test packet to

the specified host.

The second line in the /etc/hosts file uses the actual hostname of the computer and

assigns it to a similar private IP address that is unique to that computer. In the earlier code

example, you can see that 127.0.1.1 is assigned to seymour, which is the name of the

computer on which that hosts file resides.

The remaining lines are used for IPv6 and can be ignored—with the exception of the line

that begins ::1. This is used to define the localhost connection for IPv6, which you can

test with the ping6 command at the terminal, as follows:

matthew@seymour:~$ ping6 -c 3 ::1

PING ::1(::1) 56 data bytes

64 bytes from ::1: icmp_seq=1 ttl=64 time=0.072 ms

64 bytes from ::1: icmp_seq=2 ttl=64 time=0.065 ms

64 bytes from ::1: icmp_seq=3 ttl=64 time=0.061 ms

--- ::1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2060ms

rtt min/avg/max/mdev = 0.061/0.066/0.072/0.004 ms

This is a good place to pause and discuss three tools that are useful for checking a net-

work: ping/ping6, traceroute/traceroute6, and mtr. A network timeout while you’re

using any of these tools indicates that a connectivity problem exists. If you get a response,

then your network is working. Depending on the command, you might also receive infor-

mation that helps you find and troubleshoot slow network problems.

You just used the first tool, ping, and its IPv6 version, ping6. These commands send a

request to the specified network host (another computer that you specify on the same

network), and if that computer receives the message, it sends a response. Using the -c

329

1
8

Checking Connections with ping, traceroute, and mtr

option followed by a number to limit the number of times the ping request is made is

recommended. If that number is not stated, ping continues to make requests until you use

Ctrl+C to stop the process. Here is an example, which is useful for determining whether

your local connection is working:

matthew@seymour:~$ ping -c 3 google.com

PING google.com (74.125.225.103) 56(84) bytes of data.

64 bytes from ord08s08-in-f7.1e100.net (74.125.225.103): icmp _ req=1 ttl=53 time=22.0 ms

64 bytes from ord08s08-in-f7.1e100.net (74.125.225.103): icmp _ req=2 ttl=53 time=20.1 ms

64 bytes from ord08s08-in-f7.1e100.net (74.125.225.103): icmp _ req=3 ttl=53 time=21.0 ms

--- google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2004ms

rtt min/avg/max/mdev = 20.111/21.097/22.085/0.814 ms

The second tool, traceroute (along with its IPv6 version traceroute6), tracks the route

that packets take on an IP network from the local computer to the network host speci-

fied. The traceroute6 tool is intended for use with IPv6, although it isn’t necessary unless

you want to force the command to trace using only IPv6—otherwise, traceroute tries to

resolve the name given and automatically uses whichever protocol is most appropriate.

Here is an example:

matthew@seymour:~$ traceroute google.com

traceroute to google.com (74.125.225.99), 30 hops max, 60 byte packets

 1 Cisco02420 (192.168.1.1) 0.149 ms 0.181 ms 0.304 ms

 2 10.2.0.1 (10.2.0.1) 3.190 ms 3.227 ms 3.217 ms

 3 65.201.51.216.sta.southslope.net (216.51.201.65) 3.397 ms 3.611 ms 3.720 ms

 4 ss-dsl-sec1.nl.southslope.net (167.142.151.30) 3.622 ms 3.637 ms 3.649 ms

 5 167.142.50.13 (167.142.50.13) 6.660 ms 6.665 ms 6.678 ms

 6 ins-dc2-et-8-4.desm.netins.net (167.142.67.17) 6.599 ms 6.503 ms 7.482 ms

 7 ins-db3-te-0-7-0-0.desm.netins.net (167.142.67.182) 7.845 ms 5.145 ms 5.131 ms

 8 216.176.4.29 (216.176.4.29) 20.557 ms 20.981 ms 20.978 ms

 9 216.176.4.58 (216.176.4.58) 20.124 ms 20.085 ms 20.103 ms

10 209.85.254.120 (209.85.254.120) 21.424 ms 22.390 ms 22.382 ms

11 209.85.240.150 (209.85.240.150) 23.318 ms 22.823 ms 22.821 ms

12 ord08s08-in-f3.1e100.net (74.125.225.99) 22.306 ms 23.269 ms 23.252 ms

The third tool, mtr, combines the functionality of ping and traceroute and gives you a

live display of the data as it runs, as shown in this example:

 My traceroute [v0.80]

 example.lan Sat Jul 14 14:07:50 2012

 Packets Pings

Hostname %Loss Rcv Snt Last Best Avg Worst

 1. example.lan 0% 11 11 1 1 1 2

 2. ae-31-51.ebr1.Chicago1.Level3.n 19% 9 11 3 1 7 14

http://google.com
http://google.com
http://1e100.net
http://1e100.net
http://1e100.net
http://google.com
http://google.com
http://google.com
http://216.sta.southslope.net
http://ss-dsl-sec1.nl.southslope.net
http://4.desm.netins.net
http://0.desm.netins.net
http://1e100.net

330 CHAPTER 18 Networking

 3. ae-1.ebr2.Chicago1.Level3.net 0% 11 11 7 1 7 14

 4. ae-2.ebr2.Washington1.Level3.ne 19% 9 11 19 18 23 31

 5. ae-1.ebr1.Washington1.Level3.ne 28% 8 11 22 18 24 30

 6. ge-3-0-0-53.gar1.Washington1.Le 0% 11 11 18 18 20 36

 7. 63.210.29.230 0% 10 10 19 19 19 19

 8. t-3-1.bas1.re2.yahoo.com 0% 10 10 19 18 32 106

 9. p25.www.re2.yahoo.com 0% 10 10 19 18 19 19

mtr is not useful for creating a text file for analysis, but like the live system monitoring

tool top (discussed in Chapter 16, “System-Monitoring Tools”), it gives real-time data and

is quite powerful. As with top, you press the Q key to exit mtr.

Networking with TCP/IP
The basic building block for any network based on UNIX hosts is the Transmission Control

Protocol/Internet Protocol (TCP/IP) suite, which includes three protocols even though only

two appear in the name. The suite consists of Internet Protocol (IP), Transmission Control

Protocol (TCP), and User Datagram Protocol (UDP). The TCP/IP suite is packet based, which

means that data is broken into little chunks on the transmit end for transmission to the

receiving end. Breaking up data into manageable packets allows for faster and more accu-

rate transfers. In TCP/IP, all data travels via IP packets, which is why addresses are referred

to as IP addresses. IP is the lowest level of the suite.

TCP is also a connection-based protocol. Before data is transmitted between two machines,

a connection is established between them. When a connection is made, a stream of data

is sent to IP to be broken into the packets that are then transmitted. At the receiving end,

the packets are put back in order and sent to the proper application port. TCP/IP forms

the basis of the Internet; without it, the Internet would be a very different place indeed—

if it even existed. In contrast, UDP is a connectionless protocol. Applications using this

protocol just choose their destination and start sending. UDP is normally used for small

amounts of data or on fast and reliable networks. If you are interested in the internals of

TCP/IP, see the “References” section at the end of this chapter for places to look for more

information.

UBUNTU AND NETWORKING

Chances are that your network card was configured during the installation of Ubuntu. You

can use the ip command or Ubuntu’s graphical network configuration tools to edit your

system’s network device information or to add or remove network devices on your system.

Hundreds of networking commands and utilities are included with Ubuntu—far too many to

cover in this chapter and more than enough to fill two or three volumes.

After reading this chapter, you might want to learn more about other graphical network cli-

ents for use with Linux. For example, you can use Nmap to scan a specific host for open

ports and other running services (more at https://nmap.org). You may also find utilities

like Netcat (more at https://nc110.sourceforge.net), Wireshark (more at www.wireshark.

org), and tcpdump (more at www.tcpdump.org) useful.

http://Level3.net
http://1.bas1.re2.yahoo.com
http://www.re2.yahoo.com
https://nmap.org
https://nc110.sourceforge.net
http://www.wireshark.org
http://www.wireshark.org
http://www.tcpdump.org

331

1
8

Networking with TCP/IP

TCP/IP Addressing

To understand networking with Linux, you need to know the basics of TCP/IP address-

ing. Internet IP addresses (also known as public IP addresses) are different from those used

internally on a local area network (LAN). Internet IP addresses are assigned (for the United

States and some other hosts) by the American Registry for Internet Numbers (ARIN; see

www.arin.net). Entities that need Internet addresses apply to this agency to be assigned

addresses. ARIN assigns Internet service providers (ISPs) one or more blocks of IP addresses,

which the ISPs can then assign to their subscribers.

You will quickly recognize the current form of TCP/IP addressing, known as IP version 4

(IPv4). In this method, a TCP/IP address is expressed as a series of four decimal numbers: a

32-bit value expressed in a format known as dotted-decimal format, such as 192.168.0.1.

Each set of numbers is known as an octet (eight 1s and 0s, such as 10000000 to represent

128) and ranges from 0 to 255.

The first octet usually determines what class the network belongs to. There are three

classes of networks:

 ▶ Class A—Consists of networks with the first octet ranging from 1 to 126. There are

only 126 Class A networks, each composed of up to 16,777,214 hosts. (If you are

doing the math, there are potentially 16,777,216 addresses, but no host portion of

an address can be all 0s or 255s.) The 10. network is reserved for local network use,

and the 127. network is reserved for the loopback address, 127.0.0.1. TCP/IP uses

loopback addressing to enable Linux network-related client and server programs to

communicate on the same host. This address does not appear and is not accessible

on your LAN.

NOTE

Notice that 0 is not included in Class A. The 0 address is used for network-to-network

broadcasts. Also note that there are two other classes of networks, Classes D and E.

Class D networks are reserved for multicast addresses and are not for use by network

hosts. Class E addresses are deemed experimental and thus are not open for public

addressing.

 ▶ Class B—Consists of networks defined by the first two octets, with the first ranging

from 128 to 191. The 128. network is also reserved for local network use. There are

16,382 Class B networks, each with 65,534 possible hosts.

 ▶ Class C—Consists of a network defined by the first three octets with the first rang-

ing from 192 to 223. The 192. network is another that is reserved for local network

use. There are a possible 2,097,150 Class C networks of up to 254 hosts each.

No host portion of an IP address can be all 0s or 255s. These addresses are reserved for

broadcast addresses. IP addresses with all 0s in the host portion are reserved for network-

to-network broadcast addresses. IP addresses with all 255s in the host portion are reserved

for local network broadcasts. Broadcast messages are not typically seen by users.

http://www.arin.net

332 CHAPTER 18 Networking

These classes are the standard, but a netmask also determines what class your network is

in. The netmask determines what part of an IP address represents the network and what

part represents the host. Common netmasks for the different classes are as follows:

 ▶ Class A—255.0.0.0

 ▶ Class B—255.255.0.0

 ▶ Class C—255.255.255.0

Because of the allocation of IP addresses for Internet hosts, getting a Class A network is

now impossible. Getting a Class B network is also nearly impossible (all the addresses

have been given out, but some companies are said to be willing to sell theirs), and Class

C network availability is dropping rapidly, with the continued growth of Internet use

worldwide.

LIMITS OF IPV4 ADDRESSING

The IPv4 address scheme is based on 32-bit numbering and limits the number of avail-

able IP addresses to about 4.1 billion. Many companies and organizations (particularly

in the United States) were assigned very large blocks of IP addresses in the early stages

of the growth of the Internet, which has left a shortage of “open” addresses. Even with

careful allocation of Internet-connected host IP addresses and the use of network address

translation (NAT) to provide communication to and from machines behind an Internet-

connected computer, the Internet might run out of available addresses.

To solve this problem, a newer scheme named IP version 6 (IPv6) is being implemented. It

uses a much larger addressing solution that is based on 128-bit addresses, with enough

room to include much more information about a specific host or device, such as Global

Positioning Service (GPS) or serial numbering. Although the specific details about the

entire contents of the an IPv6 address have yet to be finalized, all Internet-related organi-

zations appear to agree that something must be done to provide more addresses.

You can get a good overview of the differences between IPv4 and IPv6 policies regarding

IP address assignments and the registration process of obtaining IP addresses at www.

arin.net/knowledge/v4-v6.html and www.arin.net/resources/request.html.

Ubuntu, like all other modern Linux distributions, supports the use of IPv6 and includes a

number of networking tools that conform to IPv6 addressing.

Migration to IPv6 is slow in coming, however, because many computer operating systems,

software, hardware, firmware, and users are still in the IPv4 mindset. Supporting IPv6

requires rewriting many networking utilities, portions of operating systems currently in use,

and firmware in routing and firewall hardware.

See the “IPv6 Basics” section, later in this chapter, for more on IPv6.

Using IP Masquerading in Ubuntu

Three blocks of IP addresses are reserved for use on internal networks and hosts not

directly connected to the Internet. The address ranges are from 10.0.0.0 to 10.255.255.255,

or 1 Class A network; from 172.16.0.0 to 172.31.255.255, or 16 Class B networks; and

http://www.arin.net/knowledge/v4-v6.html
http://www.arin.net/knowledge/v4-v6.html
http://www.arin.net/resources/request.html

333

1
8

Networking with TCP/IP

from 192.168.0.0 to 192.168.255.255, or 256 Class C networks. Use these IP addresses

when building a LAN for your business or home. Which class you choose can depend on

the number of hosts on your network.

Internet access for your internal network can be provided by another PC or a router. The

host or device is connected to the Internet and is used as an Internet gateway to forward

information to and from your LAN. The host should also be used as a firewall to protect

your network from malicious data and users while functioning as an Internet gateway.

A PC used in this fashion typically has at least two network interfaces. One is connected

to the Internet and the other is connected to the computers on the LAN (via a hub or

switch). Some broadband devices also incorporate four or more switching network inter-

faces. Data is then passed between the LAN and the Internet via NAT, sometimes known

in networking circles as IP masquerading.

NOTE

Do not rely on a single point of protection for your LAN, especially if you use wireless net-

working, provide dial-in services, or allow mobile (laptop or PDA) users internal or external

access to your network. Companies, institutions, and individuals that rely on a “moat

mentality” have often discovered to their dismay that such an approach to security is eas-

ily breached. Make sure that your network operation is accompanied by a security policy

that stresses multiple levels of secure access, with protection built into every server and

workstation—something easily accomplished when using Linux.

Ports

Most servers on your network perform more than one task. For example, web servers often

have to serve both standard and secure pages. You might also be running an FTP server

on the same host. For this reason, applications are provided ports to use to make “direct”

connections for specific software services. These ports help TCP/IP distinguish services so

that data can get to the correct application. If you check the file /etc/services, you see

the common ports and their usage. For example, for FTP, HTTP, and POP3 (email retrieval

server), you see the following:

ftp 21/tcp

http 80/tcp http # WorldWideWeb HTTP

pop3 110/tcp pop-3 # POP version 3

The ports defined in /etc/services in this example are 21 for FTP, 80 for HTTP, and 110

for POP3. Some other common port assignments are 25 for Simple Mail Transfer Protocol

(SMTP) and 22 for Secure Shell (SSH) remote login. Note that these ports are not set in

stone, and you can set up your server to respond to different ports. For example, although

port 22 is listed in /etc/services as a common default for SSH, you can configure the

sshd server to listen on a different port by editing its configuration file, /etc/ssh/sshd_

config. The default setting (commented out with a pound sign, #) looks like this:

#Port 22

334 CHAPTER 18 Networking

Edit the entry to use a different port, making sure to select an unused port number, as

follows:

Port 2224

Save your changes and then restart the sshd server with sudo service ssh restart.

Remote users must now access the host through port 2224, which can be done using ssh’s

-p (port) option, like this:

matthew@seymour:~$ ssh -p 2224 remote_host_name_or_IP

IPv6 Basics
Much of what this chapter discusses is valid regardless of whether you are using IPv4

or IPv6. We start here with a short description of each to lay a foundation for further

understanding. As IPv6 receives greater acceptance and use, this understanding should be

adequate to help you transition between the two, even if specific issues are not addressed

in the chapter. If you missed the “Limits of IPv4 Addressing” note in the earlier “TCP/IP

Addressing” section, you should go back and read through it to get started.

IPv4 is based on 32-bit numbering, which limits the number of available IP addresses to

about 4.1 billion. This, and how those addresses were assigned, have led to the realiza-

tion that not enough IPv4 addresses are available for the number of devices that need IP

addresses. This problem, noticed in the 1990s, is only one of the problems with IPv4. Oth-

ers include large routing tables, which are lists of the routes to particular network destina-

tions, and sometimes the network distances and topography associated with those routes.

These tables are stored in routers and networked computers.

To deal with these issues, IPv6 uses 128-bit numbering that can theoretically allow well

over 340,282,366,920,938,463,463,374,607,431,768,211,456 IP addresses, which is nor-

mally expressed in scientific notation as about 3.4×1038 addresses. That’s about 340 tril-

lion, trillion, trillion addresses, meaning we are unlikely to run out again anytime soon.

This number of addresses allows for each computer to have its own globally routable

address. We don’t need NAT in IPv6 to translate IP addresses as packets pass through a

routing device because an adequate number of addresses are available. IPv6 allows us to

go back to the easier-to-configure peer-to-peer style of Internet networking originally con-

ceived of and used in the 1980s. This creates routing tables that are much smaller because

fewer subroutes need to be generated.

Some other useful features of IPv6 include the following:

 ▶ Address autoconfiguration (RFC2462)

 ▶ Anycast addresses (“one-out-of-many”)

 ▶ Mandatory multicast addresses

 ▶ IPsec (IP Security)

 ▶ Simplified header structure

335

1
8

IPv6 Basics

 ▶ Mobile IP

 ▶ IPv6-to-IPv4 transition mechanisms

There are different types of IPv6 addresses. Unicast addresses are the well-known addresses;

packets sent to these addresses arrive directly at the interface that belongs to the address.

Anycast addresses look the same as unicast addresses, but they actually address a group

of interfaces; packets sent to an anycast address arrive at the nearest (in the router met-

ric sense) interface. Anycast addresses may only be used by routers. Finally, a multicast

address identifies a group of interfaces; packets sent to a multicast address arrive at all

interfaces belonging to the multicast group.

IPv6 addresses are created using eight sets of numbers, like this:

F734:0000:0000:0000:3458:79B2:D07B:4620

Each of the eight sections is made of a four-digit number in hexadecimal, which means

that each digit can be from 0 to 9 or A to F (A=10, B=11, and so on). Hexadecimal is a

denser format than binary. In binary, there are only two options, 0 and 1. This means that

in hexadecimal, 4 digits can be used to represent 16 binary digits, like this:

 ▶ Binary 0000000000000000 = hex 0000 (or just 0)

 ▶ Binary 1111111111111111 = hex FFFF

 ▶ Binary 1101010011011011 = hex D4DB

So, a 128-bit address written in binary would be very long indeed. This 128-bit address

written in binary and separated by dots:

1111111111111111.1111111111111111.1111111111111111.1111111111111111.111111111111

1111.1111111111111111.1111111111111111.1111

is the same as this 128-bit address, written in hexadecimal and separated by colons:

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF

So, understandably, we use the latter hexadecimal format for IPv6 (and the binary format

is not used, just in case you were wondering).

Often an address has long substrings of all zeros; the longest and first run of all-zero sec-

tions is abbreviated as a double colon (::). Because :: is variable in length, it can be used

only once per address. Leading 0s—up to three per section—are also omitted. When this is

done, the result is called the canonical form. For example, fe80::1 is the canonical form of

fe80:0000:0000:0000:0000:0000:0000:0001, and 2001:db8:b:23c1:49:4592:efe:9982 is

the canonical form of 2001:0db8:000b:23c1:0049:4592:0efe:9982.

Writing the last 32 bits of an IPv6 address using the well-known IPv4 format is also pos-

sible. For example, 2002::10.0.0.1 corresponds to the long form 2002:0000:0000:0000:00

00:0000:0a00:0001, which then can be compressed to the canonical form 2002::a00:1.

336 CHAPTER 18 Networking

As in IPv4, an IPv6 address has sections for the network and for the device. However, an

IPv6 address has a dedicated section for subnetting. The following examples use 1s to

show the section of the address being described (in binary because that is easier for us

humans) and 0s for the rest of the address.

In IPv6, the first 48 bits are for Internet routing (network addressing):

1111111111111111.1111111111111111.1111111111111111.0000000000000000. 00000000000

00000.0000000000000000.0000000000000000.0000000000000000

The 16 bits from the 49th to the 54th are for defining subnets:

0000000000000000.0000000000000000.0000000000000000.1111111111111111. 00000000000

00000.0000000000000000.0000000000000000.0000000000000000

The last 64 bits are for device (interface) IDs:

0000000000000000.0000000000000000.0000000000000000.0000000000000000. 11111111111

11111.1111111111111111.1111111111111111.1111111111111111

It is easier for humans to conceive of these using binary, but to actually use this informa-

tion, you have to convert numbers from binary to hexadecimal. Fortunately, this is easily

accomplished on the Web using a quick Google search for “binary to hex” conversion.

Let’s say you want to break your corporate network into 64 subnets. The binary mask just

for the subnetting range would be 1111110000000000, which translates to a hex value of

FC00. Some IPv6 masking tools work with just this one hex word; otherwise, a full 128-bit

hex mask would be FFFF:FFFF:FFFF:FC00:0:0:0:0.

Here are some special-use, reserved IPv6 addresses:

 ▶ ::1/128 is the loopback address.

 ▶ ::/128 is the unspecified address.

 ▶ ::IPv4-address/96 are the IPv4-compatible addresses.

 ▶ The 2001:db8::/32 are the documentation addresses. They are used for documenta-

tion purposes such as user manuals, RFCs, and so on.

 ▶ ::/0 is the default unicast route address.

 ▶ ff00::/8 are multicast addresses.

This section of the book is certain to grow as time passes and IPv6 becomes more com-

monly used. For now, this introduction is probably all you are likely to need, especially

since IPv4 is not going away. This transition is a process of adding IPv6 into existing

worldwide networking schemes and system abilities and is neither intended nor likely to

completely replace IPv4.

337

1
8

Network Organization

Network Organization
Properly organizing your network addressing process grows more difficult as the size of

your network grows. Setting up network addressing for a Class C network with fewer than

254 devices is simple. Setting up addressing for a large, worldwide company with a Class A

network and many different users can be extremely complex. If your company has fewer

than 254 hosts (meaning any device that requires an IP address, including computers,

printers, routers, switches, and other devices) and all your workgroups can share informa-

tion, a single Class C network is sufficient.

Subnetting

Within Class A and B networks, there can be separate networks called subnets. Subnets are

considered part of the host portion of an address for network class definitions. For exam-

ple, in the 128. Class B network, you can have one computer with address 128.10.10.10

and another with address 128.10.200.20; these computers are on the same network

(128.10.), but they have different subnets (128.10.10. and 128.10.200.). Because of this,

communication between the two computers requires either a router or a switch. Subnets

can be helpful for separating workgroups within a company.

Often subnets can be used to separate workgroups that have no real need to interact with

or to shield from other groups’ information passing among members of a specific work-

group. For example, if your company is large enough to have its own HR department and

payroll section, you could put those departments’ hosts on their own subnet and use your

router configuration to limit the hosts that can connect to this subnet. This configuration

prevents networked workers who are not members of the designated departments from

being able to view some of the confidential information the HR and payroll personnel

work with.

Subnet use also enables your network to grow beyond 254 hosts and share IP addresses.

With proper routing configuration, users might not even know they are on a different

subnet from their co-workers. Another common use for subnetting is with networks that

cover a wide geographic area. It is not practical for a company with offices in Chicago and

London to have both offices on the same subnet, so using a separate subnet for each office

is the best solution.

Subnet Masks

TCP/IP uses subnet masks to show which part of an IP address is the network portion and

which part is the host. Subnet masks are usually referred to as netmasks. For a pure Class A

network, the netmask is 255.0.0.0; for a Class B network, the netmask is 255.255.0.0; and

for a Class C network, the netmask is 255.255.255.0. You can also use netmasks to deviate

from the standard classes.

By using customized netmasks, you can subnet your network to fit your needs. For

example, say that your network has a single Class C address. You have a need to subnet

your network. Although this is not possible with a normal Class C subnet mask, you can

338 CHAPTER 18 Networking

change the mask to break your network into subnets. By changing the last octet to a num-

ber greater than zero, you can break the network into as many subnets as you need.

For more information on how to create customized subnet masks, see Day 6, “The Art of

Subnet Masking,” in Sams Teach Yourself TCP/IP Network Administration in 21 Days. That

chapter goes into great detail on how to create custom netmasks and explains how to cre-

ate an addressing cheat sheet for hosts on each subnet. The Linux Network Administrators

Guide, at www.tldp.org/LDP/nag2/index.html, also has good information about how to

create subnets.

Broadcast, Unicast, and Multicast Addressing

Information can get to systems through three types of addresses: unicast, multicast, and

broadcast. Each type of address is used according to the purpose of the information being

sent, as explained here:

 ▶ Unicast—Sends information to one specific host. Unicast addresses are used for

Telnet, FTP, SSH, or any other information that needs to be shared in a one-to-one

exchange of information. Although it is possible that any host on the subnet/net-

work can see the information being passed, only one host is the intended recipient

and will take action on the information being received.

 ▶ Multicasting—Broadcasts information to groups of computers sharing an applica-

tion, such as a video conferencing client or an online gaming application. All the

machines participating in the conference or game require the same information at

precisely the same time to be effective.

 ▶ Broadcasting—Transmits information to all the hosts on a network or subnet.

Dynamic Host Configuration Protocol (DHCP) uses broadcast messages when the

DHCP client looks for a DHCP server to get its network settings, and Reverse Address

Resolution Protocol (RARP) uses broadcast messages for hardware address-to-IP address

resolution. Broadcast messages use .255 in all the host octets of the network IP

address. (10.2.255.255 broadcasts to every host in your Class B network.)

Hardware Devices for Networking
As stated at the beginning of this chapter, networking is one of the strong points of the

Linux operating system. This section covers the classes of devices used for basic net-

working. Note that this section talks about hardware devices, and not Linux networking

devices, which are discussed in the section “Using Network Configuration Tools.”

Network Interface Cards

A computer must have a network interface card (NIC) to connect to a network. Currently,

there are several topologies (ways of connecting computers) for network connections.

These topologies range from the old and mostly outdated 10BASE-2 to the much newer

and popular wireless Wi-Fi, or 802.11, networking.

Each NIC has a unique address (the hardware address, known as Media Access Control [MAC]

address), which identifies that NIC. This address is six pairs of hexadecimal bits separated

http://www.tldp.org/LDP/nag2/index.html

339

1
8

Hardware Devices for Networking

by colons (:). A MAC address looks similar to this: 00:60:08:8F:5A:D9. The hardware address

is used by DHCP (see the section “Dynamic Host Configuration Protocol,” later in this

chapter) to identify a specific host. In addition, Address Resolution Protocol (ARP) and Reverse

Address Resolution Protocol (RARP) use MAC addresses to map hosts to IP addresses.

This section covers some of the different types of NICs used to connect to a network,

including several that have long been obsolete but that you may still find in use in older

systems.

Token Ring

Token Ring networking was developed by IBM. As the name implies, the network is set up

in a ring. A single “token” is passed from host to host, indicating the receiving host’s per-

mission to transmit data.

Token Ring has a maximum transfer rate of 16Mbps (16 million bits per second). Unlike

10BASE-2 and 10BASE-5, Token Ring uses what is called unshielded twisted pair (UTP) cable.

This cable looks a lot like the cable that connects your phone to the wall. Almost all

Token Ring NICs are recognized by Linux.

10BASE-T

10BASE-T was the standard for a long time. A large number of networks still use it. Like

Token Ring, 10BASE-T also uses UTP cable. Instead of being configured in a ring, 10BASE-

T mostly uses a star architecture. In this architecture, the hosts all connect to a central

location (usually a hub, which you learn about later in this chapter, in the “Hubs and

Switches” section). All the data is sent to all hosts, but only the destination host takes

action on individual packets. 10BASE-T has a transfer rate of 10Mbps.

10BASE-T has a maximum segment length of 100 meters (about 325 feet). There are many

manufacturers of 10BASE-T NICs, and most are recognized by Ubuntu.

100BASE-T

100BASE-T was popular around the turn of the millennium, offering the same ease of

administration as 10BASE-T while increasing the speed by a factor of 10. For most net-

works, the step from 10BASE-T to 100BASE-T is as simple as replacing NICs and hubs.

Most 100BASE-T NICs and hubs can also handle 10BASE-T and can automatically detect

which is in use. This allows for gradual network upgrades and usually does not require

rewiring the whole network. Nearly every known 100BASE-T NIC and most generic NICs

are compatible with Linux. 100BASE-T requires Category 5 UTP cabling.

1000BASE-T

1000BASE-T—usually referred to as Gigabit Ethernet—is the long-time standard in enter-

prise networking. Like 100BASE-T NICs, gigabit NICs automatically downgrade if they are

plugged in to a slower network. Also, as with 100BASE-T, gigabit NICs require Category

5 UTP cabling; however, many institutions are now deploying Category 6 cables, which

have much longer range and so are often worth the extra cost. You will find that most

newer computers are sold with gigabit NICs. Fiber-related gigabit that uses fiber optics is

termed 1000BASE-X, whereas 1000BASE-T Gigabit Ethernet uses twisted-pair cabling (see

the “Unshielded Twisted Pair” section, later in this chapter).

340 CHAPTER 18 Networking

10G Ethernet and 50G Ethernet

10G Ethernet is now the most commonly used standard and has replaced 1000BASE-T in

the majority of datacenters. It transmits at 10 gigabits per second, which is 10 times faster.

10G can use either copper or fiber cabling. If you use copper, you must use higher-grade

cables if you want to run distances up to the stated 100 meter lengths. Fiber is really the

norm here for all but short lengths.

50G Ethernet is the up-and-coming standard. It transmits at 50 gigabits per second and

should be the choice when starting fresh with a new datacenter. Existing datacenters seem

to be switching over gradually as they perform scheduled system decommissioning and

replacements.

Fiber-Optic

Fiber-optic is more commonly used in newer and high-end installations because the cost

of upgrading can be prohibitive for older sites.

Fiber-optic cable was originally used on fiber distributed data interface (FDDI) networks,

similar to Token Ring in structure except that there are two rings (one primary, the other

secondary). The primary ring is used exclusively, and the secondary sits idle until there is

a break in the primary ring. That is when the secondary ring takes over, keeping the net-

work alive. FDDI has a speed of 100Mbps and has a maximum ring length of 100 kilome-

ters (62 miles). FDDI uses several tokens at the same time that, along with the faster speed

of fiber-optics, account for the drastic increase in network speed.

As stated earlier, switching to a fiber-optic network can be very costly. To make the

upgrade, the whole network has to be rewired, and all NICs must be replaced at the same

time. Most FDDI NICs are recognized by Linux.

Wireless Network Interfaces

Wireless networking, as the name states, works without network cables; it is an extremely

popular option. Upgrading is as easy as replacing network cards and equipment, such as

routers and switches. Wireless networking equipment can also work along with the tradi-

tional wired networking to continue using existing equipment.

A wireless network is still generally slower than a traditional wired network. However, this

situation is changing with wider adoption of newer protocols.

Network Cable

Currently, three types of network cable are available: coaxial, UTP, and fiber. Coaxial

cable looks a lot like the coaxial cable used to connect your television to the cable jack

or antenna. UTP looks a lot like the cable that runs from your phone to the wall jack

(though the jacks are a bit wider). Fiber cable looks sort of like the RCA cables used on

a stereo or like the cable used on electrical appliances in a home (with two separate seg-

ments connected together). The following sections discuss UTP and fiber network cable in

more detail.

341

1
8

Hardware Devices for Networking

Unshielded Twisted Pair

UTP uses color-coded pairs of thin copper wire to transmit data. Each of the six categories

of UTP serves a different purpose:

 ▶ Category 1 (Cat1)—Used for voice transmissions such as phone. Only one pair is

used per line: one wire to transmit and one to receive. An RJ-11 plug is used to con-

nect the cable from the phone to the wall.

 ▶ Category 2 (Cat2)—Used in early Token Ring networks. Has a transmission rate

of 4Mbps and has the slowest data transfer rate. An RJ-11 plug is used for cable

connections.

 ▶ Category 3 (Cat3)—Used for 10BASE-T networks. It has a transmission rate of

10Mbps. Three pairs of cables are used to send and receive signals. RJ-11 or RJ-45

plugs can be used for Cat3 cables, usually deferring to the smaller RJ-11. RJ-45 plugs

are similar in design to RJ-11 but are larger to handle up to four pairs of wire and are

used more commonly on Cat5 cables.

 ▶ Category 4 (Cat4)—Used in modern Token Ring networks. It has a transmission

rate of 16Mbps and is becoming less and less common as companies are switching to

better alternatives. RJ-45 plugs are used for cable connections.

 ▶ Category 5 (Cat5)—The fastest of the UTP categories, with a transmission rate up

to 1000Mbps. It is used in both 100BASE-T and 1000BASE-T networks and uses four

pairs of wire. Cat5 cable came out just as 10BASE-T networks were becoming popu-

lar, and it isn’t much more expensive than Cat3 cable. As a result, most 10BASE-T

networks use Cat5 UTP rather than Cat3. Cat5 cable uses RJ-45 plugs. Cat 5e (which

stands for Category 5 enhanced) cable is similar to basic Cat 5, except that it fulfills

higher standards of data transmission. While Cat 5 is common in existing cabling

systems, Category 5e has almost entirely replaced it in new installations. Cat 5e can

handle data transfer at 1000Mbps, is suitable for Gigabit Ethernet, and experiences

much lower levels of near-end crosstalk (NEXT) than Cat 5.

 ▶ Category 6 (Cat6)—Also rated at 1000Mbps, this cable is available in two forms:

stranded for short runs (25-meter runs, about 80 feet) and solid for up to 100-meter

runs (about 325 feet), though the solid form should not be flexed.

 ▶ Category 7 (Cat7)—Rated for a transmission speed of up to 10Gbps and backward

compatible with Cat6, Cat5, and Cat5e, Cat7 provides a 100 meter four-connector

channel. It requires twisted wires for full shielding and eliminates crosstalk with bet-

ter noise resistance. The main objective is to get higher speeds with longer cables.

 ▶ Category 8 (Cat8)—Cat8 is a new type of cable supporting speeds up to 40Gbps.

It is limited to a 30 meter two-connecter channel. The trade-off here requires asking

whether you need the increased speed or rather the increased cable length in Cat7.

 ▶ Category 9 (Cat9)—At the time of this writing, Cat9 is being discussed but the

standard is not finalized. It may not matter. Cat 6, 7, and 8 are easily good enough

for today’s needs. By the time most installations are going to consider Cat9, they are

probably moving to fiber.

342 CHAPTER 18 Networking

Fiber-Optic Cable

Fiber-optic cable (fiber) is usually orange or red in color. The transmission rate is 100Mbps

over a maximum length of 100 kilometers (62 miles) or faster over short distances, in the

range of 100Gbps in distances under 100 meters. Fiber uses a two-pronged plug to connect

to devices. Fiber provides a couple of advantages because it uses light rather than electric-

ity to transmit signals: It is immune to electromagnetic interference, and it is also more

difficult to tap into and eavesdrop.

Hubs and Switches

Hubs and switches are used to connect several hosts together in a star architecture net-

work. They can have any number of connections; the common sizes are 4, 8, 16, 24, and

48 connections (ports), and each port has a light that comes on when a network connec-

tion is made (link light). Hubs and switches enable you to expand your network easily;

you can just add new hubs or switches when you need to add new connections. Each unit

can connect to the other hubs or switches on the network, typically through a port on the

hub or switch called an uplink port. This means two hubs or switches, connected by their

uplink ports, can act as one hub or switch. Having a central location where all the hosts

on your network can connect allows for easier troubleshooting of problems. If one host

goes down, none of the other hosts are affected (depending on the purpose of the downed

host). Because hubs and switches are not directly involved with the Linux operating sys-

tem, compatibility is not an issue.

If you are constructing a small to midsize network, it is important to consider whether

you intend to use either hubs or switches. Hubs and switches are visually the same in that

they have rows of network ports. However, under the hood, the difference is quite impor-

tant. Data is sent as packets of information across the network; with a hub, the data is

transmitted simultaneously to all the network ports, regardless of which port the destina-

tion computer is attached to.

Switches, however, are more intelligent because they can direct packets of informa-

tion to the correct network port that leads to the destination computer. They do this by

“learning” the MAC addresses of each computer that is attached to them. In short, using

switches minimizes excess packets being sent across the network, thus increasing network

bandwidth available. In a small network with a handful of computers, the use of hubs

might be perfectly acceptable, and you will find that hubs are generally cheaper than

switches. However, for larger networks of 15 computers or more, you should consider

implementing a switched network.

TIP

Troubleshooting network connections can be challenging, especially on large networks. If

a user complains that he has lost his network connection, examining the hub or switch is

a good place to start. If the link light for the user’s port is lit, chances are the problem is

with the user’s network configuration. If the link light is not on, the host’s NIC is bad, the

cable is not inserted properly, or the cable has gone bad for some reason.

343

1
8

Hardware Devices for Networking

Routers and Bridges

Routers and bridges are used to connect different networks to your network and to con-

nect different subnets within your network. Routers and bridges both serve the same pur-

pose of connecting networks and subnets, but they do so using different techniques. The

information in the following sections helps you choose the connection method that best

suits your needs.

Bridges

Bridges are used within a network to connect different subnets. A bridge blindly relays all

information from one subnet to another without any filtering and is often referred to as

a dumb gateway. This can be helpful if one subnet in your network is becoming overbur-

dened and you need to lighten the load. A bridge is not very good for connecting to the

Internet, however, because it lacks filtering. You really do not want all traffic traveling the

Internet to be able to get through to your network.

Routers

Routers can pass data from one network to another, and they allow for filtering of data.

Routers are best suited to connect your network to an outside network, such as the Inter-

net. If you have a web server for an internal intranet that you do not want people to

access from the Internet, for example, you can use a router’s filter to block port 80 from

outside your internal network. These filters can be used to block specific hosts from access-

ing the Internet, as well. For these reasons, routers are also called smart gateways.

Routers range in complexity and price from an enterprise-grade Cisco brand router that

can cost thousands of dollars to consumer brands designed for home or small office use

that can cost less than $50.

Initializing New Network Hardware

All the initial network configuration and hardware initialization for Ubuntu is normally

done during installation. At times, however, you may have to reconfigure networking on

your system, such as when a host needs to be moved to a different subnet or a different

network, or if you replace any of your computer’s networking hardware.

Linux creates network interfaces in memory when the kernel recognizes that a NIC or

another network device is attached to the system. These interfaces are unlike other Linux

interfaces, such as serial communications ports, and they do not have a corresponding

device file in the /dev directory. Unless support for a particular NIC is built in to your ker-

nel, Linux must be told to load a specific kernel module to support your NIC. More than

100 such modules are located in the /lib/modules/5.5.XX-XX/kernel/net directory

(where XX-XX is your version of the kernel).

You can initialize a NIC in several ways when using Linux. When you first install Ubuntu,

automatic hardware probing detects and configures your system to use any installed NICs.

If you remove the original NIC and replace it with a different make and model, your sys-

tem will not automatically detect and initialize the device unless you configure Ubuntu to

use automatic hardware detection when booting. Ubuntu should detect the absence of the

old NIC and the presence of the new NIC at boot time.

344 CHAPTER 18 Networking

If you do not use automatic hardware detection and configuration, you can initialize net-

work hardware by doing the following:

 ▶ Manually editing the /etc/modprobe.conf file to prompt the system to recognize

and support the new hardware upon reboot

 ▶ Manually loading or unloading the new device’s kernel module with the modprobe

command

The following sections explain these methods in greater detail.

Editing the /etc/modprobe.conf File

The /etc/modprobe.conf file might not be present when you first look for it, so you might

need to create a blank file in a text editor. You can manually edit the /etc/modprobe.conf

file to add a module dependency entry (also known as a directive) to support a new NIC

or another network device. This entry includes the device’s name and its corresponding

kernel module. After you add this entry and reboot, the Linux kernel recognizes your new

networking hardware. Ubuntu runs a module dependency check upon booting.

For example, if your system uses a RealTek NIC, you could use an entry like this:

alias eth0 8139too

This entry tells the Linux kernel to load the 8139too.o kernel module to support the eth0

network device.

On the other hand, if you have an Intel Ethernet Pro NIC installed, you use an entry

like this:

alias eth0 eepro100

You can pass other parameters to a kernel module using one or more optional entries, if

needed, to properly configure your NIC. See the modprobe.conf man page for more infor-

mation about using entries. For more specifics regarding NIC kernel modules, examine the

module’s source code. (No man pages are yet available—which presents a good opportu-

nity for anyone willing to write the documentation.)

In addition, check the /etc/modprobe.d directory for other files related to kernel modules.

Using modprobe to Manually Load Kernel Modules

You do not have to use an /etc/modprobe.conf entry to initialize kernel support for your

new network device. As root (using sudo), you can manually load or unload the device’s

kernel module using the modprobe command along with the module’s name. For example,

use the following command line to enable the RealTek NIC from the earlier example:

matthew@seymour:~$ sudo modprobe 8139too

After you press Enter, you see this device reported from the kernel’s ring buffer messages, which

you can display by using the dmesg command. Here’s a portion of that command’s output:

matthew@seymour:~$ dmesg

345

1
8

Using Network Configuration Tools

...

eth0: RealTek RTL8139 Fast Ethernet at 0xce8ee000, 00:30:1b:0b:07:0d, IRQ 11

eth0: Identified 8139 chip type ÔRTL-8139C'

eth0: Setting half-duplex based on auto-negotiated partner ability 0000.

...

Note that at this point, an IP address and other settings have not been assigned to the

device. Linux can use multiple Ethernet interfaces, with the first Ethernet device num-

bered eth0, the second eth1, and so on. Each different Ethernet device recognized by the

kernel might have additional or different information reported, depending on its kernel

module. Here is an example:

matthew@seymour:~$ dmesg

...

eepro100.c:v1.09j-t 9/29/99 Donald Becker http://cesdis.gsfc.nasa.gov/linux/drive

rs/eepro100.html

eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin

Ɣ<saw@saw.sw.com.sg> and others

PCI: Found IRQ 10 for device 00:0d.0

eth0: Intel Corporation 82557 [Ethernet Pro 100], 00:90:27:91:92:B5, IRQ 10.

 Board assembly 721383-007, Physical connectors present: RJ45

 Primary interface chip i82555 PHY #1.

 General self-test: passed.

 Serial sub-system self-test: passed.

 Internal registers self-test: passed.

 ROM checksum self-test: passed (0x04f4518b).

...

In this example, an Intel Ethernet Pro 100 NIC has been recognized. To disable support for

a NIC, the kernel module can be unloaded, but usually only after the device is no longer

in use. Read the next section to learn how to configure a NIC after it has been recognized

by the Linux kernel and how to control its behavior.

Using Network Configuration Tools
If you add or replace networking hardware after initial installation, you must configure

the new hardware. You can do so using either the command line or the graphical configu-

ration tools. To configure a network client host using the command line, you can use a

combination of commands or edit specific files under the /etc directory. To configure the

hardware through a graphical interface, you can use Ubuntu’s graphical tool for X called

nm-connection-editor, found by clicking the Network indicator and then Edit Connec-

tions. This section introduces command-line and graphical software tools you can use to

configure a network interface and network settings on your Ubuntu system. You’ll see

how to control your NIC and manage how your system interacts with your network.

Using the command-line configuration tools can seem difficult if you are new to Linux.

For anyone new to networking, using the nm-connection-editor graphical tool is the way

346 CHAPTER 18 Networking

to go. Both manual and graphical methods require super user privileges. You should not

edit any scripts or settings files used by graphical network administration tools on your

system, or your changes will be lost the next time the tool is run. Either use a manual

approach all the time and write your own network setup script or stick to using graphical

configuration utilities. Don’t switch back and forth between the two methods.

Command-Line Network Interface Configuration

You can configure a network interface from the command line by using the basic Linux

networking utilities. You configure your network client hosts either with commands to

change your current settings or by editing a number of system files. Traditionally, two

commands, ifconfig (which has generally been abandoned for ip, as mentioned earlier

in this chapter) and ip route, are used for network configuration. The netstat command

displays information about the network connections.

NOTE

ifconfig has been replaced by ip, which is also covered in this section. As you are likely

to encounter older systems and admins still using ifconfig, information on this com-

mand has been retained here as well. Feel free to skip ahead to the ip section.

ifconfig

ifconfig is used to configure a network interface. You can use it to do the following:

 ▶ Activate or deactivate your NIC or change your NIC’s mode

 ▶ Change your machine’s IP address, netmask, or broadcast address

 ▶ Create an IP alias to allow more than one IP address on your NIC

 ▶ Set a destination address for a point-to-point connection

You can change as many or as few of these options as you want with a single command.

The basic structure for the command is as follows:

ifconfig [network device] options

Table 18.1 shows a subset of ifconfig options and examples of their uses.

Table 18.1 ifconfig Options

Use Option Example

Create alias [network device] ifconfig eth0:0 _ :[number]

10.10.10.10

Change IP

address

ifconfig eth0 10.10.10.12

Change the

netmask

netmask [netmask] ifconfig eth0 netmask 255.255.255.0

347

1
8

Using Network Configuration Tools

Use Option Example

Change the

broadcast

broadcast

[address]
ifconfig eth0 broadcast 10.10.10.255

Take interface

down

down ifconfig eth0 down

Bring interface

up

up (add IP

address)

ifconfig eth0 up (ifconfig eth0 10.10.10.10)

Set NIC

promiscuous

[-]promisc ifconfig eth0 promisc mode on [off]

[ifconfig eth0

-promisc]

Set multicast-

ing mode

[-]allmulti ifconfig eth0 _ on [off] allmulti [ifconfig

eth0 -allmulti]

Enable or

disable

[-]pointopoint

[address]

eth0 _ pointopoint

ifconfig _ point-to-point address 10.10.10.20

[ifconfig eth0 pointopoint _ 10.10.10.20]

The ifconfig man page shows other options that enable your machine to interface with

a number of network types, such as AppleTalk, Novell, IPv6, and others. Again, read the

man page for details on these network types.

NOTE

Promiscuous mode causes the NIC to receive all packets on the network. It is often used

to sniff a network. Multicasting mode enables the NIC to receive all multicast traffic on

the network.

If no argument is given, ifconfig displays the status of active interfaces. For example, the

output of ifconfig, without arguments and one active and configured NIC, looks similar

to this:

matthew@seymour:~$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:90:f5:8e:52:b5

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

 Interrupt:30 Base address:0xc000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:314 errors:0 dropped:0 overruns:0 frame:0

 TX packets:314 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:25204 (25.2 KB) TX bytes:25204 (25.2 KB)

348 CHAPTER 18 Networking

wlan0 Link encap:Ethernet HWaddr 00:16:ea:d4:58:88

 inet addr:192.168.1.106 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::216:eaff:fed4:5888/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:325832 errors:0 dropped:0 overruns:0 frame:0

 TX packets:302754 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:207381807 (207.3 MB) TX bytes:40442735 (40.4 MB)

This output is easily understood. The inet entry displays the IP address for the interface.

UP signifies that the interface is ready for use; BROADCAST denotes that the interface is con-

nected to a network that supports broadcast messaging (ethernet); RUNNING means that

the interface is operating; and LOOPBACK shows which device (lo) is the loopback address.

The maximum transmission unit (MTU) on eth0 is 1500 bytes. This determines the size of

the largest packet that can be transmitted over this interface (and is sometimes “tuned” to

other values for performance enhancement). Metric is a number from 0 to 3 that relates

to how much information from the interface is placed in the routing table. The lower the

number, the smaller the amount of information.

The ifconfig command can be used to display information about or control a specific

interface using commands that are listed in Table 18.1. For example, to deactivate the first

Ethernet device on a host, use the ifconfig command, the interface name, and the com-

mand down, like this:

matthew@seymour:~$ sudo ifconfig eth0 down

You can also configure and activate the device by specifying a hostname or an IP address

and network information. For example, to configure and activate (bring up) the eth0

interface with a specific IP address, use the ifconfig command as follows:

matthew@seymour:~$ sudo ifconfig eth0 192.168.2.9 netmask 255.255.255.0 up

If you have a host defined in your system’s /etc/hosts file (see the section “Network Con-

figuration Files,” later in this chapter), you can configure and activate the interface accord-

ing to the defined hostname, like this:

matthew@seymour:~$ sudo ifconfig eth0 catcat.fakeurl.com up

ip

In preparing for this edition, ifconfig still worked well on our testing system, but it was

no longer installed by default. It is losing favor as ip sees more use. This command works

with a series of subcommands to perform its tasks. Many of the common subcommands

also have short aliases, which are also listed here. Note that the IP addresses listed next are

examples; the addresses in your network will likely be different.

The following command allows you to get information about all your network interfaces:

matthew@seymour:~$ sudo ip addr show

http://catcat.fakeurl.com

349

1
8

Using Network Configuration Tools

To assign an IP address to a specific interface, in this case eth1, use the following

command:

matthew@seymour:~$ sudo ip addr add 192.168.2.9 dev eth1

To remove an assigned IP address, use this:

matthew@seymour:~$ sudo ip addr del 192.168.2.9 dev eth1

Enable a network interface as shown here:

matthew@seymour:~$ sudo ip link set eth1 up

To disable a network interface, use the following:

matthew@seymour:~$ sudo ip link set eth1 down

Check the routing table as follows:

matthew@seymour:~$ sudo ip route show

To add a static route, do the following:

matthew@seymour:~$ sudo ip route add 10.10.30.0/24 via 192.168.50.100 dev eth0

Use the following command to remove a static route:

matthew@seymour:~$ sudo ip route del 10.10.30.0/24

To add a default gateway, use the following:

matthew@seymour:~$ sudo ip route add default via 192.168.36.100

The next section explains how to configure your system to work with your LAN.

ip route

Another command used to configure your network is the ip route command. ip route is

used to build the routing tables (in memory) implemented for routing packets and to dis-

play the routing information. It is used after ip (or ifconfig) has initialized the interface.

ip route is normally used to set up static routes to other networks via the gateway or to

other hosts.

To display the current routing configuration, use the ip route command with no options.

The display will look similar to this:

matthew@seymour:~$ ip route

default via 192.168.1.1 dev enp1s0 proto static metric 100

169.254.0.0/16 dev enp1s0 scope link metric 1000

192.168.1.0/24 dev enp1s0 proto kernel scope link src 192.168.1.148 metric 100

350 CHAPTER 18 Networking

netstat

The netstat command is used to display the status of your network. It has several param-

eters that can display as much or as little information as you prefer. The services are listed

by sockets (application-to-application connections between two computers). You can use

netstat to display the information listed in Table 18.2.

Table 18.2 netstat Options

Option Output

-g Displays the multicast groups configured

-i Displays the interfaces configured by ifconfig

-s Lists a summary of activity for each protocol

-v Gives verbose output, listing both active and inactive sockets

-c Updates output every second (good for testing and troubleshooting)

-e Gives verbose output for active connections only

-C Displays information from the route cache and is good for looking at past

connections

Several other options are available for this command, but they are used less often.

Network Configuration Files

As previously stated, five network configuration files can be modified to make changes to

basic network interaction of your system:

 ▶ /etc/hosts—A listing of addresses, hostnames, and aliases

 ▶ /etc/services—Network service and port connections

 ▶ /etc/nsswitch.conf—Linux network information service configuration

 ▶ /etc/resolv.conf—Domain Name System (DNS) domain (search) settings

 ▶ /etc/host.conf—Network information search order (by default, /etc/hosts and

then DNS)

After these files are modified, the changes are active. With most configuration files, you

can add comments with a hash mark (#) preceding a comment. All these files have man

pages where you can find more information.

Adding Hosts to /etc/hosts

The /etc/hosts file is a map of IP addresses to hostnames. If you are not using DNS or

another naming service and you are connected to a large network, this file can get quite

large, and managing it can be a real headache. A small /etc/hosts file can look something

like this:

127.0.0.1 localhost

127.0.1.1 optimus

351

1
8

Using Network Configuration Tools

The following lines are desirable for IPv6 capable hosts

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

ff02::3 ip6-allhosts

The first entry is for the loopback entry. The second is for the name of the machine. If no

naming service is in use on the network, the only host that myhost recognizes by name is

yourhost. (IP addresses on the network can still be used.)

Service Settings in /etc/services

The /etc/services file maps port numbers to services. The first few lines of the file

(which can be more than 500 lines long in total) look similar to this:

Each line describes one service, and is of the form:

#

service-name port/protocol [aliases ...] [# comment]

tcpmux 1/tcp # TCP port service multiplexer

tcpmux 1/udp # TCP port service multiplexer

rje 5/tcp # Remote Job Entry

rje 5/udp # Remote Job Entry

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

Typically, there are two entries for each service because most services can use either TCP

or UDP for their transmissions. Usually after /etc/services is initially configured, you do

not need to change it.

Using /etc/nsswitch.conf After Changing Naming Services

The /etc/nsswitch.conf file was initially developed by Sun Microsystems to specify the

order in which services are accessed on the system. A number of services are listed in

the /etc/nsswitch.conf file, but the most commonly modified entry is the hosts entry.

A portion of the file may look like this:

passwd: compat

group: compat

shadow: compat

hosts: files dns mdns

networks: files

352 CHAPTER 18 Networking

protocols: db files

services: db files

ethers: db files

rpc: db files

netgroup: nis

This tells services that they should consult standard UNIX/Linux files for passwd, shadow,

and group (/etc/passwd, /etc/shadow, /etc/group, respectively) lookups. For host look-

ups, the system checks /etc/hosts; if there is no entry, it checks DNS. The commented

hosts entry lists the possible values for hosts. Edit this file only if your naming service

has changed.

Setting a Name Server with /etc/resolv.conf

Note that this section is old, but included for those using older releases of Ubuntu. For

releases newer than 17.10, see “Setting a Name Server with /etc/netplan/*yaml.”

/etc/resolv.conf is used by DNS. The following is an example of resolv.conf:

nameserver 192.172.3.8

nameserver 192.172.3.9

search mydomain.com

This sets the nameservers and the order of domains for DNS to use. The contents of this

file are set automatically if you use DHCP (see the “Dynamic Host Configuration Protocol”

section, later in this chapter).

Starting with 12.04, there was a pretty big change in how Ubuntu uses the /etc/resolv.

conf file. Management of resolv.conf has been turned over to a program called

resolvconf, which works with DHCP, with a Network Manager plug-in, and with /etc/

network/interfaces to automatically generate a list of nameservers and domains to list in

/etc/resolv.conf. This means that any changes made here manually are eventually

overwritten and lost.

If you have a static IP configuration, you should now list each of your static IP interfaces

as dns-nameservers, dns-search, and dns-domain entries in /etc/network/interfaces.

You can override the configuration for resolvconf or add entries to it in the following

files in the /etc/resolvconf/resolv.conf.d/ directory:

 ▶ base—This file is used when no other data can be found.

 ▶ head—This file is used as the header for resolv.conf, and you can use it to ensure

that a specific DNS server is always the first one on the list used.

 ▶ original—This file is a backup copy of your original resolv.conf file from the time

when the resolvconf program was installed.

 ▶ tail—This file is used as a tail, appended to the end of the auto-generated

resolv.conf file.

http://mydomain.com

353

1
8

Using Network Configuration Tools

The format in these files is the same as the traditional format for /etc/resolv.conf.

Splitting things this way allows for more granular control while also allowing for DHCP

auto-configuration.

Setting a Name Server with /etc/netplan/*.yaml

Starting with 17.10, Ubuntu made another big switch away from resolvconf to Netplan.

Instead of using /etc/network/interfaces, you now find network configuration in /etc/

netplan/*.yaml files.

By default, only one file exists in this location on the desktop, 01-network-manager-all.

yaml, and 01-netcfg.yaml if you installed using the server options. Either includes simple

contents like these:

Let NetworkManager manage all devices on this system

network:

 version: 2

 renderer: NetworkManager

YAML files are strict in their use of indentation, so pay attention when working with

them.

This configures the first network interface (or only if you only have one). If you have mul-

tiple interfaces you will either find or must create additional files, incrementing the start-

ing number in the filenames as you add interfaces, such as 02-netcfg.yaml.

If you have a static IP address, start by finding the assigned name to each of your network

interfaces, using ip a like this (your output will be different based on your hardware):

matthew@seymour:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp2s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN

group default qlen 1000

 link/ether d8:d3:85:94:5d:3f brd ff:ff:ff:ff:ff:ff

3: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000

 link/ether d8:d3:85:94:5d:3e brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.149/24 brd 192.168.1.255 scope global dynamic noprefixroute

enp1s0

The IP address for each interface is listed in its entry. In this instance, there are two

entries: One for lo, the loopback interface, and two others, enp2S0 and enp1s0. These last

two entries are what will be useful in the next step.

354 CHAPTER 18 Networking

To set a nameserver, you add lines with information about them to create a longer file,

like this:

network:

 Version: 2

 Renderer: NetworkManager/ networkd

 ethernets:

 DEVICE_NAME:

 Dhcp4: yes/no

 Addresses: [IP_ADDRESS/NETMASK]

 Gateway: GATEWAY

 Nameservers:

 Addresses: [NAMESERVER_1, NAMESERVER_2]

 DEVICE_NAME:

 Dhcp4: yes/no

 Addresses: [IP_ADDRESS/NETMASK]

 Gateway: GATEWAY

 Nameservers:

 Addresses: [NAMESERVER_1, NAMESERVER_2]

Next, you will add DEVICE_NAME entries for every network device you want to configure.

Replace DEVICE_NAME with the interface from the previous step where we used ip a and

create an additional section starting with this line for each interface.

In each section, set Dhcp4 to either yes or no depending on whether the interface will use

dynamic or static IP addressing. Yes means you are using dynamic.

Then set the IP_ADDRESS and NETMASK for each.

Finally, set the NAMESERVERs you want to use for each interface.

Save the file and test it using this:

matthew@seymour:~$ sudo netplan try

[sudo] password for matthew:

Do you want to keep these settings?

Press ENTER before the timeout to accept the new configuration

Changes will revert in 112 seconds

Configuration accepted.

If the test is successful and the configuration is accepted, apply the configuration like this:

matthew@seymour:~$ sudo netplan apply

If the test was unsuccessful, you can try to fix it yourself (some fixes are obvious like egregious

typos, which we all make) or you can run the debug command and fix what it tells you:

matthew@seymour:~$ sudo netplan -d apply

355

1
8

Dynamic Host Configuration Protocol

Once the configurations are successfully applied, restart the Network Manager service

using this on the desktop:

matthew@seymour:~$ sudo systemctl restart network-manager

Or this on a server:

matthew@seymour:~$ sudo systemctl restart system-networkd

Then use ip a again to verify your settings.

Setting DNS Search Order with /etc/host.conf

This section is only used by legacy services—which still exist—so don’t skip this section

entirely as it may be useful on your system. Use the next section for modern services. It is

a good idea to configure both options and do so identically.

The /etc/host.conf file lists the order in which your machine searches for hostname reso-

lution. The following is the default /etc/host.conf file:

order hosts, bind

In this example, the host checks the /etc/hosts file first and then performs a DNS

lookup. A couple more options control how the name service is used. The only reason to

modify this file is if you use NIS for your name service or you want one of the optional

services. The nospoof option can be a good option for system security. It compares a stan-

dard DNS lookup to a reverse lookup (host-to-IP and then IP-to-host) and fails if the two

don’t match. The drawback is that often when proxy services are used, the lookup fails, so

you should use this with caution.

Setting DNS Search Order with /etc/nsswitch.conf

This section is only used by modern services. Legacy services, which your system may still

run, are configured using the previous section. It is a good idea to configure both options

and do so identically.

The /etc/nsswitch.conf file lists the order in which your machine searches for hostname

resolution in the hosts: line. Set the order in that line as needed and save the file.

Using Graphical Configuration Tools

Ubuntu provides options for desktop users to configure networking using graphical con-

figuration tools. In most cases, all you need to know is contained in Chapter 1, “Installing

Ubuntu and Post-Installation Configuration,” in the section “Configuring Wireless Net-

works.” Power users and unique setups generally eschew the GUI and use command-line

tools.

Dynamic Host Configuration Protocol
As its name implies, Dynamic Host Configuration Protocol (DHCP) is used to configure hosts

for connection to your network. DHCP enables a network administrator to configure all

TCP/IP parameters for each host as she connects them to the network after activation of

356 CHAPTER 18 Networking

a NIC. These parameters include automatically assigning an IP and DNS configuration

to a NIC, setting name server entries in /etc/resolv.conf, and configuring default rout-

ing and gateway information for a host. This section first describes how to use DHCP to

obtain IP address assignment for your NIC and then how to quickly set up and start a

DHCP server using Ubuntu.

NOTE

You can learn more about DHCP by reading RFC 2131, “Dynamic Host Configuration

Protocol,” at www.ietf.org/rfc/rfc2131.txt.

How DHCP Works

DHCP provides persistent storage of network parameters by holding identifying informa-

tion for each network client that might connect to the network. The three most common

pairs of identifying information are as follows:

 ▶ Network subnet/host address—Enables hosts to connect to the network at will

 ▶ Subnet/hostname—Enables the specified host to connect to the subnet

 ▶ Subnet/hardware address—Enables a specific client to connect to the network

after getting the hostname from DHCP

DHCP also allocates to the client’s temporary or permanent network (IP) addresses. When

a temporary assignment, known as a lease, elapses, the client can request to have the lease

extended, or, if the address is no longer needed, the client can relinquish the address. For

hosts that will be permanently connected to a network with adequate addresses available,

DHCP allocates infinite leases.

DHCP offers your network some advantages. First, it shifts responsibility for assigning

IP addresses from the network administrator (who can accidentally assign duplicate IP

addresses) to the DHCP server. Second, DHCP makes better use of limited IP addresses. If a

user is away from the office for whatever reason, the user’s host can release its IP address

for use by other hosts.

Like most other things in life, DHCP is not perfect. Servers cannot be configured through

DHCP alone because DNS does not know what addresses DHCP assigns to a host. This

means that DNS lookups are not possible on machines configured through DHCP alone;

therefore, services cannot be provided. However, DHCP can make assignments based on

DNS entries when using subnet/hostname or subnet/hardware address identifiers.

NOTE

The problem of using DHCP to configure servers using registered hostnames is being

addressed by Dynamic DNS, which, when fully developed, will enable DHCP to register IP

addresses with DNS. This will enable you, for example, to register a domain name (such

as matthewhelmke.com) and be able to easily access that domain’s web server without

needing to use static IP addressing of a specific host. The largest hurdle to overcome is

http://www.ietf.org/rfc/rfc2131.txt
http://matthewhelmke.com

357

1
8

Dynamic Host Configuration Protocol

the security implication of enabling each host connecting to the system to update DNS.

A few companies, such as Dyn.com (www.dyndns.org), are already offering Dynamic DNS

services and have clients for Linux.

Activating DHCP at Installation and Boot Time

Ubuntu automatically defaults your network interfaces to using DHCP because it is

the simplest way of setting up a network interface. With dynamic, or DHCP-assigned IP

addressing schemes for your NIC, the broadcast address is set at 255.255.255.255 because

dhclient, the DHCP client used for IP configuration, is initially unaware of where the

DHCP server is located, so the request must travel every network until a server replies.

You can find the instruction to use DHCP for your NIC in /etc/netplan/*.yaml, in a line

that says dhcp.

Other settings specific to obtaining DHCP settings are saved in the file /etc/dhcp/

dhclient.conf and are documented in the dhclient.conf man page. More than 100

options are also documented in the dhcpoptions man page.

However, using DHCP is not very complicated. If you want to use DHCP and know that

there is a server on your network, you can quickly configure your NIC by using the

dhclient, as follows:

matthew@seymour:~$ sudo dhclient

Internet Systems Consortium DHCP Client V3.1.3

Copyright 2004-2009 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.isc.org/software/dhcp/

Listening on LPF/eth0/00:90:f5:8e:52:b5

Sending on LPF/eth0/00:90:f5:8e:52:b5

Listening on LPF/virbr0/ee:1a:62:7e:e2:a2

Sending on LPF/virbr0/ee:1a:62:7e:e2:a2

Listening on LPF/wlan0/00:16:ea:d4:58:88

Sending on LPF/wlan0/00:16:ea:d4:58:88

Sending on Socket/fallback

DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 7

DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 3

DHCPOFFER of 192.168.1.106 from 192.168.1.1

DHCPREQUEST of 192.168.1.106 on wlan0 to 255.255.255.255 port 67

DHCPACK of 192.168.1.106 from 192.168.1.1

bound to 192.168.1.106 -renewal in 35959 seconds.

In this example, the first Ethernet device, eth0, has been assigned IP address

192.168.1.106 from a DHCP server at 192.168.1.1. The renewal will take place in 35959

seconds, or about 10 hours. (Cool tip: Google converts this for you if you search for

“35959 seconds in hours.”)

http://Dyn.com
http://www.dyndns.org

358 CHAPTER 18 Networking

DHCP Software Installation and Configuration

Installation of the DHCP client and server is fairly straightforward, mainly because Ubuntu

already includes dhclient in a default installation but also because installing software is

easy using synaptic or apt-get.

DHCP dhclient

DHCP is automatically enabled when you install Ubuntu, so you do not need to worry about

having to enable it. The DHCP client, dhclient, sends a broadcast message that the DHCP

server replies to with networking information for your host. After it has this, you’re done.

You can, however, fine-tune how dhclient works and where and how it obtains or looks

for DHCP information. You probably will not need to take this additional effort, but if

you do, you can create and edit a file named dhclient.conf and save it in the /etc/dhcp

directory with your settings.

CAUTION

You should not just go ahead and overwrite your dhclient.conf with any old file because

doing so could lead to painful networking problems. Instead, copy the file like this:

matthew@seymour:~$ sudo cp /etc/dhcp/dhclient.conf/etc/dhcp/dhclient.conf.backup

This way, if anything goes wrong, you can use the backup to restore the original settings

by copying it back to its original location in place of the modified file.

A few of the dhclient.conf options include the following:

 ▶ timeout time ;—How long to wait before giving up trying. (The default is 60

seconds.)

 ▶ retry time ;—How long to wait before retrying. (The default is 5 minutes.)

 ▶ select-timeout time ;—How long to wait before selecting a DHCP offer. (The

default is 0 seconds.)

 ▶ reboot time ;—How long to wait before trying to get a previously set IP address.

(The default is 10 seconds.)

 ▶ renew date ;—When to renew an IP lease, where date is in the form weekday year/

month/day hour:minute:second, such as 3 2018/7/11 22:01:01 for Wednesday, July

11, 2018, at 10:01 p.m.

See the dhclient.conf man page for more information on additional settings.

DHCP Server

The easiest way to install the DHCP server on your computer is to use either synaptic

or apt-get to retrieve the isc-dhcp-server package. If you are so inclined, you can go

to the Internet Software Consortium (ISC) website (www.isc.org) and download and build

the source code yourself. However, we recommend that you stay with the package in the

Ubuntu repositories because it will be easy to update if there are security updates.

http://www.isc.org

359

1
8

Dynamic Host Configuration Protocol

If you decide to install from a source downloaded from the ISC website, the installation

is straightforward. Just unpack your tar file, run ./configure from the root of the source

directory, run make, and finally, if there are no errors, run make install. This puts all the

files used by the DHCP daemon in the correct places. If you have the disk space, it is best

to leave the source files in place until you are sure that DHCP is running correctly; other-

wise, you might delete the source tree.

NOTE

For whichever installation method you choose, be sure that a file called /etc/dhcp/

dhcpd.leases is created. The file can be empty, but it does need to exist for dhcpd to

start properly.

Using DHCP to Configure Network Hosts

Configuring your network with DHCP can look difficult but is actually easy if your needs

are simple. The server configuration can take a bit of work depending on the complexity

of your network and how much you want DHCP to do.

Configuring the server takes some thought and a little bit of work. Luckily, the work

involves editing only a single configuration file, /etc/dhcp/dhcpd.conf. To start the server

at boot time, use the systemd enable command.

The /etc/dhcp3/dhcpd.conf file contains all the information needed to run dhcpd.

Ubuntu includes a sample dhcpd.conf file in /usr/share/doc/dhcp*/dhcpd.conf.sample.

The DHCP server source files also contain a sample dhcpd.conf file.

You can think of the /etc/dhcp/dhcpd.conf file at as a three-part file. The first part con-

tains the following configurations for DHCP itself:

 ▶ Setting the domain name—option domain-name "example.org"

 ▶ Setting DNS servers—option domain-name-servers ns1.example.org and

ns2.example.org (IP addresses can be substituted.)

 ▶ Setting the default and maximum lease times—default-lease-time 3600

and max-lease-time 14400

Other settings in the first part include whether the server is the primary (authoritative)

server and what type of logging DHCP should use. These settings are considered defaults,

and you can override them with the subnet and host portion of the configuration in more

complex situations.

NOTE

The dhcpd.conf file requires a semicolon (;) after each command statement. If your con-

figuration file has errors or runs improperly, check to make sure the semicolons appear

where needed.

http://"example.org"
http://ns1.example.org
http://ns2.example.org

360 CHAPTER 18 Networking

The next part of the dhcpd.conf file deals with the different subnets that your DHCP

server serves; this section is quite straightforward. Each subnet is defined separately and

can look like this:

subnet 10.5.5.0 netmask 255.255.255.224 {

 range 10.5.5.26 10.5.5.30;

 option domain-name-servers ns1.internal.example.org;

 option domain-name "internal.example.org";

 option routers 10.5.5.1;

 option broadcast-address 10.5.5.31;

 default-lease-time 600;

 max-lease-time 7200;

}

This defines the IP addressing for the 10.5.5.0 subnet. It defines the IP address range from

10.5.5.26 through 10.5.5.30 to be dynamically assigned to hosts that reside on that sub-

net. This example shows that you can set any TCP/IP option from the subnet portion of

the configuration file. It shows which DNS server the subnet will connect to, which can

be good for DNS server load balancing, or which can be used to limit the hosts that can

be reached through DNS. It defines the domain name, so you can have more than one

domain on your network. It can also change the default and maximum lease times.

If you want your server to ignore a specific subnet, you can do so as follows:

subnet 10.152.187.0 netmask 255.255.255.0 {

}

This defines no options for the 10.152.187.0 subnet; therefore, the DHCP server ignores it.

The last part of the dhcpd.conf file is for defining hosts. This can be good if you want a

computer on your network to have a specific IP address or other information specific to

that host. The key to completing the host section is to know the hardware address of the

host. As you learned in the “Hardware Devices for Networking” section, earlier in this

chapter, the hardware address is used to differentiate the host for configuration. You can

obtain your hardware address by using the ip command, as described previously:

host hopper {

 hardware ethernet 08:00:07:26:c0:a5;

 fixed-address hopper.matthewhelmke.com;

}

This example takes the host with the hardware address 08:00:07:26:c0:a5 and does a

DNS lookup to assign the IP address for hopper.matthewhelmke.com to the host.

DHCP can also define and configure booting for diskless clients, like this:

host bumblebee {

 hardware ethernet 0:0:c0:5d:bd:95;

 filename "vmunix.bumblebee";

http://ns1.internal.example.org
http://"internal.example.org"
http://hopper.matthewhelmke.com
http://hopper.matthewhelmke.com

361

1
8

Wireless Networking

 server-name "kernigan.matthewhelmke.com";

}

The diskless host bumblebee gets its boot information from server kernigan.matthewhelmke.

com and uses vmunix.bumblebee kernel. All other TCP/IP configuration can also be included.

CAUTION

Remember that, to avoid problems, only one DHCP server should be configured on a local

network. DHCP might not work correctly for you on a LAN with hosts running outdated

legacy operating systems. Often, Windows NT servers have the Windows DHCP server

installed by default. Because there is no configuration file for NT to sort through, that

DHCP server configures your host before the Linux server if both machines are on the

same LAN. Check your NT servers for this situation and disable DHCP on the NT server;

afterward, your other DHCP-enabled hosts should configure correctly. Also check to make

sure there are no conflicts if you use a cable or DSL modem, wireless access point (WAP),

or other intelligent router on your LAN that can provide DHCP.

Other Uses for DHCP

A whole host of options can be used in dhcpd.conf: Entire books are dedicated to DHCP.

The most comprehensive book is The DHCP Handbook, by Ralph Droms and Ted Lemon.

You can define NIS domains, configure NetBIOS, set subnet masks, and define time servers

or many other types of servers (to name a few of the DHCP options you can use). The pre-

ceding example gets your DHCP server and client up and running.

The DHCP server distribution contains an example of the dhcpd.conf file that you can

use as a template for your network. The file shows a basic configuration that can get you

started with explanations for the options used.

Wireless Networking
Linux has had support for wireless networking since the first standards were developed

in the early 1990s. With computers getting smaller and smaller, the uses for wireless net-

working have increased; meanwhile, the transmission speeds are increasing all the time.

There are several ways to create a wireless network. The following sections introduce you

to several Linux commands you can use to initialize, configure, and manage wireless net-

working on your Ubuntu system.

Support for Wireless Networking in Ubuntu

The Linux kernel that ships with Ubuntu provides extensive support for wireless network-

ing. Related wireless tools for configuring, managing, or displaying information about a

wireless connection include the following:

 ▶ iwconfig—Sets the network name, encryption, transmission rate, and other features

of a wireless network interface

http://"kernigan.matthewhelmke.com"
http://kernigan.matthewhelmke.com
http://kernigan.matthewhelmke.com

362 CHAPTER 18 Networking

 ▶ iwlist—Displays information about a wireless interface, such as rate, power level, or

frequency used

 ▶ iwpriv—Sets optional features of a wireless network interface, such as roaming

 ▶ iwspy—Shows wireless statistics of a number of nodes

Support varies for wireless devices, but most modern (that is, post-2005) wireless devices

should work with Ubuntu. In general, Linux wireless device software (usually in the form

of a kernel module) supports the creation of an Ethernet device that can be managed

using traditional interface tools such as ifconfig—with wireless features of the device

managed by the various wireless software tools.

For example, when a wireless networking device is first recognized and initialized for use,

the driver most likely reports a new device, like so:

zd1211rw 5-4:1.0: firmware version 4725

zd1211rw 5-4:1.0: zd1211b chip 050d:705c v4810 \

high 00-17-3f AL2230_RF pa0 G—ns

zd1211rw 5-4:1.0: eth2

usbcore: registered new interface driver zd1211rw

This output (from the dmesg command) shows that the eth2 device has been reported. If

DHCP is in use, the device should automatically join the nearest wireless subnet and be

automatically assigned an IP address. If not, the next step is to use a wireless tool such as

iwconfig to set various parameters of the wireless device. The iwconfig command, along

with the device name (eth2 in this example), shows the status:

matthew@seymour:~$ iwconfig eth2

eth2 IEEE 802.11b/g ESSID:"SKY35120" Nickname:"zd1211"

 Mode:Managed Frequency:2.462 GHz \

Access Point: 00:18:4D:06:8E:2A

 Bit Rate=24 Mb/s

 Encryption key:0EFD-C1AF-5C8D-B2C6-7A89-3790-07A7-AC64-0AB5\

-C36E-D1E9-A230-1DB9-D227-2EB6-D6C8 Security mode:open

 Link Quality=100/100 Signal level=82/100

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

This example shows a 24Mbps connection to a network named SKY35120. To change a

parameter, such as the transmission rate, use a command-line option with the iwconfig

command like this:

matthew@seymour:~$ sudo iwconfig eth2 rate 11M

363

1
8

Beyond the Network and onto the Internet

Other options supported by the iwconfig command include essid, to set the NIC to

connect to a specific network by name; mode, to enable the NIC to automatically retrieve

settings from an access point or connect to another wireless host; and freq, to set a

frequency to use for communication. Additional options include channel, frag, enc

(for encryption), power, and txpower. Details and examples of these options are in the

 iwconfig man page.

You can then use the ifconfig command or perhaps a graphical Ubuntu tool to set the

device networking parameters, and the interface will work as on a hardwired LAN. One

handy output of the iwconfig command is the link quality output, which you can use in

shell scripts or other graphical utilities for signal-monitoring purposes.

Choosing from Among Available Wireless Protocols

The Institute of Electrical and Electronics Engineers (IEEE) started to look seriously at wireless

networking in 1990. This is when the 802.11 standard was first introduced by the Wire-

less Local Area Networks Standards Working Group. The group based the standard roughly

around the architecture used in cellular phone networks. A wireless network is controlled

by a base station, which can be just a transmitter attached to the network or, more com-

monly these days, a router.

A larger network may use more than one base station. Networks with more than one base

station are usually referred to as distribution systems. You can use a distribution system to

increase coverage area and support roaming of wireless hosts. You can also use external

omnidirectional antennas to increase the coverage area or, if required, you can use point-

to-point or directional antennas to connect distant computers or networks.

The 802.11 standard specifies that wireless devices use a frequency range of 2400MHz to

2483.5MHz. This is the standard used in North America and Europe. In Japan, however,

wireless networks are limited to a frequency range of 2471MHz to 2479MHz. Within these

ranges, each network is given up to 79 nonoverlapping frequency channels to use. This

reduces the chance of two closely located wireless networks using the same channel at the

same time. It also allows for channel hopping, which can be used for security.

Beyond the Network and onto the Internet
Ubuntu supports Internet connections and the use of Internet resources in many different

ways. You will find a wealth of Internet-related software included with this book’s version

of Ubuntu, and you can download hundreds of additional free utilities from a variety of

sources. To use them, you must have a working Internet connection.

In this section, you learn how to set up an Internet connection in Ubuntu using a modem

and Point-to-Point Protocol (PPP) as well as other connection methods, including digital sub-

scriber line (DSL) and cable modem services. Just a few years ago, getting a dial-up connec-

tion working was difficult—hence, an entire chapter of this book was devoted to it. Today,

as long as you have a hardware modem, dial-up configuration is simple, although this is

quite rare these days. The Ubuntu developers and the wider Linux community have made

great progress in making connectivity easier.

364 CHAPTER 18 Networking

Although many experienced Linux users continue to use manual scripts to establish Inter-

net connectivity, new users and experienced system administrators alike will find Ubun-

tu’s graphical network configuration interface much easier to use. You learn how to use

the Internet Connection Wizard in this chapter and how to configure Ubuntu to provide

dial-in PPP support. The chapter also describes how to use Roaring Penguin’s DSL utilities

to manage connectivity through a cable modem connection.

Common Configuration Information
Although Ubuntu enables great flexibility in configuring Internet connections, that flex-

ibility comes at the price of increased complexity. To configure Internet connectivity in

Ubuntu, you must know more about the details of the connection process than you can

learn from the information typically provided by your Internet service provider (ISP). In

this section, you learn what to ask about and how to use the information.

Some ISPs are unaware of Linux or unwilling to support its use with their services. For-

tunately, that attitude is rapidly changing, and the majority of ISPs offer services using

standard protocols that are compatible with Linux, even if they (or their technical support

people) aren’t aware that their own ISPs are Linux friendly. You just need to press a little

for the information you require.

If you are one of the few remaining people using a dial-up modem account (referred to in

Linux as PPP, for the Point-to-Point Protocol it uses), your ISP will provide your computer

with a static or dynamic IP address. A dynamic IP address changes each time you con-

nect, whereas a static IP address remains the same. The ISP also might automatically pro-

vide your computer with the names of the DNS servers. You need to know the telephone

number that your computer will dial in to for making the connection; your ISP supplies

that number, too. You also need a working modem and need to know the device name of

the modem (usually /dev/modem).

NOTE

Most IP addresses are dynamically assigned by ISPs. An ISP has a pool of addresses,

and you get whatever address is available. From the ISP’s viewpoint, a small number of

addresses can serve a large number of people because not everyone will be online at

the same time. For most Internet services, a dynamic IP address works well because it is the

ISP’s job to route that information to you, and it sits in the middle—between you and the

service you want to use. But a dynamic IP address changes, and if someone needs to find

you at the same address (if you run a website or a file transfer site, for example), an IP that

changes every time you log on does not work well. For that, you need a static IP address.

Because your ISP cannot reuse that IP address for its other customers, it will likely charge

you more for a static IP address than for a dynamic one. Average consumers do not need

the benefit of a static IP address and so are happy paying less for a dynamically assigned IP.

Also, an ISP can provide DNS information automatically, thanks to DHCP.

If you are using DSL access or a cable modem, you might have a dynamic IP address

provided through DHCP, or you might be assigned a static IP address. You might

365

1
8

Common Configuration Information

automatically be provided with the names of the DNS servers if you use DHCP, or you

might have to set up DNS manually (in which case you have to know the IP addresses of

the DNS servers).

In all cases, you have to know your username, your password, and, for the configuration

of other services, the names of the mail servers and the news server. You can obtain this

information from your ISP by specifically asking for it.

NOTE

The information in this book helps you understand and avoid many connection issues, but

you might experience connection problems. Keep the telephone number of the technical

help service for your ISP on hand in case you cannot establish a connection. But be aware

that few ISPs offer Linux support, and you might need to seek help from a Linux-savvy

friend or a Linux user group if your special circumstances cannot be handled from the

knowledge you gain from this book. Of course, the best place to look is on the Internet.

Configuring Digital Subscriber Line Access

Ubuntu also supports the use of a digital subscriber line (DSL) service. Ubuntu refers to the

different types of DSL available as xDSL (which includes ADSL, IDSL, SDSL, and other fla-

vors of DSL service), and you can configure all of them by using the Internet Connection

Wizard. DSL service generally provides 256Kbps to 24Mbps transfer speeds and transmits

data over copper telephone lines from a central office to individual subscriber sites (such

as your home). Many DSL services (technically, cable rather than DSL) provide asymmetric

speeds with download speeds greater than upload speeds.

NOTE

DSL service is an “always-on” type of Internet service, although you can turn off the

connection under Ubuntu by using the network configuration tool found under System,

Administration, Network. An always-on connection exposes your computer to malicious

abuse from crackers who trawl the Internet attempting to gain access to other computer

systems. In addition to providing the capability to turn off such connections, Ubuntu is

preconfigured not to listen on any network ports, which means that any attempts to gain

access to your computer fail because Ubuntu rejects the requests. This is the Ubuntu

equivalent to surrounding your computer with a 12-foot steel fence.

A DSL connection requires that you have an Ethernet NIC (sometimes a USB interface that

is not easily supported in Linux) in your computer or notebook. Many users also configure

a gateway, firewall, or other computer with at least two NICs to share a connection with a

LAN. We looked at the hardware and protocol issues earlier in this chapter. Advanced con-

figuration of a firewall or router, other than what was addressed during your initial instal-

lation of Ubuntu, is beyond the scope of this book.

366 CHAPTER 18 Networking

Understanding PPP over Ethernet

Establishing a DSL connection with an ISP providing a static IP address is easy. Unfortu-

nately, many DSL providers use a type of PPP called Point-to-Point Protocol over Ethernet

(PPPoE) that provides dynamic IP address assignment and authentication by encapsulating

PPP information inside Ethernet frames. Roaring Penguin’s rp-pppoe clients are available

from the Roaring Penguin site (www.roaringpenguin.com/files/download/rp-pppoe-3.11.

tar.gz), and these clients make the difficult-to-configure PPPoE connection much easier to

deal with. You can download and install newer versions.

NOTE

When ISPs originally started to roll out ADSL services, they often provided the ADSL

modems. Today, however, in much of the world these modems are optional, which is a

good thing because many people choose to purchase a router with a built-in modem to

create a dedicated connection. In the United States, ADSL modems are rare, but you can

usually replace the supplied modem with an aftermarket modem if you want to spend the

money. Either way, using a router can save many headaches and enables you to easily

connect more than one computer to an Internet connection. Note that a cable connection

usually comes with an Ethernet cable, in which case you just need a router. Check with

your ISP before buying to ensure that whatever router you end up with can be supported.

You might find that your ISP even supplies a router as part of the package.

Configuring a PPPoE Connection Manually

You should need to use the steps in this section only if you are using a modem supplied

by your ISP and not a router. The basic steps involved in manually setting up a DSL con-

nection using Ubuntu involve connecting the proper hardware and then running a simple

configuration script if you use rp-pppoe from Roaring Penguin.

First, connect your DSL modem to your telephone line and then plug in your Ethernet

cable from the modem to your computer’s NIC. If you plan to share your DSL connection

with the rest of your LAN, you need at least two network cards, designated eth0 (for your

LAN) and eth1 (for the DSL connection).

The following example assumes that you have more than one computer and will share

your DSL connection on a LAN.

First, log in as root and ensure that your first eth0 device is enabled and up (perhaps using

the ifconfig command). Next, bring up the other interface but assign a null IP address

like this:

matthew@seymour:~$ sudo ifconfig eth1 0.0.0.0 up

Now use the adsl-setup command to set up your system, as follows:

matthew@seymour:~$ sudo /sbin/adsl-setup

You are presented with a text script and asked to enter your username and the Ethernet

interface used for the connection (such as eth1). You are then asked to use “on-demand”

http://www.roaringpenguin.com/files/download/rp-pppoe-3.11.tar.gz
http://www.roaringpenguin.com/files/download/rp-pppoe-3.11.tar.gz

367

1
8

Common Configuration Information

service or have the connection stay up all the time (until brought down by the root opera-

tor). You can also set a timeout, in seconds, if desired. You are then asked to enter the IP

addresses of your ISP’s DNS servers if you haven’t configured the DNS information on the

network interface.

After that, you are prompted to enter your password two times and must choose the type

of firewall and IP masquerading to use. (You learned about IP masquerading in the “Using

IP Masquerading in Ubuntu” section, earlier in this chapter.) The actual configuration is

done automatically. Using a firewall is essential, so choose this option unless you intend

to craft your own set of firewall rules (a discussion of which is beyond the scope of this

book). After you have chosen your firewall and IP masquerading setup, you are asked to

confirm, save, and implement your settings. You are also given a choice to allow users to

manage the connection, which is a handy option for home users.

Changes are made to your system’s /etc/netplan/*.yaml, /etc/ppp/pap-secrets, and /

etc/ppp/chap-secrets files.

After configuration has finished, use the adsl-start command to start a connection and

DSL session, like this:

matthew@seymour:~$ sudo /sbin/adsl-start

The DSL connection should be nearly instantaneous, but if problems occur, check to make

sure that your DSL modem is communicating with the phone company’s central office by

examining the status LEDs on the modem. This varies from modem to modem, so consult

your modem user’s manual.

Make sure all cables are properly attached, that your interfaces are properly configured,

and that you have entered the correct information to the setup script.

If IP masquerading is enabled, other computers on your LAN on the same subnet address

(such as 192.168.0.XXX) can use the Internet but must have the same name server entries

and a routing entry with the DSL-connected computer as a gateway. For example, if the

host computer with the DSL connection has IP address 192.168.0.1, and other computers

on your LAN use addresses in the 192.168.0.XXX range, use the route command on each

computer like this:

matthew@seymour:~$ sudo route add default gw 192.168.0.1

Note that you can also use a hostname instead if each computer has an /etc/hosts file

with hostname and IP address entries for your LAN. To stop your connection, use the

adsl-stop command:

matthew@seymour:~$ sudo /sbin/adsl-stop

Configuring Dial-up Internet Access

Most ISPs provide dial-up connections that support PPP because it is a fast and efficient

protocol for using TCP/IP over serial lines. PPP is designed for two-way networking, and

368 CHAPTER 18 Networking

TCP/IP provides the transport protocol for data. One hurdle faced by new Ubuntu users is

how to set up PPP and connect to the Internet. Understanding the details of the PPP pro-

tocol is not necessary to use it, and setting up a PPP connection is easy. You can configure

PPP connections manually by using the command line or graphically during an X session

using Ubuntu’s Network Configuration tool. These approaches produce the same results.

PPP uses several components on your system. The first is a daemon called pppd, which

controls the use of PPP. The second is a driver called the high-level data link control (HDLC),

which controls the flow of information between two machines. A third component of PPP

is a routine called chat that dials the other end of the connection for you when you want

it to. Although PPP has many “tunable” parameters, the default settings work well for

most people.

Ubuntu includes some useful utilities to get your dial-up connection up and running. In

this section, we look at two options that will have you on the Internet in no time.

The first way is to configure a connection using pppconfig, a command-line utility to help

you configure specific dial-up connection settings.

Enter the following command:

matthew@seymour:~$ sudo pppconfig

Before you connect for the first time, you need to add yourself to both the dip and

dialout groups by using these commands:

matthew@seymour:~$ sudo adduser YOURNAMEHERE dip

matthew@seymour:~$ sudo adduser YOURNAMEHERE dialout

After you have done this, it is just a simple matter of issuing the pon command to connect

and the poff command to disconnect. You can create as many different profiles as you

need and can launch specific ones by using the command pon profilename, again using

the poff command to disconnect.

CAUTION

Many software modems do not work with Linux because the manufacturers do not release

programming information about them or provide Linux drivers. External serial port modems

or ISA bus modems almost always work; USB and PCI modems are still problematic. It is

suggested that you do a thorough Google search, using your modem’s name and model

number, to see how others have solved problems with a particular modem. Links to soft-

ware modem compatibility sites appear at the end of this chapter.

Troubleshooting Connection Problems

The Linux Documentation Project (www.tldp.org) offers many in-depth resources for con-

figuring and troubleshooting connection problems. Google is also an invaluable tool for

dealing with specific questions about connections. For many other useful references, see

the “References” section at the end of this chapter.

http://www.tldp.org

369

1
8

References

Here are a few troubleshooting tips culled from many years of experience:

 ▶ If your modem connects and then hangs up, you are probably using the wrong pass-

word or dialing the wrong number. If the password and phone number are correct,

it is likely an authentication protocol problem.

 ▶ If you get connected but cannot reach websites, it is likely a domain name resolver

problem, meaning that DNS is not working. If it worked yesterday and you haven’t

“adjusted” the associated files, it is probably a problem on the ISP’s end. Call and

ask.

 ▶ Always make certain that everything is plugged in. Check again (and again).

 ▶ If the modem works in Windows but not in Linux no matter what you do, it is prob-

ably a software modem no matter what it said on the box.

 ▶ If everything just stops working (and you do not see smoke), it is probably a glitch at

the ISP or the telephone company. Take a break and give them some time to fix it.

 ▶ Never configure a network connection when you have had too little sleep or too

much caffeine; you will just have to redo it tomorrow.

RELATED UBUNTU AND LINUX COMMANDS

Use these commands when managing network connectivity in your Ubuntu system:

 ▶ dhclient—A tool for automatically acquiring and setting IP info for a NIC

 ▶ ethereal—The GNOME graphical network scanner

 ▶ ufw—Ubuntu’s basic firewalling tool

 ▶ ifconfig—A tool that displays and manages Linux networking devices

 ▶ iwconfig—A tool that displays and sets wireless network device parameters

 ▶ route—A tool that displays and manages Linux kernel routing table

 ▶ ssh—The OpenSSH remote-login client and preferred replacement for telnet

 ▶ nm-connection-editor—Ubuntu’s GUI for configuring network connections

References
 ▶ https://help.ubuntu.com/20.04/serverguide/networking.html—Official

networking help for Ubuntu

 ▶ www.ietf.org/rfc.html—Site to search for or get a list of Requests for Comments

(RFCs)

 ▶ www.isc.org/products/DHCP/—The official site for DHCP

 ▶ www.ieee.org—The Institute of Electrical and Electronics Engineers (IEEE) website

https://help.ubuntu.com/20.04/serverguide/networking.html
http://www.ietf.org/rfc.html
http://www.isc.org/products/DHCP/
http://www.ieee.org

370 CHAPTER 18 Networking

 ▶ Teach Yourself TCP/IP Network Administration in 21 Days by Joe Casad—

Good introduction to the topic

 ▶ TCP/IP Network Administration by Craig Hunt and Gigi Estabrook—A

more detailed look

 ▶ The DHCP Handbook by Ralph Droms and Ted Lemon—A complete

reference for understanding DHCP

IN THIS CHAPTER

 ▶ Setting Up an SSH Server

 ▶ SSH Tools

 ▶ Virtual Network Computing

 ▶ Guacamole

 ▶ References

CHAPTER 19

Remote Access with SSH
and VNC

Controlling your system remotely is one of the cooler

things you can do with Ubuntu: With just a bit of configu-

ration, you can connect from any Linux box to another

computer in a variety of ways. If you just want to check

something quickly or if you have limited bandwidth, you

have the option of using only the command line, but you

can also connect directly to the X server and get full graphi-

cal control.

Understanding the selection of tools available largely

involves a history lesson. For example, Telnet was an earlier

tool for connecting to another computer through the com-

mand line, but it has since been superseded by Secure Shell

(SSH). For that reason, we will ignore Telnet as it is insecure

for use, even as a fallback. This chapter covers SSH as well

as Virtual Network Computing (VNC).

Setting Up an SSH Server
If SSH is not installed already, you can install the OpenSSH

server by adding the openssh-server package. As you might

have guessed, sshd is the name for the SSH server daemon.

Configure your firewall to allow connections through

port 22. If this port is blocked, you cannot use SSH. See

Chapter 20, “Securing Your Machines,” for help doing this.

Two different versions of SSH exist: SSH1 and SSH2. The lat-

ter is newer and more secure, comes with more features, and

is the default in Ubuntu. Support for SSH1 clients is best left

disabled so that older clients cannot connect. This is done by

default in the /etc/ssh/sshd_config file, on this line:

Protocol 2

372 CHAPTER 19 Remote Access with SSH and VNC

If you have no other option and absolutely have to allow an older client to connect, add

this new line:

Protocol 1

SSH Tools
Many people are surprised to learn that OpenSSH actually is composed of a suite of tools.

You have already seen ssh, the Secure Shell command that connects to other machines,

and sshd, the SSH server daemon that accepts incoming SSH connections. However, there

is also sftp, a replacement for ftp, scp, and rcp.

You may already be familiar with the ftp command because it is the lowest common

denominator system for handling FTP file transfers. Like Telnet, though, ftp is insecure:

It sends your data in plain text across the network, and anyone can sniff your packets to

pick out a username and password. Don’t use FTP. The SSH replacement, sftp, puts FTP

traffic over an SSH link, thus securing it, which is safe and just as easy to use.

The rcp command might be new to you, largely because it is not used much anymore.

Back in its day, rcp was the primary command for copying a single file to another server.

As with sftp and ftp, scp replaces rcp by simply channeling the data over a secure SSH

connection. The difference between sftp and scp is that the former enables you to queue

and copy many files simultaneously, whereas the latter is usually used to send just one,

although scp can be used with the -r option to send an entire directory at once. See the

man page for details.

Using scp to Copy Individual Files Between Machines

The most basic use of the scp command is to copy a file from your current machine to a

remote machine. You can do that with the following command:

matthew@seymour:~$ scp test.txt 192.168.1.102:

The first parameter is the name of the file you want to send, and the second is the server

to which you want to send it. Note that there is a colon (:) at the end of the IP address.

This is where you can specify an exact location for the file to be copied. If you have noth-

ing after the colon, as in the previous example, scp copies the file to your /home directory.

As with SSH, scp prompts you for your password before copying takes place.

You can rewrite the previous command so that you copy test.txt from the local machine

and save it as newtest.txt on the server:

matthew@seymour:~$ scp test.txt 192.168.1.102:newtest.txt

Alternatively, if there is a directory where you want the file to be saved, you can specify it

like this:

matthew@seymour:~$ scp test.txt 192.168.1.102:subdir/stuff/newtest.txt

373

1
9

SSH Tools

The three commands so far have all assumed that your username on your local machine

is the same as your username on the remote machine. If this is not the case, you need to

specify your username before the remote address, as follows:

matthew@seymour:~$ scp test.txt username newtest.txt

You can use scp to copy remote files locally simply by specifying the remote file as the

source and the current directory (.) as the destination:

matthew@seymour:~$ scp 192.168.1.102:remote.txt .

If you want to copy files from one remote machine to another remote machine using scp,

the best method is to first ssh to one of the remote machines and then use scp from that

location.

Using sftp to Copy Many Files Between Machines

sftp is a mix between ftp and scp. Connecting to the server requires the same syntax as

with scp—you can just specify an IP address to connect using your current username, or

you can specify a username by using username@ipaddress. You can optionally add a colon

and a directory, as with scp. When you are connected, the commands are the same as for

ftp: cd, put, mput, get, quit, and so on.

One of the scp examples earlier in this chapter copied a remote file locally. You can do

the same thing with sftp, as shown in the following conversation:

matthew@seymour:~$ sftp 192.168.1.102

Connecting to 192.168.1.102...

matthew@192.168.1.102's password:

sftp> get remote.txt

Fetching /home/matthew/remote.txt to remote.txt

/home/matthew/remote.txt 100% 23 0.0KB/s 00:00

sftp> quit

matthew@seymour:~$

SFTP is popular because the initial connection between the client and server is made

over port 22 through the sshd daemon. Someone using SFTP connects to the standard

sshd daemon, verifies himself or herself, and then is handed over to the SFTP server. The

advantage to this is that it reduces the attack vectors because the SFTP server cannot be

contacted directly and so cannot be attacked as long as the sshd daemon is secure.

Using ssh-keygen to Enable Key-Based Logins

There is a weak link in the SSH system, and, inevitably, it lies with users. No matter what

lengths system administrators go to in training users to be careful with their passwords,

monitors around the world have sticky notes attached to them with pAssw0rd written on

them. Sure, it has a mix of letters and numbers, but it can be cracked in less than a second

374 CHAPTER 19 Remote Access with SSH and VNC

by any brute-force method. Brute-forcing is the method of trying every password possibil-

ity, starting with likely words (such as password and variants, or god) and then just trying

random letters (for example, a, aa, ab, ac, and so on).

Even very strong passwords are no more than about 16 characters; such passwords take a

long time to brute-force but can still be cracked. The solution is to use key-based logins;

each such login generates a unique 1,024-bit private and public key pair for your machine.

These keys take even the fastest computers a lifetime to crack, and you can back them up

with a password to stop others from using them.

You create an SSH key by using the ssh-keygen command, like this:

matthew@seymour:~$ ssh-keygen –t dsa

Press Enter when the system asks you where to save your key, and enter a passphrase

when it asks you to. This passphrase is just a password used to protect the key. You can

leave it blank if you want to, but doing so will allow other people to use your account to

connect to remote machines if they can manage to log in as you.

After the key is generated, change the directory to .ssh (cd ~/.ssh), which is a hidden

directory where your key is stored and that keeps a list of safe SSH hosts. Assuming that

you use the default options, here you see the files id_dsa and id_dsa.pub. The first is your

private key, and you should never give it out. The second is your public key, which can

safely be distributed. You need to copy the public key to each server you want to connect

to via key-based SSH.

Use ssh-copy-id to copy the public key over to your server, like this:

matthew@seymour:~$ ssh-copy-id -i ~/.ssh/mykey user@host

The touch command creates the authorized_keys file (if it does not exist already); then

you use cat to append the contents of id_dsa.pub to the list of already authorized keys.

Finally, you use chmod to make authorized_keys read-only.

With that done, you can type exit to disconnect from the remote machine and return

to your local machine. Then you can try running ssh again. If you are prompted for your

passphrase, you have successfully configured key-based authentication.

If you have done all this, you have secured the current machine. But what about every

other machine? Logging in from another machine using only a password is still possible,

which means your remote machine is still vulnerable.

The solution to this is to edit the /etc/ssh/sshd_config file, which requires super user

privileges. Look for the PasswordAuthentication line and make sure it reads no (and

that it is not commented out with a #). Save the file and run kill -HUP 'cat /var/run/

sshd.pid' to have sshd reread its configuration files. With that done, sshd accepts only

connections from clients with authorized keys, which stops crackers from brute-forcing

their way in.

375

1
9

Virtual Network Computing

TIP

For extra security, you are strongly encouraged to set PermitRootLogin to no in /etc/

ssh/sshd_config. When this is set, it becomes impossible to ssh into your machine

using the root account; you must connect with a normal user account and then use su

or sudo to switch to root. This is advantageous because most brute-force attempts take

place on the root account because it is the only account that is guaranteed to exist on a

server.

Also, even if a cracker knows your user account, she has to guess both your user pass-

word and your root password to take control of your system.

Of course, if you don’t have a root account enabled on your box, this isn’t an issue

because logging in directly as root is already impossible. Hooray for slightly more secure

defaults in Ubuntu!

Virtual Network Computing
Everything we have looked at so far in this chapter has been about remote access using

the command line, with no mention so far of how to bring up a graphical user interface

(GUI). There are several ways of doing this in Ubuntu, some of which are listed in the

“References” section, later in this chapter. Here we discuss the GUI that is most popular

with and most preferred by the Ubuntu community and is also the GUI best supported by

the developers: Virtual Network Computing (VNC).

VNC is a system for controlling a computer remotely and sharing desktops over a network

using a graphical interface. It was created at the Olivetti & Oracle Research Lab, which was

acquired by AT&T in 1999 and closed down in 2001. Later, several of the members of the

development team got together to create a free and open source version of the code (using

the GPL), and from that base, many different versions have appeared. VNC is widespread

in the Linux world and, to a lesser extent, in the Windows world. Its main advantage is

its widespread nature: Nearly all Linux distros bundle VNC, and clients are available for a

wide selection of platforms.

Configure your firewall to allow connections through port 5900. If this port is blocked,

you cannot use VNC.

To set up VNC on your Ubuntu computer to allow others to access your desktop, you

need to tell Ubuntu who should be allowed to connect to your session. By default, your

desktop is not shared. Open Settings, select Sharing from the menu on the left (see Figure

19.1), and then change the setting at the upper right from Off to On.

To access a computer that is running VNC from your Ubuntu desktop, run the Rem-

mina Remote Desktop Client. The program starts by searching the local network for

shared desktops. If any are found, they are listed. For example, Figure 19.2 shows Sandra’s

computer.

376 CHAPTER 19 Remote Access with SSH and VNC

FIGURE 19.1 Desktop sharing preferences.

FIGURE 19.2 Remote desktop viewer.

377

1
9

References

From the screen shown in Figure 19.2, select an entry and select the Open the Connec-

tion icon at the top left, in the bar under the title bar with the window controls for close,

minimize, and expand to full screen. If you have not yet entered any computers, select

the + icon and enter the details for a computer you have already set up somewhere to be

accessed.

When you have finished, close the window in which you are viewing the remote desktop.

VNC should not be considered secure over the Internet or on untrusted internal networks.

Guacamole

Apache Guacamole is an Apache Software Foundation application that works as a client-

less remote gateway using standard protocols, such as VNC, RDP, and SSH. It is called

clientless because no plugins or client software are required. Guacamole is installed on

a server, wherever you like as long as it is Internet-accessible, and then you access your

desktop using a web browser.

The trick here is that your desktop doesn’t actually exist. You use a host computer, but

only for the web browser. The web browser connects to your Guacamole server, which

hosts a virtual desktop in the cloud. When you use Guacamole, you can access your cloud-

hosted desktop from anywhere, which is a pretty cool idea. Use of your computers is not

tied to any specific device or location.

There are multiple ways to install Guacamole on your server, including both a typical

native bare-metal installation and also a containerized Docker version. Authentication

to Guacamole can be configured many ways, including using a local database, LDAP

(Lightweight Directory Access Protocol), or via a single sign-on solution like CAS (Central

Authentication Service).

The main use cases for Guacamole seems to be for business needs that want centralization

and end-user customization of desktops for productivity while only maintaining a set of

basic physical hardware to use as an interface. It also looks convenient for travelers and

people who work remotely and move around frequently.

Guacamole was included in this chapter mainly for its unique use of technologies like

VNC and SSH. If it sounds like something you may want to investigate further, you can

learn more about Guacamole at https://guacamole.apache.org/.

References

 ▶ www.telnet.org—Telnet’s home page

 ▶ https://help.ubuntu.com/community/SSH—The Ubuntu community docu-

mentation for SSH

 ▶ www.openssh.com—The home page of the OpenSSH implementation of SSH that

Ubuntu uses, which is run by the same team as OpenBSD, a secure BSD-based oper-

ating system

https://guacamole.apache.org/
http://www.telnet.org
https://help.ubuntu.com/community/SSH
http://www.openssh.com

378 CHAPTER 19 Remote Access with SSH and VNC

 ▶ https://help.ubuntu.com/community/VNC—The Ubuntu community docu-

mentation for VNC

 ▶ www.realvnc.com—The home page of the team that made VNC at AT&T’s Cam-

bridge Research Laboratory and has since started RealVNC Ltd., a company dedicated

to developing and supporting VNC

 ▶ www.tightvnc.com—An alternative to VNC called TightVNC that has several key

advantages over the stock VNC release, including use of SSH for encryption, which

guarantees security

 ▶ https://help.ubuntu.com/community/FreeNX—The Ubuntu community

documentation for FreeNX, a system that allows you to access your desktop from

another machine over the Internet

 ▶ www.nomachine.com—An alternative to VNC, called FreeNX, that works much

faster than VNC

https://help.ubuntu.com/community/VNC
http://www.realvnc.com
http://www.tightvnc.com
https://help.ubuntu.com/community/FreeNX
http://www.nomachine.com

IN THIS CHAPTER

 ▶ Understanding Computer

Attacks

 ▶ Assessing Your Vulnerability

 ▶ Protecting Your Machine

 ▶ Viruses

 ▶ Configuring Your Firewall

 ▶ AppArmor

 ▶ Forming a Disaster Recovery

Plan

 ▶ References

CHAPTER 20

Securing Your Machines

No computer with a connection to the Internet is 100

percent safe. If this information does not concern you, it

should. Although there is no way to guarantee the abil-

ity to stop patient, creative, and serious crackers who are

intent on getting into your computer or network, there are

ways to make it harder for them and to warn you when

they do. This chapter discusses all aspects of securing your

Linux machines. You might have wondered why we did

not spread this information around the book wherever it

is appropriate, and the reason is simple: If you ever have a

security problem with Linux, you know you can turn to this

page and start reading without having to search or try to

remember where you saw a tip. Everything you need is here

in this one chapter, and we strongly advise you to read it

from start to finish.

BUILT-IN PROTECTION IN THE KERNEL

A number of networking and low-level protective services

are built in to the Linux kernel. These services can be

enabled, disabled, or displayed by using the sysctl com-

mand or by echoing a value (usually a 1 or a 0 to turn a

service on or off) to a kernel process file under the

/proc directory. See the discussion of setting a variable

with echo in Chapter 11, “Command-Line Master Class,

Part 1,” or the man pages for sysctl and echo for more.

Understanding Computer Attacks
There are many ways to classify computer attacks. Per-

haps the easiest way is to characterize attacks as internal,

or computer attacks done by someone with access to a

computer on the local network, and external, or attacks by

someone with access to a computer through the Internet.

380 CHAPTER 20 Securing Your Machines

This might sound like a trivial separation to make, but it is actually important: Unless

you routinely hire talented computer crackers or allow visitors to plug computers into

your network, the worst internal attack you are likely to encounter is from a disgruntled

employee.

HACKER VERSUS CRACKER

In earlier days, a distinction was made between the words hacker and cracker. A hacker

was someone who used technology to innovate in new or unusual ways, whereas a

cracker was someone who used technology to attack another’s computers and cause

harm. So, by the original definitions, hackers did good or cool things, and crackers did

bad things.

This distinction was lost on the general public, and the term hacker has now regretfully

come to mean the same thing as cracker for most people. However, we recognize the dis-

tinction and use the term cracker to mean a malicious person using a computer to cause

problems for others. In your real-world conversations, realize that most people do not

make a distinction, and so be prepared to define your terms if you call yourself a hacker.

Although you should never ignore internal threats, you should arguably be more con-

cerned with the outside world. The big bad Internet is a security vortex. Machines con-

nected directly to the outside world can be attacked by people around the world, and

invariably are, sometimes even only a few minutes after getting connected.

This situation is not a result of malicious users lying in wait for your IP address to do

something interesting. Instead, canny virus writers have created worms that exploit vul-

nerability, take control of a machine, and then spread to other machines around them.

As a result, most attacks today result from these autocracking tools; only a handful of

true clever crackers are around, and, to be frank, if one of them ever actually targets you

seriously, it will take a mammoth effort to repel the cracker, regardless of what operating

system you run.

Autocracking scripts also come in another flavor: prewritten code that exploits vulner-

ability and gives its users special privileges on the hacked machine. These scripts are rarely

used by their creators; instead, they are posted online and downloaded by wannabe hack-

ers, who then use them to attack vulnerable machines.

So, the external category is itself made up of worms, serious day job crackers, and wan-

nabe crackers (usually called script kiddies). Combined, they will assault your Internet-

facing servers, and your job is to make sure your boxes stay up, happily ignoring the fire-

fight around them.

On the internal front, things are somewhat more difficult. Users who sit inside your fire-

wall are already past your primary source of defense and, worse, might even have physical

access to your machines. Those with malicious intent and physical access to a machine are

nearly impossible to stop unless they are simply inept. The situation is only slightly better

if they don’t have physical access but do have access to your internal network.

381

2
0

Assessing Your Vulnerability

Regardless of the source of the attack, you can follow a five-step checklist to help secure

your box:

 1. Assess your vulnerability. Decide which machines can be attacked, which services

they are running, and who has access to them.

 2. Configure the server for maximum security. Install only what you need, run only

what you must, and configure a local firewall.

 3. Secure physical access to the server.

 4. Create worst-case-scenario policies.

 5. Keep up to date with security news.

These steps are covered in the following sections, and all of them are equally important.

Assessing Your Vulnerability
A common mistake people make is to assume that switching on a firewall makes them

safe. This is not the case and, in fact, has never been the case. Each system has distinct

security needs, and taking the time to customize its security layout will give you the maxi-

mum security and the best performance.

The following list summarizes the most common mistakes:

 ▶ Installing every package—Do you plan to use the machine as a DNS server?

If not, why have BIND installed? Go through and ensure that you have only the

 software you need.

 ▶ Enabling unused services—Do you want to administer the machine remotely?

Do you want people to upload files? If not, turn off SSH and FTP because they just

add needless attack vectors. Do the same for all other unused services.

 ▶ Disabling the local firewall on the grounds that you already have

a firewall at the perimeter—In security, depth is crucial: The more layers

 someone has to fight through, the greater the likelihood the cracker will give up

or get caught.

 ▶ Letting your machine give out more information than it needs to—Many

machines are configured to give out software names and version numbers by default,

which gives crackers a helping hand.

 ▶ Placing your server in an unlocked room—If you do, you might as well just

turn it off now and save the worry. Even if all the employees at your company are

happy and trustworthy, why take the risk?

 ▶ Plugging your machine into a wireless network—Unless you need wireless,

avoid it, particularly if your machine is a server. Never plug a server into a wireless

network because doing so is just too fraught with security problems.

382 CHAPTER 20 Securing Your Machines

After you have ruled out these potential issues, you are on to the real problem: Which

attack vectors are open on your server? In Internet terms, this comes down to which ser-

vices are Internet-facing and which ports they are running on.

Nmap scans your machine and reports on any open TCP/IP ports it finds. Any service you

have installed that responds to Nmap’s query is pointed out, which enables you to ensure

that you have locked everything down as much as possible.

Nmap is available to install from the Ubuntu software repositories. Although you can

use Nmap from a command line, it is easier to use with the front end—at least until you

become proficient. To run the front end, open a terminal and run nmapfe. If you want to

enable all Nmap’s options, you must have administrator privileges and run sudo nmapfe.

When you run Nmap (by clicking the Scan button), it tests each port on your machine

and checks whether it responds. If a port does respond, Nmap queries it for version infor-

mation and then prints its results onscreen. The output lists the port numbers, service

name (what usually occupies that port), and version number for every open port on your

system. Hopefully, the information Nmap shows you will not be a surprise. If there is

something open that you do not recognize, it could be that a cracker placed a back door

on your system to allow easy access, and you should check into it further.

Use the output from Nmap to help find and eliminate unwanted services. The fewer ser-

vices that are open to the outside world, the more secure you are. Only use Nmap on

systems that you own. Scanning other people’s servers is impolite, and you may also be

accused of doing so in preparation for illegal activity.

Protecting Your Machine
After you have disabled all the unneeded services on your system, what remains is a core

set of connections and programs that you want to keep. However, you are not finished

yet: You need to clamp down your wireless network, lock your server physically, and put

in place scanning procedures (such as Tripwire and promiscuous mode network monitors).

Securing a Wireless Network

Wireless networking has some unique security issues, and those issues deserve a separate

discussion.

Wireless networking, although convenient, can be very insecure by its very nature because

transmitted data (even encrypted data) can be received by remote devices. Those devices

could be in the same room; in the house, apartment, or building next door; or even sev-

eral blocks away. You must use extra care to protect the frequency used by your network.

Great progress has been made in the past couple of years, but the possibility of a security

breach is increased when the attacker is in the area and knows the frequency on which to

listen. It should also be noted that the encryption method used by many wireless NICs is

weaker than other forms of encryption (such as SSH), and you should not consider using

wireless NIC encryption alone as part of your security plan.

383

2
0

Protecting Your Machine

TIP

Always use OpenSSH-related tools, such as ssh or sftp, to conduct business on your

wireless LAN. Passwords are not transmitted as plain text, and your sessions are

encrypted. See Chapter 19, “Remote Access with SSH and VNC,” to see how to connect

to remote systems using ssh.

The better the physical security around your network, the more secure the network will

be. (This applies to wired networks as well.) Keep wireless transmitters (routers, switches,

and so on) as close to the center of your building as possible. Note or monitor the range

of transmitted signals to determine whether your network is open to mobile network

sniffing—a geek sport known as war driving. Wireshark is an example of a program that is

useful for analyzing wireless traffic (as well as all other network activity). An occasional

walk around your building not only gives you a break from sitting at your desk but can

give you a chance to notice any people or equipment that should not be in the area.

Keep in mind that it takes only a single rogue wireless access point hooked up to a legiti-

mate network hub to open access to your entire system. These access points can be smaller

than a pack of cigarettes, and the best way to spot them is to scan for them with another

wireless device.

Passwords and Physical Security

The next step toward better security is to use secure passwords on your network and

ensure that users use them as well. For somewhat more physical security, you can force

the use of a password with the GRUB bootloader, remove bootable devices such as DVD-

ROM drives or USB boot options from the BIOS, or configure a network-booting server for

Ubuntu.

Also keep in mind that some studies show that as many as 90 percent of network break-

ins are done by current or former employees. If a person no longer requires access to your

network, lock out access or, even better, remove the account immediately. A good secu-

rity policy also dictates that any data associated with the account first be backed up and

retained for a set period of time to protect against loss of important data. If you are able to

do so, remove the terminated employee from the system before the employee leaves the

building.

Finally, be aware of physical security. If a potential attacker can get physical access to

your system, getting full access becomes trivial. Keep all servers in a locked room and

ensure that only authorized personnel are given access to clients. Laptops and other

mobile devices should be configured with only what is needed, and any truly sensitive

data should be kept on machines that are physically secured. When machines containing

any sensitive data must be used outside a secure environment, you should use hard drive

encryption, such as that available when installing Ubuntu.

Something that you may find useful for laptops and other mobile devices is Prey. Prey has

a basic version that is open source, free software that will help you track down a missing

384 CHAPTER 20 Securing Your Machines

device, provided that Prey was installed on the device before it was lost. There is also a

paid version with a few more features. You can learn about Prey at https://preyproject.

com.

Configuring and Using Tripwire

Tripwire is a security tool that checks the integrity of normal system binaries and reports

any changes to syslog or by email. Tripwire is a good tool for ensuring that your binaries

have not been replaced by Trojan horse programs. Trojan horses are malicious programs

inadvertently installed because of identical filenames to distributed (expected) programs,

and they can wreak havoc on a breached system.

There are two versions of Tripwire: an open source version and a commercial product. The

free version of Tripwire is available in the Ubuntu repositories. You can find out about the

differences at www.tripwire.org.

To initialize Tripwire, use its -init option, like this:

matthew@seymour~:$ sudo tripwire -init

Please enter your local passphrase:

Parsing policy file: /etc/tripwire/tw.pol

Generating the database...

*** Processing Unix File System ***

....

Wrote database file: /var/lib/tripwire/shuttle2.twd

The database was successfully generated.

Note that not all the output is shown here. After Tripwire has created its database (which

is a snapshot of your file system), it uses this baseline along with the encrypted configura-

tion and policy settings in the /etc/tripwire directory to monitor the status of your sys-

tem. You should then start Tripwire in its integrity checking mode, using a desired option.

(See the tripwire man page for details.) For example, you can have Tripwire check your

system and then generate a report at the command line by entering the following:

matthew@seymour~:$ sudo tripwire -m c

No output is shown here, but you would actually get a report after entering this com-

mand. The output could be redirected to a file, but a report is saved as /var/lib/

tripwire/report/hostname-YYYYMMDD-HHMMSS.twr (in other words, using your host’s

name, the year, the month, the day, the hour, the minute, and the seconds). This report

can be read using the twprint utility, like this:

matthew@seymour~:$ sudo twprint --print-report -r \

/var/lib/tripwire/report/shuttle2-20020919-181049.twr | less

Other options, such as emailing the report, are supported by Tripwire, which should be

run as a scheduled task by your system’s scheduling table, /etc/crontab, on off-hours. (It

can be resource intensive on less powerful computers.) The Tripwire software package also

https://preyproject.com
https://preyproject.com
http://www.tripwire.org

385

2
0

Viruses

includes a twadmin utility that you can use to fine-tune or change settings or policies or to

perform other administrative duties.

Plan to spend some time reading documentation if you want to use Tripwire. It is power-

ful but not simple. We recommend starting with the man pages and www.tripwire.com.

Securing Devices

Do not ever advertise that you have set a NIC (network interface controller) to promiscu-

ous mode. Promiscuous mode (which can be set on an interface by using ifconfig’s pro-

misc option) is good for monitoring traffic across the network and can often enable you to

monitor the actions of someone who might have broken into your network. The tcpdump

command also sets a designated interface to promiscuous mode while the program runs;

unfortunately, the ifconfig command does not report this fact while tcpdump is running!

Remember to use the right tool for the right job. Although you can use a network bridge

to connect your network to the Internet, it would not be a good option. Bridges have

almost become obsolete because they forward any packet that comes their way, which is

not good when a bridge is connected to the Internet. A router enables you to filter which

packets are relayed.

Viruses
In the right hands, Linux is every bit as vulnerable to viruses as Windows. This might

come as a surprise to you, particularly if you made the switch to Linux on the basis of

its security record. However, the difference between Windows and Linux is that Linux is

much easier to secure against viruses. Indeed, as long as you are smart and diligent, you

need never worry about them. Here is why:

 ▶ Linux never puts the current directory in your executable path, so typing ls runs

/bin/ls rather than any program named ls in the current directory.

 ▶ A nonroot user can infect only the files that user has write access to, which is usually

only the files in the user’s home directory. This is one of the most important reasons

for never using sudo when you don’t need to.

 ▶ Linux forces you to manually mark files as executable, so you can’t accidentally run

a file called myfile.txt.exe thinking it is just a text file.

 ▶ By having more than one common web browser and email client, Linux has

strength through diversity: Virus writers cannot target one platform and hit 90 per-

cent of the users.

Despite all these factors, Linux is susceptible to being a carrier for viruses. If you run a

mail server, your Linux box can send virus-infected mails on to Windows boxes. The

Linux-based server would be fine, but the Windows client would be taken down by the

virus. To prevent such a situation, consider using a virus scanner for your machine. You

have several to choose from, both free and commercial. The most popular free suite is

ClamAV (www.clamav.net), but several others compete to provide commercial solutions.

Look around for the best deal before you commit.

http://www.tripwire.com
http://www.clamav.net

386 CHAPTER 20 Securing Your Machines

Configuring Your Firewall
Use a hardware-based or software-based firewall on each computer connected to the

Internet. Ubuntu has a firewall application named Uncomplicated Firewall (UFW) that is

installed by default. This tool enables you to implement selective or restrictive policies

regarding access to your computer or LAN.

UFW is run from the terminal, and you must have administrative privileges to use it.

Commands are given like this:

matthew@seymour~:$ sudo ufw status

The most useful commands UFW are listed in Table 20.1. For others, see the ufw man

page. Many are described in greater detail after the table.

By default, the UFW or firewall is disabled. To enable the firewall, run the following

command:

matthew@seymour~:$ sudo ufw enable

To disable UFW, replace enable with disable.

Table 20.1 Useful Commands for UFW

Command Actions Performed

Usage: sudo ufw command

Enable Enables the firewall

Disable Disables the firewall

Reload Reloads the firewall to ensure changes are applied

default allow|deny|reject Sets default policy

logging on|off Toggles logging (can also be used to set the level of

logging; see the man page)

allow ARGS Adds an allow rule

deny ARGS Adds a deny rule

reject ARGS Adds a reject rule

limit ARGS Adds a limit rule

delete RULE Deletes the rule

status shows Shows the firewall status

status numbered Shows the firewall status as a numbered list of rules

Usage: ufw command

status verbose Shows verbose firewall status

show REPORT Shows a firewall report

-version Displays version information

387

2
0

Configuring Your Firewall

Next, you want to enable firewall logging. Much as with the enable command, you run

the following command:

matthew@seymour~:$ sudo ufw logging on

To enable specific ports on the firewall, you can run the ufw command along with the

port number to open. For example, if you want to allow port 80 (HTTP) incoming connec-

tions to your Ubuntu server, enter the following:

matthew@seymour~:$ sudo ufw allow 80

To remove the firewall rule allowing port 80 connections, run the following command:

matthew@seymour~:$ sudo ufw delete allow 80

Many services are already defined in ufw. This means you don’t have to remember the

standard ports those services use, and you can allow, deny, or delete by using the service

name, like this:

matthew@seymour~:$ sudo ufw allow ssh

You can also allow incoming connections from particular IP addresses. For example, if you

want to let 192.168.0.1 connect to your server, enter the following:

matthew@seymour~:$ sudo ufw allow from 192.168.0.1

To remove the firewall rule allowing the previous IP address to connect, run the following

command:

matthew@seymour~:$ sudo ufw delete allow from 192.168.0.1

There is a graphical interface called GUFW that you can install from the Ubuntu reposi-

tories to manage UFW. The same details apply, but the interface is easier and does not

require you to remember as much as with UFW.

UFW is based on iptables, which is used to configure the Linux kernel’s built-in firewall.

UFW simplifies the user tasks and syntax but really just uses iptables. You probably won't

need to know this on your Ubuntu machine, but for completeness and to help you in case

you use a different Linux distribution in the future, Table 20.2 lists simple, basic com-

mands as a brief introduction to iptables.

In the table, you see words in all-caps like ACCEPT and DROP, which are policies to be set

for things called chains. Chains are descriptions of specific types of network access, such as

INPUT, FORWARD, and OUTPUT in Table 20.2, as well as other interactions in a network. You

can, for example, define the default policy as DROP, which means to reject, and then ALLOW

specific types of traffic to go through the firewall. iptables is quite complex and incred-

ibly powerful.

388 CHAPTER 20 Securing Your Machines

Table 20.2 Useful Commands for iptables

Command Actions Performed

Usage: command

sudo iptables -L Lists the currently set firewall rules

sudo iptables -L -vn Lists the currently set firewall rules but with more

detail

sudo iptables -F Deletes all currently set firewall rules

sudo iptables -P INPUT DROP Drops all incoming traffic

sudo iptables -P FORWARD ACCEPT Accepts all forwarded traffic

sudo iptables -P OUTPUT DROP Drops all outgoing traffic

sudo iptables -A INPUT -s 8.8.8.8

-j DROP

Drops all traffic from a specific IP address (the exam-

ple here is a Google DNS server, and you probably

don’t want to block that one…)

You can block or allow traffic based on IP address, NIC, port, network, and more. You can

set iptables to log all actions or just specific actions. You can even use it to configure

NAT routers. For more, see the man pages for iptables and its IPv6 cousin, ip6tables.

nftables is a new firewalling tool that is gradually replacing iptables. nftables is consid-

ered stable and suitable for production environments, but it is not yet the default. If you

want to start reading and consider switching now instead of waiting for it to become the

default, see the official documentation at https://wiki.nftables.org/wiki-nftables/index.php/

Main_Page.

AppArmor
AppArmor is a mandatory access control (MAC) system. It is less complicated than the

better-known SELinux (https://selinuxproject.org/), a MAC framework created by the U.S.

National Security Agency (NSA). AppArmor is designed to limit what specific programs can

do by restricting them to the use of predetermined resources—and only those resources.

This is done via profiles, which are loaded into the kernel at boot. It can be run in com-

plain mode, where information is logged about insecure practices but no action is taken,

or in enforce mode, where policies and limits are active.

This section provides a brief introduction to AppArmor. For a fuller introduction, check

the links listed in the “References” section at the end of this chapter.

By default, AppArmor does little. You can install some extra profiles from the Ubuntu

repositories by installing the apparmor-profiles package. These run in complain mode

and log issues in /var/log/syslog.

To unleash the power of AppArmor, you need to edit or create text files in /etc/

apparmor.d. A profile is named for the application it restricts, including the full path

to the application in the file system. For example, the file sbin.rsyslogd, shown here,

restricts the system logging daemon:

Last Modified: Sun Sep 25 08:58:35 2011

https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://selinuxproject.org/

389

2
0

AppArmor

#include <tunables/global>

Debugging the syslogger can be difficult if it can't write to the file# that the ker-

nel is logging denials to. In these cases, you can do the# following:# watch -n 1 'dmesg

| tail -5'

/usr/sbin/rsyslogd { #include <abstractions/base> #include <abstractions/nameservice>

 capability sys _ tty _ config, capability dac _ override, capability dac _ read _ search,

capability setuid, capability setgid, capability sys _ nice, capability syslog,

 # rsyslog configuration /etc/rsyslog.conf r, /etc/rsyslog.d/ r, /etc/rsyslog.d/** r,

/{,var/}run/rsyslogd.pid rwk, /var/spool/rsyslog/ r, /var/spool/rsyslog/** rwk,

 /usr/lib{,32,64}/rsyslog/*.so mr,

 /dev/tty* rw, /dev/xconsole rw, @{PROC}/kmsg

r,

 /dev/log wl, /var/lib/*/dev/log wl, /var/spool/post-

fix/dev/log wl,

 # 'r' is needed when using imfile /var/log/** rw,

 # Add these for mysql support #/etc/mysql/my.cnf r, #/{,var/}run/mysqld/mysqld.sock rw,

 # Add these for postgresql support ##include <abstractions/openssl> ##include

<abstractions/ssl _ certs> #/{,var/}run/postgresql/.s.PGSQL.*[0-9] rw,

 # Site-specific additions and overrides. See local/README for details. #include

<local/usr.sbin.rsyslogd>}

Even without knowing the syntax, you can see from this file that profiles are simple text

files that support the use of comments, that absolute paths and globbing (pattern match-

ing for filenames) are supported, that specific capabilities are allowed or disallowed, and

what locations and programs in the file system may be accessed or used.

Each access rule specifies specific permissions from this list:

r - read

w - write

ux - unconstrained execute

Ux - unconstrained execute - scrub the environment

px - discrete profile execute

Px - discrete profile execute - scrub the environment

ix - inherit execute

m - allow PROT_EXEC with mmap(2) calls

l - link

These permissions are listed at the ends of lines.

genprof is a program that helps you generate or update a profile. You supply the name of

the executable (or the path, if it is not already in the path) and may optionally supply the

path to the profiles, as well. The following is an example:

matthew@seymour~:$ sudo genprof google-chrome

You will be asked to start the program and use it for a bit. After it is complete, you are

given an opportunity to choose whether access to each function should be allowed

390 CHAPTER 20 Securing Your Machines

or denied. The program then writes a text file in /etc/apparmor.d, using the name of

the program and its path (in this case, opt.google.chrome.google-chrome, which in this

case was installed directly from Google (www.google.com/chrome?platform=linux) so no

premade AppArmor profile exists on the system used in this example). You may then edit

the text file as desired, which you must do if you want to change from complain mode to

enforce mode.

When you have a set of profiles that cover what you need, these are the commands you

will use most often:

 ▶ start: Use the start command as follows:

matthew@seymour~:$ sudo service apparmor start

 ▶ stop: Use the stop command as follows:

matthew@seymour~:$ sudo service apparmor stop

 ▶ reload: Use the reload command as follows:

matthew@seymour~:$ sudo service apparmor reload (or restart)

 ▶ show status: Use the show status command as follows:

matthew@seymour~:$ sudo service apparmor status

This section has just scratched the surface of AppArmor, but hopefully you have learned

enough information that your appetite has been whetted, and you are ready to do some

further reading.

Forming a Disaster Recovery Plan
No one likes planning for the worst, which probably explains why two-thirds of people

do not have wills. Having your systems hacked is a scary thing: One or more criminals

has broken through your carefully laid blocks and caused untold damage to the machine.

Your boss, if you have one, wants a full report of what happened and why, and your users

want their email when they sit down at their desks in the morning. What do you do?

If you ever do get hacked, nothing will take the stress away entirely. However, if you take

the time to prepare a proper response in advance, you should at least avoid premature

aging. Here are some suggestions to get you started:

 ▶ Do not just pull out the network cable. Pulling the cable acts as an alert that

the cracker has been detected, which rules out any opportunities for security experts

to monitor for that cracker returning and actually catch him or her.

 ▶ Inform only the people who need to know. Your boss and other IT people are

at the top of the list; other employees are not. Keep in mind that it could be one of

the employees behind the attack, and you don’t want to tip off the culprit.

http://www.google.com/chrome?platform=linux

391

2
0

References

 ▶ If the machine is not required, and you do not want to trace the attack,

you can safely remove it from the network. However, do not switch it off

because some backdoors are enabled only when the system is rebooted.

 ▶ Make a copy of all the log files on the system and store them somewhere

else. These files might have been tampered with, but they might contain nuggets of

information.

 ▶ Check the /etc/passwd file and look for users you do not recognize.

Change all the passwords on the system and remove bad users.

 ▶ Check the output of ps aux to see if unusual programs are running. Also

check to see whether any cron jobs are set to run.

 ▶ Look in /var/www and see whether any web pages are there that should

not be.

 ▶ Check the contents of the .bash_history files in the /home directories of

your users. Are there any recent commands for your primary user?

 ▶ If you have worked with external security companies previously, call

them in for a fresh audit. Hand over all the logs you have and explain the situa-

tion. They will be able to extract all the information from the logs that is possible to

extract.

 ▶ Start collating backup tapes from previous weeks and months. Your sys-

tem might have been hacked long before you noticed, and you might need to roll

back the system more than once to find out when the attack actually succeeded.

 ▶ Download and install Rootkit Hunter from http://rkhunter.source-

forge.net/. This tool searches for and removes the types of files that bad guys leave

behind for their return.

Finally, keep your disaster recovery plan somewhere safe; saving it as a file on the machine

in question is a very bad move.

References
 ▶ https://help.ubuntu.com/community/InstallingSecurityTools—Ubuntu

community documentation of and suggestions for various security tools

 ▶ https://nmap.org—The official site for Nmap

 ▶ www.tripwire.org—Information and download links for the open source version

of Tripwire

 ▶ www.ubuntu.com/usn—The official Ubuntu security notices list, which is well

worth watching

http://rkhunter.source-forge.net/
http://rkhunter.source-forge.net/
https://help.ubuntu.com/community/InstallingSecurityTools
https://nmap.org
http://www.tripwire.org
http://www.ubuntu.com/usn

392 CHAPTER 20 Securing Your Machines

 ▶ https://help.ubuntu.com/community/UFW—Ubuntu community documen-

tation for UFW

 ▶ https://wiki.ubuntu.com/UncomplicatedFirewall—Ubuntu documentation

for UFW

 ▶ https://gitlab.com/apparmor/apparmor/wikis/home/—The official docu-

mentation for AppArmor

 ▶ https://help.ubuntu.com/community/AppArmor—Ubuntu community

documentation for AppArmor

 ▶ https://wiki.ubuntu.com/Security/Features—An Ubuntu wiki page that out-

lines and describes security features, Ubuntu, and configuration

https://help.ubuntu.com/community/UFW
https://wiki.ubuntu.com/UncomplicatedFirewall
https://gitlab.com/apparmor/apparmor/wikis/home/
https://help.ubuntu.com/community/AppArmor
https://wiki.ubuntu.com/Security/Features

IN THIS CHAPTER

 ▶ Storage Disk

 ▶ Kernel

 ▶ Tuned

 ▶ References

CHAPTER 21

Performance Tuning

Squeezing extra performance out of your hardware might

sound like a pointless task, given the low price of com-

modity upgrades today. To a certain degree, that is true;

for most of us, it is cheaper to buy a new computer than

to spend hours fighting to get a 5 percent speed boost. But

what if the speed boost were 20 percent? How about if it

were 50 percent?

The amount of benefit you can get by optimizing your sys-

tem varies depending on what kinds of tasks you are run-

ning, but there is something for everyone. Over the next

few pages we look at quick ways to optimize the Apache

web server, both the KDE and GNOME desktop systems,

both MySQL and PostgreSQL database servers, and more.

Before we get into the details, you need to understand

that optimization is not an absolute term: If you optimize a

system, you have improved its performance, but it is still

possible it could further be increased. You are typically not

interested in getting 99.999 percent performance out of a

system because optimization suffers from the law of dimin-

ishing returns: Some basic changes make the biggest differ-

ences, but after that, it takes increasing amounts of work to

obtain decreasing speed improvements.

Many Linux users love to tinker under the hood to increase

the performance of their computers, and Linux gives you

some great tools to do that. Whereas stability-loving

nurturers generally tell us, “Don’t fix what’s not broken,”

experiment-loving hot-rodders often say, “Fix it until it

breaks.” In this section, you learn about many of the

commands used to tune, or “tweak,” your file system.

Before you undertake any under-the-hood work with Linux,

however, keep a few points in mind. First, perform a bench-

mark on your system before you begin. Linux does not

394 CHAPTER 21 Performance Tuning

offer a well-developed benchmarking application, and availability of what exists changes

rapidly. You can search online for the most up-to-date information for benchmarking

applications for Linux. If you are a system administrator, you might choose to create your

own benchmarking tests. Second, remember to tweak only one thing at a time so you can

tell what works, what does not work, and what breaks things. Some of these tweaks might

not work or might lock up your machine, but if you are only implementing them one at a

time, you will find it much easier to reverse a change that caused a problem.

If you aren’t measuring, you aren’t tuning. Measure what you want to improve before

making changes, as you make incremental changes, and after you think you are done

making changes. Don’t assume anything, ever. Only then can you be sure what you have

done was/is useful.

Always have a working boot disc handy, such as the live Ubuntu CD or DVD. Remember

that you are personally assuming all risks for attempting any of these tweaks. If you don’t

understand what you are doing or are not confident in your ability to revert any changes

discussed here, do not attempt any of the suggestions in this chapter. The default settings

in Ubuntu work very well for most people and really don’t need adjusting—just as most

people can use and enjoy their car just as it is. However, some people love taking apart

their cars and building hot-rods; they enjoy tweaking and breaking and fixing them. This

chapter is for that sort of person. If you don’t think you can fix it, don’t risk breaking it.

Storage Disk
This first set of tuning ideas all have to do with accessing and storing your data. There are

often tradeoffs involved when tuning for performance, such as reducing or eliminating

redundancy or journaling. For some data that is ephemeral and trivial if lost, that’s fine.

For most data, you want to keep all of these intact to help ensure data persistence and

integrity.

Also, with solid state drives and the speed increase seen when using them versus using

hard drives, there really isn’t the compelling need to tune most of these things anymore.

Linux File Systems

Most of the options discussed in this chapter are for the ext2, ext3, or ext4 file systems.

The default in Ubuntu—and most other current Linux distributions today—is ext4. It is

also common to see xfs and zfs systems.

Both ext3 and ext4 are journaling file systems, which are much more reliable than other

file systems for data storage. A journaling file system writes data changes first to a log in

a separate part of the drive. Once journaled, the change is queued and performed in the

background. This can help prevent data corruption while also keeping data in a consistent

state. If there is a problem, the data can be rebuilt from the journal.

Other file system options are available. Most of them are considered legacy options or

are used for compatibility with other operating systems, such as NTFS, used by Microsoft

Windows.

395

2
1

Storage Disk

The file system receiving the most attention currently is ZFS. ZFS comes from Sun Micro-

systems and the Solaris operating system (now owned by Oracle) and has been long loved

in data centers. However, ZFS is proprietary and was unavailable for other operating sys-

tems—but not anymore. Well, it is available, but it is still proprietary licensed, so there is a

potential risk involved for anything but personal use. This option is not recommended for

casual use, but if you have large-scale storage needs and are willing to do a bit of reading

and configuration, you may find it incredibly useful.

The hdparm Command

The hdparm utility can be used by root to set and tune the settings for IDE hard drives.

You would do this to tune the drives for optimal performance. After previously requir-

ing a kernel patch and installation of associated support programs, the hdparm pro-

gram is now included with Ubuntu. You should only experiment with the file systems

mounted read-only because some settings can damage some file systems when used

improperly.

The general format of the command is this:

matthew@seymour:~$ hdparm command device

The following command runs a hard disk test:

matthew@seymour:~$ hdparm –tT /dev/hda

You must replace /dev/hda with the location of your hard disk. hdparm then runs two

tests: cached reads and buffered disk reads. A good IDE hard disk should be getting

400Mbps to 500Mbps for the first test and 20Mbps to 30Mbps for the second. Note your

scores and then try this command:

matthew@seymour:~$ hdparm –m16 –d1 –u1 –c1 /dev/hda

This enables various performance-enhancing settings. Now try executing the original com-

mand again. If your scores increase from the previous measurement, you should run this

command:

matthew@seymour:~$ hdparm –m16 –d1 –u1 –c1 –k1 /dev/hda

The extra parameter tells hdparm to write the settings to disk so that they will be used each

time you boot, ensuring optimal disk performance in the future.

The man page entry for hdparm is extensive and contains useful detailed information,

but because the kernel configuration selected by Ubuntu already attempts to optimize

the drives, it might be that little can be gained through tweaking. Because not all hard-

ware combinations can be anticipated by Ubuntu or by Linux, and performance gains are

always useful, you’re encouraged to try.

396 CHAPTER 21 Performance Tuning

TIP

You can use the hdparm command to produce a disk transfer speed result as follows:

matthew@seymour:~$ hdparm -tT device

Be aware, however, that although the resulting numbers appear quantitative, they are

subject to several technical qualifications beyond the scope of what is discussed and

explained in this chapter. Simply put, do not accept values generated by hdparm as

absolute numbers but only as a relative measure of performance.

File System Tuning

Never content to leave things alone, Linux provides several tools to adjust and customize

file system settings. The belief is that hardware manufacturers and distribution creators

tend to select conservative settings that will work well all the time, leaving some of the

potential of your system leashed—which is why you have chosen Ubuntu Unleashed to

help you.

The Linux file system designers have done an excellent job of selecting default values

used for file system creation, and any version of the Linux kernel after 2.6.x contains code

for the IDE subsystem that significantly improves I/O (input/output) transfer speeds over

older versions, obviating much of the need for special tweaking of the file system and

drive parameters if you use IDE disks. Although these values work well for most users,

some server applications of Linux benefit from file system tuning. As always, observe and

benchmark your changes.

SYNCHRONIZING THE FILE SYSTEM WITH sync

Because Linux uses buffers when writing to devices, a write will not occur until the buf-

fer is full, until the kernel tells it to, or if you tell it to by using the sync command.

Traditionally, the command is given twice, as in the following example:

matthew@seymour:~$ sync ; sync

To do it twice is overkill. Still, it can be helpful before the unmounting of certain types

of media with slow write speeds (such as some USB hard drives or PCMCIA storage

media)—but only because it delays the user from attempting to remove the media too

soon rather than because two syncs are better than one.

The tune2fs Command

With tune2fs, you can adjust the tunable file system parameters on an ext2, ext3, or ext4

file system. A few performance-related items of note are as follows:

 ▶ To disable file system checking, the -c 0 option sets the maximal mount count to

zero.

 ▶ The interval between forced checks can be adjusted with the -i option.

397

2
1

Storage Disk

 ▶ The -m option sets the reserved blocks percentage with a lower value, freeing more

space at the expense of fsck having less space to write any recovered files.

 ▶ Decrease the number of superblocks to save space with the -O sparse_super option.

(Modern file systems use this by default.) Always run e2fsck after you change this

value.

 ▶ More space can be freed with the -r option, which sets the number of reserved (for

root) blocks.

Note that most of these uses of tune2fs free up space on the drive at the expense of the

capability of fsck to recover data. Unless you really need the space and can deal with the

consequences, just accept the defaults; large drives are now relatively inexpensive.

The e2fsck Command

The e2fsck utility checks an ext2/ext3/ext4 file system. Some useful arguments taken

from man e2fsck are as follows:

 ▶ -c—Checks for bad blocks and then marks them as bad

 ▶ -f—Forces checking on a clean file system

 ▶ -v—Enters verbose mode

The badblocks Command

Although not a performance-tuning program per se, the utility badblocks checks a parti-

tion (preferably unmounted) for bad blocks. Running this command by itself is not rec-

ommended; rather, you should allow it to be called by fsck. You should use it directly

only if you specify the block size accurately; don’t guess or assume anything.

The options available for badblocks are detailed in the man page. They allow for very low-

level manipulation of the file system that is useful for data recovery by file system experts

or for file system hacking, but they are beyond the scope of this chapter and the average

user.

Disabling File Access Time

Whenever Linux reads a file, it changes the last access time (known as the atime). This is

also true for your web server: If you are getting hit by 50 requests a second, your hard disk

will be updating the atime 50 times a second. Do you really need to know the last time a

file was accessed? If not, you can disable the atime setting for a directory by typing this:

matthew@seymour:~$ chattr –R +A /path/to/directory

The chattr command changes file system attributes, of which “don’t update atime” is

one. To set that attribute, use +A and specify -R so that it is recursively set. /path/to/

directory gets changed, and so do all the files and subdirectories it contains.

398 CHAPTER 21 Performance Tuning

Kernel
As the Linux kernel developed over time, developers sought a way to fine-tune some of

the kernel parameters. Before sysctl, those parameters had to be changed in the kernel

configuration, and then the kernel had to be recompiled.

The sysctl command can change some parameters of a running kernel. It does this

through the /proc file system, which is a “virtual window” into the running kernel.

Although it might appear that a group of directories and files exist under /proc, that is

only a representation of parts of the kernel. When you’re the root user (or using the sudo

command), you can read values from and write values to those “files,” referred to as vari-

ables. You can display a list of the variables as shown in the following example (which

presents an abbreviated list because roughly 250 items or more exist in the full list):

matthew@seymour:~$ sysctl -A

net.ipv4.tcp_max_syn_backlog = 1024

net.ipv4.tcp_rfc1337 = 0

net.ipv4.tcp_stdurg = 0

net.ipv4.tcp_abort_on_overflow = 0

net.ipv4.tcp_tw_recycle = 0

net.ipv4.tcp_syncookies = 0

net.ipv4.tcp_fin_timeout = 60

net.ipv4.tcp_retries2 = 15

net.ipv4.tcp_retries1 = 3

net.ipv4.tcp_keepalive_intvl = 75

net.ipv4.tcp_keepalive_probes = 9

net.ipv4.tcp_keepalive_time = 7200

net.ipv4.ipfrag_time = 30

The items shown are networking parameters, and tweaking these values is beyond the

scope of this book. If you want to change a value, however, you use the -w parameter:

matthew@seymour:~$ sysctl -w net.ipv4.tcp_retries 2=20

This increases the value of that particular kernel parameter.

If you find that a particular setting is useful, you can enter it into the /etc/sysctl.conf

file. The format is as follows, using the earlier example:

net.ipv4.tcp_retries 2=20

Of more interest to kernel hackers than regular users, sysctl is a potentially powerful tool

that continues to be developed and documented.

TIP

The kernel does a good job of balancing performance for graphical systems, so there’s

not a great deal you can do to tweak your desktop to run faster.

399

2
1

Tuned

Both GNOME and KDE are “heavyweight” desktop systems: They are all-inclusive, all-

singing, and all-dancing environments that do far more than browse your file system. The

drawback is that their size makes them run slowly on older systems. On the flip side,

Ubuntu has other systems available in the repositories, like the Xfce and LXDE desktops,

which are a great deal slimmer and faster than GNOME and KDE. If you find that GNOME

and KDE are struggling just to open a file browser, Xfce or LXDE are likely to work for you.

Tuned
The Tuned Project provides a system tuning service for Linux. Tuned does many things

to help you optimize your system. Tuned is a profile-based system that uses the udev

device manager to monitor connected devices and also enables both static and dynamic

tuning of system settings according to your chosen profile. It can drastically improve

performance.

Tuned does the following:

 ▶ Monitors connected devices

 ▶ Tunes system settings using a profile you designate

 ▶ Supports configurations like sysctl, sysfs, and kernel boot command-line parameters

 ▶ Support hot-plugging of devices

 ▶ Can be run in no-daemon mode, which reduces functionality, which is needed in

secure environments

 ▶ Stores its configuration in one place

 ▶ Allows hierarchical definitions of profiles through inheritance

 ▶ Supports full rollback of changes it makes

 ▶ Includes a set of predefined profiles for common use cases while also allowing the

creation of custom profiles

To begin, install Tuned.

$ sudo apt install tuned

To view a list of available profiles for you to use, enter

$ sudo tuned-adm list

Listed profiles include short descriptions.

To show the profile currently in use, enter

$ sudo tuned-adm active

400 CHAPTER 21 Performance Tuning

To show the recommended profile for your system, enter

$ sudo tuned-adm recommend

To change the profile currently in use, enter this, where profilename is the name of the

profile you desire to switch over to using:

$ sudo tuned-adm profile profilename

To verify that the system is currently using the settings in your current profile (checking

to see whether a setting has perhaps been directly modified after the Tuned profile was

set), enter

$ sudo tuned-adm verify

To unload all tunings made by Tuned, enter

$ sudo tuned-adm off

The Tuned daemon is controlled by systemd using standard systemctl commands like

start, stop, and restart. Tuned is incredibly easy to use and in some settings can make a

big difference, so it’s worth checking out. For more information, see https://tuned-project.

org/.

References
 ▶ www.coker.com.au/bonnie++/—The home page of Bonnie++, a disk bench-

marking tool, which also contains a link to RAID benchmarking utilities and Postal,

a benchmarking utility for SMTP servers

 ▶ www.phoronix-test-suite.com—Home of the Phoronix Test Suite, which does

automated performance testing and comparisons and is a quality benchmarking

software option to consider

 ▶ https://tuned-project.org—The official website for Tuned

https://tuned-project.org/
https://tuned-project.org/
http://www.coker.com.au/bonnie++/
http://www.phoronix-test-suite.com
https://tuned-project.org

IN THIS CHAPTER

 ▶ The Linux Kernel

 ▶ Managing Modules

 ▶ When to Recompile

 ▶ Kernel Versions

 ▶ Obtaining the Kernel Sources

 ▶ Patching the Kernel

 ▶ Compiling the Kernel

 ▶ When Something Goes Wrong

 ▶ References

CHAPTER 22

Kernel and Module
Management

A kernel is a complex piece of software that manages the

processes and process interactions that take place within

an operating system. As a user, you rarely, if ever, interact

directly with it. Instead, you work with the applications

that the kernel manages.

The Linux kernel is Linux. It is the result of years of coop-

erative (and sometimes contentious) work by numerous

people around the world. There is only one common kernel

source tree, but each major Linux distribution massages and

patches its version slightly to add features, performance, or

options. Each Linux distribution, including Ubuntu, comes

with its own precompiled kernel as well as the kernel source

code, providing you with absolute authority over the Linux

operating system. This chapter covers the kernel and what

it does for you and for the operating system.

In this chapter, you also learn how to obtain the ker-

nel sources and how and when to patch the kernel. This

chapter leads you through an expert’s tour of the kernel

architecture and teaches you essential steps in kernel con-

figuration, how to build and install modules, and how to

compile drivers in Ubuntu. This chapter also teaches you

important aspects of working with GRUB2, the default

Ubuntu boot loader. Finally, the chapter’s troubleshooting

information will help you understand what to do when

something goes wrong with your Linux kernel installation

or compilation process. As disconcerting as these problems

can seem, this chapter shows you some easy fixes for many

kernel problems.

Almost all users find that a precompiled Ubuntu kernel suits

their needs (and there are several to choose from). At some

402 CHAPTER 22 Kernel and Module Management

point, you might need to recompile the kernel to support a specific piece of hardware or

add a new feature to the operating system, although the Ubuntu kernel team works very

hard to backport or enable any feature possible (as a module), so it is highly unlikely you

will ever have a need to do this. The kernel team is also approachable and will gladly dis-

cuss specific needs and features. Sometimes features are not enabled just because no one

has ever asked for or needed them. Occasionally, things are not enabled because of a con-

flict with another feature. The Ubuntu kernel team can help you discover what is going

on in those cases (but don’t abuse their kindness and availability; they already work quite

hard and for long hours).

Really, the main reason today that people compile their own kernel is because they want

to learn to be a kernel developer. If you have heard horror stories about the difficulties of

recompiling the Linux kernel, you can relax; this chapter gives you all the information

you need to understand how to painlessly work through the process if you are interested

in learning a new skill. This is a complex and detail-oriented task, but it is within the

grasp of most technical users, even if it is completely unnecessary.

CAUTION

Building and using a custom kernel will make it difficult to get support for your system.

Although it is a learning experience to compile your own kernel, you will not be allowed to

file bugs in Ubuntu on a custom-built kernel (if you do, they will be rejected without further

explanation), and if you have a commercial support contract with Ubuntu/Canonical, build-

ing and using a custom kernel will void the contract.

The Linux Kernel
The Linux kernel is the management part of the operating system that many people

call Linux. Although many think of the entire distribution as Linux, the only piece that

can correctly be called Linux is the kernel. Ubuntu, like many other Linux distributions,

includes a kernel packaged with add-on software that interacts with the kernel so that the

user can interface with the system in a meaningful manner.

The system utilities and user programs enable computers to become valuable tools to a

user.

THE FIRST LINUX KERNEL

In 1991, Linus Torvalds released version 0.99 of the Linux kernel as the result of his

desire for a powerful, UNIX-like operating system for his Intel 80386 personal computer.

Linus wrote the initial code necessary to create what is now known as the Linux kernel

and combined it with Richard Stallman’s GNU tools. Indeed, because many of the Linux

basic system tools come from the GNU Project, many people refer to the operating system

as GNU/Linux. Since then, Linux has benefited from thousands of contributors adding

their talents and time to the Linux project. Linus still maintains the kernel, deciding what

will and will not make it into the kernel as official releases, known to many as the vanilla

or Linus Linux kernel.

403

2
2

The Linux Kernel

The Linux Source Tree

The source code for the Linux kernel is kept in a group of directories called the kernel

source tree. The structure of the kernel source tree is important because the process of com-

piling (building) the kernel is automated; it is controlled by scripts interpreted by the make

application. These scripts, known as makefiles, expect to find the pieces of the kernel code

in specific places; if they don’t find them, they will not work. You learn how to use make

to compile a kernel later in this chapter.

It is not necessary for the Linux kernel source code to be installed on your system for the

system to run or for you to accomplish typical tasks such as working with email, brows-

ing the Web, or using a word processing program. It is necessary that the kernel sources

be installed, however, if you want to compile a new kernel. In the next section, you learn

how to install the kernel source files and how to set up the special symbolic link required.

That link, /usr/src/linux-5.4.0, where the numbers at the end match the release version

of the kernel installed on your system, is what we use to refer to the directory of the ker-

nel source tree as we examine the contents of the kernel source tree.

NOTE

The pace of change in the Linux kernel has accelerated, much like the rest of our lives.

In this chapter, we chose to use the version numbers for a recent LTS release of Ubuntu.

The version numbers on your system may be different, but the processes and concepts

remain the same.

The /usr/src/linux-5.4.0 directory contains the .config files and the makefiles, among

others. The .config file is the configuration of your Linux kernel as it was compiled.

There is no .config file by default; you must select one from the /configs subdirectory.

There, you will find configuration files for each flavor of the kernel Ubuntu provides;

simply copy the one appropriate for your system to the default directory and rename it

.config.

We have already discussed the contents of the /configs subdirectory, so let’s examine the

other directories found under /usr/src/linux-5.4.0. The most useful one for us is the

Documentation directory. In it and its subdirectories, you will find almost all the documen-

tation concerning every part of the kernel. The file 00-INDEX (which each Documentation

subdirectory contains) contains a list of the files in the main directory and a brief

explanation of what they are. Many files are written solely for kernel programmers and

application writers, but a few are useful to intermediate or advanced Linux users when

attempting to learn about kernel and device driver issues. Some of the more interesting

and useful documents are as follows:

 ▶ devices.txt—This file contains a list of all possible Linux devices that are rep-

resented in the /dev directory, giving major and minor numbers and short

descriptions. You may at some point have gotten an error message that mentions

char-major-xxx; this file is where that list is kept.

404 CHAPTER 22 Kernel and Module Management

 ▶ ide.txt—If your system uses IDE hard drives, this file discusses how the kernel

interacts with them and lists the various kernel commands that you can use to solve

IDE-related hardware problems, manually set data transfer modes, and otherwise

manually manage your IDE drives. Most of this management is automatic, but if you

want to understand how the kernel interacts with IDE devices, this file explains it.

 ▶ initrd.txt—This file provides much more in-depth knowledge of initial RAM

disks, giving details on the loopback file system used to create and mount them and

explaining how the kernel interacts with them.

 ▶ kernel-parameters.txt—This file is a list of most of the arguments that you can

pass at boot time to configure kernel or hardware settings, but it does not appear

too useful at first glance because it is just a list. However, knowing that a parameter

exists and might relate to something you are looking for can assist you in tracking

down more information because it gives you terms to enter into an Internet search

engine such as Google.

 ▶ sysrq.txt—If you have ever wondered what that key on your keyboard marked

SysRq is used for, this file has the answer. Briefly, it is a key combination hardwired

into the kernel that can help you recover from a system lockup. Ubuntu disables this

function by default for security reasons. You can re-enable it at a root prompt by

entering the command # echo "1" > /proc/sys/kernel/sysrq, and you can disable

it by echoing the value 0 rather than 1.

In the other directories under Documentation, you find similar text files that deal with

the kernel modules for CD-ROM drivers, file system drivers, game port and joystick driv-

ers, video drivers (not graphics card drivers; those belong to X11R6 and not to the ker-

nel), network drivers, and all the other drivers and systems found in the Linux operating

system. Again, these documents are usually written for programmers, but they can also

provide useful information to intermediate and advanced Linux users.

The directory named scripts contains many of the scripts that make uses. It really does

not contain anything of interest to anyone who is not a programmer or a kernel developer

(also known as a kernel hacker).

After a kernel is built, all the compiled files wind up in the arch directory and its subdi-

rectories. Although you can manually move them to their final location, you learn later in

this chapter how the make scripts will do it for you. In the early days of Linux, this post-

compilation file relocation was all done by hand; you should be grateful for make.

NOTE

The make utility is a complex program. You can find complete documentation on the struc-

ture of make files, as well as the arguments that it can accept, at www.gnu.org/software/

make/manual/make.html.

The remaining directories in /usr/src/linux-5.4.0 contain the source code for the

kernel and the kernel drivers. When you install the kernel sources, these files are placed

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

405

2
2

The Linux Kernel

there automatically. When you patch kernel sources, these files are altered automatically.

When you compile the kernel, these files are accessed automatically. Although you never

need to touch the source code files, they can be useful. The kernel source files are nothing

more than text files with special formatting, which means you can look at them and read

the programmer comments. Sometimes, a programmer writes an application but cannot

(or often does not) write the documentation. The comments the programmer puts in the

source code are often the only documentation that exists for the code.

Small testing programs are even “hidden” in the comments of some of the code, along

with comments and references to other information. Because the source code is written

in a language that can be read as easily—almost—as English, a nonprogrammer might

be able to get an idea of what the application or driver is actually doing (see Chapter 38,

“Using Programming Tools,” for an idea of how that could happen). This information

might be of use to an intermediate to an advanced Linux user who is confronted by

kernel- and driver-related problems.

NOTE

The interaction and control of hardware is handled by a small piece of the kernel called

a device driver. The driver tells the computer how to interact with a modem, a SCSI card,

a keyboard, a mouse, and so on in response to a user prompt. Without the device driver,

the kernel does not know how to interact with the associated device.

Types of Kernels

In the early days of Linux, a kernel was a single block of code containing all the instruc-

tions for the processor, the motherboard, and the other hardware. If you changed hard-

ware, you were required to recompile the kernel code to include what you needed and

discard what you did not need. Including extra, unneeded code carried a penalty because

the kernel became larger and occupied more memory. On older systems that had only

4MB to 8MB of memory, wasting precious memory for unnecessary code was consid-

ered unacceptable. Kernel compiling was something of a “black art,” as early Linux users

attempted to wring the most performance possible from their computers. Such kernels

compiled as a single block of code are called monolithic kernels.

As the kernel code grew larger and the number of devices that could be added to a com-

puter increased, the requirement to recompile became onerous. A new method of building

the kernel was developed to make the task of compiling easier. The part of the kernel’s

source code that composed the code for the device drivers could be optionally compiled as

a module that could be loaded and unloaded into the kernel as required. This is known as

the modular approach to building the kernel. Now, all the kernel code could be compiled

at once, with most of the code compiled into these modules. Only the required modules

would be loaded; the kernel could be kept smaller, and adding hardware was much simpler.

The typical Ubuntu kernel has some drivers compiled as part of the kernel itself (called

inline drivers) and others compiled as modules. Only device drivers compiled inline are

available to the kernel during the boot process; modular drivers are available only after the

system has been booted.

406 CHAPTER 22 Kernel and Module Management

NOTE

As a common example, drivers for SCSI disk drives must be available to the kernel if you

intend to boot from SCSI disks. If the kernel is not compiled with those drivers inline, the

system does not boot because it cannot access the disks.

A way around this problem for modular kernels is to use an initial RAM disk (initrd), dis-

cussed later in this chapter, in the “Creating an Initial RAM Disk Image” section. initrd

loads a small kernel and the appropriate device driver, which then can access the device

to load the kernel you want to run.

Some code can be only one or the other (for technical reasons unimportant to the average

user), but most code can be compiled either as modular or inline. Depending on the appli-

cation, some system administrators prefer one way over the other, but with fast modern

processors and abundant system memory, the performance differences are of little concern

to all but the most ardent Linux hackers.

When compiling a kernel, making the selection of modular or inline is part of the make

config step, detailed later in this chapter. Unless you have a specific reason to do

otherwise, select the modular option when given a choice. Because you will be manag-

ing kernels more frequently than compiling kernels, the process of managing modules is

addressed in the next section.

Managing Modules
When using a modular kernel, special tools are required to manage the modules. Modules

must be loaded and unloaded, and it would be nice if that were done as automatically as

possible. You also need to be able to pass necessary parameters to modules when you load

them—things such as memory addresses and interrupts. (That information varies from

module to module, so you need to look at the documentation for your modules to deter-

mine what, if any, information needs to be passed to them.) This section covers the tools

provided to manage modules and then looks at a few examples of using them.

Linux provides the following module management tools, all of which (along with

modprobe.conf) have man pages:

 ▶ lsmod—This command lists the loaded modules. It is useful to pipe this through the

less command because the listing is usually more than one page long.

 ▶ insmod—This command loads the specified module into the running kernel. If a

module name is given without a full path, the default location for the running ker-

nel, /lib/modules/*/, is searched. Several options are offered for this command; the

most useful is -f, which forces the module to be loaded.

 ▶ rmmod—This command unloads (removes) the specified module from the running

kernel. More than one module at a time can be specified.

 ▶ modprobe—A more sophisticated version of insmod and rmmod, this command uses

the dependency file created by depmod and automatically handles loading or, with

the -r option, removing modules. There is no force option, however. A useful option

to modprobe is -t, which causes modprobe to cycle through a set of drivers until it

407

2
2

Managing Modules

finds one that matches your system. If you are unsure of what module will work for

your network card, use this command:

matthew@seymour:~$ sudo modprobe -t net

The term net is used here because that is the name of the directory (/lib/modules/*

/kernel/net) where all the network drivers are kept. The modprobe command tries

each one in turn until it loads one successfully.

 ▶ modinfo—This command queries a module’s object file and provides a list of the module

name, author, license, and any other information that is there. It often is not very useful.

 ▶ depmod—This program creates a dependency file for kernel modules. Some modules

need to have other modules loaded first; that is, they “depend” on the other mod-

ules. (A lot of the kernel code is like this because it eliminates redundancy in the

code base.) During the boot process, one of the startup files contains the command

depmod -a, and it is run every time you boot to re-create the file /lib/modules/*/

modules.dep. If you make changes to the file /etc/modprobe.conf, run depmod -a

manually. The depmod command, its list of dependencies, and the /etc/modprobe.

conf file enable kernel modules to be automatically loaded as needed.

 ▶ /etc/modprobed—This directory contains a set of *.conf files to specify options for

modules that have dependencies. They can also be used to create aliases or override

the default modprobe behavior for modules with special requirements.

 ▶ /etc/modprobe.conf—This is not a command but a file that controls how modprobe

and depmod behave; it contains kernel module variables. Although the command

syntax can be quite complex, most actual needs are simple. The most common use

is to alias a module and then pass some parameters to it. For example, the following

code aliases a device name (from devices.txt) to a more descriptive word and then

passes some information to an associated module:

alias char-major-89 i2c-dev

options eeprom ignore=2,0x50,2,0x51,2,0x52

The i2c-dev device is used to read the CPU temperature and fan speed on this sys-

tem. These lines for /etc/modprobe.conf were suggested for our use by the program’s

documentation. We added them with a text editor.

A partial listing of lsmod is shown here, piped through the less command, enabling you

to view it a page at a time:

matthew@seymour:~$ sudo lsmod | less

Module Size Used by

parport_pc 19392 1

Module Size Used by

parport_pc 19392 1

lp 8236 0

joydev 17377 0

parport 29640 2 parport_pc,lp

autofs4 10624 0

sunrpc 101064 1

408 CHAPTER 22 Kernel and Module Management

The list is actually much longer, but here you see that the input module is being used

by the joydev (joystick device) module, but the joystick module is not being used. This

computer has a joystick port that was autodetected, but no joystick is connected. A scan-

ner module is also loaded, but because the USB scanner is unplugged, the module is not

being used. You use the lsmod command to determine whether a module was loaded and

what other modules were using it. If you examine the full list, you see modules for all the

devices attached to your computer.

To remove a module, joydev in this example, use the following:

matthew@seymour:~$ sudo rmmod joydev

or use this:

matthew@seymour:~$ sudo modprobe -r joydev

The output of lsmod now shows that it is no longer loaded. If you were to remove input

as well, you could then use modprobe to load both input and joydev (one depends on the

other, remember) with a simple command, as follows:

matthew@seymour:~$ sudo modprobe joydev

If Ubuntu balks at loading a module (because it was compiled using a different kernel ver-

sion from what you are currently running; for example, the NVIDIA graphics card mod-

ule), you could force it to load like this:

matthew@seymour:~$ sudo insmod -f nvidia

You ignore the complaints (error messages) in this case if the kernel generates any.

When to Recompile
Ubuntu systems use a modified version of the plain-vanilla Linux kernel (a modified ver-

sion is referred to as a patched kernel) with additional drivers and other special features

compiled into it.

Ubuntu has quite an intensive testing period for all distribution kernels and regularly

distributes updated versions. The supplied Ubuntu kernel is compiled with as many mod-

ules as possible to provide as much flexibility as possible. A running kernel can be further

tuned with the sysctl program, which enables direct access to a running kernel and per-

mits some kernel parameters to be changed. As a result of this extensive testing, configu-

rability, and modularity, the precompiled Ubuntu kernel does everything most users need

it to do. Most users only need to recompile the kernel to do the following:

 ▶ Accommodate an esoteric piece of new hardware

 ▶ Conduct a system update when Ubuntu has not yet provided precompiled kernels

 ▶ Experiment with the system capabilities

Ubuntu supplies precompiled versions of the kernel for 32- and 64-bit processors. For each

architecture, Ubuntu compiles a generic kernel that works well for most uses, a server

kernel that is optimized for server use, a preempt kernel designed for use in low-latency

409

2
2

Obtaining the Kernel Sources

servers, and an rt kernel for times when instant response is more important than bal-

anced use (such as in professional audiovisual recording and editing). There is also a spe-

cial kernel, called virtual, available for use in virtual machines. These are all available from

the Ubuntu software repositories.

Also available are a series of packages called linux-backports-modules-, each with a spe-

cific set of kernel modules backported from newer mainline kernels into current version

Ubuntu kernels. If you need an updated driver for a piece of hardware, look at the back-

ported modules first.

Kernel Versions
The Linux kernel is in a constant state of development. As new features are added, bugs

are fixed, and new technology is incorporated into the code base, it becomes necessary to

provide stable releases of the kernel for use in a production environment. Having separate

releases that contain the newest code for developers to test is also important. To keep

track of the kernels, version numbers are assigned to them. Programmers enjoy using

sequential version numbers that have abstract meaning. Is version 8 twice as advanced

as version 4 of the same application? Is version 1 of one application less developed than

version 3 of another? The version numbers cannot be used for this kind of qualitative or

quantitative comparison. It is entirely possible for higher version numbers to have fewer

features and more bugs than older versions. The numbers exist solely to differentiate and

organize sequential revisions of software. The kernel version can be broken down into four

sections:

 ▶ Major version—This is the major version number, which is 5 in our examples.

 ▶ Minor version—This is the minor version number, which is 4 in our examples.

 ▶ Sublevel number—This number indicates the current iteration of the kernel;

which is 0 in our examples.

 ▶ Extraversion level—This is the number representing a collection of patches and addi-

tions made to the kernel by the Ubuntu engineers to make the kernel work for them

(and you). Each collection is numbered, and the number is indicated here in the kernel

name. There is not one in our preceding example. In the following example, it is 9.

Type uname -r at the command prompt to display your current kernel version, shown

here with sample output:

matthew@seymour:~$ uname -r

5.4.0.9-generic

Obtaining the Kernel Sources
The Linux kernel has always been freely available to anyone who wants it. If you just want

to recompile the existing kernel, install the linux-source package from the Ubuntu repos-

itories. To get the very latest vanilla version (which is the commonly used term for the

410 CHAPTER 22 Kernel and Module Management

kernel version direct from the main kernel developers and which has not yet been patched

or changed by any distribution-specific kernel team), open an HTTP connection to www.

kernel.org/pub/ or use Git to retrieve from https://git.kernel.org or use RSYNC to retrieve

from rsync://rsync.kernel.org/pub/. We will use kernel 5.4.0 in the following examples.

A number of different entries exist on the archive site for each kernel version, but because

you are interested only in the full kernel, getting the full package of source code is neces-

sary (for example, linux-5.4.0.bz2).

The .bz2 extension is applied by the bzip2 utility, which has better compression than gzip.

After it is downloaded, move the package to a directory other than /usr/src and unpack

it. The bzip2 unpack command is tar -xjvf linux-5.4.0.tar.bz2. After it is unpacked,

the package creates a new directory, linux-5.4.0. Copy it to /usr/src or move it there.

Then create a symbolic link of linux-4.15 to linux-5.4.0. (Otherwise, some scripts will

not work.) Here is how to create the symbolic link:

matthew@seymour:~$ sudo rm /usr/src/linux-5.4

matthew@seymour:~$ sudo ln -s /usr/src/linux-5.4.0 /usr/src/linux-5.4

By creating a symbolic link to /usr/src/linux-5.4, it is possible to allow multiple kernel

versions to be compiled and tailored for different functions: You just change the symbolic

link to the kernel directory you want to work on.

CAUTION

The correct symbolic link is critical to the operation of make. Always have the symbolic

link point to the version of the kernel sources you are working with.

Patching the Kernel
Patching a kernel to the newest Linux kernel version as opposed to downloading the

entire source code is possible. This choice can be beneficial for those who are not using a

high-speed broadband connection. Whether you are patching existing sources or down-

loading the full source, the end results are identical.

Patching the kernel is not a mindless task. It requires the user to retrieve all patches from the

current version to the version the user wants to upgrade to. For example, if you are currently

running 5.3.3 (and have those sources) and want to upgrade to 5.4.0, you must retrieve the

5.3.3 all the way up to the 5.4.0 patch set, and so on. After you download these patches, you

must apply them in succession to upgrade to 5.4.0. This is more tedious than downloading

the entire source, but it’s useful for those who keep up with kernel hacking and want to per-

form incremental upgrades to keep their Linux kernel as up to date as possible.

To patch up to several versions in a single operation, you can use the patch-kernel script

located in the kernel source directory for the kernel version you currently use. This script

applies all necessary version patches to bring your kernel up to the latest version.

The format for using the patch-kernel script looks like this:

patch-kernel source_dir patch_dir stopversion

http://www.kernel.org/pub/
http://www.kernel.org/pub/
https://git.kernel.org
http:///rsync.kernel.org/pub/

411

2
2

Patching the Kernel

The source directory defaults to /usr/src/linux if none is given, and patch_dir defaults

to the current working directory if one is not supplied.

For example, assume that you have a 5.3.3 kernel code tree that needs to be patched to

the 5.4.0 version. The needed earlier and 5.4.0 patch files have been downloaded and

placed in the /patch directory in the source tree. You issue the following command in the

/usr/src/linux-5.4 directory:

matthew@seymour:~$ sudo scripts/patch-kernel /usr/src/linux-5.4 /usr/src/

linux-5.4.0/patch

Each successive patch file is applied, eventually creating a 5.4.0 code tree. If any errors

occur during this operation, files named xxx# or xxx.rej are created, where xxx is the

version of the patch that failed. You have to resolve these failed patches manually by

examining the errors and looking at the source code and the patch. An inexperienced per-

son will not have any success with this because you need to understand C programming

and kernel programming to know what is broken and how to fix it. Because this was a

stock 4.1.1 code tree, the patches were all successfully applied without errors. If you are

attempting to apply a nonstandard third-party patch, the patch might fail.

When you have successfully patched the kernel, you are ready to begin compiling this

code tree as if you were starting with a fresh, stock 5.4.0 kernel tree.

USING THE PATCH COMMAND

If you have a special, nonstandard patch to apply—such as a third-party patch for a

commercial product—you can use the patch command rather than the special patch-
kernel script that is normally used for kernel source updates. Here are some quick steps

and an alternative method of creating patched code and leaving the original code alone:

 1. Create a directory in your home directory and name it something meaningful, like

mylinux.

 2. Copy the pristine Linux source code there with the following:

 cp -ravd /usr/src/linux-4.15/* ~/mylinux

 3. Copy the patch file to that same directory as follows:

 cp patch_filename ~/mylinux

 4. Change to the ~/mylinux directory with this command:

 cd ~/mylinux

 5. Apply the patch like this:

 -patch -p1 < patch_filename > mypatch.log 2>&1

 (This last bit of code saves the message output to a file so that you can look at it later.)

 6. If the patch applies successfully, you are done and have not endangered any of the

pristine source code. If the newly patched code does not work, you do not have to

reinstall the original, pristine source code.

 7. Copy your new code to /usr/src and make that special symbolic link described

elsewhere in the chapter.

412 CHAPTER 22 Kernel and Module Management

Compiling the Kernel
If you want to update the kernel from new source code you have downloaded, or if you

have applied a patch to add new functionality or hardware support, you must compile

and install a new kernel to actually use that new functionality. Compiling the kernel

involves translating the kernel’s contents from human-readable code to binary form.

Installing the kernel involves putting all the compiled files where they belong in /boot

and /lib and making changes to the boot loader.

The process of compiling the kernel, like the process of installing it, is almost completely

automated by the make utility. By providing the necessary arguments and following the

steps covered next, you can recompile and install a custom kernel for your use:

 1. Do not delete your current kernel, so that you will have a backup that you can use

to boot if there is a problem with the one you compile.

 2. Apply all patches, if any, so that you have the features you desire. See the previous

section for details.

 3. Back up the .config file, if it exists, so that you can recover from the inevitable mis-

take. Use the following cp command to do so:

 matthew@seymour:~$ sudo cp .config .config.bak

NOTE

If you are recompiling the Ubuntu default kernel, the /usr/src/linux-4.15/configs

directory contains several versions of configuration files for different purposes.

Ubuntu provides a full set of .config files in the subdirectory configs, all named for

the type of system they were compiled for. If you want to use one of these default con-

figurations as the basis for a custom kernel, just copy the appropriate file to /usr/src/
linux-4.15 and rename it .config.

 4. Run the make mrproper directive to prepare the kernel source tree, cleaning out any

old files or binaries.

 5. Restore the .config file that the command make mrproper deleted and edit the

makefile to change the EXTRAVERSION number.

NOTE

If you want to keep any current version of the kernel that was compiled with the same

code tree, manually edit the makefile with your favorite text editor and add some unique

string to the EXTRAVERSION variable.

You can use any description you prefer.

 6. Modify the kernel configuration file using make config, make menuconfig, or make

xconfig; we recommend the last one.

 7. Run make dep to create the code dependencies used later in the compilation process.

413

2
2

Compiling the Kernel

TIP

If you have a multiprocessor machine, you can use both processors to speed the make

process by inserting -jx after the make command, where, as a rule of thumb, x is one

more than the number of processors you have. You might try a larger number and even try

this on a single processor machine (we have used -j8 successfully on an SMP machine);

it will only load up your CPU. Here is an example:

matthew@seymour:~$ sudo make –j3 bzImage

All the make processes except make dep work well with this method of parallel

compiling.

 8. Run make clean to prepare the sources for the compilation of the kernel.

 9. Run make bzImage to create a binary image of the kernel.

NOTE

Several choices of directives exist; the most common ones are the following:

 ▶ zImage—This directive compiles the kernel, creating an uncompressed file called

zImage.

 ▶ bzImage—This directive creates a compressed kernel image necessary for some

systems that require the kernel image to be under a certain size for the BIOS to be

able to parse them; otherwise, the new kernel will not boot. It is the most commonly

used choice.

 10. Run make modules to compile any modules your new kernel needs.

 11. Run make modules_install to install the modules in /lib/modules and create

dependency files.

 12. Run make install to automatically copy the kernel to /boot, create any other files it

needs, and modify the boot loader to boot the new kernel by default.

 13. Using your favorite text editor, verify the changes made to /etc/lilo.conf or

/boot/grub/grub.conf; fix if necessary and rerun /sbin/lilo if needed.

 14. Reboot and test the new kernel.

 15. Repeat the process if necessary, choosing a configuration interface.

Over time, the process for configuring the Linux kernel has changed. Originally, you con-

figured the kernel by responding to a series of prompts for each configuration parameter;

this is the make config utility described shortly. Although you can still configure Linux

this way, most users find that type of configuration confusing and inconvenient; moving

back through the prompts to correct errors, for instance, is impossible.

The make config utility is a command-line tool. The utility presents a question about ker-

nel configuration options. The user responds with a Y, N, M, or ?. (It is not case sensitive.)

Responding M configures the option to be compiled as a module. A response of ? displays

414 CHAPTER 22 Kernel and Module Management

context help for that specific options, if available. (If you choose ? and no help is avail-

able, you can turn to the vast Internet resources to find information.) We recommend that

you avoid the make config utility.

If you prefer to use a command-line interface, you can use make menuconfig to config-

ure the Linux kernel. menuconfig provides a graphical wrapper around a text interface.

Although it is not as raw as make config, menuconfig is not a fancy graphical interface

either; you cannot use a mouse but must navigate through it using keyboard commands.

The same information presented in make config is presented by make menuconfig, but it

looks a little nicer. Now, at least you can move back and forth in the selection process if

you change your mind or make a mistake.

In make menuconfig, you use the arrow keys to move the selector up and down and the

spacebar to toggle a selection. The Tab key moves the focus at the bottom of the screen to

either Select, Exit, or Help.

If a graphical desktop is not available, menuconfig is the best you can do. However, both

menuconfig and xconfig (see the following explanation of each) are improvements over

editing the .config file directly. If you want to configure the kernel through a true graphi-

cal interface—with mouse support and clickable buttons—make xconfig is the best config-

uration utility option. To use this utility, you must have the X Window System running.

The application xconfig is really nothing but a Tcl/Tk graphics widget set that provides

borders, menus, dialog boxes, and the like. Its interface is used to wrap around data files

that are parsed at execution time.

After loading this utility, you use it by clicking the buttons that list the configuration

options. Each button you click opens another window that has the detailed configura-

tion options for that subsection. Three buttons are at the bottom of each window: Main

Menu, Next, and Prev(ious). Clicking the Main Menu button closes the current window

and displays the main window. Clicking Next takes you to the next configuration section.

When configuring a kernel from scratch, click the button labeled Code Maturity Level

Options and then continue to click the Next button in each subsection window to pro-

ceed through all the kernel configuration choices. When you have selected all options, the

main menu is again displayed. The buttons on the lower right of the main menu are for

saving and loading configurations. Their functions are self-explanatory. If you just want to

have a look, go exploring! Nothing will be changed if you elect not to save it.

If you are upgrading kernels from a previous release, going through the entire configura-

tion from scratch is not necessary. Instead, you can use the directive make oldconfig;

it uses the same text interface that make config uses, and it is noninteractive. It just

prompts for changes for any new code.

Using xconfig to Configure the Kernel

For simplicity’s sake, during this brisk walkthrough, this discussion assumes that you are

using make xconfig and that prior to this point, you have completed the first five steps in

the kernel compilation list shown previously.

415

2
2

Compiling the Kernel

As you learned in the preceding section, you configure the kernel using make xconfig

by making choices in several configuration subsection windows. Each subsection win-

dow contains specific kernel options. With hundreds of choices, configuring the kernel

is daunting. We cannot really offer you detailed descriptions of which options to choose

because our configuration will not match your own system and setup.

Table 22.1 provides brief descriptions of many of the subsections and options so that you

can get an idea of what you might encounter. We recommend that you copy your ker-

nel’s .config file to /usr/src/linux-4.15 and run make xconfig from there. Explore all

the options. As long as you do not save the file, absolutely nothing is changed on your

system.

Table 22.1 Some Kernel Subsections for Configuration

Subsection Description

Code maturity level options Enables development code to be compiled into the ker-

nel even if it has been marked as obsolete or as testing

code only. This option should be used only by kernel

developers or testers because of the possible unusable

state of the code during development.

General setup This section contains several different options covering

how the kernel talks to the BIOS, whether it should sup-

port PCI or PCMCIA, whether it should use APM or ACPI,

and what kind of Linux binary formats will be supported.

Contains several options for supporting kernel structures

necessary to run binaries compiled for other systems

directly, without recompiling the program.

Loadable module support Determines whether the kernel enables drivers and other

nonessential code to be compiled as loadable modules

that can be loaded and unloaded at runtime. This option

keeps the basic kernel small so that it can run and

respond more quickly; in that regard, choosing this option

is generally a good idea.

Processor type and features Several options dealing with the architecture that will be

running the kernel.

Power management options Options dealing with ACPI and APM power management

features.

Bus options Configuration options for the PCMCIA bus found in lap-

tops and PCI hotplug devices.

Memory technology devices Options for supporting flash memory devices, such as

(MTD) EEPROMS. Generally, these devices are used in

embedded systems.

Parallel port support Several options for configuring how the kernel will support

parallel port communications.

416 CHAPTER 22 Kernel and Module Management

Subsection Description

Plug-and-play configuration Options for supporting plug-and-play (PnP) PCI, ISA, and

PnP BIOS support. Generally, supporting PnP for PCI and

ISA devices is a good idea.

Block devices Section dealing with devices that communicate with the

kernel in blocks of characters instead of streams. This

includes IDE and ATAPI devices connected via parallel

ports, as well as enabling network devices to communi-

cate as block devices.

ATA/IDE/MFM/RLL support Large collection of options to configure the kernel to com-

municate using different types of data communication

protocols to talk to mass storage devices, such as hard

drives. Note that this section does not cover SCSI.

SCSI device support Options for configuring the kernel to support Small

Computer System Interface (SCSI). This subsection

covers drivers for specific cards, chipsets, and tunable

parameters for the SCSI protocol.

Old CD-ROM drivers Configuration options to support obscure, older CD-ROM

devices that do not conform to the SCSI or IDE stan-

dards. These are typically older CD-ROM drivers that are

usually a proprietary type of SCSI (not SCSI and not IDE).

Multidevice support Options for enabling the kernel to support RAID devices

in RAID and LVM software emulation and the different lev-

els of RAID. Also contains options for support of a logical

volume manager.

Fusion MPT device support Configures support for LSI’s Logic Fusion Message

Passing Technology for high-performance SCSI and LAN

interfaces.

IEEE1394 (firewire) support Experimental support for FireWire devices.

I20 device support Options for supporting the Intelligent Input/Output archi-

tecture, which enables the hardware driver to be split

from the operating system driver, thus enabling a multi-

tude of hardware devices to be compatible with an oper-

ating system in one implementation.

Networking support Several options for the configuration of networking in the

kernel. The options are for the types of supported proto-

cols and configurable options of those protocols.

Amateur radio support Options for configuring support of devices that support

the AX25 protocol.

IrDA (infrared) support Options for configuring support of the infrared Data

Association suite of protocols and devices that use these

protocols.

Bluetooth support Support for the Bluetooth wireless protocol. Includes

options to support the Bluetooth protocols and hardware

devices.

417

2
2

Compiling the Kernel

Subsection Description

ISDN subsystem Options to support Integrated Services Digital Network

(ISDN) protocols and devices. ISDN is a method of con-

nection to a large area network digitally over conditioned

telephone lines, largely found to connect users to ISPs.

Telephony support Support for devices that enable the use of regular tele-

phone lines to support Voice over Internet Protocol (VoIP)

applications. This section does not handle the configura-

tion of modems.

Input device support Options for configuring Universal Serial Bus (USB) human

interface devices (HID) such as keyboards, mice, and

joysticks.

Character devices Configuration options for devices that communicate to

the server in sequential characters. This is a large sub-

section containing the drivers for several motherboard

chipsets.

Multimedia devices Drivers for hardware implementations of video and sound

devices such as video capture boards, TV cards, and AM/

FM radio adapter cards.

Graphics support Configuration options for VGA text console, video mode

selection, and support for frame buffer cards.

Sound Large subsection to configure supported sound card driv-

ers and chipset support for the kernel.

USB support USB configuration options. Includes configuration for USB

devices and vendor-specific versions of USB.

File system Configuration options for supported file system types.

Additional device driver

support

A section for third-party patches.

Profiling support Profiling kernel behavior to aid in debugging and

development.

Kernel hacking A section that determines whether the kernel will contain

advanced debugging options. Most users will not want to

include this option in their production kernels because it

increases the kernel size and slows performance by add-

ing extra routines.

Security options Configuration options for whether the NSA’s Security

Enhanced Linux (SELinux) is enabled.

Cryptographic options Support for cryptography hardware. (Ubuntu patches not

found in the vanilla kernel sources.)

Library routines Options for zlib compression support.

After you select all the options you want, you can save the configuration file and continue

with step 7 in the kernel compilation steps list shown earlier.

418 CHAPTER 22 Kernel and Module Management

Creating an Initial RAM Disk Image

If you require special device drivers to be loaded to mount the root file system (for SCSI

drives, network cards, or exotic file systems, for example), you must create an initial RAM

disk image named /boot/initrd.img. For most users, creating this file is not necessary,

but if you are not certain, having it really does not hurt. To create an initrd.img file,

use the shell script /sbin/mkinitrd. The format for the command is the following, where

file_name is the name of the image file you want to create:

/sbin/mkinitrd file_name kernel_version

mkinitrd looks at /etc/fstab, /etc/modprobe.conf, and /etc/ raidtab to obtain the

information it needs to determine which modules should be loaded during boot. For our

system, we use the following:

matthew@seymour:~$ sudo mkinitrd initrd-5.4.0.img 5.4.0-1

When Something Goes Wrong
Several things might go wrong during a kernel compile and install, and several clues point

to the true problem. You may see error messages printed to the screen, and some error

messages are printed to the file /var/log/syslog, which you can examine with a text edi-

tor. If you have followed the directions for patching the kernel, you need to examine a

special error log as well. Do not worry about most errors because many problems are easily

fixed with some research on your part. Some errors may be unfixable, however, depending

on your skill level and the availability of technical information.

Errors During Compile

Although it is rare that the kernel will not compile, there is always a chance that some-

thing has slipped though the regression testing. Let’s take a look at an example of a prob-

lem that might crop up during the compile.

It is possible that the kernel compile may crash and not complete successfully, especially

if you attempt to use experimental patches, add untested features, or build newer and per-

haps unstable modules on an older system.

At this juncture, you have two options:

 ▶ Fix the errors and recompile.

 ▶ Remove the offending module or option and wait for the errors to be fixed by the

kernel team.

Most users will be unable to fix some errors because of the complexity of the kernel code,

although you should not rule out this option. It is possible that someone else discovered

the same error during testing of the kernel and developed a patch for the problem, so you

can check the Linux kernel mailing list archive. If the problem is not mentioned there, a

search on Google might turn up something.

419

2
2

References

The second option, removing the code, is the easiest and is what most people do in cases

in which the offending code is not required. In the case of the NTFS module failing, it

is almost expected because NTFS support is still considered experimental and subject to

errors. This is primarily because the code for the file system is reverse-engineered instead

of implemented via documented standards. Read-only support has gotten better in recent

kernels; write support is still experimental.

Finally, if you want to take on the task of trying to fix the problem yourself, this is a great

opportunity to get involved with the Linux kernel and make a contribution that could

help many others.

If you are knowledgeable about coding and kernel matters, you might want to look in the

Maintainers file in the /usr/src/linux-5.4/ directory of the kernel source and find the

maintainer of the code. The recommended course of action is to contact the maintainer to

see if the maintainer is aware of the problems you are having. If nothing has been docu-

mented for the specific error, submitting the error to the kernel mailing list is an option.

The guidelines for doing this are in the README file in the base directory of the kernel

source under the section IF SOMETHING GOES WRONG.

Runtime Errors, Boot Loader Problems, and Kernel Oops

Runtime errors occur as the kernel is loading. Error messages are displayed on the screen

or are written to the /var/log/syslog file. Boot loader problems display messages to the

screen; no log file is produced. Kernel oops are errors in a running kernel, and error mes-

sages are written to the /var/log/syslog file.

Excellent documentation exists on the Internet for troubleshooting just about every type

of error that GRUB2 or the kernel could give during boot. The best way to find this docu-

mentation is to go to your favorite search engine and type in the keywords of the error

you received. Adjust the keywords you use as you focus your search.

If you have GRUB problems, see the GRUB manual online at www.gnu.org/software/grub/

manual/ and look for further information at https://help.ubuntu.com/community/Grub2.

References
 ▶ www.kernel.org—The Linux Kernel Archives, the source of all development dis-

cussion for the Linux kernel

 ▶ www.gnu.org—A source for manuals and software for programs used throughout

the kernel compilation process as well as official documentation for tools such as

make and gcc

 ▶ https://wiki.ubuntu.com/Kernel—The starting point for anything you want to

know about both Ubuntu and its use of the Linux kernel

 ▶ https://wiki.ubuntu.com/Kernel/FAQ—The Ubuntu kernel team’s answers to

the most commonly asked questions about Ubuntu’s use of Linux kernels

http://www.gnu.org/software/grub/manual/
http://www.gnu.org/software/grub/manual/
https://help.ubuntu.com/community/Grub2
http://www.kernel.org
http://www.gnu.org
https://wiki.ubuntu.com/Kernel
https://wiki.ubuntu.com/Kernel/FAQ

420 CHAPTER 22 Kernel and Module Management

 ▶ www.tldp.org—The Linux Documentation Project, the mecca of all Linux docu-

mentation and an excellent source of HOWTO documentation as well as FAQs and

online books about Linux

 ▶ www.minix3.org—The MINIX website, which contains a selection of links to

information about MINIX, a free, open-source, operating system designed to be

highly reliable, flexible, and secure

http://www.tldp.org
http://www.minix3.org

IN THIS CHAPTER

 ▶ Using Network File System

 ▶ Putting Samba to Work

 ▶ Network and Remote Printing

with Ubuntu

 ▶ References

CHAPTER 23

Sharing Files and
Printers

In the early days of computing, file and printer sharing

was pretty much impossible because of the lack of good

networking standards and interoperability. If you wanted

to use a printer connected to another computer, you had

to save the file to a floppy disk and walk to the other com-

puter. Sometimes people do practically the same thing

today, using a USB thumb drive or emailing the file. How-

ever, there are better ways.

Both file and printer sharing are important because it is

not unusual for someone to own more than one computer.

Whether you want to share photographs among various

computers or have a central repository available for collabo-

ration, file sharing is an important part of the information

age. Alongside this is the need to be able to share printers;

after all, people do not want to have to plug and unplug

a computer to a printer just so they can print out a quick

letter.

Whatever your reasons for needing to share files and

printers across a network, you find out how to do both in

this chapter. This chapter shows you how you can share

files using the popular UNIX NFS protocol and the more

Windows-friendly Samba system. The chapter covers both

graphical and command-line tools, so you should find

something to suit the way you work.

CAUTION

By default, Ubuntu ships with all its network ports

blocked. That is, it does not listen to any requests on any

network ports when it is first installed. To configure the

firewall, use Uncomplicated Firewall (UFW) as described in

Chapter 20, “Securing Your Machines.”

422 CHAPTER 23 Sharing Files and Printers

Using Network File System
Network File System (NFS) is a protocol developed by Sun Microsystems that enables com-

puters to use a remote file system as if it were a real part of the local machine. A common

use of NFS is to allow users’ /home directories to appear on every local machine they use,

thus eliminating the need to have physical home directories. This opens up hot desking

and other flexible working arrangements, especially because no matter where the users are,

their /home directories follow them around.

Another popular use for NFS is to share binary files between similar computers. If you

have a new version of a package that you want all machines to have, you have to upgrade

only on the NFS server, and all hosts running the same version of Ubuntu have the same

upgraded package.

Installing and Starting or Stopping NFS

NFS is not installed by default on Ubuntu, so you need to install the nfs-kernel-server

package. NFS itself consists of several programs that work together. One is portmap, which

maps NFS requests to the correct daemon. Two others are nfsd, which is the NFS daemon,

and mountd, which controls the mounting and unmounting of file systems.

Ubuntu automatically adds NFS to the system startup scripts, so it will always be available

after you have configured it. To check this, use the command sudo /etc/init.d/nfs-

kernel-server status, and you see that the service is running. If you need to manually

start the NFS server, use the following command:

matthew@seymour:~$ sudo systemctl start nfs

In this example, NFS has been started. Use stop to stop the service or restart to restart

the service. This approach to controlling NFS is handy, especially after configuration

changes have been made. See the next section on how to configure NFS support on your

Ubuntu system.

NFS Server Configuration

You can configure the NFS server by editing the /etc/exports file. This file is similar

to the /etc/fstab file in that it is used to set the permissions for the file systems being

exported. The entries look like this:

/file/system yourhost(options) *.yourdomain.com(options) 192.168.0.0/24(options)

This shows three common clients to which to share /file/system. The first, yourhost,

shares /file/system to just one host. The second, .yourdomain.com, uses the asterisk (*)

as a wildcard to enable all hosts in yourdomain.com to access /file/system. The third

share enables all hosts of the Class C network 192.168.0.0 to access /file/share. For secu-

rity, it is best not to use shares such as the last two across the Internet because all data will

be readable by any network the data passes by.

Table 23.1 shows some common options.

http://*.yourdomain.com(
http://.yourdomain.com
http://yourdomain.com

423

2
3

Using Network File System

Table 23.1 /etc/fstab Options

Option Purpose

Rw Gives read and write access

Ro Gives read-only access

async Writes data when the server, not the client, feels the need

Sync Writes data as it is received

The following is an example of an /etc/exports file:

/etc/exports: the access control list for filesystems which may be exported

to NFS clients. See exports(5).

/home/matthew 192.168.0.0/24(rw,no_root_squash)

This file exports (makes available) /home/matthew to any host in 192.168.0.* and allows

users to read from and write to /home/matthew.

After you have finished with the /etc/exports file, the following command exports all the file

systems in the /etc/exports file to a list named xtab under the /var/lib/nfs directory, which

is used as a guide for mounting when a remote computer asks for a directory to be exported:

matthew@seymour:~$ sudo exportfs -a

The -r option, which stands for re-export, tells the command to reread the entire /etc/

exports file and (re)mount all the entries. You can also use the exportfs command to

export specific files temporarily. Here’s an example using exportfs to export a file system:

matthew@seymour:~$ /usr/sbin/exportfs -o async yourhost:/usr/tmp

This command exports /usr/tmp to yourhost with the async option.

Be sure to restart the NFS server after making any changes to /etc/exports. If you prefer,

you can use Ubuntu’s shares-admin graphical client to set up NFS from the GUI. Search

for “personal file sharing” in the Dash to start. Fill in the required information, and off

you go. You still need to install some packages on Ubuntu for this to work (the same ones

mentioned earlier in this chapter, in the “Installing and Starting or Stopping NFS” section

and in the next section, “NFS Client Configuration”).

NFS Client Configuration

To configure your host as an NFS client (to acquire remote files or directories), you need

to ensure that you have the nfs-common package installed to be able to access NFS shares.

After you’ve installed this, edit the /etc/fstab file as you would to mount any local file

system. However, instead of using a device name to be mounted (such as /dev/sda1),

enter the remote hostname and the desired file system to be imported. For example, an

entry might look like this:

Device Mount Point Type Options Freq Pass

yourhost:/home/share /export/share none nfs 0 0

424 CHAPTER 23 Sharing Files and Printers

You can also use the mount command, as root, to quickly attach a remote directory to

a local file system by using a remote host’s name and exported directory, as in this

example:

matthew@seymour:~$ sudo mount -t nfs 192.168.2.67:/music /music

After you press Enter, the entire remote directory appears on your file system. You can

verify the imported file system by using the df command, as follows:

matthew@seymour:~$ df

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda2 18714368 9642600 8121124 55% /

/dev/hda1 46636 13247 30981 30% /boot

none 120016 0 120016 0% /dev/shm

192.168.2.67:/music 36875376 20895920 14106280 60% /music

Make sure the desired mount point exists before using the mount command. When you are

finished using the directory (perhaps for copying backups), you can use the umount com-

mand to remove the remote file system. Note that if you specify the root directory (/) as

a mount point, you cannot unmount the NFS directory until you reboot (because Linux

complains that the file system is in use).

Putting Samba to Work
Samba uses the Server Message Block (SMB) protocol to enable the Windows operating sys-

tem (or any other operating system) to access Linux files. Using Samba, you can make

your Ubuntu machine look just like a Windows computer to other Windows computers

on your network—without needing to install Windows on your PC.

Although Samba is a complex program, setting it up and using it do not have to be diffi-

cult. There are many options, which accounts for some of Samba’s complexity. Depending

on what you want, Samba’s use can be as easy or as difficult as you would like it to be.

Fortunately, Ubuntu includes a very easy way to access files on a Windows network share

by default. To start, find the Network entry in the menu at the left side of the Settings

application. If there are other computers on the network with shared files using Windows

or Samba, you will see a Windows Network icon that, when double-clicked, shows you all

Windows domains or workgroups on your network. Just double-click any computer icon

there to access shares and files.

To share from your Ubuntu desktop, right-click a folder you own while using the file

browser (most likely one in your /home/username directory) and select Local Network

Share. You are given a chance to confirm your desire to share the folder and give it a

name. Sharing gives others the permission to view—but not necessarily to create or

delete—files, although those permissions are also available from this menu. If you do not

have the Windows sharing service already installed on your computer, Ubuntu prompts

you for permission to install it.

425

2
3

Putting Samba to Work

NOTE

Most Ubuntu users do not need the information contained in the rest of this section

because installing the sharing service also takes care of the configuration and, as a

result, everything should just work.

For greater configurability and control, follow these instructions:

 1. Install Samba and the GUI configuration application by installing these packages:

samba and samba-common.

 2. From the applications menu, search for samba and open it.

 3. In the Samba configuration application, open Preferences and then Server Settings.

Here you will configure basic settings such as setting Workgroup to the name of

your Windows workgroup name on your network and giving a description of your

computer to be seen by others on the network. You can change the computer’s net-

work security options for Samba here as well, but the default settings are good.

 4. Also in the Samba configuration application, open Preferences and then Samba

Users. Click Add User. You need to enter the details for the following:

 ▶ The user on this Ubuntu machine who will be given privileges to use Samba to

view files on other network computers

 ▶ A Windows username that will be used when accessing this Ubuntu machine’s

files from a Windows machine on the network

 ▶ A password that will be required with the Windows username when accessing

files on this Ubuntu computer from a Windows machine

 5. Restart Samba from the terminal to finish by entering sudo service samba restart.

You can share a folder from the Samba configuration application; set directory, name, and

read/write permissions; and access users.

For even greater configurability, read through the editable configuration file at /etc/samba/

smb.conf. It is well commented and clear and explained in greater detail later in this chapter.

To learn more about Samba, see www.samba.org. This section delves into the basics of

configuring Samba, and you should first read how to manually configure Samba to get an

understanding of how the software works.

When you install Samba, also installing the samba-doc and samba-doc-pdf packages is a

good idea because they contain extensive documentation in text, PDF, and HTML formats.

After you install Samba, you can find this documentation in /usr/share/doc/samba*/

doc. If you install Samba using your Ubuntu disc, you can find a large amount of docu-

mentation in the directory tree starting at /usr/share/doc/samba-doc or /usr/share/doc/

http://www.samba.org

426 CHAPTER 23 Sharing Files and Printers

samba-doc-pdf. Altogether, almost 3MB of documentation is included with the source

code, in several formats, including PDF, HTML, and text.

After installing Samba, you can either create the file /etc/samba/smb.conf or use the

smb.conf file supplied with Samba, which is located by default under the /etc/samba

directory with Ubuntu. You can find nearly a dozen sample configuration files in the

/usr/share/doc/samba*/examples directory.

NOTE

Depending on your needs, smb.conf can be a simple file of fewer than 20 lines or a huge

file spanning many pages of text. If your needs are complex, I suggest that you browse

through the Samba website at www.samba.org.

Manually Configuring Samba with /etc/samba/smb.conf

The /etc/samba/smb.conf file is broken into sections. Each section provides a description

of the resource that is to be shared (called a Samba share or just a share) and should be

titled appropriately. The three special sections are as follows:

 ▶ [global]—Establishes the global configuration settings (defined in detail in the

smb.conf man page and Samba documentation, found in the /usr/share/doc/

samba/docs directory)

 ▶ [homes]—Shares users’ /home directories and specifies directory paths and

permissions

 ▶ [printers]—Handles printing by defining shared printers and printer access

Each section in your /etc/samba/smb.conf configuration file should be named for the

resource being shared. For example, if the resource /usr/local/programs is being shared,

you could call the section [programs]. When Windows sees the share, it is called by what-

ever you name the section (programs in this example). The easiest and fastest way to set

up this share is with the following example from smb.conf:

[programs]

path = /usr/local/programs

writeable = true

This bit shares the /usr/local/programs directory with any valid user who asks for it and

makes that directory writable. It is the most basic share because it sets no limits on the

directory.

Here are some parameters you can set in the sections:

 ▶ Requiring a user to enter a password before accessing a shared directory

 ▶ Limiting the hosts allowed to access the shared directory

 ▶ Altering permissions users are allowed to have on the directory

 ▶ Limiting the time of day during which the directory is accessible

http://www.samba.org

427

2
3

Putting Samba to Work

The possibilities are almost endless. Any parameters set in the individual sections override

the parameters set in the [global] section. The following section adds a few restrictions

to the [programs] section:

[programs]

path = /usr/local/programs

writeable = true

valid users = mhelmke

browseable = yes

create mode = 0700

NOTE

You can spell it as writeable or writable; either variant will work, and both spellings

are used in this chapter.

The valid users entry in this example limits userid to just mhelmke. All other users can

browse the directory because of the browseable = yes entry, but only mhelmke can write

to the directory. Any files created by ahudson in the directory give ahudson full permis-

sions, but no one else will have access to these files. This is the same as setting permis-

sions with the chmod command. Again, there are numerous options, so you can be as

creative as you want when developing sections.

Setting Global Samba Behavior with the [global] Section

The [global] section establishes configuration settings for all of Samba. If a given parame-

ter is not specifically set in another section, Samba uses the default setting in the [global]

section. The [global] section also sets the general security configuration for Samba. The

[global] section is the only section that does not require the name in brackets.

Samba assumes that anything before the first bracketed section not labeled [global]

is part of the global configuration. (Using bracketed headings in /etc/samba/smb.conf

makes your configuration file more readable.) The following sections discuss common

Samba settings to share directories and printers. You will then see how to test your Samba

configuration.

Sharing Home Directories Using the [homes] Section

The [homes] section shares Ubuntu /home directories for the users. The /home directory is

shared automatically when a user’s Windows computer connects to the Linux server hold-

ing the /home directory. The one problem with using the default configuration is that the

users see all the configuration files (such as .profile and other files with a leading period

in the filename) that they normally wouldn’t see when logging on through Linux. One

quick way to avoid this is to include a path option in the [homes] section. To use this

solution, any user who requires a Samba share of his or her /home directory needs a sepa-

rate “home directory” to act as the Windows /home directory.

428 CHAPTER 23 Sharing Files and Printers

This setting specifies that the directory named share under each user’s directory is the

shared Samba directory. The corresponding manual smb.conf setting to provide a separate

“home directory” looks like this:

[homes]

 comment = Home Directories

 path = /home/%u/share

 valid users = %S

 read only = No

 create mask = 0664

 directory mask = 0775

 browseable = No

If you have a default [homes] section, the share shows up in the user’s Network Neighbor-

hood as the user’s name. When the user connects, Samba scans the existing sections in

smb.conf for a specific instance of the user’s /home directory. If there is not one, Samba

looks up the username in /etc/passwd. If the correct username and password have been

given, the home directory listed in /etc/passwd is shared out at the user’s /home directory.

Typically, the [homes] section looks like this:

[homes]

browseable = no

writable = yes

The browseable = no entry in this example prevents other users from being able to

browse the /home directory and is a good security practice.

This example shares out the /home directory and makes it writable to the user. Here’s how

you specify a separate Windows /home directory for each user:

[homes]

browseable = no

writable = yes

path = /path/to/windows/directories

Sharing Printers by Editing the [printers] Section

The [printers] section works much like the [homes] section but defines shared printers

for use on your network. If the section exists, users have access to any printer listed in

your Ubuntu /etc/printcap file. Note that /etc/printcap is not used if CUPS is installed

and printing=CUPS is listed in the [global] section.

As with the [homes] section, when a print request is received, all the sections are scanned

for the printer. If no share is found (with careful naming, there should not be a share

found unless you create a section for a specific printer), the /etc/printcap file is scanned

for the printer name that is then used to send the print request.

For printing to work properly, you must correctly set up printing services on your Ubuntu

computer. A typical [printers] section looks like this:

[printers]

comment = Ubuntu Printers

429

2
3

Putting Samba to Work

browseable = no

printable = yes

path = /var/spool/samba

/var/spool/samba is a spool path set just for Samba printing.

Testing Samba with the testparm Command

After you have created your /etc/samba/smb.conf file, you can check it for correctness by

using the testparm command. This command parses through your /etc/samba/smb.conf

file and checks for any syntax errors. If none are found, your configuration file will prob-

ably work correctly. It does not, however, guarantee that the services specified in the file

will work; it is merely making sure that the file is correctly written.

As with all configuration files, if you are modifying an existing, working file, it is always

prudent to copy the working file to a different location and modify that file. Then you

can check the file with the testparm utility. The command syntax is as follows:

matthew@seymour:~$ sudo testparm /path/to/smb.conf.back-up

Load smb config files from smb.conf.back-up

Processing section "[homes]"

Processing section "[printers]"

Loaded services file OK.

This output shows that the Samba configuration file is correct, and as long as all the ser-

vices are running correctly on your Ubuntu machine, Samba should be working correctly.

Now copy your old smb.conf file to a new location, put the new one in its place, and

restart Samba with the command sudo smbd restart. Your new or modified Samba con-

figuration should now be in place.

Starting, Stopping, and Restarting the smbd Daemon

After your smb.conf file is correctly configured, you might want to start, stop, or restart

your Samba server daemon. You can do this with the /usr/sbin/smbdsystemctl samba

start command, which starts the Samba server with all the defaults. The most common

option you will change in this command is the location of the smb.conf file; you change

this option if you don’t want to use the default location /etc/samba/smb.conf. The -s

option enables you to change the smb.conf file Samba uses; this option is also useful

for testing whether a new smb.conf file actually works. Another useful option is the -l

option, which specifies the log file Samba uses to store information.

To start, stop, or restart Samba from the command line, use the following, replacing start

with either stop or restart as appropriate:

matthew@seymour:~$ sudo systemctl samba start

430 CHAPTER 23 Sharing Files and Printers

Using the smbstatus Command

The smbstatus command reports on the current status of your Samba connections. The

syntax is as follows:

/usr/bin/smbstatus [options]

Table 23.2 shows some of the available options.

Table 23.2 smbstatus Options

Option Result

-b Brief output

-d Verbose output

-s /path/to/

config
Used if the configuration file used at startup is not the standard one

-u username Shows the status of a specific user’s connection

-p Lists current smb processes, which can be useful in scripts

Connecting with the smbclient Command

The smbclient command allows users on other Linux hosts to access your smb shares. You

cannot mount a share on your host, but you can use it in a way that is similar to an FTP

client. Several options can be used with the smbclient command. The most frequently

used is -I followed by the IP address of the computer to which you are connecting. The

smbclient command does not require root access to run:

matthew@seymour:~$ smbclient -I 10.10.10.20 -Uusername%password

This gives you the following prompt:

smb: <current directory on share>

From here, the commands are almost identical to the standard UNIX/Linux FTP com-

mands. Note that you can omit a password on the smbclient command line. You are then

prompted to enter the Samba share password.

Mounting Samba Shares

There are two ways to mount Samba shares to your Linux host. Mounting a share is the

same as mounting an available media partition or remote NFS directory except that the

Samba share is accessed using SMB. The first method is to use the standard Linux mount

command:

matthew@seymour:~$ sudo mount -t smbfs //10.10.10.20/homes /mount/point -o

username=sandra,dmask=777,\ fmask=777

NOTE

You can substitute the IP address for the hostname if your name service is running or the

host is in your /etc/hosts file.

431

2
3

Network and Remote Printing with Ubuntu

The preceding command mounts sandra’s /home directory on your host and gives all users

full permissions to the mount. The permissions are equal to the permissions on the chmod

command.

The second method produces the same results using the smbmount command, as follows:

matthew@seymour:~$ sudo smbmount //10.10.10.20/homes /mount/point -o

username=sandra,dmask-777,\ fmask=777

To unmount the share, use the following standard command:

matthew@seymour:~$ sudo umount /mount/point

You can also use these mount commands to mount true Windows client shares to your

Ubuntu host. Using Samba, you can configure your server to provide any service Windows

can serve, and no one but you will ever know.

Network and Remote Printing with Ubuntu
Chapter 1, “Installing Ubuntu and Post-Installation Configuration,” discusses how to set

up and configure local printers and the associated print services. This section covers con-

figuring printers for sharing and access across a network.

Offices all around the world benefit from using print servers and shared printers. It is a

simple thing to do and can bring real productivity benefits, even in small settings.

Creating Network Printers

Setting up remote printing service involves configuring a print server and then creating a

remote printer entry on one or more computers on your network. This section introduces

a quick method of enabling printing from one Linux workstation to another Linux com-

puter on a LAN. You also learn about SMB printing using Samba and its utilities. Finally,

this section discusses how to configure network-attached printers and use them to print

single or multiple documents.

Enabling Network Printing on a LAN

If a computer with an attached printer is using Ubuntu and you want to set up the system

for print serving, use the system-config-printer client to create a new printer, which is

available in the menu at System, Administration, Printing.

You need to install any printers you have to the server as discussed in Chapter 1. (Click

Add and wait a moment, and it is likely that the printer will be detected automatically;

it is probably easy enough that you don’t have to consult the instructions in Chapter 1.)

Next, open Server, Settings and enable Publish Shared Printers Connected to This System.

Click OK. Right-click any printer’s icon and select Share. That’s it. Most users will not

need the information in the rest of this section, even to enable access to Common UNIX

Printing System (CUPS) via the web interface.

432 CHAPTER 23 Sharing Files and Printers

To enable sharing manually, edit your /etc/cups/cupsd.conf file. Look for the section

that begins with <Location /> and modify it so that it reads as follows:

<Location />

Order Deny,Allow

Deny From All

Allow From 127.0.0.1

Allow From 192.168.0.*

</Location>

This tells CUPS to share your printers across the network 192.168.0.*, for example. Make

sure to change this to match your network settings.

Next, you need to look in the same file for the section that starts like this:

Listen localhost:631

Modify it to show this:

Listen 631

This tells CUPS to listen on port 631 for any printer requests.

Server Message Block Printing

Printing to an SMB printer requires Samba, along with its utilities such as the smbclient

and associated smbprint printing filter. You can use the Samba software included with

Ubuntu to print to a shared printer on a Windows network or set up a printer attached to

your system as an SMB printer. This section describes how to create a local printer entry to

print to a remote shared printer using SMB.

You usually set up an SMB or shared printer under Windows operating systems through

configuration settings using the Control Panel’s Network device. After enabling print shar-

ing, reboot the computer. In the My Computer, Printers folder, right-click the name or

icon of the printer you want to share and select Sharing from the pop-up menu. Set the

Shared As item and then enter a descriptive shared name, such as HP2100, and a password.

You must enter a shared name and password to configure the printer when running

Linux. You also need to know the printer’s workgroup name, IP address, and printer

name, and you must have the username and password on hand. To find this information,

select Start, Settings, Printers, and then right-click the shared printer’s listing in the Print-

ers window. Select Properties from the pop-up window.

You can use CUPS to configure Samba to use your printers by editing the smb.conf file.

In the [global] section enter the following lines if they are not already there:

...

load printers = yes

printing = cups

printcap name = cups

433

2
3

Network and Remote Printing with Ubuntu

This tells Samba to use CUPS to provide printing services. Next, you need to create a new

section in the smb.conf file at the end of the file, as follows:

[printers]

comment = Use this for All Printers

path = /var/spool/samba

browseable = no

public = yes

guest ok = yes

writable = no

printable = yes

printer admin = root, andrew

This publishes your printers to the network and allows others to connect to them via Win-

dows clients.

Make sure you restart the Samba service using the command shown earlier to cause Samba

to pick up the changes to the configuration file.

Using the CUPS GUI

You can use CUPS to create printer queues, get print server information, and manage

queues by launching a browser (such as Firefox) and browsing to http://localhost:631.

CUPS provides a web-based administration interface, as shown in Figure 23.1.

FIGURE 23.1 Use the web-based CUPS administrative interface to configure and manage

printing.

If you click the Administration tab in the browser page, you can start configuring your

printers, as shown in Figure 23.2.

http://localhost:631

434 CHAPTER 23 Sharing Files and Printers

FIGURE 23.2 Select the Administration tab to perform printer administration with CUPS.

Creating a CUPS Printer Entry

This section provides a short example of creating a Linux printer entry using the CUPS

web-based interface. You can use the CUPS interface to create a printer and device queue

type (such as local, remote, serial port, or Internet); then you can enter a device uniform

resource identifier (URI), such as lpd://192.168.2.35/lp, which represents the IP address

of a remote UNIX print server and the name of the remote print queue on the server.

You also need to specify the model or make of printer and its driver. A Printers page link

enables you to print a test page, stop the printing service, manage the local print queue,

modify the printer entry, or add another printer.

In the Admin page, click the Add Printer button and then enter the username and pass-

word of someone on this computer who has sudo privileges. You can then select from

detected local printers, discovered network printers, or the type of printer for which you

may want to enter details manually.

CUPS offers many additional features and provides transparent traditional UNIX printing

support for Ubuntu.

NOTE

To learn more about CUPS and to get a basic overview of the system, visit www.cups.org.

Avoiding Printer Support Problems

Troubleshooting printer problems can be frustrating, especially if you find that your

new printer is not working properly with Linux. Keep in mind, however, that nearly all

http://www.cups.org

435

2
3

References

printers on the market today work with Linux. However, some vendors have higher bat-

ting averages than others in the game of supporting Linux.

All-in-One (Print/Fax/Scan) Devices

Problematic printers, or printing devices that might or might not work with Ubuntu,

include multifunction (or all-in-one) printers that combine scanning, faxing, and printing

services. You should research any planned purchase and avoid any vendor that is unwill-

ing to support Linux with drivers or development information.

Using USB and Legacy Printers

Problems can arise because of a lack of a printer’s Universal Serial Bus (USB) vendor and

device ID information—a problem shared by some USB scanners under Linux.

RELATED UBUNTU AND LINUX COMMANDS

The following commands can help you manage printing services:

 ▶ cupsaccept—Allows print job access to the CUPS server

 ▶ cupsreject—Prevents print job access to the CUPS server

 ▶ cupscancel—Cancels a print job

 ▶ cupsdisable—Disables printing

 ▶ cupsenable—Enables printing

 ▶ lp—Sends a specified file to the printer and allows control of the print service

 ▶ lpc—Displays the status of printers and print service at the console

 ▶ lpq—Views print queues (pending print jobs) at the console

 ▶ lprm—Removes print jobs from the print queue via the command line

 ▶ lpstat—Displays printer and server status

References
 ▶ https://help.ubuntu.com/community/SettingUpNFSHowTo—Ubuntu com-

munity documentation for setting up NFS

 ▶ https://help.ubuntu.com/community/Samba—Ubuntu community docu-

mentation for setting up Samba

 ▶ www.samba.org—Base entry point for getting more information about Samba and

using the SMB protocol with Linux, UNIX, macOS, and other operating systems

 ▶ www.cups.org—A comprehensive repository of CUPS software and information

https://help.ubuntu.com/community/SettingUpNFSHowTo
https://help.ubuntu.com/community/Samba
http://www.samba.org
http://www.cups.org

This page intentionally left blank

IN THIS CHAPTER

 ▶ LAMP

 ▶ LEMP

 ▶ MEAN

 ▶ References

CHAPTER 24

Common Web Server
Stacks

A web server stack is a set of software installed and con-

figured to work together to serve content over a network.

There are many stacks of software that are common enough

to be referred to using acronyms. This chapter describes

some of the most popular. Before diving deeply into each

of the related technologies, this chapter introduces some of

the most popular types of web server stacks in use today.

All the stacks in this chapter can be assembled and run

on Ubuntu or any Linux distribution and are common

enough to be worth knowing something about. The pieces

being used to assemble the stacks described in this chapter

can often be replaced with different software that serves

the same purpose, as is illustrated in the discussion of the

LAMP stack.

There is a lot to think about, regardless of which stack you

choose. This chapter is intended to give a high-level over-

view of a few popular options. Large books have been writ-

ten and are available for the various stacks, for each of the

underlying layers in the stacks, and so on. The goal of this

chapter is to help you begin to think about how to accom-

plish a much larger goal, not to outline all the necessary

steps and configurations.

LAMP
LAMP was one of the first stacks to become popular. It is

composed of Linux, the Apache web server, the MySQL

database, and either PHP, Python, or Perl. (See the bonus

online chapters for more information about these lan-

guages.) Because all the technologies comprising LAMP are

free and open source, LAMP is inexpensive to set up and

438 CHAPTER 24 Common Web Server Stacks

use, making it much more affordable than other options for setting up a web server or

even selling web hosting to others.

LAMP became popular during the initial rise of Linux as an operating system for web

hosting, both in large enterprise corporations looking to save money and in small startup

companies selling server space and web hosting to mom-and-pop stores wanting to join

the Internet craze. With its careful concern for stability and security, inherited from the

creator’s love of UNIX, coupled with being free to install and use and update, Linux was

from the start an ideal platform for most hosting needs.

LAMP is still popular and in wide use today. Many large sites use LAMP applications, and

LAMP is not going away anytime soon.

Running on top of Linux is the Apache web server. (See Chapter 25, “Apache Web Server

Management,” for detailed information about Apache.) Apache takes care of listening to

an open communication port for requests and responding to those requests by serving the

requested information.

Working in conjunction with Apache is a database that stores the information to be

served. This is typically a relational database such as MySQL. (See Chapter 28, “Adminis-

tering Relational Database Services,” for detailed information about MySQL.) These days, it

could be MySQL or MariaDB or PostgreSQL or another similar product.

Off-the-shelf commodity as well as custom content management software has been writ-

ten using PHP, Python, or Perl. For example, WordPress uses PHP, django CMS uses

Python, and Movable Type uses Perl. Which language you install and use depends on the

framework or software you are using or which you prefer to use to write your software.

Of the web stacks discussed in this chapter, the LAMP stack is the easiest to install quickly.

If you install Ubuntu Server, you are given an option of setting up the machine as a LAMP

server during installation. You can even set the root password for MySQL during installa-

tion. The upside is that you can have a complete LAMP server up and running in 15 min-

utes or so. The downside to this method is that you are limited in your configuration. You

will install Ubuntu (Linux), Apache, MySQL, and PHP. That is great if you simply want to

install a product such as WordPress next or do some simple web development. For any-

thing more unique, however, we suggest that you install the server first and then install

and configure each component, one at a time.

To install LAMP on your own, you need to first install Ubuntu—which can be standard

Ubuntu if you are going to use a local laptop or desktop machine for development or

Ubuntu Server on a remote machine. Then you can install each of the following compo-

nents, setting up and configuring each one before moving to the next:

 1. Install OpenSSH and configure the machine for SSH access. This is vital if you intend

to eventually serve content via HTTPS, which is becoming a necessity as major

browsers like Google Chrome intend to mark as insecure any websites that do not

use HTTPS.

 2. Install Apache 2 and set it up for the sites you intend to host, including HTTPS con-

figuration. Later, you will also configure your firewall to allow traffic via the ports

specific to HTTP and HTTPS (80 and 443).

439

2
4

LEMP

 As a side note, unless you are a large corporation, you do not need to pay for web

certificates from an expensive Certificate Authority anymore. Check out Let’s

Encrypt at https://letsencrypt.org/.

 3. Install MySQL, MariaDB, or your relational database of choice, making sure to set a

secure root password. You are strongly urged to create a web server–specific user in

the database that will interact with the database rather than use the root account in

your software.

 4. Install PHP, Python, or Perl as appropriate for the software you intend to run/write

that will display your content.

Alternatively, you can install and set up a basic LAMP stack much more easily using a

couple commands, as follows:

$ sudo apt install tasksel

$ sudo tasksel install lamp-server

This will install everything mentioned previously interactively, giving you a chance to set

your MySQL root password and so on during the process. Using tasksel is much more

convenient, but with a generic and simple configuration.

At this point, regardless of which method you use, the entire stack is installed. You can

now proceed to install open source software such as Drupal or develop your own.

LEMP
The main difference between LAMP and LEMP is the web server that is used. Whereas

LAMP uses Apache, LEMP uses Nginx. (See Chapter 26, “Nginx Web Server Management,”

for detailed information about Nginx.)

NOTE

It seems that whoever created the acronym LEMP decided a vowel was needed, so the E

stands for Nginx—but the server name is pronounced as though it starts with an E, so it

actually makes sense.

Beyond the obvious differences between Apache and Nginx as mature web servers with

different use cases, the only other difference is that there is currently not a LEMP option

in the Ubuntu Server installation. That does not make much difference, though, as we

recommend that you install Ubuntu first and then install and configure each component

individually rather than using the shortcut during Ubuntu installation.

NOTE

We could probably write a similar section for nearly every HTTP server listed in

Chapter 27, “Other HTTP Servers.” If someone wants to install an LLMP stack (Linux,

lighttpd, MySQL, PHP), for example, it is certainly possible.

https://letsencrypt.org/

440 CHAPTER 24 Common Web Server Stacks

MEAN
As the web moved forward with more and more dynamic websites and applications, it

became vital for web developers to know JavaScript. Then someone had the idea of writ-

ing applications that could run both on the client and server sides in the same language.

The foundational reasoning for doing this was speed. It takes time to develop for the Web.

If you use multiple programming languages, you have to either learn multiple languages

or hire people who know the languages you use. Further, as more and more websites have

become fully interactive experiences, learning JavaScript is already a necessity for more

developers. Therefore, JavaScript is now the language of choice for both the client and

server sides—and it is an important component in the MEAN web stack.

You do not have to be running Linux to serve content with MEAN. You can also run a

MEAN stack on Windows or on macOS. In addition, everything for this stack is written in

JavaScript. The database used is one of the NoSQL options, MongoDB, which works very

well with the JSON data format used in a MEAN stack.

A MEAN stack consists of four main components, regardless of the operating system being

used as a platform:

 ▶ MongoDB—One of the NoSQL databases discussed in Chapter 29, “NoSQL Data-

bases,” MongoDB is used to store data in JSON format for an application.

 ▶ Express.js—This back-end web application framework runs on Node.js.

 ▶ AngularJS or Angular—These are both JavaScript MVC (model–view–controller)

frameworks. Angular is newer and is a complete rewrite of AngularJS, with some

intentional changes along the way. Angular provides the front-end web application

framework that allows you to run code in a user’s browser.

 ▶ Node.js—Node.js is an execution environment for event-driven server-side

applications.

Regardless of your operating system, most MEAN stack users recommend downloading

and installing components from the respective websites rather than by using a package

manager provided by your operating system. Websites for each are listed here; download

and install the software in this order, following the provider’s instructions:

 1. Install MongoDB from www.mongodb.com/download-center.

 2. Install Node.js from https://nodejs.org/en/. When you do, you also install the npm

package manager, which you will use next.

 3. Use the command npm install express to install Express.js.

 4. Follow the Getting Started guide at https://angular.io to install Angular.

What is really different in a MEAN application than in a LAMP or other traditional appli-

cation is the flexibility. You can run application code on your server. You can run code

in the user’s browser. You can even run some application logic in the database, which is

especially nice for some types of analytics.

http://www.mongodb.com/download-center
https://nodejs.org/en/
https://angular.io

441

2
4

References

NOTE

You can replace Angular (originally from Google) with React (from Facebook), which serves

a similar purpose. You can also replace it with other frameworks, such as Ember.js or

Backbone.js, and still do all your development in JavaScript. Some love this flexibility, but

to others it is overwhelming. In any case way, MEAN development is here and is not likely

to disappear anytime soon.

References
 ▶ https://help.ubuntu.com/lts/serverguide/lamp-overview.html—LAMP in

the Ubuntu Server Guide

 ▶ www.mongodb.com—The official site of MongoDB

 ▶ https://nodejs.org—The official site of Node.js

 ▶ www.npmjs.com—Home of the npm package manager

 ▶ https://expressjs.com—The official site of Express.js

 ▶ https://angular.io—The official site of Angular

 ▶ https://emberjs.com—The official site of Ember.js

 ▶ http://backbonejs.org—The official site of Backbone.js

 ▶ https://reactjs.org—React, a JavaScript library for building user interfaces

https://help.ubuntu.com/lts/serverguide/lamp-overview.html
http://www.mongodb.com
https://nodejs.org
http://www.npmjs.com
https://expressjs.com
https://angular.io
https://emberjs.com
http://backbonejs.org
https://reactjs.org

This page intentionally left blank

IN THIS CHAPTER

 ▶ About the Apache Web Server

 ▶ Installing the Apache Server

 ▶ Runtime Server Configuration

Settings

 ▶ File System Authentication and

Access Control

 ▶ Apache Modules

 ▶ Virtual Hosting

 ▶ Logging

 ▶ HTTPS

 ▶ References

CHAPTER 25

Apache Web Server
Management

This chapter covers the configuration and management of

the Apache web server and includes an overview of some of

the major components of the server and discussions of text-

based and graphical server configuration. In this chapter,

you learn how to start, stop, and restart Apache using the

command line. The chapter begins with some introductory

information and then shows you how to install, configure,

and use Apache.

About the Apache Web Server
Apache is the most widely used web server on the Internet

today. The name Apache appeared during the early develop-

ment of the software because it was “a patchy” server, made

up of patches for the freely available source code of the

NCSA HTTPd web server. For a while after the NCSA HTTPd

project was discontinued, a number of people wrote a

variety of patches for the code to either fix bugs or add fea-

tures they wanted. A lot of this code was floating around,

and people were freely sharing it, but it was completely

unmanaged.

After a while, Brian Behlendorf and Cliff Skolnick set up

a centralized repository of these patches, and the Apache

project was born. The project still involves a small core

group of programmers, but anyone is welcome to submit

patches to the group for possible inclusion in the code.

There has been a surge of interest in the Apache project

over the past several years, partially buoyed by a new inter-

est in open source on the part of enterprise-level informa-

tion services. It’s also due in part to crippling security flaws

in Microsoft’s Internet Information Services (IIS); the existence

of malicious web task exploits; and operating system and

444 CHAPTER 25 Apache Web Server Management

networking vulnerabilities to the now-infamous Code Red, Blaster, and Nimda worms.

IBM made an early commitment to support and use Apache as the basis for its web offer-

ings and has dedicated substantial resources to the project because using an established,

proven web server makes sense.

In mid-1999, the Apache Software Foundation (ASF) was incorporated as a nonprofit com-

pany. A board of directors, who are elected on an annual basis by the ASF members, over-

sees the company. This company provides a foundation for several open source software

development projects, including the Apache web server project.

TIP

You can find an overview of Apache in its FAQs at https://wiki.apache.org/httpd/FAQ. In

addition to extensive online documentation, you’ll find the complete documentation for

Apache in the HTML directory of your Apache server. If you have Apache running on your sys-

tem, you can access this documentation by looking at https://localhost/manual/index.html.

To determine the precise version of Apache included with your system, use the following:

matthew@seymour:~$ apache2 -v

Installing the Apache Server
Install the apache2 package from the Ubuntu software repositories. Updated packages usu-

ally contain important bug and security fixes. When an updated version is released, install

it as quickly as possible to keep your system secure.

NOTE

Check the Apache site for security reports. Browse to https://httpd.apache.org/security_

report.html for links to security vulnerabilities for Apache 2.0, 2.2, and 2.4. Subscribe to

a support list or browse through up-to-date archives of all Apache mailing lists at https://

httpd.apache.org/mail/ for various articles or https://httpd.apache.org/lists.html for com-

prehensive and organized archives.

CAUTION

Be wary of installing experimental packages and never install them on production servers

(that is, servers used in “real life”). Very carefully test packages beforehand on a host

that is not connected to a network!

For more information about installing software from the Ubuntu repositories, see Chapter 9,

“Managing Software.”

Starting and Stopping Apache

At this point, you should have installed your Apache server with its default configuration.

Ubuntu provides a default home page at /var/www/html/index.html as a test.

https://wiki.apache.org/httpd/FAQ
https://localhost/manual/index.html
https://httpd.apache.org/security_report.html
https://httpd.apache.org/security_report.html
https://httpd.apache.org/mail/
https://httpd.apache.org/mail/
https://httpd.apache.org/lists.html
http://www/html/index.html

445

2
5

Installing the Apache Server

You can start Apache from the command line of a text-based console or X terminal win-

dow, and you must have root permission to do so. How you do so depends on the release

version of Ubuntu that you are running. For Ubuntu 16.04 and later, you use systemd

commands. For earlier Ubuntu releases like 12.04 and 14.04 that used Upstart, you use

Upstart commands. Some prefer to use apache2ctl commands, which work across most

distributions. Table 25.1 compares the commands.

Table 25.1 Comparing Commands Used in systemd, Upstart, and apache2ctl

Action systemd Upstart apache2ctl

Start sudo systemctl start
apache2.service

sudo start
apache2

sudo apache2ctl start

Stop sudo systemctl stop
apache2.service

sudo stop
apache2

sudo apache2ctl stop

Restart sudo systemctl restart
apache2.service

sudo restart
apache2

sudo apache2ctl restart

The server daemon, apache2, recognizes several command-line options you can use to set

some defaults, such as specifying where apache2 reads its configuration directives. The

Apache apache2 executable also understands other options that enable you to selectively

use parts of its configuration file, specify a different location for the actual server and sup-

porting files, use a different configuration file (perhaps for testing), and save startup errors

to a specific log. The -v option causes Apache to print its development version and quit.

The -V option shows all the settings that were in effect when the server was compiled.

The -h option prints the following usage information for the server:

matthew@seymour:~$ apache2 -h

Usage: apache2 [-D name] [-d directory] [-f file]

 [-C "directive"] [-c "directive"]

 [-k start|restart|graceful|stop]

 [-v] [-V] [-h] [-l] [-L] [-t]

Options:

 -D name : define a name for use in <IfDefine name> directives

 -d directory : specify an alternate initial ServerRoot

 -f file : specify an alternate ServerConfigFile

 -C "directive" : process directive before reading config files

 -c "directive" : process directive after reading config files

 -e level : show startup errors of level (see LogLevel)

 -E file : log startup errors to file

 -v : show version number

 -V : show compile settings

 -h : list available command line options (this page)

 -l : list compiled in modules

 -L : list available configuration directives

 -t -D DUMP_VHOSTS : show parsed settings (currently only vhost settings)

 -t : run syntax check for config files

446 CHAPTER 25 Apache Web Server Management

Other options include listing Apache’s static modules, or special, built-in independent parts

of the server, along with options that can be used with the modules. These options, called

configuration directives, are commands that control how a static module works. Note that

Apache also includes a large number of dynamic modules, or software portions of the server

that can be optionally loaded and used while the server is running.

The -t option is used to check your configuration files. Running this check before restart-

ing your server is a good idea, especially if you’ve made changes to your configuration

files. Such tests are important because a configuration file error can result in your server

shutting down when you try to restart it. There is a bug in the internal username settings

for apache2 in Ubuntu that gives you this error if you enter the following:

matthew@seymour:~$ sudo apache2 -t

apache2: bad user name ${APACHE_RUN_USER}

If this happens to you, enter the command this way to force the command to use the

expected username settings, and you will get the proper output:

matthew@seymour:~$ sudo APACHE_RUN_USER=www-data APACHE_RUN_GROUP=www-data

apache2 -t

Runtime Server Configuration Settings
At this point, the Apache server will run, but perhaps you want to change a behavior,

such as the default location of your website’s files. This section covers the basics of config-

uring the server to work the way you want it to work.

Runtime configurations are stored in just one file—apache2.conf, which is under the

/etc/apache2 directory. You can use this configuration file to control the default behavior

of Apache, such as the web server’s base configuration directory (/etc/apache2), the name

of the server’s PID file (/var/run/apache2.pid), or its response timeout (300 seconds).

Apache reads the data from the configuration file when started (or restarted).

Runtime Configuration Directives

You perform runtime configuration of your server with configuration directives, which

are commands that set options for the apache2 daemon. The directives are used to tell the

server about various options you want to enable, such as the location of files important to

the server configuration and operation. Apache supports nearly 300 configuration direc-

tives, using the following syntax:

directive option option...

Each directive is specified on a single line. See the following sections for some examples of

directives and how to use them. A directive may only set a value such as a filename, or a

directive may enable you to specify various options. Some special directives, called section

directives, look like HTML tags. Section directives are surrounded by angle brackets, such as

447

2
5

Runtime Server Configuration Settings

<Directory>. Section directives usually enclose a group of directives that apply only to the

directory specified in the section:

<Directory somedir/in/your/tree>

 directive option option

 directive option option

</Directory>

A section is always closed with a matching section tag that looks like this: </Directory>.

Note that section tags, like any other directives, are specified one per line.

TIP

Apache is configured with an alias that lets you view the documentation installed in /usr/

share/doc by using your web browser at localhost/manual. After installing and starting

Apache, you can find an index of directives at https://localhost/manual/mod/directives.html.

Editing apache2.conf

Most of the default settings in the config file are okay to keep, particularly if you’ve

installed the server in a default location and aren’t doing anything unusual on your

server. The file includes clear comments describing most of the settings. In general, if you

do not understand what a particular directive is for, leave it set to the default value.

The following sections describe some of the configuration file settings you might want to

change concerning operation of your server.

ServerRoot

The ServerRoot directive sets the absolute path to your server directory. This directive tells

the server where to find all the resources and configuration files. Many of these resources

are specified in the configuration files relative to the ServerRoot directory.

Your ServerRoot directive should be set to /etc/apache2 if you installed the Ubuntu pack-

age or /usr/local/apache (or whatever directory you chose when you compiled Apache)

if you installed from the source. This is commented out in the file, but apache2 -V shows

that this default has been compiled into the package.

Listen

The Listen directive is actually in a file called ports.conf that is included from apache2.

conf and indicates on which port you want your server to run. By default, this is set to 80,

which is the standard HTTP port number. You might want to run your server on another

port—for example, when running a test server that you don’t want people to find by

accident. Do not confuse this with real security! See the “File System Authentication and

Access Control” section, later in this chapter, for more information about how to secure

parts of your web server.

https://localhost/manual/mod/directives.html

448 CHAPTER 25 Apache Web Server Management

User and Group

The User and Group directives should be set to the UID and GID the server will use to

process requests.

In Ubuntu, set these configurations to a user with few or no privileges. In this case, they’re

set to user www-data (a user defined specifically to run Apache) and group www-data. If

you want to use a different UID or GID, be aware that the server will run with the permis-

sions of the user and group set here. This means that, in the event of a security breach,

whether on the server or (more likely) in your own CGI programs, those programs will

run with the assigned UID. If the server runs as root or some other privileged user, some-

one can exploit the security holes and do nasty things to your site. Always think in terms

of the specified user running a command such as rm -rf / because that would wipe all

files from your system. This should convince you that leaving www-user as a user with no

privileges is probably a good thing.

Instead of specifying the User and Group directives using names, you can specify them

using the UID and GID numbers. If you use numbers, be sure that the numbers you spec-

ify correspond to the user and group you want and that they’re preceded by the pound (#)

symbol.

Here’s how these directives look if specified by name:

User www-user

Group www-user

Here are the same directives specified using UID and GID:

User #48

Group #48

TIP

If you find a user on your system (other than root) with a UID and GID of 0, your system

has been compromised by a malicious user.

ServerAdmin

The ServerAdmin directive should be set to the address of the webmaster managing the server.

This address should be a valid email address or alias, such as webmaster@matthewhelmke.com,

because this address is returned to a visitor when a problem occurs on the server.

ServerName

The ServerName directive sets the hostname the server will return. Set it to a fully qualified

domain name (FQDN). For example, set it to www.your.domain rather than simply www. This

is particularly important if this machine will be accessible from the Internet rather than

just on your local network.

You do not need to set the ServerName directive unless you want a name other than the

machine’s canonical name returned. If this value isn’t set, the server will figure out the

mailto:webmaster@matthewhelmke.com
http://www.your.domain

449

2
5

Runtime Server Configuration Settings

name by itself and set it to its canonical name. However, you might want the server to

return a friendlier address, such as www.your.domain. Whatever you do, ServerName should

be a real Domain Name System (DNS) name for your network. If you’re administering your

own DNS, remember to add an alias for your host. If someone else manages the DNS for

you, ask that person to set this name for you.

DocumentRoot

Set the DocumentRoot directive to the absolute path of your document tree, which is the

top directory from which Apache will serve files. By default, it’s set to /var/www/. If you

built the source code yourself and did not choose another directory when you compiled

Apache, DocumentRoot is set to /usr/local/apache/htdocs.

UserDir

The UserDir directive disables or enables and defines the directory (relative to a local

user’s /home/username directory) where that user can put public HTML documents. It is

relative because each user has her own HTML directory. This setting is disabled by default

but can be enabled to store user web content under any directory.

The default setting for this directive, if enabled, is public_html. Each user can create a

directory called public_html under her /home directory, and HTML documents placed in

that directory are available as http://servername/~username, where username is the username

of the particular user.

DirectoryIndex

The DirectoryIndex directive indicates which file should be served as the index for a

directory, such as which file should be served if the URL http://servername/SomeDirectory/

is requested.

Putting a list of files here is often useful so that if index.html (the default value) isn’t

found, another file can be served instead. The most useful application of this is to have

a CGI program run as the default action in a directory. If you have users who make their

web pages on Windows, you might want to add index.htm as well. In that case, the direc-

tive looks like DirectoryIndex index.html index.cgi index.htm.

Apache Multiprocessing Modules

Apache version 2.0 and later now uses a new internal architecture that supports multipro-

cessing modules (MPMs). These modules are used by the server for a variety of tasks, such as

network and process management, and are compiled into Apache. MPMs enable Apache

to work much better on a wider variety of computer platforms, and they can help improve

server stability, compatibility, and scalability.

Apache can use only one MPM at any time. These modules are different from the base

set included with Apache (see the “Apache Modules” section later in this chapter) but are

used to implement settings, limits, or other server actions. Each module in turn supports

numerous additional settings, called directives, which further refine server operation.

http://www.your.domain
http://index.html
http://index.html

450 CHAPTER 25 Apache Web Server Management

The internal MPM modules relevant for Linux include the following:

 ▶ mpm_common—A set of 20 directives common to all MPM modules

 ▶ prefork—A nonthreaded, preforking web server that works much like earlier (1.3)

versions of Apache

 ▶ worker—A hybrid multiprocess multithreaded server

MPM enables Apache to be used on equipment with fewer resources yet still handle mas-

sive numbers of hits and provide stable service. The worker module provides directives to

control how many simultaneous connections your server can handle.

NOTE

Other MPMs related to other platforms are available for Apache, such as mpm_netware

for NetWare hosts and mpm_winnt for NT platforms. An MPM named perchild, which pro-

vides user ID assignment to selected daemon processes, is under development. For more

information, browse to the Apache Software Foundation’s home page at www.apache.org.

Using .htaccess Configuration Files

Apache supports special configuration files, known as .htaccess files. Almost any direc-

tive that appears in apache2.conf can appear in an .htaccess file. This file, specified in

the AccessFileName directive in apache2.conf, sets configurations on a per-directory (usu-

ally in a user directory) basis. As the system administrator, you can specify both the name

of this file and which of the server configurations can be overridden by the contents of

this file. This is especially useful for sites in which there are multiple content providers,

and you want to control what these people can do with their space.

To limit which server configurations the .htaccess files can override, use the

AllowOverride directive. AllowOverride can be set globally or per directory. For example,

in your apache2.conf file, you could use the following:

Each directory to which Apache has access can be configured with respect

to which services and features are allowed and/or disabled in that

directory (and its subdirectories).

#

First, we configure the "default" to be a very restrictive set of

permissions.

#

<Directory />

 Options FollowSymLinks

 AllowOverride None

</Directory>

http://www.apache.org

451

2
5

Runtime Server Configuration Settings

Options Directives

To configure which configuration options are available to Apache by default, you must use

the Options directive. Options can be None; All; or any combination of Indexes, Includes,

FollowSymLinks, ExecCGI, and MultiViews. MultiViews is not included in All and must be

specified explicitly. These options are explained in Table 25.2.

Table 25.2 Switches Used by the Options Directive

Switch Description

None None of the available options are enabled for this directory.

Indexes In the absence of an index.html file or another DirectoryIndex

file, a listing of the files in the directory is generated as an HTML

page for display to the user.

Includes Server-side includes (SSIs) are permitted in this directory. This can

also be written as IncludesNoExec if you want to allow includes but

don’t want to allow the exec option in them. For security reasons,

this is usually a good idea in directories over which you don’t have

complete control, such as UserDir directories.

FollowSymLinks This option allows access to directories that are symbolically linked to

a document directory. You should never set this globally for the whole

server and only rarely set it for individual directories. This option is

a potential security risk because it allows web users to escape from

the document directory and could potentially allow them access to

portions of your file system where you really don’t want people poking

around.

ExecCGI CGI programs are permitted in this directory, even if it is not a direc-

tory defined in the ScriptAlias directive.

MultiViews This is part of the mod_negotiation module. When a client requests

a document that can’t be found, the server tries to figure out which

document best suits the client’s requirements.

 NOTE

These directives also affect all subdirectories of the specified directory.

AllowOverrides Directives

The AllowOverrides directives specify which configuration options .htaccess files can

override. You can set AllowOverrides individually for each directory. For example, you

can have different standards about what can be overridden in the main document root

and in UserDir directories. This capability is particularly useful for user directories, where

the user does not have access to the main server configuration files.

AllowOverrides can be set to All or any combination of Options, FileInfo, AuthConfig,

and Limit. These options are explained in Table 25.3.

http://index.html

452 CHAPTER 25 Apache Web Server Management

Table 25.3 Switches Used by the AllowOverrides Directive

Switch Description

Options The .htaccess file can add options not listed in the Options directive for this

directory.

FileInfo The .htaccess file can include directives for modifying document type

information.

AuthConfig The .htaccess file might contain authorization directives.

Limit The .htaccess file might contain allow, deny, and order directives.

File System Authentication and Access Control
You’re likely to include material on your website that isn’t supposed to be available to

the public. You must be able to lock out this material from public access and provide

designated users with the means to unlock the material. Apache provides two methods

for accomplishing this type of access: authentication and authorization. You can use dif-

ferent criteria to control access to sections of your website, including checking the client’s

IP address or hostname or requiring a username and password. This section briefly covers

some of these methods.

CAUTION

Allowing individual users to put web content on your server poses several important secu-

rity risks. If you’re operating a web server on the Internet rather than on a private network,

check out www.w3.org/Security/.

Restricting Access with Require

One of the simplest ways to limit access to website material is to restrict access to a spe-

cific group of users, based on IP addresses or hostnames. Apache uses the Require directive

to accomplish this. Here are some examples with comments that could be placed within

the apache2.conf file:

<RequireAll>

 Require all granted #permit all to access

 Require not ip 10.252.46.163 #except from this ip address

 Require not host horriblepeople.com #and also not from this domain

 Require not host gov #and finally, not from any .gov

</RequireAll>

There are many options beyond RequireAll, including RequireAny and RequireNone,

along with a detailed set of options for each. For more, see https://httpd.apache.org/

docs/2.4/howto/access.html.

http://www.w3.org/Security/
https://httpd.apache.org/docs/2.4/howto/access.html
https://httpd.apache.org/docs/2.4/howto/access.html

453

2
5

File System Authentication and Access Control

Authentication

Authentication is the process of ensuring that visitors really are who they claim to be. You

can configure Apache to allow access to specific areas of web content only to clients who

can authenticate their identity. There are several methods of authentication in Apache;

Basic Authentication is the most common (and the method discussed in this chapter).

Under Basic Authentication, Apache requires a user to supply a username and a password

to access the protected resources. Apache then verifies that the user is allowed to access

the resource in question. If the username is acceptable, Apache verifies the password. If

the password also checks out, the user is authorized, and Apache serves the request.

HTTP is a stateless protocol; each request sent to the server and each response is handled

individually—and not in an intelligent fashion. Therefore, the authentication information

must be included with each request. This means each request to a password-protected area

is larger and therefore somewhat slower. To avoid unnecessary system use and delays, pro-

tect only those areas of your website that absolutely need protection.

To use Basic Authentication, you need a file that lists the users who are allowed to access

the resources. This file is composed of a plain-text list containing name and password

pairs. It looks very much like the /etc/passwd user file of your Linux system.

CAUTION

Do not use /etc/passwd as a user list for authentication. When you’re using Basic

Authentication, passwords and usernames are sent as Base64-encoded text (which is just

as readable as plain text) from the client to the server. The username and password are

included in each request that is sent to the server. So, anyone who might be snooping on

your traffic would be able to get this information!

To create a user file for Apache, use the htpasswd command that is included with the

Apache package. Running htpasswd without any options produces the following output:

Usage:

 htpasswd [-cmdps] passwordfile username

 htpasswd -b[cmdps] passwordfile username password

 htpasswd -n[mdps] username

 htpasswd -nb[mdps] username password

 -c Create a new file.

 -n Don't update file; display results on stdout.

 -m Force MD5 encryption of the password.

 -d Force CRYPT encryption of the password (default).

 -p Do not encrypt the password (plaintext).

 -s Force SHA encryption of the password.

 -b Use the password from the command line rather than prompting for it.

 -D Delete the specified user.

On Windows, TPF and NetWare systems the '-m' flag is used by default.

On all other systems, the '-p' flag will probably not work.

454 CHAPTER 25 Apache Web Server Management

As you can see, it is not a difficult command to use. For example, to create a new user file

named gnulixusers with a user named wsb, you need to do something like this:

matthew@seymour:~$ sudo htpasswd -c gnulixusers wsb

You are then prompted for a password for the user. To add more users, repeat the same

procedure but without the -c flag.

You can also create user group files. The format of these files is similar to that of /etc/

groups. On each line, enter the group name, followed by a colon (:), and then list all

users, with users separated by spaces. For example, an entry in a user group file might look

like this:

gnulixusers: wsb pgj jp ajje nadia rkr hak

Now that you know how to create a user file, it’s time to look at how Apache might use

such a file to protect web resources.

To point Apache to the user file, use the AuthUserFile directive. AuthUserFile takes the

file path to the user file as its parameter. If the file path is not absolute—that is, beginning

with a /—it is assumed that the path is relative to the ServerRoot. Using the AuthGroupFile

directive, you can specify a group file in the same manner.

Next, use the AuthType directive to set the type of authentication to be used for this

resource. Here, the type is set to Basic.

Now you need to decide to which realm the resource will belong. Realms are used to

group different resources that will share the same users for authorization. A realm can

consist of just about any string. The realm is shown in the Authentication dialog box in

the user’s web browser. Therefore, you should set the realm string to something informa-

tive. The realm is defined with the AuthName directive.

Finally, state which type of user is authorized to use the resource. You do this with the

require directive. The three ways to use this directive are as follows:

 ▶ If you specify valid-user as an option, any user in the user file is allowed to access

the resource (provided that she also enters the correct password).

 ▶ You can specify a list of users who are allowed access with the users option.

 ▶ You can specify a list of groups with the group option. Entries in the group list, as

well as the user list, are separated by spaces.

Returning to the server-status example you saw earlier, instead of letting users access

the server-status resource based on hostname, you can require the users to be authenti-

cated to access the resource. You can do so with the following entry in the configuration

file:

<Location /server-status>

 SetHandler server-status

 AuthType Basic

455

2
5

Apache Modules

 AuthName "Server status"

 AuthUserFile "gnulixusers"

 Require valid-user

</Location>

Final Words on Access Control

If you have host-based as well as user-based access protection on a resource, the default

behavior of Apache is to require the requester to satisfy both controls. But say that you

want to mix host-based and user-based protection and allow access to a resource if either

method succeeds. You can do so by using the satisfy directive. You can set the satisfy

directive to All (which is the default) or Any. When set to All, all access control meth-

ods must be satisfied before the resource is served. If satisfy is set to Any, the resource is

served if any access condition is met.

Here’s another access control example, again using the previous server-status example

but this time combining access methods so all users from the Gnulix domain are allowed

access and those from outside the domain must identify themselves before gaining access:

<Location /server-status>

 SetHandler server-status

 Order deny,allow

 Deny from all

 Allow from gnulix.org

 AuthType Basic

 AuthName "Server status"

 AuthUserFile "gnulixusers"

 Require valid-user

 Satisfy Any

</Location>

There are more ways to protect material on your web server, but the methods discussed

here should get you started and will probably be more than adequate for most circum-

stances. Look to Apache’s online documentation for more examples of how to secure areas

of your site.

Apache Modules
The Apache core does relatively little; Apache gains its functionality from modules. Each

module solves a well-defined problem by adding necessary features. By adding or remov-

ing modules to supply the functionality you want Apache to have, you can tailor the

Apache server to suit your exact needs.

A number of core modules are included with the basic Apache server. Many more are

available from other developers. The Apache Module Registry is a repository for add-on

modules for Apache; you can find it at https://httpd.apache.org/modules/. The modules

are stored in the /usr/lib/apache2/modules directory.

http://gnulix.org
https://httpd.apache.org/modules/

456 CHAPTER 25 Apache Web Server Management

Each module adds new directives that you can use in your configuration files. As you

might guess, there are far too many extra commands, switches, and options to describe

them all in this chapter. The following sections briefly describe a subset of those modules

available with Ubuntu’s Apache installation.

To enable a module, use this command:

matthew@seymour:~$ sudo a2enmod module_name

To disable a module, use this:

matthew@seymour:~$ sudo a2dismod module_name

Note that you need to use the actual name of the module, not the filename, with both of

these commands; for example, mod_version.so is the filename, but version is the name

of the module. You have to know the name of the module to use either command, but in

most cases, it is as simple as the difference in this example. Also, after you run either com-

mand, you need to restart apache2 to activate the new configuration.

mod_access

mod_access controls access to areas on your web server based on IP addresses, hostnames,

or environment variables. For example, you might want to allow anyone from within your

own domain to access certain areas of your website. See the “File System Authentication

and Access Control” section, earlier in this chapter, for more information.

mod_alias

mod_alias manipulates the URLs of incoming HTTP requests, such as redirecting a client

request to another URL. It also can map a part of the file system into your web hierarchy.

For example, the following fetches contents from the /home/wsb/graphics directory for

any URL that starts with /images/:

Alias /images/ /home/wsb/graphics/

This is done without the client’s knowing anything about it. If you use a redirection, the

client is instructed to go to another URL to find the requested content. You can accom-

plish more advanced URL manipulation with mod_rewrite, discussed later in this chapter.

mod_asis

mod_asis is used to specify, in fine detail, all the information to be included in a

response. This completely bypasses any headers Apache might have otherwise added to

the response. All files with an .asis extension are sent straight to the client, without any

changes.

As a short example of the use of mod_asis, assume that you’ve moved content from one

location to another on your site. Now you must inform people who try to access this

resource that it has moved, and you also need to automatically redirect them to the new

457

2
5

Apache Modules

location. To provide this information and redirection, you can add the following code to a

file with the extension .asis:

Status: 301 No more old stuff!

Location: http://gnulix.org/newstuff/

Content-type: text/html

<HTML>

 <HEAD>

 <TITLE>We've moved...</TITLE>

 </HEAD>

 <BODY>

 <P>We've moved the old stuff and now you'll find it at:</P>

 New stuff!.

 </BODY>

</HTML>

mod_auth

mod_auth uses a simple user authentication scheme, referred to as Basic Authentication,

which is based on storing usernames and encrypted passwords in a text file. This file looks

very much like UNIX’s /etc/passwd file and is created with the htpasswd command. See

the “File System Authentication and Access Control” section, earlier in this chapter, for

more information about this subject.

mod_auth_anon

The mod_auth_anon module provides anonymous authentication similar to that of anony-

mous FTP. The module enables you to define user IDs of those who are to be handled as

guest users. When such a user tries to log on, he is prompted to enter his email address as

his password. You can have Apache check the password to ensure that it’s a (more or less)

proper email address. Basically, Apache ensures that the password contains an @ character

and at least one . character.

mod_auth_dbm

mod_auth_dbm uses Berkeley DB files instead of text for user authentication files.

mod_auth_digest

mod_auth_digest is an extension of the basic mod_auth module. Instead of sending the

user information in plain text, mod_auth_digest sends it via the Message Digest 5 (MD5)

authentication process. This authentication scheme is defined in RFC 2617, “HTTP

Authentication: Basic and Digest Access Authentication.” Compared to using Basic

Authentication, this is a much more secure way of sending user data over the Internet.

Unfortunately, not all web browsers support this authentication scheme.

458 CHAPTER 25 Apache Web Server Management

To create password files for use with mod_auth_dbm, you must use the htdigest utility.

It has more or less the same functionality as the htpasswd utility. See the man page of

htdigest for further information.

mod_autoindex

The mod_autoindex module dynamically creates a file list for directory indexing. The list is

rendered in a user-friendly manner similar to lists provided by FTP’s built-in ls command.

mod_cgi

mod_cgi allows execution of CGI programs on your server. CGI programs are executable

files that reside in the /var/www/cgi-bin directory and are used to dynamically generate

data (usually HTML) for the remote browser when requested.

mod_dir and mod_env

The mod_dir module is used to determine which files are returned automatically when a

user tries to access a directory. The default is index.html. If you have users who create web

pages on Windows systems, you should also include index.htm, like this:

DirectoryIndex index.html index.htm

mod_env controls how environment variables are passed to CGI and SSI scripts.

mod_expires

mod_expires is used to add an expiration date to content on your site by adding an

Expires header to the HTTP response. Web browsers and cache servers don’t cache

expired content.

mod_headers

mod_headers is used to manipulate the HTTP headers of your server’s responses. You can

replace, add, merge, or delete headers as you see fit. The module supplies a Header direc-

tive for this. Ordering of the Header directive is important. A set followed by an unset

for the same HTTP header removes the header altogether. You can place Header directives

almost anywhere within your configuration files. These directives are processed in the fol-

lowing order:

 1. Core server

 2. Virtual host

 3. <Directory> and .htaccess files

 4. <Location>

 5. <Files>

http://index.html
http://index.html

459

2
5

Apache Modules

mod_include

mod_include enables the use of server-side includes on your server, which were quite pop-

ular before PHP took over this part of the market.

mod_info and mod_log_config

mod_info provides comprehensive information about your server’s configuration. For

example, it displays all the installed modules, as well as all the directives used in its con-

figuration files.

mod_log_config defines how your log files should look. See the “Logging” section, later in

this chapter, for further information about this subject.

mod_mime and mod_mime_magic

The mod_mime module tries to determine the MIME types of files by examining their

extensions.

The mod_mime_magic module tries to determine the MIME types of files by examining por-

tions of their content.

mod_negotiation

Using the mod_negotiation module, you can select one of several document versions

that best suits the client’s capabilities. There are several options to select which criteria to

use in the negotiation process. You can, for example, choose among different languages,

graphics file formats, and compression methods.

mod_proxy

mod_proxy implements proxy and caching capabilities for an Apache server. It can proxy

and cache FTP, CONNECT, HTTP/0.9, and HTTP/1.0 requests. This is not an ideal solu-

tion for sites that have a large number of users and therefore have high proxy and cache

requirements. However, it is more than adequate for a small number of users.

mod_rewrite

mod_rewrite is the Swiss Army knife of URL manipulation. It enables you to perform any

imaginable manipulation of URLs, using powerful regular expressions. It provides rewrites,

redirection, proxying, and so on. There is little that you cannot accomplish using this

module.

TIP

If you have Apache installed and running, see https://localhost/manual/misc/rewrite-

guide.html for a cookbook that gives you an in-depth explanation of the mod_rewrite

module’s capabilities

https://localhost/manual/misc/rewrite-guide.html
https://localhost/manual/misc/rewrite-guide.html

460 CHAPTER 25 Apache Web Server Management

mod_setenvif

mod_setenvif enables manipulation of environment variables. Using small snippets of

text-matching code known as regular expressions, you can conditionally change the con-

tent of environment variables. The order in which SetEnvIf directives appear in the con-

figuration files is important. Each SetEnvIf directive can reset an earlier SetEnvIf directive

when used on the same environment variable. Be sure to keep that in mind when using

the directives from this module.

mod_speling

mod_speling is used to enable correction of minor typos in URLs. If no file matches the

requested URL, this module builds a list of the files in the requested directory and extracts

the files that are the closest matches. It tries to correct only one spelling mistake.

mod_status

You can use mod_status to create a web page that contains a plethora of information

about a running Apache server. The page contains information about the internal status as

well as statistics about the running Apache processes. This can be a great aid when you’re

trying to configure your server for maximum performance. It also provides a good indica-

tor of when something’s amiss with your Apache server.

mod_ssl

mod_ssl provides Secure Sockets Layer (versions 2 and 3) and Transport Layer Security

(version 1) support for Apache. At least 30 directives deal with options for encryption and

client authorization and can be used with this module. This mod requires that you also

install OpenSSL and generate or buy a certificate. (This is covered later in the chapter, in the

“HTTPS” section.)

mod_unique_id

mod_unique_id generates a unique request identifier for every incoming request. This ID is

put into the UNIQUE_ID environment variable.

mod_userdir

The mod_userdir module enables mapping of a subdirectory in each user’s /home directory

into your web tree. The module provides several ways to accomplish this.

mod_usertrack

mod_usertrack is used to generate a cookie for each user session—for example, to track

the user’s click stream within your web tree. You must enable a custom log that logs this

cookie into a log file.

mod_vhost_alias

mod_vhost_alias supports dynamically configured mass virtual hosting, which is useful

for Internet service providers (ISPs) with many virtual hosts. However, for the average

user, Apache’s ordinary virtual hosting support should be sufficient.

461

2
5

Virtual Hosting

There are two ways to host virtual hosts on an Apache server. You can have one IP address

with multiple CNAMEs, or you can have multiple IP addresses with one name per address.

Apache has different sets of directives to handle each of these options. (You learn more

about virtual hosting in Apache in the next section of this chapter.)

Again, the available options and features for Apache modules are too numerous to

describe completely in this chapter. You can find complete information about the Apache

modules in the online documentation for the server included with Ubuntu or at the

Apache Project’s website.

Virtual Hosting
One of the most popular services to provide with a web server is to host a virtual domain.

Also known as a virtual host, a virtual domain is a complete website with its own domain

name, as if it were a standalone machine, but it’s hosted on the same machine as other

websites. Apache implements this capability in a simple way, with directives in the

apache2.conf configuration file.

Apache now can dynamically host virtual servers by using the mod_vhost_alias module

you read about in the preceding section of the chapter. The module is primarily intended

for ISPs and similar large sites that host a large number of virtual sites. This module is for

more advanced users and is therefore beyond the scope of this introductory chapter. This

section concentrates on the traditional ways of hosting virtual servers.

Address-Based Virtual Hosts

After you’ve configured your Linux machine with multiple IP addresses, setting up Apache

to serve them as different websites is simple. You need only put a VirtualHost directive

in your apache2.conf file for each of the addresses you want to make an independent

website:

<VirtualHost 212.85.67.67>

 ServerName gnulix.org

 DocumentRoot /home/virtual/gnulix/public_html

 TransferLog /home/virtual/gnulix/logs/access_log

 ErrorLog /home/virtual/gnulix/logs/error_log

</VirtualHost>

Use the IP address, rather than the hostname, in the VirtualHost tag.

You can specify any configuration directives within the <VirtualHost> tags. For example,

you might want to set AllowOverrides directives differently for virtual hosts than you

do for your main server. Any directives that aren’t specified default to the settings for the

main server.

Name-Based Virtual Hosts

Name-based virtual hosts enable you to run more than one host on the same IP address.

You must add the names to your DNS record as CNAMEs of the machine in question.

http://gnulix.org

462 CHAPTER 25 Apache Web Server Management

When an HTTP client (web browser) requests a document from your server, it sends with

the request a variable indicating the server name from which it’s requesting the docu-

ment. Based on this variable, the server determines from which of the virtual hosts it

should serve content.

Name-based virtual hosts require just one step more than IP address-based virtual hosts.

You must first indicate which IP address has the multiple DNS names on it. This is done

with the NameVirtualHost directive:

NameVirtualHost 212.85.67.67

You must then have a section for each name on that address and set the configuration for

that name. As with IP-based virtual hosts, you need to set only those configurations that

must be different for the host. You must set the ServerName directive because it is the only

thing that distinguishes one host from another:

<VirtualHost 212.85.67.67>

 ServerName bugserver.gnulix.org

 ServerAlias bugserver

 DocumentRoot /home/bugserver/htdocs

 ScriptAlias /home/bugserver/cgi-bin

 TransferLog /home/bugserver/logs/access_log

</VirtualHost>

<VirtualHost 212.85.67.67>

 ServerName pts.gnulix.org

 ServerAlias pts

 DocumentRoot /home/pts/htdocs

 ScriptAlias /home/pts/cgi-bin

 TransferLog /home/pts/logs/access_log

 ErrorLog /home/pts/logs/error_log

</VirtualHost>

TIP

If you are hosting websites on an intranet or internal network, users will likely use the

shortened name of the machine rather than the FQDN. For example, users might type

https://bugserver/index.html in their browser location field rather than https://bugserver.

gnulix.org/index.html. In that case, Apache would not recognize that those two addresses

should go to the same virtual host. You could get around this by setting up VirtualHost

directives for both bugserver and bugserver.gnulix.org, but the easy way around it is

to use the ServerAlias directive, which lists all valid aliases for the machine:

ServerAlias bugserver

For more information about VirtualHost, refer to the help system on http://

localhost/_manual.

http://bugserver.gnulix.org
http://pts.gnulix.org
https://bugserver/index.html
https://bugserver.gnulix.org/index.html
https://bugserver.gnulix.org/index.html
http://bugserver.gnulix.org
http://localhost/_manual
http://localhost/_manual

463

2
5

Logging

Logging
Apache provides logging for just about any web access information you might be inter-

ested in. Logging can help with the following:

 ▶ System resource management, by tracking usage

 ▶ Intrusion detection, by documenting bad HTTP requests

 ▶ Diagnostics, by recording errors in processing requests

Two standard log files are generated when you run your Apache server: access_log and

error_log. They are found under the /var/log/apache2 directory. (Others include the

SSL logs ssl_access_log, ssl_error_log, and ssl_request_log.) All logs except for the

error_log (by default, this is just the access_log) are generated in a format specified by

the CustomLog and LogFormat directives, which appear in your apache2.conf file.

A new log format can be defined with the LogFormat directive:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

The common log format is a good starting place for creating your own custom log for-

mats. Note that most of the available log analysis tools assume that you’re using the com-

mon log format or the combined log format, both of which are defined in the default

configuration files.

The following variables are available for LogFormat statements:

 ▶ %a—Remote IP address.

 ▶ %A—Local IP address.

 ▶ %b—Bytes sent, excluding HTTP headers. This is shown in Apache’s Combined Log

Format (CLF). For a request without any data content, a - is shown instead of 0.

 ▶ %B—Bytes sent, excluding HTTP headers.

 ▶ %{VARIABLE}e—The contents of the environment variable.

 ▶ %f—The filename of the output log.

 ▶ %h—Remote host.

 ▶ %H—Request protocol.

 ▶ %{HEADER}i—The contents of HEADER; header lines in the request sent to the server.

 ▶ %l—Remote log name (from identd, if supplied).

 ▶ %m—Request method.

 ▶ %{NOTE}n—The contents of NOTE from another module.

 ▶ %{HEADER}o—The contents of HEADER; header lines in the reply.

 ▶ %p—The canonical port of the server serving the request.

464 CHAPTER 25 Apache Web Server Management

 ▶ %P—The PID of the child that serviced the request.

 ▶ %q—The contents of the query string, prepended with a ? character. If there’s no

query string, this evaluates to an empty string.

 ▶ %r—The first line of request.

 ▶ %s—Status. For requests that were internally redirected, this is the status of the

original request (%>s for the last).

 ▶ %t—The time, in common log time format.

 ▶ %{format}t—The time, in the form given by format.

 ▶ %T—The seconds taken to serve the request.

 ▶ %u—The remote user from auth; this might be bogus if the return status (%s) is 401.

 ▶ %u—The URL path requested.

 ▶ %V—The server name according to the UseCanonicalName directive.

 ▶ %v—The canonical ServerName of the server serving the request.

You can put a conditional in front of each variable to determine whether the variable is

displayed. If the variable isn’t displayed, - is displayed instead. These conditionals are in

the form of a list of numerical return values. For example, %!401u displays the value of

REMOTE_USER unless the return code is 401.

You can then specify the location and format of a log file using the CustomLog directive:

CustomLog logs/access_log common

If it is not specified as an absolute path, the location of the log file is assumed to be rela-

tive to the ServerRoot.

HTTPS
The mod_ssl module listed earlier gives Apache2 the ability to encrypt communications

using OpenSSL. This means your website can be accessed using https:// instead of just

http://, and all communications to and from the site will be encrypted. The module is

included in the main apache2-common package, so if you installed that from the Ubuntu

repositories when you installed Apache, you don't have to install additional apache

packages.

Enter the following to enable the mod_ssl module:

matthew@seymour:~$ sudo a2enmod ssl

This includes a default HTTPS configuration file, found in /etc/apache2/sites-

available/default-ssl.conf. For HTTPS to work, a certificate and a key are required. The

default configuration includes a certificate and key generated by the ssl-cert package,

465

2
5

HTTPS

and they are adequate for testing. However, for real use, you should either generate a self-

signed certificate and key (which is adequate for internal use or for personal sites) or buy

a certificate from a CA (which is necessary if you want anyone to trust your site for com-

mercial ventures).

To configure Apache2 for HTTPS using the default configuration for testing, use this

command:

matthew@seymour:~$ sudo a2enmsite default-ssl

After you restart Apache2, you can access web pages on your server by using https://. This

is adequate for testing but not for anything else.

Next we look at how to create a self-signed certificate and key, which is a step in the right

direction.

To generate a key for the certificate, use this command:

matthew@seymour:~$ openssl genrsa -des3 -out server.key 2048

This generates a basic key using Triple DES and 2,048-bit encryption. See the man page for

openssl for more information about possible settings.

To generate a certificate signing request (CSR), use this command:

matthew@seymour:~$ openssl req -new -key server.key -out server.csr

You are then asked for some information to complete the request.

To generate a self-signed certificate, use this command:

matthew@seymour:~$ openssl x509 -req -days 365 -in server.csr -signkey server.

key -out server.crt

This creates a certificate that is valid for 365 days. Certificates, even from vendors, have

expiration dates. Certificates should be renewed regularly to reassure your site visitors that

they are dealing with who they think they are dealing with.

To copy the certificate to its proper location, use this command:

matthew@seymour:~$ cp server.crt /etc/ssl/certs/

To copy the key to its proper location, use this command:

matthew@seymour:~$ cp server.key /etc/ssl/private/

Next we look at how to edit the file /etc/apache2/sites-available/default-ssl to

change the values of these lines to what we show here:

SSLEngine on

SSLCertificateFile /etc/ssl/certs/server.crt

SSLCertificateKeyFile /etc/ssl/private/server.key

466 CHAPTER 25 Apache Web Server Management

This tells Apache2 to use SSL and where to find the proper certificate and key files.

To configure Apache2 for HTTPS using the edited default configuration with the self-

signed certificate and key file, use this command:

matthew@seymour:~$ sudo a2enmsite default-ssl

When you restart Apache2, you are asked to input the certificate’s key password. Enter it

when requested. You now have a server that is secure and good for internal use but not

for a customer-facing production environment.

The best thing to do if you are going to host a professional site is to use a CA. Every CA

has a preferred method, and you should read a CA’s requirements before you use that CA.

The basic process is usually like this:

 1. Create a private and public encryption key pair.

 2. Create a certificate based on the public key.

 3. Create a certificate request with information about your server and the company

hosting it.

 4. Send your certificate request and public key along with proof of your company's

identity and payment to the CA.

 5. Wait for the CA to verify the request and your identity and send back a certificate

like the self-signed one created earlier but signed by the CA.

 6. Install that certificate on your server and configure Apache2 to use it.

A CA-signed certificate provides advantages. First, browsers are built with data about most

CAs and automatically recognize a signature from one of them on your certificate most of

the time. A self-signed certificate will cause the browser to display a rather scary-looking

(to a nontechnical person) warning and require the user to acknowledge it before view-

ing your site. In addition, when the CA issues the signed certificate, it is guaranteeing the

identity of the organization providing the web pages.

To learn more about certificates and keys, including installation of keys and certificates

you pay for, see https://tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html.

References
 ▶ https://news.netcraft.com/archives/web_server_survey.html—A statistical graph

of web server usage by millions of servers, showing that Apache is by far the most

widely used server for Internet sites

 ▶ https://httpd.apache.org—The Apache HTTP Server Project website, where you can

find extensive documentation and information about Apache

https://tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html
https://news.netcraft.com/archives/web_server_survey.html�
https://httpd.apache.org�

IN THIS CHAPTER

 ▶ About the Nginx Web Server

 ▶ Installing the Nginx Server

 ▶ Configuring the Nginx Server

 ▶ Virtual Hosting

 ▶ Setting Up PHP

 ▶ Adding and Configuring

Modules

 ▶ HTTPS

 ▶ Reference

CHAPTER 26

Nginx Web Server
Management

This chapter covers configuration and management of the

Nginx web server and includes an overview of some of the

major components of the server and discussions of server

configuration. In this chapter, you learn how to start, stop,

and restart Nginx using the command line. The chapter

begins with some introductory information and then shows

you how to install, configure, and use Nginx.

About the Nginx Web Server
Pronounced “engine-x,” Nginx is a lightweight and

extremely fast web server. It is free and open source. Some

well-known websites, such as GitHub, Netflix, and Word-

Press.com, use Nginx because it is stable and fast under

high-traffic conditions while using few resources. It is not

as configurable as Apache, but for specific use cases, it is an

excellent option and is quite easy to set up and use.

NEWS

The W3Techs website, which tracks trends on the Web,

posted an article in July 2013 titled “Nginx just became

the most used web server among the top 1000 websites

(see http://w3techs.com/blog/entry/nginx_just_became_

the_most_used_web_server_among_the_top_1000_web-

sites).” The article summary says that “34.9% of the top

1000 web sites rely on Nginx. That makes it the most

trusted web server on high traffic sites, just ahead of

Apache.”

The original design of Nginx was created to allow higher

numbers of concurrent website requests. Larger websites

often have tens of thousands of clients connected simul-

taneously, each one making HTTP requests that must be

http://Press.com
http://w3techs.com/blog/entry/nginx_just_became_the_most_used_web_server_among_the_top_1000_web-sites
http://w3techs.com/blog/entry/nginx_just_became_the_most_used_web_server_among_the_top_1000_web-sites
http://w3techs.com/blog/entry/nginx_just_became_the_most_used_web_server_among_the_top_1000_web-sites

468 CHAPTER 26 Nginx Web Server Management

responded to. The designers of Nginx heard this problem described as C10K and decided

they could write a web server that would be capable of serving at least 10,000 clients

simultaneously.

THE C10K PROBLEM

The canonical website for learning more about this problem is www.kegel.com/c10k.html.

The article provided at this link is from the early 2000s and describes ideas for configur-

ing operating systems and writing code to solve the problem of serving at least 10,000

simultaneous clients from a web server. Today, this problem is even more common, and

with the continuing maturity of Nginx, lighttpd, and other web servers, many of the largest,

highest-traffic sites have switched away from Apache.

Newer versions of the Apache web server and other modern web servers rely on the con-

cept of threads. Threads are kind of like lightweight processes. This deserves some explana-

tion. A process is a specific instance of a computer program running. The process contains

both the machine code (the binary, or the compiled version of the program that the

computer processor can understand and obey—which is either precompiled as in C or C++

programs or may be the output of a just-in-time compilation as happens with languages

like Python or Perl) as well as the current activity of that program, such as the calculations

it is performing or the data it stores in memory on which it is operating. Serving an HTTP

page by running a complete process each time would be bad because the server’s resources

would be quickly used up if the site were even moderately popular. Process after process

would be started, and they would fight for attention. A thread is the ordered control of a

program: First, do this; then, do that; finally, do this other thing. One process may control

many threads. This is good for resource management. By using threads instead of pro-

cesses, a larger number of client requests can be served using fewer system resources than

with a process-based server.

Most web servers have traditionally been either process based or thread based. There are

also examples of hybrid models, where many multithread processes are used. Process-

based servers are great because they are stable, and the crash of one process does not affect

other processes. However, they cannot handle as many clients because the creation and

destruction of all of those processes creates a lot of processor overhead and requires a large

amount of memory. Thread-based servers are great because requests can share memory,

making them more efficient and thereby able to serve more requests more quickly. How-

ever, a crash in one thread could bring down the entire server.

What makes Nginx different is that it uses an event-driven architecture to handle requests.

Instead of starting a new process or a new thread for each request, in an event-driven

architecture, the flow of the program is controlled by events, some form of message sent

from another process or thread. Here, you have a process that runs as a “listener” or

an “event detector” that waits for a request to come in to the server. When the request

arrives, instead of a new process starting, the listener sends a message to a different part

of the server, called an event handler, which then performs a task. The simplified outcome

of serving web pages this way is that less processor time and less memory are needed.

http://www.kegel.com/c10k.html

469

2
6

Installing the Nginx Server

There are some significant difficulties inherent in using this method, not the least of

which can be greater code complexity, which can make fixing bugs, adding features, and

understanding code as a newcomer (or even a returning veteran of the same codebase who

has been away from it for a little while) more difficult.

Nginx is designed to scale well from one small, low-powered server up to large networks

involving many servers.

For configuration, Nginx uses a system of virtual hosts, similar to Apache, and a similar

set of configuration files. The differences are semantic and not terribly difficult. You can

create URL rewrites in Nginx using a rather different syntax. In addition, there is nothing

similar to Apache’s rewrite conditions. Occasional blog posts and web tutorials give some

workarounds to handle some of the common forms, but if this is something you do often,

you might not want to use Nginx.

One file that many people use and love in Apache is .htaccess. There is nothing similar

to that in Nginx, so if you need the ability to make changes to rewrites or configurations

without restarting the server, you are out of luck. This is probably the primary reason that

you don’t see shared hosting offering Nginx.

Finally, another well-documented option is to use both Apache and Nginx together, with

Apache handling any and all dynamic requests and Nginx handling all static requests.

This is faster and lighter than using Apache alone but comes with the burden of added

complexity and the increased potential for problems that complexity brings.

Installing the Nginx Server
You can install Nginx through APT or build it yourself from source code. The Nginx

source builds on just about any UNIX-like operating system and on Win32.

If you are about to install a new version of Nginx, shut down the old server. Even if it’s

unlikely that the old server will interfere with the installation procedure, shutting it down

ensures that there will be no problems. If you do not know how to stop Nginx, see the

section “Configuring the Nginx Server,” later in this chapter.

Installing from the Ubuntu Repositories

You can install the nginx package from the Ubuntu software repositories. Updated pack-

ages usually contain important bug and security fixes. When an updated version is

released, install it as quickly as possible to keep your system secure.

For more information about installing software from the Ubuntu repositories, see

 Chapter 9, “Managing Software.”

Building the Source Yourself

You can download the Nginx source directly from https://wiki.nginx.org/Install.

When you have the tar file, you must open it in a temporary directory, such as /tmp.

Opening this tar file creates a directory called nginx_version_number, where version_

number is the version you have downloaded (for example, nginx_1.11.3).

https://wiki.nginx.org/Install

470 CHAPTER 26 Nginx Web Server Management

TIP

As with many other software packages distributed in source code form for Linux and other

UNIX-like operating systems, extracting the source code results in a directory that contains

a README and an INSTALL file. Be sure to peruse the INSTALL file before attempting to

build and install the software.

Using ./configure to Build Nginx

To build Nginx, run the ./configure script in the directory just created by using this

command:

matthew@seymour:~$./configure

This generates the makefile that is used to compile the server code.

Next, run make to compile the server code:

matthew@seymour:~$ make

When the compilation is complete, install the server. This may only be done using admin

privileges:

matthew@seymour:~$ sudo make install

TIP

Using Ubuntu’s version of Nginx until you really know what happens at system startup

is strongly recommended. No “uninstall” option is available when you install Nginx from

source! For the remainder of this chapter, we assume that you have installed Nginx this

way. If you install from source, you should check the Nginx documentation as there may

be differences from what we describe here.

Configuring the Nginx Server
You can now configure the server. Nginx is most commonly run using virtual hosts, like

what most people do with Apache these days. The process is similar, with mainly syntax

differences.

If you install using the package manager, all configuration files for Nginx are located in

/etc/nginx. The primary configuration file is /etc/nginx/nginx.conf. Here is an example

of that file:

user www-data;

worker_processes 1;

error_log /var/log/nginx/error.log;

events {

 worker_connections 1024;

}

471

2
6

Configuring the Nginx Server

http {

 include /etc/nginx/mime.types;

 default_type application/octet-stream;

 access_log /var/log/nginx/access.log;

 sendfile on;

 tcp_nopush on;

 #tcp_nodelay on;

 #keepalive_timeout 0;

 keepalive_timeout 65;

 gzip on;

 include /etc/nginx/sites-enabled/*;

}

The nginx.conf file contains these parts:

 ▶ user—Sets the system user that will be used to run Nginx. This is www-data by

default. You can add a group to this setting by inserting a second entry:

user www-data;

 ▶ worker processes—Allows you to set how many processes Nginx may spawn on

your server. The default value of 1 is fine for most users, although some recommend

setting this as high as 4. You can experiment, but do so carefully.

 ▶ error_log—This is commented out in this example. You can set the location for an

error log by removing the # that marks the line as a comment that should not be

processed by Nginx and adjusting the listed directory location, if you don’t want to

use the default log location.

 ▶ events and worker_connections—These settings adjust how many concurrent

connections Nginx will allow per process. It may be helpful to think of it this way:

worker_connections times worker_processes will give you the maximum number

of clients that may connect to your server concurrently. Memory plays a factor in

whether your server can actually serve all the permitted connections you configure,

so if you aren’t sure whether your server has enough memory to go higher, leave

both settings at their defaults, and you should be fine.

 ▶ http—This section contains the base settings for HTTP access:

 ▶ Leave the include and default_type lines alone unless you enjoy trying to

figure out why content is not being displayed or you know you must adjust

which types of content are permitted.

472 CHAPTER 26 Nginx Web Server Management

 ▶ Feel free to adjust the location of the access_log, which records all attempts to

connect to your server, or comment out the line to disable it.

 ▶ sendfile is used when you permit Nginx to ignore the contents of the file it

is sending, such as when serving larger files that do not require a multiple-

request-and-confirmation system when being served, thereby freeing system

resources for items that do require Nginx to watch over. Leaving this setting

on unless you know why you are turning it off is recommended because it

saves resources when serving things like graphics.

 ▶ tcp_nopush sends HTTP response headers in one packet, and this is actually a

pretty good thing, but experimenting with it is okay.

 ▶ tcp_nodelay is for use with items that do not require a response, but most

general web use does demand responses, so this is often best commented out,

although trying it to see whether it makes a difference in your circumstance is

okay.

 ▶ keepalive_timeout sets the number of seconds that Nginx will keep a connec-

tion open when a request is made. The default is to keep this connection open

for more than a minute, which seems a bit odd because you have a limited

number of connections available, and keeping a connection alive prevents

another requester from using that slot again until the timeout occurs. Setting

this to a low number like 2 or 3 seconds seems to permit more people to con-

nect in a minute than would be able to do so otherwise. If you are serving a

website with little traffic, the setting doesn’t matter. If you have a lot of traffic,

using a lower number is generally a good idea.

 ▶ gzip allows the use of on-the-fly gzip compression, which can make data

transfers a bit faster.

 ▶ include defines files that are located outside the nginx.conf file that are to be

read by Nginx and used for its configuration. You can include multiple files;

just create a new line for each. Our example includes a directive to include

everything listed in a directory that is generally used for virtual hosts, as

described in the section “Virtual Hosting,” which follows. You could place

a server variable here and define it (as you will do in the “Virtual Hosts”

section), instead of the include, but if you have multiple sites, configuring

how Nginx works for each site individually can be useful, especially if you

have one site that has a lot of traffic and another that has little.

Whenever you make a change to the nginx.conf file, you must restart Nginx to reload the

configuration into Nginx for the changes to take effect, like this:

matthew@seymour:~$ sudo systemctl start nginx

473

2
6

Virtual Hosting

Some prefer to stop and start it, perhaps doing the configuration work in between. This is

quite common as in the past Nginx had a habit of not performing restarts perfectly. In our

experience, bad resets are rare, but using this method prevents any doubt:

matthew@seymour:~$ sudo systemctl stop nginx

matthew@seymour:~$ sudo systemctl start nginx

Virtual Hosting
One of the most popular services to provide with a web server is to host a virtual domain. Also

known as a virtual host, a virtual domain is a complete website with its own domain name, as if

it were a standalone machine, but it’s hosted on the same machine as other websites.

Nginx implements this capability in a simple way: Just create a configuration file for your

virtual host, name it for that host, and place it in /etc/nginx/sites-enabled. We prefer

to place our files in /etc/nginx/sites-available and then create a symlink in sites-

enabled, but that is not a requirement. Doing so does allow you to disable one out of

several sites by simply deleting the symlink and reloading the configuration or restarting

Nginx while preserving the complete configuration for the site, so we recommend you

give it a try.

You can place the files for your website wherever you like. The configuration files for

Nginx tell the web server where to find them. We like to create them in the main website

creator’s/maintainer’s directory, but others prefer /var/www, and still others opt for a dif-

ferent location. Choose a location you like and make a note of it. You will need it shortly.

Here is an example of a file for a virtual host, which we will call yourdomain.com. Name

the file yourdomain.com and place it in sites-enabled or sites-available, as described

earlier. This file includes comments that will help you fill in your specific details:

#this first server module is just a rewrite directive – it is not required, and you

#can make the rewrite go the other way, to force NOT using www

server {

 listen 80; #sets the HTTP port from which the website is served

 server _ name www.yourdomain.com; #names the server using the www prefix

 #if a server request is made without www, this next line will rewrite it

 rewrite /̂(.*) http://yourdomain.com/$1 permanent;

 }

#this second server module tells Nginx where to find the files when requested

server {

 listen 80; #sets the HTTP port from which the website is served

 server _ name yourdomain.com; #names the server being configured

 location / { #sets the location of the files being served

 root /home/<yourusername>/public _ html/yourdomain.com/; #top directory for the site

 index index.html;

 }

 }

http://yourdomain.com
http://yourdomain.com

474 CHAPTER 26 Nginx Web Server Management

Earlier in this section, we mentioned that you may place the files for your website wher-

ever you like. The root line in the file just created is where you place this information.

Here we use <yourusername>’s personal home folder and place within it a directory called

public_html specifically created for holding website files. Because our example anticipates

serving multiple websites with this one server, it goes further and creates a directory for

the sample website, yourdomain.com.

At this point, everything should work for simple HTML sites. To add additional domains,

repeat these steps for each domain being served.

Setting Up PHP
If you have CGI or other script content, such as a website written in PHP, like Word-

Press or Drupal, you have more work to do. While the ability to serve PHP is available by

default in Nginx (it didn’t use to be), it still requires additional setup. In this section you

will add the ability to serve PHP content to an existing Nginx server. As a result, there are

some PHP-specific parts to this process; they should be obvious.

First, you need to make sure PHP is installed on the server. There are many ways to do this. For

this example, you can use PHP-FPM, which you can learn more about at https://php-fpm.org.

Install the following packages: php7.4-cli, php7.4-cgi, psmisc, spawn-fcgi, and

php7.4-fpm.

Edit the file /etc/php7/fpm/pool.d/www.conf to make php-fpm use a UNIX socket instead

of a TCP/IP connection by finding this line:

listen = 127.0.0.1:9000

and replacing it with this:

listen = /tmp/php7-fpm.sock

This is where you need to check the requirements of whatever PHP-based application you

intend to install and use. Some require other PHP extensions. You may also need a data-

base. We will skip this step as the details differ for each application, but this is when you

would likely want to take care of these details, although you can probably make them up

later. If all you want to do is serve PHP scripts that you have written or run them on your

server, you are probably fine not worrying about this and moving on.

Next, you need to edit either /etc/nginx/nginx.conf or the file for your virtual host, like

/etc/nginx/sites-enabled/yourdomain.com from the earlier example, to include infor-

mation that Nginx needs to be able to deal with PHP content. Editing either will work; the

difference is that editing the virtual host file will affect only that website, whereas editing

nginx.conf will affect everything on your server.

Here is an example of an edited server module in one of these files. Note what is moved

and what is added from the previous example:

server {

 listen 80; #sets the HTTP port from which the website is served

 server _ name www.yourdomain.com; #names the server using the www prefix

http://yourdomain.com
https://php-fpm.org
http:///etc/nginx/sites-enabled/yourdomain.com

475

2
6

Adding and Configuring Modules

 #if a server request is made without www, this next line will rewrite it

 rewrite /̂(.*) http://yourdomain.com/$1 permanent;

 }

#this second server module tells Nginx where to find the files when requested

server {

 listen 80; #sets the HTTP port from which the website is served

 server _ name yourdomain.com; #names the server being configured

 root /home/<yourusername>/public _ html/yourdomain.com/; #top directory for the site

 index index.html index.php;

 client _ max _ body _ size 1G;

 fastcgi _ buffers 64 4K;

 location / { #sets the location of the files being served

 try _ files $uri =404;

 include fastcgi _ params;

 fastcgi _ split _ path _ info (̂.+\.php)(/.+)$;

 fastcgi _ pass unix:/tmp/php5-fpm.sock;

 fastcgi _ param SCRIPT _ FILENAME $document _ root$fastcgi _ script _ name;

 }

 }

Restart Nginx, and you are all set. See https://wiki.nginx.org/PHPFcgiExample for more

details.

Adding and Configuring Modules
The topic of adding and configuring modules is bigger than can or should be covered in

this book, where we only intend to introduce you to a wide range of technologies and

features available in, with, and for Ubuntu and help you acquire a basic competence

with them. In this chapter, we have only set up a basic server. It will serve the needs

of most people, but tons of other settings are available for you to use, and many other

configuration options exist for core modules and even optional modules you can add to

your server.

Adding additional modules is something that must be done when Nginx is compiled, so

if you need something that is not included by default in the package from the Ubuntu

repositories, you need to read the official documentation, download Nginx from the web-

site, and compile it yourself. The best way to start is to immerse yourself in the official

module documentation at https://nginx.org/en/docs/.

To configure an enabled module, whether a default module or an optional one, start at

the same documentation, find the module you want to configure in the list, and click its

entry to learn about the various options. Even the Core module configured in the nginx.

conf example has a ton of extra options. You may not need any of them, but you may

find something useful.

https://wiki.nginx.org/PHPFcgiExample
https://nginx.org/en/docs/

476 CHAPTER 26 Nginx Web Server Management

HTTPS
Nginx comes with the ability to encrypt communications using openssl. What this means

is that your website can be accessed using https:// instead of just http://, and all commu-

nications to and from the site will be encrypted.

For HTTPS to work, a certificate and a key are required. You should either generate a self-

signed certificate and key (which is adequate for internal use or for personal sites) or buy a

certificate from a certificate authority (CA) (which is necessary if you want anyone to trust

your site for commercial ventures).

To generate a key for the certificate, use this command:

matthew@seymour:~$ openssl genrsa -des3 -out server.key 2048

This generates a basic key using Triple DES and 2,048-bit encryption. See the man page for

openssl for more information about possible settings.

To generate a certificate signing request (CSR), use this command:

matthew@seymour:~$ openssl req -new -key server.key -out server.csr

You are then asked for some information to complete the request.

To generate a self-signed certificate, use this command:

matthew@seymour:~$ openssl x509 -req -days 365 -in server.csr -signkey server.

key -out server.crt

This creates a certificate that is valid for 365 days. Certificates, even from vendors, have

expiration dates. Certificates should be renewed regularly to reassure your site visitors that

they are dealing with who they think they are dealing with.

To copy the certificate to its proper location, use this command:

matthew@seymour:~$ cp server.crt /etc/nginx/ssl/

To copy the key to its proper location, use this command:

matthew@seymour:~$ cp server.key /etc/nginx/ssl/

Next, you must modify your Nginx configuration to use the server certificate and key files.

This is done in the server module of the config file. Here is the earlier example, with the

additions you need now in bold:

server {

 listen 80; #sets the HTTP port from which the website is served

 listen 443 ssl;

477

2
6

Reference

 server_name www.yourdomain.com; #names the server using the www prefix

 ssl_certificate /etc/nginx/ssl/server.crt

 ssl_certificate /etc/nginx/ssl/server.key

 #if a server request is made without www, this next line will rewrite it

 rewrite ^/(.*) http://yourdomain.com/$1 permanent;

 }

You can now access web pages on your server by using https://. This is adequate for test-

ing and internal use but not for anything else.

The best thing to do if you are going to host a professional site is to use a CA. Every CA

has a preferred method, and you should read a CA’s requirements before you use that CA.

The basic process is usually like this:

 1. Create a private and public encryption key pair.

 2. Create a certificate based on the public key.

 3. Create a certificate request with information about your server and the company

hosting it.

 4. Send your certificate request and public key along with proof of your company's

identity and payment to the CA.

 5. Wait for the CA to verify the request and your identity and send back a certificate

like the self-signed one created earlier, but signed by the CA.

 6. Install that certificate on your server and configure Apache2 to use it.

A CA-signed certificate provides advantages. First, browsers are built with data about most

CAs and automatically recognize a signature from one of them on your certificate most of

the time. A self-signed certificate will cause the browser to display a rather scary-looking

(to a nontechnical person) warning and require the user to acknowledge it before view-

ing your site. In addition, when the CA issues the signed certificate, it is guaranteeing the

identity of the organization providing the web pages.

To learn more about certificates and keys, including installation of keys and certificates

you pay for, see https://tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html.

Reference
 ▶ https://nginx.org/en/docs/—The Nginx wiki website, where you can find exten-

sive documentation and information about Nginx, including installation instruc-

tions, downloads, and tips for configuration and use

http://www.yourdomain.com
http://yourdomain.com/$1
https://
https://tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html
https://nginx.org/en/docs/

This page intentionally left blank

IN THIS CHAPTER

 ▶ lighttpd

 ▶ Yaws

 ▶ Cherokee

 ▶ Jetty

 ▶ thttpd

 ▶ Apache Tomcat

 ▶ WildFly

 ▶ Caddy

 ▶ References

CHAPTER 27

Other HTTP Servers

To determine the best web server for your use, consider

the needs of the website you manage. Does it need heavy

security (for e-commerce), multimedia (music, video, and

pictures), or the capability to download files easily? How

much are you willing to spend for the software? Do you

need software that is easy to maintain and troubleshoot or

that includes tech support? The answers to these questions

might steer you to something other than what’s covered in

Chapter 25, “Apache Web Server Management” or Chapter

26, “Nginx Web Server Management.” This chapter covers

other HTTP servers, including lighttpd, Yaws, Cherokee,

Jetty, thttpd, Apache Tomcat, WildFly, and Caddy.

lighttpd
lighttpd, or “lighty,” is a speedy, lightweight open source

server. Like Nginx, lighttpd is designed for high perfor-

mance and low resource use. YouTube, Wikipedia, and

other sites use lighttpd for its scalability and quickness. Like

Nginx, lighttpd uses an event-driven architecture.

One thing that sets lighttpd apart from Nginx is that

although Nginx natively handles static content incredibly

well, it can also require a bit more work to get it functioning

as a server for CGI content, such as websites built with PHP.

The main WordPress site (which WordPress hosts itself) uses

Nginx and is built with PHP, so this is not an insurmount-

able task with Nginx—and web tutorials abound. With

lighttpd, the ability to natively function as a server for CGI

content is built in, making it quicker to install, configure,

and use if this is the sort of site you intend to host.

Configuring lighttpd is done using a system of configura-

tion files. The syntax is a bit different from either Apache

or Nginx, but to anyone familiar with using either, lighttpd

will be easy to understand and use.

480 CHAPTER 27 Other HTTP Servers

Rewrite rules are available for lighttpd, and you can do them using conditionals and regu-

lar expressions. However, the syntax for doing this is different and takes a little time to

study and use effectively.

lighttpd has a nice website with professional documentation available. Reading through it

should give you a good sense of whether lighttpd is suitable for a specific site.

Yaws
Yaws, which stands for Yet Another Web Server, is written in the Erlang programming

language, which is enough to make it unique and interesting for many people. Erlang is

primarily designed for and used to build scalable real-time systems that require high avail-

ability. It is often found in telephony applications, instant messaging, commerce, and

banking, and it’s designed to support concurrency and fault tolerance. Yaws was written

from the ground up to be scalable and multithreaded. Like newer versions of Apache,

Yaws uses threads—in this case one thread per request—to serve content. What makes

Yaws an interesting alternative is how the underlying language deals with concurrent pro-

cesses. Because it uses Erlang, Yaws should be significantly faster, even using the same base

method for serving content.

Yaws is configured using one configuration file. Virtual servers are the standard, and the

syntax of the file is familiar enough that most simple configurations should be quick and

easy to set up.

Here is where a major weakness comes in: The documentation available from the Yaws

website at the time of this writing was quite sparse, and much of it is outdated (and is

acknowledged by the site with a disclaimer). This is not unlike earlier experiences with

Nginx, which has greatly improved its official documentation; but be warned, unless you

have simple needs, you might have to spend a lot of time trying things out, adjusting,

and playing to get your site up and running. On the positive side, if you are looking for

a fun experiment, perhaps as a student running a server just to learn rather than to host

vital content, Yaws could be exactly what you want. Who knows? It is an open source

project, and you might find yourself studying Erlang and contributing either code or

documentation.

Cherokee
The distinguishing feature of Cherokee among the crowd that claims both speed and

lightness is its ease of configuration. Cherokee supports all the big features, like virtual

hosts, CGI, load balancing, and so on. It also includes a graphical interface for configura-

tion, which makes it unique among all the options in this chapter. The claim is that you

can configure Cherokee without ever editing a configuration file.

Setting up Cherokee is as easy as installing it on your system and then opening the

Cherokee admin interface by issuing the cherokee-admin-launcher command as root.

The downside is that this assumes you are running a graphical user interface on the same

system as your web server, which is something most Linux admins do not do. However,

fear not. It is possible to use this interface remotely from a system with a web browser and

481

2
7

thttpd

terminal access via ssh, using the remote system’s IP address and a specific port (which is

configurable).

The other features of Cherokee are comparable to those of lighttpd and Nginx. If you like

what they offer but want to use a GUI for your administration tasks, Cherokee is worth a

closer look. The end-user documentation available from the Cherokee site is excellent and

should get you up and running easily.

Jetty
If you are hosting a personal WordPress site or a few static HTML pages, Jetty is not what

you need. Jetty is an Eclipse Foundation project that is written in Java. The Eclipse Foun-

dation exists to provide open source development tools, software frameworks, and more to

anyone who wants to use them. Jetty is a web server and client. It is a javax.servlet con-

tainer. It supports Web Sockets and many other integrations. All of Jetty’s components are

open source and freely available, even for commercial use and distribution. Jetty is used

in products like Apache ActiveMQ (https://activemq.apache.org/) and Google App Engine

(https://cloud.google.com/appengine/). It works with Apache Maven (https://maven.

apache.org) to provide a way to run a web application locally while in development.

Jetty isn’t really a standalone web server in the traditional sense. Rather, it creates a way to

use Java code for web applications. Jetty is complex enough to warrant a book of its own.

If you are developing web applications using Java and want a highly configurable network

of connectors and handlers at your disposal (and you know what that phrase means), Jetty

is a good choice. Jetty components are simple, plain old Java objects (POJOs). Jetty has an

API that makes using it in Java easy. As the website says, Jetty “provides an HTTP server

and Servlet container capable of serving static and dynamic content either from a stand-

alone or embedded instantiations.” If you need it, it’s great. If you don’t, it’s overkill.

thttpd
thttpd is a very light, decidedly not flashy or feature-filled web server. It has not been

abandoned, but it does not seem to be updated frequently. It is included here for one

main reason: It has an interesting feature that makes it unique. First, we provide a general

description of the web server.

thttpd is small and simple. It claims to have only slightly more than is necessary to sup-

port HTTP 1.1. No bells. No whistles. The positive side is that simple code generally has

fewer stability issues, has fewer security and performance problems, and uses less memory.

Your virtual hosts can be easily configured in thttpd using a familiar format. Getting CGI

type content to run is more complicated than with any of the other servers in this chapter

as it is not supported out of the box.

Here is the interesting part: thttpd has a throttling feature that lets you set maximum

byte rates on URLs or URL groups. You can limit the speed or use of your site’s bandwidth

according to the URL being requested by the client. You could take advantage of this fea-

ture, for example, by hosting media files and allowing them to be accessed while ensuring

you have plenty of bandwidth available for other users to access your static HTML pages.

https://activemq.apache.org/
https://cloud.google.com/appengine/
https://maven.apache.org
https://maven.apache.org

482 CHAPTER 27 Other HTTP Servers

thttpd is not updated frequently, so it might not be suitable for use on a production

server, although there is some evidence that it was once used on a few well-known web-

sites. It seems that the world has moved on. However, the throttle-by-requested-URL is an

interesting idea and makes it worthy of a mention here.

Apache Tomcat
Apache Tomcat is a common and frequently used open source Java servlet container that

implements Oracle’s Java Servlet and JavaServer Pages (JSP) specifications. By doing so,

Tomcat provides the means to run Java code in a web server environment. Java program-

mers love it because they can write web applications in a language they already know.

Tomcat can be used as a standalone pure-Java web server, but it is often used in conjunc-

tion with the regular Apache web server or another general-purpose web server. In those

instances, Tomcat serves requests from the other web server.

WildFly
WildFly is more than a web server. It is an application runtime for Java web applications.

As such, it does more than Tomcat, which may be exactly what you need, or it may be

overkill, depending on your project. It is used to host many enterprise-focused applica-

tions and is the open source, community-developed upstream from which Red Hat builds

its JBoss Enterprise Application Platform (EAP).

Caddy
Caddy is an open source web server written in Go. It uses the Go standard library for its

HTTP functionality, with HTTPS enabled by default. It is designed to have fewer mov-

ing parts and to run great in containers because it has no dependencies. Caddy manages

TLS certificate renewals, Online Certificate Status Protocol (OCSP) stapling, which checks

the revocation status of X.509 digital certificates. It can handle static file serving, reverse

proxying, and Kubernetes ingress. Caddy is fairly new and worth watching.

References
 ▶ www.lighttpd.net—The main website for lighttpd

 ▶ https://yaws.hyber.org—The main website for Yaws

 ▶ www.cherokee-project.com—The main website for Cherokee

 ▶ https://eclipse.org/jetty/—The main website for Jetty

 ▶ www.acme.com/software/thttpd/—The main website for thttpd

 ▶ www.wildfly.org—The main website for WildFly

 ▶ https://caddyserver.com—The main website for Caddy

 ▶ http://tomcat.apache.org/—The main website for Apache Tomcat

http://www.lighttpd.net
https://yaws.hyber.org
http://www.cherokee-project.com
https://eclipse.org/jetty/
http://www.acme.com/software/thttpd/
http://www.wildfly.org
https://caddyserver.com
http://tomcat.apache.org/

IN THIS CHAPTER

 ▶ A Brief Review of Database

Basics

 ▶ Choosing a Database: MySQL

Versus PostgreSQL

 ▶ Configuring MySQL

 ▶ Configuring PostgreSQL

 ▶ Database Clients

 ▶ References

CHAPTER 28

Administering Relational
Database Services

This chapter is an introduction to MySQL and PostgreSQL,

two database systems that are available in the Ubuntu

repositories. In this chapter, you learn what these systems

do, how the two programs compare, and how to consider

their advantages and disadvantages. This information can

help you choose and deploy the one that best suits your

organization’s database needs.

SIMILAR TO MYSQL

In April 2009, Oracle announced it was buying Sun

Microsystems, which owned MySQL. The deal was com-

pleted in January 2010. Since then, at least two groups

have forked the code to ensure that the database stays

free and open source while still in active development.

These groups have released and are working on MariaDB

(https://mariadb.org) and Percona Server (www.percona.

com/software/percona-server). We suggest keeping an

eye on these projects and other potential replacements

for MySQL in case Oracle decides that the free MySQL is

too much of a competitor to its paid database offerings

and kills or weakens the project. It is interesting to note

that some pretty big Linux distributions and organizations

have already switched away from MySQL, such as Fedora,

openSUSE, and Wikipedia (all of which now use MariaDB).

The good news is that anything you learn about MySQL

from this chapter is likely to apply perfectly to the other

options mentioned.

The database administrator (DBA) for an organization has

several responsibilities, which vary according to the size and

operations of the organization, supporting staff, and so on.

https://mariadb.org
http://www.percona.com/software/percona-server
http://www.percona.com/software/percona-server

484 CHAPTER 28 Administering Relational Database Services

Depending on the particular organization’s structure, if you are the organization’s DBA,

your responsibilities might include the following:

 ▶ Installing and maintaining database servers—You might install and maintain

the database software. Maintenance can involve installing patches as well as upgrad-

ing the software at the appropriate times. As a DBA, you need to have root access

to your system and know how to manage software (see Chapter 9, “Managing Soft-

ware”). You also need to be aware of kernel, file system, and other security issues.

 ▶ Installing and maintaining database clients—The database client is the pro-

gram used to access the database (you learn more about that later in this chapter,

in the section “Database Clients”), either locally or remotely over a network. Your

responsibilities might include installing and maintaining these client programs on

users’ systems. This chapter discusses how to install and work with the clients from

both the Linux command line and through its graphical interface database tools.

 ▶ Managing accounts and users—Account and user management include adding

and deleting users from the database, assigning and administering passwords, and so

on. In this chapter, you find out how to grant and revoke user privileges and pass-

words for MySQL and PostgreSQL.

 ▶ Ensuring database security—To ensure database security, you need to be con-

cerned with things like access control, which ensures that only authorized people

can access the database, and permissions, which ensure that people who can access

the database cannot do things they should not do. In this chapter, you learn how to

manage Secure Shell (SSH), web, and local graphical user interface (GUI) client access to

the database. Planning and overseeing the regular backup of an organization’s data-

base and restoring data from those backups is another critical component of securing

the database.

 ▶ Ensuring data integrity—Of all the information stored on a server’s hard disk

storage, chances are the information in the database is the most critical. Ensuring

data integrity involves planning for multiple-user access and ensuring that changes

are not lost or duplicated when more than one user is making changes to the data-

base at the same time.

A Brief Review of Database Basics
Database services under Linux that use the software discussed in this chapter are based

on a client/server model. Database clients are often used to input data and to query or dis-

play query results from the server. You can use the command line or a graphical client to

access a running server. Databases generally come in two forms: flat file and relational. A

flat file database can be as simple as a text file with a space, tab, or some other character

delimiting different parts of the information. One example of a simple flat file database

is the /etc/passwd file. Another example is a simple address book that might look some-

thing like this:

Doe~John~505 Some Street~Anytown~NY~12345~555-555-1212

485

2
8

A Brief Review of Database Basics

You can use standard UNIX tools such as grep, awk, and perl to search for and extract

information from this primitive database. Although this might work well for a small data-

base such as an address book that only one person uses, flat file databases of this type

have several limitations:

 ▶ They do not scale well—Flat file databases cannot perform random access on

data. They can only perform sequential access. This means they have to scan each

line in the file, one by one, to look for specific information. As the size of the data-

base grows, access times increase, and performance decreases.

 ▶ Flat file databases are unsuitable for multiuser environments—Depending

on how the database is set up, it either enables only one user to access it at a time

or allows two users to make changes simultaneously, and the changes could end up

overwriting each other, which results in data loss.

These limitations obviously make the flat file database unsuitable for any kind of serious

work in even a small business—much less in an enterprise environment. Relational data-

bases, or relational database management systems (RDBMSs) to give them their full name, are

good at finding the relationships between individual pieces of data. An RDBMS stores data

in tables with fields much like those in spreadsheets, making the data searchable and sort-

able. RDBMSs are the focus of this chapter.

NOSQL

There is an exception to what we just said. A fairly new category of databases is now

in use, usually referred to as NoSQL in casual conversation. Unlike typical flat file data-

bases, NoSQL databases are a form of structured storage that is suitable for large and

high-traffic uses. These databases have been written and put into use in places where flat

files are unsuitable but where relational databases are slower than desired. It is important

to note that although NoSQL databases work great when scalability and speed are desir-

able, you cannot be certain with all NoSQL databases that data is replicated and available

instantly across a large installation. It generally is, but there is no guarantee of up-to-the-

moment data. This is okay for some applications (web search) but would be disastrous for

others (like a financial institution).

There are many forms of NoSQL databases, each with different intents and applications.

Some are created and used by big names you might recognize, such as Google’s BigTable

and Apache’s Cassandra. Ubuntu uses Apache’s CouchDB for several applications. Other

common ones include MongoDB and Berkeley DB. In this chapter, we concentrate on the

more traditional relational databases that are used for most applications, but we urge

you to keep an eye on what is happening in the NoSQL world. For more information about

NoSQL databases, see Chapter 29, “NoSQL Databases.”

Oracle, DB2, Microsoft SQL Server, and the freely available PostgreSQL and MySQL are all

examples of RDBMSs. The following sections discuss how relational databases work and

provide a closer look at some of the basic processes involved in administering and using

databases. You also learn about SQL, the standard language used to store, retrieve, and

manipulate database data.

486 CHAPTER 28 Administering Relational Database Services

How Relational Databases Work

An RDBMS stores data in tables, which you can visualize as spreadsheets. Each column in

the table is a field; for example, a column might contain a name or an address. Each row

in the table is an individual record. The table itself has a name you use to refer to that

table when you want to get data out of it or put data into it. Figure 28.1 shows an exam-

ple of a simple relational database that stores name and address information.

In the example shown in Figure 28.1, the database contains only a single table. Most

RDBMS setups are much more complex than this, with a single database containing mul-

tiple tables. Figure 28.2 shows an example of a database named sample_database that con-

tains two tables.

last_name

Doe

Doe

Palmer

Johnson

first_name

John

Jane

John

Robert

address

501 Somestreet

501 Somestreet

205 Anystreet

100 Easystreet

city

Anytown

Anytown

Sometown

Easytown

state

NY

NY

NY

CT

zip

55011

55011

55055

12345

phone

555-555-1212

555-555-1212

123-456-7890

111-222-3333

FIGURE 28.1 In this visualization of how an RDBMS stores data, the database stores four records

(rows) that include name and address information, divided into seven fields (columns) of data.

last_name

Doe

Doe

Palmer

Johnson

first_name

John

Jane

John

Richard

phone

555-555-1212

555-555-1212

555-123-4567

555-111-4321

phonebook

id

1

2

3

4

5

6

7

8

title

Mindbomb

For All You’ve Done

Trouser Jazz

Natural Elements

Combat Rock

Life for Rent

Adiemus 4

The Two Towers

artist

The The

Hillsong

Mr Scruff

Acoustic Alchemy

The Clash

Dido

Karl Jenkins

Howard Shore

year

1989

2004

2002

1988

1982

2003

2000

2002

rating

4

5

3

4

5

4

5

cd_collection

FIGURE 28.2 A single database can contain two tables—in this case, phonebook and

cd_collection.

In the sample_database example, the phonebook table contains four records (rows) and

each record hold three fields (columns) of data. The cd_collection table holds eight

records, divided into five fields of data.

487

2
8

A Brief Review of Database Basics

If you are thinking that there is no logical relationship between the phonebook table and

the cd_collection table in the sample_database example, you are correct. In a relational

database, users can store multiple tables of data in a single database, even if the data in

one table is unrelated to the data in others.

For example, suppose you run a small company that sells widgets and you have a computer-

ized database of customers. In addition to storing each customer’s name, address, and phone

number, you want to be able to look up outstanding order and invoice information for any

of your customers. You could use three related tables in an RDBMS to store and organize cus-

tomer data for just those purposes. Figure 28.3 shows an example of such a database.

cid

1

2

3

4

last_name

Doe

Doe

Palmer

Johnson

first_name

John

Jane

John

Richard

shipping_address

505 Somestreet

505 Somestreet

200 Anystreet

1000 Another Street

customers

cid

1

1

3

2

order_num

1002

1221

1223

1225

stock_num

100,252,342

200,352

200,121

221,152

priority

3

1

2

1

shipped

Y

N

Y

N

date

8/31/01

10/2/01

10/2/01

10/3/01

orders

cid

1

order_num

1002

days_overdue

32

action

sent letter

overdue

FIGURE 28.3 You can use three related tables to track customers, orders, and outstanding

invoices.

In the example in Figure 28.3, we have added a cid field to each customer record. This

field holds a customer ID number that is the unique piece of information that can be

used to link all other information for each customer to track orders and invoices. Each

customer is given an ID unique to him; two customers might have the same data in their

name fields, but their ID field values will never be the same. The cid field data in the

orders and overdue tables replaces the last_name, first_name, and shipping_address

field information from the customers table. Now, when you want to run a search for any

customer’s order and invoice data, you can search based on one key rather than multiple

keys. You get more accurate results in faster, easier-to-conduct data searches.

Now that you have an idea of how data is stored in an RDBMS and how the RDBMS struc-

ture enables you to work with that data, you are ready to learn how to input and output

data from the database. This is where SQL comes in.

Understanding SQL Basics

SQL (pronounced “S-Q-L” or “sequel,” depending on who is talking) is a database

query language understood by virtually all RDBMSs available today. You use SQL

488 CHAPTER 28 Administering Relational Database Services

statements to get data into and retrieve data from a database. As with statements in

any language, SQL statements have a defined structure that determines their meanings

and functions.

As a DBA, you should understand the basics of SQL, even if you will not be doing any of

the actual programming yourself. Fortunately, SQL is similar to standard English, so learn-

ing the basics is simple.

Creating Tables

As mentioned previously, an RDBMS stores data in tables that look similar to spread-

sheets. Of course, before you can store any data in a database, you need to create

the necessary tables and columns to store the data. You do this by using the CREATE

statement.

For example, the cd_collection table from Figure 28.2 has five columns, or fields: id,

title, artist, year, and rating.

SQL provides several column types for data that define what kind of data will be stored in

the column. Some of the available types are INT, FLOAT, CHAR, and VARCHAR. Both CHAR and

VARCHAR hold text strings, with the difference being that CHAR holds a fixed-length string,

whereas VARCHAR holds a variable-length string.

There are also special column types, such as DATE, that only take data in a date format,

and ENUM (enumeration), which can be used to specify that only certain values are allowed.

If, for example, you want to record the genre of your CDs, you could use an ENUM column

that accepts only the values POP, ROCK, EASY_LISTENING, and so on. You learn more about

ENUM later in this chapter.

Looking at the cd_collection table, you can see that three of the columns hold numeric

data and the other two hold string data. In addition, the character strings are of variable

length. Based on this information, you can discern that the best type to use for the text

columns is type VARCHAR, and the best type to use for the others is INT. You should notice

something else about the cd_collection table: One of the CDs is missing a rating, perhaps

because we have not listened to it yet. This value, therefore, is optional; it starts empty

and can be filled in later.

You are now ready to create a table. As mentioned earlier, you do this by using the CREATE

statement, which uses the following syntax:

CREATE TABLE table_name (column_name column_type(parameters) options, ...);

You should know the following about the CREATE statement:

 ▶ SQL commands are not case sensitive—For example, CREATE TABLE, create

table, and Create Table are all valid.

 ▶ White space is generally ignored—This means you should use it to make your

SQL commands clearer.

489

2
8

A Brief Review of Database Basics

The following example shows how to create the table for the cd_collection database:

CREATE TABLE cd_collection

(

id INT NOT NULL,

title VARCHAR(50) NOT NULL,

artist VARCHAR(50) NOT NULL,

year VARCHAR(50) NOT NULL,

rating VARCHAR(50) NULL

);

Notice that the statement terminates with a semicolon (;). This is how SQL knows you are

finished with all the entries in the statement. In some cases, you can omit the semicolon,

and we point out these cases when they arise.

TIP

SQL has a number of reserved keywords that cannot be used in table names or field

names. For example, if you keep track of CDs that you want to take with you on vacation,

you cannot use the field name select because that is a reserved keyword. Instead, you

should either choose a different name (perhaps selected) or just prefix the field name

with an f, such as fselect.

Inserting Data into Tables

After you create the tables, you can put data into them. You can insert data manually with

the INSERT statement, which uses the following syntax:

INSERT INTO table_name VALUES('value1', 'value2', 'value3', ...);

This statement inserts value1, value2, and so on into the table table_name. The values

that are inserted constitute one row, or record, in the database. Unless specified otherwise,

values are inserted in the order in which the columns are listed in the database table. If,

for some reason, you want to insert values in a different order (or if you want to insert

only a few values and they are not in sequential order), you can specify which columns

you want the data to go in by using the following syntax:

INSERT INTO table_name (column1,column4) VALUES('value1', 'value2');

You can also fill multiple rows with a single INSERT statement, using syntax such as the

following:

INSERT INTO table_name VALUES('value1', 'value2'),('value3', 'value4');

In this statement, value1 and value2 are inserted into the first row, and value3 and value4

are inserted into the second row.

490 CHAPTER 28 Administering Relational Database Services

The following example shows how you insert the Nevermind entry into the cd_collection

table:

INSERT INTO cd_collection VALUES(9, 'Nevermind', 'Nirvana', '1991', NULL);

MySQL requires the NULL value for the last column (rating) if you do not want to include

a rating. PostgreSQL, in contrast, lets you get away with just omitting the last column.

Of course, if you had columns in the middle that were null, you would need to explicitly

state NULL in the INSERT statement.

Normally, INSERT statements are coded into a front-end program, so users adding data to

the database do not have to worry about the SQL statements involved.

Retrieving Data from a Database

Of course, the main reason for storing data in a database is so you can later look up, sort,

and generate reports on that data. Basic data retrieval is done with the SELECT statement,

which has the following syntax:

SELECT column1, column2, column3 FROM table_name WHERE search_criteria;

The first two parts of the statement—the SELECT and FROM parts—are required. The WHERE

portion of the statement is optional. If it is omitted, all rows in the table table_name are

returned.

The column1, column2, column3 syntax allows you to specify the names of the columns you

want to see. If you want to see all columns, you can also use the wildcard * to show all

the columns that match the search criteria. For example, the following statement displays

all columns from the cd_collection table:

SELECT * FROM cd_collection;

If you want to see only the titles of all the CDs in the table, you use a statement such as

the following:

SELECT title FROM cd_collection;

To select the title and year of all the CDs in the table, you use the following:

SELECT title, year FROM cd_collection;

If you want something a little fancier, you can use SQL to print the CD title followed by

the year in parentheses, as is the convention. Both MySQL and PostgreSQL provide string

concatenation functions to handle problems such as this. However, the syntax is different

in the two systems.

In MySQL, you can use the CONCAT() function to combine the title and year columns

into one output column, along with parentheses. The following statement is an example:

SELECT CONCAT(title,"(",year, ")") AS TitleYear FROM cd_collection;

491

2
8

A Brief Review of Database Basics

That statement lists both the title and year under one column that has the label

TitleYear. Note that there are two strings in the CONCAT() function along with the fields;

these add white space and the parentheses.

In PostgreSQL, the string concatenation function is simply a double pipe (||). The follow-

ing command is the PostgreSQL equivalent of the preceding MySQL command:

SELECT (genus||'' ('||species||')') AS TitleYear FROM cd_collection;

Note that the parentheses are optional, but they make the statement easier to read. Once

again, the strings in the middle and at the end (note the space between the quotes) are

used to insert spacing and parentheses between the title and year.

Of course, more often than not, you do not want a list of every single row in a database.

Rather, you want to find rows that match certain characteristics. For this, you add the

WHERE statement to the SELECT statement. For example, suppose you want to find all the

CDs in the cd_collection table that have a rating of 5. You would use a statement like

the following:

SELECT * FROM cd_collection WHERE rating = 5;

Using the table from Figure 28.2, you can see that this query would return the rows for

Trouser Jazz, Life for Rent, and The Two Towers. This is a simple query, and SQL is capable

of handling queries much more complex than this. You can write complex queries using

logical AND and logical OR statements. For example, to refine the query so it lists only CDs

that were not released in 2003, you use a query like the following:

SELECT * FROM cd_collection WHERE rating = 5 AND year != 2003;

In SQL, != means “is not equal to.” So, once again looking at the table from Figure 28.2,

you can see that this query returns the rows for Trouser Jazz and The Two Towers but does

not return the row for Life for Rent because it was released in 2003.

So, what if you want to list all the CDs that have a rating of 3 or 4 except those released

in the year 2000? This time, you combine logical AND and logical OR statements:

SELECT * FROM cd_collection WHERE rating = 3 OR rating = 4 AND year != 2000;

This query returns entries for Mind Bomb, Natural Elements, and Combat Rock. However, it

does not return entries for Adiemus 4 because it was released in 2000.

TIP

One of the most common errors among new database programmers is confusing logical

AND and logical OR. For example, in everyday speech, you might say, “Find me all CDs

released in 2003 and 2004.” At first glance, you might think that if you fed this statement

to the database in SQL format, it would return the rows for For All You’ve Done and Life for

Rent. In fact, it would return no rows at all. This is because the database interprets the

statement as “Find all rows in which the CD was released in 2003 and was released in

2004.” It is, of course, impossible for the same CD to be released twice without requiring

492 CHAPTER 28 Administering Relational Database Services

a new ISBN and therefore a new database entry, so this statement would never return

any rows, no matter how many CDs were stored in the table. The correct way to form this

statement is with an OR statement instead of an AND statement.

SQL is capable of far more than is demonstrated here. But as mentioned earlier, this sec-

tion is not intended to teach you all there is to know about SQL programming; rather, it

teaches you the basics so you can be a more effective DBA.

Choosing a Database: MySQL Versus PostgreSQL
If you are just starting out and learning about using a database with Linux, the first logi-

cal step is to research which database will best serve your needs. Many database software

packages are available for Linux; some are free, and others cost hundreds of thousands

of dollars. Expensive commercial databases, such as Oracle, are beyond the scope of

this book. Instead, this chapter focuses on two freely available databases: MySQL and

PostgreSQL.

Both of these databases are quite capable, and either one could probably serve your needs.

However, each database has a unique set of features and capabilities that might serve your

needs better or make developing database applications easier for you.

Speed

Until recently, the speed choice was simple: If the speed of performing queries was

paramount to your application, you used MySQL. MySQL has a reputation for being an

extremely fast database. Until recently, PostgreSQL was quite slow by comparison.

Newer versions of PostgreSQL have improved in terms of speed (when it comes to disk

access, sorting, and so on). In certain situations, such as periods of heavy simultaneous

access, PostgreSQL can be significantly faster than MySQL, as you will see in the next sec-

tion. However, MySQL is still plenty fast compared to many other databases.

Data Locking

To prevent data corruption, a database needs to put a lock on data while it is being

accessed. As long as the lock is on, no other process can access the data until the first pro-

cess has released the lock. This means that any other processes trying to access the data

have to wait until the current process completes. The next process in line then locks the

data until it is finished, and the remaining processes have to wait their turn, and so on.

Of course, operations on a database generally complete quickly, so in environments with a

small number of users simultaneously accessing the database, the locks are usually of such

short duration that they do not cause any significant delays. However, in environments in

which many people are accessing the database simultaneously, locking can create perfor-

mance problems as people wait their turn to access the database.

Older versions of MySQL lock data at the table level, which can be a bottleneck for

updates during periods of heavy access. This means that when someone writes a row of

493

2
8

Choosing a Database: MySQL Versus PostgreSQL

data in the table, the entire table is locked so no one else can enter data. If your table has

500,000 rows (or records) in it, all 500,000 rows are locked any time one row is accessed.

Once again, in environments with a relatively small number of simultaneous users, this

doesn’t cause serious performance problems because most operations complete so quickly

that the lock time is extremely short. However, in environments in which many people

are accessing the data simultaneously, MySQL’s table-level locking can be a significant

performance bottleneck.

PostgreSQL, in contrast, locks data at the row level. In PostgreSQL, only the row currently

being accessed is locked. Other users can access the rest of the table. This row-level locking

significantly reduces the performance effect of locking in environments that have a large

number of simultaneous users. Therefore, as a general rule, PostgreSQL is better suited for

high-load environments than MySQL.

The MySQL release bundled with Ubuntu gives you the choice of using tables with table-

level or row-level locking. In MySQL terminology, MyISAM tables use table-level locking

and InnoDB tables use row-level locking.

NOTE

MySQL’s data locking methods are discussed in more depth at https://dev.mysql.com/doc/.

You can find more information on PostgreSQL’s locking at www.postgresql.org/docs/9.1/

static/sql-lock.html.

ACID Compliance in Transaction Processing to Protect Data Integrity

Another way MySQL and PostgreSQL differ is in the amount of protection they provide for

keeping data from becoming corrupted. The acronym ACID is commonly used to describe

several aspects of data protection:

 ▶ Atomicity—This means that several database operations are treated as an indivis-

ible (atomic) unit, often called a transaction. In a transaction, either all unit opera-

tions are carried out or none of them are. In other words, if any operation in the

atomic unit fails, the entire atomic unit is canceled.

 ▶ Consistency—This aspect ensures that no transaction can cause the database to

be left in an inconsistent state. Inconsistent states can be caused by database client

crashes, network failures, and similar situations. Consistency ensures that, in such

a situation, any transaction or partially completed transaction that would cause the

database to be left in an inconsistent state is rolled back, or undone.

 ▶ Isolation—This ensures that multiple transactions operating on the same data

are completely isolated from each other. This prevents data corruption if two users

try to write to the same record at the same time. The way isolation is handled can

generally be configured by the database programmer. One way that isolation can be

handled is through locking, as discussed previously.

https://dev.mysql.com/doc/
http://www.postgresql.org/docs/9.1/static/sql-lock.html
http://www.postgresql.org/docs/9.1/static/sql-lock.html

494 CHAPTER 28 Administering Relational Database Services

 ▶ Durability—This ensures that, after a transaction has been committed to the

database, it cannot be lost in the event of a system crash, network failure, or other

problem. This is usually accomplished through transaction logs. Durability means,

for example, that if the server crashes, the database can examine the logs when it

comes back up, and it can commit any transactions that were not yet complete into

the database.

PostgreSQL is ACID compliant, but again MySQL gives you the choice of using ACID-

compliant tables or not. MyISAM tables are not ACID compliant, whereas InnoDB tables

are. Note that ACID compliancy is no easy task: All the extra precautions incur perfor-

mance overhead.

SQL Subqueries

Subqueries enable you to combine several operations into one atomic unit, and they

enable those operations to access each other’s data. By using SQL subqueries, you can per-

form some extremely complex operations on a database. In addition, using SQL subqueries

eliminates the potential problem of data changing between two operations as a result of

another user performing some operation on the same set of data. Both PostgreSQL and

MySQL have support for subqueries in this release of Ubuntu, but this was not true in

earlier releases.

Procedural Languages and Triggers

A procedural language is an external programming language that you can use to write

functions and procedures. With a procedural language, you can do things that aren’t sup-

ported by simple SQL. A trigger enables you to define an event that invokes the external

function or procedure you have written. For example, you can use a trigger to cause an

exception if an INSERT statement containing an unexpected or out-of-range value for a

column is given.

For example, in the CD tracking database, you could use a trigger to cause an exception if

a user enters data that does not make sense. PostgreSQL has a procedural language called

PL/pgSQL. Although MySQL has support for a limited number of built-in procedures and

triggers, it does not have any procedural language. It does have a feature called stored

procedures that is similar, but it doesn’t do quite the same thing.

Configuring MySQL
A free and stable version of MySQL is included with Ubuntu. MySQL is also available from

www.mysql.com. The software is available in source code, binary, and APT format for

Linux. (See Chapter 9 for the details on adding (or removing) software.)

After you have MySQL installed, you need to initialize the grant tables, which contain

information about user accounts, or permissions to access any or all databases and tables

and column data within a database. You can do this by issuing mysql_install_db as root.

This command initializes the grant tables and creates a MySQL root user.

http://www.mysql.com

495

2
8

Configuring MySQL

CAUTION

The MySQL data directory needs to be owned by the user that owns the MySQL process,

most likely mysql. (You might need to change the directory’s owner by using the chown

command.) In addition, only this user should have any permissions on this directory. (In

other words, you should set the permissions to 700 by using chmod.) Setting up the data

directory any other way creates a security hole.

Running mysql_install_db should generate output similar to the following:

matthew@seymour:~$ sudo mysql_install_db

Preparing db table

Preparing host table

Preparing user table

Preparing func table

Preparing tables_priv table

Preparing columns_priv table

Installing all prepared tables

020916 17:39:05 /usr/libexec/mysqld: Shutdown Complete

...

This command prepares MySQL for use on the system and reports helpful information.

The next step is to set the password for the MySQL root user, which is discussed in the fol-

lowing section.

CAUTION

By default, the MySQL root user is created with no password. This is one of the first

things you must change because the MySQL root user has access to all aspects of the

database. The following section explains how to change the password of the user.

Setting a Password for the MySQL Root User

To set a password for the root MySQL user, you need to connect to the MySQL server as

the root MySQL user; you can use the command mysql -u root to do so. This command

connects you to the server with the MySQL client. When you have the MySQL command

prompt, issue a command like the following to set a password for the root user:

mysql> SET PASSWORD FOR root = PASSWORD("secretword");

In this command, replace secretword with whatever you want to be the password for the

root user. You can use this same command with other usernames to set or change pass-

words for other database users.

After you enter a password, you can exit the MySQL client by typing exit at the com-

mand prompt.

496 CHAPTER 28 Administering Relational Database Services

Creating a Database in MySQL

In MySQL, you create a database by using the CREATE DATABASE statement. To create a

database, you connect to the server by typing mysql -u root -p and pressing Enter. After

you do so, you are connected to the database as the MySQL root user and prompted for a

password. After you enter the password, you are placed at the MySQL command prompt.

Then you use the CREATE DATABASE command. For example, the following commands

create a database called animals:

matthew@seymour:~$ mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 3.23.58

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE animals;

Query OK, 1 row affected (0.00 sec)

mysql>

Another way to create a database is to use the mysqladmin command, as the root user,

with the create keyword and the name of a new database. For example, to create a new

database named reptiles, you use a command line like this:

matthew@seymour:~$ sudo mysqladmin -u root -p create reptiles

Granting and Revoking Privileges in MySQL

You probably want to grant yourself some privileges, and eventually you will probably

want to grant privileges to other users. Privileges, also known as rights, are granted and

revoked on four levels:

 ▶ Global level—These rights allow access to any database on a server.

 ▶ Database level—These rights allow access to all tables in a database.

 ▶ Table level—These rights allow access to all columns within a table in a database.

 ▶ Column level—These rights allow access to a single column within a database’s

table.

NOTE

Listing all the available privileges is beyond the scope of this chapter. See the MySQL

documentation for more information.

To add a user account, you connect to the database by typing mysql -u root -p and

pressing Enter. You are then connected as the root user and prompted for a password.

(You did set a password for the root user, as instructed in the last section, right?) After you

enter the root password, you are placed at the MySQL command prompt.

497

2
8

Configuring MySQL

To grant privileges to a user, you use the GRANT statement, which has the following syntax:

GRANT what_to_grant ON where_to_grant TO user_name IDENTIFIED BY 'password';

The first option, what_to_grant, is the privileges you are granting to the user. You specify

these privileges with keywords. For example, the ALL keyword is used to grant global-,

database-, table-, and column-level rights for a specified user.

The second option, where_to_grant, specifies the resources on which the privileges should

be granted. The third option, user_name, is the username to which you want to grant the

privileges. Finally, the fourth option, password, is a password that should be assigned to

this user. If this is an existing user who already has a password and you are modifying per-

missions, you can omit the IDENTIFIED BY portion of the statement.

For example, to grant all privileges on a database named sampledata to a user named

foobar, you could use the following command:

GRANT ALL ON animals.* TO foobar IDENTIFIED BY 'secretword';

The user foobar can now connect to the database sampledata by using the password

secretword, and foobar has all privileges on the database, including the ability to create

and destroy tables. For example, the user foobar can now log in to the server (by using

the current hostname—shuttle2, in this example) and access the database like this:

matthew@seymour:~$ mysql -h shuttle2 -u foobar -p animals

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 43 to server version: 3.23.58

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

NOTE

See the section “The MySQL Command-Line Client” for additional command-line options.

Later, if you need to revoke privileges from foobar, you can use the REVOKE statement. For

example, the following statement revokes all privileges from the user foobar:

REVOKE ALL ON animals FROM foobar;

Advanced database administration, privileges, and security are complex topics that are

beyond the scope of this book. See the “References” section at the end of this chapter for

links to online documentation. You can also check out Luke Welling’s and Laura Thomp-

son’s book PHP and MySQL Web Development.

498 CHAPTER 28 Administering Relational Database Services

Configuring PostgreSQL
If you want to use PostgreSQL but do not want to use the version bundled with Ubuntu,

you can find the latest PostgreSQL binary files and source at www.postgresql.org.

The PostgreSQL packages are distributed as several files. At a minimum, you want

the postgresql package. You should see the README file in the FTP directory ftp://

ftp.postgresql.org/pub/ to determine whether you need any other packages.

If you are installing from the Ubuntu package files, a necessary postgres user account

(that is, an account with the name of the user running the server on your system) is cre-

ated for you automatically:

matthew@seymour:~$ fgrep postgres /etc/passwd

postgres:x:26:26:PostgreSQL Server:/var/lib/postgresql:/bin/bash

Otherwise, you need to create a user called postgres during the installation. This user

should not have login privileges because only root should be able to use su to become this

user, and no one will ever log in directly as the user. (See Chapter 13, “Managing Users,”

for more information on how to add users to an Ubuntu system.) After you have added

the user, you can install each of the PostgreSQL packages you downloaded using the stan-

dard dpkg -i command for a default installation.

Initializing the Data Directory in PostgreSQL

Installation initializes the database and sets the permissions on the data directory to their

correct values.

CAUTION

The initdb program sets the permissions on the data directory to 700. To avoid creating

a security hole, you should not change these permissions to anything else.

You can start the postmaster program with the following command (making sure you are

still the user postgres):

matthew@seymour:~$ postmaster -D /usr/local/pgsql/data &

If you have decided to use a directory other than /usr/local/pgsql/data as the data

directory, you should replace the directory in the postmaster command line with what-

ever directory you are using.

TIP

By default, Ubuntu makes the PostgreSQL data directory /var/lib/pgsql/data. This is

not a very good place to store the data, however, because most people do not have the

necessary space in the /var partition for any kind of serious data storage. Note that if

you change the data directory to something else (such as /usr/local/pgsql/data, as

in the examples in this section), you need to edit the PostgreSQL startup file (named

postgres) located in /etc/init.d to reflect the change.

http://www.postgresql.org
http://ftp.postgresql.org/pub/

499

2
8

Configuring PostgreSQL

Creating a Database in PostgreSQL

Creating a database in PostgreSQL is straightforward, but it must be performed by a user

who has permissions to create databases in PostgreSQL—for example, initially the user

named postgres. You can then simply issue the following command from the shell

prompt (not the PSQL client prompt, but a normal shell prompt):

matthew@seymour:~# su - postgres

-bash-2.05b$ createdb database

where database is the name of the database you want to create.

The createdb program is actually a wrapper that makes it easier to create databases with-

out having to log in and use psql. However, you can also create databases from within

psql with the CREATE DATABASE statement. Here is an example:

CREATE DATABASE database;

You need to create at least one database before you can start the psql client program. You

should create this database while you’re logged in as the user postgres. To log in as this

user, you need to use su to become root and then use su to become the user postgres. To

connect to the new database, you start the psql client program with the name of the new

database as a command-line argument, like this:

matthew@seymour:~$ psql sampledata

If you don’t specify the name of a database when you invoke psql, the command

attempts to connect to a database that has the same name as the user with which you

invoke psql (that is, the default database).

Creating Database Users in PostgreSQL

To create a database user, you use su to become the user postgres from the Linux root

account. You can then use the PostgreSQL createuser command to quickly create a user

who is allowed to access databases or create new database users, as follows:

matthew@seymour:~$ createuser sandra

Shall the new user be allowed to create databases? (y/n) y

Shall the new user be allowed to create more new users? (y/n) y

CREATE USER

In this example, the new user named sandra is created and allowed to create new data-

bases and database users. (Carefully consider who is allowed to create new databases or

additional users.)

You can also use the PostgreSQL command-line client to create a new user by typing psql

along with name of the database and then use the CREATE USER command to create a new

user. Here is an example:

CREATE USER foobar ;

500 CHAPTER 28 Administering Relational Database Services

CAUTION

PostgreSQL allows you to omit the WITH PASSWORD portion of the statement. However,

doing so causes the user to be created with no password. This is a security hole, so you

should always use the WITH PASSWORD option when creating users.

NOTE

When you are finished working in the psql command-line client, you can type \q to get out

of it and return to the shell prompt.

Deleting Database Users in PostgreSQL

To delete a database user, you use the dropuser command, along with the user’s name,

and the user’s access is removed from the default database, like this:

matthew@seymour:~$ dropuser msmith

DROP USER

You can also log in to your database by using psql and then use the DROP USER command.

Here is an example:

matthew@seymour:~$ psql demodb

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

 \h for help with SQL commands

 \? for help on internal slash commands

 \g or terminate with semicolon to execute query

 \q to quit

demodb=# DROP USER msmith ;

DROP USER

demodb=# \q

Granting and Revoking Privileges in PostgreSQL

As in MySQL, granting and revoking privileges in PostgreSQL is done with the GRANT and

REVOKE statements. The syntax is the same as in MySQL except that PostgreSQL doesn’t

use the IDENTIFIED BY portion of the statement because with PostgreSQL, passwords are

assigned when you create the user with the CREATE USER statement, as discussed previ-

ously. Here is the syntax of the GRANT statement:

GRANT what_to_grant ON where_to_grant TO user_name;

The following command, for example, grants all privileges to the user foobar on the

database sampledata:

GRANT ALL ON sampledata TO foobar;

501

2
8

Database Clients

To revoke privileges, you use the REVOKE statement. Here is an example:

REVOKE ALL ON sampledata FROM foobar;

This command removes all privileges from the user foobar on the database sampledata.

Advanced administration and user configuration are complex topics. This section cannot

begin to cover all the aspects of PostgreSQL administration or of privileges and users. For

more information about administering PostgreSQL, see the PostgreSQL documentation or

consult a book on PostgreSQL, such as PostgreSQL by Korry Douglas.

Database Clients
Both MySQL and PostgreSQL use a client/server system for accessing databases. In the

simplest terms, the database server handles the requests that come into the database, and

the database client handles getting the requests to the server as well as getting the output

from the server to the user.

Users never interact directly with the database server, even if it happens to be located

on the same machine they are using. All requests to the database server are handled by a

database client, which might or might not be running on the same machine as the data-

base server.

Both MySQL and PostgreSQL have command-line clients. A command-line client is a

primitive way of interfacing with a database and generally isn’t used by end users. As a

DBA, however, you use the command-line client to test new queries interactively without

having to write front-end programs for that purpose. In later sections of this chapter, you

discover a bit about the MySQL graphical client and the web-based database administra-

tion interfaces available for both MySQL and PostgreSQL.

The following sections examine two common methods of accessing a remote database, a

method of local access to a database server, and the concept of web access to a database.

NOTE

You should consider access and permission issues when setting up a database. Should

users be able to create and destroy databases? Or should they only be able to use

existing databases? Will users be able to add records to the database and modify exist-

ing records? Or should users be limited to read-only access to the database? And what

about the rest of the world? Will the general public need to have any kind of access to

your database through the Internet? As a DBA, you must determine the answers to these

questions.

SSH Access to a Database

Two types of remote database access scenarios are briefly discussed in this section. In

the first scenario, the user directly logs in to the database server through Secure Shell (SSH)

(to take advantage of the security benefits of encrypted sessions) and then starts a program

on the server to access the database. In this case, shown in Figure 28.4, the database client

is running on the database server itself.

502 CHAPTER 28 Administering Relational Database Services

Simba

Cheetah

DB Server

DB Client

FIGURE 28.4 The user logs in to the database server located on host Simba from the worksta-

tion (host Cheetah). The database client is running on Simba.

In the other scenario, shown in Figure 28.5, the user logs in to a remote host through SSH

and starts a program on it to access the database, but the database is actually running on a

different system. Three systems are now involved: the user’s workstation, the remote host

running the database client, and the remote host running the database server.

The important thing to note in Figure 28.5 is the middle system, Leopard. Although the

client is no longer running on the database server itself, it isn’t running on the user’s local

workstation, either.

DB Server

Simba

DB Client

Leopard

Cheetah

FIGURE 28.5 The user logs in to the remote host, Leopard, from the workstation (host

Cheetah) and starts a database client on Leopard. The client on Leopard then connects to the

database server running on host Simba. The database client is running on Leopard.

503

2
8

Database Clients

Local GUI Client Access to a Database

A user can log in to the database server by using a graphical client (which could be

running on Windows, macOS, or a UNIX workstation). The graphical client then con-

nects to the database server. In this case, the client is running on the user’s workstation.

Figure 28.6 shows an example.

DB Server

Simba

Graphical client

Cheetah

FIGURE 28.6 The user starts a GUI database program on the user’s workstation (hostname

Cheetah). This program, which is the database client, then connects to the database server

running on the host Simba.

Web Access to a Database

This section looks at two basic examples of web access to the database server. In the first

example, a user accesses the database through a form located on the World Wide Web. At

first glance, it might appear that the client is running on the user’s workstation. Of course,

in reality, it is not; the client is actually running on the web server. The web browser

on the user’s workstation simply provides a way for each user to enter the data that the

user wants to send to the database and a way for the results sent from the database to be

displayed to the user. The software that actually handles sending the request to the data-

base is running on the web server in the form of a CGI script; a Java servlet; or embedded

scripting such as the PHP or Sun Microsystems, Inc.’s JavaServer Pages (JSP).

Often, the terms client and front end are used interchangeably when speaking of database

structures. However, Figure 28.7 shows an example of a form of access in which the client

and the front end are not the same thing at all. In this example, the front end is the form

displayed in the user’s web browser. In such cases, the client is referred to as middleware.

In another possible web access scenario, it could be said that the client is a two-piece

application in which part of it is running on the user’s workstation and the other part is

running on the web server. For example, a database programmer can use JavaScript in the

web form to ensure that the user has entered a valid query. In this case, the user’s query

is partially processed on the user’s own workstation and partially on the web server. Error

checking is done on the user’s own workstation, which helps reduce the load on the

server and also helps reduce network traffic because the query is checked for errors before

being sent across the network to the server.

504 CHAPTER 28 Administering Relational Database Services

DB Server

Simba

Web server

Web browser

Leopard

Cheetah

FIGURE 28.7 The user accesses the database through the World Wide Web. The front end is

the user’s web browser, the client is running on Leopard, and the server is running on Simba.

The MySQL Command-Line Client

The MySQL command-line client is mysql, and it has the following syntax:

mysql [options] [database]

Some of the available options for mysql are discussed in Table 28.1. database is optional,

and if given, it should be the name of the database to which you want to connect.

Table 28.1 Command-Line Options to Use When Invoking mysql

Option Action

-h hostname Connects to the remote host hostname (if the database server isn’t

located on the local system).

-u username Connects to the database as the user username.

-p Prompts for a password. This option is required if the user you are con-

necting as needs a password to access the database. Note that this is a

lowercase p.

-P n Specifies n as the number of the port that the client should connect to.

Note that this is an uppercase P.

-? Displays a help message.

More options are available than are listed in Table 28.1, but these are the most common

options. See the man page for mysql for more information on the available options.

505

2
8

Database Clients

CAUTION

Although mysql allows you to specify the password on the command line after the -p

option, and thus allows you to avoid having to type the password at the prompt, you

should never invoke the client this way. Doing so causes your password to display in the

process list, and the process list can be accessed by any user on the system. This is a

major security hole, so never give your password on the mysql command line.

You can access the MySQL server without specifying a database to use. After you log in,

you use the help command to get a list of available commands, like this:

mysql> help

MySQL commands:

Note that all text commands must be first on line and end with ';'

help (\h) Display this help.

? (\?) Synonym for 'help'.

clear (\c) Clear command.

connect (\r) Reconnect to the server. Optional arguments are db and host.

edit (\e) Edit command with $EDITOR.

ego (\G) Send command to mysql server, display result vertically.

exit (\q) Exit mysql. Same as quit.

go (\g) Send command to mysql server.

nopager (\n) Disable pager, print to stdout.

notee (\t) Don't write into outfile.

pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.

print (\p) Print current command.

quit (\q) Quit mysql.

rehash (\#) Rebuild completion hash.

source (\.) Execute a SQL script file. Takes a file name as an argument.

status (\s) Get status information from the server.

tee (\T) Set outfile [to_outfile]. Append everything into given outfile.

use (\u) Use another database. Takes database name as argument.

You can then access a database by using the use command and the name of a database

that has been created (such as animals) and that you are authorized to connect to, as

follows:

mysql> use animals

Database changed

mysql>

The PostgreSQL Command-Line Client

You invoke the PostgreSQL command-line client with the command psql. As with mysql,

you can invoke psql with the name of the database to which you would like to connect.

Also, like mysql, psql can take several options. These options are listed in Table 28.2.

506 CHAPTER 28 Administering Relational Database Services

Table 28.2 Command-Line Options to Use When Invoking psql

Option Action

-h hostname Connects to the remote host hostname (if the database server isn’t

located on the local system).

-p n Specifies n as the number of the port that the client should connect to.

Note that this is a lowercase p.

-U username Connects to the database as the user username.

-W Prompts for a password after connecting to the database. In PostgreSQL

7 and later, password prompting is automatic if the server requests a

password after a connection has been established.

-? Displays a help message.

Several more options are available in addition to those listed in Table 28.2. See the psql

man page for details on all the available options.

RELATED UBUNTU AND DATABASE COMMANDS

The following commands are useful for creating and manipulating databases in Ubuntu:

 ▶ createdb—Creates a new PostgreSQL database

 ▶ createuser—Creates a new PostgreSQL user account

 ▶ dropdb—Deletes a PostgreSQL database

 ▶ dropuser—Deletes a PostgreSQL user account

 ▶ mysql—Interactively queries the mysqld server

 ▶ mysqladmin—Administers the mysqld server

 ▶ mysqldump—Dumps or backs up MySQL data or tables

 ▶ psql—Accesses PostgreSQL via an interactive terminal

Graphical Clients

If you prefer to interact with a database by using a graphical database client rather than

with the command-line clients discussed in the previous sections, you are in luck: A few

options are available.

MySQL has an official graphical client called MySQLGUI. MySQLGUI is available in both

source and binary formats from the MySQL website at www.mysql.com.

PostgreSQL has pgAdmin, which comes with the postgres package on Ubuntu.

Web-based administration interfaces are also available for MySQL and PostgreSQL.

phpMyAdmin and phpPgAdmin are two such products. Both of these products are based

on the PHP-embedded scripting language and therefore require you to have PHP installed.

Of course, you also need to have a web server installed.

http://www.mysql.com

507

2
8

References

References
 ▶ www.mysql.com—The official website of the MySQL database server, where you

can find the latest versions, up-to-date information, and online documentation for

MySQL (You can also purchase support contracts here. You might want to look into

this if you will be using MySQL in a corporate setting. Many corporations balk at the

idea of using software for which the company has no support contract in place.)

 ▶ https://mariadb.org—The home page for MariaDB

 ▶ www.postgresql.org—The official website of the PostgreSQL database server.

http://www.mysql.com
https://mariadb.org
http://www.postgresql.org

This page intentionally left blank

IN THIS CHAPTER

 ▶ Key/Value Stores

 ▶ Document Stores

 ▶ Wide Column Stores

 ▶ Graph Stores

 ▶ References

CHAPTER 29

NoSQL Databases

If you read Chapter 28, “Administering Relational Data-

base Services,” you have already read a brief description

of the databases in this chapter. NoSQL is a broad term

covering a large number of database styles. There are some

similarities, but each of these databases was developed for

a specific purpose. They are therefore not necessarily inter-

changeable, although it might be possible to force one to

serve a task for which it is not designed. That is rarely a

good idea. Also, although there has been a lot of press and

hype about NoSQL over the past few years, NoSQL will not

and should not be considered a replacement for relational

databases. Rather, this is a new set of databases designed to

excel in specific situations, especially in large-scale, high-

traffic-volume applications. If you have a need for storing

and interacting with specific types of data, as described in

this chapter, only then do we recommend using one of the

databases listed in this chapter.

NOT ONE SIZE FITS ALL

“It’s not a one size fits all anymore. One will use multiple

technologies. If I were a CTO, I’d want to use NoSQL for

scalable high performance operational data access, lots

of reads and writes at high speed and [for] semi real-time

and low latency for end users. And you need another for

reporting and BI. These [NoSQL] technologies are not

optimal for that. In general, a classic data warehouse is a

good solution for those things.”

—Dwight Merriman, CEO of MongoDB, at OSCON 2011, as

quoted in an article from ZDNet at www.zdnet.com/article/

mongodb-chief-it-will-be-mixed-sql-nosql-world/

There are different definitions and even some controversy

over what NoSQL means. Does it mean that the database

does not use SQL for interactions? Perhaps, but that is not

http://www.zdnet.com/article/mongodb-chief-it-will-be-mixed-sql-nosql-world/
http://www.zdnet.com/article/mongodb-chief-it-will-be-mixed-sql-nosql-world/

510 CHAPTER 29 NoSQL Databases

absolute. Does it mean, as some now suggest, “not only SQL?” Maybe. That is certainly a

broader and more accurate description, although it is also a bit misleading as it seems to

include all the relational databases that use SQL. Here is a well-known secret: There is no

consistent definition of the term. With that said, here is a reasonably accurate set of fea-

tures that the databases that are generally labeled NoSQL share:

 ▶ They store structured data (organized in a way that is defined and identifiable).

 ▶ They do not store data relationally (no tables with rows and columns and relation-

ships between tables).

That’s about it.

The advantages to using a NoSQL option instead of a relational database are as follows:

 ▶ NoSQL databases are designed for really large sets of data and can often handle more

than any relational database.

 ▶ NoSQL databases are designed to scale as needed. That is, instead of buying a bigger

database server to handle increased load as you would with a relational model, you

can add additional database hosts easily and spread the database out across them.

This is designed to work with commodity hardware and transparently.

 ▶ Commodity hardware is much cheaper than dedicated, professional relational data-

base server hardware, making NoSQL a less expensive option in many cases.

 ▶ Data models with NoSQL are much more relaxed. Some would call this a disadvantage,

but it is included in the advantages list because there are some types of data models

that may change frequently. In a relational system, data model changes require taking

the database offline to modify the structure. Often, NoSQL databases have very little or

even no data model restrictions and can allow quick-and-dirty changes.

The disadvantages to using a NoSQL database are these:

 ▶ Support is not as readily available. Most of the NoSQL databases are relatively small

open source projects, which is something that should please most readers of this

book. However, this also means that, unlike with most enterprise-focused relational

databases, there is probably not any enterprise support available for businesses. This

will frighten many managers.

 ▶ Most NoSQL projects are fairly new. This also means that they are untested in large

enterprises and businesses. It can also mean that it takes longer to set up because of

the learning curve; known solutions can be implemented more quickly.

 ▶ NoSQL is not always ACID (atomicity, consistency, isolation, durability) compli-

ant. Instead of guaranteeing that every data transaction is instantly and properly

recorded, that only one interaction may occur with a piece of data at any given

time, and that only the current version is available to the end user, NoSQL databases

often work on a system of replication of data across multiple hosts that each get

updated eventually. This may happen quickly, but there is no guarantee that at a

511

2
9

NoSQL Databases

given moment you will retrieve the most up-to-date data. This matters when deal-

ing with financial transactions but might not be a concern with web search results

where “close enough” might be all that is wanted or necessary.

 ▶ There is no particular advantage to NoSQL unless you have data that is large enough

to benefit from it or your project fits neatly into a specific use case.

 ▶ Migrating to NoSQL from traditional relational databases if the need arises isn’t dif-

ficult. You know Donald Knuth’s saying that “premature optimization is the root

of all evil.” Designing your site or application using known technology and then

migrating later if the need arises might be wiser.

One facet that is sometimes described as an advantage and at other times as a disadvan-

tage relates to administration. Relational databases often must be administered by trained

staff. The positive side is that qualified database administrators (DBAs) are plentiful, if

expensive. NoSQL databases are designed to be created and, at least in theory, require

little to no further maintenance. Some pundits claim cost savings; others claim that DBAs

will still be needed (though for different tasks) and that there are very few people who are

trained and available to perform those tasks because of this perspective and the newness

of the database style.

NOW, A QUICK WAFFLE ON THE NAME

Google and others seem to like the name “NewSQL” more than “NoSQL.” Some only

apply “NewSQL” to a certain group of databases that are somehow different than

“NoSQL” databases. While “NoSQL” is much more common to hear, “NewSQL” is the lat-

est buzzword in the database world. Here is one description why:

“‘NewSQL’ is our shorthand for the various new scalable/high performance SQL database

vendors. We have previously referred to these products as 'ScalableSQL' to differenti-

ate them from the incumbent relational database products. Since this implies horizontal

scalability, which is not necessarily a feature of all the products, we adopted the term

'NewSQL' in the new report.

“And to clarify, like NoSQL, NewSQL is not to be taken too literally: the new thing about

the NewSQL vendors is the vendor, not the SQL.”

—The 451 Group's Matt Aslett, as recorded at https://blogs.the451group.com/

information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/

An interesting development in the NoSQL world is that specifications are being created

for a new database query language called UnQL (pronounced “uncle”), which stands

for Unstructured Query Language. This is being developed as a joint project by two devel-

opers: Richard Hipp, the creator of SQLite; and Damien Katz, the creator of CouchDB.

They expect more to join them soon. In a nutshell, the language contains some familiar

commands, such as SELECT, INSERT, UPDATE, and DELETE. However, it is different from

SQL because these commands do not work on tables but rather on collections of unor-

dered sets of objects that are described using JavaScript Object Notation (JSON). You can

learn more about UnQL from the first product we have seen that uses it at

www.unqlite.org.

https://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://www.unqlite.org

512 CHAPTER 29 NoSQL Databases

The sections that follow group databases by similarities in terms of a variety of standout

features. Because NoSQL databases are still fairly new, it is unclear which, if any, will

become a long-term standard. For that reason, this chapter gives high-level coverage of a

larger number of options rather than deep coverage of a couple of primary options.

Key/Value Stores
Key/value stores are the simplest of the NoSQL databases, at least in the sense of interac-

tions. You have a piece of data of any type; this is your value. You give it a name of some

sort; this is your key. Any time you need that specific piece of data, you ask for it using

the key. Values might be bits of text, binaries, pretty much anything, and the data type

does not need to be defined in advance—or perhaps even at all. The database never needs

to know what the value object is, just that it is stored using the given key. These databases

have no schema. The contents might be vastly different from one another in type, size,

domain, and so on. It is the client, the application that uses the database, that is required

to know about the value (what it is and the context in which it can be used). The data-

base merely stores it using a key, knows the key/value pair, and serves the value when

requested using its key.

Key/value stores are great for things like contents of a website shopping cart, user pref-

erence lists, a post in a social media site. Think of things that are not vital, things that

might be useful but that will not cause problems if lost. You would not want to use this

for credit card information, personal identification, health records, and such. You would

want it for high-traffic sites that need to make sure that a local user has quick and accu-

rate access to the information but where the information can take time to replicate to

other database nodes or where it might not require replication across nodes at all, or you

might use it where there is heavy access to the database itself but where users are not nec-

essarily using the same data concurrently.

Berkeley DB

Berkeley DB was originally created at the University of California, Berkeley, to create a disk

hash table that worked better than an existing solution while also helping the university clean

up its free UNIX version called BSD by removing code inherited from AT&T. Several years

later, Netscape asked the developers to add some desired features to make Berkeley DB more

useful to them. This resulted in spinning off Berkeley DB from the university to a company

founded for this purpose called Sleepycat Software, which headed development for many

years. As of the purchase of Sleepycat Software in 2006, Berkeley DB is now owned by Oracle.

Although it is listed under key/value stores, this is not the only way to interact with a

Berkeley DB database. Support also exists for using SQL and Java. Interaction is accom-

plished using an application programming interface (API). Berkeley DB is very fast and very

small. As a result, it can be found running on large-scale systems and embedded within

applications and even running on mobile devices.

Berkeley DB is easily the most mature database mentioned in this chapter and is most

notable for its use in many well-known software projects, including Subversion, Postfix, and

OpenLDAP. It was even included as a data storage backend for MySQL prior to MySQL 5.1.

513

2
9

Key/Value Stores

Cassandra

Cassandra was developed by Facebook for its inbox searching feature. It was released as an

open source project when Facebook turned it over to Apache in 2008. Cassandra is a key/

value store that runs on a flexible cluster of nodes and is also a wide column store, like

HBase, discussed in the “Wide Column Store” section, later in this chapter. Nodes may be

added and removed from the cluster. Data is replicated across multiple nodes of the clus-

ter. There is no central node, and access to data exists from any node; if the node receiv-

ing the request does not house the specific data requested, it still services the request by

retrieving and sending the data. The main goal of Cassandra is fast retrieval of data, with

fault tolerance being handled through replication across nodes and speed adjustments via

adding additional nodes to create more access points.

One interesting feature is that Cassandra may be tuned to adjust the trade-off between

speed of transactions and consistency of data. When data is stored, it is initially stored in

memory and gets sent to disk only when specific criteria are met. This makes interaction

very quick. In fact, not all data stored in Cassandra is designed to persist over time, and

data might not get written to disk at all. This means that not all readers or seekers of data

may find a specific piece, but in cases like Facebook’s need to store inbox search data that

has only limited time value (such as search results that could be different tomorrow or

even 10 minutes from now), this might not matter at all. In these cases, both access speed

and convenience are more important.

Cassandra is being used by Facebook, Twitter, Reddit, and many others.

etcd

The open source project behind etcd is CoreOS, which is working in the container world.

CoreOS is now owned by Red Hat, which is owned by IBM. (See Chapter 31, “Contain-

ers and Ubuntu,” for more about containers.) This key/value store is designed specifically

for containerized deployment across a cluster of machines. It is written in Go and is in

production use by many large companies, including Cloud Foundry and anyone using

Kubernetes.

The focus of etcd is four-fold: simplicity, security, speed, and reliability. It includes a user-

facing API and complete access to the source code via GitHub.

Memcached and MemcacheDB

Memcached stores data requested on a system in RAM for a specific period of time to

make retrieving that data faster if it is requested again. The time that data persists can be

based on a specific setting, memory needs, and other criteria. The goal is to reduce the

number of times that data stores must be accessed. Data that is accessed often is held in

memory, from where it is much more quickly retrieved. This can alleviate problems such

as a page on a blog that has suddenly become popular as a result of the URL being posted

on a social networking site. The spike in traffic could be kept manageable because the

content of the blog post is being held in memory instead of being requested over and over

from the database.

514 CHAPTER 29 NoSQL Databases

MemcacheDB is an implementation of the Memcached API that uses a key/value format

based on Berkeley DB. However, whereas Memcached is designed as a cache solution

to speed up data access from memory, MemcacheDB is designed as a persistent storage

engine. Because it uses the same API protocol as Memcached, using it is an easy way to

add data persistence where caching is already in place with Memcached.

Memcached is used by sites like Twitter, Reddit, YouTube, and Facebook, and it is also

supported and often used by websites based on content management systems, such as

Drupal and WordPress.

Redis

Initially released in 2009, Redis is intended for applications where performance and flex-

ibility are more important than persistence and absolute data integrity. It is an open

source key/value store written in C. Keys can contain strings, hashes, lists, sets, and stored

sets. Redis works in RAM for speed, occasionally dumping to disk. Because actions are

performed in memory, they are done faster. Operations include appending to a string,

incrementing a hash value, pushing to a list, set computations, and more. Redis is also

designed so that master/slave replication is easy to set up.

Riak

Riak is a fault-tolerant, distributed database designed for scalability and use in the cloud. It

is masterless, meaning there should be no single point of failure. It is designed for speed,

simplicity, and stability. Riak is based on a paper by Amazon describing Dynamo, which is

an internal, proprietary system owned by Amazon. The Riak wiki describes the database

in one place as “the most boring database you’ll ever run in production. No sharding

required, just horizontal scaling and straightforward capacity planning. The same opera-

tional tasks apply to small clusters and large clusters. More machines does not mean more

ops.”

Scylla

Scylla is being developed by a fairly young startup called ScyllaDB. The product compares

itself with Cassandra, and the company calls it a “drop-in replacement with lightning fast

throughput and ultra-low latency.” Although it is being produced by a small company, it

has some big-name financial backers. Scylla is not yet well-known; at the time of this writ-

ing, we only know of smaller deployments. However, it is being used on servers owned

and used by major companies, so we consider it worth mentioning.

Document Stores
Document stores are designed to store data that is already structured in some form of

notation, such as JSON or XML. A document store typically focuses on one specific type of

notation and is intended to allow entire objects, including arrays and hashes, to be stored

and retrieved at once.

515

2
9

Document Stores

Many times document stores are implemented as a layer between an application and a

relational database to hold the output of certain types of queries. For example, it might be

convenient to aggregate information that is typically requested together—such as a set of

user preferences or name and address information—and store it as one object. Requesting

and retrieving only one object that is already formatted in an object notation like JSON

is faster than making many database queries, and it supplies preformatted data for the cli-

ent application that can be used to both style output and display specific data at the same

time.

Data that is stored and served this way does not have to fit database-specific formatting

requirements in a NoSQL database. There are no tables to relate, and data may be larger or

smaller and may include more or less information. This is generally called semistructured

data. Listings 29.1 and 29.2 are quick snippets of two sets of user preferences in JSON—

one that includes many user-set preferences and one that includes only one. The client

application could be created to assume a set of default preferences that will be used unless

specifically overridden by this file.

LISTING 29.1 Sandra’s Preferences

{"userpreferences": {

 "displayName": "Don'tHitOnMe",

 "gender":"DoNotDisplay",

 "siteTheme":"Springtime",

 "postsDisplayed":"25",

 "keepLoggedIn":"True"

 }

}

LISTING 29.2 Matthew’s Preferences

{"userpreferences": {

 "siteTheme":"TieDye",

 }

}

CouchDB

CouchDB began in 2005 as a self-funded personal project of Damien Katz. In 2008, it was

given to Apache, where development continues. The goal of CouchDB is to provide a data-

base useful for serving web applications. The emphasis is on scalability and fault tolerance

while using commodity hardware. (Couch is an acronym for cluster of unreliable commodity

hardware.) This is not an easy task, but when done successfully, it lowers costs.

CouchDB uses a RESTful HTTP API that is designed from the beginning to be used on and

for the Web. All stored items have a unique uniform resource identifier (URI), and full cre-

ate, read, update, and delete (CRUD) functions are available directly using standard HTTP

calls, making CouchDB very easy to integrate into web applications. These calls can be

made from a browser or from a command line, using a tool like cURL, which is available

on many typical server platforms, including Ubuntu.

516 CHAPTER 29 NoSQL Databases

A nice feature of CouchDB is that, unlike many NoSQL options, it is designed with the

ability to include ACID compliance. This makes it possible to use CouchDB with more

consistency-sensitive data.

CouchDB is written in Erlang, which is a language designed for concurrency. This makes

CouchDB even better suited for use in a concurrent distributed system. CouchDB is

designed to store JSON document objects.

CouchDB is used by several software and web applications, including many Facebook

games and applications, internal use at the BBC, and more.

MongoDB

MongoDB is similar to CouchDB in that both are designed as document stores for JSON

objects and, like Cassandra, it is designed for replication and high availability. It is cre-

ated and supported by a company called 10gen and is newer, with its first public release in

2009. A unique feature for this open source database is that the developer offers commer-

cial, enterprise-class support, training, and consulting. This has made adoption of

MongoDB much faster than is typical for NoSQL products.

MongoDB supports sharding, which means automatically partitioning data across servers

for increased performance and scalability. This produces a form of load and data balancing

and also offers a way to add nodes simply. Sharding is also intended to support an auto-

matic failover system where node data is replicated, allowing no single point of failure.

In addition, MongoDB includes support for indexing in a manner that is more extensive

and powerful than most NoSQL solutions.

MARKETING HYPE OR GREAT DESIGN?

Consider this perspective on MongoDB:

“MongoDB wasn’t designed in a lab. We built MongoDB from our own experiences building

large-scale, high-availability, robust systems. We didn’t start from scratch, we really tried

to figure out what was broken, and tackle that. So the way I think about MongoDB is that

if you take MySQL, and change the data model from relational to document based, you

get a lot of great features: embedded docs for speed, manageability, agile development

with schema-less databases, easier horizontal scalability because joins aren’t as impor-

tant. There are lots of things that work great in relational databases: indexes, dynamic

queries, and updates, to name a few; and we haven’t changed much there. For example,

the way you design your indexes in MongoDB should be exactly the way you do it in MySql

or Oracle; you just have the option of indexing an embedded field.”

—Eliot Horowitz, 10gen CTO and co-founder

Obviously, the people behind MongoDB are good at marketing. At the same time, if you

listen closely to the crowd, you don’t hear many negative comments about MongoDB,

and it has an impressive list of users, including Craigslist, Shutterfly, SourceForge, the New

York Times, and GitHub. MongoDB has quickly garnered great respect, and its use is con-

stantly spreading.

517

2
9

Wide Column Stores

BaseX

BaseX was started by Christian Grün at the University of Konstanz in 2005 and was sub-

sequently released using a BSD license in 2007. It is a simple, lightweight database that

does not support a lot of features but could be just right for specific applications. Rather

than using JSON, like CouchDB and MongoDB, BaseX is designed to store document

objects in XML. It supports standard XML tools like XPath and XQuery and also includes

a lightweight GUI.

BaseX creates indexes and supports W3C recommendations and standards, ACID-safe

transactions, large documents, and various APIs like REST/JAX-RX and XML:DB. Although

not as sexy or well known as other options in this section, perhaps because of the newness

and popularity of JSON over XML, BaseX is respected and used by many universities and

enterprises.

Wide Column Stores
Wide column stores are often referred to as big table stores, after one of the best-known

examples, Google’s BigTable. Typically, a relational database reads data from tables using

rows. Data is then sorted to find only those contents of a row that are needed. Wide

column stores change the system by reading data from tables in columns, selecting the

attributes first before reading in data. This is more efficient for input and output read-

only queries. Wide column stores therefore tend to be very efficient for databases that are

mostly used for reading stored data, especially from very large data sets.

Wide column stores use something like tables, with a defined schema for each table.

Unlike relational databases, wide column stores do not record relationships between

tables. These are not relational databases but are more like maps that show where data

exists across multiple dimensions. They are designed for scalability and as distributed

systems.

Two examples of wide column stores are discussed here. One more, Cassandra, was dis-

cussed earlier in this chapter and fits into both this category and the earlier key/value

stores category.

BigTable

BigTable is a proprietary Google product that is used only by Google. It is designed to

work with Google’s MapReduce framework, which was created to process huge data sets

across large clusters of computing nodes.

BigTable stores the massive sets of data used by many Google programs, such as Google

Reader, My Search History, Google Earth, YouTube, and Gmail. BigTable is not available

for use outside Google.

The papers that describe Google’s design for both BigTable and MapReduce are listed in

the “References” section at the end of this chapter.

518 CHAPTER 29 NoSQL Databases

HBase

HBase is the database used by Hadoop, Apache Project’s free software application for pro-

cessing huge amounts of data across large clusters of compute nodes in a cluster. Hadoop

is modeled in part after the information in Google’s MapReduce and Google File System

papers. HBase is to BigTable what Hadoop is to MapReduce.

The main feature of HBase is its ability to host very large tables—on the scale of billions

of rows across millions of columns. It is designed to host them on commodity hardware.

HBase provides a RESTful web service interface that supports many formats and encodings

and is optimized for real-time queries.

Numerous companies are using Hadoop, including some very big names like Amazon,

eBay, Facebook, IBM, LinkedIn, Yahoo!, and Rackspace.

Graph Stores
Graph stores, or graph databases, literally store data as a graph. This means the data is rep-

resented as a series of nodes and indicates how they relate to each other. In the simplest

case, a graph with only one node, only the record and its properties need to be recorded.

The properties list can be as short as one or as long as a few million (perhaps more).

Rather than allow that awkwardness to grow, most graph databases start creating new

nodes sooner, each node having its own properties and also explicit relationships that tie

each node to other nodes. It is the relationships that organize the nodes, and the struc-

ture is therefore flexible. A graph can look like a list or a map or a tree or something else

entirely.

Graph databases are queried using traversals. A traversal begins at a defined starting node

and follows through related nodes to answer questions such as “What classes are my

friends taking that I am not enrolled in?” or “If server X has a network connection prob-

lem, what web services will be disrupted?” In a graph database, an index is just a special

type of traversal—usually something commonly done, such as finding specific nodes or

relationships according to a property they share.

Graph stores are not terribly common, but they are beloved by those who promote them.

There is less differentiation between the options available in this category, at least com-

pared to the differentiation between the other categories of NoSQL databases in this

chapter.

Neo4j

Neo4j is the graph store that most people have heard of in the NoSQL world. It has both

a free version and a commercial version. Language bindings exist for Java, Python, and

Ruby. It is scalable up to graphs of several billion nodes/relationships/properties on a

single machine and can be scaled across multiple machines. It can be deployed on a stand-

alone server or as a small-footprint database coexisting on the same machine with other

software.

519

2
9

References

OrientDB

OrientDB is a free database released under the Apache 2.0 license. It uses an indexing algo-

rithm called MVRB-Tree, which it claims is significantly faster than other indexing algo-

rithms. You might remember an older relational database called Orient ODBMS. OrientDB

is related to that and can be used with a subset of SQL, but it is a complete rewrite using a

document/graph database foundation.

HyperGraphDB

HyperGraphDB is another free option that uses the LGPL. It is designed primarily for

use with the semantic web, knowledge management, and artificial intelligence projects.

In mathematics, a hypergraph is an extension to a standard graph that allows an edge to

point to more than two nodes. According to the HyperGraphDB website, “HyperGraphDB

extends this even further by allowing edges to point to other edges as well and mak-

ing every node or edge carry an arbitrary value as payload.” HyperGraphDB seems to

be focused on the academic side of things. Students might be especially interested in it

because HyperGraphDB appears to be trying out some new research ideas.

FlockDB

Twitter uses FlockDB to store social graphs, such as who follows whom, as well as for some

secondary indexes. It is free and open source, using the Apache 2.0 license. It is simpler

than other graph databases as it seems to try to solve fewer problems and is designed for

one primary use. FlockDB is designed for online, low-latency, high-throughput environ-

ments such as websites like Twitter; even then, it’s only for storing specific types of data.

References
 ▶ www.oracle.com/database/berkeley-db/db.html—The main Berkeley DB

website

 ▶ https://cassandra.apache.org—The main website for Cassandra

 ▶ www.scylladb.com—The main website for Scylla

 ▶ www.memcached.org—The main website for Memcached

 ▶ https://memcachedb.org—The main website for MemcacheDB

 ▶ https://coreos.com/etcd/—The main website for etcd

 ▶ https://redis.io—The main website for Redis

 ▶ https://basho.com/products/—The main website for Riak

 ▶ https://couchdb.apache.org—The main website for CouchDB

 ▶ https://mongodb.org—The main website for MongoDB

 ▶ https://basex.org—The main website for BaseX

http://www.oracle.com/database/berkeley-db/db.html
https://cassandra.apache.org
http://www.scylladb.com
http://www.memcached.org
https://memcachedb.org
https://coreos.com/etcd/
https://redis.io
https://basho.com/products/
https://couchdb.apache.org
https://mongodb.org
https://basex.org

520 CHAPTER 29 NoSQL Databases

 ▶ https://research.google.com/archive/bigtable.html—A paper describing

BigTable

 ▶ https://research.google.com/archive/mapreduce.html—A paper describing

MapReduce

 ▶ https://hadoop.apache.org—The main website for Hadoop

 ▶ https://hbase.apache.org—The main website for HBase, the Hadoop database

 ▶ https://research.google.com/archive/gfs.html—The paper describing Google

File System

 ▶ https://neo4j.com—The main website for Neo4j

 ▶ https://orientdb.org—The main website for OrientDB

 ▶ www.hypergraphdb.org—The main website for HyperGraphDB

 ▶ https://github.com/twitter/flockdb—The main website for FlockDB

https://research.google.com/archive/bigtable.html
https://research.google.com/archive/mapreduce.html
https://hadoop.apache.org
https://hbase.apache.org
https://research.google.com/archive/gfs.html
https://neo4j.com
https://orientdb.org
http://www.hypergraphdb.org
https://github.com/twitter/flockdb

IN THIS CHAPTER

 ▶ KVM

 ▶ VirtualBox

 ▶ VMware

 ▶ Xen

 ▶ References

CHAPTER 30

Virtualization on
Ubuntu

Virtualization is an important topic today, but it isn’t a

difficult one to understand—at least conceptually. We cover

two distinct use cases in this chapter: server virtualization

and virtualization on the desktop. Most of the options cov-

ered in this chapter work for either use case. In the sections

that follow, this chapter points out specific moments that are

focused solely on one use case. There are several scenarios,

both large and small, that are helpful to illustrate the poten-

tial of virtualization and to give the idea some definition.

For starters, imagine a large corporation or business that

processes huge amounts of data. That corporation has many

dedicated computers to assist with the task. In the past,

it might have used mainframes, single computers capable

of performing multiple tasks concurrently while dealing

with large data sets and multiple, concurrent users. Today,

the same company might use a server farm, a network of

smaller computers that is extensible and where specific serv-

ers in the network can be dedicated to precise tasks.

The problem is that some of these servers do not get used

to their capacity. Take, for example, a payroll server that

might get extensive use at certain times but might sit nearly

idle at other times. That seems like a waste of resources.

What if a systems administrator could pool the resources

of all these machines and then dole out those resources as

they are needed? She can do so by using virtualization.

At other times, there is a need for servers that do not exist

and that will not be needed in the long term. For example,

a statistics department might have a one-time need for

extra processing power for a big project. It would take a

long time to set up a dedicated server, and it is hard to jus-

tify the effort for a one-time task.

522 CHAPTER 30 Virtualization on Ubuntu

What if a system administrator could easily create and destroy servers for a specific task,

making them appear, completely configured, as needed and then making them disappear

when the need no longer exists, freeing up the physical resources for other uses? He can

do so by using virtualization.

Networks of physical servers can be created using virtualization, where the physical

resources of the servers are pooled together and then passed out as designated by an admin-

istrator. It is as if, instead of having 100 servers, each with 4 processors, 32GB of RAM, and

1TB of physical disk storage, you now have one huge resource pool with 400 processors,

3200GB of RAM, and 100TB of disk space. Virtual machines can then use these resources.

A virtual machine (VM) is a computer that operates on top of a virtualization layer, often

called a hypervisor. It isn’t real in the sense that it runs on defined, discrete physical

resources, but it does all of the same tasks as a “real” computer. The virtualization layer

on which the VM runs defines a set of virtual interfaces for the VM, which appear to the

VM’s operating system as if they were real network cards, memory, hard drives, and so

on. In a sense, virtualization fools the guest operating system in the VM into thinking it

is running on specific physical equipment that is emulated by the virtualization software,

while the virtualization software takes care of the details of interacting with the actual

hardware, which may even change without affecting the VM. This is called hardware

emulation (or sometimes simply emulation).

Virtual machines are flexible; their allocated resources may be changed—and in some cases

without any downtime. A VM can be created quickly, as needed, and then removed when

it is no longer needed, to make the resources it was using once again available to the pool.

Servers that are vital but generally use few resources can be created using far fewer resources

than required for the physical servers in the pool. Others that are needed for larger tasks

might be able to take advantage of the resources of many physical servers in the pool.

It is possible to create a VM and then save its image so that instead of starting with oper-

ating system installation each time a VM is created, the VM starts up with a full operating

system and installed programs all configured to work together for a desired task. One neat

trick is to run a set of servers locally, and then add compute resources from a cloud com-

puting pool such as Amazon’s EC2, Ubuntu Enterprise Cloud (using Eucalyptus), Ubuntu

Cloud Infrastructure (using OpenStack), or OpenStack to start up VMs on their network,

as needed, using them while paying for the time they are running and then deleting them

(see Chapter 32, “Ubuntu and Cloud Computing”). This saves a lot of time and money.

What if you run only one machine, and it is your desktop or laptop? Virtualization might

be useful to you, as well. Have you ever wanted to test a different operating system than

the one you are using? Perhaps you found that you have a need to run a specific program

that runs only on Windows, but you have Ubuntu installed on your system. Maybe you

want to run the latest development version of Ubuntu to help with testing, but you don’t

want to use it as your main system operating system. You might want to try out another

distribution of Linux or even BSD. In the past, doing these things typically involved par-

titioning your hard drive and installing both operating systems side by side. That worked,

but you couldn’t easily move data from one partition to the other, and you couldn’t run

both operating systems at the same time. Wouldn’t it be great if you could run another

operating system as a guest on your same machine? You can with virtualization.

523

3
0

KVM

There is a trade-off with virtualization, depending on the software used. Some virtualiza-

tion software runs as an additional layer on top of another operating system. This is great

if you want to test something while running on your local desktop machine, but it can

add some unwanted and sometimes unacceptable delays when creating a new server.

Other virtualization software runs on or near “bare metal,” meaning the virtualization

software is either a part of the operating system kernel or runs as the operating system,

and there are no other software layers between it and the physical resources being used

and managed. This method is faster but not as convenient on the desktop, at least for

users who are not as technically advanced.

Virtualization is not new. For example, IBM had useful virtualization running on its main-

frames in the 1960s. What has created the recent buzz is that the technology has become

available to perform the task on much less-expensive x86 hardware.

In November 2005, Intel released its first processors that supported an extension called

VT-x, which allows virtualization software access to the processor and other hardware.

Before that, virtualization on any x86 platform was slow because it required difficult soft-

ware workarounds and massaging to get it working. VT-x is available on many of Intel’s

processors but not necessarily all of them as it is one of the ways that Intel differentiates

the processors to segment its marketing across various price points. Also, with some moth-

erboards, the extension is not enabled by default but must be enabled in the BIOS before

it becomes available.

Following closely behind, in May 2006 AMD released virtualization extensions for its pro-

cessors. Called AMD-V, these extensions are available on many of AMD’s processors but

not all of them, as this is a higher-end feature.

A related topic deserves a quick mention here. In the cloud, the idea of containers has

become quite popular. If you are interested in virtualization for use in cloud computing,

read the coverage of containers in Chapter 32 before you make any decisions.

KVM
Kernel-based Virtual Machine (KVM) is a part of the Linux kernel. The KVM does not per-

form hardware emulation but only provides the lower-level tasks. It needs a second layer

to run in user space. This is much faster than running the entire virtualization process

in user space, on top of another operating system. KVM is designed for use on proces-

sors that have either the VT-x or AMD-V extension enabled. Managing VMs with KVM in

Ubuntu is accomplished using libvirt and QEMU. You can check whether a system has the

extensions enabled by installing and running the kvm-ok package. It is a simple command-

line tool that exits with output 0 if the system is suitable or non-0 if not.

Start by installing the following packages from the Ubuntu software repositories:

 ▶ qemu-kvm—The necessary user-space component of KVM

 ▶ libvirt-bin—A binary of a C toolkit to interact with the virtualization capabilities

of Linux that currently supports not only KVM but also Xen, VirtualBox, and more

524 CHAPTER 30 Virtualization on Ubuntu

 ▶ virtinst—A set of command-line tools for creating VMs

 ▶ bridge-utils—A set of utilities for configuring Ethernet connections in Linux

You might want to add virt-viewer, which provides a nice GUI and VNC interface to

VMs, and virt-manager, which provides a nice GUI for managing VMs. If installed, you

can find both in the Dash listing of applications.

After you install the packages, log out and back in so that the automatic addition of your

user to the libvirtd group is certain to be made effective.

By default, any operating system you install as a guest using KVM has access to network

services but is not visible to other machines on the network. It is able to download soft-

ware updates and browse the Web, for example, but it cannot run as a server accessible by

other systems. By default, VMs receive an IP address in the 10.0.2.0/24 range, and hosts

are reachable from within a VM by using 10.0.2.2. This should be adequate for simple uses

such as testing other operating systems, copying files back and forth using scp, or making

virtual private network (VPN) connections from a host to a guest.

BRIDGED NETWORKING

If you want to change the network settings to enable the use of a VM as an outside-accessible

server, you need bridged networking. This enables VMs to use a physical interface to connect

to the outside network, making them appear to the rest of the network as any other typical

server. Note that to do this you must not use the default Network Manager to control the hard-

ware being bridged. Also, this works only with wired, not wireless, hardware. See Chapter 18,

“Networking,” if you need help understanding the concepts mentioned here.

To start, install libcap2-bin. Next, you need to grant QEMU the ability to administer net-

working by setting cap_net_admin. If you have a 64-bit system, use the following:

matthew@seymour:~$ sudo setcap cap_net_admin=ei /usr/bin/qemu-system-x86_64

If you have a 32-bit system, use this:

matthew@seymour:~$ sudo setcap cap_net_admin=ei /usr/bin/qemu

Then create a bridge interface called enp3s0 under the bridges section in /etc/

netplan/*.yaml by adding these lines to use DHCP or your network settings if you want

to configure it yourself:

network:

 version: 2

 renderer: networkd

 ethernets:

 enp3s0:

 dhcp4: true

Restart networking by entering this:

matthew@seymour:~$ sudo netplan apply

525

3
0

KVM

Finally, you need to create guest VMs that use this bridged network. Manually define your

guest OS to use the new enp3s0 interface, as you usually would in that operating system.

There are several ways to create VMs for use with KVM. One way is to use vmbuilder.

This is a Python script that is best for servers on which you intend to run a specialized,

very light Ubuntu server variant that includes a tuned kernel with only the base elements

necessary to run as a virtual server, especially under KVM and VMware. Install python-

vm-builder to get the package. You run vmbuilder from the command line with two

necessary parameters: the virtualization software and the distribution you will run.

However, tons of useful options and customizations are available. Here is an example

that builds a VM for KVM from the 18.04 (Bionic Beaver) release of Ubuntu, using the

virtual flavor in an amd64 architecture while overwriting any previous edition of the VM,

instructing libvirt to inform the local virtualization environment to add the resulting

VM to the list of available virtual machines, give the new VM a specific IP address and

the hostname lovelace, and use the br0 bridge interface (Phew! That’s a lot in one

command!):

matthew@seymour:~$ sudo vmbuilder kvm ubuntu --suite bionic --flavour virtual -–arch

amd64 -o --libvirt qemu:///system --ip 192.168.0.100 --hostname lovelace

--bridge br0

You can learn more from the help file:

matthew@seymour:~$ vmbuilder kvm ubuntu --help

Because vmbuilder is so specialized, here we focus on using the tools from virtinst as

they are more likely to appeal to a general audience. However, if you are looking to cre-

ate server VMs to run on a KVM or VMware installation, you definitely want to explore

vmbuilder more fully. However, you might not need to do so. A set of official prebuilt and

Ubuntu-supported VM images are available for download at https://cloud-images.ubuntu.

com. These are the exact images that Ubuntu uses in EC2.

virtinst consists of several tools. Here we focus on two: virt-install, to provision new

virtual machines; and virt-clone, to clone existing virtual machines.

You can do similar things with virt-install as with vmbuilder, shown earlier in this

chapter. The major differences are the options available and that virt-install can also

make desktop images that include a GUI, which is accessible using VNC. See Chapter 19,

“Remote Access with SSH and VNC,” for a discussion of VNC.

Here is an example:

matthew@seymour:~$ sudo virt-install -n hopper -r 512 --disk

path=/var/lib/libvirt/images/hopper.img,size=20 -c /dev/cdrom --accelerate --

connect=qemu:///system --vnc --noautoconsole –v

https://cloud-images.ubuntu.com
https://cloud-images.ubuntu.com

526 CHAPTER 30 Virtualization on Ubuntu

This example includes the following options:

 ▶ -n hopper—Defines the name of the new VM

 ▶ -r 512—Specifies the amount of memory the virtual machine will be allotted, in

megabytes

 ▶ --disk path=...—Specifies the path to the virtual disk, which can be a file, a

partition, or a logical volume (in this case, a 20GB file named hopper.img in /var/

lib/libvirt/images)

 ▶ -c /dev/cdrom—Specifies the path to the host’s CD-ROM device (though you can

also use an ISO file)

 ▶ --accelerate—Enables the use of the kernel’s acceleration

 ▶ --connect—Defines the hypervisor to use

 ▶ --vnc—Exports the guest using a VNC virtual console

 ▶ --noautoconsole—Prevents automatic connection to the virtual machine’s console

 ▶ -v—Creates a fully virtualized guest

To copy a virtual machine, use virt-clone:

matthew@seymour:~$ sudo virt-clone -o hopper -n knuth -f /var/lib/libvirt/

imagzes/knuth.img –connect=qemu:///system

This example includes the following options:

 ▶ -o hopper—Defines the name of the origin or source VM

 ▶ -n knuth—Defines the name of the new VM

 ▶ -f—Defines the path to the file, partition, or logical volume that the new VM will use

 ▶ --connect—Defines the hypervisor to use

To start a virtual machine, use the following:

matthew@seymour:~$ virsh -c qemu:///system start hopper

To stop a virtual machine, use this:

matthew@seymour:~$ virsh -c qemu:///system shutdown hopper

When a VM is installed and running, you can connect to it by using the configured IP

address and a utility like ssh. You can also use a GUI with the following:

matthew@seymour:~$ virt-viewer -c qemu:///system hopper

You may use a GUI to manage your VMs by connecting to the following:

matthew@seymour:~$ virt-manager -c qemu:///system

527

3
0

VirtualBox

VirtualBox
VirtualBox is much easier to use than KVM, especially if all you want to do is run a second

operating system on top of Ubuntu. It was created by innotek GmbH, purchased by Sun

Microsystems, and is now owned and developed by Oracle (which purchased Sun). Virtual-

Box is installed on top of another operating system, so it isn’t ideal for processing intensive

activity where every processor cycle counts. However, for testing or running another operat-

ing system because you need specific applications, it is great. VirtualBox runs on top of most

UNIX-type operating systems, such as Linux, BSD, and macOS (as well as on Windows).

There is a version of VirtualBox in the Ubuntu software repositories, but in general down-

loading the one from the VirtualBox website is a better idea. Go to www.virtualbox.org/wiki/

Downloads. From there, you can download a version for any operating system you are likely

to use, including on the Linux page an Ubuntu DEB file that installs using the Advanced Pack-

ing Tool (APT), so package management isn’t a problem. However, this also gives you easy

access to download the extension pack, which isn’t available in the Ubuntu repositories, so

you can get it installed quickly and easily. The extension pack adds a few nice but proprietary

features that cannot be made available under the GPL used for the main program, such as the

ability to connect to the USB port of a host computer from a guest VM in VirtualBox. After

you’ve installed it, start VirtualBox at the command line by using the following:

matthew@seymour:~$ virtualbox

If you want to be able to close your terminal and keep VirtualBox running, run VirtualBox

in the background by putting an ampersand (&) after the command, like this:

matthew@seymour:~$ virtualbox &

Either way, when you are done, just close the GUI program, and VirtualBox shuts down.

When you run either, the GUI appears (see Figure 30.1).

FIGURE 30.1 Oracle VM VirtualBox Manager.

http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads

528 CHAPTER 30 Virtualization on Ubuntu

From here you can create a new VM by clicking New at the top left. Change the settings

on any currently installed VM by clicking Settings. Start any installed VM by clicking

Start. Delete any VM by clicking Discard. You can see details of the currently selected VM

by clicking Details at the upper right or your saved snapshots of existing VMs by clicking

Snapshots. Everything is configurable from the GUI. VirtualBox is easy and intuitive to

use, even for novices.

From the GUI, you can clone a machine, export it, and import it on another machine run-

ning VirtualBox. A command-line interface is available for scripting, focused on VM man-

agement activities. You can run VirtualBox headless and access it by using Remote Display

Protocol (RDP). These activities are beyond the scope of this book but can make VirtualBox

a little more interesting to someone who wants to run VMs remotely (although most who

are going to go through the trouble would probably go ahead and use KVM and connect

to a VM using VNC).

VMware
VMware is an enterprise-focused virtualization platform. The company offers a limited-

feature version that runs on the desktop for free and also sells a full-featured version. It

runs well, is easy to use, and has better features than VirtualBox. It also requires buying a

new license each year, and the license isn’t cheap.

Many people consider VMware’s enterprise server offerings to be the most powerful and

well featured in the business. The VMware software runs on bare metal; it is the operat-

ing system that gets installed on all the servers in a VMware installation. Then all the

resources are controlled from one central location. VMs can be moved while running from

one physical machine to another in the system with no loss of usability and no down-

time. This can even be done automatically, based on administrator-set criteria, such as

bandwidth, available memory, or processor load. It is also quite expensive to license.

VMware is primarily designed for use by large corporations in enterprise environments. It

is commonly used in large deployments by mature enterprise-level companies. Interest-

ingly, VMware is expanding beyond virtualization with new offerings using newer cloud

container services like Kubernetes.

Xen
Xen is a well-known open source virtualization platform. It is in widespread use by research-

ers, hobbyists, developers, and others. Web hosting companies that offer virtual servers

often use Xen. Generally, Xen installs on bare metal, like VMware. It can be installed on

top of another operating system in a host/guest arrangement. However, in 2008, Ubuntu

made a decision not to support Xen. Instead, the Ubuntu community has focused its efforts

on KVM. This is not a value statement that one is better than the other; it only means that

KVM seemed to be a better fit for the needs of an Ubuntu developer community that did

not have the resources to give quality support to two similar virtualization platforms.

It appears to be possible to run Xen on Ubuntu, but there are no guarantees. In fact, most

Linux distributions have abandoned Xen for KVM now.

529

3
0

References

References
 ▶ www.linux-kvm.org—The main page for KVM

 ▶ www.virtualbox.org—The main page for VirtualBox

 ▶ www.vmware.com—The main page for VMware

 ▶ www.xenproject.org—The main page for Xen

 ▶ www.xenproject.org—The main page for Xen

http://www.linux-kvm.org
http://www.virtualbox.org
http://www.vmware.com
http://www.xenproject.org
http://www.xenproject.org

This page intentionally left blank

IN THIS CHAPTER

 ▶ LXC and LXD

 ▶ Docker

 ▶ Kubernetes

 ▶ References

CHAPTER 31

Containers and Ubuntu

The latest trend in cloud computing is containers. The

easiest way to define containers is to begin with a compari-

son. Virtualization, which is described in Chapter 30, “Vir-

tualization on Ubuntu,” enabled us to end our dependence

on physical hardware when we need a new server; thanks

to virtualization, we can instead create servers as virtual

machines that can be moved across physical machines or

parts of physical machines. Similarly, containers allow us

to replicate the software components needed to run specific

processes or programs. This is a much faster and smaller

subset of software than virtualization requires.

A container packages an application and the application’s

entire runtime environment—all the files and dependen-

cies needed for the application to run. Containers can be

large or small, depending on the use case and the software

involved. Processes that run in a container are isolated

from the rest of the system on which the container is run-

ning. This provides a level of security as well as extreme

portability.

A trend in enterprise computing today that must not

be ignored is the move to a microservice architecture.

Microservice architecture attempts to modularize soft-

ware system code into discrete chunks that can be easily

replaced, updated, and replicated. The overall system is a

collection of loosely coupled small (micro) services. The

microservices are independently deployable and commu-

nicate with each other using a clearly defined mechanism,

which may be private and internal to the system or publicly

accessible (preferably via an API). Containers make it easier

to create systems using this architecture.

Chapter 12, “Command-Line Master Class, Part 2,” has

a section that describes a way to confine a script to a

532 CHAPTER 31 Containers and Ubuntu

directory, which is often called running in a chroot jail. This concept, borrowed from the

FreeBSD world, can be used to prevent processes from accessing files or resources outside

the directory (the chroot jail) in which the process is confined. You can think of contain-

ers as a stronger, more powerful, and better-isolated version of a chroot jail.

You need infrastructure, which could be a local machine such as a developer’s laptop or

a set of physical servers in a data center or a set of cloud-based servers running as virtual

machines in one of the public clouds mentioned in Chapter 32, “Ubuntu and Cloud

Computing.”

On top of the infrastructure you run an operating system—in the case of this book and

this chapter, we will assume Ubuntu. Over the past several years, changes to the Linux

kernel (specifically the addition of control groups, or cgroups) and the development of a

new initialization system called systemd (which uses cgroups) have expanded the ability

to control and isolate user processes. Combining this with Linux kernel work on user

namespaces, which allow the mapping of user and group IDs on a per-namespace basis,

provides the foundation for containers. The user namespaces work allows a process to

have root privileges within a defined user namespace while being a normal unprivi-

leged process outside it. Because it is now possible to contain user and group privileges

for operations to a certain subset of a system, the idea became known as running in a

container.

The following sections of this chapter list and describe specific technologies. They are

presented so that each section builds on the preceding one. There are “brands” and

options out there besides the ones listed here, but this chapter presents prime examples

of breakthrough technologies that have made the idea of containers progressively easier

or more practical. As with some of the other overview-style chapters in this book, entire

books could be and have been written about each of these, so we must content ourselves

here with a high-level overview that provides enough information to give you a basic

understanding and a few guideposts to help you discover where you might want to learn

more.

LXC and LXD
Once user namespaces existed, it was possible to contain processes, but it still was not ter-

ribly easy or even practical to do this at any scale. The Linux Containers Project (https://

linuxcontainers.org) created a set of tools, templates, and library and language bindings

called LXC (sometimes pronounced “lexie”) to make it easier to use the containment fea-

tures of the Linux kernel and manage containers. The goal was to create an environment

that comes as close as what one would have in a virtual machine but without the over-

head of running a separate kernel and simulating all the hardware. The project is commu-

nity based and completely open source, and it has been highly successful.

The next step was to create a command-line tool to make it easier to manage containers

both locally and over a network. The Linux Containers Project created a next-generation

container manager, which it called LXD. LXD builds on LXC, with an aim to improve the

user experience.

https://linuxcontainers.org
https://linuxcontainers.org

533

3
1

Docker

In LXD, everything is image based, meaning an entire container is created, configured,

and then stored. Then you can deploy an image or multiple copies of it, called instances,

where you want to, knowing that all the instances are internally identical.

LXD containers are system containers, meaning each LXD container includes a full Linux sys-

tem, exactly as it would if you were running it directly on a physical system or from within a

virtual machine. This is a boon for cloud computing, especially when you want to automate

the deployment of a large set of virtual servers across a data center or in a public cloud.

While LXD was founded by and development has been led by Canonical, it is open

source, integrates with and runs on other Linux distributions, and has images available

for deploying instances of CentOS, RHEL, SUSE, Debian, and others, along with Ubuntu

instances.

We are not yet at the granular scale of “just the application and its runtime environ-

ment.” That comes next.

Docker
The Docker platform confusingly shares its name with a company created around a plat-

form called Docker, Inc. The company supports and leads the development of the plat-

form, which has open source projects that feed into the free Docker platform community

edition and its for-payment enterprise Docker platform product. From here on, assume

that we are referring to the Docker platform when we speak of Docker.

Docker is a container system with tools for building, deploying, and running application

containers. The containers are everything the idea promised.

With Docker, you create a container image that includes only an application and the

runtime software and dependencies needed to run that application. Once you have a con-

tainer image created, you can deploy one or multiple instances of it to any machine or set

of machines (physical or virtual) that are running the Docker Engine.

One of the greatest advantages of Docker containers is the portability of container

instances. Each container instance is identical to the original image. The Docker Engine

can be run locally on a developer’s machine, in an isolated development or testing envi-

ronment, and in production environments. The application in the container instance

should work identically in each location because details such as networking, storage, and

operating system details are abstracted away.

Typically, a Docker container is created for each separate component in a larger applica-

tion or system. This gives you the freedom to update or replace components without tak-

ing the entire system offline. In fact, you could deploy a new component instance while

an older version of the instance is running, run them side-by-side for a while to compare

and test, and then switch over with little to no downtime—at least in theory. You could

deploy additional instances of a container instance when you discover that your current

load is greater than your system can handle easily, notify your load balancer to add the

additional instances to the pool of resources, and recover from an overload quickly. Much

depends on your design and deployment details.

534 CHAPTER 31 Containers and Ubuntu

Kubernetes
As you can imagine, all the convenience of containers comes with a price: complexity.

You must find a way to keep track of each containerized application, where it is deployed,

and so on. To make containers useful without going insane, you will want to use a con-

tainer platform that helps you develop, deploy, and manage applications (or services)

across physical, virtual, and cloud-based servers. Enter Kubernetes.

Kubernetes is based on ideas rooted in years of experience running production workloads

in containers at Google. Google has billions of containers running applications across data

centers all over the world. Kubernetes is an open source system for automating deploy-

ment and management of containerized applications at whatever scale may be needed, up

to Google-sized complexity. Kubernetes controls scaling, service discovery, load balancing,

and a ton more. It is fully open source and built through cooperation between many large

partners and a community of developers.

Kubernetes has quickly become the de facto standard for container management, and

you can run Kubernetes on myriad different platforms. It is generally used in a cloud-type

environment, whether that means within your private data center or a public cloud or a

hybrid of the two.

At this point, the complexity involved in getting things set up and running is such that

most companies hire experts to come in and help them get running.

References
 ▶ https://linuxcontainers.org/lxd/—The main website for LXD

 ▶ www.docker.com—The main website for Docker

 ▶ https://kubernetes.io—The main website for Kubernetes

 ▶ www.ubuntu.com/kubernetes—The main web page for Kubernetes via

Canonical

https://linuxcontainers.org/lxd/
http://www.docker.com
https://kubernetes.io
http://www.ubuntu.com/kubernetes

IN THIS CHAPTER

 ▶ Why a Cloud?

 ▶ Ubuntu on the Public Cloud

 ▶ Canonical-Specific Cloud

Offerings

 ▶ References

CHAPTER 32

Ubuntu and Cloud
Computing

Cloud computing enables you to build large, flexible sys-

tems for on-demand processing of data. When your require-

ments are low, you use few resources. As the need arises,

your processes scale to use multiple systems with optimized

performance according to the requirements of the moment.

This is an efficient way to use hardware and minimize

waste.

To accomplish this feat of computer engineering, a spe-

cial network is set up using on-demand virtual systems

that consume resources only as needed and release those

resources for use by others when they are not in use. Virtu-

alization is the technology that enables this concept. It may

be accomplished locally using third-party virtualization

platforms such as VMware, VirtualBox, Parallels, and others

(see Chapter 30, “Virtualization on Ubuntu”). Ubuntu has

another option to offer, the Ubuntu Cloud, which moves

virtualization into the cloud and is the main focus of this

chapter. Beyond being an outstanding cloud-hosting plat-

form, Ubuntu Server is being developed with a strong intent

to make it an outstanding cloud guest. Look for the term

Ubuntu cloud guest to become more popular as time goes by.

SYSADMIN VERSUS DEVOPS

The traditional title for someone who keeps systems up

and running is systems administrator, or sysadmin (some-

times called ops, for operations). The traditional title for

someone who creates the software that runs on those

systems is software developer. Over the past few years, a

new title has emerged, DevOps. DevOps combine many of

the talents and responsibilities of sysadmins and devel-

opers but often with a cloud computing environment focus

and some specific refinements. They aren’t purely one or

536 CHAPTER 32 Ubuntu and Cloud Computing

the other and often don’t fit neatly into other existing categories, such as engineer, but

they do combine many of the skills of all of these while adding a quality assurance–like

focus on making sure new features do not break anything that was working previously.

DevOps are the ones who develop large applications to run on cloud resources while

simplifying the orchestration of those resources with automation and configuration man-

agement. This chapter is not only for DevOps, but it describes the sorts of tools and envi-

ronments that these folks are likely to love.

Ubuntu Cloud is a stack of applications from Canonical that are included in the Ubuntu

Server Edition. These applications make it easy to install and configure an Ubuntu-

based cloud. The software is free and open source, but Canonical offers paid technical

support.

INSTALL INSTRUCTIONS

Install instructions change regularly, and the most up-to-date version is always on the

provider's site. Instead of walking through the install instructions, this chapter provides

a high-level view to help you understand how a cloud can be set up and work, why you

should care, who the big players are, and where to look for the next steps.

Why a Cloud?
Businesses and enterprises have built computer networks for years. There are many rea-

sons, but usually networks are built because specific computation or data processing tasks

are made easier and faster by using more than one computer. The size of a network gen-

erally depends on the tasks that need to be done. Building a network usually entails tak-

ing a detailed survey of needs, analyzing those requirements, and gathering together the

necessary hardware and software to fulfill those needs now, perhaps with a little room for

growth if money permits.

Cloud computing is designed to make that easier by providing resources such as comput-

ing power and storage as services on the Internet in a way that is easy to access remotely,

available on demand, simple to provision and scale, and highly dynamic. In the ideal case,

this saves both time and money.

Some of the greatest benefits are the ease with which new resources may be added to a

cloud, the fault tolerance inherent in the built-in redundancy of a large pool of servers,

and the payment schedules that charge for resources only when they are used. There is

also a great benefit in abstracting the complexity out of the process; clients perform the

tasks they want to perform, and the cloud computing platform takes care of the details

of adding resources as needed, without the end user’s being aware of the process. Virtual

machines (VMs) are created, configured, and used when needed and destroyed immediately

after they are no longer needed, freeing up system resources for other purposes. These

VMs can be created to suit a wide range of needs.

Hardware, storage, networks, and software are abstracted as services instead of being man-

ually built and configured. They are then accessed locally on demand when the additional

537

3
2

Why a Cloud?

resources are required. Sometimes these service model abstractions are referred to as

software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS).

Software as a Service (SaaS)

SaaS is sometimes referred to as on-demand software. In this service model, the software

application and its related data are moved to the cloud. Access is generally through a web

browser, although a thin client and server configuration may also be used. Someone else

takes care of everything else. This is kind of like renting a hotel room: Everything is pro-

vided and set up for you, and you just enjoy and use it for a specific need. Some examples

of SaaS include email hosts like Yahoo! Mail, services like Google Docs, web games, and

customer relationship management (CRM) software.

Platform as a Service (PaaS)

PaaS takes things a step further than SaaS. In this service model, an entire computing

platform is provided in the cloud. It’s basically paying to run your containers on some-

one else’s container platform. This typically includes the operating system, programming

language interpreters or execution environments, databases, web servers, and so on.

These facets are accessed directly for computing platform maintenance, using provider

portals, application programming interfaces (APIs), software development kits (SDKs),

or services like SSH. What is built on the platform is then accessed by the end user the

same way it would be accessed if it were running on a locally owned and operated piece

of hardware or hardware that’s running in a large data center. Someone else takes care of

everything else, but they take care of less than they do with SaaS, which means you take

care of more. This scenario is rather like an apartment: You rent the space and decorate

and configure it as you like, within structured guidelines. Some examples of PaaS include

the Google App Engine, raw compute nodes used to scale services, and social application

platforms like Facebook.

Infrastructure as a Service (IaaS)

IaaS goes even further than PaaS. In this service model, you transition your entire server to

the cloud. Your provider offers computers, typically virtual ones, on which you can install

any operating system (perhaps within a set menu the provider allows), and you can con-

figure it as you like. Someone else takes care of the physical machines and networks, and

you take care of all the rest. IaaS is like buying a condominium: You own it and can do

whatever you want inside it, but someone else takes care of the grounds and landscaping.

Metal as a Service (MaaS)

Generally, the only other step available beyond IaaS is traditional server building, where

you are responsible for the physical machine and everything on it. However, Ubuntu has

added another service to the list: metal as a service (MaaS), which is designed to bring the

language of the cloud to physical servers. Their goal is to make it as easy to set up the

physical hardware, deploy your app or service, and scale up or down dynamically as it is

in the cloud. The server is installed on the physical hardware and then managed using

one web interface to manage all the various machines. Learn more at https://maas.io/.

https://maas.io/

538 CHAPTER 32 Ubuntu and Cloud Computing

Things to Consider Before You Make Any Decisions

You don’t have to create your own cloud infrastructure, but you can. You can also deploy

Ubuntu to cloud providers such as Microsoft Azure or Amazon Web Services (AWS). Before

you do anything like this, though, you need to carefully consider what your needs are

and decide what sort of service(s) you need. Do you just want to run a web application

on someone else’s already-set-up server, or do you want to set up a system for scalable

computing where additional Hadoop nodes can be added and removed at will when big

jobs start and end? Only you know the answers to such questions. When you have it all

figured out, you can seek your solution and can think about how you can use Ubuntu to

set it up. This chapter describes many options, but you are the one who is in control. That

is a powerful—and sometimes overwhelming—position. Thought and planning prevent

painful mistakes and repeated engineering.

Ubuntu on the Public Cloud
There are several options to choose from when looking to move to cloud computing. Each

has its unique methodologies, strengths, and command set. An in-depth study of each is

beyond the scope of this book, but we are able to present a description of the big players

providing public cloud access in North America and Europe (in Asia, look into Alibaba

Cloud at https://us.alibabacloud.com/).

All of them are pay-to-play and use proprietary software, with the exception of OpenStack,

but OpenStack is designed primarily as the foundation for a private cloud and requires a

place for you to host it, such as your own data center or one of the providers they men-

tion in the following link. That requires more local work and systems administration,

which is what most companies moving to the cloud are trying to get away from. It can be

incredibly useful in a hybrid cloud, which is an option described at the end of this section.

Learn more about Ubuntu and public cloud use at https://ubuntu.com/public-cloud.

OpenStack

OpenStack is an Apache-licensed cloud computing platform. It was founded as a col-

laboration between NASA and Rackspace. After less than a year, it boasted a worldwide

community of developers. Adoption has been swift, and already many large corporations,

universities, and institutions are using OpenStack for cloud computing. Ubuntu and

OpenStack have worked closely together for a long time and have similar release sched-

ules, and Ubuntu is the reference operating system for OpenStack.

OpenStack is not a service provider. It doesn’t operate systems or data centers. OpenStack

is open source software for building public and private and hybrid clouds. Many compa-

nies have implemented and use OpenStack, which is a good thing. It means that if you

develop your cloud deployment and it works on one company’s servers, if that company

is using OpenStack, you can move that deployment to another company’s servers with

little or possibly no changes if the second company is also running OpenStack. In fact, it

is easy enough to create your deployment across several different providers, using cloud

servers from multiple companies concurrently, according to your needs.

https://us.alibabacloud.com/
https://ubuntu.com/public-cloud

539

3
2

Ubuntu on the Public Cloud

For a current list of cloud providers offering OpenStack to customers for cloud deploy-

ments, see www.openstack.org/marketplace/public-clouds/. You will find big names along

with many you have not yet heard of that may be just as suitable or perhaps even better

for your needs.

Amazon Web Services

Amazon Web Services (AWS) is a mature, enterprise-quality cloud provider that has been

around since the beginning. It hosts giants like Netflix and PayPal. It has tons of features,

options, tools, and can be intimidating at first. It is the main cloud provider today with

a number of accounts that far surpasses any competitor. It can handle any configuration

you want or need and comes with great documentation and support. Ubuntu images are

available in AWS for immediate deployment, making it quick and easy to get started.

Learn more at https://aws.amazon.com/.

Google Cloud

Google Cloud is the second most popular cloud and also hosts some big clients like Tar-

get and the Home Depot. As with AWS, it is a mature offering with a rich toolset and

myriad options available. Ubuntu images are also available in Google Cloud for immediate

deployment. Learn more at https://cloud.google.com/.

Microsoft Azure

Microsoft entered the cloud services competition a bit later than the other two big names,

but it has done so with gusto. Azure is a cloud provider boasting more deployment/host-

ing regions than any other provider. It includes a strong toolset and also has Ubuntu

images available for immediate deployment. Learn more at https://azure.microsoft.com/.

Hybrid Clouds

There are two ways to deploy Ubuntu in the cloud: on a private cloud or on a public

cloud. Both have benefits and drawbacks. This section presents the factors you need to

consider when choosing. We also look at a way to mix the two, in what is called a hybrid

cloud.

A public cloud is built on a cloud provider’s systems. This means your local hardware

requirements are minimal, your startup costs are low, deployment is quick, and growth is

easy. A public cloud can be incredibly useful for testing and has gained the stability and

reputation for also being a great idea for production. The drawback to working this way

is that you do not physically control the hardware on which your cloud is running. For

many this is a benefit, but such a situation might not be suitable for high security needs.

Although you alone control the software and processes on your public cloud, there might

be some worry about who has access to the machines. Although a cloud provider would

not last long in business if its data centers and machines were not secure, some applica-

tions and data are so sensitive that you cannot afford to allow any outside risk. Legal con-

straints, such as from the Sarbanes-Oxley Act, sometimes force IT policy decisions in an

organization and make the public option impossible.

http://www.openstack.org/marketplace/public-clouds/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/

540 CHAPTER 32 Ubuntu and Cloud Computing

A private cloud is created on hardware you own and control. This requires a large up-front

commitment, but you have the security of running everything behind a company firewall

and with complete knowledge of who is able to physically access your machines and who

is listening on the network.

One thing to consider is the possibility of a hybrid cloud by starting as a private cloud

and then creating interfaces from there to public services. Perhaps you prefer to keep some

of your data and services stored on the private cloud, but you have other data that is less

sensitive and want to use some services and applications on a public cloud. This is an

avenue worth exploring if your company has a mixture of “must be secured and held in-

house” and “we still want to keep it away from prying eyes, but if something happens, it

won’t be catastrophic” needs. The big issue with this method is moving data between pub-

lic and private servers; if you have large amounts of data that may move between the two,

this can be prohibitive. As always, do your due diligence.

Canonical-Specific Cloud Offerings
Canonical offers some software that helps manage cloud deployments. They also sell ser-

vice and consulting to help you use them.

Juju

Juju has been described as APT for the cloud. As you learned in Chapter 9, “Managing

Software,” APT does an amazing job of installing, configuring, and starting complicated

software stacks and services—but only as long as all of that happens on only one system.

Juju extends this ability across multiple machines. Often, Linux servers are set up for

similar tasks. Multiple physical machines may be deployed with similar configurations

to work with one another in a network, perhaps for load distribution or redundancy to

prevent downtime in the event of one failing or being overloaded. Systems administra-

tors are masters at creating and orchestrating these networks. However, doing so tradi-

tionally requires setting up each machine individually, configuring its software settings,

and so on.

Tools have appeared over the years to help with this great task, such as Chef and Puppet;

see Chapter 33, “Managing Sets of Servers,” for a little more about these tools. Juju does

for servers what package managers do for individual systems: It enables you to deploy ser-

vices quickly and easily across multiple servers, simplifying the configuration process, and

is particularly designed with cloud servers in mind. As with Chef’s recipes, those services

are deployed using formulas that standardize communication, for example, and may have

been written by different people.

What makes Juju different from Chef and Puppet is that the Juju formulas, called charms,

encapsulate services, defining all the ways that services need to expose or consume

configuration data to or from other services. This can be done many ways in the Juju

charm, including via shell scripts or using Chef itself in solo mode. Also, Juju orchestrates

provisioning by tracking its available resources (such as EC2, Eucalyptus, or OpenStack

machines) and adding or removing them as appropriate.

541

3
2

References

Juju is pretty cool, but it hasn’t seen much serious adoption outside Canonical, especially

now that the OpenStack tools are growing in number and scope and with the rise of pub-

lic clouds. However, it does have some unique features and is definitely worth your con-

sideration. Check out https://jujucharms.com for more information.

Mojo: Continuous Delivery for Juju

Mojo, made by Canonical, helps you with configuration and tools to verify the success of

Juju deployments. It gives you a structured means of having an entirely repeatable deploy-

ment process. More information is available at https://mojo.canonical.com.

Landscape

Landscape is an enterprise-focused systems management and monitoring tool that is avail-

able from Canonical. It can monitor Ubuntu Cloud servers like the ones discussed in this

chapter. Landscape can be deployed locally on your cloud or used as part of a paid service

from Canonical called Ubuntu Advantage. Landscape is described further in Chapter 33.

References
 ▶ www.ubuntu.com/cloud—The official Ubuntu introduction to cloud computing

 ▶ www.openstack.org—The official website for OpenStack

 ▶ https://landscape.canonical.com—Canonical’s Landscape, a commercial man-

agement tool for Ubuntu Cloud and Amazon EC2 instances

 ▶ https://jujucharms.com—The official Ubuntu documentation for Juju

 ▶ https://conjure-up.io—The official site for Conjure Up, which is used to deploy

big software stacks to the cloud using Juju

 ▶ https://maas.io—The official documentation for Ubuntu and MAAS

https://jujucharms.com
https://mojo.canonical.com
http://www.ubuntu.com/cloud
http://www.openstack.org
https://landscape.canonical.com
https://jujucharms.com
https://conjure-up.io
https://maas.io

This page intentionally left blank

IN THIS CHAPTER

 ▶ Puppet

 ▶ Chef

 ▶ Ansible

 ▶ SaltStack

 ▶ CFEngine

 ▶ Juju

 ▶ Landscape

 ▶ References

CHAPTER 33

Managing Sets of Servers

This chapter provides a quick introduction to some tools

that might be useful, especially for people who manage

large numbers of servers. The tools presented here are

designed for system administrators and developers—people

who are responsible for keeping more than one or two serv-

ers up and running, managing their configurations, and so

on. Systems have grown to the point that managing each

one individually is becoming unwieldy at times, and so

tools have been created to decrease some of the stress and

complexity by reducing the job to managing the software

that in turn manages all the servers. Any system administra-

tor or developer will tell you that this is a bit of an oversim-

plification, but it is close.

Because managing sets of servers is such a complex task—

one on which many thick books are written—we just pro-

vide a quick overview of some of the options you should

consider and then leave you the task of further research.

Some of these options have entire books just to themselves,

but if you are someone who needs to manage sets of serv-

ers, you will want to do it right. Do your research. This

chapter helps you get started with a quick description of

some of the tools and technologies that are being used with

Ubuntu to assist with managing servers, listed in order of

popularity.

Puppet
Puppet is a configuration management tool written in

Ruby. It is designed to make it easier to deploy servers and

scale applications across a network, and it does so using a

custom declarative language. It has both open source and

commercial (closed source, or proprietary) versions.

544 CHAPTER 33 Managing Sets of Servers

Puppet does four basic things. First, it provides a place for you to define the desired state

for your infrastructure’s configuration. Second, Puppet simulates changes before enforc-

ing them. Third, Puppet enforces the desired state automatically, making corrections for

drifting configurations. Finally, Puppet gives you a report on the differences between the

actual and desired states before you make any changes.

The Puppet Forge website (https://forge.puppetlabs.com) provides access to downloadable

modules, which are bits of Puppet code for automating tasks, such as setting up a specific type

of server. Instructions there are also available for creating and sharing your own modules.

Much of the power of Puppet is made available in its for-payment Enterprise version,

which also includes a nice GUI. The open source version works with Amazon for provi-

sioning, manages configurations for operating systems and applications, lets you use Pup-

pet modules from Puppet Forge, and has community support via the Web. If you need

anything more than this, either find a different product or pay to use Puppet’s Enterprise

version, which has a good reputation for maturity and usefulness.

Chef
Chef is a configuration management tool, also written in Ruby. It uses a service-oriented

architecture to help automate tasks. With Chef, you write recipes that describe how you

want your server or specific server software to be configured (for example, an HTTP server

or a database server). A recipe describes each resource, such as services that should be run-

ning or packages that should be installed, and the state in which each should be found.

It then makes sure that configuration is maintained or updated across all servers being

managed.

Chef is open source. However, to really use it, you must pay for a hosted version (called

Hosted) or a standalone version (called Private) that you can install inside your corporate

firewall with a service contract. Downloading the source code and getting it up and run-

ning is not a trivial task, and support for the open-source version (called Open Source)

without a service contract is limited. That said, like Puppet, Chef is mature and well

respected and worth your time if you need what it offers.

Ansible
Ansible is an orchestration engine. It does configuration management, application deploy-

ment, and more. It was a proprietary product, but Red Hat bought the company that created

it and promptly worked its magic to release the code with an open source license. Much

the way Red Hat handles its enterprise Linux and middleware products, it provides free and

open source Ansible code—but only in source form. You can license binaries from Red Hat,

which the company will then support. Ansible is well respected and worth looking into.

SaltStack
SaltStack automates infrastructure, networking, and security. It works both on premises

and in the cloud and at scale. It is popular (second only to Ansible at the time of this

https://forge.puppetlabs.com

545

3
3

References

writing) and does things that are tedious and important, including continuous compli-

ance policy checks and native CVE scanning, including automated remediation in many

instances.

CFEngine
CFEngine is probably the oldest option for automating infrastructure. It is written in C,

so it might be a little faster than the other options. It manages server builds, deployment,

and management, and it performs some very useful audits and reports. Some really big

names are known to use CFEngine, such as AT&T, IBM, Pixar, and Qualcomm.

CFEngine has open source and enterprise versions. The differences are a little less extreme

than with some of the other options, but again, the enterprise version has all the flashy

chrome and a few really useful features that make it worth the expenditure for most users

who need or want the added benefits they offer.

Juju
Juju enables you to deploy services quickly and easily across multiple servers, simplifying

the configuration process, and is particularly designed with cloud servers in mind. It is

described in Chapter 32, “Ubuntu and Cloud Computing.”

Landscape
Landscape is an enterprise-focused systems management and monitoring tool that is

available from Canonical. It is a part of the Ubuntu Advantage program (www.canonical.

com/services), which is a paid service. You can run Landscape as a hosted service from

Canonical’s Ubuntu Advantage, or you can install it locally. It can monitor both local

servers and cloud servers, such as those discussed in Chapter 32.

References
 ▶ www.puppetlabs.com—The official website for Puppet

 ▶ https://forge.puppetlabs.com—The official website for Puppet Forge

 ▶ www.chef.io/chef/—The official website for Chef

 ▶ www.saltstack.com/—The official website for SaltStack

 ▶ https://cfengine.com—The official website for CFEngine

 ▶ www.ansible.com—The official website for Ansible

 ▶ www.ubuntu.com/support—The official website for Ubuntu Advantage

 ▶ https://help.ubuntu.com/20.04/serverguide/index.html—The official

Ubuntu server guide

http://www.canonical.com/services
http://www.canonical.com/services
http://www.puppetlabs.com
https://forge.puppetlabs.com
http://www.chef.io/chef/
http://www.saltstack.com/
https://cfengine.com
http://www.ansible.com
http://www.ubuntu.com/support
https://help.ubuntu.com/20.04/serverguide/index.html

This page intentionally left blank

IN THIS CHAPTER

 ▶ How Email Is Sent and

Received

 ▶ Basic Postfix Configuration and

Operation

 ▶ Using Fetchmail to Retrieve

Mail

 ▶ Choosing a Mail Delivery Agent

 ▶ References

CHAPTER 34

Handling Email

Email is still the dominant form of communication over

the Internet. It is fast, free, and easy to use. However, much

of what goes on behind the scenes is extremely complicated

and would appear scary to anyone who does not know

much about how email is handled. Ubuntu comes equipped

with a number of powerful applications that will help you

build anything from a small email server, right through to

large servers capable of handling thousands of messages.

This chapter shows you how to configure Ubuntu to act

as an email server. We look at the options available in

Ubuntu and examine the pros and cons of each one. You

also learn how mail is handled in Linux and, to a lesser

extent, in UNIX.

How Email Is Sent and Received
Email is transmitted as plain text across networks around

the world using the Simple Mail Transfer Protocol (SMTP). As

the name implies, the protocol itself is fairly basic, and it

has been extended to add further authentication and error

reporting/messaging to satisfy the growing demands of

modern email. Mail transfer agents (MTAs) work in the back-

ground, transferring email from server to server, allowing

emails to be sent all over the world. You might have come

across MTA software such as Sendmail, Postfix, Fetchmail,

Exim, or Qmail.

SMTP allows each computer that the email passes through

to forward it in the right direction toward the final desti-

nation. When you consider the millions of email servers

around the world, you have to marvel at how simple it all

seems.

548 CHAPTER 34 Handling Email

Here is a simplified example of how email is successfully processed and sent to its

destination:

 1. matthew@seymourcray.net composes and sends an email message to

sandra@gracehopper.net.

 2. The MTA at seymourcray.net receives Matthew’s email message and queues it for

delivery behind any other messages that are also waiting to go out.

 3. The MTA at seymourcray.net contacts the MTA at gracehopper.net on port 24.

After gracehopper.net acknowledges the connection, the MTA at seymourcray.net

sends the mail message. After gracehopper.net accepts and acknowledges receipt of

the message, the connection is closed.

 4. The MTA at gracehopper.net places the mail message into Sandra’s incoming mail-

box; Sandra is notified that she has new mail the next time she logs on.

However, several things can go wrong during this process. Here are a few examples:

 ▶ What if Sandra does not exist at gracehopper.net? In this case, the MTA at

gracehopper.net rejects the email and notifies the MTA at seymourcray.net

about the problem. The MTA at seymourcray.net then generates an email mes-

sage and sends it to matthew@seymourcray.net, informing him that no Sandra

exists at gracehopper.net (or perhaps just silently discards the message and gives

the sender no indication of the problem, depending on how the email server is

configured).

 ▶ What happens if gracehopper.net doesn’t respond to seymourcray.net’s con-

nection attempts? (Perhaps the server is down for maintenance.) The MTA at

seymourcray.net notifies the sender that the initial delivery attempt has failed.

Further attempts will be made at intervals decided by the server administrator

until the deadline is reached, and the sender will be notified that the mail is

undeliverable.

The Mail Transport Agent

Several MTAs are available for Ubuntu, each with its pros and cons. Normally they are

hidden under the skin of Ubuntu, silently moving mail between servers all over the

world, with little or no maintenance required. Some MTAs are extremely powerful, able

to cope with hundreds of thousands of messages each day, whereas some are geared more

toward smaller installations. Other MTAs are perhaps not as powerful but are packed full

of features. In this section, we take a look at some of the most popular MTAs available for

Ubuntu.

Sendmail

Sendmail handles the overwhelming majority of emails transmitted over the Internet

today. It is extremely popular across the Linux/UNIX/BSD world and is well supported.

A commercial version is available that has a GUI interface for ease of configuration.

mailto:matthew@seymourcray.net
mailto:sandra@gracehopper.net
http://seymourcray.net
http://seymourcray.net
http://gracehopper.net
http://gracehopper.net
http://seymourcray.net
http://gracehopper.net
http://gracehopper.net
http://gracehopper.net
http://gracehopper.net
http://seymourcray.net
http://seymourcray.net
mailto:matthew@seymourcray.net
http://gracehopper.net
http://gracehopper.net
http://seymourcray.net
http://seymourcray.net

549

3
4

How Email Is Sent and Received

As well as being popular, Sendmail is particularly powerful compared to some of the

other MTAs. However, it is not without downsides, and you will find that other MTAs

can handle more email per second in a larger environment. The other issue with Send-

mail is that it can be extremely complicated to set it up exactly as you want it. A few

books are available specifically for Sendmail; the most popular one has more than 1,000

pages, which gives you an idea of the complex nature of the Sendmail configuration.

We can be thankful, however, that the default configuration for Sendmail works fine for

most basic installations out of the box, making further configurations unnecessary. Even

if you want to use it as a basic email server, you only need to do some minor tweaks. The

level of complexity associated with Sendmail often leads to system administrators replac-

ing it with one of the other alternatives that is easier to configure.

Postfix

Postfix has its origins as the IBM Secure Mailer but was released to the community

by IBM. Compared to Sendmail, it is much easier to administer and has a number of

speed advantages. Postfix offers a pain-free replacement for Sendmail, and you can

replace Sendmail with Postfix without the system breaking a sweat. In fact, the appli-

cations that rely on Sendmail automatically use Postfix instead and carry on working

correctly (because Postfix uses a Sendmail wrapper, which deceives other programs

into thinking that Postfix is Sendmail). This wrapper—or, more correctly, interface—

makes switching to Postfix extremely easy if you are already running Sendmail. Postfix

also happens to be the MTA of choice for Ubuntu, so it is this one that we spend more

time on later in this chapter.

For enhanced security, many Postfix processes used to use the chroot facility (which

restricts access to only specific parts of the file system) for improved security, and

there are no setuid components in Postfix. In Ubuntu, a chroot configuration is

no longer used and is, in fact, discouraged by the Postfix author. You can manually

reconfigure Postfix to a chroot configuration, but that is no longer supported by

Ubuntu.

If you are starting from scratch, Postfix is considered a better choice than Sendmail.

Qmail and Exim

Qmail is a direct competitor to Postfix but is not provided with Ubuntu. Qmail is

designed to be easier to use than Sendmail, as well as faster and more secure. However,

Qmail is not a drop-in replacement for Sendmail, and migrating an existing Sendmail

installation to Qmail is not quite as simple as migrating from Sendmail to Postfix.

Qmail is relatively easy to administer, and it integrates with a number of software

add-ons, including web mail systems and POP3 servers. Qmail is available from www.

qmail.org.

Exim is yet another MTA, and it is available at www.exim.org. Exim is considered faster

and more secure than Sendmail or Postfix but is quite different to configure than either of

those. Exim and Qmail use the maildir format rather than mbox, so both are considered

“NFS safe” (see the following sidebar).

http://www.qmail.org
http://www.qmail.org
http://www.exim.org

550 CHAPTER 34 Handling Email

Maildir Versus Mbox

Qmail introduced maildir, which is an alternative to the standard UNIX method of stor-

ing incoming mail. maildir is a more versatile system of handling incoming email, but it

requires your email clients to be reconfigured, and it is not compatible with the traditional

UNIX way of storing incoming mail. You need to use mail programs that recognize the

maildir format (which modern programs do).

The traditional mbox format keeps all mail assigned to a folder concatenated as a single

file and maintains an index of individual emails. With maildir, each mail folder has three

subfolders: /cur, /new, and /tmp. Each email is kept in a separate, unique file. If you are

running a mail server for a large number of people, you should select a file system that

can efficiently handle a large number of small files.

mbox does have one major disadvantage. While you are accessing the monolithic mbox file

that contains all your email, suppose that some type of corruption occurs, either to the

file itself or to the index. Recovery from this problem can be difficult. The mbox files are

especially prone to problems if the files are being accessed over a network and can result

in file corruption; you should avoid accessing mbox mail mounted over Network File System

(NFS) because file corruption can occur.

Depending on how you access your mail, maildir does permit the simultaneous access

of maildir files by multiple applications; mbox does not.

The choice of a mail user agent (MUA), or email client, also affects your choice of mail

directory format. For example, the pine program does not cache any directory information

and must reread the mail directory any time it accesses it. If you are using pine, maildir

is a poor choice. More advanced email clients perform caching, so maildir might be a

good choice, although the email client cache can get out of synchronization. It seems that

no perfect choice exists.

Ubuntu provides mail alternatives that have both strong and weak points. Be aware of the

differences among the alternatives and frequently reevaluate your selection to make cer-

tain it is the best one for your circumstances.

Choosing an MTA

Other MTAs are available for use with Ubuntu, but those discussed in the previous sec-

tions are the most popular. Which one should you choose? It depends on what you need

to do. Postfix’s main strengths are that it scales well and can handle large volumes of

email at high speeds, not to mention that it is much easier to configure than the more

cryptic Sendmail. However, you may find that there are specific things you need that only

Sendmail can provide. It is easy to switch between MTAs when you need to.

The Mail Delivery Agent

SMTP is a server-to-server protocol that was designed to deliver mail to systems that are

always connected to the Internet. Dial-up systems connect only at the user’s command;

they connect for specific operations and are frequently disconnected. To accommodate

this difference, many mail systems also include a mail delivery agent (MDA). The MDA

transfers mail to systems without permanent Internet connections. The MDA is similar to

an MTA (see the following note) but does not handle deliveries between systems and does

not provide an interface to the user.

551

3
4

How Email Is Sent and Received

NOTE

Procmail or Spamassassin are examples of MDAs; both provide filtering services to the

MDA while they store messages locally and then make them available to the MUA or

email client for reading by the user.

The MDA uses the Post Office Protocol version 3 (POP3) or Internet Message Access Protocol

(IMAP) for this process. In a manner similar to a post office box at the post office, POP3

and IMAP implement a “store and forward” process that alleviates the need to maintain a

local mail server if all you want to do is read your mail. For example, dial-up Internet users

can intermittently connect to their ISP’s mail server to retrieve mail using Fetchmail—the

MDA recommended by Ubuntu. (See the section “Using Fetchmail to Retrieve Mail,” later

in this chapter.)

The Mail User Agent

The mail user agent (MUA) is another necessary part of the email system. The MUA is a

mail client, or mail reader, that enables the user to read and compose email and provides

the user interface. (It is the email application itself that most users are familiar with as

“email.”) Some popular UNIX command-line MUAs are elm, pine, and mutt. Ubuntu

also provides modern GUI MUAs: Evolution, Thunderbird, Mozilla Mail, Balsa, Sylpheed,

and KMail. For comparison, common non-UNIX MUAs are Microsoft Outlook, Outlook

Express, Pegasus Mail, and Apple Inc.’s Mail.

The Microsoft Windows and Macintosh MUAs often include some MTA functionality;

UNIX does not. For example, Microsoft Outlook can connect to your Internet provider’s

mail server to send messages. On the other hand, UNIX MUAs generally rely on an exter-

nal MTA such as Sendmail. This might seem like a needlessly complicated way to do

things, and it is, if used to connect a single user to her ISP. For any other situation, how-

ever, using an external MTA allows you much greater flexibility because you can use any

number of external programs to handle and process your email functions and customize

the service. Having the process handled by different applications gives you great control

over how you provide email service to users on your network, as well as to individual and

small office/home office (SOHO) users.

For example, you could do the following:

 ▶ Use Evolution to read and compose mail.

 ▶ Use Sendmail to send your mail.

 ▶ Use xbiff to notify you when you have new mail.

 ▶ Use Fetchmail to retrieve your mail from a remote mail server.

 ▶ Use Procmail to automatically sort your incoming mail based on sender, subject, or

many other variables.

 ▶ Use Spamassassin to eliminate the unwanted messages before you read them.

552 CHAPTER 34 Handling Email

Basic Postfix Configuration and Operation
Because Postfix is the Ubuntu-recommended MTA, the following sections provide a brief

explanation and examples for configuring and operating your email system. As mentioned

earlier, however, Postfix is an extremely complex program with many configuration

options. Therefore, this chapter covers only some of the basics.

Postfix is not installed by default. To use it, install the postfix package from the Ubuntu

software repositories. During installation, you are asked a series of questions to begin

configuring Postfix immediately. Research the settings for your situation before you start;

some are merely preferential, but others are based on your hardware, network, and use

case. You are asked the following:

General type of mail configuration: Internet Site

System mail name: mail.matthewhelmke.com

Root and postmaster mail recipient: <admin_user_name>

Other destinations for mail: mail.example.com, example.com, localhost.example.com,

[ccc]localhost

Force synchronous updates on mail queue?: No

Local networks: 127.0.0.0/8

Mailbox size limit (bytes): 0

Local address extension character: +

Internet protocols to use: all

If you make a mistake and answer a configuration question incorrectly, you can go back

through the process again by entering the following command from the command line:

matthew@seymour:~$ sudo dpkg-reconfigure postfix

Postfix configuration is maintained in files in the /etc/postfix directory, and much of the

configuration is handled by the file main.cf. You don’t have to use the preceding command

to change these settings; you may do so by editing the appropriate files. The syntax of the

configuration file, main.cf, is fairly easy to read, as shown in the following example:

See /usr/share/postfix/main.cf.dist for a commented, more complete version

Debian specific: Specifying a file name will cause the first

line of that file to be used as the name. The Debian default

is /etc/mailname.

#myorigin = /etc/mailname

smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu)

biff = no

appending .domain is the MUA's job.

append_dot_mydomain = no

http://mail.matthewhelmke.com
http://mail.example.com
http://example.com
http://localhost.example.com

553

3
4

Basic Postfix Configuration and Operation

Uncomment the next line to generate "delayed mail" warnings

#delay_warning_time = 4h

TLS parameters

smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem

smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key

smtpd_use_tls=yes

smtpd_tls_session_cache_database = btree:${queue_directory}/smtpd_scache

smtp_tls_session_cache_database = btree:${queue_directory}/smtp_scache

See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for

information on enabling SSL in the smtp client.

myhostname = optimus

alias_maps = hash:/etc/aliases

alias_database = hash:/etc/aliases

mydestination = optimus, localhost.localdomain, , localhost

relayhost =

mynetworks = 127.0.0.0/8

mailbox_size_limit = 0

recipient_delimiter = +

inet_interfaces = all

A useful command for configuring Postfix is postconf. It enables you to display and

change many configuration settings without editing and saving configuration files. The

command’s syntax is rather complex, but once learned, it becomes a faster way to quickly

adjust settings.

If you type the postconf command by itself, it outputs a list of all configuration param-

eters. This can be quite long, so we recommend either sorting using a pipe and grep or

sending the output to a file. See Chapter 11, “Command-Line Master Class, Part 1,” for

more on how to do this. This example shows the command piped into grep with a search

for hostname:

matthew@seymour:~$ postconf | grep hostname

invalid_hostname_reject_code = 501

lmtp_lhlo_name = $myhostname

lmtp_tls_verify_cert_match = hostname

local_transport = local:$myhostname

milter_macro_daemon_name = $myhostname

myhostname = ubuntu

smtp_helo_name = $myhostname

smtp_tls_verify_cert_match = hostname

smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu)

smtpd_proxy_ehlo = $myhostname

unknown_helo_hostname_tempfail_action = $reject_tempfail_action

unknown_hostname_reject_code = 450

554 CHAPTER 34 Handling Email

To show the default parameter settings instead of the current settings, use this:

matthew@seymour:~$ postconf -d

Use this to discover which parameters have been changed from their defaults and display

the current settings:

matthew@seymour:~$ postconf -n

Setting a parameter requires root privileges. For example, to set the myhostname parameter,

use the following:

matthew@seymour:~$ sudo postconf -e "myhostname=mail.matthewhelmke.com"

myhostname=mail.matthewhelmke.com

This works with the parameters listed in the Postfix main.cf file:

matthew@seymour:~$ sudo postconf -e "smtp_sasl_auth_enable = yes"

myhostname=othername.matthewhelmke.com

As you can see, postconf is quite convenient. You can learn more about postconf from

the man page.

You start, stop, and restart Postfix by using this command, with the appropriate one of

the three action words start, stop, or restart, as shown here:

matthew@seymour:~$ sudo /etc/init.d/postfix start

Complicated email server setup is beyond the scope of this book; consider Postfix: The

Definitive Guide by Kyle Dent for more information. This is a great reference and rather

unusual because it is a complete and useful reference in only 250 pages or so. If you want

to know something specific about Postfix, this is the book to read.

The following sections address some commonly used advanced options. For more information

on Postfix, as well as other MTAs, see the “References” section at the end of this chapter.

Configuring Masquerading

Sometimes you might want to have Postfix masquerade as a host with a name other than

the actual hostname of your system. Such a situation could occur if you have a dial-up

connection to the Internet and your ISP handles all your mail for you. In this case, you

want Postfix to masquerade as the domain name of your ISP. For example, the following

strips any messages that come from matthew.gracehopper.net to just gracehopper.net:

masquerade_domains = gracehopper.net

Using Smart Hosts

If you do not have a full-time connection to the Internet, you will probably want to have

Postfix send your messages to your ISP’s mail server and let it handle delivery for you.

http://"myhostname=mail.matthewhelmke.com"
http://myhostname=mail.matthewhelmke.com
http://myhostname=othername.matthewhelmke.com
http://matthew.gracehopper.net
http://gracehopper.net
http://gracehopper.net

555

3
4

Basic Postfix Configuration and Operation

Without a full-time Internet connection, you could find it difficult to deliver messages to

some locations (such as some underdeveloped areas of the world, where email services are

unreliable and sporadic). In those situations, you can configure Postfix to function as a

smart host by passing email on to another sender instead of attempting to deliver the email

directly. You can use a line such as the following in the main.cf file to enable a smart host:

relayhost = mail.isp.net

This line causes Postfix to pass any mail it receives to the server mail.isp.net rather than

attempt to deliver it directly. Smart hosting will not work for you if your ISP blocks any

mail relaying. Some ISPs block relaying because it is frequently used to disseminate spam.

Setting Message Delivery Intervals

As mentioned earlier in this chapter, Postfix typically attempts to deliver messages as soon

as it receives them, and it attempts to deliver them again at regular intervals after that.

If you have only periodic connections to the Internet, as with a dial-up connection, you

likely would prefer Sendmail to hold all messages in the queue and attempt to deliver

them whenever you connect to your ISP.

As dialup connections have become the exception rather than the rule and are now quite

rare, Ubuntu does not configure them by default and does not include the pppd daemon

in the default installation. If you need this, install pppd from the Ubuntu software reposi-

tories. You can then configure Postfix to hold messages for later delivery by adding the

following line to /etc/ppp/peers/ppp0:

/usr/sbin/sendmail -q

This line causes Postfix to automatically send all mail when you connect to your ISP.

However, Postfix still attempts to send mail regardless of whether the computer is online

or offline, which means your computer may dial out just to send email. To disable this,

you need to enter the following line into mail.cf:

defer_transports = smtp

This stops any unwanted telephone calls from being placed!

TIP

If you use networking over a modem, there is a configuration file for pppd called ppp0,

which is located in /etc/ppp/peers. Any commands in this file automatically run each

time the PPP daemon is started. You can add the line sendmail -q to this file to have

your mail queue automatically processed each time you dial up your Internet connection.

Mail Relaying

By default, Postfix does not relay mail that did not originate from the local domain. This

means that if a Postfix installation running at gracehopper.net receives mail intended for

http://mail.isp.net
http://mail.isp.net
http://gracehopper.net

556 CHAPTER 34 Handling Email

seymourcray.net, and that mail did not originate from gracehopper.net, the mail is be

rejected and is not relayed. If you want to allow selected domains to relay through you,

add an entry for the domain to the main.cf file like this:

mynetworks = 192.168.2.0/24, 10.0.0.2/24, 127.0.0.0/8

The IP address needs to be specified in classless interdomain routing (CIDR) format. For a

handy calculator, head on over to www.subnet-calculator.com/cidr.php. You must restart

Postfix for this change to take effect.

CAUTION

You need a good reason to relay mail; if you don’t have one, do not do it. Allowing all

domains to relay through you will make you a magnet for spammers who will use your mail

server to send spam. This can lead to your site being blacklisted by many other sites,

which then will not accept any mail from you or your site’s users—even if the mail is

legitimate!

Forwarding Email with Aliases

Aliases allow you to have an infinite number of valid recipient addresses on your sys-

tem, and you don’t have to worry about creating accounts or other support files for each

address. For example, most systems have postmaster defined as a valid recipient but do

not have an actual login account named postmaster.

Aliases are configured in the file /etc/aliases. Here is an example of an alias entry:

postmaster: root

This entry forwards any mail received for postmaster to the root user. By default, almost

all the aliases listed in the /etc/aliases file forward to root.

CAUTION

Reading email as root is a security hazard; a malicious email message can exploit an

email client and cause it to execute arbitrary code as the user running the client. To avoid

this danger, you can forward all of root’s mail to another account and read it from there.

You can choose one of two ways to do this.

One way is to add an entry to the /etc/aliases file that sends root’s mail to a differ-

ent account. For example, root: foobar would forward all mail intended for root to the

account foobar.

The other way is to create a file named .forward in root’s home directory that contains

the address that the mail should forward to.

Any time you make a change to the /etc/aliases file, you must rebuild the aliases data-

base before that change will take effect. Use the following command to do this:

matthew@seymour:~$ sudo newaliases

http://seymourcray.net
http://gracehopper.net
http://www.subnet-calculator.com/cidr.php

557

3
4

Using Fetchmail to Retrieve Mail

Using Fetchmail to Retrieve Mail
SMTP is designed to work with a system that has a full-time connection to the Internet.

What if you are on a dial-up account? What if you have another system store your email

for you and then you log in to pick it up once in a while? (Most users who are not setting

up servers are in this situation.) In this case, you cannot easily receive email using SMTP,

and you need to use a protocol such as POP3 or IMAP instead.

NOTE

Remember when we said that some mail clients can include some MTA functionality? You

can configure Microsoft Outlook and Outlook Express to use SMTP, and if you use a dial-

up connection, they offer to start the connection and then use SMTP to send your mail, so

a type of MTA functionality is included in those mail clients.

Unfortunately, many MUAs do not know anything about POP3 or IMAP. To eliminate

that problem, you can use a program called Fetchmail to contact mail servers using POP3

or IMAP, download mail from the servers, and then inject those messages into the local

MTA just as if they had come from a standard SMTP server. The following sections explain

how to install, configure, and use the Fetchmail program.

Installing Fetchmail

Much as with other packages, you can install fetchmail using either synaptic or apt.

You can get the latest version of Fetchmail at www.catb.org/~esr/fetchmail.

Configuring Fetchmail

After you have installed Fetchmail, you must create the file .fetchmailrc in your home

directory, which provides the configuration for the Fetchmail program.

You can create and subsequently edit the .fetchmailrc file by using any text editor.

The configuration file is straightforward and quite easy to create; the following sections

explain the manual method for creating and editing the file. The information presented

in the following sections does not discuss all the options available in the .fetchmailrc

file but covers the most common ones needed to get a basic Fetchmail installation up

and running. You must use a text editor to create the file to include entries like the ones

shown as examples—modified for your personal information, of course. For advanced con-

figuration, see the man page for Fetchmail. The man page is well written and documents

all the configuration options in detail.

CAUTION

The .fetchmailrc file is divided into three sections: global options, mail server options,

and user options. It is important that these sections appear in the order listed. Do not

add options to the wrong section. Putting options in the wrong place is one of the most

common problems that new users make with Fetchmail configuration files.

http://www.catb.org/~esr/fetchmail

558 CHAPTER 34 Handling Email

Configuring Global Options

The first section of .fetchmailrc contains the global options. These options affect all the

mail servers and user accounts that you list later in the configuration file. You can over-

ride some of these global options with local configuration options, as you learn later in

this section. Here is an example of the options that might appear in the global section of

the .fetchmailrc file:

set daemon 600

set postmaster foobar

set logfile ./.fetchmail.log

The first line in this example tells Fetchmail that it should start in daemon mode and

check the mail servers for new mail every 600 seconds, or 10 minutes. Daemon mode

means that after Fetchmail starts, it moves itself into the background and continues run-

ning. Without this line, Fetchmail checks for mail once when it started and then termi-

nates and never checks again.

The second option tells Fetchmail to use the local account foobar as a last-resort address.

In other words, any email that it receives and cannot deliver to a specified account should

be sent to foobar.

The third line tells Fetchmail to log its activity to the file ./.fetchmail.log. Alterna-

tively, you can use the line set syslog—in which case Fetchmail logs through the syslog

facility.

Configuring Mail Server Options

The second section of the .fetchmailrc file contains information on each of the mail

servers that should be checked for new mail. Here is an example of what the mail section

might look like:

poll mail.samplenet.org

proto pop3

no dns

The first line tells Fetchmail that it should check the mail server mail.samplenet.org at

each poll interval that was set in the global options section (which was 600 seconds in

this example). Alternatively, the first line can begin with skip. If a mail server line begins

with skip, it will not be polled at the poll interval but will be polled only when it is spe-

cifically specified on the Fetchmail command line.

The second line specifies the protocol that should be used when contacting the mail

server. This example uses POP3. Other legal options are IMAP, Authenticated Post Office

Protocol (APOP), and Kerberized Post Office Protocol (KPOP). You can also use AUTO here, in

which case Fetchmail attempts to automatically determine the correct protocol to use with

the mail server.

The third line tells Fetchmail that it should not attempt to do a Domain Name System

(DNS) lookup. You probably want to include this option if you are running over a dial-up

connection.

http://mail.samplenet.org
http://mail.samplenet.org

559

3
4

Using Fetchmail to Retrieve Mail

Configuring User Accounts

The third and final section of .fetchmailrc contains information about the user account

on the server specified in the previous section. Here is an example:

user foobar

pass secretword

fetchall

no flush

The first line, of course, simply specifies the username that is used to log in to the email

server, and the second line specifies the password for that user. Many security-conscious

people cringe at the thought of putting clear-text passwords in a configuration file, and they

should if it is group or world readable. The only protection for this information is to make

certain that the file is readable only by the owner—that is, with file permissions of 600.

The third line tells Fetchmail that it should fetch all messages from the server, even if they

have already been read.

The fourth line tells Fetchmail that it should delete the messages from the mail server

after it has finished downloading them. This is the default, so you would not really have

to specify this option. If you want to delete the messages from the server after download-

ing them, use the option flush.

The configuration options you just inserted configured the entire .fetchmailrc file to look

like this:

set daemon 600

set postmaster foobar

set logfile ./.fetchmail.log

poll mail.samplenet.org

proto pop3

no dns

user foobar

pass secretword

fetchall

flush

This file tells Fetchmail to do the following:

 ▶ Check the POP3 server mail.samplenet.org for new mail every 600 seconds.

 ▶ Log in using the username foobar and the password secretword.

 ▶ Download all messages from the server.

 ▶ Delete the messages from the server after downloading them.

 ▶ Send any mail it receives that cannot be delivered to a local user to the account

foobar.

http://mail.samplenet.org
http://mail.samplenet.org

560 CHAPTER 34 Handling Email

As mentioned earlier, many more options can be included in the .fetchmailrc file than

are listed here. However, the options offered in this section will get you up and running

with a basic configuration.

For additional flexibility, you can define multiple .fetchmailrc files to retrieve mail from

different remote mail servers while using the same Linux user account. For example, you

can define settings for your most commonly used account and save them in the default

.fetchmailrc file. Mail can then quickly be retrieved like this:

matthew@seymour:~$ fetchmail –a

1 message for matthew at mail.matthewhelmke.com (1108 octets).

reading message 1 of 1 (1108 octets) . flushed

By using Fetchmail’s -f option, you can specify an alternative resource file and then easily

retrieve mail from another server, as follows:

matthew@seymour:~$ fetchmail –f .myothermailrc

2 messages for matthew at matthew.helmke.com (5407 octets).

reading message 1 of 2 (3440 octets) ... flushed

reading message 2 of 2 (1967 octets) . flushed

You have new mail in /var/spool/mail/matthew

By using the -d option, along with a time interval (in seconds), you can use Fetchmail in its

daemon, or background, mode. The command launches as a background process and retrieves

mail from a designated remote server at a specified interval. For more advanced options, see

the Fetchmail man page, which is well written and documents all options in detail.

CAUTION

Because the .fetchmailrc file contains your mail server password, it should be readable

only by you. This means that it should be owned by you and should have permissions no

greater than 600. Fetchmail complains and refuses to start if the .fetchmailrc file has

permissions greater than this.

Choosing a Mail Delivery Agent
Because of the modular nature of mail handling, it is possible to use multiple applications

to process mail and accomplish more than simply deliver it. Getting mail from the storage

area and displaying it to the user is the purpose of the MDA. MDA functionality can be

found in some of the mail clients (MUAs), which can cause some confusion to those still

unfamiliar with the concept of UNIX mail. As an example, the Procmail MDA provides

filtering based on rulesets; KMail and Evolution, both MUAs, provide filtering, but the

MUAs pine, mutt, and Balsa do not. Some MDAs perform simple sorting, and other MDAs

are designed to eliminate unwanted emails, such as spam and viruses.

You would choose an MDA based on what you want to do with your mail. This section

presents several MDAs that offer functions you might find useful in your particular situa-

tion. If you have simple needs (such as simply organizing mail by rules), one of the MUAs

that offers filtering might be better for your needs. Ubuntu provides the Evolution MUA

http://mail.matthewhelmke.com
http://matthew.helmke.com

561

3
4

Choosing a Mail Delivery Agent

as the default selection (and it contains some MDA functionality, as previously noted), so

try that first and see whether it meets your needs. If not, investigate one of the following

MDAs provided by Ubuntu.

Unless otherwise noted, all the MDA software discussed here is provided in the Ubuntu repos-

itories. Chapter 9, “Managing Software,” details the general installation of any software.

Procmail

As a tool for advanced users, the Procmail application acts as a filter for email as it is

retrieved from a mail server. It uses rulesets (known as recipes) as it reads each email mes-

sage. No default configuration is provided; you must manually create a ~/.procmail file

for each user, or users can create their own.

There is no system-wide default configuration file. The creation of the rulesets is not

trivial and requires an understanding of the use of regular expressions that is beyond

the scope of this chapter. Ubuntu does provide three examples of the files in /usr/share/

doc/procmail/examples, as well as a fully commented example in the /usr/share/doc/

procmail directory, which also contains a README and FAQ. You can find details for the

rulesets in the man page for Procmail and in the man pages for procmailrc, procmailsc,

and procmailex, which contain examples of Procmail recipes.

Spamassassin

If you have used email for any length of time, you have likely been subjected to spam,

unwanted email sent to thousands of people at the same time. Ubuntu provides an MDA

named Spamassassin to assist you in reducing and eliminating unwanted emails. Easily inte-

grated with Procmail and Sendmail, it can be configured for both system-wide and individual

use. It uses a combination of rulesets and blacklists (Internet domains known to mail spam).

Enabling Spamassassin is simple. You must first have installed and configured Procmail. The

README file in /usr/share/doc/spamassasin provides details on configuring the .procmail

file to process mail through Spamassassin. Spamassassin tags probable spam with a unique

header; you can then have Procmail filter the mail in any manner you choose. One interest-

ing use of Spamassasin is to tag email received at special email accounts established solely for

the purpose of attracting spam. This information is then shared with the Spamassassin site,

where these “spam trap”–generated hits help the authors fine-tune the rulesets.

Squirrelmail

Perhaps you do not want to read your mail in an MUA. If you use your web browser often,

it might make sense to read and send your mail via a web interface, such as the ones used

by Gmail, Hotmail, or Yahoo! Mail. Ubuntu provides Squirrelmail for just that purpose.

Squirrelmail, which is written in PHP, supports IMAP and SMTP. It supports MIME attach-

ments and an address book and folders for segregating email.

You must configure your web server to work with PHP 4. You can find detailed installa-

tion instructions in /usr/share/doc/squirrelmail/INSTALL. After you configure Squir-

relmail, point your web browser to the default install location, www.yourdomain.com/

squirelmail/, to read and send email.

http://www.yourdomain.com/squirelmail/
http://www.yourdomain.com/squirelmail/

562 CHAPTER 34 Handling Email

Virus Scanners

Although the currently held belief is that Linux is immune to email viruses targeted at

Microsoft Outlook users, it certainly makes no sense for UNIX mail servers to permit

infected email to be sent through them. Although Ubuntu does not provide a virus scan-

ner by default, some of the popular scanners are available in the Ubuntu repositories. Take

a look at ClamAV as a popular example.

Autoresponders

Autoresponders automatically generate replies to received messages; they are commonly used

to notify others that the recipient is out of the office. Mercifully, Ubuntu does not include

one by default, but you can find and install an autoresponder like vacation or gnarwl from

the Ubuntu software repositories. If you are subscribed to a mailing list, be aware that auto-

matic responses from your account can be very annoying to others on the list. Please unsub-

scribe from mail lists before you leave the office with your autoresponder activated.

References
 ▶ www.sendmail.org—The Sendmail home page, where you can find configuration

information and FAQs regarding the Sendmail MTA

 ▶ www.postfix.org—The Postfix home page, where you can find documentation

and sample configurations

 ▶ https://help.ubuntu.com/community/Postfix—Ubuntu community documen-

tation for Postfix

 ▶ www.qmail.org—The home page for the Qmail MTA, which contains documenta-

tion and links to other resources on Qmail

 ▶ https://help.ubuntu.com/community/ClamAV—Ubuntu community docu-

mentation for ClamAV

 ▶ www.rfc-editor.org—A repository of Requests for Comments (RFCs), which define

the technical “rules” of modern computer usage

 ▶ www.procmail.org—The Procmail home page

 ▶ Sendmail by Brian Costales, Claus Assmann, George Jansen, and Gregory

Neil Shapiro—The de facto standard guide for everything Sendmail, loaded with

more than 1,000 pages, which gives you an idea of how complicated Sendmail really is

 ▶ Postfix by Richard Blum—An excellent book that covers the Postfix MTA

 ▶ Postfix: The Definitive Guide by Kyle D. Dent—Another excellent resource for

Postfix

 ▶ Running Qmail by Richard Blum—Similar to the Postfix book by Blum except

that it covers the Qmail MTA

http://www.sendmail.org
http://www.postfix.org
https://help.ubuntu.com/community/Postfix
http://www.qmail.org
https://help.ubuntu.com/community/ClamAV
http://www.rfc-editor.org
http://www.procmail.org

IN THIS CHAPTER

 ▶ What Is a Proxy Server?

 ▶ Installing Squid

 ▶ Configuring Clients

 ▶ Access Control Lists

 ▶ Specifying Client IP Addresses

 ▶ Sample Configurations

 ▶ Virtual Private Networks (VPNs)

 ▶ References

CHAPTER 35

Proxying, Reverse
Proxying, and Virtual

Private Networks (VPNs)

You can never have enough of two things in this world:

time and bandwidth. Ubuntu comes with a proxy server,

Squid, that enables you to cache web traffic on your server

so that websites load faster and users consume less band-

width. Sometimes proxy servers are recommended for

security and privacy, but a virtual private network (VPN) is

an even better option if security and privacy are your main

concerns. The last section of this chapter is about VPNs.

Both proxy servers and VPNs have the interesting side effect

that when they are in use, everything that your computer

connects to—say a website—assumes that the IP address of

the proxy or VPN server is your IP address.

What Is a Proxy Server?
A proxy server lies between client machines—the desktops

in your company—and the Internet. As clients request

websites, they do not connect directly to the Web and send

the HTTP request. Instead, they connect to the local proxy

server. The proxy then forwards their requests on to the

Web, retrieves the result, and hands it back to the client.

At its simplest, a proxy server really is just an extra layer

between client and server, so why bother?

The three main reasons for deploying a proxy server are as

follows:

 ▶ Content control—You want to prevent access to

certain types of content.

564 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

 ▶ Speed—You want to cache common sites to make the most of your bandwidth.

 ▶ Security—You want to monitor what people are doing.

Squid accomplishes these things and more.

Installing Squid
You can easily install Squid as usual from the Ubuntu software repositories, where it is

called squid. After Squid is installed, it is automatically enabled for each boot. You can

check that it is by running ps aux | grep squid when the machine boots. If you see noth-

ing there, run sudo systemctl start squid.

Configuring Clients
Before you configure your new Squid server, set up the local web browser to use it for its

web access. Doing so enables you to test your rules as you are working with the configura-

tion file.

To configure Firefox, while Firefox is running in the foreground, select Preferences from

the Edit menu from the top panel of the Ubuntu desktop. In the dialog that appears,

select the Advanced settings using the icon in the top row, and within Advanced, select

the Network tab. Then click the Settings button next to Configure How Firefox Connects

to the Internet and select the Manual Proxy Configuration option. Check the box beneath

it, labeled Use the Same Proxy for All Protocols. Enter 127.0.0.1 in the HTTP Proxy box

and 3128 as the port number. See Figure 35.1 for how this should look. If you are config-

uring a remote client, specify the IP address of the Squid server rather than 127.0.0.1.

FIGURE 35.1 Setting up Firefox to use 127.0.0.1 routes all its web requests through Squid.

565

3
5

Access Control Lists

You can similarly configure other web browsers such as Google Chrome, Opera, and so

on. The difference is the labels used and menu locations for the options, so you might

have to do a little digging to discover where to adjust a specific browser’s settings.

Access Control Lists
The main Squid configuration file is /etc/squid/squid.conf, and the default Ubuntu con-

figuration file is full of comments to help guide you. The default configuration file allows

full access to the local machine but denies the rest of your network. This is a secure place

to start; we recommend that you try all the rules on yourself (localhost) before rolling

them out to other machines.

Open two terminal windows. In the first, change to the directory /var/log/squid and run

this command:

matthew@seymour:~$ sudo tail -f access.log cache.log

This reads the last few lines from both files and (thanks to the -f flag) follows them so

that any changes appear in there. This allows you to watch what Squid is doing as people

access it. We refer to this window as the “log window,” and you should keep it open. In

the other window (again, with sudo), bring up the file /etc/squid/squid.conf in your

favorite editor. We refer to this window as the “config editor,” and you should keep it

open, too.

Search for the string acl all; this brings you to the access control section, which is where

most of the work needs to be done. You can configure a lot elsewhere, but unless you

have unusual requirements, you can leave the defaults in place.

NOTE

The default port for Squid is 3128, but you can change that by editing the http_port line.

Alternatively, you can have Squid listen on multiple ports by having multiple http_port

lines; 80, 8000, 8080, and 8888 are all popular ports for proxy servers.

The acl lines make up your access control lists (ACLs). The first 16 or so of these lines

define the minimum recommended configuration to set up ports to listen to and so on.

You can safely ignore these. If you scroll down further (past another short block of com-

ments), you come to the http_access lines, which are combined with the acl lines to dic-

tate who can do what. You can (and should) mix and match acl and http_access lines to

keep your configuration file easy to read.

Just below the first block of http_access lines is a comment like # INSERT YOUR OWN

RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS. This is just what you need to do

now. First, though, scroll just a few lines further, until you see the following two lines

(which are not necessarily next to each other in the actual file):

http_access allow localhost

http_access deny all

566 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

These lines are self-explanatory: The first says, “Allow HTTP access to the local computer

but deny everyone else.” This is the default rule, as mentioned earlier. Leave it in place for

now and run service squid start to start the server with the default settings. If you have

not yet configured the local web browser to use your Squid server, do so now so that you

can test the default rules.

In your web browser (Firefox is assumed from here on because it is the default in a stan-

dard Ubuntu install, but it makes little difference), go to the URL www.ubuntu.com. You

should see it appear as normal in the browser, but in the log window, you should see a lot

of messages scroll by as Squid downloads the site for you and stores it in its cache. This is

all allowed because the default configuration allows access to the localhost.

Go back to the config editor window and add the following before the last two http_

access lines:

http_access deny localhost

So, the last three lines should look like this:

http_access deny localhost

http_access allow localhost

http_access deny all

Save the file and quit your editor. Then run this command:

matthew@seymour:~$ kill -SIGHUP 'cat /var/run/squid.pid'

This looks for the process ID (PID) of the squid daemon and then sends the SIGHUP signal

to it, which forces it to reread its configuration file while running. You should see a string

of messages in the log window as Squid rereads its configuration files. If you now go back

to Firefox and enter a new URL, you should see a Squid error page, informing you that

you do not have access to the requested site.

The reason you are now blocked from the proxy is because Squid reads its ACL lines

in sequence, from top to bottom. If it finds a line that conclusively allows or denies

a request, it stops reading and takes the appropriate action. So, in the previous lines,

localhost is being denied in the first line and then allowed in the second. When

Squid sees localhost asking for a site, it reads the deny line first and immediately

sends the error page; it does not even get to the allow line. Having a deny all line at

the bottom is highly recommended so that only those you explicitly allow are able to

use the proxy.

Go back to editing the configuration file and remove the deny localhost and allow

localhost lines. This leaves only deny all, which blocks everyone (including the

localhost) from accessing the proxy. Now you are going to add some conditional allow

statements. You want to allow localhost only if it fits certain criteria.

Defining access criteria is done with the acl lines, so above the deny all line, add this:

acl newssites dstdomain news.bbc.co.uk slashdot.org

http_access allow newssites

http://www.ubuntu.com
http://news.bbc.co.uk
http://slashdot.org

567

3
5

Access Control Lists

The first line defines an access category called newssites, which contains a list of

domains (dstdomain). The domains are news.bbc.co.uk and slashdot.org, so the full

line reads “Create a new access category called news sites that should filter on domain

and contain the two domains listed.” It does not say whether access should be granted

or denied to that category; that comes in the next line. The line http_access allow

newssites means “Allow access to the category news sites with no further restrictions.”

It is not limited to localhost, which means it applies to every computer connecting to

the proxy server.

Save the configuration file and rerun the kill -SIGHUP line from before to restart Squid;

then go back to Firefox and try loading www.ubuntu.com. You should see the same

error as before because that was not in your newssites category. Now try http://news.

bbc.co.uk, and it should work. However, if you try www.slashdot.org, it will not work,

and you might also have noticed that the images did not appear on the BBC News web-

site either. The problem here is that specifying slashdot.org as the website is specific: It

means that http://slashdot.org will work, whereas www.slashdot.org will not. The BBC

News site stores its images on the site http://newsimg.bbc.co.uk, which is why they do

not appear.

Go back to the configuration file and edit the newssites ACL to this:

acl newssites dstdomain .bbc.co.uk .slashdot.org

Putting the period in front of the domains (and in the BBC’s case, taking the news off,

too) means that Squid will allow any subdomain of the site to work, which is usually what

you want. If you want even more vagueness, you can just specify .com to match *.com

addresses.

Moving on, you can also use time conditions for sites. For example, if you want to allow

access to the news sites in the evenings, you can set up a time category by using this line:

acl freetime time MTWHFAS 18:00-23:59

This time, the category is called freetime and the condition is time, which means you

need to specify what time the category should contain. The seven characters following

that are the days of the week: Monday, Tuesday, Wednesday, tHursday, Friday, sAturday,

and Sunday. Thursday and Saturday use capital H and A so they do not clash with Tues-

day and Sunday.

With that category defined, you can change the http_access line to include it, like this:

http_access allow newssites freetime

For Squid to allow access now, it must match both conditions—the request must be for

either *.bbc.co.uk or slashdot.org, and it must be during the time specified. If either

condition does not match, the line is not matched, and Squid continues looking for other

matching rules beneath it. The times you specify here are inclusive on both sides, which

means users in the freetime category are able to surf from 18:00:00 until 23:59:59.

http://news.bbc.co.uk
http://slashdot.org
http://www.ubuntu.com
http://news.bbc.co.uk
http://news.bbc.co.uk
http://www.slashdot.org
http://slashdot.org
http://slashdot.org
http://www.slashdot.org
http://newsimg.bbc.co.uk
http://dstdomain.bbc.co.uk
http://dstdomain.bbc.co.uk
http://.slashdot.org
http://.com
http://*.com
http://*.bbc.co.uk
http://slashdot.org

568 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

You can add as many rules as you like, although you should be careful to try to order

them so that they make sense. Keep in mind that all conditions in a line must be matched

for the line to be matched. Here is a more complex example:

 ▶ You want a category newssites that contains serious websites people need for their

work.

 ▶ You want a category playsites that contains websites people do not need for their

work.

 ▶ You want a category worktime that stretches from 09:00 to 18:00.

 ▶ You want a category freetime that stretches from 18:00 to 20:00, when the office

closes.

 ▶ You want people to be able to access the news sites but not the play sites during

working hours.

 ▶ You want people to be able to access both the news sites and the play sites during

the free-time hours.

To do all this, you need the following rules:

acl newssites dstdomain .bbc.co.uk .slashdot.org

acl playsites dstdomain .tomshardware.com ubuntulinux.org

acl worktime time MTWHF 9:00-18:00

acl freetime time D 18:00-20:00

http_access allow newssites worktime

http_access allow newssites freetime

http_access allow playsites freetime

NOTE

You can replace MTWHF with D as it is equivalent to MTWHF and means “all the days of

the working week.”

Notice that there are two http_access lines for the newssites category: one for worktime

and one for freetime. This is because all the conditions must be matched for a line to be

matched. Alternatively, you can write this:

http_access allow newssites worktime freetime

However, if you do this and someone visits https://news.bbc.co.uk at 2:30 p.m. (14:30) on

a Tuesday, Squid works like this:

 ▶ Is the site in the newssites category? Yes, continue.

 ▶ Is the time within the worktime category? Yes, continue.

 ▶ Is the time within the freetime category? No; do not match rule and continue

searching for rules.

http://dstdomain.bbc.co.uk
http://dstdomain.bbc.co.uk
http://.slashdot.org
http://dstdomain.tomshardware.com
http://dstdomain.tomshardware.com
http://ubuntulinux.org
https://news.bbc.co.uk

569

3
5

Specifying Client IP Addresses

It is because of this that two lines are needed for the worktime category.

One particularly powerful way to filter requests is with the url_regex ACL line. This

enables you to specify a regular expression that is checked against each request: If the

expression matches the request, the condition matches.

For example, if you want to stop people from downloading Windows executable files, you

use this line:

acl noexes url_regex -i exe$

The dollar sign ($) means “end of URL,” which means it would match www.somesite.

com/virus.exe but not www.executable.com/innocent.html. The -i part means “not case

sensitive,” so the rule matches .exe, .Exe, .EXE, and so on. You can use the caret symbol

(^) for “start of URL.”

For example, you could stop some pornography sites by using this ACL:

acl noporn url_regex -i sex

Do not forget to run the kill -SIGHUP command each time you make changes to Squid;

otherwise, it does not reread your changes.

You can have Squid check your configuration files for errors by running squid -k parse

as root. If you see no errors, it means your configuration is fine.

NOTE

It is critical that you run the command kill -SIGHUP and provide it the PID of your Squid

daemon each time you change the configuration; without this, Squid does not reread its

configuration files.

Specifying Client IP Addresses
The configuration options so far have been basic, and you can use many more options to

enhance the proxying system as you like.

After you have decided which rules work for you locally, it is time to spread them out to

other machines. You do so by specifying IP ranges that should be allowed or disallowed

access, and you enter them into Squid by using more ACL lines.

If you want to, you can specify all the IP addresses on your network, one per line. How-

ever, for networks of more than about 20 people or using Dynamic Host Control Protocol

(DHCP), that is more work than necessary. A better solution is to use classless interdomain

routing (CIDR) notation, which enables you to specify addresses like this:

192.0.0.0/8

192.168.0.0/16

192.168.0.0/24

http://www.somesite.com/virus.exe
http://www.somesite.com/virus.exe
http://www.executable.com/innocent.html

570 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

Each line has an IP address, followed by a slash and then a number. That last number

defines the range of addresses you want covered and refers to the number of bits in an IP

address. An IP address is a 32-bit number, typically presented in dotted-quad notation:

A.B.C.D. Each of those quads can be between 0 and 255 (although in practice some of

them are reserved for special purposes), and each is stored as an 8-bit number.

The first line in the previous code covers IP addresses starting from 192.0.0.0; the /8 part

means that the first 8 bits (the first quad, 192) is fixed and the rest is flexible. So, Squid

treats that as addresses 192.0.0.0, 192.0.0.1, through to 192.0.0.255, then 192.0.1.0,

192.0.1.1, all the way through to 192.255.255.255.

The second line uses /16, which means Squid allows IP addresses from 192.168.0.0 to

192.168.255.255. The last line has /24, which allows from 192.168.0.0 to 192.168.0.255.

These addresses are placed into Squid using the src ACL line, as follows:

acl internal_network src 10.0.0.0/24

This line creates a category of addresses from 10.0.0.0 to 10.0.0.255. You can combine

multiple address groups together, like this:

acl internal_network src 10.0.0.0/24 10.0.3.0/24 10.0.5.0/24 192.168.0.1

This example allows 10.0.0.0 through 10.0.0.255, then 10.0.3.0 through 10.0.3.255, and

finally the single address 192.168.0.1.

Keep in mind that if you are using the local machine and you have the web browser con-

figured to use the proxy at 127.0.0.1, the client IP address will be 127.0.0.1, too. So, make

sure you have rules in place for localhost.

As with other ACL lines, you need to enable them with appropriate http_access allow

and http_access deny lines.

Sample Configurations
To help you fully understand how Squid access control works, and to give you a head start

on developing your own rules, the following are some ACL lines you can try. Each line is

preceded with one or more comment lines (starting with a #) explaining what it does:

include the domains news.bbc.co.uk and slashdot.org

and not newsimg.bbc.co.uk or www.slashdot.org.

acl newssites dstdomain news.bbc.co.uk slashdot.org

include any subdomains or bbc.co.uk or slashdot.org

acl newssites dstdomain .bbc.co.uk .slashdot.org

only include sites located in Canada

acl canadasites dstdomain .ca

571

3
5

Sample Configurations

only include working hours

acl workhours time MTWHF 9:00-18:00

only include lunchtimes

acl lunchtimes time MTWHF 13:00-14:00

only include weekends

acl weekends time AS 00:00-23:59

include URLs ending in ".zip". Note: the \ is important,

because "." has a special meaning otherwise

acl zipfiles url_regex -i \.zip$

include URLs starting with https

acl httpsurls url_regex -i ^https

include all URLs that match "Hotmail"

url_regex hotmail url_regex -i hotmail

include three specific IP addresses

acl directors src 10.0.0.14 10.0.0.28 10.0.0.31

include all IPs from 192.168.0.0 to 192.168.0.255

acl internal src 192.168.0.0/24

include all IPs from 192.168.0.0 to 192.168.0.255

and all IPs from 10.0.0.0 to 10.255.255.255

acl internal src 192.168.0.0/24 10.0.0.0/8

When you have your ACL lines in place, you can put together appropriate http_access

lines. For example, you might want to use a multilayered access system so that certain

users (for example, company directors) have full access, whereas others are filtered. Here is

an example:

http_access allow directors

http_access deny hotmail

http_access deny zipfiles

http_access allow internal lunchtimes

http_access deny all

Because Squid matches these lines in order, directors will have full, unfiltered access to the

Web. If the client IP address is not in the directors list, the two deny lines are processed

so that the user cannot download zip files or read online mail at Hotmail. After block-

ing those two types of requests, the allow rule on line 4 allows internal users to access

the Web, as long as they do so only at lunchtime. The last line (which is highly recom-

mended) blocks all other users from the proxy.

572 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

When you are done making configuration changes, use systemd to start, stop, or restart

the squid service, like this:

$ sudo systemctl restart squid.service

Virtual Private Networks (VPNs)
A virtual private network, or VPN, creates a way for networks that are otherwise isolated

or inaccessible to communicate with one another. Businesses at an enterprise level often

use VPNs to keep internal business networks secure while allowing workers to access the

internal network from remote locations, such as when an executive is traveling and needs

to use a laptop to download and reply to email using an internal business server. The VPN

keeps out all traffic except traffic that originates within the network itself or traffic that

attempts to connect from the outside using a VPN connection with proper access creden-

tials. This sounds similar to remote access standards already in place in UNIX, Linux, and

Ubuntu, but using a VPN takes security to a new level.

There are other types of VPNs in use as well. Not only can VPNs be used to allow

remote access to secure internal networks, but they can also be used to allow two net-

works to connect to one another using a different network in the middle (for example,

two networks that each use IPv6 connecting to one another over an IPv4 network

using a VPN connection). This is much less common, so we concentrate on the first

scenario of a remote user connecting to a secure, internal network. You might be ask-

ing how this is different from using a proxy server, as it seems that the VPN is some-

how working as an intermediary or a bridge between the remote user and the secure

system. It is a little more complicated than that. When a proxy server is in use, it is

another layer between the two ends of a connection—an intermediary. When a VPN is

in use, it provides direct access between the two ends but via an encrypted tunnel; this

is analogous to running a cable directly from one end system to the other, effectively

making the remote computer an actual part of the system to which it is connecting.

From this moment, the remote system tunnels all of its network traffic through the

main system.

Whereas a proxy generally works via a web browser and secures all traffic that passes

through the browser, a VPN tunnels all traffic. When using a VPN, the remote computer

no longer perceives itself as connected first to the Internet and then to the secure system;

rather, it perceives itself as being connected directly to the secure system, with the VPN as

its router. The difference is illustrated in Figure 35.2.

Some use an Internet router as a metaphor to help explain how a VPN works. In this anal-

ogy, the remote computer connects directly to the VPN, which uses the Internet to con-

nect it to its ultimate host computer, the secure network.

So, why do we care? The differences between proxy servers and a VPN make the most dif-

ference when it comes time for implementation. Which will best serve your needs? Here

are some facts to help you decide:

573

3
5

Virtual Private Networks (VPNs)

 ▶ Proxy servers are usually cheaper and easier to set up. VPNs generally cost more and

are more difficult to set up, but after they’re set up, they’re easy to use and are more

secure.

 ▶ A single proxy server can service hundreds or thousands of users, but usually a VPN

is designed for one connection that is specific to one remote computer and a secure

host. (Yes, exceptions exist, but they are beyond the scope of this introductory

material.)

 ▶ Each piece of software that uses a proxy must be set up separately. Using a web

browser is the most common way to use a proxy server, but other types of software

can also be configured to use proxies. When a VPN is up and running, all Internet

software on the computer automatically uses it without additional configuration.

Setting Up a VPN Client

The easy part of using a VPN is also the most commonly needed part. Generally, a com-

pany sets up VPN servers and then provides access to its secure networks to company

employees or clients who use a VPN client installed on their local system, such as a

laptop.

Most VPN servers run a protocol that is easily used on Ubuntu, especially from the

type of GUI-based system that a typical user would have. You need to check with the

Remote user

using a web

browser

connects to a

proxy server

Proxy server

acts as a filter

or a cache

and may provide

some security

Secure system

Remote user

connects to Internet

then turns on VPN

software and uses it

to connect to secure

system

VPN acts as a pipe

encrypting traffic

that uses a regular

network to convey

the packets

Secure system

FIGURE 35.2 Comparing a proxy connection to a VPN connection.

574 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

administrator of the VPN network to which you intend to connect to find out which VPN

client you will use and also to get your credentials so that you can connect. To manage

the VPN client connection in this section, we use the default Network Manager, which is

installed by default with Ubuntu and is the default tool for managing all Internet connec-

tions in a typical Ubuntu installation.

Install the VPN client software needed for the specific type of VPN server in use by the

network to which you will connect. The following table will help you find what you need:

If you need to use Install this

Cisco Concentrator network-manager-vpnc

Cisco OpenConnect network-manager-openconnect

OpenVPN network-manager-openvpn

PPTP (Microsoft VPN) network-manager-pptp

strongSwan (for some IPsec VPNs) network-manager-strongswan

Restart Network Manager to make it aware of the new package(s):

matthew@seymour:~$ sudo systemctl restart network-manager

Click the Network icon in the top panel of the Unity screen. Click VPN Settings, as shown

in Figure 35.3, to be taken to the appropriate location in Settings.

FIGURE 35.3 Network Manager makes configuring a VPN client easy.

In Settings, you need to enter information about your VPN connection. You need to enter

things like the gateway IP address of the server, your account username and password, per-

haps a group name and group password, and where to find the certificate authority (CA)

file. In some cases, you might need to click the Advanced button to enter other details,

such as the encryption method, NAT traversal, and more. When you have your informa-

tion entered, click Save.

575

3
5

Virtual Private Networks (VPNs)

To begin using this VPN connection, use the same menu as shown in Figure 36.3, but this

time select your VPN connection from the newly created list.

Setting Up a VPN Server

In this section, we use OpenVPN to show how to set up a simple server. Advanced config-

uration can become quite complex, but it is easy to get started if you require only a basic

server.

NEW VPN SOFTWARE OPTION COMING: WIREGUARD

While this book is being written, an open source VPN solution called WireGuard is being

merged into the Linux kernel for the 5.6 release. See www.wireguard.com and https://

arstechnica.com/gadgets/2020/01/linus-torvalds-pulled-wireguard-vpn-into-the-5-6-kernel-

source-tree/ for more details. Ubuntu 20.04 LTS was originally planned to ship with the

5.5 kernel, but it is likely that the WireGuard code will be backported into that kernel.

You will still need userspace tools and will have to install a package, but WireGuard is

smaller than most VPN packages and will be less complex to set up. It is also supposed

to be more efficient and performant.

The project is still undergoing testing and is not yet ready for production use, but is likely

to become the replacement for OpenVPN (OpenVPN will likely remain available for a long

time) during the lifecycle of this edition of Ubuntu Unleashed, so it deserves a strong men-

tion. If you want to test WireGuard, install the wireguard package from the Ubuntu reposi-

tories and see the official quick start documentation to continue at www.wireguard.com/

quickstart/.

Install openvpn from the Ubuntu software repositories.

Next, you need to create a public key infrastructure (PKI) for OpenVPN. Set up the certifi-

cate authority to generate your own certificates and keys:

matthew@seymour:~$ sudo mkdir /etc/openvpn/easy-rsa

matthew@seymour:~$ sudo cp -r /usr/share/doc/openvpn/examples/easy-rsa/2.0/* /etc/

openvpn/easy-rsa/

Enter your specific details by editing /etc/openvpn/easy-rsa/vars and adjusting the

following:

export KEY_COUNTRY="us"

export KEY_PROVINCE="IA"

export KEY_CITY="Iowa City"

export KEY_ORG="Your Company"

export KEY_EMAIL="yourContact@yourEmailDomain.com"

Generate your certificate authority and key:

matthew@seymour:~$ cd /etc/openvpn/easy-rsa

matthew@seymour:~$ sudo source vars

matthew@seymour:~$ sudo ./clean-all

http://www.wireguard.com
https://arstechnica.com/gadgets/2020/01/linus-torvalds-pulled-wireguard-vpn-into-the-5-6-kernel-source-tree/
https://arstechnica.com/gadgets/2020/01/linus-torvalds-pulled-wireguard-vpn-into-the-5-6-kernel-source-tree/
https://arstechnica.com/gadgets/2020/01/linus-torvalds-pulled-wireguard-vpn-into-the-5-6-kernel-source-tree/
http://www.wireguard.com/quickstart/
http://www.wireguard.com/quickstart/
mailto:"yourContact@yourEmailDomain.com"

576 CHAPTER 35 Proxying, Reverse Proxying, and Virtual Private Networks (VPNs)

matthew@seymour:~$ sudo ./build-ca

matthew@seymour:~$ sudo cp -r /usr/share/doc/openvpn/examples/easy-rsa/2.0/* /etc/

openvpn/easy-rsa/

Generate a certificate and private key for the server, replacing yourservername with the

name of your server:

matthew@seymour:~$ sudo ./buid-key-server yourservername

Build the Diffie-Hellman parameters:

matthew@seymour:~$ sudo ./build-dh

Copy the certificates and keys, replacing yourservername with the name of your server:

matthew@seymour:~$ cd keys/

matthew@seymour:~$ sudo cp yourservername.crt yourservername.key ca.crt dh1024.pem /

etc/openvpn/

You must create a different certificate for each client by using this method. This is because

the larger, proprietary VPN vendors distribute their certificates with their server and client

software, but you are creating your own. Do this on the server machine for each client,

replacing clientname with the name of each client system:

matthew@seymour:~$ cd /etc/openvpn/easy-rsa/

matthew@seymour:~$ source vars

matthew@seymour:~$./build-key clientname

Now, copy the following files you just generated to the client for which it was gener-

ated. Repeat as needed for each client, replacing clientname with the name of each client

system:

/etc/openvpn/ca.crt

/etc/openvpn/easy-rsa/keys/clientname.crt

/etc/openvpn/easy-rsa/keys/clientname.key

Remove the files from the server after they are installed on the client.

Many sample configuration files are included with OpenVPN in /usr/share/doc/openvpn/

examples/sample-config-files/. You can read through them if you have more complex

needs than the simple setup shown here. For this example, you only need the most basic

configuration files. Copy and unpack this file:

matthew@seymour:~$ sudo cp /usr/share/doc/openvpn/examples/sample-config-files/

server.conf.gz /etc/openvpn

matthew@seymour:~$ sudo gzip -d /etc/openvpn/server.conf.gz

577

3
5

References

Edit /etc/openvpn/server.conf to point to and use the certificates and keys you created

earlier by changing or adding these lines, replacing yourservername with the name of your

server and leaving all the other default settings in place:

ca ca.crt

cert yourservername.crt

key yourservername.key

Start your server:

matthew@seymour:~$ sudo systemctl start openvpn-server

OpenVPN should create a new networking interface on your computer called tun0. To

make sure the interface is created, enter the following:

matthew@seymour:~$ sudo ifconfig tun0

To use your new VPN server with the client described in the previous section, select

OpenVPN as the VPN type, enter yourservername from this section as the gateway, and set

the type to certificates (TLS). Also point the user certificate to use the client certificate you

created and moved to the client machine, CA Certificate, to use the credential authority

certificate you created and moved to the client machine, and point Private Key to use the

private key file you created and moved to the client machine.

References
 ▶ www.squid-cache.org—The home page of the Squid web proxy cache

 ▶ https://github.com/oskarpearson/squid-users-guide—The home page of

Squid: A User’s Guide, a free online book about Squid

 ▶ https://help.ubuntu.com/lts/serverguide/squid.html—Ubuntu community

documentation for setting up Squid

 ▶ Squid: The Definitive Guide by Duane Wessels—A practical guide that covers

the Squid server in depth, by one of the leading developers on Squid

 ▶ Web Caching by Duane Wessels—A theoretical book that discusses how caching

is implemented

 ▶ http://help.ubuntu.com/lts/serverguide/openvpn.html—The official

Ubuntu server documentation for setting up OpenVPN

http://www.squid-cache.org
https://github.com/oskarpearson/squid-users-guide
https://help.ubuntu.com/lts/serverguide/squid.html
http://help.ubuntu.com/lts/serverguide/openvpn.html

This page intentionally left blank

IN THIS CHAPTER

 ▶ Configuring the Server

 ▶ Configuring Clients

 ▶ LDAP Administration

 ▶ References

CHAPTER 36

Lightweight Directory
Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP, pronounced

“ell-dap”) is one of those technologies that, although

hidden, forms part of the core infrastructure in much of

enterprise computing. Its job is simple: It stores informa-

tion about users. However, its power comes from the fact

that it can be linked into dozens of other services. LDAP

can power login authentication, public key distribution,

email routing, and address verification. More recently,

it has formed the core of the push toward single sign-on

technology.

TIP

Most people find the concept of LDAP easier to grasp

when they think of it as a highly specialized form of data-

base server. Behind the scenes, Ubuntu uses a database

for storing all its LDAP information; however, LDAP does

not offer anything as straightforward as SQL for data

manipulation.

OpenLDAP uses Sleepycat Software’s Berkeley DB (BDB),

and sticking with that default is highly recommended.

However, alternatives exist that might be better for you if

you have specific needs.

This chapter looks at a relatively basic installation of an

LDAP server, including how to host a company-wide direc-

tory service that contains the names and email addresses

of employees. LDAP is a client/server system, meaning that

an LDAP server hosts the data, and an LDAP client queries

it. Ubuntu comes with OpenLDAP as its LDAP server, along

with several LDAP-enabled email clients, including Evolu-

tion and Mozilla Thunderbird. This chapter covers all three

of these applications.

580 CHAPTER 36 Lightweight Directory Access Protocol (LDAP)

Because LDAP data is usually available over the Internet—or at least your local network—it

is imperative that you make every effort to secure your server. This chapter gives specific

instruction on password configuration for OpenLDAP, and we recommend that you follow

the instructions closely.

Configuring the Server
If you have been using LDAP for years, you will be aware of its immense power and flex-

ibility. But if you are just trying LDAP for the first time, it will seem like the most bro-

ken component you could imagine. LDAP has specific configuration requirements, is

vastly lacking in graphical tools, and has a large number of acronyms to remember. On

the bright side, all the hard work you put in is worth it because when it works, LDAP

improves your networking experience immensely. You should read this entire chapter and

understand it before you go any further. Then read the README file in /etc/ldap/schema

before you begin configuring your server.

The first step in configuring your LDAP server is to install the client and server applica-

tions. When you install the slapd and ldap-utils packages from the Ubuntu repositories,

you also install the libodbc1 package.

By default, Ubuntu configures slapd with the minimum options necessary to run the dae-

mon. This chapter shows how to configure everything from that bare-bones installation

up to where it will be useful.

Now you need to know the fully qualified domain name (FQDN) of your server. In a

moment, you will begin to write/modify some configuration files, and this will be a vital

part of that process. The example uses matthewhelmke.com. Whenever you see that, change

it to your FQDN.

From the FQDN you acquire your domain component, which is the name of your domain,

as stored in DNS. This is abbreviated as dc. LDAP considers each part of a domain name

(separated by dots) to be a domain component. In the example, there are two dc items in

matthewhelmke.com: matthewhelmke and com.

OpenLDAP uses a separate directory that contains the cn=config directory information tree

(DIT) to configure the slapd daemon dynamically. This enables you to modify schema

definitions, indexes, and so on without stopping and restarting the service, as was

required in earlier versions. You need two files for this configuration: a back end that has

only a minimal configuration and a front end that uses a traditional format that is com-

patible with and accessed by external programs, using established standards.

Creating Your Schema

Start creating your schema by loading some premade schema files. This makes configura-

tion faster and easier by preloading some settings. If you are building an enterprise server,

read the official OpenLDAP documentation and start from scratch so that you know pre-

cisely what everything on your server is doing and why. For the example in this chapter,

load these three files into the directory using the following commands:

matthew@seymour:~$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/

http://matthewhelmke.com
http://matthewhelmke.com

581

3
6

Configuring the Server

[ic:ccc]cosine.ldif

matthew@seymour:~$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/

[ic:ccc]nis.ldif

matthew@seymour:~$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/

[ic:ccc]inetorgperson.ldif

Next, create a file called backend.matthewhelmke.com.ldif with these contents:

Load dynamic backend modules

dn: cn=module,cn=config

objectClass: olcModuleList

cn: module

olcModulepath: /usr/lib/ldap

olcModuleload: back_hdb

Database settings

dn: olcDatabase=hdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcHdbConfig

olcDatabase: {1}hdb

olcSuffix: dc=matthewhelmke,dc=com

olcDbDirectory: /var/lib/ldap

olcRootDN: cn=admin,dc=matthewhelmke,dc=com

olcRootPW: changeMEtoSOMETHINGbetter

olcDbConfig: set_cachesize 0 2097152 0

olcDbConfig: set_lk_max_objects 1500

olcDbConfig: set_lk_max_locks 1500

olcDbConfig: set_lk_max_lockers 1500

olcDbIndex: objectClass eq

olcLastMod: TRUE

olcDbCheckpoint: 512 30

olcAccess: to attrs=userPassword by dn="cn=admin,dc=matthewhelmke,dc=com" write by

anonymous auth by self write by * none

olcAccess: to attrs=shadowLastChange by self write by * read

olcAccess: to dn.base="" by * read

olcAccess: to * by dn="cn=admin,dc=matthewhelmke,dc=com" write by * read

Make sure you change all instances of matthewhelmke and com to fit your FQDN and

change the entry for olcRootPW to a more secure password of your choosing. Then add

the new file to the directory, which you do as follows, assuming that you are entering this

command from the directory where the file was created:

matthew@seymour:~$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f backend.example.com.

ldif

http://backend.matthewhelmke.com.ldif
http://backend.example.com.ldif
http://backend.example.com.ldif

582 CHAPTER 36 Lightweight Directory Access Protocol (LDAP)

Populating Your Directory

The back end is ready. Now you need to populate the front-end directory to make this

useful. Create another file called frontend.matthewhelmke.com.ldif with the following

contents:

Create top-level object in domain

dn: dc=matthewhelmke,dc=com

objectClass: top

objectClass: dcObject

objectclass: organization

o: Example Organization

dc: Example

description: LDAP Example

Admin user.

dn: cn=admin,dc=matthewhelmke,dc=com

objectClass: simpleSecurityObject

objectClass: organizationalRole

cn: admin

description: LDAP administrator

userPassword: changeMEtoSOMETHINGbetter

dn: ou=people,dc=example,dc=com

objectClass: organizationalUnit

ou: people

dn: ou=groups,dc=matthewhelmke,dc=com

objectClass: organizationalUnit

ou: groups

dn: uid=john,ou=people,dc=matthewhelmke,dc=com

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

uid: matthew

sn: Helmke

givenName: Matthew

cn: Matthew Helmke

displayName: Matthew Helmke

uidNumber: 1000

gidNumber: 10000

userPassword: changeMEtoSOMETHINGbetter

gecos: Matthew Helmke

loginShell: /bin/bash

homeDirectory: /home/matthew

shadowExpire: -1

http://frontend.matthewhelmke.com.ldif

583

3
6

Configuring the Server

shadowFlag: 0

shadowWarning: 7

shadowMin: 8

shadowMax: 999999

shadowLastChange: 10877

mail: matthew@matthewhelmke.com

postalCode: 85711

l: Tucson

o: Example

mobile: +1 (520) xxx-xxxx

homePhone: +1 (520) xxx-xxxx

title: System Administrator

postalAddress: I'm not putting it in the book.

initials: MH

dn: cn=example,ou=groups,dc=example,dc=com

objectClass: posixGroup

cn: example

gidNumber: 10000

Remember to change the details to fit your information. Then add this file to the LDAP

directory:

matthew@seymour:~$ sudo ldapadd -x -D cn=admin,dc=example,dc=com -W -f frontend.

example.com.ldif

To check that your content has been added to the LDAP directory correctly, you can use

ldapsearch, as follows:

matthew@seymour:~$ ldapsearch -xLLL -b "dc=example,dc=com" uid=john sn givenName cn

dn: uid=matthew,ou=people,dc=matthewhelmke,dc=com

cn: Matthew Helmke

sn: Helmke

givenName: Matthew

In this example, dn stands for distinguished name, uid refers to user identification, ou is

the organizational unit, dc represents domain component, cn is common name, sn is the

family or surname, and many cultures know givenName as your first name.

When you use LDAP, you can organize your data in many ways. You can use a number

of currently existing schemas, such as in the previous example using the LDIF files you

loaded at the start, or you can write your own. The /etc/ldap/schemas directory has

many fine examples in the files with a .schema suffix and a few that have been converted

to LDAP Data Interchange Format (LDIF). To be used with LDAP, a file must be an LDIF file

(with the .ldif filename extension). You can convert one of the sample schemas or create

your own schema.

mailto:matthew@matthewhelmke.com
http://frontend.example.com.ldif
http://frontend.example.com.ldif

584 CHAPTER 36 Lightweight Directory Access Protocol (LDAP)

Configuring Clients
Although Ubuntu comes with a selection of email clients, there is not enough room here

to cover them all. The two most frequently used clients are Thunderbird, the default, and

Evolution. Both are powerful messaging solutions, and both work well with LDAP. Of the

two, Thunderbird seems to be the easier to configure and, as the default, is the one we

choose to show here.

To enable Thunderbird to use LDAP, go to the menu, click Preferences, and then select

Composition from the tabs along the top.

From the Addressing subtab, check the Directory Server box and click the Edit Directories

button to its right. In the dialog box that appears, click Add to add a new directory. You

can give it any name you want because this is merely for display purposes. As shown in

Figure 36.1, set the Hostname field to be the IP address of your LDAP server (or 127.0.0.1

if you are working on the server). Set the Base DN field to the DN for your address book

(for instance, ou=People,dc=matthewhelmke,dc=com) and leave Port Number set to 389.

Click OK three times to get back to the main interface.

FIGURE 36.1 Thunderbird’s options allow you to download the LDAP directory for offline use.

LDAP Administration
After you have your LDAP server and clients set up, they require little maintenance until

something changes externally. Specifically, if someone in your directory changes jobs,

changes her phone number, gets married (changing her last name [surname]), quits, or

experiences some other change, you need to be able to update your directory to reflect the

change.

You installed some useful utilities with the ldap-utils package earlier:

 ▶ ldapsearch—Opens a connection to an LDAP server and searches its directory for

requested information

 ▶ ldapmodify—Opens a connection to an LDAP server and allows you to add or mod-

ify entries

585

3
6

References

 ▶ ldapadd—Opens a connection to an LDAP server and allows you to add an entry

 ▶ ldapdelete—Opens a connection to an LDAP server and allows you to delete one or

more entries

Each of these utilities requires administration privileges, so use sudo with them all. None

of these utilities are simple to use, but they all come with moderate amounts of documen-

tation in their man pages.

A much smarter option is to use phpLDAPadmin, which is an LDAP administration tool that

enables you to add and modify entries entirely through your web browser. The program is

available in the Ubuntu software repositories as phpldapadmin.

Starting, stopping, or restarting the slapd daemon is done in the usual way:

sudo systemctl start/stop/restart slapd

References
 ▶ www.openldap.org—The home page of the OpenLDAP project, where you can

download the latest version of the software and meet other users

 ▶ https://ldap.perl.org—The home of the Perl library for interacting with LDAP,

which provides comprehensive documentation to get you started

 ▶ https://help.ubuntu.com/lts/serverguide/openldap-server.html—Official

Ubuntu Server documentation for OpenLDAP

 ▶ https://phpldapadmin.sourceforge.net—The official documentation for

phpLDAPadmin

 ▶ LDAP System Administration by Gerald Carter—The definitive book on LDAP

and an absolute must for the bookshelf of any Linux LDAP administrator

 ▶ LDAP Directories Explained by Brian Arkills—More general reading, with a

much stronger focus on the Microsoft Active Directory LDAP implementation

http://www.openldap.org
https://ldap.perl.org
https://help.ubuntu.com/lts/serverguide/openldap-server.html
https://phpldapadmin.sourceforge.net

This page intentionally left blank

IN THIS CHAPTER

 ▶ Understanding Domain Names

 ▶ Setting Up a DNS Server with

BIND

 ▶ References

CHAPTER 37

Name Serving with the
Domain Name System

(DNS)

Humans enjoy naming things. We name our kids, our

pets, and often inanimate objects as well. Cars, boats, and

computers are not immune. Networked computers are very

often named. Remembering names is easier for most of us

than remembering numbers. When we must remember

numbers, we can; I can still remember the phone number

of the house I lived in when I was a kid. However, when

we can use a name instead, we tend to prefer to do so;

today I can’t remember my daughter’s cell phone number,

because it is programmed into my phone and I just select

her picture in the directory to call her.

If you are working in a data center, especially one with a

large number of servers networked together, you won’t eas-

ily remember the IP addresses of all the systems. Besides, it

is fun to pick a theme and name everything on the network

using that theme: varieties of apples, characters from your

favorite science fiction or fantasy world, brands of guitars

you wish you owned. It’s much more fun and easier to say,

“Hey, Liz, can you go check on sontaran for me? It isn’t

responding to my ping requests,” than to say, “Can you

check on the server at IP 192.168.2.46?”

Mnemonic devices like these are useful, but we must map

the names we give to the numbers the systems actually

use. Mapping is just matching, connecting the words with

the numbers in a way that allows a human to request

https://google.com and get the information stored at

https://74.125.224.72.

https://google.com
https://74.125.224.72

588 CHAPTER 37 Name Serving with the Domain Name System (DNS)

The Domain Name System (DNS) converts human-readable names given to networked

machines to the IP addresses that machines use. (See Chapter 18, “Networking,” for more on

IP addresses.) DNS works in the other direction as well, taking IP addresses and giving names.

When you set up a DNS server using the BIND DNS server software discussed in this chap-

ter, you gain the power to set the name/IP details for domains you own, either domains

that are internal on your network or Internet domains you have purchased through a

registrar like Namecheap.com or GoDaddy. But these registrars run DNS servers and allow

you to perform this setup through their lovely web GUIs. Why would anyone want to do

this themselves? There are several possible reasons:

 ▶ You have an internal network, a local area network (LAN) that is not

accessible from outside that network—Your internal network assigns and

uses private IP addresses, but you want to make things easier for your LAN users by

assigning names to the various systems. These domain names will not be assigned by

a domain name registrar because they are internal only; they won’t include top-level

domains like .com or .net at the end and will be usable only within the network.

 ▶ You want to improve performance by caching—Most DNS queries are shared

by a large number of computers. If those individual computers don’t have to each

connect to the Internet and get their domain names resolved by your Internet ser-

vice provider’s DNS server (or another public DNS server) but can instead get that

information from a server on the local network, it could speed things up. This isn’t

an issue for most of us, but for large networks, it can be a huge benefit.

 ▶ You want to ban access to a harmful domain—Maybe an email came in

to your company’s employees with a link to a specific website that is distributing

viruses and you want to prevent naïve internal network users from accessing that

website. You can change the IP address that is served for this domain name so that it

instead forwards users to an HTML page you write up describing the problem. Your

change only affects computers on your internal network, so this is not something

that will make people outside your company angry or that they will even know is

happening.

 ▶ You run a local network at home—You want to make your life a little easier

when it comes time to log in to each and perform updates, so you want to give a

name to each computer and allow access to each computer using a pet name for

each one instead of using the IP address on your network.

No doubt we could come up with other examples. Most of us will not need to set up or

run a DNS server, but you are the type of person who reads books like Ubuntu Unleashed, so

you probably like to tinker with technology. It is likely that most people reading this just

want to play with something new and have some fun. This chapter will get you started.

Understanding Domain Names
Simply put, a domain name is a string of characters that is used to represent an IP address.

Domain names are intended to be easier to remember than strings of numbers. Generally,

http://Namecheap.com
http://like.com
http://like.com
http://or.net
http://or.net

589

3
7

Understanding Domain Names

they are set up as a set of letters separated by dots. Each of these sets of letters is called a

label. The label on the far right denotes the widest group, or top-level domain (TLD). Each

label to the left is a subdomain of the one to the right of it. news.google.com is an example.

Here we see three labels:

 ▶ The top-level domain here is com. The original set of top-level domains is com, edu,

gov, mil, net, and org. Other top-level domains include country-code TLDs such as

uk or in, sponsored TLDs like aero for the Société Internationale de Télécommunica-

tions Aéronautiques, and geographic TLDs like asia. Others also exist. All TLDs are

controlled by a group called ICANN, the Internet Corporation for Assigned Names

and Numbers, with which domain names must be registered to work on the Internet

(see www.icann.org). The TLD generally defines, with varying firmness, the content

permitted on subdomains; some TLDs are far more controlled than others.

 ▶ The first subdomain, in this case google, is called the root zone. The root zone is

required to create a fully qualified domain name (FQDN), which is the combination

of the root zone and the TLD. When you register a domain name with a registrar,

so you can put a website on the Internet, you register a root zone for a TLD, as in

matthewhelmke.com or matthewhelmke.net. The complete FQDN is required for DNS

to work across the Internet.

 ▶ After the first subdomain, others may be created, such as news in our example. These

are optional. Some standard ones are www, mail, and ftp, which each denote specific

uses for defined subdomains. They are not required, but if you want to host more

than one thing using a FQDN, you must define and use subdomains. Subdomains

are defined in a DNS server in the same manner as TLDs.

When a full set consisting of TLD and all needed subdomains is put together, this is called

a hostname. On a local network, this could be a single word. On the Internet, it requires

at least a TLD and root zone and often includes at least one other subdomain, as in www.

icann.org. Another way to define a hostname is any domain name that is associated with

one or more IP addresses. The “or more” is often used in load balancing between one or

more machines. You can have DNS cycle from one IP address to another each time the

hostname is requested.

DNS Servers

A DNS server receives a request or query and responds by resolving that query and return-

ing the information mapped to it, if it exists. There is not one canonical DNS server for

the entire Internet. Instead, when a domain is registered, that registration is listed on a

series of ICANN-run servers scattered around the world. Contained in that registration is

information about where the authoritative DNS information is stored for that domain.

This is usually, but not necessarily, a DNS server or set of DNS servers operated by the

domain name registrar.

DNS requests work in a hierarchical fashion. Here is an example:

 1. A full request comes in to your Internet service provider’s DNS server. If the DNS

server knows the information, it responds.

http://news.google.com
http://www.icann.org
http://matthewhelmke.com
http://matthewhelmke.net
http://www.icann.org
http://www.icann.org

590 CHAPTER 37 Name Serving with the Domain Name System (DNS)

 2. If the DNS server recognized the root name but not a subdomain, it submits a

request itself to a known server with information about that root name and, if suc-

cessful, it returns the information it receives.

 3. If the DNS server cannot find any cached information about the hostname, it con-

tacts an ICANN server using the TLD. The ICANN server can then respond with the

information it has, which at a minimum is the registered IP address that correlates

to the hostname, if it exists.

This hierarchy causes some DNS requests to take longer than others. Sometimes the search

involves multiple DNS servers across a wider and wider set of data. It also means that one

server going down is not catastrophic; instead, the information can be searched for and

found elsewhere.

DNS Records

All DNS records are placed in a zone file (discussed further later in this chapter, in the

section “Setting Up a DNS Server with BIND”). There are several ways to define the IP

address/hostname. Some of these DNS records are optional. Many can have multiple

entries. The most critical and commonly used ones are listed here, but many more are

available, and many more options are also available than are listed here. See https://

en.wikipedia.org/wiki/List_of_DNS_record_types for more information.

A

The A record maps a hostname to a 32-bit IPv4 address, as in this example:

example.com IN A 192.0.2.0

The hostname comes first. IN indicates Internet. A indicates that this is an A record. The

IPv4 address comes last.

AAAA

The AAAA record maps a hostname to a 128-bit IPv6 address, as in this example:

example.com AAAA 2001:db8::/32

The hostname comes first, followed by four As because 128-bit IPv6 addresses are four

times larger than 32-bit IPv4 addresses. (See Chapter 18 for more about IPv4 and IPv6

addresses.) The IPv6 address comes last.

CNAME

The CNAME record maps one or more aliases to the canonical name of a machine. The

aliased domain receives all the subdomains and DNS records of the original, canonical

name it is matched with. For example, if you have a machine named weirdname.example.

com that is set up to be an email server, but you want to use a different URL, you can set

up an alias so it also uses mail.example.com, as in this example:

mail.example.com CNAME weirdname.example.com

https://en.wikipedia.org/wiki/List_of_DNS_record_types
https://en.wikipedia.org/wiki/List_of_DNS_record_types
http://example.com
http://example.com
http://weirdname.example.com
http://weirdname.example.com
http://mail.example.com
http://mail.example.com
http://weirdname.example.com

591

3
7

Understanding Domain Names

The alias comes first. CNAME indicates that the alias is being mapped to the canonical name

that comes next. The server that has an A record is listed last. CNAME records never point

to IP addresses, only to other domain names that are already defined using A or AAAA

records.

One neat trick is that you can create a CNAME record for every subdomain on a machine

that is running multiple services, such as ftp.example.com, www.example.com, and mail.

example.com, and have every one of them point to the same A or AAAA record for the

server with the name example.com. That A or AAAA record points to the IP address, so if

you ever need to change the IP address, such as when you move your server or establish a

new server, you only have to change the IP record in one place.

MX

An MX record maps a domain name to a list of mail servers for that domain. (MX comes

from “mail exchange.”) If you do not use a domain for email, this record is not needed.

Here is an example of an MX record:

example.com. 14400 IN MX 0 mail.example.com.

First, notice the dot after each of the two domain names. These are vital, and omitting

them causes email to be misrouted.

The example says that any email coming in to an address @example.com (leftmost field)

should be routed to the server at example.com (rightmost field). The DNS A or AAAA

record for mail.example.com or a CNAME record sets the IP address of that mail server.

The 14400 defines how often, in seconds, to update the DNS entry in any other server

that has cached this record; 14400 is 4 hours and is standard. MX defines this as a mail

exchange record.

The 0 indicates preference because you can list more than one MX server. Smaller num-

bers are preferred over larger numbers. Setting multiple servers to the same value means

that a random server with that value is to be used. If there is only one, use 0. A multiple-

server MX record looks like this:

example.com. 14400 IN MX 10 mail.example.com.

example.com. 14400 IN MX 20 mail2.example.com.

NS

An NS records maps a domain name to a list of DNS servers that are authoritative for that

domain. It is most used at domain name registrars and tells any query that comes in to

the domain name registrar where to look for the complete DNS record. For example, a

request from an ICANN server would look first at the domain name registrar, which would

then look wherever it says in the NS record, if the complete DNS is not hosted here. Here

is an example:

example.com. IN NS ns1.domainregistrationcompany.com.

The domain comes first, again with a dot at the end. This is followed by IN for Internet

and NS for name server. At the end, the name server is listed, again with a dot at the end.

592 CHAPTER 37 Name Serving with the Domain Name System (DNS)

SOA

A start of authority, or SOA, record specifies the DNS server that provides authoritative

information about a domain, the email address of the domain administrator, the domain

serial number, and configuration for timers related to refreshing the zone. This is a vital

part of the zone file. Here is an example:

; name TTL class rr Nameserver email-address

example.com. 14400 IN SOA ns.mydomainnameserver.com. root.ns.mydomainnameserver.com. (

2018080600 ; serial number

86000 ; refresh rate in seconds

7200 ; update retry in seconds

3600000 ; expiration in seconds

600 ; minimum in seconds)

In this file, a semicolon denotes the beginning of a comment, so everything after it is

ignored by the system and is intended only for humans reading the file. The first line

reminds you how to format the next line. Everything else in the file is contained in the

parentheses, the first of which must be on the first line.

This example uses example.com as the domain. Remember the dot at the end.

14400 is the TTL, or time in seconds that you are allowing the record to be cached by

other servers before they have to submit a query again. If set to 0, it is not permitted to be

cached at all.

IN is the class or type of the record—in this case, Internet. No other options are in use any

more.

SOA denotes this is a start of authority record.

This example uses ns.mydomainnameserver.com as the sample domain of the DNS server.

Replace this with your DNS server’s domain and remember the dot at the end.

The email address of the domain name administrator is a little confusing because

you expect an @ symbol but none exists. In the preceding example, root.

ns.mydomainnameserver.com means root@ns.mydomainnameserver.com. Replace this with

the email address for your admin, using a dot instead of the @ symbol. Remember the dot

at the end.

The serial number is a revision numbering system. It is changed every time the file is

changed. Convention is to use YYYYMMDDnn, where YYYY is year, MM is month, DD is day, and

nn is an extra number to allow you to increment when multiple edits and saves occur in

one day. For example, 2018080600 is the first edit on August 6, 2018.

The refresh rate sets the time, in seconds, when the slave DNS server will refresh from the

master DNS server.

The retry rate sets how long to wait after a failed refresh before making another attempt.

The expiration sets how long to keep a zone file cached.

http://example.com
http://ns.mydomainnameserver.com
http://root.ns.mydomainnameserver.com
http://example.com
http://ns.mydomainnameserver.com
http://root.ns.mydomainnameserver.com
http://root.ns.mydomainnameserver.com
mailto:root@ns.mydomainnameserver.com

593

3
7

Setting Up a DNS Server with BIND

Minimum is the default time that slave servers should cache the zone file. If your DNS

record changes frequently, you want to set this to a low number, like 12 hours or so. If

infrequently, then every one to five days is a good balance between keeping updated and

keeping requests served quickly.

TXT

You can put any text you like in a TXT record. This record is most commonly used to

implement the Sender Policy Framework (SPF), which is an email validation system

designed to help detect and prevent email spam by detecting email spoofing. With spoof-

ing, email is sent out to look like it originated in one location when it actually originated

somewhere else. SPF records must indicate the version identifier for SPF and a default

mechanism. Here is an example of SPF info in a TXT record:

example.com. TXT "v=spf1 -all"

This indicates to use SFP version 1 and that no servers at this domain send email. If your

server does not send email, use this to prevent email/web hosting companies from block-

ing your domain if someone tries to send email pretending to come from your domain.

If your server sends email, you use something like this:

example.com. TXT "v=spf1 mx -all"

The difference here is that mx has been added to indicate that any servers tied to this

domain may send email.

Many more variations of SPF records are available. Itemize what you have and then read

the specification at www.openspf.org/SPF_Record_Syntax to learn what you need to write.

Setting Up a DNS Server with BIND
The Berkeley Internet Name Domain (BIND) software has been foundational to the Inter-

net since the 1980s. The original BIND was created at the University of California, Berke-

ley, using grant funding. It was released as free and open source with the BSD (Berkeley

Software Distribution) version of UNIX and was quickly adopted as the standard software

for DNS. The Internet Systems Consortium now maintains BIND and provides updates

and documentation at www.isc.org.

When you create NS records for your domains with your domain name registrar, pointing

at ns1.domainregistrationcompany.com or whatever domain the registrar gives you, you

are most likely pointing to a server running BIND, although other options exist. This sec-

tion shows how to install and set up a very basic DNS server using BIND.

Start by installing bind9 from the Ubuntu software repositories.

Next, use your favorite text editor to open /etc/bind/named.conf.local, which is a

configuration file set up with default settings. This is where you must declare the zones

you are setting up and associating with the domain. Zones are domain names that are

http://www.openspf.org/SPF_Record_Syntax
http://www.isc.org
http://ns1.domainregistrationcompany.com

594 CHAPTER 37 Name Serving with the Domain Name System (DNS)

referenced in the DNS server. Leave all the default text in the file and add this to the end

of the file, after replacing example.com with your domain name:

This is the zone definition.

zone "example.com" {

 type master;

 file "/etc/bind/zones/example.com.db";

 };

Save the file and exit.

Next, open the configuration options file at /etc/bind/named.conf.options and modify

the section titled forwarders by replacing 8.8.8.8 shown in this example with the IP

address of your provider’s DNS server:

forwarders {

 8.8.8.8;

};

Save the file and exit.

Now you must create a zone definition file. First, create a directory to hold it:

matthew@seymour:~$ sudo mkdir /etc/bind/zones

Then create a new file but replace example.com in this example with your domain:

matthew@seymour:~$ sudo touch /etc/bind/zones/example.com.db

This zone definition file will contain all the addresses and machine names that you are

hosting. This is where you enter all the DNS records discussed in the previous section of

the book. Each record gets its own line. For human readability, it is nice to put an empty

line after each one and start each record with a comment, using // to begin comment

lines. In this example, replace example.com with your domain, replace ns with the domain

for your DNS server, and enter whatever other records you want to enter, modifying as the

comments note here:

example.com. 14400 IN SOA ns.example.com. admin.ns.example.com. (

2013080600 ; serial number

86000 ; refresh rate in seconds

7200 ; update retry in seconds

3600000 ; expiration in seconds

600 ; minimum in seconds)

// Replace the following lines as necessary:

// example.com = your domain name

// ns1 = your DNS server name

// mta = your mail server name

example.com. IN NS ns1.example.com.

example.com. IN MX 10 mta.example.com.

http://example.com
http://"example.com"
http://"/etc/bind/zones/example.com.db"
http://example.com
http://touch/etc/bind/zones/example.com.db
http://touch/etc/bind/zones/example.com.db
http://example.com
http://example.com
http://ns.example.com
http://admin.ns.example.com
http://example.com
http://example.com
http://ns1.example.com.example.com
http://ns1.example.com.example.com
http://mta.example.com

595

3
7

References

// Replace the IP address with your IP addresses.

www IN A 192.168.0.2

mta IN A 192.168.0.3

ns1 IN A 192.168.0.1

Now restart BIND:

matthew@seymour:~$ sudo systemctl restart bind9.service

You can also use start, stop, and so on, as you would with other services using systemd.

You should now be all set. To test your DNS server, edit /etc/resolv.conf (after making

a backup of the original!) and replace the contents with the following, replacing example.

com with your domain name and 192.168.1.1 with the address of your new DNS server:

search example.com

nameserver 192.168.1.1

Then test that your DNS server is functioning by using ping to see what it returns for

example.com:

matthew@seymour:~$ ping example.com

In addition to the ping utility just mentioned, dig is another excellent tool for review-

ing DNS records. You may also find nslookup and whois useful. Also, named-checkzone is

included with BIND and may be useful to you.

References
 ▶ www.bind9.net—A website with tons of useful information about both DNS and

BIND

 ▶ DNS and BIND by Cricket Liu and Paul Albitz—The canonical guide to

understanding both of these technologies

http://wwwINA192.168.0.2
http://www.bind9.net

This page intentionally left blank

IN THIS CHAPTER

 ▶ Programming in C with Linux

 ▶ Using the C Programming

Project Management Tools

Provided with Ubuntu

 ▶ Using the GNU C Compiler

 ▶ Graphical Development Tools

 ▶ Programming in Java with Linux

 ▶ Graphical Development Tools

 ▶ Beginning Mobile Development

for Android

 ▶ Version Control Systems

 ▶ Continuous Integration and

Continuous Delivery and

DevOps Tools

 ▶ Canonical-created Tools

 ▶ References

CHAPTER 38

Using Programming
Tools

If you’re looking to learn C, C++, or Java programming,

this part of the book isn’t the right place to start. Unlike

with Perl, Python, PHP, or even C#, producing something

productive with languages like C, C++, and Java takes more

than a little dabbling. This chapter is primarily focused on

the tools Ubuntu offers you as a programmer.

Whether you’re looking to compile your own code or some-

one else’s, the GNU Compiler Collection (gcc) is there to help.

It understands C, C++, Fortran, Pascal, and dozens of other

popular languages, which means you can try your hand at

whatever interests you. Ubuntu also ships with hundreds

of libraries you can link to, from the GUI toolkits behind

GNOME and KDE to XML parsing and game coding. Some

libraries use C, others C++, and still others offer support for

both, meaning you can choose what you’re most comfort-

able with.

WHY USE C OR C++?

Every language has benefits and shortcomings. Some

languages make life easier for the programmer but at the

expense of runtime. Languages such as Perl and Python

and even Java make it hard for the user to guarantee that

memory is fetched sequentially or that it fits in cache,

due to things such as checks on the bounds on each

access. They are useful languages, but they run more

slowly than languages that are harder for the programmer

but faster at runtime, such as C or Fortran.

For some programs, such as short shell scripts or quick

one-liners in Perl to search text in a file, the difference

in runtime speed is negligible. On a desktop computer,

it might not matter that your music player is written in

Python, and if it seems slow, buying a newer, faster desk-

top system might be an acceptable solution.

598 CHAPTER 38 Using Programming Tools

There are some applications, however, where the time needed to run your program

can make a big difference. For example, using a slow-to-run language to perform calcu-

lations on scientific data, especially if you are doing it on high-performance computing

(HPC) resources like a supercomputing cluster, is foolish; to take advantage of the

platform, it is both time and cost effective to use the fastest language available to

you, like C.

This idea was reinforced in a 2011 conversation between Matthew Helmke and Dan

Stanzione, then deputy director of the Texas Advanced Computing Center at the University

of Texas at Austin. Stanzione said that HPC resources are expensive, so it is often

wiser to spend grant money to hire a good C programmer for a year than it is to run a

bioinformatics program written in Perl or Python on an HPC system. As he put it, “If your

computer costs $2,000, the programmer’s time is the dominant cost, and that is what

drives software development. If your computer costs $100 million or more, then having a

programmer spend an extra month, or year, or decade working on software optimization is

well worth it. Toughen up and write in C.”

Programming in C with Linux
C is the programming language most frequently associated with UNIX-like operating sys-

tems such as Linux and BSD. Since the 1970s, the bulk of the UNIX operating system and

its applications have been written in C. Because the C language doesn’t directly rely on

any specific hardware architecture, UNIX was one of the first portable operating systems.

In other words, the majority of the code that makes up UNIX doesn’t know and doesn’t

care which computer it is actually running on. Machine-specific features are isolated in a

few modules within the UNIX kernel, which makes it easy for you to modify them when

you are porting to different hardware architectures.

Because C is so important to UNIX and Linux, we use it in the examples in this section.

Much of what is discussed here also applies to other languages, perhaps with slight varia-

tions for language-specific features.

C is a compiled language, which means that your C source code is first analyzed by

the preprocessor and then translated into assembly language before it’s translated into

machine instructions that are appropriate to the target CPU. An assembler then creates

a binary, or object, file from the machine instructions. Finally, the object file is linked

to any required external software support by the linker. A C program is stored in a text

file that ends with a .c extension and always contains at least one routine, or function,

such as main(), unless the file is an include file (with a .h extension, also known as a

header file) containing shared variable definitions or other data or declarations. Functions

are the commands that perform each step of the task that the C program was written to

accomplish.

599

3
8

Using the C Programming Project Management Tools Provided with Ubuntu

NOTE

The Linux kernel is mostly written in C, which is why Linux works with so many different

CPUs. To learn more about building the Linux kernel from source, see Chapter 22, “Kernel

and Module Management.”

C++ is an object-oriented extension to C. Because C++ is a superset of C, C++ compilers

compile C programs correctly, and writing non-object-oriented code in C++ is possible.

The reverse is not true: C compilers cannot compile C++ code.

C++ extends the capabilities of C by providing the necessary features for object-oriented

design and code. C++ also provides some features, such as the capability to associate func-

tions with data structures that do not require the use of class-based object-oriented tech-

niques. For these reasons, the C++ language enables existing UNIX programs to migrate

toward the adoption of object orientation over time.

Support for C++ programming is provided by gcc, which you run with the name g++

when you are compiling C++ code.

Using the C Programming Project Management
Tools Provided with Ubuntu
Ubuntu is replete with tools that make your life as a C/C++ programmer easier. There are

tools to create programs (editors), compile programs (gcc), create libraries (ar), control the

source (Git, Subversion, Bazaar), automate builds (make), debug programs (gdb and ddd),

and determine where inefficiencies lie (gprof).

The following sections introduce some of the programming and project management tools

included with Ubuntu. If you have some previous UNIX experience, you will be familiar

with most of these programs because they are traditional complements to a programmer’s

suite of software.

Building Programs with make

You use the make command to automatically build and install a C program, and for that

use it is an easy tool. If you want to create your own automated builds, however, you need

to learn the special syntax that make uses; the following sections walk you through a basic

make setup.

Using Makefiles

The make command automatically builds and updates applications by using a makefile.

A makefile is a text file that contains instructions about which options to pass on to the

compiler preprocessor, the compiler, the assembler, and the linker. The makefile also

600 CHAPTER 38 Using Programming Tools

specifies, among other things, which source code files have to be compiled (and the com-

piler command line) for a particular code module and which code modules are needed to

build the program—a mechanism called dependency checking.

The beauty of the make command is its flexibility. You can use make with a simple make-

file, or you can write complex makefiles that contain numerous macros, rules, or com-

mands that work in a single directory or traverse your file system recursively to build

programs, update your system, and even function as document management systems.

The make command works with nearly any program, including text processing systems

such as TeX.

You could use make to compile, build, and install a software package, using a simple com-

mand like this:

matthew@seymour:~$ sudo make install

You can use the default makefile (usually called Makefile, with a capital M), or you can

use make’s -f option to specify any makefile, such as MyMakeFile, like this:

matthew@seymour:~$ sudo make -f MyMakeFile

Other options might be available, depending on the contents of your makefile. You might

have a source file named hi.c and just run make hi, where make figures out what to do

automatically to build the final executable. See make’s built-in rules with make -p.

Using Macros and Makefile Targets

Using make with macros can make a program portable. Macros allow users of other oper-

ating systems to easily configure a program build by specifying local values, such as the

names and locations, or pathnames, of any required software tools. In the following exam-

ple, macros define the name of the compiler (CC), the installer program (INS), where the

program should be installed (INSDIR), where the linker should look for required libraries

(LIBDIR), the names of required libraries (LIBS), a source code file (SRC), the intermediate

object code file (OBJS), and the name of the final program (PROG):

a sample makefile for a skeleton program

CC= gcc

INS= install

INSDIR = /usr/local/bin

LIBDIR= -L/usr/X11R6/lib

LIBS= -lXm -lSM -lICE -lXt -lX11

SRC= skel.c

OBJS= skel.o

PROG= skel

skel: ${OBJS}

 ${CC} -o ${PROG} ${SRC} ${LIBDIR} ${LIBS}

install: ${PROG}

 ${INS} -g root -o root ${PROG} ${INSDIR}

601

3
8

Using the C Programming Project Management Tools Provided with Ubuntu

NOTE

The indented lines in the previous example are indented with tabs, not spaces. This is

important to remember! It is difficult for a person to see the difference, but make can tell.

If make reports confusing errors when you first start building programs under Linux, check

your project’s makefile for the use of tabs and other proper formatting.

Using the makefile from the preceding example, you can build a program like this:

matthew@seymour:~$ sudo make

To build a specified component of a makefile, you can use a target definition on the com-

mand line. To build just the program, you use make with the skel target, like this:

matthew@seymour:~$ sudo make skel

If you make any changes to any element of a target object, such as a source code file, make

rebuilds the target automatically. This feature is part of the convenience of using make

to manage a development project. To build and install a program in one step, you can

specify the target of install like this:

matthew@seymour:~$ sudo make install

Larger software projects might have a number of traditional targets in the makefile, such

as the following:

 ▶ test—To run specific tests on the final software

 ▶ man—To process an include or a troff document with the man macros

 ▶ clean—To delete any remaining object files

 ▶ archive—To clean up, archive, and compress the entire source code tree

 ▶ bugreport—To automatically collect and then mail a copy of the build or error logs

Large applications can require hundreds of source code files. Compiling and linking these

applications can be a complex and error-prone task. The make utility helps you orga-

nize the process of building the executable form of a complex application from many

source files.

Using the autoconf Utility to Configure Code

The make command is only one of several programming automation utilities included

with Ubuntu. There are others, such as pmake (which causes a parallel make); imake

(which is a dependency-driven makefile generator that is used for building X11 clients);

automake; and one of the newer tools, autoconf, which builds shell scripts that can be

used to configure program source code packages.

Building many software packages for Linux that are distributed in source form requires

the use of GNU’s autoconf utility. This program builds an executable shell script named

602 CHAPTER 38 Using Programming Tools

configure that, when executed, automatically examines and tailors a client’s build from

source according to software resources, or dependencies (such as programming tools, librar-

ies, and associated utilities) that are installed on the target host (your Linux system).

Many Linux commands and graphical clients for X downloaded in source code form

include configure scripts. To configure the source package, build the software, and then

install the new program, the root user might use the script like this (after uncompressing

the source and navigating into the resulting build directory):

matthew@seymour:~$./configure ; make ; sudo make install

The autoconf program uses a file named configure.in that contains a basic ruleset, or set

of macros. The configure.in file is created with the autoscan command. Building a prop-

erly executing configure script also requires a template for the makefile, named Makefile.

in. Although creating the dependency-checking configure script can be done manually,

you can easily overcome any complex dependencies by using a graphical project develop-

ment tool such as KDE’s KDevelop or GNOME’s Glade. (See the “Graphical Development

Tools” section, later in this chapter, for more information.)

Debugging Tools

Debugging is both a science and an art. Sometimes, the simplest tool—the code listing—is

the best debugging tool. At other times, however, you need to use other debugging tools,

such as splint, gprof, and gdb.

Using splint to Check Source Code

The splint command is similar to the traditional UNIX lint command: It statically exam-

ines source code for possible problems, and it also has many additional features. Even if

your C code meets the standards for C and compiles cleanly, it might still contain errors.

splint performs many types of checks and can provide extensive error information. For

example, this simple program might compile cleanly and may even run:

matthew@seymour:~$ gcc -o tux tux.c

matthew@seymour:~$./tux

But the splint command might point out some serious problems with the source:

matthew@seymour:~$ splint tux.c

Splint 3.1.2 -- 29 Apr 2009

tux.c: (in function main)

tux.c:2:19: Return value (type int) ignored: putchar(t[++j] -...

 Result returned by function call is not used. If this is intended, can cast

 result to (void) to eliminate message. (Use -retvalint to inhibit warning)

Finished checking -- 1 code warning

You can use the splint command’s -strict option, like this, to get a more verbose report:

matthew@seymour:~$ splint -strict tux.c

http://configure.in
http://configure.in
http://Makefile.in
http://Makefile.in

603

3
8

Using the GNU C Compiler

gcc also supports diagnostics through the use of extensive warnings (through the -Wall

and -pedantic options):

matthew@seymour:~$ gcc -Wall tux.c

tux.c:1: warning: return type defaults to 'int'

tux.c: In function 'main':

tux.c:2: warning: implicit declaration of function 'putchar'

Using gprof to Track Function Time

You use the gprof (profile) command to study how a program is spending its time. If

a program is compiled and linked with -p as a flag, a mon.out file is created when it

executes, with data on how often each function is called and how much time is spent in

each function. gprof parses and displays this data. An analysis of the output generated

by gprof helps you determine where performance bottlenecks occur. Using an optimizing

compiler can speed up a program, but taking the time to use gprof’s analysis and revising

bottleneck functions significantly improves program performance.

Doing Symbolic Debugging with gdb

The gdb tool is a symbolic debugger. When you compile a program with the -g flag, the

symbol tables are retained, and you can use a symbolic debugger to track program bugs.

The basic technique is to invoke gdb after a core dump (which involves taking a snapshot of

the memory used by a program that has crashed) and get a stack trace. The stack trace indi-

cates the source line where the core dump occurred and the functions that were called to

reach that line. Often, this is enough to identify a problem. It isn’t the limit of gdb, though.

gdb also provides an environment for debugging programs interactively. Invoking gdb

with a program enables you to set breakpoints, examine the values of variables, and moni-

tor variables. If you suspect a problem near a line of code, you can set a breakpoint at

that line and run gdb. When the line is reached, execution is interrupted. You can check

variable values, examine the stack trace, and observe the program’s environment. You can

single-step through the program to check values. You can resume execution at any point.

By using breakpoints, you can discover many bugs in code.

A graphical X Window interface to gdb is called the Data Display Debugger, or ddd.

Using the GNU C Compiler
If you elected to install the development tools package when you installed Ubuntu

(or perhaps later on, using synaptic), you should have the GNU C compiler (gcc).

Many different options are available for the GNU C compiler, and many of them are sim-

ilar to those of the C and C++ compilers that are available on other UNIX systems. Look

at the man page or information file for gcc for a full list of options and descriptions.

NOTE

The GNU C compiler is a part of the GNU Compiler Collection, which also includes compil-

ers for several other languages.

604 CHAPTER 38 Using Programming Tools

When you build a C program using gcc, the compilation process takes place in several steps:

 1. First, the C preprocessor parses the file. To do so, it sequentially reads the lines,

includes header files, and performs macro replacement.

 2. The compiler parses the modified code to determine whether the correct syntax

is used. In the process, it builds a symbol table and creates an intermediate object

format. Most symbols have specific memory addresses assigned, although symbols

defined in other modules, such as external variables, do not.

 3. In the last compilation stage, linking, the GNU C compiler ties together different

files and libraries and then links the files by resolving the symbols that had not pre-

viously been resolved.

NOTE

Most C programs compile with a C++ compiler if you follow strict ANSI rules. For example,

you can compile the standard hello.c program (everyone’s first program) with the GNU

C++ compiler. Typically, you name the file something like hello.cc, hello.C, hello.c++,

or hello.cxx. The GNU C++ compiler accepts any of these names.

Programming in Java with Linux
The Java programming language was originally developed by Sun Microsystems in the

1990s. The goals were to implement a virtual machine and a language that had a familiar

C-like syntax, but that was simpler and with a promise to “write once, run everywhere” by

creating a free Java runtime for all popular platforms. They succeeded.

In May 2007, Sun Microsystems released almost all of its Java technologies with an open

source GNU GPL license. Development continued at Sun and with a community of out-

side contributors, mostly sponsored by companies with an interest in helping their cus-

tomers also use Java.

In 2010, Oracle bought Sun, including the few remaining proprietary bits of Java. As a

result, multiple implementations of the Java virtual machine (JVM) have appeared. There

is an implementation from Oracle, unsurprisingly called Oracle Java, which has some pro-

prietary enhancements. The problem is that any code written using these enhancements

will only run on the Oracle Java JVM that it was written for, violating the idea of “write

once, run everywhere.” There is also a completely open source implementation called

OpenJDK (Open Java Development Kit) that only includes code written or added using

the same GNU GPL license. OpenJDK is sponsored by a community that includes Red Hat,

IBM, Apple, and others. It is now considered the reference Java and is the one you should

install and use unless an employer tells you otherwise because they use something else.

The Java language is class-based, object-oriented, and programs are compiled to bytecode

that can run on any Java runtime on any platform (Linux, Windows, macOS, and others).

Java uses an automatic garbage collector to manage memory, sparing programmers the

burden of writing manual memory management. The syntax is similar to C++ (and was

largely influenced by C++).

http://hello.cc

605

3
8

Graphical Development Tools

There are two Java packages in the Ubuntu repositories, both of which are OpenJDK

related. One is the Java Runtime Environment (JRE), which is all you need to run Java pro-

grams; to use it, install the default-jre package. The other is the Java Development Kit

(JDK), which is needed to write Java programs; to use it install the default-jdk package.

If you install the JDK, the JRE features are included. The JDK also includes development

and debugging tools and libraries.

There is also Kotlin, the new Java for Android development. See “Beginning Mobile Devel-

opment for Android” later in this chapter for how to develop for Android. To just install

the Kotlin compiler, install the Snap package with sudo snap install kotlin --classic.

Graphical Development Tools
This section branches out into information that more obviously applies to many lan-

guages. For example, Java is in widespread use, and you can develop in Java from Ubuntu

along with any of the popular programming languages listed in Chapter 39, “Using Popu-

lar Programming Languages.”

Ubuntu has a number of graphical prototyping and development environments available.

If you want to program in Java, for example, using your favorite integrated development

environment (IDE) or a language with a standard software development kit (SDK), you

can do that. If you want to build client software for KDE or GNOME, you might find the

KDevelop, and Glade programs extremely helpful. You can use each of these programs

to build graphical frameworks for interactive windowing clients, and you can use each of

them to automatically generate the necessary skeleton of code needed to support a custom

interface for your program.

IDEs and SDKs

IDEs and SDKs have become extremely popular. Although some programmers still pre-

fer to write and edit software using a standard text editor, such as nano or vi (covered in

Chapter 12, “Command-Line Master Class, Part 2”), many prefer using a tool that is more

powerful. One commonly used tool, emacs, started out as a text editor, but as more and

more features were added, it evolved into something more (see Chapter 12). By adding

tools and features to make the programmer’s life easier, emacs unintentionally became the

template for modern IDEs.

Some IDEs support multiple languages, like emacs does. Others focus on only one lan-

guage. Most include not only programming language–specific features like code highlight-

ing to help you read and browse code more quickly and efficiently, but also contain a

compiler and debugger and even build automation tools. If you read through the details

earlier in this chapter of using make with C, you can understand the value added.

So, what is the downside? Well, you can’t run a typical IDE on a server because you need

a graphical interface, so if you are working on code that will run on a server that only has

a command line or text interface available to you, you need to make sure you are comfort-

able with traditional methods. This doesn't mean you can’t use a local desktop machine

for development using an IDE and then push your code out to the server, but it means

you should cover your bases—just in case.

606 CHAPTER 38 Using Programming Tools

The most commonly used IDEs seem to also be used most frequently by Java developers.

We discuss several of them in this section. You should download these IDEs directly from

the providers to ensure that you install the most current and standard versions.

Eclipse was originally created by IBM but has been spun off to a foundation created just

for it. The nonprofit Eclipse Foundation coordinates efforts of volunteers and companies

that contribute time, money, and code to this open source project. Eclipse is very widely

used and popular. It supports multiple languages, and many plug-ins are available to

extend its capabilities.

NetBeans is an extremely popular IDE that works with multiple languages. It is now

owned by Oracle but was started by student programmers who were looking to create

more useful tools for their needs. Others asked to contribute code, and soon NetBeans

developed into a commercial program with plug-ins to extend its capabilities, many

contributed by a large supporting community. Sun Microsystems, which developed and

owned Java, bought NetBeans and released it under an open source license. When Oracle

acquired Sun, it also acquired NetBeans; due to its popularity, it is worth a look. You can

learn about and download NetBeans from https://netbeans.org.

Visual Studio Code is built on open source, which means it open source code along

with proprietary code. The website provides a .deb download for installation on Ubuntu.

It is pretty and comes highly recommended by developers who use it. You can learn more

and download it from https://code.visualstudio.com/.

Oracle, which owns Java, provides an IDE for Java called Oracle JDeveloper. It is most

commonly used in enterprise settings, where a team of developers work together using a

standard tool. It is the least popular of the options mentioned here. You can learn more

about it at www.oracle.com/technetwork/developer-tools/jdev/overview/index.html.

An SDK is a set of software development tools that are focused not on one language but

on something narrower, such as one software package or framework (for example, the

Android development SDK, described in the later section, “Beginning Mobile Development

for Android”). A company may provide an SDK when it wants to encourage outsiders to

write programs that run on the company's product, such as its platform (like a game sys-

tem from Nintendo or Sega) or operating system (like Android or iOS). Many open source

enthusiasts will not participate in writing code for these platforms, so SDKs are less popu-

lar in this environment than they are on Windows and other platforms. Also, depending

on the software license used to release the SDK, the potential uses of the code produced

using the SDK can be limited, and not everyone is comfortable with those limitations.

However, many SDKs are in use, and if you want to write code for a project that releases

an SDK, it is likely to contain useful code examples, tools, and documentation to make the

task much easier. Do your homework and make a choice that you are comfortable with.

Using the KDevelop Client

You can launch the KDevelop client from the applications menu or from the command

line of a terminal window, like this:

matthew@seymour:~$ kdevelop &

https://netbeans.org
https://code.visualstudio.com/
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

607

3
8

Beginning Mobile Development for Android

After you press Enter, the KDevelop Setup Wizard runs, and you are taken through several

short wizard dialogs that set up and ensure a stable build environment. You must then

run kdevelop again (either from the command line or by clicking its menu item under the

desktop panel’s Programming menu). You then see the main KDevelop window and can

start your project by selecting KDevelop’s Project menu and clicking the New menu item.

You can begin building your project by stepping through the wizard dialogs. When you

click the Create button, KDevelop automatically generates all the files that are normally

found in a KDE client source directory (including the configure script, which checks

dependencies and builds the client’s makefile). To test your client, you can either first

click the Build menu’s Make menu item (or press F8) or just click the Execute menu item

(or press F9), and the client is built automatically. You can use KDevelop to create KDE cli-

ents, plug-ins for the Konqueror browser, KDE kicker panel applets, KDE desktop themes,

Qt library-based clients, and even programs for GNOME.

The Glade Client for Developing in GNOME

If you prefer to use GNOME and its development tools, the Glade GTK+ GUI builder can

help you save time and effort when building a basic skeleton for a program. You launch

Glade from the desktop panel’s Programming menu.

When you launch Glade, a directory named Projects is created in your home directory,

and you see a main window. You can use Glade’s File menu to save the blank project and

then start building your client by clicking and adding user interface elements from the

Palette window. For example, you can first click the Palette window’s Gnome button and

then click to create your new client’s main window. A window with a menu and a toolbar

appears—the basic framework for a new GNOME client.

Beginning Mobile Development for Android
Many Linux users have embraced not only smart phones but specifically those based on

Android. Android, owned by Google and based on the Linux kernel, is one of the best-

selling platforms for smart phones and tablet computers. The Android platform includes

the operating system, middleware, and several key applications. Middleware and applica-

tion examples include an integrated web browser based on WebKit, optimized graphics

libraries, media support for most formats, and structured data storage with SQLite. It also

includes software for hardware-dependent functions such as GSM, Bluetooth, 3G, Wi-Fi,

camera, GPS, and more.

Most of the Android source code is freely available and licensed using the Apache License.

Google operates an online app store called Google Play, where users of Android phones or

tablet computers can download free and for-payment applications to extend the function-

ality of their devices. Other third-party sites exist for the same purpose, thereby creating

many paths for making software available to Android users.

This section helps you get started writing software for Android on your Ubuntu machine

by describing how to find and set up the development tools you need. It discusses the

basic setup details for developing Android software.

608 CHAPTER 38 Using Programming Tools

Before we get further into the details of developing software for Android, a more detailed

introduction to the Android architecture is appropriate. Our description starts with the

hardware and builds layer upon layer from that foundation.

Hardware

Although it has been proved possible to run Android on other platforms, the main target

platform is ARM. ARM processors are 32-bit or 64-bit reduced instruction set computer (RISC)

processors. Like other RISC processors, they are designed for speed, with the idea that a

simpler set of processor instructions creates greater efficiency and throughput. ARM pro-

cessors are also designed for low power usage, making them ideal for mobile and embed-

ded devices. Indeed, ARM is the dominant processor in these markets.

Linux Kernel

The first layer of software to run in the Android stack is a customized Linux kernel. Most

of the customizations take the form of feature enhancements or optimizations to help

Android and Linux work together more efficiently. Originally, Google made a point of

contributing code it developed, but some of the features were rejected by the mainline

Linux kernel developers for inclusion in the standard Linux kernel. This meant that to

keep its desired code customizations, Google had to create a fork of the Linux kernel,

which is permissible due to the license under which the kernel is released. Chapter 22,

“Kernel and Module Management,” provides an introduction to the Linux kernel.

Libraries

Software libraries run on top of the kernel. These libraries are used by the higher-level

components of Android and are made available to developers to use when writing Android

applications using the Android software development kit (SDK), which is discussed later

in this chapter. These libraries include a version of the standard C library (libc), librar-

ies for recording and playback of many popular media formats, graphics and web browser

engines, font rendering, and more.

Android Runtime

Some of the higher-level components of Android in the Application layer (described next)

interact directly with the libraries just described. Other parts of the Application layer

interact with the libraries via the Android Runtime. Android software is primarily writ-

ten in Java, using Google-developed and -specific Java libraries. That software runs on the

Android Runtime, composed of some additional core libraries running on top of a special

virtual machine called Dalvik. The core libraries provide most of the functionality of Java.

Dalvik performs just-in-time (JIT) compilation and is optimized for mobile devices.

Application Framework

The Application Framework is a set of useful systems and services that top-level applica-

tions can call. These systems and services provide standardized means of accessing system

information, using device hardware, creating notifications, and so on. They are the same

609

3
8

Version Control Systems

set used by the core applications included in Android, so end user–created applications

can have the same look, feel, and interaction style as those provided by Android.

Applications

Android comes with a set of core applications, including a web browser, programs for text

messaging, managing contacts, a calendar, an email client, and more. As noted earlier,

Android software is written in Java.

Installing Android Studio

Android provides a bundled integrated development environment (IDE) with the software

development kit, which is a set of tools to enable the creation of applications to run on

Android. Android Studio has versions available for Linux, macOS, and Windows.

Download the latest version of Android Studio from the Android Developers website at

https://developer.android.com/studio/index.html. For Ubuntu, you need the Linux ver-

sion, which is made available as a .zip file. Unpack the file in the location where you

want the development kit to reside (for example, /home/matthew). Doing so creates a new

directory called android-studio. Note where you put this directory; you will need the

information later.

Navigate to the android-studio/bin/ directory and run studio.sh:

matthew@seymour:~$ studio.sh

The first time you run Android Studio, a wizard walks you through the initial setup proce-

dure and then downloads and installs any basic components you need.

Creating Your First Android Application

After you have installed Android Studio and all the necessary SDK packages, you are ready

to begin. Click Start a new Android Studio Project and use the wizard to enter the basic

details of your new application.

Version Control Systems
Deciding whether to include information on version control systems in this chapter was

difficult. On one hand, someone who only wants to scratch an itch quickly may not be

interested in setting up a version control system. On the other hand, these systems are not

difficult to set up, especially when used with the assistance of a code hosting site like the

ones discussed in this chapter, and they are immensely valuable if code is to have a life

outside your system.

Although you can use make to manage a small software project (see Chapter 38, “Using

Programming Tools”), larger software projects require document management, source

code controls, security, and revision tracking as the source code goes through a series of

changes during its development. Version control systems provide utilities for this kind of

large software project management. Changes to files placed in version control are tracked.

https://developer.android.com/studio/index.html

610 CHAPTER 38 Using Programming Tools

Files can be checked out by one developer, changed in their local environment, and tested

before those changes are saved in the version control system. Changes that are later dis-

covered to be unwanted can be found and removed from the tracked files. Various version

control systems manage projects differently; some use a central repository, others a distrib-

uted format where any and every copy could become the master copy.

The next few sections introduce the most commonly used version control systems at the

moment: Git, Bazaar, Subversion, and Mercurial. You have certainly heard of others, and

new ones crop up every few years. Each has strengths and benefits. At the end of the

chapter, in the “References” section, you can find a list of resources for learning more

about these version control systems to further your knowledge after you peruse this

chapter’s short and basic introduction to each one.

NOTE

Subversion and Mercurial are still in heavy use, but most developers today have switched

to Git and Bazaar for new projects. Keep this in mind as you read the next few sections.

Managing Software Projects with Git

Git, initially created by Linux kernel creator Linus Torvalds, was first released in 2005 to

host all development files for the Linux kernel. It is now actively developed by a large

team of developers led by Junio Hamano and is widely used by many other open source

projects.

Git works without a central repository, and it comes from a different perspective than

other version control systems while accomplishing the same goals. Every directory that

is tracked by Git acts as an individual repository with full history and source changes for

whatever is contained in it. There is no need for central tracking. Source code control is

done from the command line, as shown in the following examples. You need to install

Git from the Ubuntu software repositories, where it is called git.

To create a new repository, access the top-level directory for the project and enter the

following:

matthew@seymour:~$ git init

To check out code from an existing central repository, you must first tell Git where that

repository is:

matthew@seymour:~$ git remote add origin git://path_to_repository/directory/proj.git

Then you can pull the code from that repository to your local one:

matthew@seymour:~$ git pull git://path_to_repository/directory/proj.git

To add new files to the repository, use the following:

matthew@seymour:~$ git add file_or_dir_name

611

3
8

Version Control Systems

To delete files from the repository, use this:

matthew@seymour:~$ git rm file_or_dir_name

To check in code after you have made changes, you will need to set your email and name

in your .gitconfig file using git config --global user.name and git config --global

user.email for this to work.

Then, use the -m flag to add a note, which is a good idea to help others understand what

the commit contains:

matthew@seymour:~$ git commit -m 'This fixes bug 204982.'

In Git, a commit does not change the remote files but only commits the change to your

local copy. If you want others to see your changes, you must push the changes to them:

matthew@seymour:~$ git push git://path_to_repository/directory/proj.git

Many open source projects that use Git host their code using GitHub. You can find it at

https://github.com.

Managing Software Projects with Bazaar

Bazaar was created by Canonical and first released in 2007 to host all development files

for Ubuntu and other projects. It is actively developed and used by Canonical and Ubuntu

developers and also by other open source projects. Launchpad, covered later in this chap-

ter, uses Bazaar.

Bazaar supports working with or without a central repository. Changes are tracked over

any and all files you check out, including multiple versions of files. Source code control

is done from the command line, as shown in the following examples. You need to install

Bazaar from the Ubuntu software repositories, where it is called bzr.

There are two ways to create a new repository. If you are starting with an empty directory,

use the following:

matthew@seymour:~$ bzr init your_project_name

If you are creating a repository for an existing project, go to the top-level directory for the

project and enter the following:

matthew@seymour:~$ bzr init

matthew@seymour:~$ bzr add .

To check out code from an existing central repository, use this:

matthew@seymour:~$ bzr checkout your_project_name

To check your changes before you check them in, you can use bzr diff or bzr cdiff.

They do the same thing, but bzr cdiff does so with colored output:

matthew@seymour:~$ bzr cdiff

https://github.com

612 CHAPTER 38 Using Programming Tools

To check in code after you have made changes, use the -m flag to add a note, which is a

good idea so that others know what the commit contains:

matthew@seymour:~$ bzr commit -m "This fixes bug 204982."

In Bazaar, a commit does not change the remote files but only commits the change to your

local copy. If you want others to see your changes, you must push the changes to them:

matthew@seymour:~$ bzr push sftp://path.to.main/repository

To update the source code in your local repository from the main repository to make sure

you have all the latest changes to the code from other developers, use the following:

matthew@seymour:~$ bzr pull

Many open source projects that use Bazaar host their code using Launchpad, which is

where Ubuntu development takes place. You can find more about it later in this chapter

and also at https://launchpad.net.

Managing Software Projects with Subversion

Subversion was first created in 2000 as a replacement for an older version control sys-

tem called the Concurrent Versions System (CVS). At that time, CVS was 10 years old, and

although it served its purpose well, it lacked some features that developers wanted. Sub-

version is now actively developed and widely used.

In Subversion, you check out a file from a repository where code is stored in a client/

server fashion. Then, changes are tracked over any and all files you check out, including

multiple versions of files. You can use Subversion to backtrack or branch off versions of

documents inside the scope of a project. It can also be used to prevent or resolve conflict-

ing entries or changes made to source code files by multiple developers. Source code con-

trol with Subversion is done from the command line, as shown in the following examples.

You first need to install Subversion from the Ubuntu software repositories, where it is

called subversion.

You can create a new repository as follows:

matthew@seymour:~$ svnadmin create /path/to/your_svn_repo_name

To add a new project to the repository, go to the top directory of the code that is going to

be placed into the repository. Then create three subdirectories: branches, tags, and trunk.

Move all of your files into trunk and enter the following:

matthew@seymour:~$ svn import project file:///your_svn_repo_name/your_project -m

"First Import"

To check out code from an existing central repository, use this:

matthew@seymour:~$ svn checkout file:///your_svn_repo_name/your_project/trunk

your_project

https://launchpad.net

613

3
8

Continuous Integration and Continuous Delivery and DevOps Tools

To check in code after you have made changes, use the -m flag to add a note, which is a

good idea so that others know what the commit contains:

matthew@seymour:~$ svn commit -m "This fixes bug 204982."

To update the source code in your local repository from the main repository to make sure

you have all the latest changes to the code from other developers, use this:

matthew@seymour:~$ svn update

To add new files to the repository, use the following:

matthew@seymour:~$ svn add file_or_dir_name

To delete files from the repository, use this:

matthew@seymour:~$ svn delete file_or_dir_name

Many open source projects that use Subversion host their code using SourceForge, which

also works with Git. You can find it at https://sourceforge.net.

Continuous Integration and Continuous Delivery
and DevOps Tools
Continuous integration and continuous delivery (CI/CD) is the combined practice of first

merging all the various developers’ work into a shared main branch several times a day

and then building, testing, and releasing that software with greater velocity. The practice

has become an integral part of DevOps. The implementation is called a CI/CD pipeline.

Let’s start with the high-level view.

Continuous integration (CI) involves a set of practices that your team agrees to use. When

a team member is working on a feature or a bug fix, she checks out the most current mas-

ter branch of the code from the code repository. The team member writes her new code

and after checking that it works locally immediately checks the changes in to that master

branch. Changes are agreed to be as small as possible (often called atomic changes). Small

changes are easy to roll back if problems occur, and it is easy to track down what is caus-

ing the problem if only a small amount of code needs to be reviewed.

The goal of CI is to first establish a consistent way for teams to work, and then to auto-

mate the process of building, packaging, and testing applications. As this automation is

created, consistency in the integration process is achieved, which makes it even easier for

team members to check out and in small changes frequently. This stage typically imple-

ments a form of continuous testing into the CI.

The largest benefit comes when you add continuous delivery (CD), which automates the

delivery of applications that pass the integration process. This could be delivery to a test-

ing or staging environment or even to a production environment (this last option changes

“continuous delivery” to “continuous deployment”).

https://sourceforge.net

614 CHAPTER 38 Using Programming Tools

CI/CD improves team collaboration, code quality, and pushes changes out to produc-

tion much more quickly. Whether the changes are bug fixes or new/improved features,

a greater velocity of change benefits and pleases customers.

CI/CD Tools

Many tool types are useful in a DevOps CI/CD context. Each has its place and some of the

tools available fit into multiple categories. It is up to your team (or leadership) to select

the toolchain that is right for your context.

The main type of tool is the automation server, which manages the CI/CD process. Popu-

lar options include Jenkins, Maven, Travis CI, and Spinnaker.

Another type of tool is for configuration management, which is important, especially in

a cloud-computing context. The use of containers will inform the toolchain options your

team selects. See Chapters 31, 32, and 33 for more on these technologies.

Chaos Engineering

Started by Netflix as a way to find out whether its servers could withstand production

problems in its cloud host’s infrastructure, Chaos Engineering aims to test large-scale

cloud deployments in ways no other testing can. The goal is to find systemic problems

and their causes before there are customer-impacting failures. This is done by intention-

ally and carefully simulating failures in things like networking, DNS, or system resource

use to see how those and other issues impact the system as a whole. When problems

are found, mitigation schemes and automated failover methods can be implemented to

enhance overall system reliability and resilience.

Most DevOps and Site Reliability Engineering teams are implementing Chaos Engineer-

ing into every part of their process, from early in the CI/CD pipeline through any testing

or staging environments and even into production. Why production? Because today’s

large-scale cloud applications are constantly changing and no testing or staging environ-

ment can accurately mimic what an application service or microservice will experience in

production.

For transparency, the book’s author works for a company, Gremlin (https://gremlin.com),

that provides a Software as a Service Chaos Engineering implementation. Many open

source options are also available for teams to implement themselves.

Canonical-created Tools
The tools in this section are created and used by Canonical for Ubuntu development.

They are not in widespread use elsewhere.

Launchpad

To get started with Launchpad, you need to sign up for an account on Launchpad.

Launchpad is an infrastructure created to simplify communication, collaboration, and pro-

cesses within software development.

https://gremlin.com

615

3
8

Canonical-created Tools

Launchpad is where much of Ubuntu development takes place, although some has moved

to Git. It integrates Bazaar, the version control system introduced earlier, to make keep-

ing track of changes to software code much simpler and to permit those changes to be

reverted when necessary while tracking who is performing the actions.

For developers using Launchpad, this means that the process has become a bit simpler.

They can concentrate on writing and editing their code and let Launchpad deal with keep-

ing track of the changes and creating their packages. This is useful for active developers

who write and maintain big projects that need source code version control and so on.

Launchpad also hosts bug reporting and tracking, mailing lists, software interface transla-

tion, and much more.

Launchpad users can create a personal package archive (PPA). This is a much simpler way

to make programs available. Anyone with a PPA can upload source code to be built in to

packages. Those packages will then be made available in an apt repository that can be

added to any Ubuntu user’s list of source repositories and downloaded or removed using

any of the standard package management tools in Ubuntu, such as apt, Ubuntu Software

Center, and Synaptic. Instructions are included on the web page for each Launchpad PPA,

describing how to add that repository, which makes this an easy way to share software

that may be added and removed by even nontechnical end users.

Ubuntu Make

Ubuntu Make is a command-line tool that sets up your system for development use

quickly and easily. It allows you to download the latest version of popular developer tools

and their dependencies, enable multi-arch, and more. Install ubuntu-make to get started.

Then run commands like this to install tools:

matthew@seymour:~$ umake android

After you enter this, you are prompted to accept the install path and Google license, and

then Ubuntu Make downloads and installs Android Studio and the latest SDK, configures

everything, and, if you are running on a 64-bit platform, it even adds a Unity launcher icon.

See https://wiki.ubuntu.com/ubuntu-make to learn more about the packages available and

get started.

Creating Snap Packages

Snap packaging allows a single packaged application to be used across multiple Linux

distributions. Although snap packages are not expected to replace traditional packag-

ing formats like .deb, which we cover in Chapter 40, “Helping with Ubuntu Develop-

ment,” it is reasonable to expect snaps to find wide use for applications provided by

third-party vendors—for example, Mozilla is already committed to using snap packages

for its Firefox web browser—and for applications intended for use on devices such as

phones, routers, switches, and the new category of IoT (Internet of Things) devices

(see https://en.wikipedia.org/wiki/Internet_of_things). For desktop applications, snap

packaging enables a developer to submit free or even for-payment apps for review and

inclusion in the Ubuntu Software application (see Chapter 9, “Managing Software”).

https://wiki.ubuntu.com/ubuntu-make
https://en.wikipedia.org/wiki/Internet_of_things

616 CHAPTER 38 Using Programming Tools

The tool used to create snap packages is Snapcraft, available from https://snapcraft.io.

Snapcraft is designed to bundle your already-created application with any and all depen-

dencies for easy installation and updating.

Another helpful community project related to snap packaging is Snappy Playpen, at

https://github.com/ubuntu/snappy-playpen, which exists to share knowledge and best

practices about snap packaging while helping test the packages that community members

and others create.

Bikeshed and Other Tools

Bikeshed was started by Dustin Kirkland in September 2010 as a project to package a series

of tools he wrote to scratch some personal itches that he had as an Ubuntu developer

working on Canonical’s Ubuntu server team or that he thought would be useful to others.

All good developers, system administrators, and DevOps gurus eventually write scripts to

perform specific tasks they find useful. The Bikeshed project began when Dustin gathered

his scripts together and made them accessible to the world. The wider Ubuntu community

is invited to give suggestions or submit patches to make them better.

Bikeshed sometimes works as an incubator, housing specific tools until they are ready to

stand alone as a separate package or until they are accepted into an existing package. All

the tools run from the command line, and most have useful man pages. (Others are still

being written.) The project describes itself as “a collection of random useful tools and utili-

ties that either do not quite fit anywhere else, or have not yet been accepted by a more

appropriate project. Think of this package as an ‘orphanage,’ where tools live until they

are adopted by loving, accepting parents.” The slogan for Bikeshed on the Launchpad proj-

ect page is “While others debate where some tool should go, we put it in the Bikeshed.”

NOTE

To give credit where credit is due, much of the content in this section comes, with permis-

sion, from Dustin’s blog, at https://blog.dustinkirkland.com, from direct communication

with him, and from the tool man pages. Dustin also wrote Byobu, a tool that is covered

at the end of Chapter 12 and that contains some of the tools that have graduated from

Bikeshed.

You can get the following tools by installing the Bikeshed package from the Ubuntu

repositories:

 ▶ apply-patch—Wraps the patch utility and makes it a little easier to use by automati-

cally detecting the patch strip level.

 ▶ bch—Determines what files have been modified in the current Bazaar (bzr) tree,

opens debian/changelog for editing, uses dch, and appends a changelog entry for

the current list of modified files.

 ▶ bzrp—Operates the same as bzr except that output is piped to a pager to make

reading easier.

https://snapcraft.io
https://github.com/ubuntu/snappy-playpen
https://blog.dustinkirkland.com

617

3
8

Canonical-created Tools

 ▶ cloud-sandbox—Launches a cloud instance and connects directly to it by using ssh,

with the cloud system running isolated, as what is generally called a sandbox.

 ▶ dman—Remotely retrieves man pages from https://manpages.ubuntu.com but reads

them on the local system. This is useful for reading the man page for a utility you do

not have installed on the local system.

 ▶ pbget—Retrieves content uploaded to a pastebin by pbput or pbputs.

 ▶ pbput—Uploads text files, binary files, or entire directory structures to a pastebin. It

is similar to pastebinit, described later, but adds support for binaries and only uses

https://pastebin.com.

 ▶ pbputs—Operates exactly like pbput, except the user is prompted for a passphrase for

encrypting the content with gpg before uploading. pbget automatically prompts the

user for the preshared passphrase when the file is requested.

 ▶ release—Creates a release of a project for Ubuntu.

 ▶ release-build—Takes project information for a bzr project in a Launchpad PPA that

uses specific parameters and builds the project as an upstream project that can then

be released to Ubuntu.

 ▶ release—Creates a release of a project for Ubuntu.

 ▶ socks-prox—Establishes an encrypted connection for tunneling traffic through a

socks proxy.

 ▶ system-search—Performs a unified search through a set of system commands, pack-

ages, documentation, and files.

 ▶ uquick—Performs a quick server installation.

 ▶ what-provides—Determines which package provides a specific binary in your path.

The contents of Bikeshed are expected to change over time. Some of these tools may

graduate to standalone tools, merge into other existing packages, or get added to more

official upstream packages. You can always check the Launchpad page to find a current list

of Bikeshed’s contents.

The rest of the tools in this section are not actually part of Bikeshed but have either gradu-

ated from Bikeshed and been spun off as freestanding tools or were developed individually

by Dustin or others in the Ubuntu community. All the tools run from the command line

and have useful man pages.

Other useful tools that you can find in the Ubuntu repositories include the following:

 ▶ pastebinit—Uploads a file or the result of a command to the pastebin you want

and gives you the URL in return. It was written by Ubuntu developer Stéphane

Graber, and you can find it at https://launchpad.net/pastebinit or from the Ubuntu

repositories. By default, it uses https://pastebin.com, but it can be configured to use

others, such as https://paste.ubuntu.com.

https://manpages.ubuntu.com
https://pastebin.com
https://launchpad.net/pastebinit
https://pastebin.com
https://paste.ubuntu.com

618 CHAPTER 38 Using Programming Tools

 ▶ run-one—Runs no more than one unique instance of a command with a unique set

of arguments. This is often useful with cron jobs, when you want no more than one

copy running at a time but where a cron job has the potential to run long and finish

after the next scheduled run. Also see run-one-constantly, run-one-until-failure,

and run-one-until-success in the man page.

 ▶ run-this-one—Operates exactly like run-one except that it uses pgrep and kill

to find and kill any running processes owned by the user and matching the target

commands and arguments. It blocks while trying to kill matching processes until all

matching processes are dead.

 ▶ keep-one-running—Operates exactly like run-one except that it respawns "COMMAND

[ARGS]" any time COMMAND exits (zero or nonzero).

 ▶ ssh-import-id—Uses a secure connection to contact a public key server (https://

launchpad.net by default) to retrieve one or more users’ public keys and append

them to the current user’s ~/.ssh/authorized_keys file.

 ▶ bootmail—Called by cron to send an email any time a system is rebooted. It reads

a list of one or more comma-separated email addresses from /etc/bootmail/

recipients and then loops over a list of white space–separated files in /etc/

bootmail/logs to construct the email. This is useful for knowing when remote

systems are rebooted.

 ▶ purge-old-kernels—Looks for old kernels on your system and removes them. This

is a part of the Byobu package.

 ▶ col1—Splits and prints a given column, where the column to print is the name of

the script program you are running (col1 to col9). col2 to col9 are symlinks to

col1; their behavior simply changes based on the name called. For example, instead

of using awk '{print $5}', you can use col5. This used to be in Bikeshed but is

now part of the Byobu package.

 ▶ wifi-status—Monitors a wireless interface for connection and associated informa-

tion. This used to be in Bikeshed but is now part of the Byobu package.

References
 ▶ www.cprogramming.com—A useful website for learning C and C++

 ▶ https://gcc.gnu.org—The main website for gcc, the GNU Compiler Collection

 ▶ www.gnu.org/software/autoconf/autoconf.html—More information about

the GNU Project’s autoconf utility and how to build portable software projects

 ▶ www.qt.io—The main Qt website

 ▶ https://glade.gnome.org—Home page for the Glade GNOME developer’s tool

 ▶ www.kdevelop.org—Site that hosts the KDevelop Project’s latest versions of the

KDE graphical development environment, KDevelop

https://launchpad.net
https://launchpad.net
http://www.cprogramming.com
https://gcc.gnu.org
http://www.gnu.org/software/autoconf/autoconf.html
http://www.qt.io
https://glade.gnome.org
http://www.kdevelop.org

619

3
8

References

 ▶ The C Programming Language by Brian W. Kernighan and Dennis

M. Ritchie—The standard resource for learning C

 ▶ The Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne

Stroustrup—An excellent resource for C++

 ▶ https://subversion.apache.org—The main website for Subversion

 ▶ https://bazaar.canonical.com/en/—The main website for Bazaar

 ▶ https://git-scm.com—The main website for Git

 ▶ https://jenkins.io—The main website for Jenkins

 ▶ https://maven.apache.org—The main website for Maven

 ▶ https://travis-ci.org—The main website for Travis CI

 ▶ https://spinnaker.io—The main website for Spinnaker

 ▶ https://launchpad.net—An open source website that hosts code, tracks bugs, and

helps developers and users collaborate and share

 ▶ https://launchpad.net/ubuntu/+ppas—Personal package archives that allow

source code to be uploaded and built into .deb packages and made available to oth-

ers as an apt repository

 ▶ https://glade.gnome.org—A user interface designer for GTK

 ▶ https://launchpad.net/bikeshed—The main page for Bikeshed

 ▶ https://developer.android.com/—The main website for Android development.

Most of this chapter could not exist if it were not for this site, which goes into much

greater detail than this short introduction and is where we learned most of what we

know on the subject.

 ▶ https://developer.android.com/sdk/—This is the main web page for Android

Studio.

https://subversion.apache.org
https://bazaar.canonical.com/en/
https://git-scm.com
https://jenkins.io
https://maven.apache.org
https://travis-ci.org
https://spinnaker.io
https://launchpad.net
https://launchpad.net/ubuntu/+ppas
https://glade.gnome.org
https://launchpad.net/bikeshed
https://developer.android.com/
https://developer.android.com/sdk/

This page intentionally left blank

IN THIS CHAPTER

 ▶ Ada

 ▶ Clojure

 ▶ COBOL

 ▶ D

 ▶ Dart

 ▶ Elixir

 ▶ Elm

 ▶ Erlang

 ▶ Forth

 ▶ Fortran

 ▶ Go

 ▶ Groovy

 ▶ Haskell

 ▶ Java

 ▶ JavaScript

 ▶ Kotlin

 ▶ Lisp

 ▶ Lua

 ▶ Mono

 ▶ OCaml

 ▶ Perl

 ▶ PHP

 ▶ Python

 ▶ Raku

 ▶ Ruby

 ▶ Rust

 ▶ Scala

 ▶ Scratch

 ▶ Vala

 ▶ References

CHAPTER 39

Using Popular
Programming Languages

Students and developers who pay attention to either com-

puter programming history or current trends are already

aware of a vast array of possibilities that deserve some

attention. The goal of this chapter is to introduce many dif-

ferent languages available for you to use, some that are old

and some that are new.

This short chapter does not teach you how to use these lan-

guages but rather exposes you to them, making you aware

of their existence and giving just enough information about

them to help you decide whether each one sounds interest-

ing or useful to you; this chapter also points to resources

to help guide your next steps. The introductions include

information for installing and getting started with each lan-

guage on Ubuntu. Sometimes the version of the language

included in the Ubuntu repositories is a little outdated or is

a free (as in freedom) version instead of an official, propri-

etary version. If you discover you need a more up-to-the-

minute version or a one that is not mentioned, check the

“References” section to find links to more information for

most languages.

The organization of this chapter was tricky. The original

idea was to order the chapter by how well known a lan-

guage is, but that is problematic. Older languages generally

have better name recognition, even though newer ones

might be more commonly used. How do we measure popu-

larity and use it to enforce order on a list of programming

languages? The people who use them tend to form strong

emotional bonds with those they prefer, just as geeks do

with text editors (emacs versus vi), email programs (web

based versus Thunderbird versus Mutt), and more impor-

tant matters like comic book universes (Marvel versus DC).

Ultimately, it seemed like alphabetic order would be best. If

your favorite language is not included in this edition, and

622 CHAPTER 39 Using Popular Programming Languages

you think it should be included in future editions, please email your suggestion and rea-

soning to the author at matthew@matthewhelmke.com for consideration.

You will notice an interesting mix of old and new languages here. Some have asked why

some of the languages are included, especially the older ones. They are included because

they are still in use in the real world. There may not be many or even any new projects

being created using some of these languages, but if you are attentive, you are likely to find

each of them in use somewhere. A 2013 quote from The Register illustrates this beauti-

fully: “The venerable PDP-11 minicomputer is still spry to this day, powering GE nuclear

power-plant robots—and will do so for another 37 years. That’s right: PDP-11 assem-

bler coders are hard to find, but the nuclear industry is planning on keeping the 16-bit

machines ticking over until 2050—long enough for a couple of generations of program-

mers to come and go” (from www.theregister.co.uk/2013/06/19/nuke_plants_to_keep_

pdp11_until_2050/). The PDP-11 came out in 1970 and has not been produced since the

early 1990s. Programming languages, like programs, always seem to outlast their expected

or intended life span. Who knows? Learning that old language that everyone laughs

about may benefit you with a well-paying, unique job as well as help you to think about

human–computer communication in a different way.

Ada
Ada is based on Pascal. It is named after Ada Lovelace (1815–1852), who wrote the first

algorithm designed to be processed by a machine—specifically the mechanical computing

device created by Charles Babbage.

The language is most known for its use in embedded systems, especially in the aeronautics

and avionics realm. Ada is well known as a reliable and efficient real-time language. It is

most commonly encountered in aircraft systems, air traffic control and railroad systems, and

medical devices. It is also often used as a teaching language for computer science courses.

Language highlights include static typing, concurrency, synchronous message passing,

protected objects, modularization, and exception handling. Ada is object oriented, has

standard libraries for things like I/O and containers, has good interfaces to other languages

like C, and works well with distributed systems and numerical processing.

To use Ada on Ubuntu, you write programs in your favorite text editor. To compile, you

need the package gnat, which is the GNU Ada Compiler. You may want to consider

gnat-gps, which installs the Gnat Programming System, an integrated development environ-

ment (IDE) specifically for Ada and C programming.

Clojure
Clojure is a newer dialect of Lisp that runs on the Java Virtual Machine (JVM). It is

intended for general-purpose use. It encourages functional programming and is designed

to make writing multithreaded applications easier. Because of the close integration with

Java, Clojure applications can be packaged and deployed to JVM environments without

adding complexity. It also provides easy access to Java frameworks, and Clojure’s data

structures all implement standard Java interfaces.

mailto:matthew@matthewhelmke.com
http://www.theregister.co.uk/2013/06/19/nuke_plants_to_keep_pdp11_until_2050/
http://www.theregister.co.uk/2013/06/19/nuke_plants_to_keep_pdp11_until_2050/

623

3
9

COBOL

Closures are a common element in programming, especially in functional programming

languages, such as Clojure. (The language’s name is rumored to be a mash-up of closure

and Java.) Typically, variables are designed to work only within a defined function. Using

a closure is a way to bend that rule temporarily. A closure starts with a function and

allows the value of one or more variables from that function to be available outside that

function while being maintained in the function. Another way to phrase that is to say a

closure is a combination of a function and the variables that were in scope at the time the

function was defined; the function can refer to those variables even if they are no longer

in scope when the function is called. When you are working in a programming language

with first-class functions that can be passed around like variables, using closures is a con-

venient way to provide encapsulation without using objects or classes. An example of the

use of a closure is a function being encapsulated completely within another function but

still being able to read the state of a variable that exists in the containing function.

Clojure is unlike most other languages in that you don’t generally install Clojure itself; it’s

just a library that’s loaded into the JVM. You don’t interact with it directly but use a build

tool and editor/IDE integration instead (well, except when you are interacting using the

REPL; in any case, you do not typically run a tool called clojure from the command line

other than the REPL). That process is a bit beyond the short introduction of this chapter;

however, you can get started quickly by installing the clojure package. Among other

things, installing this package also installs a REPL (read-eval-print loop, an interactive

programming environment) that can be used by entering clojure at the command line.

When you install this package, you get what you need for using Clojure in a JVM, but

you need to set up your development environment to use Clojure. See the documentation

from each environment for instructions. Note that the most popular, perhaps even the

de facto, build tool for Clojure is Leiningen, which adds some really useful functionality,

such as the ability to manage project dependencies, start a REPL easily, and even install

Clojure itself. See https://github.com/technomancy/leiningen#readme for more.

COBOL
COBOL, Common Business Oriented Language, has been around since the 1960s. It is one of

the oldest programming languages and is still the dominant language for (legacy) business

applications. The majority of big business applications, such as payroll and accounting,

were written in COBOL, and most programmers who knew it well have retired. A job mar-

ket exists for younger programmers willing to learn it and willing to support older applica-

tions that are stable and trusted and still running all over the place. This is especially true

if you are able to understand the business processes modeled in COBOL and can integrate

it with modern technology, which isn’t always an easy task.

COBOL’s syntax was designed to mimic natural human language. Often a newcomer can

read COBOL source code and have a pretty good idea of what it does, even if the reader

has little to no programming experience. An interesting feature in early COBOL that is

deprecated in more recent versions is self-modifying code, which had the potential to cre-

ate some interesting situations. COBOL has always been a little controversial, as illustrated

by the time that Edsger Dijkstra remarked that “the use of COBOL cripples the mind; its

teaching should, therefore, be regarded as a criminal offense.”

https://github.com/technomancy/leiningen#readme

624 CHAPTER 39 Using Popular Programming Languages

In a 2012 survey in ComputerWorld, 46 percent of the respondents said they were

already noticing a COBOL programmer shortage, while 50 percent said the average

age of their COBOL staff was 45 or older and 22 percent said the age was 55 or older

(see www.computerworld.com/s/article/9225099/Cobol_brain_drain_Survey_results).

Organizations are trying to move away from COBOL, but it is still in extensive use.

To use COBOL on Ubuntu, you write programs in your favorite text editor. To compile,

you need the package open-cobol, which actually translates the programs into C and

compiles them using gcc.

D
The D language is a lot like C but much newer. It has similar syntax. It also has static typ-

ing. However, it has some differences that are designed for convenience, power, and con-

tinued efficiency. In D, you are able to write large amounts of code without redundantly

specifying types. Static inference deduces types and other code properties. Also, memory

management is automatic, and you have built-in linear and associative arrays, slices, and

ranges. D has new methods of dealing with concurrency, scaling, and internal integration

of features such that the presence of one feature does not harm another—for example,

offering classic polymorphism, value semantics, functional style, contract programming,

and more. Like C, D is compiled to native code.

We haven’t really seen D in use in the real world yet, but it is receiving a lot of attention

in the academic and research world. The buzz among programmers is that D is very prom-

ising and could become a successor to C, as it is intended to be.

To use D on Ubuntu, you write programs in your favorite text editor. To compile, you

must first download and install a package from the D Programming Language website at

https://dlang.org/download.html, following the instructions at the site.

Dart
Dart is a new language and an open source project headed up by Google. It is a suite

of tools and libraries focused on scalable web application engineering. You write code

in Dart, and it is compiled to JavaScript, which means that what you write will already

be able to run in every major web browser and on nearly all servers. Dart is class based

and object oriented. The code is concise without being enigmatic. The syntax looks very

familiar and is pretty easy to figure out if you have some experience with other major

languages. Dart allows you to create and use types, but it does not require types, and it is

designed to be modular and scalable, offering the ability to organize your code with func-

tions, classes, libraries, and so on. The compiler can weed extraneous libraries from your

code, such as those you included but never used, during compilation to create a smaller

application. It can even minify as it compiles to JavaScript.

To use Dart on Ubuntu, download it along with the editor and tools from the Dart website

at www.dartlang.org.

http://www.computerworld.com/s/article/9225099/Cobol_brain_drain_Survey_results
https://dlang.org/download.html
http://www.dartlang.org

625

3
9

Erlang

Elixir
Elixir is a dynamic, functional language based on Erlang. It has an interactive mode and

an executable mode. The main differences between Elixir and Erlang lie in the realm of

convenience. Elixir has its own package management system, macros, and build tool. It is

compatible with existing Erlang libraries. Its main use at the moment is for building scal-

able web-based applications.

To use Elixir on Ubuntu, install the package elixir.

Elm
Elm is a functional language that compiles to JavaScript. It is designed to help make web-

sites and web apps with an emphasis on simplicity. The goal of simplicity is confidence

while programming, confidence that nothing has been forgotten or misunderstood. Elm

includes reliable refactoring, automatically enforced sematic versioning for all Elm pack-

ages, and friendly error messages.

To use Elm on Ubuntu, you have to download the official binary from a GitHub repo

(official installers exist for Windows and macOS). The lack of official packaging for Linux

may eliminate the possibility of using Elm in many organizations and companies, but if

you are interested, take a look at the current install instructions at https://guide.elm-lang.

org/install/elm.html.

Erlang
From the official website, “Erlang is a programming language used to build massively scalable

soft real-time systems with requirements on high availability. Some of its uses are in tele-

coms, banking, e-commerce, computer telephony and instant messaging. Erlang’s runtime

system has built-in support for concurrency, distribution and fault tolerance.” Erlang is a

declarative, functional language that includes real-time garbage collection and hot-swapping

of code. It is primarily designed for distributed applications that require extreme uptime.

Erlang’s greatest strength is its ability to create a large number of concurrent processes,

each with low overhead, and allow them to communicate with one another using an

asynchronous message handling system. In addition, the Erlang developers have a phi-

losophy of development that emphasizes keeping things running, meaning that future

stable Erlang updates should not break running code. They like to test extensively and

try to break as much as possible in testing to prevent breakage in production systems.

One of the technical editors mentioned a neat feature while reading this chapter: Erlang’s

processes can communicate with each other even if they don’t live on the same box. You

have to explicitly allow this in your code, but the ability is built in to the language run-

time and syntax and is not a third-party library.

To use Erlang on Ubuntu, you write programs in your favorite text editor. To compile, you

need the package erlang, which installs the Erlang/OTP runtime, applications, sources,

code examples, and the Erlang editing mode for emacs.

https://guide.elm-lang.org/install/elm.html
https://guide.elm-lang.org/install/elm.html

626 CHAPTER 39 Using Popular Programming Languages

Forth
Forth, which first appeared in the 1970s, is an interactive, procedural, imperative language

with typeless data that runs as a shell. Sets of instructions can be saved and compiled as

bytecode programs. It is a very small language by itself and is therefore very useful in boot

loaders and embedded systems, and it has even been used by NASA in space applications.

On the surface, Forth is a simple language, but it is highly extensible. In essence, a pro-

grammer creates a dictionary, beginning with a small set of predefined words. These are

combined in new ways to extend the lexicon and create new things that may be done.

This is powerful, but it is also dangerous. The lack of standards can lead to less-than-stellar

programmers creating unclear sets of vocabulary that make it impossible for anyone else

to maintain what they have written. However, thoughtful programmers who are disci-

plined and organized have created highly complex, yet maintainable, programs in Forth

that have been used for decades across multiple platforms.

Perhaps Forth might be described as a language for experienced programmers who can

handle total control over the CPU and want to build sophisticated systems running in

extremely limited environments. If you are old enough to remember HP calculators and

their “reverse Polish” notation, where the operator is placed after the operands, you will

find Forth familiar.

To use Forth on Ubuntu, install the package gforth, which is the GNU implementation of

a Forth programming environment.

Fortran
Fortran was developed by IBM in the 1950s for engineering and scientific applications. Its

popularity spread quickly in areas of science that are dominated by numerical computa-

tion. Today, many of those same Fortran programs are still maintained and in use in fields

such as weather modeling and prediction, fluid dynamics, and segments of chemistry and

physics. In a published article from 2010, Eugene Loh, an engineer at Oracle, called For-

tran the most commonly used and perhaps the ideal language for high-performance com-

puting (https://queue.acm.org/detail.cfm?id=1820518).

Fortran is a terse language in which complex applications may be written with relatively

few statements. It is a procedural language with object-oriented abilities. It excels at

numerical computation and is often used as the language in which programs are written

to test supercomputers for speed.

To use Fortran on Ubuntu, you write programs in your favorite text editor. To compile,

you need the package gfortran, the GNU Fortran 95 compiler, which compiles Fortran

95 on platforms supported by the gcc compiler. It uses the gcc back end to generate

optimized code.

Go
Go is an open source project and language being developed by people at Google. It is an

expressive language that aims for concise, clean code and efficient use of resources. It has

https://queue.acm.org/detail.cfm?id=1820518

627

3
9

Java

concurrency mechanisms built in to take advantage of multiple core machines and net-

worked machines. Go includes a unique type system designed for flexible and modular code,

and it’s a compiled language that also has garbage collection. It is advertised as “a fast, stati-

cally typed, compiled language that feels like a dynamically typed, interpreted language.”

To use Go on Ubuntu, write your programs in your favorite text editor and install the

golang compiler. Install the golang-docs package for technical documentation.

Groovy
Groovy, like Clojure, is designed for the JVM. It was written to enable features like clo-

sures and dynamic typing from popular languages like Python and Ruby to be used by

Java developers. It uses a Java-like syntax, making it familiar to those programmers. It can

be compiled into standard Java bytecode and used within any Java project. It can also be

used dynamically for scripting, templating, or writing unit tests.

To use Groovy on Ubuntu, you must first install a JVM. Then, you need the package

groovy. You can then run Groovy code in a shell by entering groovysh at the command

line or in an interactive console by entering groovyConsole, or you can run a specific

Groovy script by entering the script file’s name at the command line prefaced by groovy,

like this:

matthew@seymour:~$ groovy scriptname.groovy

Haskell
Haskell is a purely functional programming language. It has built-in concurrency and

parallelism and good support for integration with other languages. In that sense, it is

similar to Erlang. From the beginning in 1990, it has been developed as an open-source

project with strong community input and participation. Haskell uses lazy evaluation,

meaning that the evaluation of an expression is put off until the last possible moment,

until its value is required. This significantly speeds up runtime by avoiding unnecessary or

repeated evaluation.

To use Haskell on Ubuntu, install haskell-platform, a suite of tools and libraries that con-

tain the most important and best-supported components. It is meant to be a starting point

for Haskell developers who are looking for libraries to use. To compile, you need the package

ghc, which is the Glorious Glasgow Haskell Compilation system (GHC), a compiler for Haskell.

Java
Java was created by Sun Microsystems, now owned by Oracle, as a write-once, run-

anywhere language. Java programs are compiled to a bytecode that will run on any JVM.

A JVM must exist on a hardware platform for Java code to run, but no recompilation of

the program itself is needed for it to run on different hardware platforms. Java is object

oriented, and writing program instructions for a virtual machine is generally easier than

doing so for a real machine. Java syntax is similar to that of C and C++ but is a bit simpler

628 CHAPTER 39 Using Popular Programming Languages

and has fewer low-level abilities. It is currently one of the most popular programming lan-

guages. Originally, Java technology was proprietary and licensed for use by Sun. In May

2007, several years before being bought by Oracle, Sun finished relicensing and releas-

ing most Java technology under the GNU GPL. (There were parts Sun could not relicense

because it did not own the copyright to the code.)

Java uses automatic garbage collection to remove objects from memory when they are

no longer in use. This frees programmers from thinking about memory management. It

includes a graphical user interface library called Swing.

Most Java development occurs in an IDE, several of which are available from the

Ubuntu repositories. The most popular IDEs are Eclipse (www.eclipse.org) and NetBeans

(www.netbeans.org). Each of these includes plug-ins that help a programmer include and

use libraries, compile to bytecode, and do many other tasks quickly and efficiently.

To program in Java on Ubuntu, you write programs in your favorite text editor or IDE.

To compile, you need the package default-jdk, which installs the Java Development Kit

appropriate for the hardware being used.

JavaScript
JavaScript is an object-oriented, functional programming language designed primarily for

scripting. It supports closures and dynamic and weak typing, and it has a syntax that is

influenced by C and Java, even though it is unrelated to either (except for the circum-

stantial name similarity with Java). JavaScript was designed to be used by the Netscape

web browser as a way to run short programs on web clients. The name is a result of a mid-

1990s marketing agreement between Netscape and Sun to try to leverage the buzz about

Java and make JavaScript the shiny, new programming language for the Web. You will

occasionally see JavaScript referred to using its original name, EMCAScript. The JavaScript

trademark is now owned by Oracle under a license from the technology creators, includ-

ing Mozilla, the descendant of Netscape.

JavaScript is easily the most popular scripting language for the Web, widely used in pro-

gramming web applications. Combined with HTML and CSS, it is used to create inter-

esting, diverse, and powerful websites. JavaScript has spawned tons of extensions and

development kits, such as Node.js and JSP. It is commonly combined with other tech-

nologies, like XML, to create interactive websites using Ajax. Information is often passed

using JavaScript Object Notation, or JSON, which is rapidly becoming the successor to XML.

Whether people love JavaScript or hate it, it is universally acknowledged as a “must-know”

technology for programmers today.

To use JavaScript on Ubuntu, you write programs in your favorite text editor. Nothing spe-

cial is needed. Put the script somewhere and open it with your web browser.

Kotlin
Kotlin is a staticly typed, cross-platform language that runs on the Java virtual machine

and can also be compiled to JavaScript source code, or you can use the LLVM compiler.

It has a concise syntax and supports both object-oriented and functional programming

http://www.eclipse.org
http://www.netbeans.org

629

3
9

Mono

styles. It is open source and has seen use in mobile programming for Android, where it is

becoming quite popular for new projects and is even supported in the Android Studio 3.0

IDE as an alternative to the standard Java compiler. Kotlin was created and is supported by

JetBrains, which is a global software vendor.

To use Kotlin on Ubuntu, install the snap package using

matthew@seymour:~$ snap install --classic kotlin

Lisp
Lisp is slightly younger than Fortran—first released in 1958—making it not quite the old-

est language discussed in this chapter. Clojure, discussed earlier, is a dialect of Lisp. Lisp is

designed to process lists. Linked lists are the language’s main data structure. It was origi-

nally created to be used as a practical mathematical notation for computer programs but

became popular as a program for research in artificial intelligence.

There have been many versions of Lisp over the years, as well as many dialects. The most

commonly used “regular Lisp” in use today is probably ANSI Common Lisp, of which

there are also multiple implementations. To use ANSI Common Lisp on Ubuntu, install

the package clisp. Type clisp from the command line to bring up a REPL (from which

you may exit by entering quit).

Many Lisp programmers prefer to use emacs as their editor, which was written in a Lisp

dialect called elisp. emacs includes many useful tools for Lisp and has other plug-ins

available. From here it is easy to save code in files, compile it, and enable it to be run as

programs rather than from the REPL interface.

Another interesting dialect of Lisp is Scheme, which is also available from the Ubuntu

repositories but is not covered in this chapter.

Lua
Lua is a scripting language created in Brazil in the 1990s. It is similar to and based on

Scheme. It is a dynamically typed procedural language with memory management and

garbage collection. It is small and often used for embedded applications. It can be com-

piled on any platform that has a C compiler. Lua is also extensible, with a reputation for

being simple without being simplistic. It was originally designed for extending applica-

tions but is frequently used for standalone and general-purpose needs.

To use Lua on Ubuntu, you write programs in your favorite text editor. To run them, you

need the package lua5.3, which is the Lua interpreter. Run a program by entering lua

programName at the command line.

Mono
Although Microsoft intended it for Windows, the Microsoft .NET platform has grown to

encompass many other operating systems. No, this isn’t a rare sign of Microsoft letting

customers choose which OS is best for them. Instead, the spread of .NET is because of the

Mono project, which is a free reimplementation of .NET available under the GPL license.

630 CHAPTER 39 Using Popular Programming Languages

Because of the potential for patent complications, it took most distros a long time to

incorporate Mono, but it’s here now and works just fine. What’s more, Mono supports

both C# and Visual Basic .NET, as well as the complete .NET 1.0 and 1.1 Frameworks

(and much of the 2.0 Framework, too), making it easy to learn and productive to use.

You can learn more about Mono from https://mono-project.com. In any case, to compile

your own programs in Mono on Ubuntu, you need to install the mono-devel package.

OCaml

Functional programming never really goes away. Sometimes the most elegant way to

write something is not by using a class or a method or a framework. Sometimes, the most

elegant implementation is simply a function. This is why Lisp endures and why newer

languages like OCaml and Haskell appear. Well, we say “appear,” but in reality OCaml

is a modern dialect of a very old functional language called ML, which was developed in

the early 1970s. OCaml is used primarily, but not exclusively, in the financial world, in

programs for electronic trading, markets, and investments. It has an advanced type system

and supports not only functional but also imperative and object-oriented styles of pro-

gramming. It includes a memory manager and incremental garbage collection.

To use OCaml on Ubuntu, you write programs in your favorite text editor. To run them,

you need the package ocaml, which includes two compilers: ocamlc compiles to bytecode,

and ocamlopt compiles to native code.

Perl

Perl is a well-established programming language that has been around since the 1980s. It

started as a Common Gateway Interface (CGI) language for web servers. Over time, people

have used it for scripting, systems administration, network programming, and a ton of

other things. You will find Perl everywhere being used in ways never dreamed of by its

originators. It is an incredibly flexible and powerful language. The downside to this is

that it is also a complex language that some jokingly describe as looking like a cat walked

across your keyboard. If you know what you are doing with Perl, you can work magic. If

you can’t remember what you did and didn’t document it, you will probably end up hat-

ing yourself—as will anyone else who has to interact with your code. All joking aside, it is

worth learning, even just a little.

Perl is installed by default and already in use on your system. To use Perl on Ubuntu, you

write programs in your favorite text editor. Nothing special is needed. Put the script some-

where and run it from the command line, like this: perl yourscriptname.pl.

Note that there was a development effort underway to replace Perl 5. The new version was

to be called Perl 6, but had diverged far enough away from Perl 5 that the decision was

made to rename it to Raku. You can learn about Raku at www.raku.org.

This book has a digital-only chapter on the Perl language, available at www.informit.com/

title/9780136778851.

https://mono-project.com
http://yourscriptname.pl
http://www.raku.org
http://www.informit.com/title/9780136778851
http://www.informit.com/title/9780136778851

631

3
9

Ruby

PHP
PHP is another well-established programming language originally created for web devel-

opment but that now sees use in many other roles. Often it is used for simple scripts on

servers. PHP is kind of a cross between Java and Perl. It is quick and easy to learn and

commonly found. PHP is another language worth learning, even if you learn just a little.

PHP is installed by default and already in use on your system. To use PHP on Ubuntu, you

write programs in your favorite text editor. Nothing special is needed. Put the script some-

where and run it from the command line, like this: php yourscriptname.php.

This book has a digital-only chapter on the PHP language, available at www.informit.com/

title/9780136778851.

Python
Python is one of the easiest languages to read. It has been developed with the idea that

there should be one obvious “right” way to do things. As a result, most people who use

it believe that Python requires very few comments in the code because the code is easy

to read and understand. For the most part, they are right. Python is also a powerful, fast,

easy-to-use and easy-to-learn language that is worth learning, even if you learn just a little.

Python is installed by default and already in use on your system. To use Python on

Ubuntu, you write programs in your favorite text editor. Nothing special is needed. Put the

script somewhere and run it from the command line, like this: python yourscriptname.py.

This book has a digital-only chapter on the Python language, available at www.informit.

com/title/9780136778851.

Raku
Raku is the next evolution of Perl and was developed by people from the Perl community.

Originally slated to become Perl 6, thus far it is primarily a specification with an early

stage implementation available as Rakudo Star, which you can download as source at

https://rakudo.org/star/.

Ruby
In Ruby, everything is an object. Every object can be given its own properties and meth-

ods. You can use closures (called blocks in Ruby). You do not need to declare variables, and

only single inheritance exists. Ruby includes garbage collection and exception handling,

and it can be extended by writing extensions in C. Ruby was heavily influenced in dif-

ferent ways by Lisp, Perl, Python, and Smalltalk and was originally designed for system

administration–type scripting.

Most Ruby programmers seem to prefer using Ruby in combination with a web applica-

tion framework called Rails, making what is known as Ruby on Rails. This framework is

strongly tied to the DRY philosophy: “Don’t repeat yourself.” Every piece of information

http://www.informit.com/title/9780136778851
http://www.informit.com/title/9780136778851
http://www.informit.com/title/9780136778851
http://www.informit.com/title/9780136778851
https://rakudo.org/star/

632 CHAPTER 39 Using Popular Programming Languages

is stored in a single, unambiguous place. Ruby on Rails runs on top of a web server like

Apache or Nginx and is extensible using RubyGems (see https://rubygems.org/).

To use Ruby on Ubuntu, you write programs in your favorite text editor. To run them,

you can install the interpreter package ruby-full from the Ubuntu repositories. Because

Ruby changes often, the official Ruby documentation recommends not using a distribu-

tion’s package manager but rather downloading the latest version directly from the Ruby

website.

Rust
Rust is developed by Mozilla, the people behind the Firefox browser. It is advertised on

www.rust-lang.org as follows:

…a curly-brace, block-structured expression language. It visually resembles the

C language family, but differs significantly in syntactic and semantic details.

Its design is oriented toward concerns of “programming in the large,” that is,

of creating and maintaining boundaries—both abstract and operational—that

preserve large-system integrity, availability and concurrency.

Rust is not yet available in the Ubuntu repositories, but as it is being developed and

used by people at Mozilla, it is likely to be of interest to a few of this book’s readers and

deserves a quick mention here. It is also quickly catching up to the Go Language and may

surpass it soon as the language of choice for large-scale web applications in the cloud.

Scala
Scala takes its name from “scalable language.” It is designed to grow with its users’

needs. Scala runs on a JVM. It is suited for both functional and object-oriented program-

ming. Scala programs are bytecode compatible with Java, and you can call either language

from the other. Support for the .NET Framework is also available. Scala syntax is much

more succinct than that of Java. Programs are generally shorter to write. As in Ruby, in

Scala everything is an object. Types are inferred and do not need to be made explicit. Like

Clojure, it suits the desire that many have to perform functional programming on a JVM.

To use Scala on Ubuntu, you write programs in your favorite text editor. To compile, you

need the package scala. Use scalac sourceFile to compile, and to run using the inter-

preter, use scala sourceFile.

Scratch
Scratch is a programming language primarily designed for educators and children. It is

from MIT and was created with the hope of making it easy to create fun interactive stories,

animations, games, music, and art, all while teaching creative thinking, systematic rea-

soning skills, mathematical and computational ideas, and collaboration. Creations can be

shared on the Web and then accessed from anywhere. Scratch has an online component,

but development happens on a local machine.

https://rubygems.org/
http://www.rust-lang.org

633

3
9

References

To use Scratch on Ubuntu, install scratch and check out https://scratch.mit.edu to get

started.

Vala
Vala is a very new language. It was designed to make the lives of the developers of

GNOME easier by bringing features from modern languages into C for use in GNOME

desktop environment development. The syntax is very similar to that of C#. Vala is a com-

piled language, but instead of being complied directly to bytecode, Vala is compiled to C,

which is then compiled with a C compiler for each specific platform.

In C, a programmer must manually manage references in memory. In Vala, this is auto-

mated if the built-in reference types are used instead of plain pointers. Vala also uses the

GNOME GObject system to provide reference counting. For the most part, Vala is primar-

ily used by people working on GNOME, which makes sense because this is the reason Vala

was developed. Time will tell whether it receives wider interest.

To use Vala on Ubuntu, you write programs in your favorite text editor. To compile, you

need the package valac, which is the Vala compiler. You then need to compile the output

from that with a C compiler such as the GNU C compiler, described in Chapter 38, “Using

Programming Tools.”

References
 ▶ www.adaic.org—The Ada Information Clearinghouse, an excellent resource for

learning Ada

 ▶ https://clojure.org—The main website for Clojure

 ▶ https://dlang.org—The main website for D

 ▶ www.dartlang.org—The main website for Dart

 ▶ https://elixir-lang.org—The main website for Elixir

 ▶ https://elm-lang.org—The main website for Elm

 ▶ www.erlang.org—The main website for Erlang

 ▶ www.forth.org—The main website for the Forth Interest Group, a great place to

learn more about Forth

 ▶ www.gnu.org/software/gforth/—The main website for Gforth, the GNU

project’s implementation of Forth

 ▶ https://gcc.gnu.org/fortran/—The main website for Gfortran

 ▶ https://groovy-lang.org—The main website for Groovy

 ▶ https://haskell.org—The main website for Haskell

 ▶ www.java.com—The main website for Java

https://scratch.mit.edu
http://www.adaic.org
https://clojure.org
https://dlang.org
http://www.dartlang.org
https://elixir-lang.org
https://elm-lang.org
http://www.erlang.org
http://www.forth.org
http://www.gnu.org/software/gforth/
https://gcc.gnu.org/fortran/
https://groovy-lang.org
https://haskell.org
http://www.java.com

634 CHAPTER 39 Using Popular Programming Languages

 ▶ www.w3schools.com/js/default.asp—The W3C Tutorial page for JavaScript,

which is also a great place to learn HTML and CSS

 ▶ https://kotlinlang.org/—The main website for Kotlin

 ▶ https://lisp-lang.org—The main website for Common Lisp

 ▶ www.clisp.org—The main website for GNU Clisp, an implementation of Common

Lisp

 ▶ www.lua.org—The main website for Lua

 ▶ www.perl.org—The main website for Perl

 ▶ https://php.net—The main website for PHP

 ▶ www.python.org—The main website for Python

 ▶ https://raku.org—The main website for Raku

 ▶ www.ruby-lang.org/en/—The main website for Ruby

 ▶ www.scala-lang.org—The main website for Scala

 ▶ https://live.gnome.org/Vala—The main website for Vala

 ▶ https://scratch.mit.edu—The main website for Scratch

 ▶ https://help.ubuntu.com/community/PowerUsersProgramming—A wiki

page about programming using Ubuntu as your development platform

http://www.w3schools.com/js/default.asp
https://kotlinlang.org/
https://lisp-lang.org
http://www.clisp.org
http://www.lua.org
http://www.perl.org
https://php.net
http://www.python.org
https://raku.org
http://www.ruby-lang.org/en/
http://www.scala-lang.org
https://live.gnome.org/Vala
https://scratch.mit.edu
https://help.ubuntu.com/community/PowerUsersProgramming

IN THIS CHAPTER

 ▶ Introduction to Ubuntu

Development

 ▶ Setting Up Your Development

System

 ▶ Fixing Bugs and Packaging

 ▶ References

CHAPTER 40

Helping with Ubuntu
Development

This chapter focuses on becoming part of a larger team—

specifically the group of talented men and women who

develop and package software for Ubuntu as a whole.

Ubuntu is made up of thousands of different components

that are written in several different programming languages.

Every component is available as source code, which is gath-

ered into source packages. Source packages also include

other content, specifically metadata describing things like

copyright and licensing information, required dependen-

cies, and build instructions for compiling or assembling

the software for use. These source packages are used to

build binary .deb packages, which are then included in the

Ubuntu software repositories and made available for quick

and easy installation by users. There are ways for anyone

interested and willing to do a bit of study to use their skills

to help.

When a bug is found, it gets fixed only if someone helps

out and spends time exploring the program code to find

and fix it. Then the fix becomes available to the wider com-

munity only if someone takes the time to build a new pack-

age that includes the fix and then uploads that package to

an appropriate location in the Ubuntu software repositories.

This chapter has several parts. Each part builds upon the

previous ones to give you a full understanding of the pro-

cess. If only one part of the process interests you—say a

later one, like packaging—that is okay. You will benefit

from reading the previous sections of the chapter even if

you only end up focusing your work on later steps in the

process. You can participate in any part of the process

provided that you are willing to learn how to do so. This

chapter gets you started, but it is not the end of your

636 CHAPTER 40 Helping with Ubuntu Development

required study. The process described in this chapter is accurate, but there are more inter-

esting and intricate details that are not included here.

Software development, especially on a big project, is not something to be done lightly or

flippantly. For that reason, patches and bug fixes are only accepted from people willing to

put in the effort necessary to produce detailed work with the highest quality. Those who

don’t have the time or aren’t interested in learning the steps properly will probably write

software that reflects this, and they therefore will not help the community. The Ubuntu

community is really nice, but they are also really busy. They will make time to mentor

new developers and packagers who do their homework and make quality efforts, but it

isn’t polite to waste their time with half-hearted attempts at getting the details correct.

Introduction to Ubuntu Development
Ubuntu development follows a six-month cycle. The process begins with planning and

discussion, with the goal of unifying the efforts of all those who will be involved to make

the best use of limited resources. Developers get together via remote online participation,

and in live discussions they make decisions about the priorities for the upcoming or the

current release. These meetings happen once every three months, once at the start of a

development cycle and once in the middle of the same cycle.

When a new release is created, it is given a new code name such as “Focal Fossa.” The

release is referred to using this code name until its official release date, when it starts to be

officially referred to using the release number, such as 20.04. See https://wiki.ubuntu.com/

Releases for all the release names ever used by Ubuntu.

Some development begins by taking the newest versions of software from upstream soft-

ware developers, either via Debian or directly from a specific application’s source. In some

cases modifications, or patches, are added to the code. All these modifications and patches

that are added to the code are made into Ubuntu packages.

Other development begins internally, as some packages are written entirely by Ubuntu

developers, including both those paid by Canonical and those who are volunteers in the

wider Ubuntu community, doing so for personal or community benefit or just for fun.

These packages receive the new features slated for the release and are then made into new

Ubuntu packages.

Testing occurs throughout the cycle, starting as soon as the first new packages begin to

be uploaded. Testing often uncovers bugs, which are problems with the software, such as

errors that occur when the program is run. Bug reports are made using Launchpad, which

is the issue tracker and code hosting solution created by Canonical for Ubuntu. Developers

and community members read and triage bugs into categories based on their importance.

Critical bugs must be fixed before final release. Important bugs should be fixed as soon as

possible. Other bugs might be irritating but not vital to the operation of the program or

the overall Ubuntu system, and, because of limited resources, they might be put off until

someone has time to deal with them. Every time bugs are fixed, a new package must be

made for the software so that it can be again uploaded into a repository for testing and

review.

https://wiki.ubuntu.com/Releases
https://wiki.ubuntu.com/Releases

637

4
0

Setting Up Your Development System

Alpha releases are made. Beta releases are made. Testing and bug fixing continue. Some

software might be found to include new bugs that make the software unsuitable for use,

so the previous version of the software may then be used. This is called “rolling back” to

the previous version.

Eventually, the release day arrives. Everything works. The Ubuntu community rejoices and

takes a week or two off. Then, it is time for the next set of planning meetings.

Setting Up Your Development System
Before you can begin helping with Ubuntu development, you must set up your system so

that it works seamlessly with the rest of the Ubuntu community. There is a standard set of

packages to install, and there are some standard steps you must perform.

Install Basic Packages and Configure

The Ubuntu development community has created a convenient package that installs

everything you need to get started. Install packaging-dev from the Ubuntu software repos-

itories, which among other things includes

 ▶ gnupg, the GNU Privacy Guard, which includes the cryptographic tools you need to

sign your packages when you upload them to Launchpad

 ▶ pbuilder, which creates reproducible builds of a package in a clean, isolated

environment

 ▶ bzr-builddeb, which includes bzr; together these serve as your version control and

package management systems

 ▶ apt-file, which helps you find the binary package that includes a needed file

Set Up GPG

Generate your GPG key so that you can sign packages. Packages must be signed before

they will be accepted for upload into the Ubuntu software repositories. This allows for

tracking who is creating software and minimizes the risk of malicious software acts.

matthew@seymour:~$ gpg --gen-key

You are asked what kind of key you want to generate. You can safely choose the default

settings. Create a passphrase when asked. When this is done, a message like this one is

returned:

pub 2048R/38E0C789 2012-08-25

 Key fingerprint = 6363 387F 7455 8929 E6E2 4619 4798 DFD9 38E0 C789

uid Matthew Helmke <matthew@matthewhelmke.com>

sub 2048R/BDE097FF 2012-08-2

mailto:<matthew@matthewhelmke.com

638 CHAPTER 40 Helping with Ubuntu Development

NOTE

I created this GPG key specifically for this book, and it is not used anywhere else. You

won’t see it in use on Launchpad, for example, or for signing packages.

You need the key ID, which in this example is 38E0C789, and you need to upload your key

ID to a keyserver, replacing keyID with your key ID:

matthew@seymour:~$ gpg --send-keys keyID

Creating Your SSH Key

Next, create an SSH key that enables you to connect securely to another computer for file

transfer. This is used when you’re uploading source files to Launchpad:

matthew@seymour:~$ ssh-keygen -t rsa

Choose the defaults and create a passphrase.

Setting Up pbuilder

Finally, set up pbuilder so that you can build packages on your local machine. Replace

release with the name of the release for which you will develop (for example, the release

being developed when this was written was quantal):

matthew@seymour:~$ pbuilder-dist release create

You can do this for multiple releases at the same time, and you can do it for Debian

releases such as sid as well as for Ubuntu.

It takes some time for all the needed files to be downloaded and installed, but when they

are, this step is complete.

Creating a Launchpad Account

Launchpad is described in Chapter 38, “Using Programming Tools.” If you have already

signed up for an account, you can skip this step. If not, open https://help.launchpad.

net/YourAccount/NewAccount and sign up. You can develop for yourself without a

Launchpad account, but to develop for Ubuntu, you must have an account.

Setting Up Your Environment to Work with Launchpad

Setting up your environment to work with Launchpad involves several steps that build on

the steps you just completed.

Uploading Your GPG Key to Launchpad

Find your GPG fingerprint by running the following, replacing youremail with the email

address you used earlier to create your GPG key:

matthew@seymour:~$ gpg --fingerprint youremail

https://help.launchpad.net/YourAccount/NewAccount
https://help.launchpad.net/YourAccount/NewAccount

639

4
0

Setting Up Your Development System

Something like the following is returned:

pub 2048R/38E0C789 2012-08-25

 Key fingerprint = 6363 387F 7455 8929 E6E2 4619 4798 DFD9 38E0 C789

uid Matthew Helmke <matthew@matthewhelmke.com>

sub 2048R/BDE097FF 2013-08-25

Open https://launchpad.net/~/+editpgpkeys and copy the entire set of numbers and letters

to the right of Key fingerprint = into the text box on the web page. Click Import Key on

the web page. Launchpad then uses this fingerprint to check the Ubuntu key server for the

key that you uploaded earlier.

You are sent an encrypted email and asked to confirm the key import. You need to use

an email client that supports OpenPGP encryption and enter the passphrase you created

when you created the key in order to read this email. If you do not have an email reader

that supports OpenPGP, you can also perform this step at the command line by typing

gpg and copying/pasting the text of the email into the terminal window before pressing

Enter.

Follow the directions in the email to complete this step.

Uploading Your SSH Key to Launchpad

Open https://launchpad.net/~/+editsshkeys. Also open ~/.ssh/id_rsa.pub in a text editor.

The contents of this file are the public part of your SSH key, so it is safe to share it with

Launchpad. Copy the contents of the file and paste them into the Add an SSH Key text

box on the web page. Then click Import Public Key.

Configuring Bazaar

Bazaar is covered in Chapter 38, “Using Programming Tools.” Here, all you need to do is

tell Bazaar you who are. This is a two-step process. The first step is to tell Bazaar which

name and email address it should use when creating commit messages. Replace my name

and email address with your information in the following command:

matthew@seymour:~$ bzr whoami "Matthew Helmke" <matthew@matthewhelmke.com>

The second step is to set up Bazaar with your Launchpad ID so that the code you sign and

upload is associated with your Launchpad account. Replace yourLaunchpadID with your

Launchpad ID in the command shown here:

matthew@seymour:~$ bzr launchpad-login yourLaunchpadID

If you can’t remember your ID, see where https://launchpad.net/~ redirects you. The part

that is automatically added after the ~ is your Launchpad ID.

mailto:<matthew@matthewhelmke.com
https://launchpad.net/~/+editpgpkeys
https://launchpad.net/~/+editsshkeys
mailto:<matthew@matthewhelmke.com
https://launchpad.net/~

640 CHAPTER 40 Helping with Ubuntu Development

Configuring Your Local Bash Shell

The Ubuntu packaging tools that run at the command line on your development machine

need to be configured with your information as well, in the same way that they are con-

figured for Ubuntu’s parent, Debian. Open ~/.bashrc in your favorite text editor and add

the following lines at the end, changing them to use your information:

matthew@seymour:~$ gpg --fingerprint youremail

Reload the Bash shell configuration file as shown here, again making the changes needed

to use your own information:

matthew@seymour:~$ export DEBFULLNAME="Matthew Helmke"

matthew@seymour:~$ export DEBEMAIL="matthew@matthewhelmke.com"

If you are using a shell other than the default, Bash, you need to configure your shell

similarly.

Fixing Bugs and Packaging
This section covers the process for fixing bugs and packaging your code. It does not cover

the mechanics of reading program code and fixing it. Here, it is assumed that you know

how to program in the language used in the software you are fixing.

From a high level, the process is easy to understand. Here are the steps:

 1. Find a problem (a software bug).

 2. Download the source code.

 3. Fix the problem.

 4. Test the fix on your local machine.

 5. Commit the changes.

 6. Request that your changes be merged into the main source.

Finding problems to fix is something you learn with time and experience. If you aren’t

fixing an issue you discovered yourself, other places you can look are in Ubuntu mailing

lists, Launchpad bug reports, and community gathering places such as the Ubuntu Forums

or AskUbuntu.

Before you do any work on a bug, do an extensive search to make sure it has not already

been fixed and that someone else is not already working on the bug. You should obvi-

ously look in Launchpad, in the section for the specific package. You can also check the

upstream and/or Debian bug trackers for open and closed bugs and the upstream revi-

sion history or newer release(s). When you know of a bug you want to fix, download

the source code from the Ubuntu software repositories. Find out which file contains

the code you want to work on. The example in this section uses an imaginary applica-

tion, matthewsapp. In all the examples that follow, replace matthewsapp with the name

mailto:"matthew@matthewhelmke.com"

641

4
0

Fixing Bugs and Packaging

of the program or application that you want to work on. Say that you know that the

matthewsapp binary is located at /usr/bin/matthewsapp. To find the Ubuntu package that

contains matthewsapp, enter the following:

matthew@seymour:~$ apt-file find /usr/bin/matthewsapp

This returns output something like the following.

matthewsapp: /usr/bin/matthewsapp

You can also use apt-cache to learn the source package for a binary package. Sometimes

source packages have the same name as their resulting binary packages, and sometimes

they do not. Here are two examples.

matthew@seymour:~$ apt-cache showsrc tomboy | grep ^Package:

Package: tomboy

matthew@seymour:~$ apt-cache showsrc python-vigra | grep ^Package:

Package: libvigraimpex

In the first example, the binary tomboy is in the tomboy package. In the second example,

the binary python-vigra is in the librigraimpex package. When you know the package

that contains the source code you need, get a copy of the source code itself. You do this

in Ubuntu by branching the source package. Launchpad manages all the code for source

packages and is the place from which you will download and create a local branch. You

fix bugs in the local branch and test them on your machine and then submit a merge

proposal so that code from your branch can be examined and merged back into the main

branch of the code to then be used to build a new package of the code.

Create a local repository on your machine for the code, again replacing matthewsapp with

the name of the source package you need:

matthew@seymour:~$ bzr init-repo matthewsapp

Change to the newly created directory:

matthew@seymour:~$ cd matthewsapp

Create a new local branch, and name it something obvious. Many Ubuntu developers

name the new target directory the same as the original, with .dev added at the end, like

this:

matthew@seymour:~$ bzr branch ubuntu:matthewsapp matthewsapp.dev

After you have done this a few times with packages already in the Ubuntu repositories,

you can read the official Ubuntu Packaging Guide to find out how to perform similar tasks

with code from other Ubuntu releases, from Debian, or from an upstream .tar file. This

section concentrates on doing this the easy way to help you get started.

642 CHAPTER 40 Helping with Ubuntu Development

Create a patch that will include the fix for the bug:

matthew@seymour:~$ edit-patch 99-new-patch

This copies the packaging of the file to a new temporary directory. Edit the files with a

text editor or use a patch to do so in a temporary shell, like this:

matthew@seymour:~$ patch -pl < ../bugfix.patch

You can exit the temporary shell by entering exit or using Ctrl+D.

Build a test package using your patch to test your changes, replacing release with the

name of the release, such as quantal, and replacing package and version with the name

and number of the package:

matthew@seymour:~$ bzr builddeb -- -S -us -uc

matthew@seymour:~$ pbuilder-dist release build ../package_version.dsc

When the build completes, install the package from ~/pbuilder/release_result/ and

test to see if the bug is fixed:

matthew@seymour:~$ sudo dpkg -i package_version.deb

Test it. Get it running. Try to break it. If you are convinced the bug is fixed in the soft-

ware, only then is it time to move on. Feel free to repeat this cycle as often as necessary

until it is really fixed.

When your changes are complete, create a new entry in the debian/changelog file:

matthew@seymour:~$ dch -i

Boilerplate text for the changelog entry that includes the first and last lines with place-

holder text for the middle is provided for you. Use a text editor to edit the middle line(s)

and include in your entry a specific bug fix tag that indicates which Launchpad bug you

are fixing. Make sure you include where in the code you made the change(s), what you

changed, and where the discussion of the change occurred.

The format for this is quite strict and looks as follows:

matthewsapp (0.9.2-1ubuntu3) quantal; urgency=low

 * debian/control: don't bacon the narwhals at midnight in line 35 as

discussed on launchpad (LP: #3263827)

 -- Matthew Helmke <matthew@matthewhelmke.com> Sat, 25 Aug 2013 13:29:01 -0500

Commit the change locally:

matthew@seymour:~$ debcommit

mailto:<matthew@matthewhelmke.com

643

4
0

References

Push the change to Launchpad, replacing items in italic with your information:

matthew@seymour:~$ bzr push lp:~yourLaunchpadID/ubuntu/release/package/branchname

matthew@seymour:~$ bzr lp-propose

The first command sends your code to Launchpad. The last command opens the Launch-

pad page of the merge proposal in your browser.

References
 ▶ https://developer.ubuntu.com—The main website for Ubuntu development.

 ▶ https://packaging.ubuntu.com—The main website for the Ubuntu Packaging

Guide, which helped greatly in the writing of this chapter and goes into far greater

detail than this chapter. (This packaging guide is also available directly from the

Ubuntu software repositories in the ubuntu-packaging-guide package.)

https://developer.ubuntu.com
https://packaging.ubuntu.com

This page intentionally left blank

IN THIS CHAPTER

 ▶ Community Teams

 ▶ Bug Squad

 ▶ References

CHAPTER 41

Helping with Ubuntu
Testing and QA

There are many ways to help the Ubuntu community cre-

ate, refine, and promote the operating system. Some are

highly technical, like writing code or packaging programs to

be included in the software repositories. Some are less tech-

nical, such as helping promote Ubuntu locally or through

blogging interesting news items from the community. Some-

where in the middle, leaning toward the technical side, is

a task that is wide open for greater community involvement.

This is a rather brief and intentionally vague chapter. Test-

ing by volunteers requires more than a casual interest if it is

going to be helpful to the developers and not an annoyance.

For that reason, this chapter covers the basics of how to get

involved and some of the opportunities but not the precise

details. If you are interested—and, after reading this chapter,

we hope you are—the next step is to visit the websites listed

in the “References” section at the end of the chapter.

Community Teams
Two community teams—the Ubuntu Testing Team and the

Ubuntu QA Team—would love to see volunteers who can

follow directions, be careful and methodical, and notice

details. Both teams work to refine the distribution during the

development cycle to help make Ubuntu the best it can be.

The Ubuntu QA Team looks directly at the overall quality of

the distribution, trying out default programs and configura-

tions and trying to break things. The goal is to find bugs

during the development cycle and make clear reports about

them, trying to get them fixed before end users ever know

of their existence. The goal here is product improvement

and quality control or assurance.

646 CHAPTER 41 Helping with Ubuntu Testing and QA

These are big tasks. Even with several Canonical employees working on these tasks full

time, testing every hardware configuration or use case is nearly impossible. Guessing what

creative ways users will attempt to perform tasks that developers have designed to perform

differently is also impossible. Testing as many of these options as possible is key when the

goal is to create a positive experience for as many people as possible. This is why volun-

teers are both welcome and actively recruited.

These are also exacting tasks. Testing and bug reporting (or fixing) require careful atten-

tion so that problems are reported clearly with steps that can be repeated by developers.

This enables them to find where problems lie and more easily fix them. Not everyone is

well suited for this sort of thing, but those who are able to be clear and precise and who

can follow the directions given in testing plans and procedures are worth their weight in

gold. You might not receive public glory for testing, but you will receive honor from those

working with you in testing if you can do the job well.

You will notice some crossover in the descriptions of the teams that follow because these

teams work together closely. Although each team has a main focus, the two teams perform

similar tasks from time to time. Even the individual teams’ web pages link to each other

and offer similar information to help coordinate and direct any interested volunteers to

the tasks they feel most equipped to help with.

Ubuntu Testing Team

Members of the Ubuntu Testing Team are probably best known for their work during a

release week, when they help validate all the CD and DVD images. They also operate on

the release cycle testing beta releases and release candidates. In addition, they test update

packages for stable releases before the packages are pushed out to users. They do this by

enabling a new software repository called -proposed and trying out the software there

before it ends up in the -updates repository. In addition, they help developers by coordi-

nating communications and actively seeking and connecting additional volunteers when

specific testing needs are encountered.

To join the Ubuntu Testing Team, you need a Launchpad account, and then you can join

the team via the team’s Launchpad page, at https://launchpad.net/~ubuntu-testing. Sub-

scribing to the team’s email list at https://lists.ubuntu.com/mailman/listinfo/ubuntu-qa is

also a good idea. When testers are needed, the Launchpad team list and the mailing list

are the initial points of contact for those who are asked to help.

There are many ways to get involved in testing; each has varying requirements in terms

of time and technical skill. Some tasks are quick and easy, and others are more involved.

Some of the tests are general in nature, and others involve specific features, applications,

and hardware. Some tests are automated and require specific test software to be down-

loaded and installed. Others are given as a list of instructions. Opportunities exist for

many skill levels and most time schedules.

Ubuntu QA Team

Compared to the Ubuntu Testing Team, the QA Team has a stronger focus on develop-

ing and using tools to automate the process. This enables people using the tools to run a

https://launchpad.net/~ubuntu-testing
https://lists.ubuntu.com/mailman/listinfo/ubuntu-qa

647

4
1

References

large battery of tests against a code base very quickly while ensuring that they are probing

precisely what is needed. Much of the QA Team’s work is useful for hardware certifica-

tion, logic testing, and bug discovery. The team has developed an Ubuntu developer-

focused suite of tools called ubuntu-qa-tools, a library called Mago for the Linux Desktop

Testing Project (LDTP) to simplify testing of Ubuntu within the wider realm of Linux desk-

tops, a framework called Checkbox that tests and sends test data directly to Launchpad,

and more.

Bug Squad
One of the first places people become involved in Ubuntu testing is with Bug Squad.

These volunteers are the initial point of contact for most bugs filed with Ubuntu. They

read bug reports to see whether each bug seems legitimate (for example, that it isn’t some-

thing like “Ubuntu doesn’t work” but is specific and measurable), that it is filed against

the appropriate software package, and that adequate information is included with each

report for the developers to be able to figure out the problem. If the bug report meets the

criteria, the Bug Squad determines which developer or team should be notified. Sometimes

during the triage process, the Bug Squad might ask reporters for more information. The

volunteers attempt to determine the severity of the bug and might assign a priority setting

to the report.

References
 ▶ https://wiki.ubuntu.com/QATeam—The starting point for understanding and

volunteering for QA Testing

 ▶ https://wiki.ubuntu.com/BugSquad—The Ubuntu Bug Squad

https://wiki.ubuntu.com/QATeam
https://wiki.ubuntu.com/BugSquad

This page intentionally left blank

Index

Symbols

& operator, 237

background processes, running, 173–174

special shell character, 247

VirtualBox commands, 527

&& operators, combining commands, 180, 198

* special shell character, 247

\ special shell character, 249–250

` special shell character, 247, 250

[] special shell character, 248

[a, z] special shell character, 248

[a-z] special shell character, 248

[az] special shell character, 248

$, 235

$? built-in variable, 247

$ special shell character, 247

$# built-in variable, 246

$* built-in variable, 247

$0 built-in variable, 247

! ! operator, 196–197

!= operator, 491

< special shell character, 247

<< operator, 236

<< special shell character, 248

> special shell character, 247

>> special shell character, 247

| (pipe) special shell character, 247

| | operator, 198, 491

special shell character, 247

? special shell character, 247

" special shell character650

" special shell character, 248–249

' special shell character, 249

Numbers

10BASE-T networking, 339

10G Ethernet networking, 340

32-bit Ubuntu, 64-bit Ubuntu versus, 4–5

50G Ethernet networking, 340

64-bit Ubuntu, 32-bit Ubuntu versus, 4–5

100BASE-T networking, 339

1000BASE-T networking, 339

A

A records, 590

AAAA records, 590

ac command, 211, 223

accessing

ACL

setting permissions, 127–128

Squid, 565–569

Apache web server, 452, 455

command line, 107

databases

local GUI clients, 503

PostgreSQL, 501–503

SSH, 501–502

web browsers, 503

file access time, disabling, 397

networks, chains, 387

remote access

copying files between machines,
372–373

Guacamole, 377

key-based logins, 373–375

online references, 377–378

SSH server, 371–375

VNC, 375–377

shell scripts, storing for system-wide access,
240

variable values, 243

accounting, user usage statistics, 212

ACID compliance, relational databases,
493–494

ACL

permissions, setting, 127–128

Squid, 565–569

activity (user), monitoring, 211–212

Ada, 622

addressing

broadcasting, 338

IPv4 addressing, 331–332

IPv6 addressing, 332, 334–336

multicasting, 338

NAT, 332

TCP/IP, 331–332

unicast addressing, 338

adduser command, 136–137, 209

administration

LDAP, 584–585

privileges, 217

Adobe Photoshop, 67

afio, 316

all-in-one (Print/Fax/Scan) devices, 435

AllowOverrides directives (Apache web server),
451–452

ALSA, 64

Amanda, 315–316

AND, 299

AND operators, 491–492

Android mobile development, 607

Android Runtime, 608

Android Studio, 609

651applications

Application Framework, 608–609

applications, 609

ARM processors, 608

Google Play, 607

Linux kernels, 608

RISC processors, 608

Ansible, 544

Apache Tomcat, 482

Apache web server

access control, 452, 455

configuring

.htaccess configuration files, 450–452,
469

runtime servers, 446–449

threads, 468

development of, 443–444

file system authentication, 452–455

.htaccess configuration files, 450, 469

AllowOverrides directives, 451–452

Options directives, 451

HTTPS, 464–466

installing, 444

logging, 463–464

modules, 455–461

MPM, 449–450

online references, 466

overview of, 444

Require directive, 452

runtime servers

apache2.conf files, 447–449

configuring, 446–449

DirectoryIndex directive, 449

DocumentRoot directive, 449

GID, 448

Group directive, 448

Listen directive, 447

ServerAdmin directive, 448

ServerName directive, 448–449

ServerRoot directive, 447

UID, 448

User directive, 448

UserDir directive, 449

security, 444, 452–455

starting/stopping, 444–446

threads, 468

virtual hosting, 461–462

apache2.conf files, 447–449

API, 512

AppArmor, 388–390

Application Framework, 608–609

applications

Android applications, 609

AppArmor, 388–390

CD/DVD burning applications

Brasero, 71

Linux command line, CD creation, 72–73

Linux command line, DVD creation,
73–75

Ubuntu support, 71

DVD/CD burning applications

Brasero, 71

Linux command line, CD creation, 72–73

Linux command line, DVD creation,
73–75

Ubuntu support, 71

games, 79–81

Battle for Wesnoth, 85–86

commercial games, 88

documentation, 89

emulators, 79

FlightGear, 87

Frets on Fire, 86

Frozen Bubble, 84

Game Jolt, 82

GOG.com, 82

Humble, 82

http://GOG.com

652 applications

PulseAudio, 64

sound cards, 63–64

music applications, 65

Banshee, 66

Rhythmbox, 66

Sound Juicer, 66

productivity applications

Celtx, 59

CrossOver Office, 61

defined, 56

gedit, 59

Heimer, 61

Kile, 61

LaTeX, 60

LibreOffice, 55, 56–58

LyX, 60

online references, 61

pdfedit, 58

Publican, 59–60

Texmaker, 60

users (typical), 56

Windows, 61

Wine, 61

XML Copy Editor, 60

recording/editing sound, 76

security, 388–390

Startup Applications Preferences, 278

VBA, LibreOffice and Office compatibility, 55

video editing applications, 77

Avidemux, 77

Blender, 77

Cinelerra, 77

DaVinci Resolve, 77

Kdenlive, 77

Lightworks, 77

OpenShot Video Editor, 77

PiTiVi, 77

Shotcut, 77

installing from Ubuntu repositories,
82–87

installing video drivers (proprietary), 80

itch.io, 82

kid-friendly games, 88

LGDB, 82

online game sources, 81–82

Scorched 3D, 83–84

Speed Dreams, 87

SuperTux, 84–85

Warsow, 82

Windows games, 88–89

graphics manipulation applications, 66, 70

Blender, 70, 77

CinePaint, 70

darktable, 70

digiKam, 70

GIMP, 66–67

Hugin, 70

Inkscape, 70

Krita, 70

nautilus-image converter, 69

netpbm tools, 69

Photoshop, 67

POV-Ray, 70

Radiance, 70

Shotwell Photo Manager, 66, 71

Simple Scan, 67

Xara Xtreme, 70

microservice architectures, 531

multimedia applications

ALSA, 64

CD/DVD burning applications, 71–75

graphics manipulation applications,
66–71

music applications, 65–66

online references, 77

OSS, 64

http://itch.io

653backups

apropos command, 112

APT, 95

apt-get versus, 99–100

day-to-day usage, 95–98

finding software, 98–99

VirtualBox, 527

apt-get, APT versus, 99–100

archives, restoring files from, 311–312

Ardour, 76

arguments (positional), 242

ARM processors, 608

arrays (RAID), 307

Art of Unix Programming, The, 141–142

ash, 226

Aslett, Matt, 511

assessing

needs/resources, backup strategies,
303–304

vulnerabilities, 381–382

assigning

permissions, file systems, 121–122

values to variables, 242

at command, 227–228, 229

atomic changes, 613

attacks, 380–381

autocracking scripts, 380

crackers, 380

external attacks, 379–380

hackers, 380

internal attacks, 379–380

script kiddies, 380

spoofing attacks, 593

viruses, 385

war driving, 383

worms, 380

Audacity, 76

Audio CD Extractor. See Sound Juicer

authentication

file systems, Apache web server, 452–455

PAM, 215–216

autoconf command, 601–602

autocracking scripts, 380

automatically waking computers from sleep,
231–233

automating tasks with scripts, 244–246

availability

localhost interfaces, checking availability of,
326

memory space, displaying, 286

.avi files, 75

Avidemux, 77

awk text editor, 189–191

AWS, 539

Azure, 539

B

Back In Time, 314

background jobs, moving jobs to, 174–175

background processes, 173–174 237

running,

backups

afio, 316

Amanda, 315–316

Back In Time, 314

cloud computing, 305–306, 309

configuration files, version control, 320–322

copying files, 316–317

cp command, 318

rsync command, 319–320

tar command, 317–318

data loss, 302

Déjà Dup, 313–314

external hard drives, 308

654 backups

File Roller, 312

flexbackup, 316

full backups

with incremental backups, 307

on a periodic basis, 306–307

tar command, 310–311

incremental backups, 310–311

kdat, 312–313

KDE ark archiving tool, 312–313

levels of, 306

mirroring data, 307

NAS, 308

network storage, 308

online references, 324

restoring files from archives, 311–312

scheduling tasks, full backups on a periodic
basis, 306–307

software, 309–316

strategies, 301

assessing needs/resources, 303–304

choosing a strategy, 308

choosing hardware/media, 308–309

evaluating, 304–306

full backups on a periodic basis, 306–307

full backups with incremental backups,
307

home users, 304–305

incremental backups, 307

inheriting, 306

large enterprises, 305

RAID arrays, 307

simple backup strategies, 306

small enterprises, 305

small offices, 305

system rescue, 323

restoring GRUB2 boot loaders, 323–324

saving files from nonbooting hard
disks, 324

Ubuntu Rescue disc, 323

tape drive backups, 309

tar command, 310

copying files, 317–318

incremental backups, 310–311

restoring files from archives, 311–312

Ubuntu installations, 7

Unison, 315

version control, configuration files, 320–322

badblocks command, 397

Banshee music application, 66

BaseX, 517

bash, 226

comparisons of expressions, 250–251

file operators, 253–254

logical operators, 255

numeric comparisons, 252–253

strings, 251–252

local bash shells, configuring, 640

batch command, 228–229

batches, changing passwords in, 216–217

Battle for Wesnoth, 85–86

Bazaar

configuring, 639

software project management, 611–612

Berkeley DB, 512, 579

bg command, 174–175

BigTable, 517

Bikeshed, 616–618

/bin directory, 114

BIND

configuring DNS servers, 593–595

online references, 595

BIOS, 271

boot process, 272–274

Ubuntu bootups, troubleshooting, 195

Blender

graphics manipulation, 70

video editing, 77

655C programming

.bmp files, 68

BOFH, 205

boolean operators, combining commands, 180

boot loaders, 271

boot process, 272–274

GRUB2, installing, 5

GRUB2 boot loaders, restoring, 323–324

Ubuntu installations, 2–3, 5–6

boot process

BIOS, 271, 272–274

boot loaders, 271, 272–274

Boot-Repair, 278–279

DHCP activation, 357

GPT, 274

init systems, 272

loading process, 272–274

MBR, 274

NetBoot, 274

nonbooting hard disks, saving files from,
324

PXE, 274

runlevels, 271–272, 275, 278

services

controlling, 278

running, 271–272

starting/stopping, 275–278

Startup Applications Preferences, 278

troubleshooting, 278–279

Ubuntu, troubleshooting, 195–196

UEFI, 273–274

Brasero, 71

break statements, 269

bridges, 343, 524–525

broadcasting, 338

browsers (web)

Chrome, 53–54

Chromium, 53–54

database access, 503

Firefox, 52–53

online references, 54

brute-forcing, 373–374

Budgie, 49

bugs, fixing

Bug Squad, 647

Ubuntu development, 640–643

built-in variables, 242, 246–247

bundles (software), Snappy package manager,
103–104

bunzip2 command, 191

burning CD/DVD

Brasero, 71

Linux command line

CD creation, 72–73

DVD creation, 73–75

Ubuntu support, 71

business applications, Ubuntu for, 27–28

byobu, multiple terminal operation, 192–193

bzip2 command, 191

C

C programming, 597–599

autoconf command, 601–602

building programs, 599–601

configuring code, 601–602

debugging, 602

checking source code, 602–603

gdb command, 603

gprof command, 603

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

dependency checking, 599–600

GCC, 603–604

macros, 600–601

656 C programming

makefile targets, 600–601

makefiles, 599–600

C++ programming, 597–598, 599

autoconf command, 601–602

building programs, 599–601

configuring code, 601–602

debugging, 602

checking source code, 602–603

gdb command, 603

gprof command, 603

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

dependency checking, 599–600

GCC, 603–604

macros, 600–601

makefile targets, 600–601

makefiles, 599–600

C10K problem, 467–468

cabling, 340

fiber-optic cabling, 342

UTP cabling, 341

Caddy, 482

cameras (digital)

Ubuntu support, 70

USB connections, 70

capturing screen images, 69

case statements, 267–268

Cassandra, 513

cat command, 132, 144–145

/cd command, 120

cd command, 145–147

CD tools, 613–614

CD/DVD burning applications

Brasero, 71

Linux command line

CD creation, 72–73

DVD creation, 73–75

Ubuntu support, 71

cdrecord command, 72–73

Cecilia, 76

Celtx, 59

CFEngine, 545

cgroups, 532

chains, 387

change command, 223

changing

desktop environments, 39

directories, 120, 145–147

passwords in batches, 216–217

permissions, files/folders, 125, 147

shells, 226

user identities, 217–219

window managers, 39

Chaos Engineering, 614

Chef, 544

Cherokee, 480–481

chfn command, 224

chgrp command, 125, 204, 224

children directories, 118

children, games for, 88

chmod command, 123–124, 147, 204, 224

chown command, 125, 204, 224

chpasswd command, 224

Chrome, 53–54

Chromium, 53–54

chroot jail, 531–532

chsh command, 209, 224

CI/CD tools, 613–614

Cinelerra, 77

CinePaint, 70

CLI. See command line

client/server database model, 484

Clojure, 622–623

cloud computing

AWS, 539

Azure, 539

backups, 305–306, 309

657command line (Linux)

containers, 531

DevOps, 535–536

Google Cloud, 539

hybrid clouds, 539–540

IaaS, 537

Juju, 540–541, 545

Landscape, 541, 545

MaaS, 537

Mojo, 541

online references, 541

OpenStack, 538–539

PaaS, 537

private clouds, 540

public clouds, 538, 539

reasons for using, 536–537

SaaS, 537

Sysadmin, 535–536

Ubuntu, 535

AWS, 539

Azure, 539

considerations for using, 538

Google Cloud, 539

hybrid clouds, 539–540

IaaS, 537

install instructions, 536

Juju, 540–541, 545

Landscape, 541

MaaS, 537

Mojo, 541

OpenStack, 538–539

PaaS, 537

private clouds, 540

public clouds, 538, 539

reasons for using, 536–537

SaaS, 537

Ubuntu Cloud, 536

VM, 536

VM, 536

CNAME records, 590–591

COBOL, 623–624

code packaging, Ubuntu development, 640–643

combining commands

&& operators, 180, 198

! ! operator, 196–197

| | operator, 198

boolean operators, 142–143

piping, 142–143, 178–180

comm command, 170–171

command line (Linux)

! ! operator, 196–197

| | operator, 198

accessing, 107

apropos command, 112

APT, 95

apt-get versus, 99–100

day-to-day usage, 95–98

finding software, 98–99

background jobs, 174–175

background processes, running, 173–174

basic commands, 143–144

BIOS, troubleshooting Ubuntu bootups, 195

byobu, multiple terminal operation, 192–193

CD creation, 72–73

combining commands

&& operators, 180, 198

! ! operator, 196–197

| | operator, 198

boolean operators, 180

piping, 178–180

command history, viewing, 197

commands

combining, 178–180, 196–197, 198

list of, 143–144

redirecting input/output of, 167–170

shortcuts, 198

standard input/output, 169

658 command line (Linux)

commonly used commands/programs, 139

Coreutils, 199

defined, 106–107

directories, 112–114

/bin directory, 114

changing, 120, 145–147

children directories, 118

confining scripts to directories, 198–199

copying files, 131, 147

creating, 129, 160

creating files, 128–129

deleting, 129–131, 161–162

displaying contents of files, 132

/etc directory, 114

finding current directory, 120

finding files, 147

/home directory, 115

listing contents of, 118–119

listing files in directories, 156–158

moving files, 131, 161

parent directories, 118

permissions, 122–127

printing directory sizes, 148

printing last lines of files, 163–164

/proc directory, 115–117

regular expressions, 133

renaming files, 131, 161

/sbin directory, 114

sorting file contents, 162–163

/tmp directories, 117

/usr directory, 117

/var directory, 117

wildcard characters, 133

documentation

manual pages, 111–112

reading, 111–112

DVD creation, 73–74

packet writing, 74–75

session writing, 74

environment variables, 182–185

file systems

directories, 112–117

hierarchy of, 112–114

files/folders

comparisons, 170

compressed files, 191–192

creating links, 154–156

downloading, 164

finding differences in files, 170

finding files, 149–151

finding from indexes, 156

finding similarities in files, 170–171

listing in directories, 156–158

listing system information, 158–159

printing contents of, 144–145

foreground jobs, 174–175

GRUB, troubleshooting Ubuntu bootups,
195–196

input string searches, 151–152

jobs

executing in parallel, 181–182

listing, 173

kernel ring buffers, reading contents of, 200

location of commands, printing, 164

logging out of, 108

logins

from remote computers, 108–109

text-based logins, 107–108

manual pages, 159–160

multiple terminal operation, 192–193

MySQL command line client, 504–505

network interface configuration

ifconfig command, 346–348

ip command, 348–349

compressed files 659

ip route command, 346, 349

netstat command, 346, 350

online references, 139, 165, 200

paging through output, 152–154

piping commands, 178–180

polite system resets, 194–195

PostgreSQL command line client, 505–506

printing, resource usage, 175–177

processes

listing, 171–173

prioritizing, 177–178

substituting, 181

reasons for using, 142–143

REISUB, 194–195

repeating text, 148–149

rerunning previous commands, 196–197

resource usage, printing, 175–177

root accounts, 110–111, 133–134

sequence, running commands in, 180–181

sudo command, troubleshooting, 134–136

systems

rebooting, 138–139

shutting down, 137–138

text editors, 185–191

Ubuntu bootups, troubleshooting, 195

user accounts

creating, 136–137

deleting, 137

super user accounts, 109–111

whereis command, 112

command line (shells), 233–234

background processes, 237

pattern-matching, 235

piping commands, 237

commands

& operator, running background processes,
173–174

&& operators, 180, 198

! ! operator, 196–197

| | operator, 198

database commands, 506

history of commands, viewing, 197

piping, 142–143, 178–180, 237

printing location of, 164

redirecting input/output, 167–169

redirecting input/output with shell command
line, 236

rerunning previous commands, 196–197

running, in sequence, 180–181

shortcuts, 198

substituting, 250

wildcard characters, 235

commercial games, 88

community teams, testing Ubuntu, 645–646

comparing files/folders, 170

comparisons of expressions, 250–251

file operators, 253–254, 257–258

logical operators, 255, 259

numeric comparisons, 252–253, 256–257

strings, 251–252, 255–256

compatibility

free/open-source software, MS Office
compatibility, 55

LibreOffice, Office compatibility, 55

Office, free/open-source software
compatibility, 55

open-source/free software, MS Office
compatibility, 55

Ubuntu installations, Mac hardware
compatibility, 3

compiling

kernels, 412–414, 418–419

software

from source, 100, 101–102

from tarballs, 100–101

from Ubuntu repositories, 101–102

compressed files, 191–192, 318

660 computers (remote), command line logins

computers (remote), command line logins,
108–109

configuration files

Dotfiles, 322

version control, 320–322

configuring

Apache web server

.htaccess configuration files, 450–452,
469

runtime servers, 446–449

threads, 468

bash shells, 640

Bazaar, 639

C/C++ code, 601–602

configuration management, 102

dotdee, 102–103

Snappy package manager, 103–104

Ubuntu Core, 103

DHCP software, 358–359

dial-up Internet access, 367–368

disk quotas, 223

DNS servers with BIND, 593–595

DSL Internet access, 365

/etc directory configuration files, 114

firewalls, 386–388

GPG keys, 637–639

hosts (networks) with DHCP, 359–361

Internet connections, common configuration
information, 364–365

kernels, 403, 414–417

Launchpad, work environments, 638–640

LDAP servers, 580

local bash shells, 640

localhost interfaces, 327

MySQL, 494–495

networks

command line network interfaces,
345–350

configuration files, 350–355

DHCP, 355–361

/etc/host.conf files, 355

/etc/hosts files, 350–351

/etc/netplan/*.yaml files, 353–355

/etc/nsswitch.conf files, 351–352, 355

/etc/resolv.conf files, 352–353

graphical configuration tools, 355

nm-connection-editor, 345–346

NFS

clients, 423–424

servers, 422–423

pbuilder, 638

PostgreSQL, 498

power management, in Ubuntu, 18–19

PPP Internet access, 364

PPPoE, 364

printers, in Ubuntu, 18

runtime servers, Apache web server,
446–449

Samba, 425

/etc/samba/smb.conf files, 426–429

global behaviors, 427

security, 384–385

software repositories, 15–17

Squid, 570–572

Squid clients, 564–565

SSH server, 371–372

system settings, in Ubuntu, 17–18

Ubuntu

date/time settings, 19–20

development packages, 637–638,
640–643

power management, 18–19

printer configurations, 18

software repositories, 15–17

system settings, 17–18

troubleshooting post-configuration
problems, 21–22

wireless networks, 20

661data, SQL tables

VPN

clients, 573–575

servers, 575–577

wireless networks, 20

confining scripts to directories, 198–199

Conky, 292–297

connectivity

Internet, 363–364

checking, 328–330

common configuration information,
364–365

dial-up access, 367–368

DSL access, 365

ISP, 364–365

Linux commands, 369

online references, 369–370

PPP access, 364

PPPoE, 364

troubleshooting, 368–369

Ubuntu commands, 369

VM, 526

console-based monitoring, 281–283

containers, 531

Docker, 533

Kubernetes, 534

LXC, 532

LXD, 533

online references, 534

contents of directories, listing, 118–119

contents of files

displaying, 132

sorting, 162–163

converting

graphics, 68–69

sound files, 65

copying

files between machines (remote access),
372–373

files/folders, 131, 147, 316–317. See also
mirroring

cp command, 318

rsync command, 319–320

tar command, 317–318

VM, 526

Coreutils, 199

CouchDB, 515–516

cp command, 131, 147, 318

crackers, 380

createdb command, 506

createuser command, 506

cron command, 229–231

CrossOver Office, 61

cups cancel command, 435

cups command, 435

cups disable command, 435

cups enable command, 435

CUPS GUI, network printers, 431–434

cuspreject command, 435

custom kernels, 402

D

D programming language, 624

daemons

AND, 299

Linux, 25

smbd, starting/stopping, 429

darktable, 70

Dart, 624

dash, 226

Dash (GNOME), 43–44

data, SQL tables

inserting data, 489–490

retrieving data, 490–492

662 data directory initialization, PostgreSQL

data directory initialization, PostgreSQL, 498

data integrity, relational databases, 493–494

data locking, relational databases, 492

data loss, 302

data mirroring, 307

data recovery, 323

GRUB2 boot loaders, restoring, 323–324

saving files from nonbooting hard disks, 324

Ubuntu Rescue disc, 323

databases

accessing

local GUI clients, 503

MySQL, 501–503

SSH, 501–502

web browsers, 503

AND operators, 491–492

client/server model, 484

commands, 506

flat file databases, 484–485

graphical database clients, 506

MySQL, 483

ACID compliance, 493–494

command line client, 504–505

configuring, 494–495

creating databases, 496–497

data integrity, 493–494

data locking, 492

database access, 501–503

inserting data into tables, 490

mysql command, 506

mysqladmin command, 506

mysqldump command, 506

MySQLGUI, 506

online references, 493, 507

PostgreSQL versus, 492–494

procedural languages, 494

retrieving data from tables, 490–492

root user passwords, 495

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

NoSQL, 485, 509–510

advantages of, 510, 511

BaseX, 517

Berkeley DB, 512, 579

BigTable, 517

Cassandra, 513

CouchDB, 515–516

disadvantages of, 510–511

document stores, 514–515

etcd, 513

FlockDB, 519

graph stores, 518

HBase, 518

HyperGraphDB, 519

key/value stores, 512

Memcached, 513–514

MemcacheDB, 514

MongoDB, 516

Neo4j, 518

NewSQL and, 511

online references, 519–520

OrientDB, 519

Redis, 514

Riak, 514

Scylla, 514

UnQL, 511

wide column stores, 517

OR operators, 491–492

PostgreSQL

ACID compliance, 493–494

command line client, 505–506

configuring, 498

creating database users, 499–500

creating databases, 499

663desktop environments

data integrity, 493–494

data locking, 492

database access, 501–503

deleting database users, 500

granting/revoking privileges, 500–501

initializing data directories, 498

MySQL versus, 492–494

online references, 493, 507

pgAdmin, 506

procedural languages, 494

retrieving data from tables, 491

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

relational databases, 485. See also MySQL;
PostgreSQL

creating tables, 488–489

DBA, 483–484

inserting data into tables, 489–490

operation of, 486–487

SQL basics, 487–492

Datadog, 298

date/time settings

date command, 19

Ubuntu, 19–20

DaVinci Resolve, 77

DBA, 483–484, 511

Debian Linux, 24

debugging C/C++ programming, 602

checking source code, 602–603

gdb command, 603

gprof command, 603

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

Déjà Dup, 313–314

deleting

directories, 129–131, 161–162

PostgreSQL database users, 500

user accounts, 137

deluser command, 137, 209

dependency checking, 599–600

depmod command, 407

desktop environments, 41–42

Budgie, 49

changing, 39

GNOME, 41

Dash, 43, 44

Mutter, 42

Power icon, 43, 45

Shell, 43–45

Show Applications icon, 43, 44

GNOME 2, 48

KDE, 45

Kubuntu, 45–46

Kylin, 50

Lubuntu, 47–48

LXDE, 47–48

MATE, 48–49

online references, 50

Ubuntu desktops, sharing, 424

Ubuntu MATE, 48–49

widgets, 42

X server

benefits of, 34

components of, 33–34

display manager, 39

display managers, 33

online references, 40

starting, 39

terminal clients, 33–34

window manager, 33–34

xorg.conf files, 33–39

664 desktop environments

Xfce, 46

Xubuntu, 46–47

development (Ubuntu)

Bazaar, 639

fixing bugs, 640–643

GPG keys, 637–639

introduction to, 636–637

Launchpad, 614–615

creating accounts, 638

work environments, 638–640

local bash shells, configuring, 640

online references, 643

package installation

code packaging, 640–643

packages, 637–638, 640–643

pbuilder, 638

SSH keys, 638, 639

Device section (xorg.conf files), 37–38

devices

all-in-one (Print/Fax/Scan) devices, 435

devices.txt files, 403

i2c-dev devices, 407

security, 385

DevOps

Chaos Engineering, 614

CI/CD tools, 614

Sysadmin versus, 535–536

df command, 286–287

dhclient command, 369

DHCP, 338, 361

activating, 357

dhcpclient, 358

Dynamic DNS, 356–357

networks

configuring, 355–361

host configurations, 359–361

operation of, 356

servers, 358–359

software, installing/configuring, 358–359

dial-up Internet access, configuring, 367–368

diff command, 170

differences in files, finding, 170

digiKam, 70

digital cameras

Ubuntu support, 70

USB connections, 70

directories, 112–114

/bin directory, 114

changing, 120, 145–147

children directories, 118

creating, 129, 160

data directory initialization, PostgreSQL, 498

deleting, 129–131, 161–162

DIT, 580

/etc directory, 114

files

copying, 131, 147

creating, 128–129

displaying contents of, 132

finding, 147

listing in directories, 156–158

moving, 131, 161

printing last lines of files, 163–164

renaming, 131, 161

sorting file contents, 162–163

finding current directory, 120

home directories, 208, 427–428

/home directory, 115

kernel directories, 403–405

LDAP directories, populating, 582–583

listing contents of, 118–119

parent directories, 118

permissions, 122–127

printing directory sizes, 148

665domains

/proc directory, 115–117

regular expressions, 133

/sbin directory, 114

scripts, confining to directories, 198–199

/tmp directories, 117

user directories, 115

/usr directory, 117

shared data, 117

X server, 33

/var directory, 117

wildcard characters, 133

DirectoryIndex directive (Apache web server),
449

disaster recovery, planning, 390–391

disk quotas, 287

configuring, 223

implementing, 222–223

managing, 222

display managers, X server, 33, 39

displaying

available memory space, 286

contents of files, 132

free space (hard disks), 286–287

distributed processing, X server, 32–33

distributions

Linux distributions

included software, 24–25

versions of, 24

Ubuntu distributions, versions of, 27

DIT, 580

dmesg command, 21, 200

DNS, 448–449

Dynamic DNS, 356–357

online references, 595

records, 589–590

A records, 590

AAAA records, 590

CNAME records, 590–591

MX records, 591

NS records, 591

SOA records, 592–593

TXT records, 593

requests, 589–590

search orders, 355

servers, 588, 589–590, 593–595

DocBook, Publican, 59–60

Docker, 533

document stores, 514–515

documentation

apropos command, 112

games, 89

Linux, 28–30

manual pages, 111–112

mind maps, 61

reading, 111–112

TeX documents

Kile, 61

LaTeX, 60

LyX, 60

Texmaker, 60

Ubuntu, 28, 30

Wayland, 32

whereis command, 112

WYGIWYW, 60

DocumentRoot directive (Apache web server),
449

domains

DNS

online references, 595

records, 590–593

requests, 589–590

servers, 588, 589–590, 593–595

hostnames, 589

names, 588–589

root zones, 589

TLD, 588–589

dotdee666

dotdee, 102–103, 322

Dotfiles, 322

downloading

files/folders, 164

Ubuntu updates during installation, 8

drivers, video drivers (proprietary), installing, 80

dropdb command, 506

dropuser command, 506

DSL Internet access, configuring, 365

du command, 148

dual-boot systems, Ubuntu installations, 6

dumb gateways, 343

dummy interfaces, 327

DVD installations, Ubuntu, 2, 6–11

dvd+rw-tools, 74

DVD/CD burning applications

Brasero, 71

Linux command line

CD creation, 72–73

DVD creation, 73–75

preformatted DVD, 74

Ubuntu support, 71

Dynamic DNS, 356–357

Dynamo, 514

E

e2fsck command, 397

echo command, 148–149

Eclipse, 606

editing

/etc/modprobe.conf files, 344

sound, 76

Ardour, 76

Audacity, 76

Cecilia, 76

LMMS, 76

Mixxx, 76

Rosegarden, 76

text, 185, 186

awk, 189–191

emacs, 185, 188–189

gedit, 186

kate, 186

kedit, 186

nano, 185, 186–187

sed, 189–191

vi, 185, 187–188

vim, 185

video, 76, 77

Avidemux, 77

Blender, 77

Cinelerra, 77

DaVinci Resolve, 77

Kdenlive, 77

Lightworks, 77

OpenShot Video Editor, 77

PiTiVi, 77

Shotcut, 77

Elixir, 625

Elm, 625

emacs text editor, 185, 188–189

email, 547

Autoresponders, 562

virus scanners, 562

embedded spaces, resolving strings with,
248–249

emulators, 79

encrypted files, 318

endless loops, 261–262

enterprise servers, monitoring, 298–299

environment variables, 182–185, 242

erasing, hard disks, Ubuntu installations, 9

Erlang, 625

667file systems

error messages

redirecting input/output of commands,
169–170

sudo command, 134–136

/etc directory, 114

etcd, 513

/etc/host.conf files, 355

/etc/hosts files, 350–351

/etc/modprobe.conf files, 344, 407

/etc/modprobed files, 407

/etc/netplan/*.yaml files, 353–355

/etc/nsswitch.conf files, 351–352, 355

/etc/resolv.conf files, 352–353

/etc/samba/smb.conf files, 426–429

etckeeper, 321–322

ethereal command, 369

Ethernet

10G Ethernet networking, 340

50G Ethernet networking, 340

Gigabit Ethernet. See 1000BASE-T networking

PPPoE, 364

evaluating backup strategies, 304–306

event handlers, 468–469

executing

jobs in parallel, 181–182

shell scripts, 237–239

exit statements, 269

expr statements, 266

expressions, 235

comparisons of expressions, 250–251

file operators, 253–254, 257–258

logical operators, 255, 259

numeric comparisons, 252–253,
256–257

strings, 251–252, 255–256

directories, 133

external attacks, 379–380

external hard drives, backups, 308

F

faillog command, 289

fax machines, all-in-one (Print/Fax/Scan)
devices, 435

FDDI networks, 340

Fetchmail, 557–560

fg command, 174–175

fiber-optic networks, 340, 342

File Roller, 312

file systems

authentication, Apache web server, 452

directories, 112–114

/bin directory, 114

changing, 120, 145–147

children directories, 118

copying files, 131, 147

creating, 129, 160

creating files, 128–129

deleting, 129–131, 161–162

displaying contents of files, 132

/etc directory, 114

finding current directory, 120

finding files, 147

/home directory, 115

listing contents of, 118–119

listing files in directories, 156–158

moving files, 131, 161

parent directories, 118

printing directory sizes, 148

printing last lines of files, 163–164

/proc directory, 115–117

regular expressions, 133

renaming files, 131, 161

/sbin directory, 114

sorting file contents, 162–163

/tmp directories, 117

/usr directory, 117

/var directory, 117

668 file systems

wildcard characters, 133

hierarchy of, 112–114

permissions, 120–121

altering, 123–124

assigning, 121–122

changing file groups, 125

changing file permissions, 125, 147

setting with ACL, 127–128

sgid permissions, 125–127

sticky bit permissions, 126–127

suid permissions, 125–127

viewing/modifying default permissions,
124–125

Files section (xorg.conf files), 35–36

files/folders

apache2.conf files, 447–449

comparisons, 170

compressed files, 191–192, 318

configuration files, version control, 320–322

copying. See also mirroring, 131–132, 147,
316–317

between machines (remote access),
372–373

cp command, 318

rsync command, 319–320

tar command, 317–318

creating in directories, 128–129

disabling access time, 397

displaying contents of, 132

Dotfiles, 322

downloading, 164

encrypted files, 318

/etc/host.conf files, 355

/etc/hosts files, 350–351

/etc/modprobe.conf files, 407

/etc/modprobed files, 407

/etc/netplan/*.yaml files, 353–355

/etc/nsswitch.conf files, 351–352, 355

/etc/resolv.conf files, 352–353

file operator comparisons, 253–254,
257–258

File Roller, 312

finding, 149–151

differences in files, 170

from indexes, 156

similarities in files, 170–171

in Ubuntu, 12

inodes, 155

LDIF files, 583

links, creating, 154–156

listing in directories, 156–158

log files

checking, 287–289

rotating, 289–291

makefiles, 599–600

mirroring. See also copying, 164

moving, 131, 161

network configuration files, 350–355

new user home directories, 208

NFS, 422

clients, 423–424

installing, 422

servers, 422–423

starting/stopping, 422

password files, 212–214

permissions, 204

altering, 123–124

changing file groups, 125

changing permissions, 125, 147

viewing/modifying default permissions,
124–125

printing

contents of, 144–145

file sizes, 148

last lines of files, 163–164

renaming, 131, 161

restoring files from archives, 311–312

669games

Samba, 424

configuring, 425, 427–429

/etc/samba/smb.conf files, 426–429

installing, 425–426

saving files from nonbooting hard disks, 324

sharing

NFS, 422–424

online references, 435

Samba, 424–431

sorting contents of, 162–163

temporary file storage, /tmp directories, 117

time warps, 212

variable data files, /var directory, 117

filesystems

performance tuning, 394–395

synchronizing, 396

find command, 126

finding

directories, 120

files/folders, 149–151

differences in files, 170

from indexes, 156

similarities in files, 170–171

in Ubuntu, 12

groups, 206

software, with APT, 98–99

finger information fields, 213

Firefox, 52–53

firewalls

configuring, 386–388

iptables, 388

nftables, 388

UFW, 386–387

.flac files, 65

flat file databases, 484–485

flexbackup, 316

FlightGear, 87

FlockDB, 519

.flv files, 75

folders. See files/folders

for statements, 259–261

foreground jobs, 174–175

formatting, DVD, 74

Forth, 626

Fortran, 626

FQDN, 448–449, 580

free command, 286

free/open-source software, Office
compatibility, 55

free space, displaying, 286–287

hard disks, 286–287

memory space, 286

Frets on Fire, 86

Frozen Bubble, 84

fstab command, 114

ftp command, 372

full backups

with incremental backups, 307

on a periodic basis, 306–307

tar command, 310–311

functions, shell scripts, 269–270

G

Game Jolt, 82

games, 79, 80

Battle for Wesnoth, 85–86

commercial games, 88

documentation, 89

emulators, 79

FlightGear, 87

Frets on Fire, 86

Frozen Bubble, 84

670 games

Game Jolt, 82

GOG.com, 82

Humble, 82

installing

from Ubuntu repositories, 82–87

video drivers (proprietary), 80

itch.io, 82

kid-friendly games, 88

LGDB, 82

online game sources, 81–82

online references, 89

Scorched 3D, 83–84

Speed Dreams, 87

Steam, 81

SuperTux, 84–85

video drivers (proprietary), installing, 80

Warsow, 82

Windows games, 88–89

gateways

dumb gateways, 343

smart gateways, 343

GCC, 597, 603–604

gdb command, 603

gedit, 59

gedit text editor, 186

genprof, 389

GHC, 627

GID, 204, 448

.gif files, 68

Gigabit Ethernet. See 1000BASE-T networking

GIMP, 66–67

Git, software project management, 610–611

Glade, 607

GNOME, 41

Dash, 43, 44

File Roller, 312

Glade, 607

Mutter, 42

performance tuning, 3933

Power icon, 43, 45

Shell, 43–45

Show Applications icon, 43, 44

GNOME 2, 48

gnome-nettool, 297

GNU

Coreutils, 199

GCC, 597, 603–604

GPL, development of, 23–24

Go programming language, 626–627

GOG.com, 82

Google Chrome, 53–54

Google Chromium, 53–54

Google Cloud, 539

Google Play, 607

GParted, 9–10

gpasswd command, 207

GPG keys

configuring, 637–638

uploading, 638–639

GPL, development of, 23–24

gprof command, 603

GPT, boot process, 274

granting/revoking privileges, PostgreSQL,
500–501

graph stores, 518

graphical database clients, 506

graphical development tools, 605

Eclipse, 606

Glade, 607

IDE, 605–606

KDevelop Client, 606–607

NetBeans, 606

Oracle JDeveloper, 606

SDK, 606

Visual Studio Code, 606

http://GOG.com
http://itch.io
http://GOG.com

671GUI

graphical network configuration tools, 355

graphical process tools, 292

Conky, 292–297

gnome-nettool, 297

vncviewer, 297

Wireshark, 298

graphics, 67–68

.bmp files, 68

converting, 68–69

.gif files, 68

image captures, 69

.jpg files, 68

.pbm files, 69

.pcx files, 68

.pgm files, 69

.png files, 68

.pnm files, 69

.ppm files, 69

.svg files, 68

.tif files, 68

graphics manipulation applications, 66, 70

Blender, 70, 77

CinePaint, 70

darktable, 70

digiKam, 70

GIMP, 66–67

Hugin, 70

Inkscape, 70

Krita, 70

nautilus-image converter, 69

netpbm tools, 69

Photoshop, 67

POV-Ray, 70

Radiance, 70

Shotwell Photo Manager, 66, 71

Simple Scan, 67

Xara Xtreme, 70

grep command, 151–152, 234

Groovy, 627

Group directive (Apache web server), 448

group management, 205

finding groups, 206

listing groups, 205–206

tools, 206–207

groupadd command, 207

groupdel command, 207

groupmod command, 207

groups command, 224

grpck command, 207

GRUB

recovery mode, 196

reinstalling, 195–196

Ubuntu bootups, troubleshooting, 195–196

GRUB2

boot loaders, restoring, 323–324

installing, 5

Guacamole, 377

GUI, 31, 41–42

Budgie, 49

GNOME, 41

Dash, 43, 44

Mutter, 42

Power icon, 43, 45

Shell, 43–45

Show Applications icon, 43, 44

GNOME 2, 48

KDE, 45

Kubuntu, 45–46

Kylin, 50

local GUI clients, database access, 503

Lubuntu, 47–48

LXDE, 47–48

MATE, 48–49

MySQLGUI, 506

672 GUI

pgAdmin, 506

Ubuntu MATE, 48–49

Wayland, 32

widgets, 42

X server, 32, 33

benefits of, 33–34

components of, 33–34

display manager, 39

display managers, 33

distributed processing, 32–33

online references, 40

starting, 39

terminal clients, 33–34

/usr directory, 33

window manager, 33–34

xorg.conf files, 33–39

Xfce, 46

Xubuntu, 46–47

gunzip command, 191

gzip command, 191

H

hackers, 380

hard disks

disk quotas, 287

erasing, Ubuntu installations, 9

free space, displaying, 286–287

nonbooting disks, saving files from, 324

printing, disk usage, 148

Ubuntu installations, erasing hard disks, 9

hard drives (external), backups, 308

hard links, 155–156

hardware

Mac hardware, Ubuntu compatibility, 3

network hardware, initializing, 343–344

/etc/modprobe.conf files, 343–344

kernel modules, 344–345

modprobe command, 344–345

Ubuntu specifications

Mac hardware, 3

researching, 2–16

Haskell, 627

HBase, 518

hdparm command, 395–396

Heimer, 61

help, Ubuntu online references, 22

history of commands, viewing, 197

hitsujiTMO, 272

home applications, Ubuntu for, 28

home directories, 208

/home directory, 115

home users, backup strategies, 304–305

Horowitz, Eliot, 516

hosting (virtual), Apache web server, 461–462

hostnames, 589

hosts (networks)

adding to /etc/hosts files, 350–351

configuring with DHCP, 359–361

Nginx web server, 473–474

HOWTO documents, Linux, 29

HPC, 598

.htaccess configuration files, Apache web
server, 450, 469

AllowOverrides directives, 451–452

Options directives, 451

HTTP servers

Caddy, 482

Cherokee, 480–481

Jetty, 481

lighttpd, 479–480

online references, 482

thttpd, 481–482

673installing

Tomcat, 482

Wildfly, 482

Yaws, 480

HTTPS

Apache web server, 464–466

Nginx web server, 476–477

hubs, 342

Hugin, 70

Humble, 82

hwclock command, 19–20

hybrid clouds, 539–540

HyperGraphDB, 519

I

i2c-dev devices, 407

IaaS, 537

ID

GID, 204, 448

PID, 164, 175–176, 237, 274, 566

sgid permissions, 125–127

suid permissions, 125–127

UID, 204, 448

IDE, 605–606

ide.txt files, 404

if statements, 265–266

ifconfig command, 346–348, 369, 385

image captures, 69

image file formats, 67–68

.bmp files, 68

.gif files, 68

.jpg files, 68

.pbm files, 69

.pcx files, 68

.pgm files, 69

.png files, 68

.pnm files, 69

.ppm files, 69

.svg files, 68

.tif files, 68

image scanners, 67

incremental backups

full backups with incremental backups, 307

tar command, 310–311

indexes, finding files from, 156

init systems, 272

initializing

data directories, PostgreSQL, 498

network hardware, 343–344

/etc/modprobe.conf files, 344

kernel modules, 344–345

modprobe command, 344–345

initrd.txt files, 404

Inkscape, 70

inodes, 155

InputDevice section (xorg.conf files), 36–37

input/output of commands

redirecting, 167–170

redirecting with shell command line, 236

standard input/output, 167, 169

input strings, searches, 151–152

inserting data into SQL tables, 489–490

insmod command, 406

installing

Android Studio, 609

Apache web server, 444

DHCP activation at installation, 357

DHCP software, 358–359

games, from Ubuntu repositories, 82–87

GRUB, 195–196

GRUB2, 5

NFS, 422

Nginx web server, 469–470

674 installing

Samba, 425–426

Squid, 564

Ubuntu, 196

32-bit Ubuntu, 4–5

64-bit Ubuntu, 4–5

backups, 7

boot loaders, 5–6

cloud computing, 536

downloading updates during
installation, 8

dual-boot systems, 6

DVD installations, 2, 6–11

erasing hard disks during installation, 9

flavors of Ubuntu, 2–3

language selection, 7–8

Mac hardware compatibility, 3

partition strategies, 5

partitions, 5, 9

password creation, 10

preinstallation process, 1–2

researching hardware specifications,
2–16

storage drives, 9

UEFI, 6

USB thumb drive installations, 3, 6–11

Ubuntu development packages

code packaging, 640–643

packages, 637–638, 640–643

video drivers (proprietary), 80

virt-install, 525–526

instances, 533

internal attacks, 379–380

Internet, 51–52

Chrome, 53–54

Chromium, 53–54

connections, 363–364

checking, 328–330

common configuration information,
364–365

dial-up access, 367–368

DSL access, 365

ISP, 364–365

Linux commands, 369

online references, 369–370

PPP access, 364

PPPoE, 364

troubleshooting, 368–369

Ubuntu commands, 369

dummy interfaces, 327

Firefox, 52–53

introduction to, 51

ISP, 364–365

localhost interfaces, 326

checking availability of, 326

configuring manually, 327

I/O transfer speeds, 396

IP addressing

IPv4 addressing, 331–332

IPv6 addressing, 332, 334–336

Squid, specifying client IP addresses,
569–570

ip command, 348–349

IP masquerading, 332–333

ip route command, 346, 349

iptables, 388

ISP, 364–365

itch.io, 82

iwconfig command, 369

J

Java programming, 604, 627–628

JVM, 604

OpenJDK, 604–605

JavaScript, 628

JDeveloper (Oracle), 606

http://itch.io

Kylin 675

Jetty, 481

jobs

background jobs, 174–175

foreground jobs, 174–175

listing, 173

moving, to background/foreground, 174–175

parallel, executing in, 181–182

running repeatedly, 229–231

jobs command, 173

.jpg files, 68

JSON, 628

Juju, 540–541, 545

JVM, 604

K

kate text editor, 186

kdat, 312–313

KDE, 45

kdat, 312–313

KDE ark archiving tool, 312–313

monitoring tools, 298

performance tuning, 3933

Kdenlive, 77

KDevelop Client, 606–607

kdf, 298

kedit text editor, 186

kernel ring buffers, reading contents of, 200

kernels, 401, 402

Android mobile development, 608

compiling, 418–419

configuring, 403, 414–417

custom kernels, 402

devices.txt files, 403

directories, 403–405

first kernel, 402

ide.txt files, 404

initrd.txt files, 404

kernel oops, 419

kernel-parameters.txt files, 404

KVM, 523–526

loading, 274

loading process, 344–345

make utility, 404

modules, 406–408

numbering schema, 24

obtaining sources, 409–410

online references, 419–420

patching, 410–411

performance tuning, 398–399

/proc directory, 115–117

RAM disk images, creating, 418

recompiling, 408–409

security, 379

source tree, 403–405

sysrq.txt files, 404

troubleshooting, 418–419

types of, 405–406

Ubuntu kernels, 401–402

versions of, 409

key-based logins, 373–375

key/value stores, 512

kid-friendly games, 88

Kile, 61

kill command, 283–284

killall command, 284

Kotlin, 628–629

Krita, 70

ksh, 226

ksysguard, 298

Kubernetes, 534

Kubuntu, 45–46

KVM, 523–526

Kylin, 50

LAMP676

L

LAMP, 437–439

LAN, network printers, 431–432

Landscape, 541, 545

languages

procedural languages, relational databases,
494

programming languages, 621–622

Ada, 622

Clojure, 622–623

COBOL, 623–624

D, 624

Dart, 624

Elixir, 625

Elm, 625

Erlang, 625

Forth, 626

Fortran, 626

Go, 626–627

Groovy, 627

Haskell, 627

Java, 627–628

JavaScript, 628

Kotlin, 628–629

Lisp, 629

Lua, 629

Mono, 629–630

OCaml, 630

online references, 633–634

Perl, 630

PHP, 631

Python, 631

Raku, 631

Ruby, 631–632

Rust, 632

Scala, 632

Scratch, 632–633

Vala, 633

selecting, Ubuntu installations, 7–8

large enterprises, backup strategies, 305

last command, 212

last lines of files, printing, 163–164

lastlog command, 289

later, scheduling tasks for, 227–229

LaTeX, 60

Launchpad, 614–615

accounts, creating, 638

GPG keys, 638–639

SSH keys, 639

work environments, configuring, 638–640

LDAP, 579–580

administration, 584–585

configuring

clients, 584

servers, 580

directories, populating, 582–583

ldap-utils package, 584–585

LDIF files, 583

online references, 585

schemas, creating, 580–581

Thunderbird, LDAP client configuration, 584

LDIF files, 583

LEMP, 439

less command, 132, 152–154

LGDB, 82

libraries (software), Android mobile develop-
ment, 608

LibreOffice

brief history of, 57–58

components of, 56–57

Office compatibility, 55

VBA, 55

lighttpd, 479–480

677Linux

Lightworks, 77

links

files/folders, creating links, 154–156

hard links, 155–156

symlinks, 154–156

Linux

C programming, 598–599

command line

&& operators, 180, 198

! ! operator, 196–197

| | operator, 198

accessing, 107

apropos command, 112

background jobs, 174–175

basic commands, 143–144

BIOS, 195

boolean operators, 180

byobu, 192–193

CD creation, 72–73

changing directories, 145–147

command shortcuts, 198

commands list, 143–144

commonly used commands/programs,
139

compressed files, 191–192

confining scripts to directories, 198–199

copying files, 147

Coreutils, 199

creating links, 154–156

defined, 106–107

directories, 112–117

downloading files/folders, 164

DVD creation, 73–75

environment variables, 182–185

executing jobs in parallel, 181–182

file comparisons, 170

file systems, 112–114

finding differences in files, 170

finding files, 149–151

finding files from indexes, 156

finding similarities in files, 170–171

foreground jobs, 174–175

GRUB, 195–196

input string searches, 151–152

kernel ring buffers, 200

listing files in directories, 156–158

listing jobs, 173

listing processes, 171–173

listing system information, 158–159

logging out of, 108

manual pages, 111–112, 159–160

multiple terminal operation, 192–193

online references, 139, 165, 200

piping commands, 178–180

polite system resets, 194–195

printing directory sizes, 148

printing disk usage, 148

printing file contents, 144–145

printing resource usage, 175–177

prioritizing processes, 177–178

reading documentation, 111–112

reasons for using, 142–143

rebooting systems, 138–139

redirecting input/output of commands,
167–170

REISUB, 194–195

remote computer logins, 108–109

repeating text, 148–149

rerunning previous commands, 196–197

root accounts, 110–111, 133–134

running background processes, 173–174

running commands in sequence,
180–181

shutting down systems, 137–138

678 Linux

standard input/output of commands, 169

substituting processes, 181

super user accounts, 109–111, 133–134

text editors, 185–191

text-based logins, 107–108

troubleshooting sudo command,
134–136

troubleshooting Ubuntu bootups, 195

user accounts, 109–111, 136–137

viewing command history, 197

whereis command, 112

daemons, 25

Debian Linux, 24

development of, 23–25

directories, 112–114

/bin directory, 114

changing, 120, 145–147

children directories, 118

copying files, 131, 147

creating, 129, 160

creating files, 128–129

deleting, 129–131, 161–162

displaying contents of files, 132

/etc directory, 114

finding current directory, 120

finding files, 147

/home directory, 115

listing contents of, 118–119

listing files in directories, 156–158

moving files, 131, 161

parent directories, 118

permissions, 122–127

printing directory sizes, 148

printing last lines of files, 163–164

/proc directory, 115–117

regular expressions, 133

renaming files, 131, 161

/sbin directory, 114

sorting file contents, 162–163

/tmp directories, 117

/usr directory, 117

/var directory, 117

wildcard characters, 133

distributions

included software, 24–25

versions of, 24

documentation, 28–30

file systems

directories, 112–120

hierarchy of, 112–114

permissions, 120–128

filesystems

performance tuning, 394–395

synchronizing, 396

GNU GPL, development of, 23–24

HOWTO documents, 29

kernels, 401, 402

Android mobile development, 608

compiling, 418–419

configuring, 403, 414–417

creating RAM disk images, 418

custom kernels, 402

devices.txt files, 403

directories, 403–405

first kernel, 402

ide.txt files, 404

initrd.txt files, 404

kernel oops, 419

kernel-parameters.txt files, 404

loading, 274

make utility, 404

modules, 406–408

obtaining sources, 409–410

online references, 419–420

patching, 410–411

performance tuning, 398–399

679logname command

recompiling, 408–409

security, 379

source tree, 403–405

sysrq.txt files, 404

troubleshooting, 418–419

types of, 405–406

versions of, 409

location of commands, printing, 164

manual pages, 29–30

network connectivity commands, 369

numbering schema, 24

online references, 23

paging through output, 152–154

reasons for using, 25–26

rebooting systems, 138–139

security, 385

SELinux, 388

shells, 25

shutting down systems, 137–138

user accounts

creating, 136–137

deleting, 137

video, viewing, 76

viruses, 385

web resources, 23

X server, 32, 33

benefits of, 33–34

components of, 33–34

display manager, 39

display managers, 33

distributed processing, 32–33

online references, 40

starting, 39

terminal clients, 33–34

/usr directory, 33

window manager, 33–34

xorg.conf files, 33–39

Lisp, 629

Listen directive (Apache web server), 447

listing

contents of directories, 118–119

files/folders in directories, 156–158

groups, 205–206

jobs, 173

processes, 171–173

system information, 158–159

units (services), 276

LMMS, 76

ln command, 154–156

loading process

kernels, 274, 344–345

modprobe command, 344–345

modules, 408

local bash shells, configuring, 640

local GUI clients, database access, 503

localhost interfaces, 326

checking availability of, 326

configuring manually, 327

locate command, 156

location of commands, printing, 164

locking

data, relational databases, 492

users out of accounts, 209

log files

checking, 287–289

rotating, 289–291

logging, Apache web server, 463–464

logging out of command line, 108

logical operators, comparisons, 255, 259

logins

command line

from remote computers, 108–109

text-based logins, 107–108

key-based logins, 373–375

logname command, 224

680 loopback interfaces

loopback interfaces. See localhost interfaces

loops (endless), 261–262

loss of data, 302

lp command, 435

lpc command, 435

lpq command, 435

lprm command, 435

lpstat command, 435

ls command, 118–119, 156–158

lsblk command, 158–159

lshw command, 158–159

lsmod command, 158–159, 406–408

lspci command, 158–159

Lua, 629

Lubuntu, 47–48

lusers, 205

LXC, 532

LXD, 533

LXDE, 47–48

LyX, 60

M

MaaS, 537

Mac hardware, Ubuntu installations, 3

MAC systems, 388

macros, 600–601

Mail Delivery Agent (MDA), 560-562

Mail Transport Agent (MTA), 548

Maildir Versus Mbox, 550

make utility, 404

makefiles, 599–600

managing

Apache web server

.htaccess configuration files, 450–452,
469

access control, 452, 455

configuring, 446–449, 450–452

development of, 443–444

file system authentication, 45–455

HTTPS, 464–466

installing, 444

logging, 463–464

modules, 455–461

MPM, 449–450

online references, 466

overview of, 444

runtime servers, 446–449

security, 444, 452–455

starting/stopping, 444–446

threads, 468

virtual hosting, 461–462

configurations, 102

dotdee, 102–103

Snappy package manager, 103–104

Ubuntu Core, 103

disk quotas, 222

groups, 205

finding groups, 206

listing groups, 205–206

tools, 206–207

modules, 406–408

Nginx web server, 467–469

building sources, 469–470

configuring, 470–473

HTTPS, 476–477

installing, 469–470

modules, 475

online references, 477

PHP, 474–475

uninstalling, 470

virtual hosting, 473–474

passwords, 212, 216

changing in batches, 216–217

password files, 212–214

shadow passwords, 214–215

system password policies, 212

mind maps 681

sets of servers, 543

Ansible, 544

CFEngine, 545

Chef, 544

Juju, 545

Landscape, 545

online references, 545

Puppet, 543–544

SaltStack, 544–545

software

APT, 95–100

apt-get, 99–100

compiling software, 100–102

configuration management, 102–104

online references, 104

Software Updater, 94–95

Synaptic, 92–94

Ubuntu Software, 91

software project management

Bazaar, 611–612

Git, 610–611

Subversion, 612–613

system management tools, 292

Conky, 292–297

gnome-nettool, 297

System Monitor, 292

vncviewer, 297

Wireshark, 298

system resource management

APT, 95–100

apt-get, 99–100

compiling software, 100–102

configuration management, 102–104

online references, 104

Software Updater, 94–95

Synaptic, 92–94

Ubuntu Software, 91

user accounts, 201–202, 204, 207

adding accounts, 209–211

administration privileges, 217

BOFH, 205

changing identities, 217–219

disk quotas, 222–223

file permissions, 204

GID, 204

group management, 205–207

locking users out of accounts, 209

lusers, 205

monitoring user activity, 211–212

online references, 224

passwords, 202, 212–217

root privileges, 219–222

root user accounts, 202–203

stereotypes, 205

super user accounts, 202, 203

system user accounts, 203–204

tools, 208–209

Ubuntu commands, 223–224

UID, 204

usernames, 211

manual pages, 111–112

Linux, 29–30

reading, 159–160

MATE, 48–49

MBR, boot process, 274

MEAN, 440–441

Memcached, 513–514

MemcacheDB, 514

memory, displaying available space, 286

Merriman, Dwight, 509

message block printing, 432–433

microservice architectures, 531

Microsoft Azure, 539

mind maps, 61

mirroring data682

mirroring data, 307

mirroring. See also copying, 164

Mixxx, 76

mkdir command, 129, 160

mkisofs command, 72

"moat mentality", 333

mobile development, Android, 607

Android Runtime, 608

Android Studio, 609

Application Framework, 608–609

applications, 609

ARM processors, 608

Google Play, 607

Linux kernels, 608

RISC processors, 608

modifying default file permissions, 124–125

modinfo command, 407

modprobe command, 344–345, 406–407

modprobe.d/ command, 114

Module section (xorg.conf files), 36

modules, 406–408

Apache web server, 455–461

MPM, Apache web server, 449–450

Nginx web server, 475

Mojo, 541

MongoDB, 516

Monitor section (xorg.conf files), 37

monitoring

console-based monitoring, 281–283

enterprise servers, 298–299

KDE monitoring tools, 298

systems

checking log files, 287–289

Conky, 292–297

console-based monitoring, 281–283

disk quotas, 287

displaying free hard disk space, 286

displaying used memory, 286

enterprise servers, 298–299

graphical process tools, 292–298

KDE monitoring tools, 298

killing processes, 283–284

online references, 299

priority scheduling, 285

rotating log files, 289–291

system management tools, 292–298

System Monitor, 292

user activity, 211–212

Mono, 629–630

motd files, 138

mounting, Samba shares, 430–431

.mov files, 75

moving

files/folders, 131, 161

jobs

background jobs, 174–175

to background/foreground, 174–175

foreground jobs, 174–175

.mp3 files, 65

.mp4 files, 65

.mpeg files, 75

MPM, Apache web server, 449–450

MS Office

CrossOver Office, 61

free/open-source software compatibility, 55

LibreOffice compatibility, 55

VBA, 55

MS-DOS, 107

mtr command, Internet connections, checking,
329–330

multicasting, 338

multimedia applications

ALSA, 64

CD/DVD burning applications

683MySQL

Brasero, 71

Linux command line, CD creation, 72–73

Linux command line, DVD creation,
73–75

Ubuntu support, 71

graphics manipulation applications, 66, 70

Blender, 70, 77

CinePaint, 70

darktable, 70

digiKam, 70

GIMP, 66–67

Hugin, 70

Inkscape, 70

Krita, 70

nautilus-image converter, 69

netpbm tools, 69

Photoshop, 67

POV-Ray, 70

Radiance, 70

Shotwell Photo Manager, 66, 71

Simple Scan, 67

Xara Xtreme, 70

music applications, 65

Banshee, 66

Rhythmbox, 66

Sound Juicer, 66

online references, 77

OSS, 64

PulseAudio, 64

recording/editing sound, 76

sound cards, 63–64

video editing applications, 77

Avidemux, 77

Blender, 77

Cinelerra, 77

DaVinci Resolve, 77

Kdenlive, 77

Lightworks, 77

OpenShot Video Editor, 77

PiTiVi, 77

Shotcut, 77

multiple jobs, executing in parallel, 181–182

multiple terminal operation, byobu, 192–193

music applications, 65

Banshee, 66

Rhythmbox, 66

Sound Juicer, 66

Mutter, 42

mv command, 131, 161

MX records, 591

MySQL, 483

ACID compliance, 493–494

command line client, 504–505

configuring, 494–495

creating databases, 496–497

data integrity, 493–494

data locking, 492–493

database access, 501

local GUI clients, 503

SSH, 501–502

web browsers, 503

inserting data into tables, 490

mysql command, 506

mysqladmin command, 506

mysqldump command, 506

MySQLGUI, 506

online references, 493, 507

PostgreSQL versus, 492–494

procedural languages, 494

retrieving data from tables, 490–492

root user passwords, 495

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

mysql command684

mysql command, 506

mysqladmin command, 506

mysqldump command, 506

MySQLGUI, 506

N

Nagios, 298

name servers

DNS

online references, 595

records, 590–593

requests, 589–590

servers, 588, 589–590, 593–595

setting, 352–355

naming services, 351–352

nano text editor, 185, 186–187

NAS, 308

NAT, 332

nautilus-image converter, 69

needs assessments, backup strategies,
303–304

Neo4j, 518

neofetch command, 158–159

NetBeans, 606

NetBoot, boot process, 274

NetCat, 330

netmasks. See subnet masks

netpbm tools, 68–69

netstat command, 346, 350

networks, 337

10BASE-T networking, 339

10G Ethernet networking, 340

50G Ethernet networking, 340

100BASE-T networking, 339

1000BASE-T networking, 339

accessing, chains, 387

bridges, 343, 524–525

broadcasting, 338

cabling, 340

fiber-optic cabling, 342

UTP cabling, 341

chains, 387

command line network interface configuration

ifconfig command, 346–348

ip command, 348–349

ip route command, 346, 349

netstat command, 346, 350

configuring

command line network interfaces,
345–350

configuration files, 350–355

DHCP, 355–361

/etc/host.conf files, 355

/etc/hosts files, 350–351

/etc/netplan/*.yaml files, 353–355

/etc/nsswitch.conf files, 351–352, 355

/etc/resolv.conf files, 352–353

graphical configuration tools, 355

nm-connection-editor, 345–346

connections, troubleshooting, 342

DHCP, 361

activating, 357

configuring hosts, 359–361

installing/configuring software, 358–359

DNS search orders, 355

dummy interfaces, 327

FDDI networks, 340

fiber-optic networks, 340, 342

gateways

dumb gateways, 343

smart gateways, 343

hosts

adding to /etc/hosts files, 350–351

configuring with DHCP, 359–361

685Nginx web server

hubs, 342

initializing hardware, 343–344

/etc/modprobe.conf files, 344

kernel modules, 344–345

modprobe command, 344–345

Internet connections, 363–364

checking, 328–330

common configuration information,
364–365

dial-up access, 367–368

DSL access, 365

ISP, 364–365

Linux commands, 369

PPP access, 364

PPPoE, 364

troubleshooting, 342

Ubuntu commands, 369

IP masquerading, 332–333

IPv4 addressing, 331–332

IPv6 addressing, 332, 334–336

LAN, network printers, 431–432

localhost interfaces, 326

checking availability of, 326

configuring manually, 327

"moat mentality", 333

multicasting, 338

name servers, 352–355

naming services, 351–352

NAT, 332

NIC, 338–340

online references, 369–370

printers, 431

CUPS GUI, 431–434

LAN, 431–432

online references, 435

server message block printing, 432–433

troubleshooting, 434–435

routers, 343

storage, backups, 308

subnet masks, 337–338

subnetting, 337–338

switches, 342

TCP/IP, 330

addressing, 331–332

IP masquerading, 332–333

ports, 333–334

Token Ring networking, 339

troubleshooting, connections, 342

Ubuntu, 330

unicast addressing, 338

VPN, 563, 572–573

configuring clients, 573–575

configuring servers, 575–577

online references, 577

wireless networks, 361, 382–383

configuring, 20

interfaces, 340

selecting protocols, 363

Ubuntu support, 361–363

New Relic, 299

new shell programs, running, 239–240

NewSQL, 511

newusers command, 224

NFS, 422

configuring

clients, 423–424

servers, 422–423

installing, 422

starting/stopping, 422

nftables, 388

Nginx web server, 467–469

building sources, 469–470

configuring, 470–473

HTTPS, 476–477

686 Nginx web server

installing, 469–470

modules, 475

online references, 477

PHP, 474–475

uninstalling, 470

virtual hosting, 473–474

NIC, 338–339

10BASE-T networking, 339

10G Ethernet networking, 340

50G Ethernet networking, 340

100BASE-T networking, 339

1000BASE-T networking, 339

fiber-optic networks, 340

promiscuous mode, 385

security, 385

Token Ring networking, 339

wireless network interfaces, 340

nice command, 177–178

Nmap, 330, 382

nm-connection-editor, 345–346, 369

nonbooting hard disks, saving files from, 324

NoSQL databases, 485, 509–510

advantages of, 510, 511

BaseX, 517

Berkeley DB, 512, 579

BigTable, 517

Cassandra, 513

CouchDB, 515–516

disadvantages of, 510–511

document stores, 514–515

etcd, 513

FlockDB, 519

graph stores, 518

HBase, 518

HyperGraphDB, 519

key/value stores, 512

Memcached, 513–514

MemcacheDB, 514

MongoDB, 516

Neo4j, 518

NewSQL and, 511

online references, 519–520

OrientDB, 519

Redis, 514

Riak, 514

Scylla, 514

UnQL, 511

wide column stores, 517

NS records, 591

numbering schema, Linux kernels, 24

numeric comparisons, 252–253, 256–257

O

OCaml, 630

Office

CrossOver Office, 61

free/open-source software compatibility, 55

LibreOffice compatibility, 55

VBA, 55

.ogg files, 65, 66

.ogv/.ogg files, 75

online references

Apache web server, 466

backups, 324

BIND, 595

boot process, 278–279

cloud computing, 541

command line, 139, 165, 200

containers, 534

desktop environments, 50

DNS, 595

file sharing, 435

games, 89

HTTP servers, 482

687packages

Internet connections, 369–370

kernels, 419–420

LDAP, 585

Linux, 23, 28

multimedia applications, 77

MySQL, 493, 507

network printers, 435

networks, 369–370

Nginx web server, 477

NoSQL databases, 519–520

performance tuning, 396–400

PostgreSQL, 493, 507

programming, 618–619

programming languages, 633–634

QA, 647

remote access, 377–378

security, 391–392

sets of servers, 545

shell scripts, 270

software management, 104

sound, 65

Squid, 577

system monitoring, 299

system resource management, 104

testing, 647

Ubuntu, 22, 28, 30

Ubuntu development, 643

user accounts, 224

virtualization, 529

VPN, 577

Wayland, 32

web browsers, 54

web server stacks, 441

X server, 40

OpenJDK, 604–605

OpenLDAP. See LDAP

OpenShot Video Editor, 77

open-source/free software, Office
compatibility, 55

OpenSSH. See SSH

OpenStack, 538–539

OR operators, 491–492

optimizing performance, 393–394

badblocks command, 397

e2fsck command, 397

file access time, disabling, 397

filesystems, 394–395

GNOME, 3933

hdparm command, 395–396

I/O transfer speeds, 396

KDE, 3933

kernels, 398–399

online references, 396–400

storage disks, 394

tune2fs command, 396–397

Tuned Project, 396–400

Options directives (Apache web server), 451

Oracle JDeveloper, 606

OrientDB, 519

OSS, 64

output

commands

redirecting, 167–170

redirecting with shell command line, 236

standard input/output, 167, 169

paging through, 152–154

P

PaaS, 537

packages

PPA, 615

snap packages, 615–616

688 packages

Ubuntu development

code packaging, 640–643

configuring, 637–638

installing, 637–638

packet writing, Linux command line,
DVD creation, 74–75

paging through output, 152–154

PAM, 215–216

parallel, executing jobs in, 181–182

parameters (positional), 243

accessing/retrieving variables, 244

example of, 243–244

parent directories, 118

partitions

planning, Ubuntu installations, 5

Ubuntu installations, 5

passwd command, 114, 209, 224

passwords, 212, 216, 383–384

brute-forcing, 373–374

changing in batches, 216–217

MySQL root users, 495

password files, 212–214

shadow passwords, 214–215

system password policies, 212

Ubuntu, 10

user accounts, 202

patching kernels, 410–411

pattern-matching, 235

.pbm files, 69

pbuilder, 638

.pcx files, 68

pdcsh, 226

PDF, 58

pdfedit, 58

pdksh, comparisons of expressions, 250–251

file operators, 253–254

logical operators, 255

numeric comparisons, 252–253

strings, 251–252

performance tuning, 393–394

badblocks command, 397

e2fsck command, 397

file access time, disabling, 397

filesystems, 394–395

GNOME, 3933

hdparm command, 395–396

HPC, 598

I/O transfer speeds, 396

KDE, 3933

kernels, 398–399

online references, 396–400

storage disks, 394

tune2fs command, 396–397

Tuned Project, 396–400

periodic basis, full backups on, 306–307

peripherals

digital cameras, 70

scanners, 67

Perl, 630

permissions

directories, 122–127

file systems, 120–128

altering permissions, 123–124

assigning permissions, 121–122

changing file groups, 125

changing file permissions, 125, 147

viewing/modifying default permissions,
124–125

files/folders, 204

altering permissions, 123–124

changing file groups, 125

changing permissions, 125, 147

viewing/modifying default permissions,
124–125

setting with ACL, 127–128

sgid permissions, 125–127

sticky bit permissions, 126–127

suid permissions, 125–127

POV-Ray 689

pgAdmin, 506

.pgm files, 69

Photoshop, 67

PHP, 474–475, 631

physical security, 383–384

PID, 164, 175–176, 237, 274, 566

ping command, checking Internet connections,
328–329

ping6 command, checking Internet connections,
328–329

pipelines (CI/CD), 613

piping commands, 142–143, 178–180, 237

PiTiVi, 77

planning

backup strategies

assessing needs/resources, 303–304

choosing a strategy, 308

choosing hardware/media, 308–309

evaluating, 304–306

full backups on a periodic basis,
306–307

full backups with incremental backups,
307

home users, 304–305

incremental backups, 307

inheriting, 306

large enterprises, 305

mirroring data, 307

RAID arrays, 307

simple backup strategies, 306

small enterprises, 305

small offices, 305

disaster recovery plans, 390–391

partition strategies, Ubuntu installations, 5

Ubuntu installations, 1–2

flavors of Ubuntu, 2–3

partition strategies, 5

researching hardware specifications,
2–16

.png files, 68

.pnm files, 69

polite system resets, 194–195

ports

TCP/IP networking, 333–334

Ubuntu network ports, 421

uplink ports, 342

positional arguments, 242

positional parameters, 243

accessing/retrieving variables, 244

example of, 243–244

Postfix, 552–556

PostgreSQL

ACID compliance, 493–494

command line client, 505–506

configuring, 498

creating

database users, 499–500

databases, 499

data integrity, 493–494

data locking, 492

database access, 501–503

local GUI clients, 503

SSH, 501–502

web browsers, 503

deleting database users, 500

granting/revoking privileges, 500–501

initializing data directories, 498

MySQL versus, 492–494

online references, 493, 507

pgAdmin, 506

procedural languages, 494

retrieving data from tables, 491

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

POV-Ray, 70

Power icon (GNOME)690

Power icon (GNOME), 43, 45

power management, configuring, in Ubuntu,
18–19

PPA, 615

.ppm files, 69

PPP Internet access, configuring, 364

PPPoE, 366–367

preformatted DVD, 74

preinstallation processes, Ubuntu, 1–2

flavors of Ubuntu, 2–3

hardware specifications, 2–16

previous commands, rerunning, 196–197

printing

all-in-one (Print/Fax/Scan) devices, 435

commands, location of, 164

directory sizes, 148

disk usage, 148

file contents, 144–145

file sizes, 148

last lines of files, 163–164

network printers, 431

CUPS GUI, 431–434

LAN, 431–432

online references, 435

server message block printing, 432–433

troubleshooting, 434–435

resource usage, 175–177

server message block printing, 432–433

sharing printers, Samba, 428–429

Ubuntu printer configurations, 18

prioritizing

processes, 177–178

scheduling priorities, 285

private clouds, 540

privileges

administration privileges, 217

granting/revoking with PostgreSQL, 500–501

root privileges, 219–222

user accounts, 109–111

/proc directory, 115–117

procedural languages, relational databases, 494

processes

killing, 283–284

listing, 171–173

prioritizing, 177–178

substituting, 181

processors, Android mobile development, 608

productivity applications

Celtx, 59

CrossOver Office, 61

defined, 56

gedit, 59

Heimer, 61

Kile, 61

LaTeX, 60

LibreOffice

brief history of, 57–58

components of, 56–57

Office compatibility, 55

VBA, 55

LyX, 60

online references, 61

pdfedit, 58

Publican, 59–60

Texmaker, 60

users (typical), 56

Windows, 61

Wine, 61

XML Copy Editor, 60

productivity suites, LibreOffice, Office
compatibility, 55

programming

Android mobile development, 607

Android Runtime, 608

Android Studio, 609

691programming

Application Framework, 608–609

applications, 609

ARM processors, 608

Google Play, 607

Linux kernels, 608

RISC processors, 608

Bikeshed, 616–618

C, 597–599

autoconf command, 601–602

building programs, 599–601

checking source code, 602–603

configuring code, 601–602

debugging tools, 602–603

dependency checking, 599–600

GCC, 603–604

gdb command, 603

gprof command, 603

macros, 600–601

makefile targets, 600–601

makefiles, 599–600

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

C++597–598, 599

autoconf command, 601–602

building programs, 599–601

checking source code, 602–603

configuring code, 601–602

debugging tools, 602–603

dependency checking, 599–600

GCC, 603–604

gdb command, 603

gprof command, 603

macros, 600–601

makefile targets, 600–601

makefiles, 599–600

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

Chaos Engineering, 614

CI/CD tools, 613–614

GCC, 597

graphical development tools, 605

Eclipse, 606

Glade, 607

IDE, 605–606

KDevelop Client, 606–607

NetBeans, 606

Oracle JDeveloper, 606

SDK, 606

Visual Studio Code, 606

Java programming, 604

JVM, 604

OpenJDK, 604–605

languages, 621–622

Ada, 622

Clojure, 622–623

COBOL, 623–624

D, 624

Dart, 624

Elixir, 625

Elm, 625

Erlang, 625

Forth, 626

Fortran, 626

Go, 626–627

Groovy, 627

Haskell, 627

Java, 627–628

JavaScript, 628

Kotlin, 628–629

Lisp, 629

Lua, 629

Mono, 629–630

692 programming

OCaml, 630

online references, 633–634

Perl, 630

PHP, 631

Python, 631

Raku, 631

Ruby, 631–632

Rust, 632

Scala, 632

Scratch, 632–633

Vala, 633

online references, 618–619

snap packages, 615–616

software project management

Bazaar, 611–612

Git, 610–611

Subversion, 612–613

Ubuntu Make, 615

version control systems, 609–610

promiscuous mode (NIC), 385

proxy servers

defined, 563–564

Squid, 563–564

ACL, 565–569

configuring, 570–572

configuring clients, 564–565

installing, 564

online references, 577

specifying client IP addresses, 569–570

ps command, 171–173

psql command, 506

public clouds, 538, 539

Publican, 59–60

PulseAudio, 64

Puppet, 543–544

/pwd command, 120

PXE, boot process, 274

Python, 631

Q

QA

Bug Squad, 647

online references, 647

Ubuntu QA Teams, 646–647

Qmail, 549–550

.qt files, 75

quotas (disk), 287

configuring, 223

implementing, 222–223

managing, 222

R

Radiance, 70

RAID arrays, 307

Raku, 631

RAM disk images (kernels), creating, 418

RARP, 338

.raw files, 65

Raymond, Eric, 141–142

rcp command, 372

RDP, VirtualBox, 528

rebooting systems, 138–139

recompiling kernels, 408–409

recording/editing sound, 76

Ardour, 76

Audacity, 76

Cecilia, 76

LMMS, 76

Mixxx, 76

Rosegarden, 76

recovery

data, 323

GRUB2 boot loaders, restoring,
323–324

693relational databases

saving files from nonbooting hard disks,
324

Ubuntu Rescue disc, 323

disaster recovery plans, 390–391

recovery mode (GRUB), 196

reddit.com, 272

redirecting input/output of commands,
167–170, 236

Redis, 514

references (online)

Apache web server, 466

BIND, 595

boot process, 278–279

cloud computing, 541

command line, 139, 165, 200

containers, 534

desktop environments, 50

DNS, 595

file sharing, 435

games, 89

HTTP servers, 482

Internet connections, 369–370

kernels, 419–420

LDAP, 585

Linux, 23, 28

multimedia applications, 77

MySQL, 493, 507

network printers, 435

networks, 369–370

Nginx web server, 477

NoSQL databases, 519–520

online references, 324

performance tuning, 396–400

PostgreSQL, 493, 507

programming, 618–619

programming languages, 633–634

QA, 647

remote access, 377–378

security, 391–392

sets of servers, 545

shell scripts, 270

software management, 104

sound, 65

Squid, 577

system monitoring, 299

system resource management, 104

testing, 647

Ubuntu, 22, 28, 30

Ubuntu development, 643

user accounts, 224

virtualization, 529

VPN, 577

Wayland, 32

web browsers, 54, 61

web server stacks, 441

X server, 40

regular expressions, 235

comparisons of expressions, 250–251

file operators, 253–254, 257–258

logical operators, 255, 259

numeric comparisons, 252–253,
256–257

strings, 251–252, 255–256

directories, 133

reinstalling

GRUB, 195–196

Ubuntu, 196

REISUB, polite system resets, 194–195

relational databases, 485

DBA, 483–484

graphical database clients, 506

MySQL, 483

ACID compliance, 493–494

command line client, 504–505

configuring, 494–495

http://reddit.com

694 relational databases

creating databases, 496–497

data integrity, 493–494

data locking, 492

database access, 501–503

inserting data into tables, 490

mysql command, 506

mysqladmin command, 506

mysqldump command, 506

MySQLGUI, 506

online references, 493, 507

PostgreSQL versus, 492–494

procedural languages, 494

retrieving data from tables, 490–492

root user passwords, 495

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

operation of, 486–487

PostgreSQL

ACID compliance, 493–494

command line client, 505–506

configuring, 498

creating database users, 499–500

creating databases, 499

data integrity, 493–494

data locking, 492

database access, 501–503

deleting database users, 500

granting/revoking privileges, 500–501

initializing data directories, 498

MySQL versus, 492–494

online references, 493, 507

pgAdmin, 506

procedural languages, 494

retrieving data from tables, 491

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

SQL, 487–492

creating tables, 488–489

inserting data into tables, 489–490

remote access

copying files between machines, 372–373

Guacamole, 377

key-based logins, 373–375

online references, 377–378

SSH server, 371–375

VNC, 375–377

remote computers, command line, logins,
108–109

rename command, 161

renaming files/folders, 161

repeat statements, 263

repeatedly running jobs, 229–231

repeating text, 148–149

repositories

software repositories, configuring, 15–17

Ubuntu repositories, compiling software,
101–102

Require directive (Apache web server), 452

rerunning previous commands, 196–197

resetting systems, polite system resets,
194–195

resources

assessing, backup strategies, 303–304

usage, printing, 175–177

restoring

files from archives, 311–312

GRUB2 boot loaders, 323–324

retrieving data from SQL tables, 490–492

revoking/granting privileges, PostgreSQL,
500–501

695scripting

Rhythmbox music application, 66

Riak, 514

ripping audio, 71

RISC processors, 608

rm command, 130–131, 161–162

rmdir command, 129–130

rmmod command, 406

root accounts, 110–111, 133–134

root privileges, 219–222

root prompt, dangers of working in, 15

root user accounts, 202–203

root zones, 589

Rosegarden, 76

rotating log files, 289–291

route command, 369

routers, 343

rsync command, 319–320

rtcwake command, 231–233

Ruby, 631–632

runlevels, 271–272, 275, 278

Runtime (Android), 608

runtime servers, Apache web server

apache2.conf files, 447–449

configuring, 446–449

DirectoryIndex directive, 449

DocumentRoot directive, 449

GID, 448

Group directive, 448

Listen directive, 447

ServerAdmin directive, 448

ServerName directive, 448–449

ServerRoot directive, 447

UID, 448

User directive, 448

UserDir directive, 449

Rust, 632

S

SaaS, 537

SaltStack, 544–545

Samba, 424

configuring, 425, 427

/etc/samba/smb.conf files, 426–429

installing, 425–426

mounting, 430–431

sharing

home directories, 427–428

printers, 428–429

smbclient command, 430

smbd daemon, starting/stopping, 429–430

smbstatus command, 430

testing, 429

saving, files from nonbooting hard disks, 324

/sbin directory, 114

Scala, 632

scanners, 67, 435

scheduling

backups, full backups on a periodic basis,
306–307

priorities, 285

tasks, 226

automating tasks with scripts, 244–246

for later, 227–229

running jobs repeatedly, 229–231

waking computers from sleep, 231–233

Scorched 3D, 83–84

scp command, 372–373

Scratch, 632–633

screen images, capturing, 69

Screen section (xorg.conf files), 38–39

script kiddies, 380

scripting

autocracking scripts, 380

automating tasks, 244–246

696 scripting

break statements, 269

case statements, 267–268

Celtx, 59

comparisons of expressions, 250–251

file operators, 253–254, 257–258

logical operators, 255, 259

numeric comparisons, 252–253,
256–257

strings, 251–252, 255–256

confining to directories, 198–199

endless loops, 261–262

executing scripts, 237–239

exit statements, 269

expr statements, 266

for statements, 259–261, 263

functions, 269–270

if statements, 265–266

interpreting scripts through specific shells,
240–241

new shell programs, 239–240

online references, 270

positional arguments, 242

positional parameters, 243

accessing/retrieving variables, 244

example of, 243–244

repeat statements, 263

select statements, 264

shift statements, 264

special shell characters

` special shell character, 250

", 248–249

' special shell character, 249

backslash, 249–250

list of, 247–248

storing scripts for system-wide access, 240

strings with embedded spaces, resolving,
248–249

variables, 242

accessing values, 243

accessing/retrieving with positional
parameters, 244

assigning values, 242

built-in variables, 246–247

unexpanded variables, 249

while statements, 261, 262

writing scripts, 237–239

Scylla, 514

SDK, 606

searches

DNS search orders, 355

input strings, 151–152

security

access control, Apache web server,
452–455

Apache web server, 444, 452

AppArmor, 388–390

applications, 388–390

attacks, 380–381

autocracking scripts, 380

crackers, 380

external attacks, 379–380

hackers, 380

internal attacks, 379–380

script kiddies, 380

viruses, 385

war driving, 383

worms, 380

authentication

Apache web server, 452–455

PAM, 215–216

brute-forcing, 373–374

checklist, 381

configuring, 384–385

devices, 385

disaster recovery plans, 390–391

encrypted files, 318

697servers

firewalls, 386–388

iptables, 388

nftables, 388

UFW, 386–387

genprof, 389

kernels, 379

nftables, 388

NIC, 385

online references, 391–392

passwords, 212, 216, 383–384

brute-forcing, 373–374

changing in batches, 216–217

MySQL root users, 495

password files, 212–214

shadow passwords, 214–215

system password policies, 212

Ubuntu installations, 10

user accounts, 202

physical security, 383–384

proxy servers. See also Squid, 563–564

spoofing attacks, 593

Tripwire, 384–385

UFW, 386–387

viruses, 385

VPN, 563, 572–573

configuring clients, 573–575

configuring servers, 575–577

online references, 577

vulnerability assessments, 381–382

wireless networks, 382–383

sed text editor, 189–191

select statements, 264

SELinux, 388

semistructured data, 515

sequence, running commands in, 180–181

ServerAdmin directive (Apache web server), 448

ServerLayout section (xorg.conf files), 35

ServerName directive (Apache web server),
448–449

ServerRoot directive (Apache web server), 447

servers

Apache web server

access control, 452, 455

configuring, 446–449, 450–452

development of, 443–444

file system authentication, 452–455

.htaccess configuration files, 450–452,
469

HTTPS, 464–466

installing, 444

logging, 463–464

modules, 455–461

MPM, 449–450

online references, 466

overview of, 444

runtime servers, 446–449

security, 444, 452–455

starting/stopping, 444–446

threads, 468

virtual hosting, 461–462

DHCP servers, 358–359

DNS servers, 588, 589–590, 593–595

enterprise servers, monitoring, 298–299

FQDN, 580

HTTP servers

Caddy, 482

Cherokee, 480–481

Jetty, 481

lighttpd, 479–480

online references, 482

thttpd, 481–482

Tomcat, 482

Wildfly, 482

Yaws, 480

698 servers

LDAP servers, configuring, 580

message block printing, 432–433

name servers, 352–355

NFS servers, 422–423

Nginx web server, 467–469

building sources, 469–470

configuring, 470–473

HTTPS, 476–477

installing, 469–470

modules, 475

online references, 477

PHP, 474–475

uninstalling, 470

virtual hosting, 473–474

proxy servers, defined. See also Squid,
563–564

runtime servers, Apache web server,
446–449

sets of servers, managing, 543

Ansible, 544

CFEngine, 545

Chef, 544

Juju, 545

Landscape, 545

online references, 545

Puppet, 543–544

SaltStack, 544–545

Squid, 563–564

ACL, 565–569

configuring, 570–572

configuring clients, 564–565

installing, 564

online references, 577

specifying client IP addresses, 569–570

SSH server

configuring, 371–372

copying files between machines,
372–373

ftp command, 372

key-based logins, 373–375

scp command, 372–373

sftp command, 373

ssh-keygen command, 373–375

VPN servers, configuring, 575–577

web servers

C10K problem, 467–468

event handlers, 468–469

threads, 468

X server, 32, 33

/usr directory, 33

benefits of, 33–34

components of, 33–34

display manager, 39

display managers, 33

distributed processing, 32–33

online references, 40

starting, 39

terminal clients, 33–34

window manager, 33–34

xorg.conf files, 33–39

server stacks, 437

LAMP, 437–439

LEMP, 439

MEAN, 437

online references, 441

services

boot process

controlling, 278

running services, 271–272

starting/stopping services, 275–278

Startup Applications Preferences, 278

/etc/services files, 351

microservice architectures, 531

naming services, 351–352

units, listing, 276

699shells

session writing, DVD creation, 74

set group ID permissions (suid), 125–127

set user ID permissions (suid), 125–127

sets of servers, managing, 543

Ansible, 544

CFEngine, 545

Chef, 544

Juju, 545

Landscape, 545

online references, 545

Puppet, 543–544

SaltStack, 544–545

sftp command, 373, 383

sgid permissions, 125–127

shadow passwords, 214–215

shared data, /usr directory, 117

sharing

files/folders

NFS, 422–424

online references, 435

Samba, 424–431

home directories with Samba, 427–428

printers, Samba, 428–429

Ubuntu desktops, 424

shells. See also command line, 233

ash, 226

bash, 226, 250–255

changing, 226

command line, 233–234

background processes, 237

pattern-matching, 235

piping commands, 237

dash, 226

defined, 225–226

expressions, 235

GNOME Shell, 43–45

ksh, 226

Linux, 25

local bash shells, configuring, 640

new shell programs, 239–240

pdcsh, 226

pdksh, comparisons of expressions,
250–255

scripting

` special shell character, 250

", 248–249

' special shell character, 249

automating tasks, 244–246

backslash, 249–250

break statements, 269

case statements, 267–268

comparisons of expressions, 250–259

endless loops, 261–262

executing scripts, 237–239

exit statements, 269

expr statements, 266

functions, 269–270

if statements, 265–266

interpreting through specific shells,
240–241

new shell programs, 239–240

online references, 270

positional arguments, 242

positional parameters, 243–244

repeat statements, 263

resolving strings with embedded spaces,
248–249

select statements, 264

shift statements, 264

special shell characters, 247–248

for statements, 259–261

storing scripts for system-wide access,
240

until statements, 263

variables, 242–243, 244, 246–247, 249

700 shells

compiling

from source, 100, 101–102

from tarballs, 100–101

from Ubuntu repositories, 101–102

DHCP software, installing/configuring,
358–359

finding, with APT, 98–99

free/open-source software, MS Office
compatibility, 55

libraries, Android mobile development, 608

Linux distributions, included software, 24–25

management tools

APT, 95–100

apt-get, 99–100

compiling software, 100–102

configuration management, 102–104

online references, 104

Software Updater, 94–95

Synaptic, 92–94

Ubuntu Software, 91

open-source/free software, MS Office
compatibility, 55

project management

Bazaar, 611–612

Git, 610–611

Subversion, 612–613

repositories, configuring, 15–17

Snappy package manager, 103–104

updating, 12–14

Software Updater, 12–14, 94–95

sort command, 162–163

sorting, file contents, 162–163

sound, 65

ALSA, 64

CD/DVD burning applications

Brasero, 71

Linux command line, CD creation, 72–73

while statements, 261, 262

writing scripts, 237–239

tcsh, 226, 255–259

types of, 225–226

zsh, 226

shift statements, 264

shortcuts, commands, 198

Shotcut, 77

Shotwell Photo Manager, 66, 71

Show Applications icon (GNOME), 43, 44

shred command, 155

shutdown command, 137–139

shutting down

systems, 137–138

Ubuntu, 11–12

SignalFX, 299

similarities in files, finding, 170–171

simple backup strategies, 306

Simple Mail Transfer Protocol (SMTP), 547

Simple Scan, 67

sleep, waking computers from, 231–233

small enterprises, backup strategies, 305

small offices, backup strategies, 305

smart gateways, 343

smbclient command, 430

smbd daemon, starting/stopping, 429

smbstatus command, 430

snap packages, 615–616

SnapCraft, 616

Snappy package manager, 103–104

Snappy Playpen, 616

snaps, Snappy package manager, 103–104

SOA records, 592–593

soft links. See symlinks

software

backup software, 309–316

bundles, Snappy package manager,
103–104

701SQL

special characters

& operator, 173–174, 237, 247, 527

&& operators, combining commands, 180,
198

* special shell character, 247

\ special shell character, 249–250

` special shell character, 247, 250

[] special shell character, 248

[a, z] special shell character, 248

[a-z] special shell character, 248

[az] special shell character, 248

$, 235

$? built-in variable, 247

$ special shell character, 247

$# built-in variable, 246

$* built-in variable, 247

$0 built-in variable, 247

! ! operator, 196–197

!= operator, 491

< special shell character, 247

<< operator, 236

<< special shell character, 248

> special shell character, 247

>> special shell character, 247

| (pipe) special shell character, 247

| | operator, 198, 491

special shell character, 247

? special shell character, 247

" special shell character, 248–249

' special shell character, 249

speed, relational databases, 492

Speed Dreams, 87

splint command, 602–603

Splunk, 299

spoofing attacks, 593

SQL, 487–488

!= operator, 491

MySQL, 483

Linux command line, DVD creation,
73–75

Ubuntu support, 71

converting files, 65

.flac files, 65

.mp3 files, 65

.mp4 files, 65

music applications, 65

Banshee, 66

Rhythmbox, 66

Sound Juicer, 66

.ogg files, 65, 66

online references, 65

OSS, 64

PulseAudio, 64

recording/editing, 76

Ardour, 76

Audacity, 76

Cecilia, 76

LMMS, 76

Mixxx, 76

Rosegarden, 76

recording/editing applications, sound, 76

ripping audio, 71

sound cards, 63–64

sox command, 65

UNIX and, 63–64

.wav files, 65

Sound Juicer, 66

source, compiling software from, 100, 101–102

source tree (kernels), 403–405

sources (kernels), obtaining, 409–410

sox command, 65

spaces

embedded spaces, resolving strings with,
248–249

as special shell characters, 248

Spamassassin, 561

702 SQL

retrieving data from tables, 491

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

subqueries, 494

tables

creating, 488–489

inserting data, 489–490

Squid, 563–564

ACL, 565–569

client IP addresses, 569–570

configuring, 564–565, 570–572

installing, 564

online references, 577

Squirrelmail, 561

SSH, database access, 501–502

ssh command, 369, 383

SSH keys, 638, 639

SSH server

configuring, SSH server, 371–372

copying files between machines, 372–373

ftp command, 372

key-based logins, 373–375

scp command, 372–373

sftp command, 373

ssh-keygen command, 373–375

ssh-keygen command, 373–375

stacks, 437

LAMP, 437–439

LEMP, 439

MEAN, 437

online references, 441

standard input/output of commands, 169

starting/stopping

Apache web server, 444–446

NFS, 422

ACID compliance, 493–494

command line client, 504–505

configuring, 494–495

creating databases, 496–497

data integrity, 493–494

data locking, 492

database access, 501–503

inserting data into tables, 490

mysql command, 506

mysqladmin command, 506

mysqldump command, 506

MySQLGUI, 506

online references, 493, 507

PostgreSQL versus, 492–494

procedural languages, 494

retrieving data from tables, 490–492

root user passwords, 495

speed, 492

SQL subqueries, 494

stored procedures, 494

triggers, 494

NoSQL databases, 485

PostgreSQL

ACID compliance, 493–494

command line client, 505–506

configuring, 498

creating database users, 499–500

creating databases, 499

data integrity, 493–494

data locking, 492

database access, 501–503

deleting database users, 500

granting/revoking privileges, 500–501

initializing data directories, 498

MySQL versus, 492–494

online references, 493, 507

pgAdmin, 506

procedural languages, 494

703symbols

disks, performance tuning, 394

drives, Ubuntu installations, 9

temporary file storage, /tmp directories, 117

stored procedures

MySQL, 494

relational databases, 494

strings

command substitution, 250

comparisons, 251–252, 255–256

with embedded spaces, resolving, 248–249

input strings, searches, 151–152

su command, 217–219, 224

subnet masks, 337–338

subnetting, 337–338

subqueries (SQL), relational databases, 494

substitute user accounts, 217–218

substituting

commands, 250

processes, 181

Subversion, software project management,
612–613

sudo command, 14–15, 110–111, 134–136,
219–222, 224

sudoers command, 114

suid permissions, 125–127

super user accounts, 109–111, 133–134,
202–203, 217–218

SuperTux, 84–85

support, Ubuntu online references, 22

.svg files, 68

switches, 342

symbolic debugging, 603

symbols. See also wildcard characters

& operator, 237

background processes, running,
173–174

special shell character, 247

VirtualBox commands, 527

services, 275–278

smbd daemon, 429–430

VM, 526

Startup Applications Preferences, 278

statements

break statements, 269

case statements, 267–268

exit statements, 269

expr statements, 266

for statements, 259–261

if statements, 265–266

repeat statements, 263

select statements, 264

shift statements, 264

for statements, 259–261

until statements, 263

while statements, 261, 262

statistics, user usage, 212

stderr command, 169–170

stdin command, 169–170

stdout command, 169–170

Steam, 81

stereotypes, users, 205

sticky bit permissions, 126–127

stopping/starting

Apache web server, 444–446

NFS, 422

services, 275–278

smbd daemon, 429–430

VM, 526

storage

backups

cloud storage, 309

external hard drives, 308

NAS, 308

network storage, 308

tape drive backups, 309

704 symbols

day-to-day usage, 95–98

finding software, 98–99

apt-get, APT versus, 99–100

compiling software

from source, 100, 101–102

from tarballs, 100–101

from Ubuntu repositories, 101–102

configuration management, 102

dotdee, 102–103

Snappy package manager, 103–104

Ubuntu Core, 103

online references, 104

Software Updater, 94–95

Synaptic, 92–94

Ubuntu Software, 91

system settings, Ubuntu settings, configuring,
17–18

system user accounts, 203–204

systemd command, 275, 277–278, 532

service-related commands, 276–277

state-related commands, 276

targets, 275–276

systems

administration privileges, 217

listing information, 158–159

management tools, 292

Conky, 292–297

gnome-nettool, 297

System Monitor, 292

vncviewer, 297

Wireshark, 298

monitoring

checking log files, 287–289

Conky, 292–297

console-based monitoring, 281–283

disk quotas, 287

displaying free hard disk space, 286–287

displaying used memory, 286

&& operators, combining commands, 180,
198

* special shell character, 247

\ special shell character, 249–250

` special shell character, 247, 250

[] special shell character, 248

[a, z] special shell character, 248

[a-z] special shell character, 248

[az] special shell character, 248

$, 235

$? built-in variable, 247

$ special shell character, 247

$# built-in variable, 246

$* built-in variable, 247

$0 built-in variable, 247

! ! operator, 196–197

!= operator, 491

< special shell character, 247

<< operator, 236

<< special shell character, 248

> special shell character, 247

>> special shell character, 247

| (pipe) special shell character, 247

| | operator, 198, 491

special shell character, 247

? special shell character, 247

" special shell character, 248–249

' special shell character, 249

symlinks, 154–156

Synaptic, 92–94

synchronizing, filesystems, 396

Sysadmin, DevOps versus, 535–536

sysctl command, 398–399

sysrq.txt files, 404

System Monitor, 292

system resource management

APT, 95

apt-get versus, 99–100

705text

tarballs, compiling software from, 100–101

tasks, scheduling, 226

automating tasks with scripts, 244–246

for later, 227–229

running jobs repeatedly, 229–231

waking computers from sleep, 231–233

tcpdump command, 385

TCP/IP networking, 330

addressing, 331–332

IP masquerading, 332–333

ports, 333–334

tcsh, comparisons of expressions, 226, 255

file operators, 257–258

logical operators, 259

numeric comparisons, 256–257

strings, 255–256

temporary file storage, /tmp directories, 117

terminals. See also command line

clients, X server, 33–34

multiple terminal operation, byobu, 192–193

testing

online references, 647

Samba, 429

Ubuntu

community teams, 645–646

Ubuntu Testing Teams, 646

testparm command, 429

TeX documents

Kile, 61

LaTeX, 60

LyX, 60

Texmaker, 60

Texmaker, 60

text

editors, 185, 186

awk, 189–191

emacs, 185, 188–189

enterprise servers, 298–299

graphical process tools, 292–298

KDE monitoring tools, 298

killing processes, 283–284

online references, 299

priority scheduling, 285

rotating log files, 289–291

system management tools, 292–298

System Monitor, 292

user activity, 211–212

password policies, 212

polite resets, 194–195

rebooting, 138–139

rescue, 323

restoring GRUB2 boot loaders, 323–324

saving files from nonbooting hard disks,
324

Ubuntu Rescue disc, 323

shutting down, 137–138

storing shell scripts for system-wide access,
240

SystemV runlevels, 275–276

T

tables (SQL)

creating, 488–489

inserting data, 489–490

tail command, 163–164

tape drive backups, 309

tar command, 192, 310

compressed files, 318

copying files, 317–318

encrypted files, 318

full backups, 310–311

incremental backups, 310–311

restoring files from archives, 311–312

706 text

kernels, 418–419

network printers, 434–435

networks, connections, 342

runlevels, 278

sudo command, 134–136

Ubuntu

bootups, 195–196

post-configuration problems, 21–22

tune2fs command, 396–397

Tuned Project, 396–400

TXT records, 593

type name command, 160

U

Ubuntu, 27

32-bit Ubuntu, 4–5

64-bit Ubuntu, 4–5

Android mobile development, 607

Android Runtime, 608

Android Studio, 609

Application Framework, 608–609

applications, 609

ARM processors, 608

Google Play, 607

Linux kernels, 608

RISC processors, 608

bash, 226

Bikeshed, 616–618

bootups, troubleshooting, 195–196

Budgie, 49

business applications, 27–28

C programming

autoconf command, 601–602

building programs, 599–601

checking source code, 602–603

gedit, 186

kate, 186

kedit, 186

nano, 185, 186–187

sed, 189–191

vi, 185, 187–188

vim, 185

repeating, 148–149

text-based logins, command line, 107–108

threads, 468

thttpd, 481–482

thumb drives, Ubuntu installations, 3, 6–11

Thunderbird, LDAP client configuration, 584

.tif files, 68

time warps, 212

time/date settings

date command, 19

hwclock command, 19–20

Ubuntu, 19–20

TLD, 588–589

/tmp directories, 117

Token Ring networking, 339

Tomcat, 482

top command, 175–177

Totem Movie Player, 76

touch command, 128–129

traceroute command, checking Internet connec-
tions, 329

traceroute6 command, checking Internet con-
nections, 329

triggers, relational databases, 494

Tripwire, 384–385

troubleshooting

boot process, 278–279

bugs

Bug Squad, 647

Ubuntu development, 640–643

Internet connections, 368–369

707Ubuntu

install instructions, 536

Juju, 540–541, 545

Landscape, 541

MaaS, 537

Mojo, 541

OpenStack, 538–539

PaaS, 537

private clouds, 540

public clouds, 538, 539

reasons for using, 536–537

SaaS, 537

Ubuntu Cloud, 536

VM, 536

configuring

date/time settings, 19–20

power management, 18–19

system settings, 17–18

troubleshooting post-configuration
problems, 21–22

wireless networks, 20

database commands, 506

date/time settings, 19–20

desktop environments, changing, 39

desktops, sharing, 424

development

Bazaar, 639

code packaging, 640–643

fixing bugs, 640–643

GPG keys, 637–639

introduction to, 636–637

Launchpad, 614–615, 638–640

local bash shells, 640

online references, 643

packages, 637–638, 640–643

pbuilder, 638

SSH keys, 638, 639

digital cameras, 70

distributions, versions of, 27

configuring code, 601–602

debugging tools, 602–603

dependency checking, 599–600

GCC, 603–604

gdb command, 603

gprof command, 603

macros, 600–601

makefile targets, 600–601

makefiles, 599–600

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

C++ programming

autoconf command, 601–602

building programs, 599–601

checking source code, 602–603

configuring code, 601–602

debugging tools, 602–603

dependency checking, 599–600

GCC, 603–604

gdb command, 603

gprof command, 603

macros, 600–601

makefile targets, 600–601

makefiles, 599–600

splint command, 602–603

symbolic debugging, 603

tracking function time, 603

CD/DVD burning applications, 71

Chaos Engineering, 614

CI/CD tools, 613–614

cloud computing, 535

AWS, 539

Azure, 539

considerations for using, 538

Google Cloud, 539

hybrid clouds, 539–540

IaaS, 537

708 Ubuntu

kernels, 401–402

Kylin, 50

MATE, 48–49

networks, 330

connectivity commands, 369

ports, 421

printers, 431–436

Nginx web server installations, 469

online references, 22

partitions, installing, 5, 9

passwords, 10

power management, configuring, 18–19

preinstallation process, 1–2

flavors of Ubuntu, 2–3

researching hardware specifications,
2–16

printers, configuring, 18

proxy servers. See Squid

QA

Bug Squad, 647

Ubuntu QA Teams, 646–647

reinstalling, 196

repositories, compiling software, 101–102

root prompt, dangers of working in, 15

scanners, 67

shutting down, 11–12

snap packages, 615–616

SnapCraft, 616

Snappy Playpen, 616

software project management

Bazaar, 611–612

Git, 610–611

Subversion, 612–613

software repositories, configuring, 15–17

Software Updater, 12–14

storage drives, Ubuntu installations, 9

sudo command, 14–15

system settings, configuring, 17–18

documentation, 28, 30

dual-boot systems, 6

DVD/CD burning applications, 71

finding files/folders, 12

graphical development tools, 605

Eclipse, 606

Glade, 607

IDE, 605–606

KDevelop Client, 606–607

NetBeans, 606

Oracle JDeveloper, 606

SDK, 606

Visual Studio Code, 606

home applications, 28

installing, 196

32-bit Ubuntu, 4–5

64-bit Ubuntu, 4–5

backups, 7

boot loaders, 5–6

downloading updates during
installation, 8

dual-boot systems, 6

DVD installations, 2, 6–11

erasing hard disks during installation, 9

flavors of Ubuntu, 2–3

language selection, 7–8

Mac hardware compatibility, 3

partitions, 5, 9

password creation, 10

preinstallation process, 1–2

researching hardware specifications,
2–16

storage drives, 9

UEFI, 6

USB thumb drive installations, 3, 6–11

Java programming, 604

JVM, 604

OpenJDK, 604–605

709user accounts

Ubuntu Software, 91

Ubuntu Testing Teams, 646

ubuntu-restricted-extras, 76

UEFI

boot process, 273–274

Ubuntu installations, 6

ufw command, 369

UFW, configuring, 386–387

UID, 204, 448

unexpanded variables, maintaining, 249

unicast addressing, 338

uninstalling Nginx web server, 470

Unison, 315

units (services), listing, 276

UNIX

backup levels, 306

CUPS GUI, network printers, 431–434

sound, 63–64

UnQL, 511

until statements, 263

updating

software, 12–14

Software Updater, 94–95

Ubuntu

first updates, 11

installations, downloading updates during
installation, 8

Software Updater, 12–14

uplink ports, 342

uptime command, 286

usage statistics, user accounts, 212

USB

digital cameras, 70

thumb drives, Ubuntu installations, 3, 6–11

used memory, displaying, 286

user accounts, 201–202, 204, 207

adding accounts, 209–211

testing

community teams, 645–646

Ubuntu Testing Teams, 646

troubleshooting, post-configuration
problems, 21–22

Ubuntu Make, 615

Ubuntu Rescue disc, 323

updating

first updates, 11

during installation, 8

software, 12–14

user account management, 223–224

version control systems, 609–610

virtualization, 521–523

bridged networks, 524–525

KVM, 523–526

VirtualBox, 527–528

VM, 522, 525–526, 536

web resources, 22

window managers, changing, 39

wireless networks, 20, 361–363

X server, 32–33

benefits of, 33–34

components of, 33–34

display manager, 39

display managers, 33

distributed processing, 32–33

online references, 40

starting, 39

terminal clients, 33–34

/usr directory, 33

window manager, 33–34

xorg.conf files, 33–39

Ubuntu Budgie, 49

Ubuntu Core, 103

Ubuntu Kylin, 50

Ubuntu MATE, 48–49

Ubuntu QA Teams, 646–647

710 user accounts

useradd -D command, 208

useradd -G command, 207

UserDir directive (Apache web server), 449

usermod command, 209, 224

usermod -G command, 207

users, productivity suites, 56

/usr directory

shared data, 117

X server, 33

UTP cabling, 341

V

Vala, 633

values, assigning to variables, 242

/var directory, 117

variable data files, /var directory, 117

variables

built-in variables, 242, 246–247

environment variables, 182–185, 242

shell scripts, 242

accessing values, 243

accessing/retrieving variables, 244

assigning values, 242

resolving strings with embedded spaces,
248–249

unexpanded variables, maintaining, 249

user variables, 242

VBA, LibreOffice and Office compatibility, 55

version control

configuration files, 320–322

systems, 609–610

vi text editor, 185, 187–188

video

.avi files, 75

dvd+rw-tools, 74

DVD/CD burning applications

administration privileges, 217

BOFH, 205

changing identities, 217–219

creating, 136–137

deleting, 137

disk quotas, managing, 222–223

file permissions, 204

GID, 204

group management, 205

finding groups, 206

listing groups, 205–206

tools, 206–207

locking users out of accounts, 209

lusers, 205

monitoring user activity, 211–212

online references, 224

passwords, 202, 212, 216

changing in batches, 216–217

password files, 212–214

shadow passwords, 214–215

system password policies, 212

privileges, 109–111

root privileges, 219–222

root user accounts, 202–203

stereotypes, 205

substitute user accounts, 217–218

super user accounts, 109–111, 133–134,
202–203, 217–218

system user accounts, 203–204

tools, 208–209

Ubuntu commands, 223–224

UID, 204

usernames, 211

User directive (Apache web server), 448

user directories, 115

user variables, 242

useradd command, 208, 224

vncviewer 711

virt-install, 525–526

virtual hosting

Apache web server, 461–462

Nginx web server, 473–474

VirtualBox, 527–528

virtualization, 521–523

bridged networks, 524–525

KVM, 523–526

online references, 529

VirtualBox, 527–528

VM, 522, 525–526, 536

connections, 526

copying, 526

starting, 526

stopping, 526

virt-clone, 526

virt-install, 525–526

vmbuilder, 525

VMware, 528

Xen, 528

virus scanners, email, 562

viruses, 385

Visual Studio Code, 606

visudo command, 135–136

VLC, 76

VM, 522, 536

connections, 526

copying, 526

KVM, 523–526

starting, 526

stopping, 526

virt-clone, 526

vmbuilder, 525

vmstat command, 286

VMware, 528

VNC, 375–377

vncviewer, 297

Brasero, 71

Linux command line, CD creation, 72–73

Linux command line, DVD creation,
73–75

Ubuntu support, 71

editing, 76, 77

Avidemux, 77

Blender, 77

Cinelerra, 77

DaVinci Resolve, 77

Kdenlive, 77

Lightworks, 77

OpenShot Video Editor, 77

PiTiVi, 77

Shotcut, 77

.flv files, 75

.mov files, 75

.mpeg files, 75

.ogv/.ogg files, 75

.qt files, 75

Totem Movie Player, 76

ubuntu-restricted-extras, 76

video drivers (proprietary), installing, 80–81

viewing

in Linux, 76

video formats, 75

VLC, 76

.webm files, 75

viewing

command history, 197

default file permissions, 124–125

video

in Linux, 76

video formats, 75

vim text editor, 185

vimtutor command, 188

virt-clone, 526

VPN712

Linux, 23, 28

multimedia applications, 77

MySQL, 493, 507

network printers, 435

networks, 369–370

Nginx web server, 477

NoSQL databases, 519–520

performance tuning, 396–400

PostgreSQL, 493, 507

programming, 618–619

programming languages, 633–634

QA, 647

remote access, 377–378

security, 391–392

sets of servers, 545

shell scripts, 270

software management, 104

sound, 65

Squid, 577

system monitoring, 299

system resource management, 104

testing, 647

Ubuntu, 22, 28, 30

Ubuntu development, 643

user accounts, 224

virtualization, 529

VPN, 577

Wayland, 32

web browsers, 54, 61

web server stacks, 441

X server, 40

web server stacks, 437

LAMP, 437–439

LEMP, 439

MEAN, 437

online references, 441

VPN, 563, 572–573

configuring

clients, 573–575

servers, 575–577

servers, online references, 577

vulnerability assessments, 381–382

W

waking computers from sleep, 231–233

war driving, 383

Warsow, 82

.wav files, 65

Wayland, 32

web browsers

Chrome, 53–54

Chromium, 53–54

database access, 503

Firefox, 52–53

online references, 54

.webm files, 75

web resources

Apache web server, 466

backups, 324

BIND, 595

boot process, 278–279

cloud computing, 541

command line, 139, 165, 200

containers, 534

desktop environments, 50

DNS, 595

file sharing, 435

games, 89

HTTP servers, 482

kernels, 419–420

LDAP, 585

713X server

while statements, 261, 262

wide column stores, 517

widgets, 42

wildcard characters. See also symbols

commands and, 235

directories, 133

Wildfly, 482

window managers

changing, 39

X server, 33–34

Windows

CrossOver Office, 61

dual-boot systems, 6

games, 88–89

productivity applications, 61

Wine, 61

Wine, 61

wireless networks, 361

configuring, 20

interfaces, 340

security, 382–383

selecting protocols, 363

Ubuntu support, 361–363

Wireshark, 298, 330

worms, 380

writing, shell scripts, 237–239

WYGIWYW, 60

WYSIWYG, 60

X

X server, 32, 33

benefits of, 33–34

components of, 33–34

display manager, 39

display managers, 33

web servers

Apache web server

access control, 452, 455

configuring, 446–449, 450–452

development of, 443–444

file system authentication, 452–455

.htaccess configuration files, 450–452,
469

HTTPS, 464–466

installing, 444

logging, 463–464

modules, 455–461

MPM, 449–450

online references, 466

overview of, 444

runtime servers, 446–449

security, 444, 452–455

starting/stopping, 444–446

threads, 468

virtual hosting, 461–462

C10K problem, 467–468

event handlers, 468–469

Nginx web server, 467–469

building sources, 469–470

configuring, 470–473

HTTPS, 476–477

installing, 469–470

modules, 475

online references, 477

PHP, 474–475

uninstalling, 470

virtual hosting, 473–474

threads, 468

wget command, 164

whatis command, 160

whereis command, 112, 160

which command, 164

714 X server

XML Copy Editor, 60

X.Org, 33

xorg.conf files, 33–34

components of, 34–35

Device section, 37–38

Files section, 35–36

InputDevice section, 36–37

Module section, 36

Monitor section, 37

Screen section, 38–39

ServerLayout section, 35

Xubuntu, 46–47

xz command, 192

Y

YAML, /etc/netplan/*.yaml files, 353–355

Yaws, 480

Z

Zabbix, 299

zsh, 226

distributed processing, 32–33

online references, 40

starting, 39

terminal clients, 33–34

/usr directory, 33

window manager, 33–34

xorg.conf files, 33–34

components of, 34–35

Device section, 37–38

Files section, 35–36

InputDevice section, 36–37

Module section, 36

Monitor section, 37

Screen section, 38–39

ServerLayout section, 35

Xara Xtreme, 70

xconfig command, 414–417

xDSL Internet access, 365

Xen, 528

Xfce, 46

XML, 59

DocBook, Publican, 59–60

gedit, 59

Publican, 59–60

XML Copy Editor, 60

http://X.Org

IN THIS CHAPTER

 ▶ Using Perl with Linux

 ▶ Perl Variables and Data

Structures

 ▶ Perl Operators

 ▶ Conditional Statements:

if/else and unless

 ▶ Looping

 ▶ Regular Expressions

 ▶ Access to the Shell

 ▶ Modules and CPAN

 ▶ Code Examples

 ▶ References

BONUS CHAPTER 42

Using Perl

Perl (whose name comes from the Practical Extraction and

Report Language or the Pathologically Eclectic Rubbish Lister,

depending on whom you speak to) is a powerful scripting

tool that enables you to manage files, create reports, edit

text, and perform many other tasks. Perl is included with

and installed in Ubuntu by default and could be considered

an integral part of the distribution because Ubuntu depends

on Perl for many types of software services, logging activi-

ties, and software tools.

Perl is not the easiest of programming languages to learn

because it is designed for flexibility. This chapter shows

how to create and use Perl scripts on your system. You

learn what a Perl program looks like, how the language is

structured, and where you can find modules of prewritten

code to help you write your own Perl scripts. This chapter

also includes several examples of Perl used to perform a few

common functions on a computer system.

Using Perl with Linux
Although originally designed as a data-extraction and

report-generation language, Perl appeals to many Linux sys-

tem administrators because they can use it to create utilities

that fill a gap between the capabilities of shell scripts and

compiled C programs. Another advantage of Perl over other

UNIX tools is that it can process and extract data from

binary files, whereas sed and awk cannot.

NOTE

In Perl, “there is more than one way to do it.” This is the

unofficial motto of Perl, and it comes up so often that it

is usually abbreviated as TIMTOWTDI.

2 BONUS CHAPTER 42 Using Perl

You can use Perl at your shell’s command line to execute one-line Perl programs, but most

often the programs (usually ending in .pl) are run as commands. These programs gener-

ally work on any computer platform because Perl has been ported to nearly every operat-

ing system.

Perl programs are used to support a number of Ubuntu services, such as system logging.

For example, if you install the logwatch package, the logwatch.pl program is run every

morning at 6:25 a.m. by the crond (scheduling) daemon on your system. Other Ubuntu

services supported by Perl include the following:

 ▶ Amanda for local and network backups

 ▶ Fax spooling with the faxrunqd program

 ▶ Printing supported by Perl document-filtering programs

 ▶ Hardware sensor monitoring setup using the sensors-detect Perl program

Perl Versions

Perl is installed in Ubuntu by default. You can download the code from www.perl.com

and build the newest version from source if you want to, although a stable and quality

release of Perl is already installed by default in Ubuntu and most (perhaps all) Linux and

UNIX-like distributions, including macOS. Updated versions might appear in the Ubuntu

repositories, but they’re generally only security fixes that can be installed by updating

your system. See Chapter 9, “Managing Software,” to see how to quickly get a list of

available updates for Ubuntu.

You can determine what version of Perl you have installed by typing perl -v at a shell

prompt. When you install the latest Ubuntu distribution, you should have the latest ver-

sion of Perl that was available when the software for your Ubuntu release was gathered

and finalized.

Note that there was a development effort underway to replace Perl 5. The new version was

to be called Perl 6, but had diverged far enough away from Perl 5 that the decision was

made to rename it to Raku. You can learn about Raku at www.raku.org.

A Simple Perl Program

This section introduces a very simple Perl program example to get you started using Perl.

Although trivial for experienced Perl hackers, this short example is necessary for new users

who want to learn more about Perl.

To introduce you to the absolute basics of Perl programming, Listing 42.1 illustrates a

simple Perl program that prints a short message.

LISTING 42.1 A Simple Perl Program

#!/usr/bin/perl

print 'Look at all the camels!\n';

http://.pl
http://logwatch.pl
http://www.perl.com
http://www.raku.org

3

4
2

Using Perl with Linux

Type in the program shown in the listing and save it to a file called trivial.pl. Then

make the file executable by using the chmod command (see the following sidebar) and run

it at the command prompt.

Command-Line Error

If you get the message bash: trivial.pl: command not found or bash: ./trivial.

pl: Permission denied, you have either typed the command line incorrectly or forgotten

to make trivial.pl executable with the chmod command, as shown here:

matthew@seymour:~$ chmod +x trivial.pl

You can force the command to execute in the current directory as follows:

matthew@seymour:~$./trivial.pl

Or you can use Perl to run the program, like this:

matthew@seymour:~$ perl trivial.pl

The sample program in the listing is a two-line Perl program. When you type in the pro-

gram and run it (using Perl or by making the program executable), you are creating a Perl

program, a process duplicated by Linux users around the world every day.

NOTE

#! is often pronounced shebang, which is short for sharp (musicians’ name for the #

character), and bang, which is another name for the exclamation point. This notation is

also used in shell scripts. See Chapter 14, “Automating Tasks and Shell Scripting,” for

more information about writing shell scripts.

The #! line is technically not part of the Perl code at all. The # character indicates that

the rest of the screen line is a comment. The comment is a message to the shell, telling it

where it should go to find the executable to run this program. The interpreter ignores the

comment line. Comments are useful for documenting scripts, like this:

#!/usr/bin/perl

a simple example to print a greeting

print "hello there\n";

The # character can also be used in a quoted string and used as the delimiter in a regular

expression.

A block of code such as what might appear inside a loop or a branch of a conditional

statement is indicated with curly braces ({}). For example, here is an infinite loop:

#!/usr/bin/perl

a block of code to print a greeting forever

while (1) {

http://trivial.pl
http://trivial.pl:
http:///trivial.pl:
http:///trivial.pl:
http://trivial.pl
http://trivial.pl
http:///trivial.pl
http://trivial.pl

4 BONUS CHAPTER 42 Using Perl

 print "hello there\n";

};

A Perl statement is terminated with a semicolon (;). A Perl statement can extend over sev-

eral screen lines because Perl is not concerned about white space.

The second line of the simple program in Listing 42.1 prints the text enclosed in quota-

tion marks. \n is the escape sequence for a newline character.

TIP

Using the perldoc and man commands is an easy way to get more information about

the version of Perl installed on your system. To learn how to use the perldoc command,

enter the following:

matthew@seymour:~$ perldoc

To get introductory information on Perl, you can use either of these commands:

matthew@seymour:~$ perldoc perl

matthew@seymour:~$ man perl

For an overview or table of contents of Perl’s documentation, use the perldoc command,

like this:

matthew@seymour:~$ perldoc perltoc

The documentation is extensive and well organized. Perl includes a number of standard

Linux manual pages as brief guides to its capabilities, but perhaps the best way to learn

more about Perl is to read its perlfunc document, which lists all the available Perl func-

tions and their usage. You can view this document by using the perldoc script and typ-

ing perldoc perlfunc at the command line. You can also find this document online at

https://perldoc.perl.org.

Perl Variables and Data Structures
Perl is a weakly typed language, meaning that it does not require that you declare a data

type, such as a type of value (data) to be stored in a particular variable. C, for example,

makes you declare that a particular variable is an integer, a character, a structure, or what-

ever the case may be. Perl variables are whatever type they need to be and can change

type when you need them to.

Perl Variable Types

Perl has three variable types: scalars, arrays, and hashes. A different character is used to sig-

nify each variable type, so you can have the same name used with each type at the same

time.

https://perldoc.perl.org

5

4
2

Perl Variables and Data Structures

A scalar variable is indicated with the $ character, as in $penguin. Scalars can be num-

bers or strings, and they can change type as needed. If you treat a number like a string,

it becomes a string. If you treat a string like a number, it is translated into a number

if it makes sense to do so; otherwise, it usually evaluates to 0. For example, the string

"76trombones" evaluates as the number 76 if used in a numeric calculation, but the string

"polar bear" evaluates to 0.

A Perl array is indicated with the @ character, as in @fish. An array is a list of values refer-

enced by index number, starting with the first element, numbered 0, just as in C and awk.

Each element in the array is a scalar value. Because scalar values are indicated with the

$ character, a single element in an array is also indicated with a $ character.

For example, $fish[2] refers to the third element in the @fish array. This tends to throw

some people off but is similar to arrays in C, in which the first array element is 0.

A hash is indicated with the % character, as in %employee. A hash is a list of name/value

pairs. Individual elements in a hash are referenced by name rather than by index (unlike

in an array). Again, because the values are scalars, the $ character is used for individual

elements.

For example, $employee{name} gives you one value from the hash. Two rather useful func-

tions for dealing with hashes are keys and values. The keys function returns an array that

contains all the keys of the hash, and values returns an array of the values of the hash.

Using this approach, the Perl program in Listing 42.2 displays all the values in your envi-

ronment, much like typing the bash shell’s env command.

LISTING 42.2 Displaying the Contents of the env Hash

#!/usr/bin/perl

foreach $key (keys %ENV) {

 print "$key = $ENV{$key}\n";

}

Special Variables

Perl has a variety of special variables, which usually look like punctuation—$_, $!, and

$]—and are all extremely useful for shorthand code. $_ is the default variable, $! is the

error message returned by the operating system, and $] is the Perl version number.

$_ is perhaps the most useful of these. You see this variable used often in this chapter. $_

is the Perl default variable, which is used when no argument is specified. For example, the

following two statements are equivalent:

chomp;

chomp($_);

The following loops are equivalent:

for $cow (@cattle) {

6 BONUS CHAPTER 42 Using Perl

 print "$cow says moo.\n";

}

for (@cattle) {

 print "$_ says moo.\n";

}

For a complete list of the special variables, see the perlvar man page.

Perl Operators
Perl supports a number of operators for performing various operations. There are compari-

son operators (used to compare values, as the name implies), compound operators (used to

combine operations or multiple comparisons), arithmetic operators (to perform math), and

special string constants.

Comparison Operators

The comparison operators used by Perl are similar to those used by C, awk, and the csh shells,

and they are used to specify and compare values (including strings). A comparison operator

is most often used within an if statement or loop. Perl has comparison operators for num-

bers and strings. Table 42.1 shows the numeric comparison operators and their meanings.

Table 42.1 Numeric Comparison Operators in Perl

Operator Meaning

== Is equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<=> Returns –1 if less than, 0 if equal to, and 1 if greater than

!= Not equal to

.. Range of >= first operand to <= second operand

Table 42.2 shows the string comparison operators and their meanings.

Table 42.2 String Comparison Operators in Perl

Operator Meaning

eq Is equal to

lt Less than

gt Greater than

le Less than or equal to

ge Greater than or equal to

ne Not equal to

7

4
2

Perl Operators

Operator Meaning

cmp Returns -1 if less than, 0 if equal to, and 1 if greater than

=~ Matched by regular expression

!~ Not matched by regular expression

Compound Operators

Perl uses compound operators, similar to those used by C or awk, which can be used to

combine other operations (such as comparisons or arithmetic) into more complex forms

of logic. Table 42.3 shows the compound pattern operators and their meanings.

Table 42.3 Compound Pattern Operators in Perl

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

() Parentheses; used to group compound statements

Arithmetic Operators

Perl supports a variety of math operations. Table 42.4 summarizes these operators.

Table 42.4 Perl Arithmetic Operators

Operator Purpose

x**y Raises x to the y power (same as x^y)

x%y Calculates the remainder of x/y

x+y Adds x to y

x-y Subtracts y from x

x*y Multiplies x by y

x/y Divides x by y

-y Negates y (switches the sign of y); also known as the unary minus

++y Increments y by 1 and uses the value (prefix increment)

y++ Uses the value of y and then increments by 1 (postfix increment)

—y Decrements y by 1 and uses the value (prefix decrement)

y— Uses the value of y and then decrements by 1 (postfix decrement)

x=y Assigns the value of y to x. Perl also supports operator-assignment operators

(+=, -=, *=, /=, %=, **=, and others)

You can also use comparison operators (such as == or <) and compound pattern operators

(&&, ||, and !) in arithmetic statements. They evaluate to the value 0 for false and 1 for

true.

8 BONUS CHAPTER 42 Using Perl

Other Operators

Perl supports a number of operators that do not fit any of the prior categories. Table 42.5

summarizes these operators.

Table 42.5 Other Perl Operators

Operator Purpose

~x Bitwise NOT (changes 0 bits to 1 and 1 bits to 0 bits)

x & y Bitwise AND

x | y Bitwise OR

x ^ y Bitwise exclusive or (XOR)

x << y Bitwise shift left (shifts x by y bits)

x >> y Bitwise shift right (shifts x by y bits)

x . y Concatenate y onto x

a x b Repeats string a for b number of times

x, y Comma operator; evaluates x and then y

x ? y : z Conditional expression (If x is true, y is evaluated; otherwise, z is evaluated.)

Except for the comma operator and conditional expression, you can also use these opera-

tors with the assignment operator, similar to the way addition (+) can be combined with

assignment (=), giving +=.

Special String Constants

Perl supports string constants that have special meaning or cannot be entered from the

keyboard.

Table 42.6 shows most of the constants supported by Perl.

Table 42.6 Perl Special String Constants

Expression Meaning

\\ The means of including a backslash

\a The alert or bell character

\b Backspace

\cC Control character (like holding the Ctrl key down and pressing the C

character)

\e Escape

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\xNN Indicates that NN is a hexadecimal number

\0NNN Indicates that NNN is an octal (base 8) number

4
2

Conditional Statements: if/else and unless 9

Conditional Statements: if/else and unless
Perl offers two conditional statements, if and unless, which function opposite one

another. if enables you to execute a block of code only if certain conditions are met so

that you can control the flow of logic through your program. Conversely, unless performs

the statements when certain conditions are not met.

The following sections explain and demonstrate how to use these conditional statements

when writing scripts for Linux.

if

The syntax of the Perl if/else structure is as follows:

if (condition) {

 statement or block of code

} elsif (condition) {

 statement or block of code

} else {

 statement or block of code

}

condition is a statement that returns a true or false value.

Truth is defined in Perl in a way that might be unfamiliar to you, so be careful. Every-

thing in Perl is true except 0 (the digit zero), "0" (the string containing the number 0), ""

(the empty string), and an undefined value. Note that even the string "00" is a true value

because it is not one of the four false cases.

A statement or block of code section is executed if the test condition returns a true value.

For example, Listing 42.3 uses the if/else structure and shows conditional statements

using the eq string comparison operator.

LISTING 42.3 if/elsif/else

if ($favorite eq "chocolate") {

 print "I like chocolate too.\n";

} elsif ($favorite eq "spinach") {

 print "Oh, I do not like spinach.\n";

} else {

 print "Your favorite food is $favorite.\n";

}

unless

unless works just like if only backward. unless performs a statement or block if a condi-

tion is false:

unless ($name eq "Rich") {

10 BONUS CHAPTER 42 Using Perl

 print "Go away, you're not allowed in here!\n";

}

NOTE

You can restate the preceding example in more natural language, like this:

print "Go away!\n" unless $name eq "Rich";

Looping
A loop repeats a program action multiple times. A simple example is a countdown timer

that performs a task (waiting for one second) 300 times before telling you that your egg is

done boiling.

Looping constructs (also known as control structures) can be used to iterate a block of code

as long as certain conditions apply or while the code steps through (evaluates) a list of val-

ues, perhaps using that list as arguments.

Perl has several looping constructs.

for

The for construct performs a statement (block of code) for a set of conditions defined as

follows:

for (start condition; end condition; increment function) {

 statement(s)

}

The start condition is set at the beginning of the loop. Each time the loop is executed,

the increment function is performed until the end condition is achieved. This looks much

like the traditional for/next loop. The following code is an example of a for loop:

for ($i=1; $i<=10; $i++) {

 print "$i\n"

}

foreach

The foreach construct performs a statement block for each element in a list or an array:

@names = ("alpha","bravo","Charlie");

foreach $name (@names) {

 print "$name sounding off!\n";

}

The loop variable ($name in the example) is not merely set to the value of the array ele-

ments; it is aliased to that element. This means if you modify the loop variable, you’re

11

4
2

Looping

actually modifying the array. If no loop array is specified, the Perl default variable $_ may

be used, as shown here:

@names = ("alpha","bravo","Charlie");

foreach (@names) {

 print "$_ sounding off!\n";

}

This syntax can be very convenient, but it can also lead to unreadable code. Give a

thought to the poor person who’ll be maintaining your code. (It will probably be you.)

NOTE

foreach is frequently abbreviated as for.

while

while performs a block of statements as long as a particular condition is true, as shown in

this example:

while ($x<10) {

 print "$x\n";

 $x++;

}

Remember that the condition can be anything that returns a true or false value. For exam-

ple, it could be a function call, like this:

while (InvalidPassword($user, $password)) {

 print "You've entered an invalid password. Please try again.\n";

 $password = GetPassword;

}

until

until is exactly the opposite of the while statement. It performs a block of statements as

long as a particular condition is false (or, rather, until it becomes true). The following is an

example:

until (ValidPassword($user, $password)) {

 print "YSdpgm_m

Sdpgm_m

You have entered an invalid password. Please try again.\n";

Sdpgm_m

 $password = GetPassword;

}

12 BONUS CHAPTER 42 Using Perl

last and next

You can force Perl to end a loop early by using a last statement. last is similar to the C

break command; the loop is exited. If you decide you need to skip the remaining contents

of a loop without ending the loop, you can use next, which is similar to the C continue

command. Unfortunately, these statements do not work with do ... while. However,

you can use redo to jump to a loop (marked by a label) or inside the loop where called:

$a = 100;

while (1) {

 print "start\n";

 TEST: {

 if (($a = $a / 2) > 2) {

 print "$a\n";

 if (—$a < 2) {

 exit;

 }

 redo TEST;

 }

 }

}

In this simple example, the variable $a is repeatedly manipulated and tested in a loop. The

word start will be printed only once.

do ... while and do ... until

The while and until loops evaluate the conditional first. The behavior is changed by

applying a do block before the conditional. With the do block, the condition is evalu-

ated last, which results in the contents of the block always executing at least once (even

if the condition is false). This is similar to the C language do ... while (conditional)

statement.

Regular Expressions
Perl’s greatest strength lies in text and file manipulation, which is accomplished by using

the regular expression (regex) library. Regexes, which are quite different from the wildcard-

handling and filename-expansion capabilities of the shell (see Chapter 14, “Automating

Tasks and Shell Scripting”), allow complicated pattern matching and replacement to be

done efficiently and easily.

For example, the following line of code replaces every occurrence of the string bob or the

string mary with fred in a line of text:

$string =~ s/bob|mary/fred/gi;

Without going into too many of the details, Table 42.7 explains what the preceding line

says.

13

4
2

Access to the Shell

Table 42.7 Explanation of $string =~ s/bob|mary/fred/gi;

Element Explanation

$string =~ Performs this pattern match on the text found in the variable called $string.

s Performs a substitution.

/ Begins the text to be matched.

bob|mary Matches the text bob or mary. You should remember that it is looking for

the text mary, not the word mary; that is, it will also match the text mary in

the word maryland.

fred Replaces anything that was matched with the text fred.

/ Ends replace text.

g Does this substitution globally; that is, replaces the match text wherever in

the string you match it (and any number of times).

i The search text is not case sensitive. It matches bob, Bob, or bOB.

; Indicates the end of the line of code.

If you are interested in the details, you can get more information using the regex (7) sec-

tion of the man page by entering man 7 regex from the command line.

Although replacing one string with another might seem a rather trivial task, the code

required to do the same thing in another language (for example, C) is rather daunting

unless supported by additional subroutines from external libraries.

Access to the Shell
Perl can perform for you any process you might ordinarily perform by typing commands

to the shell through the \\ syntax. For example, the code in Listing 42.4 prints a directory

listing.

LISTING 42.4 Using Backticks to Access the Shell

$curr_dir = `pwd`;

@listing = `ls -al`;

print "Listing for $curr_dir\n";

foreach $file (@listing) {

 print "$file";

}

NOTE

The \\ notation uses the backtick found above the Tab key (on most keyboards), not the

single quotation mark.

14 BONUS CHAPTER 42 Using Perl

You can also use the Shell module to access the shell. Shell is one of the standard mod-

ules that come with Perl; it allows creation and use of a shell-like command line. The fol-

lowing code provides an example:

use Shell qw(cp);

cp ("/home/httpd/logs/access.log", :/tmp/httpd.log");

This code almost looks like it is importing the command-line functions directly into Perl.

Although that is not really happening, you can pretend that the code is similar to a com-

mand line and use this approach in your Perl programs.

A third method of accessing the shell is via the system function call:

$rc = 0xffff & system(`cp /home/httpd/logs/access.log /tmp/httpd.log`);

if ($rc == 0) {

 print "system cp succeeded \n";

} else {

 print "system cp failed $rc\n";

}

The call can also be used with the or die clause:

system(`cp /home/httpd/logs/access.log /tmp/httpd.log`) == 0

 or die "system cp failed: $?"

However, you cannot capture the output of a command executed through the system

function.

Modules and CPAN
A great strength of the Perl community (and the Linux community) is the fact that it is an

open source community. This community support is expressed for Perl via the Comprehen-

sive Perl Archive Network (CPAN), which is a network of mirrors of a repository of Perl code.

Most of CPAN is made up of modules, which are reusable chunks of code that do useful

things, similar to software libraries containing functions for C programmers. These mod-

ules help speed development when building Perl programs and free Perl hackers from

repeatedly reinventing the wheel when building bicycles.

Perl comes with a set of standard modules installed. Those modules should contain much of

the functionality that you initially need with Perl. If you need to use a module not installed

with Ubuntu, use the CPAN module (which is one of the standard modules) to download

and install other modules onto your system. At https://cpan.perl.org, you can find the

CPAN Multiplex Dispatcher, which attempts to direct you to the CPAN site closest to you.

Typing the following command puts you into an interactive shell that gives you access to

CPAN. You can type help at the prompt to get more information on how to use the CPAN

program:

matthew@seymour:~$ perl -MCPAN -e shell

https://cpan.perl.org

15

4
2

Code Examples

After installing a module from CPAN (or writing one of your own), you can load that

module into memory, where you can use it with the use function:

use Time::CTime;

use looks in the directories listed in the variable @INC for the module. In this example, use

looks for a directory called Time, which contains a file called CTime.pm, which in turn is

assumed to contain a package called Time::CTime. The distribution of each module should

contain documentation on using that module.

For a list of all the standard Perl modules (those that come with Perl when you install it),

see perlmodlib in the Perl documentation. You can read this document by typing perldoc

perlmodlib at the command prompt.

Code Examples
The following sections contain a few examples of things you might want to do with Perl.

Sending Mail

You can get Perl to send email in several ways. One method that you see frequently is

opening a pipe to the sendmail command and sending data to it (as shown in Listing

42.5). Another method is using the Mail::Sendmail module (available through CPAN),

which uses socket connections directly to send mail (as shown in Listing 42.6). The

latter method is faster because it does not have to launch an external process. Note

that sendmail must be installed on your system for the Perl program in Listing 42.5

to work.

LISTING 42.5 Sending Mail Using Sendmail

#!/usr/bin/perl

open (MAIL, "| /usr/sbin/sendmail -t"); # Use -t to protect from users

print MAIL <<EndMail;

To: you\

From: me\

Subject: A Sample Email\nSending email from Perl is easy!\n

.

EndMail

close MAIL;

NOTE

The @ sign in the email addresses must be escaped so that Perl does not try to evaluate

an array of that name. That is, dpitts@mk.net will cause a problem, so you need to use

this:

dpitts\<indexterm startref="iddle2799" class="endofrange"

significance="normal"/>:}]

mailto:dpitts@mk.net

16 BONUS CHAPTER 42 Using Perl

The syntax used to print the mail message is called a here document. The syntax is as

follows:

print <<EndText;

.....

EndText

The EndText value must be identical at the beginning and at the end of the block, includ-

ing any white space.

LISTING 42.6 Sending Mail Using the Mail::Sendmail Module

#!/usr/bin/perl

use Mail::Sendmail;

%mail = (To => "you@there.com",

 From => "me@here.com",

 Subject => "A Sample Email",

 Message => "This is a very short message"

);

sendmail(%mail) or die $Mail::Sendmail::error;

print "OK. Log says:\n", $Mail::Sendmail::log;

use Mail::Sendmail;

Perl ignores the comma after the last element in the hash. It is convenient to leave it

there; then, if you want to add items to the hash, you do not need to add the comma.

This is purely a style decision.

Using Perl to Install a CPAN Module

You can use Perl to interactively download and install a Perl module from the CPAN

archives by using the -M and -e commands. Start the process by using a Perl command

like this:

perl -MCPAN -e shell

When you press Enter, you see some introductory information, and you are asked to

choose an initial automatic or manual configuration, which is required before any down-

load or install takes place. Type no and press Enter to have Perl automatically configure

for the download and install process; or if you want, just press Enter to manually config-

ure for downloading and installation. If you use manual configuration, you must answer a

series of questions regarding paths, caching, terminal settings, program locations, and so

on. Settings are saved in a directory named .cpan in the current directory.

When finished, you see the CPAN prompt:

cpan>

mailto:"you@there.com"
mailto:"me@here.com"

17

4
2

Code Examples

To have Perl examine your system and then download and install a large number of mod-

ules, use the install keyword, specify Bundle at the prompt, and then press Enter, like

this:

cpan> install Bundle::CPAN

To download a desired module (using the example in Listing 42.6), use the get keyword,

like this:

cpan> get Mail::Sendmail

The source for the module is downloaded into the .cpan directory. You can then build and

install the module by using the install keyword, like this:

cpan> install Mail::Sendmail

The entire process of retrieving, building, and installing a module can also be accom-

plished at the command line by using Perl’s -e option, like this:

perl -MCPAN -e "install Mail::Sendmail"

Note also that the @ sign in Listing 42.6 does not need to be escaped within single quo-

tation marks (''). Perl does not interpolate (evaluate variables) within single quotation

marks but does within double quotation marks and here strings (similar to << shell

operations).

Purging Logs

Many programs maintain some variety of logs. Often, much of the information in the logs

is redundant or just useless. The program shown in Listing 42.7 removes all lines from a

file that contain a particular word or phrase, so lines that you know are not important can

be purged. For example, you might want to remove all the lines in the Apache error log

that originate with your test client machine because you know those error messages were

produced during testing.

LISTING 42.7 Purging Log Files

#!/usr/bin/perl

Be careful using this program!

This will remove all lines that contain a given word

Usage: remove <word> <file>

$word=@ARGV[0];

$file=@ARGV[1];

if ($file) {

 # Open file for reading

 open (FILE, "$file") or die "Could not open file: $!";

 @lines=<FILE>;

 close FILE;

 # Open file for writing

18 BONUS CHAPTER 42 Using Perl

 open (FILE, ">$file") or die "Could not open file for writing: $!";

 for (@lines) {

 print FILE unless /$word/;

 } # End for

 close FILE;

} else {

 print "Usage: remove <word> <file>\n";

} # End if...else

The code in Listing 42.7 includes a few idiomatic Perl expressions to keep it brief. It reads

the file into an array by using the <FILE> notation; it then writes the lines back out to the

file unless they match the pattern given on the command line.

The die function kills program operation and displays an error message if the open state-

ments fail. $! in the error message, as mentioned earlier in this chapter, is the error mes-

sage returned by the operating system. It is likely to be something like 'file not found'

or 'permission denied'.

Posting to Usenet

If some portion of your job requires periodic postings to Usenet—an FAQ listing, for

example—the following Perl program can automate the process for you. In Listing 42.8,

the posted text is read in from a text file, but your input can come from anywhere.

The program shown in Listing 42.8 uses the Net::NNTP module, which is a standard part

of the Perl distribution. You can find more documentation on the Net::NNTP module by

entering 'perldoc Net::NNTP' at the command line.

LISTING 42.8 Posting an Article to Usenet

#!/usr/bin/perl

load the post data into @post

open (POST, "post.file");

@post = <POST>;

close POST;

import the NNTP module

use Net::NNTP;

$NNTPhost = 'news';

attempt to connect to the remote host;

print an error message on failure

$nntp = Net::NNTP->new($NNTPhost)

 or die "Cannot contact $NNTPhost: $!";

$nntp->debug(1);

$nntp->post()

 or die "Could not post article: $!";

send the header of the post

$nntp->datasend("Newsgroups: news.announce\n");

$nntp->datasend("Subject: FAQ - Frequently Asked Questions\n");

19

4
2

Code Examples

$nntp->datasend("From: ADMIN <root>\n"

$nntp->datasend("\n\n");

for each line in the @post array, send it

for (@post) {

 $nntp->datasend($_);

} # End for

$nntp->quit;

One-Liners

Perl excels at the one-liner. Folks go to great lengths to reduce tasks to one line of Perl code.

Perl has the rather undeserved reputation of being unreadable. The fact is that you can write

unreadable code in any language. Perl allows for more than one way to do something, and

this leads rather naturally to people trying to find the most arcane way to do things.

Named for Randal Schwartz, a Schwartzian transform is a way of sorting an array by some-

thing that is not obvious. The sort function sorts arrays alphabetically; that is pretty obvi-

ous. What if you want to sort an array of strings alphabetically by the third word? Perhaps

you want something more useful, such as sorting a list of files by file size? A Schwartzian

transform creates a new list that contains the information you want to sort by, referencing

the first list. You then sort the new list and use it to figure out the order that the first list

should be in. Here’s a simple example that sorts a list of strings by length:

@sorted_by_length =

 map { $_ => [0] } # Extract original list

 sort { $a=>[1] <=> $b=>[1] } # Sort by the transformed value

 map { [$_, length($_)] } # Map to a list of element lengths

 @list;

Because each operator acts on the thing immediately to the right of it, it helps to read this

from right to left (or bottom to top, the way it is written here).

The first thing that acts on the list is the map operator. It transforms the list into a hash in

which the keys are the list elements and the values are the lengths of each element. This is

where you put in your code that does the transformation by which you want to sort.

The next operator is the sort function, which sorts the list by the values.

Finally, the hash is transformed back into an array by extracting its keys. The array is now

in the desired order.

Command-Line Processing

Perl is great at parsing the output of various programs. This is a task for which many peo-

ple use tools such as awk and sed. Perl gives you a larger vocabulary for performing these

tasks. The following example is very simple but illustrates how you might use Perl to chop

up some output and do something with it. In this example, Perl is used to list only files

that are larger than 10KB:

matthew@seymour:~$ ls -la | perl -nae 'print "$F[8] is $F[4]\n" if $F[4] >

10000;'

20 BONUS CHAPTER 42 Using Perl

The -n switch indicates that the Perl code should run for each line of the output. The -a

switch automatically splits the output into the @F array. The -e switch indicates that the

Perl code is going to follow on the command line.

Related Ubuntu and Linux Commands

You use these commands and tools often when using Perl with Linux:

 ▶ a2p—A filter used to translate awk scripts into Perl

 ▶ find2perl—A utility used to create Perl code from command lines using the find

command

 ▶ perldoc—A Perl utility used to read Perl documentation

 ▶ s2p—A filter used to translate sed scripts into Perl

 ▶ vi—The vi (actually vim) text editor

References
 ▶ Learning Perl, Third Edition by Randal L. Schwartz and Tom Phoenix—The

standard entry text for learning Perl.

 ▶ Programming Perl, 3rd edition, by Larry Wall, Tom Christiansen, and Jon

Orwant—The standard advanced text for learning Perl.

 ▶ Mastering Regular Expressions by Jeffrey Friedl—Regular expressions are what

make Perl so powerful.

 ▶ www.perl.com—This is the place to find all sorts of information about Perl, from

its history and culture to helpful tips. This is also the place to download the Perl

interpreter for your system.

 ▶ https://cpan.perl.org—CPAN is the place for you to find modules and programs

in Perl. If you write something in Perl that you think is particularly useful, you can

make it available to the Perl community here.

 ▶ https://perldoc.perl.org/index-faq.html—FAQ index of common Perl queries;

this site offers a handy way to quickly search for answers about Perl.

 ▶ https://learn.perl.org—One of the best places to start learning Perl online.

 ▶ http://jobs.perl.org—If you master Perl, go to this site to look for a job.

 ▶ www.pm.org—The Perl Mongers are local Perl user groups. There might be one in

your area.

 ▶ www.perl.org—This is the Perl advocacy site.

http://www.perl.com
https://cpan.perl.org
https://perldoc.perl.org/index-faq.html
https://learn.perl.org
http://jobs.perl.org
http://www.pm.org
http://www.perl.org

IN THIS CHAPTER

▶ Python on Linux

▶ The Basics of Python

▶ Functions

▶ Object Orientation

▶ The Standard Library and the

Python Package Index

▶ References

BONUS CHAPTER 43

Using Python

As PHP has come to dominate the world of web script-

ing, Python is increasingly dominating the domain of

command-line scripting. Python’s precise and clean syntax

makes it one of the easiest languages to learn, and it allows

programmers to code more quickly and spend less time

maintaining their code. Whereas PHP is fundamentally sim-

ilar to Java and Perl, Python is closer to C and Modula-3,

and so it might look unfamiliar at first.

This chapter constitutes a quick-start tutorial to Python,

designed to give you all the information you need to put

together basic scripts and to point you toward resources

that can take you further.

Two versions of Python are out in the wild right now.

Python version 2.x reached end-of-life in 2019, although

you are likely to see it in the wild for a while longer.

Python 3.x is now the default version everywhere, includ-

ing in Ubuntu, although Python 2.x will likely not yet be

completely removed for Ubuntu 20.04; it will have to be

installed intentionally alongside Python 3.x if it is needed.

Python 3.x is not backward compatible, and most programs

written in or for 2.x need some work to run on 3.x, which

is why the previous version is still available. However,

most companies are working hard to update their code,

such as LinkedIn, which announced in January 2020 that

it “retired Python 2 and improved developer happiness”

(https://engineering.linkedin.com/blog/2020/how-we-

retired-python-2-and-improved-developer-happiness).

This chapter tries to note places where significant differ-

ences exist between 2.x and 3.x. If you are learning Python

for the first time, start with a look at the 3.x series because

it is the future.

https://engineering.linkedin.com/blog/2020/how-we-retired-python-2-and-improved-developer-happiness
https://engineering.linkedin.com/blog/2020/how-we-retired-python-2-and-improved-developer-happiness

22 BONUS CHAPTER 43 Using Python

NOTE

This chapter provides a very elementary introduction to Python. For that reason, nearly

everything we cover is identical in both 2.x and 3.x. We mention the differences earlier

and in a couple of notes that follow so that readers who want to learn more will not be

surprised later. Unless noted otherwise, you should find what we say in this chapter

applies to either version.

Python on Linux
Most versions of Linux and UNIX, including macOS, come with Python preinstalled. This

is partially for convenience because it is such a popular scripting language—and it saves

having to install it later if the user wants to run a script—and partially because many vital

or useful programs included in Linux distributions are written in Python. For example, the

Ubuntu Software Center is a Python program.

The Python binary is installed in /usr/bin/python (or /usr/bin/python3); if you run that,

you enter the Python interactive interpreter, where you can type commands and have

them executed immediately. Although PHP also has an interactive mode (use php -a to

activate it), it is neither as powerful nor as flexible as Python’s.

As with Perl, PHP, and other scripting languages, you can also execute Python scripts by

adding a shebang line (#!) to the start of your scripts that point to /usr/bin/python and

then setting the file to be executable.

The third way to run Python scripts is through mod_python, which is an Apache module

that embeds the Python interpreter into the HTTP server, allowing you to use Python to

write web applications. You can install this from the Ubuntu repositories.

We use the interactive Python interpreter for this chapter because it provides immediate

feedback on commands as you type them, so it is essential that you become comfortable

using it. To get started, open a terminal and run the command python. You should see

something like this, perhaps with different version numbers and dates:

matthew@seymour:~$ python

Python 3.6.4 (default, Dec27 2017, 13:02:49)

[GCC 7.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> is where you type your input, and you can set and get a variable like this:

>>> python = 'great'

>>> python'great'

great

>>>

On the first line in this example, the variable python is set to the text great, and on

the second line, you read back that value from the variable simply by typing the name

23

4
3

The Basics of Python

of the variable you want to read. The third line shows Python printing the variable; on

the fourth line, you are back at the prompt to type more commands. Python remembers

all the variables you use while in the interactive interpreter, which means you can set a

variable to be the value of another variable.

When you are done, press Ctrl+D to exit. At this point, all your variables and commands

are forgotten by the interpreter, which is why complex Python programs are always saved

in scripts.

The Basics of Python
Python is a language wholly unlike most others, and yet it is so logical that most people

can pick it up quickly. You have already seen how easily you can assign strings, but in

Python, nearly everything is that easy—as long as you remember the syntax.

Numbers

The way Python handles numbers is more precise than in some other languages. It has all

the normal operators—such as + for addition, - for subtraction, / for division, and * for

multiplication—but it adds % for modulus (division remainder), ** for raise to the power,

and // for floor division. It is also specific about which type of number is being used, as

this example shows:

>>> a = 5

>>> b = 10

>>> a * b

50

>>> a / b

0

>>> b = 10.0

>>> a / b

0.5

>>> a // b

0.0

The first division returns 0 because both a and b are integers (whole numbers), so Python

calculates the division as an integer, giving 0. By converting b to 10.0, Python considers

it to be a floating-point number, and so the division is now calculated as a floating-point

value, giving 0.5. Even with b being a floating point, using //—floor division—rounds it

down.

Using **, you can easily see how Python works with integers:

>>> 2 ** 30

1073741824

>>> 2 ** 31

2147483648L

24 BONUS CHAPTER 43 Using Python

The first statement raises 2 to the power of 30 (that is, 2 times 2 times 2 times 2…),

and the second raises 2 to the power of 31. Notice how the second number has a capital L

on the end of it; this is Python telling you that it is a long integer. The difference between

long integers and normal integers is slight but important: Normal integers can be calcu-

lated using simple instructions on the CPU, whereas long integers—because they can be as

big as you need them to be—need to be calculated in software and therefore are slower.

When specifying big numbers, you need not put the L at the end as Python figures it

out for you. Furthermore, if a number starts off as a normal number and then exceeds its

boundaries, Python automatically converts it to a long integer. The same is not true the

other way around: If you have a long integer and then divide it by another number so

that it could be stored as a normal integer, it remains a long integer:

>>> num = 999999999999999999999999999999999L

>>> num = num / 1000000000000000000000000000000

>>> num

999L

You can convert between number types by using typecasting, like this:

>>> num = 10

>>> int(num)

10

>>> float(num)

10.0

>>> long(num)

10L

>>> floatnum = 10.0

>>> int(floatnum)

10

>>> float(floatnum)

10.0

>>> long(floatnum)

10L

You need not worry about whether you are using integers or long integers; Python han-

dles it all for you, so you can concentrate on getting the code right. In the 3.x series, the

Python integer type automatically provides extra precision for large numbers, whereas in

2.x you use a separate long integer type for numbers larger than the normal integer type is

designed to handle.

More on Strings

Python stores a string as an immutable sequence of characters—a jargon-filled way of say-

ing that “it is a collection of characters that, once set, cannot be changed without creating

a new string.” Sequences are important in Python. There are three primary types, of which

strings are one, and they share some properties. (Mutability makes a lot of sense when you

learn about lists in the next section.)

25

4
3

The Basics of Python

As you saw in the previous example, you can assign a value to strings in Python with just

an equal sign, like this:

>>> mystring = 'hello';

>>> myotherstring = "goodbye";

>>> mystring'hello'

>>> myotherstring;'goodbye'

>>> test = "Are you really Jayne Cobb?"

>>> test

"Are you really Jayne Cobb?"

The first example encapsulates the string in single quotation marks, and the second and

third examples encapsulate the string in double quotation marks. However, printing the

first and second strings shows them both in single quotation marks because Python does

not distinguish between the two types. The third example is the exception; it uses double

quotation marks because the string itself contains a single quotation mark. Here, Python

prints the string with double quotation marks because it knows it contains the single

quotation mark.

Because the characters in a string are stored in sequence, you can index into them by

specifying the character you are interested in. As in most other languages, in Python these

indexes are zero based, which means you need to ask for character 0 to get the first letter

in a string. Here is an example:

>>> string = "This is a test string"

>>> string

'This is a test string'

>>> string[0]

'T'

>>> string [0], string[3], string [20]

('T', 's', 'g')

The last line shows how, with commas, you can ask for several indexes at the same time.

You could print the entire first word using the following:

>>> string[0], string[1], string[2], string[3]

('T', 'h', 'I', 's')

However, for that purpose, you can use a different concept: slicing. A slice of a sequence

draws a selection of indexes. For example, you can pull out the first word like this:

>>> string[0:4]

'This'

The syntax here means “take everything from position 0 (including 0) and end at position

4 (excluding it).” So, [0:4] copies the items at indexes 0, 1, 2, and 3. You can omit either

side of the indexes, and it will copy either from the start or to the end:

>>> string [:4]

26 BONUS CHAPTER 43 Using Python

'This'

>>> string [5:]

'is a test string'

>>> string [11:]

'est string'

You can also omit both numbers, and it gives you the entire sequence:

>>> string [:]'This is a test string'

Later you learn precisely why you would want to do this, but for now we look at a num-

ber of other string intrinsics that will make your life easier. For example, you can use the +

and * operators to concatenate (join) and repeat strings, like this:

>>> mystring = "Python"

>>> mystring * 4

'PythonPythonPythonPython'

>>> mystring = mystring + " rocks! "

>>> mystring * 2

'Python rocks! Python rocks! '

In addition to working with operators, Python strings come with a selection of built-in

methods. You can change the case of the letters with capitalize() (uppercases the first

letter and lowercases the rest), lower() (lowercases them all), title() (uppercases the

first letter in each word), and upper() (uppercases them all). You can also check whether

strings match certain cases with islower(), istitle(), and isupper(); this also extends

to isalnum() (which returns true if the string is letters and numbers only) and isdigit()

(which returns true if the string is all numbers).

This example demonstrates some of these in action:

>>> string

'This is a test string'

>>> string.upper()

'THIS IS A TEST STRING'

>>> string.lower()

'this is a test string'

>>> string.isalnum()

False

>>> string = string.title()

>>> string

'This Is A Test String'

Why did isalnum() return false? Doesn’t the string contain only alphanumeric char-

acters? Well, no. There are spaces in there, which is what is causing the problem. More

importantly, this example calls upper() and lower(), and they are not changing the con-

tents of the string but just returning the new value. So, to change the string from This

27

4
3

The Basics of Python

is a test string to This Is A Test String, you have to assign it back to the string

variable.

Another really useful and kind of cool thing you can do with strings is triple quoting. This

way, you can easily create strings that include both double- and single-quoted strings, as

well as strings that span more than one line, without having to escape a bunch of special

characters. Here’s an example:

>>>foo = """

..."foo"

...'bar'

...baz

...blippy

..."""

>>>foo

'\n"foo"\n\'bar\'\nbaz\nblippy\n'

>>>

Although this is intended as an introductory guide, the capability to use negative indexes

with strings and slices is a pretty neat feature that deserves a mention. Here’s an example:

>>>bar="news.google.com"

>>>bar[-1]

'm'

>>>bar[-4:]

'.com'

>>>bar[-10:-4]

'google'

>>>

One difference between Python 2.x and 3.x is the introduction of new string types and

method calls. This doesn’t affect what we share here but is something to pay attention to

as you work with Python.

Lists

Python’s built-in list data type is a sequence, like strings. However, lists are mutable,

which means you can change them. A list is like an array in that it holds a selection of

elements in a given order. You can cycle through them, index into them, and slice them:

>>> mylist = ["python", "perl", "php"]

>>> mylist

['python', 'perl', 'php']

>>> mylist + ["java"]

["python", 'perl', 'php', 'java']

>>> mylist * 2

['python', 'perl', 'php', 'python', 'perl', 'php']

>>> mylist[1]

http://"news.google.com"
http://'.com'

28 BONUS CHAPTER 43 Using Python

'perl'

>>> mylist[1] = "c++"

>>> mylist[1]

'c++'

>>> mylist[1:3]

['c++', 'php']

The brackets notation is important: You cannot use parentheses (()) or braces ({}) for

lists. Using + for lists is different from using + for numbers. Python detects that you are

working with a list and appends one list to another. This is known as operator overloading,

and it is part of what makes Python so flexible.

Lists can be nested, which means you can put a list inside a list. However, this is where

mutability starts to matter, and so this might sound complicated. Recall that an immu-

table string sequence is a collection of characters that, once set, cannot be changed with-

out creating a new string. Lists are mutable, as opposed to immutable, which means you

can change a list without creating a new list. This becomes important because Python, by

default, copies only a reference to a variable rather than the full variable. Consider this

example:

>>> list1 = [1, 2, 3]

>>> list2 = [4, list1, 6]

>>> list1

[1, 2, 3]

>>> list2

[4, [1, 2, 3], 6]

This example shows a nested list. list2 contains 4, then list1, then 6. When you print

the value of list2, you can see that it also contains list1. Now, let’s proceed on from

that:

>>> list1[1] = "Flake"

>>> list2

[4, [1, 'Flake', 3], 6]

In the first line, you set the second element in list1 (remember that sequences are zero

based!) to be Flake rather than 2; then you print the contents of list2. As you can see,

when list1 changes, list2 is updated, too. The reason for this is that list2 stores a refer-

ence to list1 as opposed to a copy of list1; they share the same value.

You can see that this works both ways by indexing twice into list2, like this:

>>> list2[1][1] = "Caramello"

>>> list1

[1, 'Caramello', 3]

The first line says, “Get the second element in list2 (list1) and the second element of

that list and set it to be ‘Caramello’.” Then list1’s value is printed, and you can see that

29

4
3

The Basics of Python

it has changed. This is the essence of mutability: You are changing a list without creating

a new list. However, editing a string creates a new string, leaving the old one unaltered.

Here is an example:

>>> mystring = "hello"

>>> list3 = [1, mystring, 3]

>>> list3

[1, 'hello', 3]

>>> mystring = "world"

>>> list3

[1, 'hello', 3]

Of course, this raises the question of how you copy without references when references are

the default. The answer, for lists, is that you use the [:] slice, covered earlier in this chap-

ter. This slices from the first element to the last, inclusive, essentially copying it without

references. Here is how it looks:

>>> list4 = ["a", "b", "c"]

>>> list5 = list4[:]

>>> list4 = list4 + ["d"]

>>> list5

['a', 'b', 'c']

>>> list4

['a', 'b', 'c', 'd']

Lists have their own collections of built-in methods, such as sort(), append(), and pop().

The latter two add and remove single elements from the end of the list, and pop() also

returns the removed element. Here is an example:

>>> list5 = ["nick", "paul", "Julian", "graham"]

>>> list5.sort()

>>> list5

['graham', 'julian', 'nick', 'paul'']

>>> list5.pop()'paul'

>>> list5

['graham', 'julian', 'nick']

>>> list5.append("Rebecca")

In addition, one interesting method of strings returns a list: split(). This takes a charac-

ter to split by and then gives you a list in which each element is a chunk from the string.

Here is an example:

>>> string = "This is a test string";

>>> string.split(" ")

['This', 'is', 'a', 'test', 'string']

30 BONUS CHAPTER 43 Using Python

Lists are used extensively in Python, although this is slowly changing as the language

matures. The way lists are compared and sorted has changed in 3.x, so be sure to check

the latest documentation when you attempt to perform these tasks.

Dictionaries

Unlike a list, a dictionary is a collection with no fixed order. Instead, it has a key (the

name of the element) and a value (the content of the element), and Python places a dic-

tionary wherever it needs to for maximum performance. When defining dictionaries, you

need to use braces ({}) and colons (:). You start with an opening brace and then give each

element a key and a value, separated by a colon, like this:

>>> mydict = { "perl" : "a language", "php" : "another language" }

>>> mydict

{'php': 'another language', 'perl': 'a language'}

This example has two elements, with keys perl and php. However, when the dictionary is

printed, you find that php comes before perl; Python hasn’t respected the order in which

you entered them. You can index into a dictionary by using the normal code:

>>> mydict["perl"]'a language'

However, because a dictionary has no fixed sequence, you cannot take a slice or an index

by position.

Like lists, dictionaries are mutable and can also be nested; however, unlike with lists, you

cannot merge two dictionaries by using +. This is because dictionary elements are located

using the key. Therefore, having two elements with the same key would cause a clash.

Instead, you should use the update() method, which merges two arrays by overwriting

clashing keys.

You can also use the keys() method to return a list of all the keys in a dictionary.

Subtle differences exists between how dictionaries are used in 3.x compared to in

2.x, such as the need to make list calls to produce all values at once so they may be

printed. Again, be sure to check the latest documentation as you move ahead because

there are several of these changes in functionality, with some tools now behaving dif-

ferently or even disappearing and other new dictionary tools being added. Some of

those features have been backported; for example, Python 2.7 received support for

ordered dictionaries, backported from Python 3.1 (see https://docs.python.org/dev/

whatsnew/2.7.html#pep-0372).

Conditionals and Looping

So far, we have just been looking at data types, which should show you how powerful

Python’s data types are. However, you cannot write complex programs without condi-

tional statements and loops.

https://docs.python.org/dev/whatsnew/2.7.html#pep-0372
https://docs.python.org/dev/whatsnew/2.7.html#pep-0372

31

4
3

The Basics of Python

Python has most of the standard conditional checks, such as > (greater than), <= (less than

or equal to), and == (equal), but it also adds some new ones, such as in. For example, you

can use in to check whether a string or a list contains a given character or element:

>>> mystring = "J Random Hacker"

>>> "r" in mystring

True

>>> "Hacker" in mystring

True

>>> "hacker" in mystring

False

This example demonstrates how strings are case sensitive. You can use the equal operator

for lists, too:

>>> mylist = ["soldier", "sailor", "tinker", "spy"]

>>> "tailor" in mylist

False

Other comparisons on these complex data types are done item by item:

>>> list1 = ["alpha", "beta", "gamma"]

>>> list2 = ["alpha", "beta", "delta"]

>>> list1 > list2

True

In this case, list1’s first element (alpha) is compared against list2’s first element (alpha)

and, because they are equal, the next element is checked. That is equal also, so the third

element is checked, which is different. The g in gamma comes after the d in delta in the

alphabet, so gamma is considered greater than delta, and list1 is considered greater than

list2.

Loops come in two types, and both are equally flexible. For example, the for loop can

iterate through letters in a string or elements in a list:

>>> string = "Hello, Python!"

>>> for s in string: print s,

...

H e l l o , P y t h o n !

The for loop takes each letter in a string and assigns it to s. This is then printed to the

screen using the print command, but note the comma at the end; it tells Python not to

insert a line break after each letter. The ellipsis (...) is there because Python allows you to

enter more code in the loop; you need to press Enter again here to have the loop execute.

You can use the same construct for lists:

>>> mylist = ["andi", "rasmus", "zeev"]

>>> for p in mylist: print p

32 BONUS CHAPTER 43 Using Python

...

andi

rasmus

zeev

Without the comma after the print statement, each item is printed on its own line.

The other loop type is the while loop, and it looks similar:

>> while 1: print "This will loop forever!"

...

This will loop forever!

This will loop forever!

This will loop forever!

This will loop forever!

This will loop forever!

(etc)

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

KeyboardInterrupt

>>>

That is an infinite loop (it carries on printing that text forever), so you need to press

Ctrl+C to interrupt it and regain control.

If you want to use multiline loops, you need to get ready to use your Tab key: Python

handles loop blocks by recording the level of indent used. Some people find this odious;

others admire it for forcing clean coding on users. Most of us, though, just get on with

programming.

Here is an example:

>>> i = 0

>>> while i < 3:

... j = 0

... while j < 3:

... print "Pos: " + str(i) + "," + str(j) + ")"

... j += 1

... i += 1

...

Pos: (0,0)

Pos: (0,1)

Pos: (0,2)

Pos: (1,0)

Pos: (1,1)

Pos: (1,2)

Pos: (2,0)

Pos: (2,1)

Pos: (2,2)

33

4
3

Functions

You can control loops by using the break and continue keywords. break exits the loop

and continues processing immediately afterward, and continue jumps to the next loop

iteration.

Again, many subtle changes have occurred from 2.x to 3.x. Most conditionals and looping

work the same, but because we mention it in this section, we should note that print is

no longer a statement in 3.x and is now a function call. That provides a nice segue to our

discussion of functions.

Functions
Some languages—such as PHP—read and process an entire file before executing it, which

means you can call a function before it is defined because the compiler reads the defini-

tion of the function before it tries to call it. Python is different: If the function definition

has not been reached by the time you try to call it, you get an error. The reason behind

this behavior is that Python actually creates an object for your function, and that in turn

means two things. First, you can define the same function several times in a script and

have the script pick the right one at runtime. Second, you can assign the function to

another name just by using =.

A function definition starts with def, then the function name, then parentheses and a list

of parameters, and then a colon. The contents of a function need to be indented at least

one level beyond the definition. So, using function assignment and dynamic declaration,

you can write a script that prints the right greeting in a roundabout manner:

>>> def hello_english(Name):

... print "Hello, " + Name + "!"

...

>>> def hello_hungarian(Name):

... print "Szia, " + Name + "!"

...

>>> hello = hello_hungarian

>>> hello("Paul")

Szia, Paul!

>>> hello = hello_english

>>> hello("Paul")

Notice that function definitions include no type information. Functions are typeless, as

mentioned previously. The upside of this is that you can write one function to do several

things:

>>> def concat(First, Second):

... return First + Second

...

>>> concat(["python"], ["perl"])

['python', 'perl']

>>> concat("Hello, ", "world!")'Hello, world!'

34 BONUS CHAPTER 43 Using Python

This example demonstrates how the return statement sends a value back to the caller and

also how a function can do one thing with lists and another thing with strings. The magic

here is being accomplished by the objects. You write a function that tells two objects to

add themselves together, and the objects intrinsically know how to do that. If they do

not—if, perhaps, the user passes in a string and an integer—Python catches the error for

you. However, it is this hands-off, “let the objects sort themselves out” attitude that makes

functions so flexible. The concat() function could conceivably concatenate strings, lists,

or zonks—a data type someone created herself that allows adding. The point is that Python

does not limit what your function can do. As clichéd as it might sound, the only limit is

your imagination.

Object Orientation
After having read this far, you should not be surprised to hear that Python’s object ori-

entation is flexible and likely to surprise you if you have been using C-like languages for

some time.

The best way to learn Python object-oriented programming (OOP) is to just do it. Here is a

basic script that defines a class, creates an object of that class, and calls a function:

class Dog(object):

 def bark(self):

 print "Woof!"

fluffy = Dog()

fluffy.bark()

Defining a class starts, predictably, with the class keyword followed by the name of the

class you are defining and a colon. The contents of that class need to be indented one

level so that Python knows where it stops. Note that the object inside parentheses is there

for object inheritance, which is discussed later. For now, the least you need to know is

that if your new class is not based on an existing class, you should put object inside

parentheses, as shown in the previous code.

Functions inside classes work in much the same way as normal functions do (although

they are usually called methods); the main difference is that they should all take at least

one parameter, usually called self. This parameter is filled with the name of the object

the function was called on, and you need to use it explicitly.

Creating an instance of a class is done by assignment. You do not need any new keyword,

as in some other languages; providing the parentheses makes the creation known. Calling

a function of that object is done using a period and the name of the class to call, with any

parameters being passed inside parentheses.

Class and Object Variables

Each object has its own set of functions and variables, and you can manipulate those vari-

ables independently of objects of the same type. In addition, a class variable may be set to

a default value for all classes, in which case it can be manipulated globally.

35

4
3

Object Orientation

This script demonstrates two objects of the dog class being created, each with its own name:

class Dog(object):

 name = "Lassie"

 def bark(self):

 print self.name + " says 'Woof!'"

 def set_name(self, name):

 self.name = name

fluffy = Dog()

fluffy.bark()

poppy = Dog()

poppy.set_name("Poppy")

poppy.bark()

This outputs the following:

Lassie says 'Woof!'

Poppy says 'Woof!'

Here, each dog starts with the name Lassie, but it gets customized. Keep in mind that,

by default, Python assigns by reference, meaning each object has a reference to the class’s

name variable, and as you assign that with the set_name() method, that reference is lost.

This means that any references you do not change can be manipulated globally. Thus, if

you change a class’s variable, it also changes in all instances of that class that have not set

their own value for that variable. Consider this example:

class Dog(object):

 name = "Lassie"

 color = "brown"

fluffy = Dog()

poppy = Dog()

print fluffy.color

Dog.color = "black"

print poppy.color

fluffy.color = "yellow"

print fluffy.color

print poppy.color

So, the default color of dogs is brown—both the fluffy and poppy Dog objects start off as

brown. Then, using Dog.color, you set the default color to be black, and because neither

of the two objects has set its own color value, they are updated to be black. The third-to-

last line uses poppy.color to set a custom color value for the poppy object: poppy becomes

yellow, whereas fluffy and the Dog class in general remain black.

Constructors and Destructors

To help you automate the creation and deletion of objects, you can easily override two

default methods: __init__ and __del__. These are the methods that Python calls when a

class is being instantiated and freed, known as the constructor and destructor, respectively.

36 BONUS CHAPTER 43 Using Python

Having a custom constructor is great for when you need to accept a set of parameters for

each object being created. For example, you might want each dog to have its own name

on creation, and you could implement that with this code:

class Dog(object):

 def __init__(self, name):

 self.name = name

fluffy = Dog("Fluffy")

print fluffy.name

If you do not provide a name parameter when creating the Dog object, Python reports an error

and stops. You can, of course, ask for as many constructor parameters as you want, although it

is usually better to ask only for the ones you need and have other functions to fill in the rest.

On the other side of things is the destructor method, which enables you to have more

control over what happens when an object is destroyed. Using a constructor and destruc-

tor, this example shows the life cycle of an object by printing messages when it is created

and deleted:

class dog(object):

 def __init__(self, name):

 self.name = name

 print self.name + " is alive!"

 def __del__(self):

 print self.name + " is no more!"

fluffy = Dog("Fluffy")

The destructor is here to give you the chance to free up resources allocated to the object or

perhaps log something to a file. Note that although it is possible to override the __del__

method, doing so is very dangerous because it is not guaranteed that __del__ methods are

called for objects that still exist when the interpreter exits. The official Python documenta-

tion explains this well at https://docs.python.org/reference/datamodel.html#object.__del__.

Class Inheritance

Python allows you to reuse your code by inheriting one class from one or more others. For

example, lions, tigers, and bears are all mammals and so share a number of similar proper-

ties. In that scenario, you do not want to have to copy and paste functions between them;

it is smarter (and easier) to have a mammal class that defines all the shared functionality

and then inherit each animal from that.

Consider the following code:

class Car(object):

 color = "black"

 speed = 0

 def accelerate_to(self, speed):

 self.speed = speed

 def set_color(self, color):

https://docs.python.org/reference/datamodel.html#object.__del__

37

4
3

Object Orientation

 self.color = color

mycar = Car()

print mycar.color

This example creates a Car class with a default color and provides a set_color() function

so that people can change their own colors. Now, what do you drive to work? Is it a car?

Sure it is, but chances are it is a Ford, or a Dodge, or a Jeep, or some other make; you do

not get cars without a make. On the other hand, you do not want to have to define a class

Ford and give it the methods accelerate_to(), set_color(), and however many other

methods a basic car has and then do the same thing for Ferrari, Nissan, and so on.

The solution is to use inheritance: Define a car class that contains all the shared functions and

variables of all the makes and then inherit from that. In Python, you do this by putting the

name of the class from which to inherit inside parentheses in the class declaration, like this:

class Car(object):

 color = "black"

 speed = 0

 def accelerate_to(self, speed):

 self.speed = speed

 def set_color(self, color):

 self.color = color

class Ford(Car): pass

class Nissan(Car): pass

mycar = Ford()

print mycar.color

The pass directive is an empty statement; it means the class contains nothing new. How-

ever, because the Ford and Nissan classes inherit from the car class, they get color, speed,

accelerate_to(), and set_color() provided by their parent class. (Note that you do not

need objects after the class names for Ford and Nissan because they are inherited from an

existing class: car.)

By default, Python gives you all the methods the parent class has, but you can override that

by providing new implementations for the classes that need them. Here is an example:

class Modelt(car):

 def set_color(self, color):

 print "Sorry, Model Ts only come in black!"

myford Ford()

Ford.set_color("green")

mycar = Modelt()

mycar.set_color("green")

The first car is created as a Ford, so set_color() works fine because it uses the method

from the car class. However, the second car is created as a Modelt, which has its own

set_color() method, so the call fails.

38 BONUS CHAPTER 43 Using Python

This suggests an interesting scenario: What do you do if you have overridden a method

and yet want to call the parent’s method also? If, for example, changing the color of a

Model T were allowed but just cost extra, you would want to print a message saying “You

owe $50 more” but then change the color. To do this, you need to use the class object

from which the current class is inherited (Car in this case). Here’s an example:

class Modelt(Car):

 def set_color(self, color):

 print "You owe $50 more"

 Car.set_color(self, color)

mycar = Modelt()

mycar.set_color("green")

print mycar.color

This prints the message and then changes the color of the car.

The Standard Library and the Python Package Index
A default Python install includes many modules (blocks of code) that enable you to interact

with the operating system, open and manipulate files, parse command-line options, perform

data hashing and encryption, and much more. This is one of the reasons most commonly

cited when people are asked why they like Python so much: It comes stocked to the gills

with functionality you can take advantage of immediately. In fact, the number of modules

included in the Standard Library is so high that entire books have been written about them.

For unofficial scripts and add-ons for Python, the recommended starting place is called the

Python Package Index (pyPI), at https://pypi.python.org/pypi. There you can find more than

10,000 public scripts and code examples for everything from mathematics to games.

References
 ▶ www.python.org—The Python website is packed with information and updated

regularly. This should be your first stop, if only to read the latest Python news.

 ▶ www.jython.org—Python also has an excellent Java-based interpreter to allow it

to run on other platforms.

 ▶ www.ironpython.com—If you prefer Microsoft .NET, check out this site.

 ▶ www.montypython.com—Guido van Rossum borrowed the name for his lan-

guage from Monty Python’s Flying Circus, and as a result many Python code examples

use oblique Monty Python references (spam and eggs are quite common, for example).

A visit to the official Monty Python site to hone your Python knowledge is highly

recommended.

 ▶ www.zope.org—This is the home page of the Zope content management system

(CMS). One of the most popular CMSs around, Zope is written entirely in Python.

https://pypi.python.org/pypi
http://www.python.org
http://www.jython.org
http://www.ironpython.com
http://www.montypython.com
http://www.zope.org

IN THIS CHAPTER

 ▶ Introduction to PHP

 ▶ Basic Functions

 ▶ Handling HTML Forms

 ▶ Databases

 ▶ References

BONUS CHAPTER 44

Using PHP

This chapter introduces you to the world of PHP program-

ming from the point of view of using it as a web scripting

language and as a command-line tool. PHP originally stood

for Personal Home Page because it was a collection of Perl

scripts designed to ease the creation of guest books, message

boards, and other interactive scripts commonly found on

home pages. However, since those early days, it has received

major updates and revisions.

Part of the success of PHP has been its powerful integration

with databases; its earliest uses nearly always took advan-

tage of a database back end.

NOTE

Many packages for PHP are available from the Ubuntu

repositories. The basic package you want to install is just

called php, and installing it brings in other packages as

dependencies.

Introduction to PHP
In terms of the way it looks, PHP is a cross between Java

and Perl, a successful merger of the best aspects of both

into one language. The Java parts include a powerful object-

orientation system, the capability to throw program excep-

tions, and the general style of writing that both languages

borrowed from C. Borrowed from Perl is the “it should just

work” mentality where ease of use is favored over strictness.

As a result, you will find a lot of “there is more than one

way to do it” in PHP. This also means that it is possible to

accomplish tasks in ways that are less than ideal or without

consideration for good security. Many criticize PHP for this,

but for simple tasks or if written carefully, it can be a pretty

good language and is easy to understand and use, especially

for quick website creation.

40 BONUS CHAPTER 44 Using PHP

Entering and Exiting PHP Mode

Unlike with PHP’s predecessors, you embed your PHP code inside your HTML as opposed

to the other way around. Before PHP, many websites had standard HTML pages for most

of their content, linking to Perl CGI pages to do back-end processing when needed. With

PHP, all your pages are capable of processing and containing HTML. This is a huge factor

in PHP’s popularity.

Each PHP file is processed by PHP, which looks for code to execute. PHP considers all the

text it finds to be HTML until it finds one of four things:

 ▶ <?php

 ▶ <?

 ▶ <%

 ▶ <script language="php">

The first option is the preferred method of entering PHP mode because it is guaranteed to

work.

When in PHP mode, you can exit it by using ?> (for <?php and <?); %> (for <%); or

</script> (for <script language="php">). This code example demonstrates entering

and exiting PHP mode:

In HTML mode

<?php

 echo "In PHP mode";

?>

In HTML mode

In <?php echo "PHP"; ?> mode

Variables

Every variable in PHP starts with a dollar sign ($). Unlike many other languages, PHP does

not have different types of variable for integers, floating-point numbers, arrays, or Bool-

eans. They all start with a $, and all are interchangeable. As a result, PHP is a weakly typed

language, which means you do not declare a variable as containing a specific type of data;

you just use it however you want to.

Save the code in Listing 44.1 into a new file called ubuntu1.php.

LISTING 44.1 Testing Types in PHP

<?php

 $i = 10;

 $j = "10";

 $k = "Hello, world";

 echo $i + $j;

 echo $i + $k;

?>

41

4
4

Introduction to PHP

To run this script, bring up a console and browse to where you saved it. Then type this

command:

matthew@seymour:~$ php ubuntu1.php

If PHP is installed correctly, you should see the output 2010, which is really two things.

The 20 is the result of 10 + 10 ($i plus $j), and the 10 is the result of adding 10 to the text

string Hello, world. Neither of those operations are really straightforward. Whereas $i

is set to the number 10, $j is actually set to be the text value "10", which is not the same

thing. Adding 10 to 10 gives 20, as you would imagine, but adding 10 to "10" (the string)

forces PHP to convert $j to an integer on-the-fly before adding it.

Running $i + $k adds another string to a number, but this time the string is Hello,

world and not just a number inside a string. PHP still tries to convert it, though, and

converting any non-numerical string into a number converts it to 0. So, the second echo

statement ends up saying $i + 0.

As you should have guessed by now, calling echo outputs values to the screen. Right now,

that prints directly to your console, but internally PHP has a complex output mechanism

that enables you to print to a console, send text through Apache to a web browser, send

data over a network, and more.

Now that you have seen how PHP handles variables of different types, it is important that

you understand the various of types available to you, as shown in Table 44.1.

Table 44.1 PHP Variable Types

Type Stores

integer Whole numbers; for example, 1, 9, or 324809873

float Fractional numbers; for example, 1.1, 9.09, or 3.141592654

string Characters; for example, "a", "sfdgh", or "Ubuntu Unleashed"

boolean true or false

array Several variables of any type

The first four variables in Table 44.1 can be thought of as simple variables and the last

two as complex variables. Arrays are simply collections of variables. You might have an

array of numbers (for example, the ages of all the children in a class); an array of strings

(for example, the names of all Wimbledon tennis champions); or even an array of arrays,

known as a multidimensional array. Arrays are covered in more depth in the next section

because they are unique in the way they are defined.

An object is used to define and manipulate a set of variables that belong to a unique

entity. Each object has its own personal set of variables, as well as functions that operate

on those variables. Objects are commonly used to model real-world things. You might

define an object that represents a TV, with variables such as $CurrentChannel (probably

an integer), $SupportsHiDef (a Boolean), and so on.

Of all the complex variables, the easiest to grasp are resources. PHP has many extensions

available to it that allow you to connect to databases, manipulate graphics, or even make

42 BONUS CHAPTER 44 Using PHP

calls to Java programs. Because they are all external systems, they need to have types of

data unique to them that PHP cannot represent using any of the six other data types. So,

PHP stores their custom data types in resources—data types that are meaningless to PHP

but can be used by the external libraries that created them.

Arrays

Arrays are one of our favorite parts of PHP because the syntax is smart and easy to read

and yet manages to be as powerful as you could want. You need to know four pieces of

jargon to understand arrays:

 ▶ An array is made up of many elements.

 ▶ Each element has a key that defines its place in the array. An array can have only

one element with a given key.

 ▶ Each element also has a value, which is the data associated with the key.

 ▶ Each array has a cursor, which points to the current key.

The first three are used regularly; the last one less often. The array cursor is covered later

in this chapter, in the section “Basic Functions,” but we look at the other three now. With

PHP, your keys can be almost anything: integers, strings, objects, or other arrays. You can

even mix and match the keys so that one key is an array, another is a string, and so on.

The one exception to all this is floating-point numbers; you cannot use floating-point

numbers as keys in your arrays.

There are two ways of adding values to an array: with the [] operator, which is unique to

arrays; and with the array() pseudo-function. You should use [] when you want to add

items to an existing array and use array() to create a new array.

To sum all this up in code, Listing 44.2 shows a script that creates an array without speci-

fying keys, adds various items to it both without keys and with keys of varying types, does

a bit of printing, and then clears the array.

LISTING 44.2 Manipulating Arrays

<?php

 $myarr = array(1, 2, 3, 4);

 $myarr[4] = "Hello";

 $myarr[] = "World!";

 $myarr["elephant"] = "Wombat";

 $myarr["foo"] = array(5, 6, 7, 8);

 echo $myarr[2];

 echo $myarr["elephant"];

 echo $myarr["foo"][1];

 $myarr = array();

?>

43

4
4

Introduction to PHP

The initial array is created with four elements, to which we assign the values 1, 2, 3, and

4. Because no keys are specified, PHP automatically assigns keys for us, starting at 0 and

counting upward—giving keys 0, 1, 2, and 3. Then we add a new element with the []

operator, specifying 4 as the key and "Hello" as the value. Next, [] is used again to add an

element with the value "World!" and no key and then again to add an element with the

key "elephant" and the value "wombat". The line after that demonstrates using a string

key with an array value—an array inside an array (a multidimensional array).

The next three lines demonstrate reading back from an array, first using a numerical key,

then using a string key, and then using a string key and a numerical key. Remember that

the "foo" element is an array in itself, so that third reading line retrieves the array and

then prints the second element (arrays start at 0, remember). The last line blanks the array

by simply using array() with no parameters, which creates an array with elements and

assigns it to $myarr.

The following is an alternative way of using array() that allows you to specify keys along

with their values:

$myarr = array("key1" => "value1", "key2" => "value2",

7 => "foo", 15 => "bar");

Which method you choose really depends on whether you want specific keys or want PHP

to pick them for you.

Constants

Constants are frequently used in functions that require specific values to be passed in.

For example, a popular function is extract(), which takes all the values in an array and

places them into variables in their own right. You can choose to change the name of the

variables as they are extracted by using the second parameter; send it 0, and it overwrites

variables with the same names as those being extracted; send it 1, and it skips variables

with the same names; send it 5, and it prefixes variables only if they exist already; and so

on. Of course, no one wants to have to remember a lot of numbers for each function, so

you can instead use EXTR_OVERWRITE for 0, EXTR_SKIP for 1, EXTR_PREFIX_IF_EXISTS for 5,

and so on, which is much easier.

You can create constants of your own by using the define() function. Unlike variables,

constants do not start with a dollar sign. Code to define a constant looks like this:

<?php

 define("NUM_SQUIRRELS", 10);

 define("PLAYER_NAME", "Jim");

 define("NUM_SQUIRRELS_2", NUM_SQUIRRELS);

 echo NUM_SQUIRRELS_2;

?>

This script demonstrates how you can set constants to numbers, strings, or even the values

of other constants (although this last option doesn’t really get used much).

44 BONUS CHAPTER 44 Using PHP

References

You can use the equal sign (=) to copy the value from one variable to another so that

each one has a copy of the value. Another option here is to use references, which is where

a variable does not have a value of its own but instead points to another variable. This

enables you to share values and have variables mutually update themselves.

To copy by reference, use the & symbol, as follows:

<?php

 $a = 10;

 $b = &$a;

 echo $a . "\n";

 echo $b . "\n";

 $a = 20;

 echo $a . "\n";

 echo $b . "\n";

 $b = 30;

 echo $a . "\n";

 echo $b . "\n";

?>

If you run this script, you will see that updating $a also updates $b and also that updating

$b updates $a.

Comments

Adding short comments to your code is recommended and usually a requirement in

larger software houses. In PHP, you have three options for commenting style: //, /* */,

and #. The first option (two slashes) instructs PHP to ignore everything until the end of

the line. The second (a slash and an asterisk) instructs PHP to ignore everything until it

reaches */. The last (a hash symbol) works like // and is included because it is common

among shell scripting languages.

This code example demonstrates the difference between // and /* */:

<?php

 echo "This is printed!";

 // echo "This is not printed";

 echo "This is printed!";

 /* echo "This is not printed";

 echo "This is not printed either"; */

?>

Using // is generally preferred because it is a known quantity. It is easy to introduce cod-

ing errors with /* */ by losing track of where a comment starts and ends.

45

4
4

Introduction to PHP

NOTE

Contrary to popular belief, having comments in your PHP script has almost no effect

on the speed at which the script executes. What little speed difference exists is wholly

removed if you use a code cache.

Escape Sequences

Some characters cannot be typed, and yet you will almost certainly want to use some of

them from time to time. For example, you might want to use an ASCII character for a new

line, but you cannot type it. Instead, you need to use an escape sequence: \n. Similarly,

you can print a carriage return character with \r. It is important to know both of these

because, on the Windows platform, you need to use \r\n to get a new line. If you do not

plan to run your scripts anywhere other than your local Ubuntu or other Linux environ-

ment, you need not worry about this.

Going back to the first script you wrote, recall that it printed 2010 because you added 10 +

10 and then 10 + 0. You can rewrite that using escape sequences, like this:

<?php

 $i = 10;

 $j = "10";

 $k = "Hello, world";

 echo $i + $j;

 echo "\n";

 echo $i + $k;

 echo "\n";

?>

This time PHP prints a new line after each of the numbers, making it obvious that the out-

put is 20 and 10 rather than 2010. Note that the escape sequences must be used in double

quotation marks because they will not work in single quotation marks.

Three common escape sequences are \\, which means “ignore the backslash”; \", which

means “ignore the double quote”; and \', which means “ignore the single quote.” This

is important when strings include quotation marks inside them. If we had a string such

as "Are you really Conan O'Brien?", which has a single quotation mark in it, this code

would not work:

<?php

 echo 'Are you really Conan O'Brien?';

?>

PHP would see the opening quotation mark, read all the way up to the O in O’Brien, and

then see the quotation mark following the O as being the end of the string. The Brien?

part would appear to be a fragment of text and would cause an error. You have two

options here: You can either surround the string in double quotation marks or escape the

single quotation mark with \'. The escaping route looks like this:

echo 'Are you really Conan O\'Brien?';

46 BONUS CHAPTER 44 Using PHP

Although escape sequences are a clean solution for small text strings, be careful not to

overuse them. HTML is particularly full of quotation marks, and escaping them can get

messy, as you can see in this example:

$mystring = "<img src=\"foo.png\" alt=\"My picture\"

width=\"100\" height=\"200\" />";

In such a situation, you are better off using single quotation marks to surround the text

simply because it is a great deal easier on the eye.

Variable Substitution

PHP allows you to define strings using three methods: single quotation marks, double

quotation marks, or heredoc notation. Heredoc is not discussed in this chapter because it

is fairly rare compared to the other two methods, but single quotation marks and double

quotation marks work identically, with one minor exception: variable substitution.

Consider the following code:

<?php

 $age = 25

 echo "You are ";

 echo $age;

?>

This is a particularly clumsy way to print a variable as part of a string. Fortunately, if you

put a variable inside a string, PHP performs variable substitution, replacing the variable

with its value. That means you can rewrite the code like this:

<?php

 $age = 25

 echo "You are $age";

?>

The output is the same. The difference between single quotation marks and double quotation

marks is that single-quoted strings do not have their variables substituted. Here’s an example:

<?php

 $age = 25

 echo "You are $age";

 echo 'You are $age';

?>

The first echo prints You are 25, and the second one prints You are $age.

Operators

Now that you have data values to work with, you need some operators to use, too. You

have already used + to add variables together, but many other operators in PHP handle

47

4
4

Introduction to PHP

arithmetic, comparison, assignment, and other operators. Operator is just a fancy word for

something that performs an operation, such as addition or subtraction. However, operand

might be new to you. Consider this operation:

$a = $b + c;

In this operation, = and + are operators, and $a, $b, and $c are operands. Along with +,

you also already know - (subtract), * (multiply), and / (divide), but Table 44.2 provides

some more.

Table 44.2 PHP Operators

Operator What It Does

= Assigns the right operand to the left operand.

== Returns true if the left operand is equal to the right operand.

!= Returns true if the left operand is not equal to the right operand.

=== Returns true if the left operand is identical to the right operand. This is

not the same as ==.

!== Returns true if the left operand is not identical to the right operand. This

is not the same as !=.

< Returns true if the left operand is smaller than the right operand.

> Returns true if the left operand is greater than the right operand.

<= Returns true if the left operand is equal to or smaller than the right

operand.

&& Returns true if both the left operand and the right operand are true.

|| Returns true if either the left operand or the right operand is true.

++ Increments the operand by 1.

— Decrements the operand by 1.

+= Increments the left operand by the right operand.

-= Decrements the left operand by the right operand.

. Concatenates the left operand and the right operand (joins them together).

% Divides the left operand by the right operand and returns the remainder.

| Performs a bitwise OR operation. It returns a number with bits that are set

in either the left operand or the right operand.

At least 10 other operators are not listed in the table because you’re unlikely to use them.

Even some of the ones in the table are used infrequently (bitwise AND, for example). Hav-

ing said that, the bitwise OR operator (|) is used regularly because it allows you to combine

values.

Here is a code example that demonstrates some of the operators:

<?php

 $i = 100;

 $i++; // $i is now 101

 $i—; // $i is now 100 again

48 BONUS CHAPTER 44 Using PHP

 $i += 10; // $i is 110

 $i = $i / 2; // $i is 55

 $j = $i; // both $j and $i are 55

 $i = $j % 11; // $i is 0

?>

The last line uses modulus, which takes some people a little bit of effort to understand.

The result of $i % 11 is 0 because $i is set to 55, and modulus works by dividing the left

operand (55) by the right operand (11) and returning the remainder. 55 divides by 11

exactly 5 times, and so has no remainder, or 0.

The concatenation operator, a period (.), sounds scarier than it is: It just joins strings

together. Here is an example:

<?php

echo "Hello, " . "world!";

echo "Hello, world!" . "\n";

?>

There are two special operators in PHP that are not covered here and yet are used fre-

quently. Before we look at them, though, it is important that you see how the comparison

operators (such as <, <=, and !=) are used inside conditional statements.

Conditional Statements

In a conditional statement, you instruct PHP to take different actions depending on the

outcome of a test. For example, you might want PHP to check whether a variable is greater

than 10 and, if so, print a message. This is all done with the if statement, which looks

like this:

if (your condition) {

 // action to take if condition is true

} else {

 // optional action to take otherwise

}

The your condition part can be filled with any number of conditions you want PHP to

evaluate, and this is where the comparison operators come into their own. Consider this

example:

if ($i > 10) {

 echo "11 or higher";

} else {

 echo "10 or lower";

}

49

4
4

Introduction to PHP

PHP looks at the condition and compares $i to 10. If it is greater than 10, it replaces the

whole operation with 1; otherwise, it replaces it with 0. So, if $i is 20, the result looks like this:

if (1) {

 echo "11 or higher";

} else {

 echo "10 or lower";

}

In conditional statements, any number other than 0 is considered to be equivalent to the

Boolean value true; so 1 always evaluates to true. There is a similar case for strings: If

your string has any characters in it, it evaluates to true, with empty strings evaluating to

false. This is important because you can then use that 1 in another condition through &&

or || operators. For example, if you want to check whether $i is greater than 10 but less

than 40, you could write this:

if ($i > 10 && $i < 40) {

 echo "11 or higher";

} else {

 echo "10 or lower";

}

If you presume that $i is set to 50, the first condition ($i, 10) is replaced with 1, and the

second condition ($i < 40) is replaced with 0. Those two numbers are then used by the &&

operator, which requires both the left and right operands to be true. Whereas 1 is equiva-

lent to true, 0 is not, so the && operand is replaced with 0, and the condition fails.

=, ==, ===, and similar operators are easily confused and often the source of programming

errors. The first, a single equal sign, assigns the value of the right operand to the left oper-

and. However, all too often you see code like this:

if ($i = 10) {

 echo "The variable is equal to 10!";

} else {

 echo "The variable is not equal to 10";

}

This code is incorrect. Rather than checking whether $i is equal to 10, it assigns 10 to $i

and returns true. What is needed is ==, which compares two values for equality. In PHP,

this is extended so that there is also === (three equal signs), which checks whether two

values are identical, more than just equal.

The difference is slight but important: If you have a variable with the string value "10"

and compare it against the number value of 10, they are equal. Thus, PHP converts the

type and checks the numbers. However, they are not identical. To be considered identi-

cal, the two variables must be equal (that is, have the same value) and be of the same data

type (that is, both strings, both integers, and so on).

50 BONUS CHAPTER 44 Using PHP

NOTE

Putting function calls in conditional statements rather than direct comparisons is common

practice. Here is an example:

if (do_something()) {

If the do_something() function returns true (or something equivalent to true, such as a

nonzero number), the conditional statement evaluates to true.

Special Operators

The ternary operator and the execution operator work differently from the operators you

have seen so far. The ternary operator is rarely used in PHP, thankfully, because it is really

just a condensed conditional statement. Presumably it arose through someone needing to

make code occupy as little space as possible because it certainly does not make PHP code

any easier to read.

The ternary operator works like this:

$age_description = ($age < 18) ? "child" : "adult";

Without explanation, this code is essentially meaningless; however, it expands into the

following five lines of code:

if ($age < 18) {

 $age_description = "child";

} else {

 $age_description = "adult";

}

The ternary operator is so named because it has three operands: a condition to check

($age < 18 in the previous code), a result if the condition is true ("child"), and a result

if the condition is false ("adult"). Although we hope you never have to use the ternary

operator, it is at least important to know how it works in case you stumble across it.

The other special operator is the execution operator, which is the backtick symbol (`). The

position of the backtick key varies depending on your keyboard, but it is likely to be just

to the left of the 1 key (above Tab). The execution operator executes the program inside

the backticks, returning any text the program outputs. Here is an example:

<?php

 $i = `ls –l`;

 echo $i;

?>

This executes the ls program, passing in -l (a lowercase L) to get the long format, and

stores all its output in $i. You can make the command as long or as complex as you like,

including piping to other programs. You can also use PHP variables inside the command.

51

4
4

Introduction to PHP

Switching

Having multiple if statements in one place is ugly, slow, and prone to errors. Consider

the code in Listing 44.3.

LISTING 44.3 How Multiple Conditional Statements Lead to Ugly Code

<?php

 $cat_age = 3;

 if ($cat_age == 1) {

 echo "Cat age is 1";

 } else {

 if ($cat_age == 2) {

 echo "Cat age is 2";

 } else {

 if ($cat_age == 3) {

 echo "Cat age is 3";

 } else {

 if ($cat_age == 4) {

 echo "Cat age is 4";

 } else {

 echo "Cat age is unknown";

 }

 }

 }

 }

?>

Even though it certainly works, the code in Listing 44.3 is a poor solution to the prob-

lem. Much better is a switch/case block, which transforms the previous code into what’s

shown in Listing 44.4.

LISTING 44.4 Using a switch/case Block

<?php

 $cat_age = 3;

 switch ($cat_age) {

 case 1:

 echo "Cat age is 1";

 break;

 case 2:

 echo "Cat age is 2";

 break;

 case 3:

 echo "Cat age is 3";

 break;

52 BONUS CHAPTER 44 Using PHP

 case 4:

 echo "Cat age is 4";

 break;

 default:

 echo "Cat age is unknown";

 }

?>

Although it is only slightly shorter, Listing 44.4 is a great deal more readable and much

easier to maintain. A switch/case group is made up of a switch() statement in which you

provide the variable you want to check, followed by numerous case statements. Notice

the break statement at the end of each case. Without that, PHP would execute each case

statement beneath the one it matches. Calling break causes PHP to exit the switch/case.

Notice also that there is a default case at the end that catches everything that has no

matching case.

It is important that you not use case default: but merely default:. Also, it is the last

case label, so it has no need for a break statement because PHP exits the switch/case

block there anyway.

Loops

PHP has four ways you can execute a block of code multiple times: by using while, for,

foreach, or do...while. Of the four, only do...while sees little use; the others are popu-

lar, and you will certainly encounter them in other people’s scripts.

The most basic loop is the while loop, which executes a block of code for as long as a

given condition is true. So, you can write an infinite loop—a block of code that continues

forever—with this PHP:

<?php

 $i = 10;

 while ($i >= 10) {

 $i += 1;

 echo $i;

 }

?>

The loop block checks whether $i is greater or equal to 10 and, if that condition is true,

adds 1 to $i and prints it. Then it goes back to the loop condition again. Because $i starts

at 10 and you only ever add numbers to it, that loop continues forever. With two small

changes, you can make the loop count down from 10 to 0:

<?php

 $i = 10;

 while ($i >= 0) {

 $i -= 1;

 echo $i;

53

4
4

Introduction to PHP

 }

?>

So, this time you check whether $i is greater than or equal to 0 and subtract 1 from it

with each loop iteration. You typically use while loops when you are unsure how many

times the code needs to loop because while keeps looping until an external factor stops it.

With a for loop, you specify precise limits on its operation by giving it a declaration, a

condition, and an action. That is, you specify one or more variables that should be set

when the loop first runs (the declaration), you set the circumstances that will cause the

loop to terminate (the condition), and you tell PHP what it should change with each loop

iteration (the action). That last part is what really sets a for loop apart from a while loop:

You usually tell PHP to change the condition variable with each iteration.

You can rewrite the script that counts down from 10 to 0 by using a for loop:

<?php

 for($i = 10; $i >= 0; $i -= 1) {

 echo $i;

 }

?>

This time you do not need to specify the initial value for $i outside the loop, and you also

do not need to change $i inside the loop; it is all part of the for statement. The actual

amount of code is really the same, but for this purpose, the for loop is arguably tidier and

therefore easier to read. With the while loop, the $i variable was declared outside the loop

and so was not explicitly attached to the loop.

The third loop type is foreach, which is specifically for arrays and objects, although it is

rarely used for anything other than arrays. A foreach loop iterates through each element

in an array (or each variable in an object), optionally providing both the key name and

the value.

In its simplest form, a foreach loop looks like this:

<?php

 foreach($myarr as $value) {

 echo $value;

 }

?>

This loops through the $myarr array you created earlier, placing each value in the $value

variable. You can modify it so you get the keys as well as the values from the array, like

this:

<?php

 foreach($myarr as $key => $value) {

 echo "$key is set to $value\n";

 }

?>

54 BONUS CHAPTER 44 Using PHP

As you can guess, this time the array keys go in $key, and the array values go in $value.

One important characteristic of the foreach loop is that it goes from the start of the array

to the end and then stops—and by start we mean the first item to be added rather than

the lowest index number. This script shows this behavior:

<?php

 $array = array(6 => "Hello", 4 => "World",

 2 => "Wom", 0 => "Bat");

 foreach($array as $key => $value) {

 echo "$key is set to $value\n";

 }

?>

If you try this script, you will see that foreach prints the array in the original order of 6, 4,

2, 0 rather than the numerical order of 0, 2, 4, 6.

The do...while loop works like the while loop, with the exception that the condi-

tion appears at the end of the code block. This small syntactical difference means a lot,

though, because a do...while loop is always executed at least once. Consider this script:

<?php

 $i = 10;

 do {

 $i -= 1;

 echo $i;

 } while ($i < 10);

?>

Without running the script, what do you think it will do? One possibility is that it will

do nothing; $i is set to 10, and the condition states that the code must loop only while

$i is less than 10. However, a do...while loop always executes once, so what happens is

that $i is set to 10, and PHP enters the loop, decrements $i, prints it, and then checks the

condition for the first time. At this point, $i is indeed less than 10, so the code loops, $i

is decremented again, the condition is rechecked, $i is decremented again, and so on. This

is, in fact, an infinite loop and so should be avoided!

If you ever want to exit a loop before it has finished, you can use the same break state-

ment that you used earlier to exit a switch/case block. This becomes more interesting if

you find yourself with nested loops (loops inside loops). This is a common situation. For

example, you might want to loop through all the rows in a chessboard and, for each row,

loop through each column. Calling break exits only one loop or switch/case, but you can

use break 2 to exit two loops or switch/cases, or break 3 to exit three, and so on.

Including Other Files

Unless you are restricting yourself to the simplest programming ventures, you will want

to share code among your scripts at some point. The most basic need for this is to have

a standard header and footer for your website, with only the body content changing.

55

4
4

Basic Functions

However, you might also find yourself with a small set of custom functions you use fre-

quently, and it would be an incredibly bad move to simply copy and paste the functions

into each of the scripts that use them.

The most common way to include other files is by using the include keyword. Save this

script as include1.php:

<?php

 for($i = 10; $i >= 0; $i -= 1) {

 include "echo_i.php";

 }

?>

Then save this script as echo_i.php:

<?php

 echo $i;

?>

If you run include1.php, PHP loops from 10 to 0 and includes echo_i.php each time. For

its part, echo_i.php just prints the value of $i, which is a crazy way of performing an oth-

erwise simple operation, but it does demonstrate how included files share data. Note that

the include keyword in include1.php is inside a PHP block, but you reopen PHP inside

echo_i.php. This is important because PHP exits PHP mode for each new file, so you

always have a consistent entry point.

Basic Functions
PHP has a vast number of built-in functions that enable you to manipulate strings, con-

nect to databases, and more. There is not room here to cover even 10 percent of the func-

tions. For more detailed coverage of functions, check the “References” section at the end

of this chapter.

Strings

Several important functions are used for working with strings, and there are many more of

them that are less frequently used that we do not cover here. We look at the most impor-

tant functions here, ordered by difficulty—easiest first!

The easiest function is strlen(), which takes a string as its parameter and returns the

number of characters in there, like this:

<?php

 $ourstring = " The Quick Brown Box Jumped Over The Lazy Dog ";

 echo strlen($ourstring);

?>

We use this same string in subsequent examples to save space. If you execute this script,

it outputs 48 because 48 characters are in the string. Note the 2 spaces on either side of

56 BONUS CHAPTER 44 Using PHP

the text, which pad the 44-character phrase up to 48 characters. You can fix that pad-

ding with the trim() function, which takes a string to trim and returns it with all the

whitespace removed from either side. This is a commonly used function because many

strings have an extra new line at the end or a space at the beginning, and trim() cleans

them up perfectly.

Using trim(), you can turn the 48-character string into a 44-character string (the same

thing but without the extra spaces) like this:

echo trim($ourstring);

Keep in mind that trim() returns the trimmed string, so it outputs "The Quick Brown

Box Jumped Over The Lazy Dog". You can modify it so trim() passes its return value to

strlen() so that the code trims it and then outputs its trimmed length:

echo strlen(trim($ourstring));

PHP always executes the innermost functions first, so the previous code passes $ourstring

through trim(), uses the return value of trim() as the parameter for strlen(), and prints it.

Of course, everyone knows that boxes do not jump over dogs; the usual phrase is “the

quick brown fox.” Fortunately, there is a function to fix that problem: str_replace().

Note that it has an underscore in it. (PHP is inconsistent on this matter, so you really need

to memorize the function names.)

The str_replace() function takes three parameters: the text to search for, the text to

replace it with, and the string you want to work with. When working with search func-

tions, people often talk about needles and haystacks. In this situation, the first parameter

is the needle (the thing to find), and the third parameter is the haystack (what you are

searching through).

So, you can fix the error and correct box to fox with this code:

echo str_replace("Box", "Fox", $ourstring);

There are two little addendums to make here. First, note that we have specified "Box"

as opposed to "box" because that is how it appears in the text. The str_replace() func-

tion is a case-sensitive function, which means it does not consider "Box" to be the same as

"box". If you want to do a non-case-sensitive search and replace, you can use the stri_

replace() function, which works the same way but doesn’t care about case.

The second addendum is that because you are actually changing only one character (B to

F), you need not use a function at all. PHP enables you to read (and change) individual

characters of a string by specifying the character position inside braces ({}). As with

arrays, strings are zero based, which means in the $ourstring variable $ourstring{0} is

T, $ourstring{1} is h, $ourstring{2} is e, and so on. You could use this instead of str_

replace(), like this:

<?php

57

4
4

Basic Functions

 $ourstring = " The Quick Brown Box Jumped Over The Lazy Dog ";

 $ourstring{18} = "F";

 echo $ourstring;

?>

You can extract part of a string by using the substr() function, which takes a string as its

first parameter, a start position as its second parameter, and an optional length as its third

parameter. Optional parameters are common in PHP. If you do not provide them, PHP

assumes a default value. In this case, if you specify only the first two parameters, PHP cop-

ies from the start position to the end of the string. If you specify the third parameter, PHP

copies that many characters from the start. You can write a simple script to print "Lazy

Dog" by setting the start position to 38, which, remembering that PHP starts counting

string positions from 0, copies from the 39th character to the end of the string:

echo substr($ourstring, 38);

If you just want to print the word "Lazy", you need to use the optional third parameter to

specify the length as 4, like this:

echo substr($ourstring, 38, 4);

You can also use the substr() function with negative second and third parameters. If you

specify just the first and second parameters and provide a negative number for the second

parameter, substr() counts backward from the end of the string. So, rather than specify-

ing 38 for the second parameter, you can use -10, so it takes the last 10 characters from the

string. Using a negative second parameter and positive third parameter counts backward

from the end string and then uses a forward length. You can print "Lazy" by counting 10

characters back from the end and then taking the next 4 characters forward:

echo substr($ourstring, -10, 4);

Finally, you can use a negative third parameter, too, which also counts back from the end

of the string. For example, using "-4" as the third parameter means to take everything

except the last four characters. Confused yet? This code example should make it clear:

echo substr($ourstring, -19, -11);

This counts 19 characters backward from the end of the string (which places it at the O

in Over) and then copies everything from there until 11 characters before the end of the

string. That prints Over The. You could write the same thing using –19 and 8, or even 29

and 8; there is more than one way to do it.

Moving on, the strpos() function returns the position of a particular substring inside a

string; however, it is most commonly used to answer the question “Does this string con-

tain a specific substring?” You need to pass two parameters to it: a haystack and a needle.

(Yes, that’s a different order from str_replace().)

In its most basic use, strpos() can find the first instance of Box in your phrase, like this:

echo strpos($ourstring, "Box");

58 BONUS CHAPTER 44 Using PHP

This outputs 18 because that is where the B in Box starts. If strpos() cannot find the sub-

string in the parent string, it returns false rather than the position. Much more helpful,

though, is the ability to check whether a string contains a substring; a first attempt to

check whether your string contains the word The might look like this:

<?php

 $ourstring = "The Quick Brown Box Jumped Over The Lazy Dog";

 if (strpos($ourstring, "The")) {

 echo "Found 'The'!\n";

 } else {

 echo "'The' not found!\n";

 }

?>

Note that we have temporarily taken out the leading and trailing white space from

$ourstring and are using the return value of strpos() for the conditional statement. This

reads, “If the string is found, print a message; if not, print another message.” Or does it?

Run the script, and you see that it prints the "not found" message. The reason for this is

that strpos() returns false if the substring is not found and otherwise returns the posi-

tion where it starts. Recall that any nonzero number equates to true in PHP, which means

that 0 equates to false. With that in mind, what is the string index of the first The in

your phrase? Because PHP’s strings are zero based, and you no longer have the spaces on

either side of the string, the The is at position 0, which your conditional statement evalu-

ates to false (hence, the problem).

The solution here is to check for identicality. You know that 0 and false are equal, but

they are not identical because 0 is an integer, whereas false is a Boolean. So, you need to

rewrite the conditional statement to see whether the return value from strpos() is identi-

cal to false, and if it is, the substring was not found:

<?php

 $ourstring = "The Quick Brown Box Jumped Over The Lazy Dog";

 if (strpos($ourstring, "The") !== false) {

 echo "Found 'The'!\n";

 } else {

 echo "'The' not found!\n";

 }

?>

Arrays

Working with arrays is no easy task, but PHP makes it less difficult by providing a selec-

tion of functions that can sort, shuffle, intersect, and filter them. (As with other functions,

there is only space here to cover a selection; this chapter is by no means a definitive refer-

ence to PHP’s array functions.)

59

4
4

Basic Functions

The easiest array function to use is array_unique(), which takes an array as its only

parameter and returns the same array with all duplicate values removed. Also in the realm

of “so easy you do not need a code example” is the shuffle() function, which takes an

array as its parameter and randomizes the order of its elements. Note that shuffle() does

not return the randomized array; it uses your parameter as a reference and scrambles it

directly. The last too-easy-to-demonstrate function is in_array(), which takes a value as

its first parameter and an array as its second and returns true if the value is in the array.

With those functions out of the way, we can focus on the more interesting functions,

two of which are array_keys() and array_values(). They both take an array as their

only parameter and return a new array made up of the keys in the array or the values of

the array, respectively. Using the array_values() function is an easy way to create a new

array of the same data, just without the keys. This is often used if you have numbered

your array keys, deleted several elements, and want to reorder the array.

The array_keys() function creates a new array where the values are the keys from the old

array, like this:

<?php

 $myarr = array("foo" => "red", "bar" => "blue", "baz" => "green");

 $mykeys = array_keys($myarr);

 foreach($mykeys as $key => $value) {

 echo "$key = $value\n";

 }

?>

This prints "0 = foo", "1 = bar", and "2 = baz".

Several functions are used specifically for array sorting, but only two get much use:

asort() and ksort(). asort() sorts an array by its values, and ksort() sorts the array

by its keys. Given the array $myarr from the previous example, sorting by values would

produce an array with elements in the order bar/blue, baz/green, and foo/red. Sort-

ing by key would give the elements in the order bar/blue, baz/green, and foo/red. As

with the shuffle() function, both asort() and ksort() do their work in place, mean-

ing they return no value but directly alter the parameter you pass in. For interest’s sake,

you can also use arsort() and krsort() for reverse value sorting and reverse key sorting,

respectively.

This code example reverse sorts the array by value and then prints it, as before:

<?php

 $myarr = array("foo" => "red", "bar" => "blue", "baz" => "green");

 arsort($myarr);

 foreach($myarr as $key => $value) {

 echo "$key = $value\n";

 }

?>

60 BONUS CHAPTER 44 Using PHP

Previously, when discussing constants, we mentioned the extract() function, which

converts an array into individual variables; now it is time to start using it for real. You

need to provide three variables: the array you want to extract, how you want the variables

prefixed, and the prefix you want used. Technically, the last two parameters are optional,

but practically you should always use them to properly namespace your variables and keep

them organized.

The second parameter must be one of the following:

 ▶ EXTR_OVERWRITE—If the variable exists already, overwrites it.

 ▶ EXTR_SKIP—If the variable exists already, skips it and moves on to the next variable.

 ▶ EXTR_PREFIX_SAME—If the variable exists already, uses the prefix specified in the

third parameter.

 ▶ EXTR_PREFIX_ALL—Prefixes all variables with the prefix in the third parameter,

regardless of whether it exists already.

 ▶ EXTR_PREFIX_INVALID—Uses a prefix only if the variable name would be invalid (for

example, starting with a number).

 ▶ EXTR_IF_EXISTS—Extracts only variables that already exist. We have never seen this

used.

You can also, optionally, use the bitwise OR operator, |, to add in EXTR_REFS to have

extract() use references for the extracted variables. In general use, EXTR_PREFIX_ALL is

preferred because it guarantees namespacing. EXTR_REFS is required only if you need to be

able to change the variables and have those changes reflected in the array.

This next script uses extract() to convert $myarr into individual variables, $arr_foo,

$arr_bar, and $arr_baz:

<?php

 $myarr = array("foo" => "red", "bar" => "blue", "baz" => "green");

 extract($myarr, EXTR_PREFIX_ALL, 'arr');

?>

Note that the array keys are "foo", "bar", and "baz" and that the prefix is "arr", but that

the final variables will be $arr_foo, $arr_bar, and $arr_baz. PHP inserts an underscore

between the prefix and array key.

Files

As you have learned elsewhere in the book, the UNIX philosophy is that everything is a

file. In PHP, this is also the case: A selection of basic file functions is suitable for opening

and manipulating files, but those same functions can also be used for opening and manip-

ulating network sockets. We cover both here.

Two basic read and write functions for files make performing these basic operations easy.

They are file_get_contents(), which takes a filename as its only parameter and returns

61

4
4

Basic Functions

the file’s contents as a string, and file_put_contents(), which takes a filename as its first

parameter and the data to write as its second parameter.

Using these two functions, you can write a script that reads all the text from one file,

filea.txt, and writes it to another, fileb.txt:

<?php

 $text = file_get_contents("filea.txt");

 file_put_contents("fileb.txt", $text);

?>

Because PHP enables you to treat network sockets like files, you can also use file_get_

contents() to read text from a website, like this:

<?php

 $text = file_get_contents("http://www.slashdot.org");

 file_put_contents("fileb.txt", $text);

?>

The problem with using file_get_contents() is that it loads the whole file into memory

at once; that’s not practical if you have large files or even smaller files being accessed by

many users. An alternative is to load the file piece by piece, which can be accomplished

by using the following five functions: fopen(), fclose(), fread(), fwrite(), and feof().

The f in these function names stands for file, so they open, close, read from, and write

to files and sockets. The last function, feof(), returns true if the end of the file has been

reached.

On the surface, the fopen() function looks straightforward, though it takes a bit of learn-

ing to use properly. Its first parameter is the filename you want to open, which is easy

enough. However, the second parameter is where you specify how you want to work with

the file, and you should specify one of the following:

 ▶ r—Read-only; it overwrites the file.

 ▶ r+—Reading and writing; it overwrites the file.

 ▶ w—Write-only; it erases the existing contents and overwrites the file.

 ▶ w+—Reading and writing; it erases the existing content and overwrites the file.

 ▶ a—Write-only; it appends to the file.

 ▶ a+—Reading and writing; it appends to the file.

 ▶ x—Write-only, but only if the file does not exist.

 ▶ a+—Reading and writing, but only if the file does not exist.

Optionally, you can also add b (for example, a+b or rb) to switch to binary mode. This is

recommended if you want your scripts and the files they write to work smoothly on other

platforms.

62 BONUS CHAPTER 44 Using PHP

When you call fopen(), you should store the return value. It is a resource known as a file

handle, which the other file functions all need to do their jobs. The fread() function, for

example, takes the file handle as its first parameter and the number of bytes to read as its

second, and it returns the content in its return value. The fclose() function takes the file

handle as its only parameter and frees up the file.

So, you can write a simple loop to open a file, read it piece by piece, print the pieces, and

then close the handle:

<?php

 $file = fopen("filea.txt", "rb");

 while (!feof($file)) {

 $content = fread($file, 1024);

 echo $content;

 }

 fclose($file);

?>

This leaves only the fwrite() function, which takes the file handle as its first parameter

and the string to write as its second. You can also provide an integer as the third parame-

ter, specifying the number of bytes you want to write of the string, but if you exclude this,

fwrite() writes the entire string.

Recall that you can use a as the second parameter to fopen() to append data to a file. So,

you can combine that with fwrite() to have a script that adds a line of text to a file each

time it is executed:

<?php

 $file = fopen("filea.txt", "ab");

 fwrite($file, "Testing\n");

 fclose($file);

?>

To make this script a little more exciting, you can stir in a new function, filesize(), that

takes a filename (not a file handle, but an actual filename string) as its only parameter and

returns the file’s size, in bytes. Using the filesize() function brings the script to this:

<?php

 $file = fopen("filea.txt", "ab");

 fwrite($file, "The filesize was" . filesize("filea.txt") . "\n");

 fclose($file);

?>

Although PHP automatically cleans up file handles for you, it is still best to use fclose()

yourself so that you are always in control.

63

4
4

Basic Functions

Miscellaneous

Several functions do not fall under the other categories and so are covered here. The first

one is isset(), which takes one or more variables as its parameters and returns true if

they have been set. It is important to note that a variable with a value set to something

that would be evaluated to false—such as 0 or an empty string—still returns true from

isset() because this function does not check the value of the variable. It merely checks

that it is set; hence, the name.

The unset() function also takes one or more variables as its parameters, simply deleting

the variable(s) and freeing up the memory. With isset() and unset(), you can write

a script that checks for the existence of a variable and, if it exists, deletes it (see Listing

44.5).

LISTING 44.5 Setting and Unsetting Variables

<?php

 $name = "Ildiko";

 if (isset($name)) {

 echo "Name was set to $name\n";

 unset($name);

 } else {

 echo "Name was not set";

 }

 if (isset($name)) {

 echo "Name was set to $name\n";

 unset($name);

 } else {

 echo "Name was not set";

 }

?>

This script runs the same isset() check twice, but it uses unset() on the variable after the

first check. It therefore prints "Name was set to Ildiko" and then "Name was not set".

Perhaps the most frequently used function in PHP is exit, although purists will tell you

that it is, in fact, a language construct rather than a function. exit terminates the process-

ing of the script as soon as it is executed, which means subsequent lines of code are not

executed. That is really all there is to it; it barely deserves an example, but here is one just

to make sure:

<?php

 exit;

 echo "Exit is a language construct!\n";

?>

This script prints nothing because the exit comes before the echo.

64 BONUS CHAPTER 44 Using PHP

One function we can guarantee you will use a lot is var_dump(), which dumps out infor-

mation about a variable, including its value, to the screen. This function is invaluable

for arrays because it prints every value and, if one or more of the elements is an array, it

prints all the elements from those, and so on. To use this function, just pass a variable to

it as its only parameter, as shown here:

<?php

 $drones = array("Graham", "Julian", "Nick", "Paul");

 var_dump($drones);

?>

The output from this script looks as follows:

array(4) {

 [0]=>

 string(6) "Graham"

 [1]=>

 string(6) "Julian"

 [2]=>

 string(4) "Nick"

 [3]=>

 string(4) "Paul"

}

The var_dump() function sees a lot of use as a basic debugging technique because using it

is the easiest way to print variable data to the screen to verify it.

Finally, we briefly discuss regular expressions—with the emphasis on briefly because regu-

lar expression syntax is covered elsewhere in this book, and the only unique thing rele-

vant to PHP is the functions you use to run the expressions. You have the choice of either

Perl-Compatible Regular Expressions (PCRE) or POSIX Extended regular expressions, but there

really is little to choose between them in terms of functionality offered. For this chapter,

we use the PCRE expressions because, to the best of our knowledge, they see more use by

other PHP programmers.

The main PCRE functions are preg_match(), preg_match_all(), preg_replace(), and

preg_split(). We start with preg_match() because it provides the most basic function-

ality, returning true if one string matches a regular expression. The first parameter to

preg_match() is the regular expression you want to search for, and the second is the string

to match. So, if you want to check whether a string has the word Best, Test, rest, zest,

or any other word containing est preceded by any letter of either case, you could use this

PHP code:

$result = preg_match("/[A-Za-z]est/", "This is a test");

Because the test string matches the expression, $result is set to 1 (true). If you change

the string to a nonmatching result, you get 0 as the return value.

65

4
4

Basic Functions

The next function is preg_match_all(), which gives you an array of all the matches it

found. However, to be most useful, it takes the array to fill with matches as a by reference

parameter and saves its return value for the number of matches that were found.

We suggest that you use preg_match_all() and var_dump() to get a feel for how the

preg_match_all() function works. This example is a good place to start:

<?php

 $string = "This is the best test in the west";

 $result = preg_match_all("/[A-Za-z]est/", $string, $matches);

 var_dump($matches);

?>

It outputs the following:

array(1) {

 [0]=>

 array(3) {

 [0]=>

 string(4) "best"

 [1]=>

 string(4) "test"

 [2]=>

 string(4) "west"

 }

}

Notice that the $matches array is actually multidimensional in that it contains one ele-

ment, which itself is an array containing all the matches to the regular expression. This

is because the expression has no subexpressions, meaning no independent matches using

parentheses. If you had subexpressions, each would have its own element in the $matches

array, containing its own array of matches.

Moving on, preg_replace() is used to change all substrings that match a regular expres-

sion into something else. The basic manner of using this is quite easy: You search for

something with a regular expression and provide a replacement for it. However, a more

useful variant is back referencing, using the match as part of the replacement. For the sake

of this example, say that you have written a tutorial on PHP but want to process the text

so each reference to a function is followed by a link to the PHP manual.

PHP manual page URLs take the form www.php.net/<somefunc> (for example, www.php.

net/preg_replace). The string you need to match is a function name, which is a string

of alphabetic characters, potentially also mixed with numbers and underscores and ter-

minated with parentheses, (). As a replacement, you can use the match you found, sur-

rounded in HTML emphasis tags (), and then a link to the relevant PHP manual

page. Here is how all this looks in code:

<?php

 $regex = "/([A-Za-z0-9_]*)\(\)/";

http://www.php.net/<somefunc
http://www.php.net/preg_replace
http://www.php.net/preg_replace

66 BONUS CHAPTER 44 Using PHP

 $replace = "$1 (manual)";

 $haystack = "File_get_contents()is easier than using fopen().";

 $result = preg_replace($regex, $replace, $haystack);

 echo $result;

?>

The $1 is the back reference; it will be substituted with the results from the first subexpres-

sion. The way we have written the regular expression is very exact. The [A-Za-z0-9_]*

part, which matches the function name, is marked as a subexpression. After that is \

(\), which means the exact symbols (and), not the regular expression meanings of them,

which means that $1 in the replacement will contain fopen rather than fopen(), which

is how it should be. Of course, anything that is not back referenced in the replacement is

removed, so you have to put the () after the first $1 (not in the hyperlink) to repair the

function name.

After all that work, the output is perfect:

File_get_contents() (<a href="http://www.php.net/

file_get_contents">manual) is easier than using fopen()

 (manual).

Handling HTML Forms
Given that PHP’s primary role is handling web pages, you might wonder why this section

has been left until so late in the chapter. It is because handling HTML forms is so central

to PHP that it is essentially automatic.

Consider this form:

<form method="POST" action="thispage.php">

User ID: <input type="text" name="UserID" />

Password: <input type="password" name="Password" />

<input type="submit" />

</form>

When a visitor clicks Submit, thispage.php is called again, and this time PHP has the

variables available to it inside the $_REQUEST array. Given that script, if the user enters

12345 and frosties as her user ID and password, PHP provides $_REQUEST['UserID']

set to 12345 and $_REQUEST['Password'] set to frosties. Note that it is important that

you use HTTP POST unless you specifically want GET. POST enables you to send a great

deal more data and stops people from tampering with your URL to try to find holes in

your script.

Is that it? Well, almost. You now know how to retrieve user data, but you should be sure

to sanitize it so users do not try to sneak HTML or JavaScript into your database as some-

thing you think is innocuous. PHP gives you the strip_tags() function for this purpose.

It takes a string and returns the same string with all HTML tags removed.

67

4
4

Databases

Databases
The ease with which PHP can be used to create dynamic, database-driven websites is the

key reason to use it for many people. The stock build of PHP comes with support for

MySQL, PostgreSQL, SQLite, Oracle, Microsoft SQL Server, ODBC, plus several other popu-

lar databases, so you are sure to find something to work with your data.

If you want to, you can learn all the individual functions for connecting to and manip-

ulating each database PHP supports, but a much smarter, or at least easier, idea is to

use PEAR::DB, which is an abstraction layer over the databases that PHP supports. You

write your code once, and—with the smallest of changes—it works on every database

server.

PEAR is the script repository for PHP, and it contains numerous tools and prewritten

solutions for common problems. PEAR::DB is perhaps the most popular part of the PEAR

project, but it is worth checking out the PEAR site (https://pear.php.net) to see whether

anything else catches your eye.

To get basic use out of PEAR::DB, you need to learn how to connect to a database, run an

SQL query, and work with the results. This is not an SQL tutorial, so we have assumed

that you are already familiar with the language. For the sake of this tutorial, we have also

assumed that you are working with a database called dentists and a table called patients

that contains the following fields:

 ▶ ID—The primary key, an auto-incrementing integer for storing a number unique to

each patient

 ▶ Name—A varchar(255) field for storing a patient name

 ▶ Age—An integer

 ▶ Sex—1 for male, 2 for female

 ▶ Occupation—A varchar(255) field for storing a patient occupation

Also for the sake of this tutorial, we use a database server at IP address 10.0.0.1, running

MySQL, with username ubuntu and password alm65z. You need to replace these details

with your own; use localhost for connecting to the local server.

The first step to using PEAR::DB is to include the standard PEAR::DB file, DB.php. Your PHP

will be configured to look inside the PEAR directory for include() files, so you do not

need to provide any directory information.

PEAR::DB is object oriented, and you specify your connection details at the same time as

you create the initial DB object. This is done using a URL-like system that specifies the

database server type, username, password, server, and database name all in one. After you

have specified the database server here, everything else is abstracted, meaning you only

need to change the connection line to port your code to another database server.

This script in Listing 44.6 connects to our server and prints a status message.

https://pear.php.net

68 BONUS CHAPTER 44 Using PHP

LISTING 44.6 Connecting to a Database Through PEAR::DB

<?php

 include("DB.php");

 $dsn = "mysql://ubuntu:alm65z@10.0.0.1/dentists";

 $conn = DB::connect($dsn);

 if (DB::isError($conn)) {

 echo $conn->getMessage() . "\n";

 } else {

 echo "Connected successfully!\n";

 }

?>

You should be able to see how the connection string breaks down. It is server name first,

then a username and password separated by a colon, then an @ symbol followed by the IP

address to which to connect, and then a slash and the database name. Notice how the call

to connect is DB::connect(), which calls PEAR::DB directly and returns a database con-

nection object for storage in $conn. The variable name $dsn was used for the connection

details because it is a common acronym that stands for data source name.

If DB::connect() successfully connects to a server, it returns a database object you can use

to run SQL queries. If not, you get an error returned that you can query using functions

such as getMessage(). The script in Listing 44.6 prints the error message if the connection

fails, but it also prints a message on success. Next, you change that so you run an SQL

query if we have a connection.

Running SQL queries is done through the query() function of the database connection,

passing in the SQL you want to execute. This then returns a query result that can be used

to get the data. This query result can be thought of as a multidimensional array because it

has many rows of data, each with many columns of attributes. This is extracted using the

fetchInto() function, which loops through the query result, converting one row of data

into an array that it sends back as its return value. You need to pass in two parameters

to fetchInto() to specify where the data should be stored and how you want it stored.

Unless you have unusual needs, specifying DB_FETCHMODE_ASSOC for the second parameter

is a smart move.

Listing 44.7 shows the new script.

LISTING 44.7 Running a Query Through PEAR::DB

<?php

 include("DB.php");

 $dsn = "mysql://ubuntu:alm65z@10.0.0.1/dentists";

 $conn = DB::connect($dsn);

 if (DB::isError($conn)) {

 echo $conn->getMessage() . "\n";

 } else {

69

4
4

References

 echo "Connected successfully!\n";

 $result = $conn->query("SELECT ID, Name FROM patients;");

 while ($result->fetchInto($row, DB_FETCHMODE_ASSOC)) {

 extract($row, EXTR_PREFIX_ALL, 'pat');

 echo "$pat_ID is $pat_Name\n";

 }

 }

?>

The first half of Listing 44.7 is identical to the script in Listing 44.6, with all the new

action happening if a successful connection occurs.

Going along with the saying “never leave to PHP what you can clean up yourself,” the

current script has problems. It does not clean up the query result, and it does not close

the database connection. If this code were being used in a longer script that ran for several

minutes, this would be a huge waste of resources. Fortunately, you can free up the mem-

ory associated with these two issues by calling $result->free() and $conn->disconnect().

If you add those two function calls to the end of the script, it is complete.

References
 ▶ https://secure.php.net—The best place to look for information is the PHP online

manual. It is comprehensive, well written, and updated regularly.

 ▶ www.phpbuilder.com—This is a large PHP scripts and tutorials site where you

can learn new techniques and also chat with other PHP developers.

 ▶ www.zend.com—This is the home page of a company founded by two of the key

developers of PHP. Zend develops and sells proprietary software, including a power-

ful IDE and a code cache, to aid PHP developers.

 ▶ https://pear.php.net—The home of the PEAR project contains a large collection

of software you can download and try, and it has thorough documentation for it all.

 ▶ www.phparch.com—Quite a few good PHP magazines are around, but PHP Archi-

tect leads the way. It posts some of its articles online for free, and its forums are

good, too.

 ▶ PHP and MySQL Web Development by Luke Welling and Laura

Thomson—This book is the best choice for beginning developers.

 ▶ PHP in a Nutshell by Paul Hudson—This concise, to-the-point book covers all

aspects of PHP.

 ▶ Advanced PHP Programming by George Schlossnagle—As its title says, this

book is for advanced developers.

https://secure.php.net
http://www.phpbuilder.com
http://www.zend.com
https://pear.php.net
http://www.phparch.com

