
Arnold Robbins &
Elbert Hannah

8th Edition

Learning the
 vi & Vim Editors
Power and Agility Beyond Just Text Editing

Arnold Robbins and Elbert Hannah

Learning the vi and Vim Editors
Power and Agility Beyond Just Text Editing

EIGHTH EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07880-7

[LSI]

Learning the vi and Vim Editors
by Arnold Robbins and Elbert Hannah

Copyright © 2022 Elbert Hannah and Arnold Robbins. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editors: Gary O’Brien and Shira Evans

Production Editor: Kate Galloway

Copyeditor: Arthur Johnson

Proofreader: Kim Wimpsett

Indexer: Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

July 2008: Seventh Edition
November 2021: Eighth Edition

Revision History for the Eighth Edition

2021-11-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492078807 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning the vi and Vim Editors, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492078807

To my wife, Miriam, for your love, patience, and support.

—Arnold Robbins, Sixth, Seventh, and Eighth Editions

To my wife, Anna, for your love, encouragement, and patience.
|ank you for being there.

—Elbert Hannah, Seventh and Eighth Editions

Table of Contents

Preface. xv

Part I. vi and Vim Fundamentals

1. Introducing vi and Vim. 3
Text Editors and Text Editing 3

Text Editors 3
Text Editing 6

A Brief Historical Perspective 7
Opening and Closing Files 9

Opening a File from the Command Line 9
Opening a File from the GUI 10
Problems Opening Files 10
Modus Operandi 11
Saving and Quitting a File 12

Quitting Without Saving Edits 13
Problems Saving Files 13
Exercises 14

2. Simple Editing. 15
vi Commands 16
Moving the Cursor in Command Mode 17

Single Movements 18
Numeric Arguments 20
Movement Within a Line 20
Movement by Text Blocks 22

Simple Edits 23

v

Inserting New Text 24
Appending Text 25
Changing Text 25
Changing Case 28
Deleting Text 28
Moving Text 32
Copying Text 33
Repeating or Undoing Your Last Command 34

More Ways to Insert Text 36
Numeric Arguments for Insert Commands 37

Joining Two Lines with J 37
Problems with vi Commands 38

Mode Indicators 38
Review of Basic vi Commands 39

3. Moving Around in a Hurry. 41
Movement by Screens 41

Scrolling the Screen 42
Repositioning the Screen with z 43
Redrawing the Screen 43
Movement Within a Screen 44
Movement by Line 45

Movement by Text Blocks 46
Movement by Searches 47

Repeating Searches 48
Current Line Searches 50

Movement by Line Number 51
The G (Go To) Command 52

Review of vi Motion Commands 52

4. Beyond the Basics. 55
More Command Combinations 55
Options When Starting vi and Vim 56

Advancing to a Specific Place 57
Read-Only Mode 58
Recovering a Buffer 59

Making Use of Registers 60
Recovering Deletions 60
Yanking to Named Registers 61

Marking Your Place 62
Other Advanced Edits 63
Review of Register and Marking Commands 63

vi | Table of Contents

5. Introducing the ex Editor. 65
ex Commands 66

Exercise: The ex Editor 68
Problem Getting to Visual Mode 68

Editing with ex 68
Line Addresses 69
Defining a Range of Lines 69
Line-Addressing Symbols 71
Search Patterns 72
Redefining the Current Line Position 73
Global Searches 73
Combining ex Commands 74

Saving and Exiting Files 74
Renaming the Buffer 76
Saving Part of a File 76
Appending to a Saved File 76

Copying a File into Another File 77
Editing Multiple Files 77

Invoking Vim on Multiple Files 78
Using the Argument List 78
Calling in New Files 79
Filename Shortcuts 79
Switching Files from Command Mode 80
Edits Between Files 80

ex Command Summaries 81

6. Global Replacement. 85
The Substitute Command 85
Confirming Substitutions 86
Doing Things Globally Across the File 88
Context-Sensitive Replacement 88
Pattern-Matching Rules 89

Metacharacters Used in Search Patterns 90
POSIX Bracket Expressions 92
Metacharacters Used in Replacement Strings 94
More Substitution Tricks 96

Pattern-Matching Examples 97
Search for General Class of Words 98
Block Move by Patterns 99
More Examples 100

A Final Look at Pattern Matching 106
Deleting an Unknown Block of Text 106

Table of Contents | vii

Switching Items in a Textual Database 107
Using :g to Repeat a Command 109
Collecting Lines 110

7. Advanced Editing. 113
Customizing vi and Vim 114

The :set Command 114
The .exrc File 116
Alternate Environments 116
Some Useful Options 117

Executing Unix Commands 118
Filtering Text Through a Command 120

Saving Commands 122
Word Abbreviation 122
Using the map Command 124
Mapping with a Leader 125
Protecting Keys from Interpretation by ex 125
A Complex Mapping Example 126
More Examples of Mapping Keys 128
Mapping Keys for Insert Mode 130
Mapping Function Keys 131
Mapping Other Special Keys 132
Mapping Multiple Input Keys 134
@-Functions 135
Executing Registers from ex 136

Using ex Scripts 136
Looping in a Shell Script 137
Here Documents 139
Sorting Text Blocks: A Sample ex Script 140
Comments in ex Scripts 142
Beyond ex 142

Editing Program Source Code 143
Indentation Control 143
A Special Search Command 146
Using Tags 147
Enhanced Tags 148

Part II. Vim

8. Vim (vi Improved): Overview and Improvements over vi. 157
About Vim 158

viii | Table of Contents

Overview 159
Author and History 159
Why Vim? 160
Compare and Contrast with vi 160
Categories of Features 161
Philosophy 164

Aids and Easy Modes for New Users 164
Built-In Help 165
Startup and Initialization Options 167

Command-Line Options 167
Behaviors Associated to Command Name 170
System and User Configuration Files 171
Environment Variables 172

New Motion Commands 174
Visual Mode Motion 175

Extended Regular Expressions 176
Extended Undo 180
Incremental Searching 181
Left-Right Scrolling 181
Summary 181

9. Graphical Vim (gvim). 183
General Introduction to gvim 184

Starting gvim 184
Using the Mouse 186
Useful Menus 188

Customizing Scrollbars, Menus, and Toolbars 190
Scrollbars 190
Menus 191
Toolbars 199
Tooltips 202

gvim in Microsoft Windows 202
gvim in the X Window System 203
Running gvim in Microsoft Windows WSL 203

Installing gvim in WSL 2 204
Installing an X Server for Windows 205
Configuring the X Server for Windows 205

GUI Options and Command Synopsis 211

10. Multiple Windows in Vim. 213
Initiating Multiwindow Editing 215

Multiwindow Initiation from the Command Line 215

Table of Contents | ix

Multiwindow Editing Inside Vim 217
Opening Windows 218

New Windows 218
Options During Splits 218
Conditional Split Commands 220
Window Command Summary 220

Moving Around Windows (Getting Your Cursor from Here to There) 221
Moving Windows Around 222

Moving Windows (Rotate or Exchange) 222
Moving Windows and Changing Their Layout 223
Window Move Commands: Synopsis 224

Resizing Windows 224
Window Resize Commands 225
Window Sizing Options 226
Resizing Command Synopsis 227

Buffers and Their Interaction with Windows 228
Vim’s Special Buffers 229
Hidden Buffers 229
Buffer Commands 230
Buffer Command Synopsis 231

Playing Tag with Windows 231
Tabbed Editing 233
Closing and Quitting Windows 234
Summary 236

11. Vim Enhancements for Programmers. 237
Folding and Outlining (Outline Mode) 238

The Fold Commands 240
Manual Folding 242
Outlining 247
A Few Words About the Other Fold Methods 249

Auto and Smart Indenting 250
Vim autoindent Extensions to vi’s autoindent 251
smartindent 251
cindent 252
indentexpr 258
A Final Word on Indentation 259

Keyword and Dictionary Word Completion 260
Insertion Completion Commands 261
Some Final Comments on Vim Autocompletion 268

Tag Stacking 269
Syntax Highlighting 271

x | Table of Contents

Getting Started 271
Customization 272
Rolling Your Own 278

Compiling and Checking Errors with Vim 281
More Uses for the Quickfix List Window 285

Some Final Thoughts on Vim for Writing Programs 287

12. Vim Scripts. 289
What’s Your Favorite Color (Scheme)? 289

Conditional Execution 290
Variables 292
The execute Command 293
Defining Functions 295
A Nice Vim Piggybacking Trick 296
Tuning a Vim Script with Global Variables 297
Arrays 299

Dynamic File Type Configuration Through Scripting 300
Autocommands 300
Checking Options 302
Buffer Variables 303
The exists() Function 304
Autocommands and Groups 306
Deleting Autocommands 306

Some Additional Thoughts About Vim Scripting 308
A Useful Vim Script Example 309
More About Variables 310
Expressions 311
Extensions 311
A Few More Comments About autocmd 311
Internal Functions 311

Resources 313

13. Other Cool Stu� in Vim. 315
Spell It! (i-t) 315

For a Different Take on Words, Try Thesaurus 318
Editing Binary Files 318
Digraphs: Non-ASCII Characters 320
Editing Files in Other Places 322
Navigating and Changing Directories 324
Backups with Vim 326
HTML Your Text 327
What’s the Difference? 328

Table of Contents | xi

viminfo: Now, Where Was I? 330
The viminfo Option 331
The mksession Command 332

What’s My Line (Size)? 334
Abbreviations of Vim Commands and Options 336
A Few Quickies (Not Necessarily Vim-Specific) 337
More Resources 338

14. Some Vim Power Techniques. 339
Several Convenience Maps 339

Exiting Vim Simplified 339
Resize Your Window 340
Double Your Fun 340

Moving into the Fast Lane 343
Finding a Hard-to-Remember Command 343
Analyzing a Famous Speech 345
Some More Use Cases 348

Hitting the Speed Limit 350
Enhancing the Status Line 352
Summary 353

Part III. Vim in the Larger Milieu

15. Vim as IDE: Some Assembly Required. 357
Plug-In Managers 357
Finding Just the Right Plug-In 359
Why Do We Want an IDE? 360
Doing It Yourself 361

EditorConfig: Consistent Text Editing Setup 361
NERDTree: File Tree Traversal Within Vim 362
nerdtree-git-plug-in: NERDTree with Git Status Indicators 362
Fugitive: Running Git from Within Vim 363
Completion 365
Termdebug: Use GDB Directly Within Vim 369

All-in-One IDEs 370
Coding Is Great, but What If I’m a Writer? 372
Conclusion 373

16. vi Is Everywhere. 375
Introduction 375
Improving the Command-Line Experience 375

xii | Table of Contents

Sharing Multiple Shells 376
The readline Library 377

The Bash Shell 377
Other Programs 380
The .inputrc File 380

Other Unix Shells 381
The Z Shell (zsh) 382
Keep As Much History As You Can 382
Command-Line Editing: Some Closing Thoughts 383

Windows PowerShell 384
Developer Tools 384

The Clewn GDB Driver 384
CGDB: Curses GDB 385
Vim Inside Visual Studio 386
Vim for Visual Studio Code 387

Unix Utilities 391
More or Less? 391
screen 393

And …, Browsers! 397
Wasavi 398
Vim + Chromium = Vimium 399

vi for MS Word and Outlook 405
Honorable Mention: Tools with Some vi Features 408

Google Mail 408
Microsoft PowerToys 408

Summary 409

17. Epilogue. 411

Part IV. Appendixes

A. The vi, ex, and Vim Editors. 415

B. Setting Options. 461

C. The Lighter Side of vi. 471

D. vi and Vim: Source Code and Building. 483

Index. 491

Table of Contents | xiii

Preface

Text editing is one of the most common tasks on any computer system, and vi is one

of the most useful standard text editors on a system. With vi you can create new files
or edit any existing text-only file.

vi, like many of the classic utilities developed during the early years of Unix®, has a

reputation for being hard to navigate. Bram Moolenaar’s enhanced clone, Vim (<vi
Improved=), has gone a long way toward removing reasons for such impressions. Vim
includes countless conveniences, visual guides, and help screens.

Today, Vim is the most popular version of vi, so this eighth edition focuses on Vim as
follows:

• Part I, <vi and Vim Fundamentals=, teaches basic vi skills, applicable to all•

versions of vi, but it does so in the context of Vim.

• Part II, <Vim=, devotes a number of chapters specifically to Vim’s advanced•
features.

• Part III, <Vim in the Larger Milieu=, presents chapters relating to Vim in a larger•
context.

Scope of This Book
This book consists of 17 chapters and four appendixes, divided into four parts. Part I,

<vi and Vim Fundamentals=, is designed to get you started using vi and Vim quickly,
and to follow up with advanced skills that will let you use them effectively.

The first two chapters—Chapter 1, <Introducing vi and Vim=, and Chapter 2, <Simple
Editing=—present some simple editing commands with which you can get started.
You should practice these until they are second nature. You could stop reading at the
end of Chapter 2, having learned some elementary editing operations.

xv

But the editors are meant to do a lot more than rudimentary word processing; the
variety of commands and options enables you to shortcut a lot of editing drudgery.
Chapter 3, <Moving Around in a Hurry=, and Chapter 4, <Beyond the Basics=, con‐
centrate on easier ways to do tasks. During your first reading, you’ll get at least an

idea of what vi and Vim can do and what commands you might harness for your
specific needs. Later, you can come back to these chapters for further study.

Chapter 5, <Introducing the ex Editor=, Chapter 6, <Global Replacement=, and Chap‐
ter 7, <Advanced Editing=, provide tools that help you shift more of the editing

burden to the computer. They introduce you to the ex line editor underlying vi and

Vim, and they show you how to issue ex commands from within vi and Vim.

Part II, <Vim=, describes Vim, the most popular vi clone 21 years into the 21st

century. It goes into detail on the many (many!) features Vim has over the original vi.

Chapter 8, <Vim (vi Improved): Overview and Improvements over vi=, provides
a general introduction to Vim. The chapter also gives an overview of the major

improvements in Vim over vi, such as built-in help, control over initialization,
additional motion commands, extended regular expressions, and many more.

Chapter 9, <Graphical Vim (gvim)=, looks at Vim in modern GUI environments, such
as those that are now standard on commercial Unix systems, GNU/Linux and other
Unix work-alikes, and MS-Windows.

Chapter 10, <Multiple Windows in Vim=, focuses on multiwindow editing, which

is perhaps the most significant additional feature over standard vi. This chapter
provides all the details on creating and using multiple windows.

Chapter 11, <Vim Enhancements for Programmers=, focuses on Vim’s use as a pro‐
grammer’s editor, above and beyond its facilities for general text editing. Of particular
value are the folding and outlining facilities, smart indenting, syntax highlighting,
and edit-compile-debug cycle speedups.

Chapter 12, <Vim Scripts=, looks into the Vim command language, which lets you
write scripts to customize and tailor Vim to suit your needs. Much of Vim’s ease of
use <out of the box= comes from the large number of scripts that other users have
already written and contributed to the Vim distribution.

Chapter 13, <Other Cool Stuff in Vim=, is a bit of a catchall chapter, covering a
number of interesting points that don’t fit into the earlier chapters.

Chapter 14, <Some Vim Power Techniques=, presents some useful <power techniques.=
Based around the idea of personal key remappings, it shows you more ways to be
productive.

Part III, <Vim in the Larger Milieu=, looks at vi’s and Vim’s roles in the larger
software development and computer usage worlds.

xvi | Preface

Chapter 15, <Vim as IDE: Some Assembly Required=, touches the tip of the iceberg
of the world of Vim plug-ins, focusing on how you can change Vim from <just= an
editor into a full-fledged integrated development environment (IDE).

Chapter 16, <vi Is Everywhere=, looks at other significant software environments

where vi-style editing can be brought into play to increase productivity.

Chapter 17, <Epilogue=, provides a brief summary to round things off.

Part IV, <Appendixes=, provides useful reference material.

Appendix A, <The vi, ex, and Vim Editors=, lists all standard vi and ex commands,

sorted by function. It also provides an alphabetical list of ex commands. Selected vi

and ex commands from Vim are also included.

Appendix B, <Setting Options=, lists set command options for vi and for Vim.

Appendix C, <The Lighter Side of vi=, presents some humorous material related to vi.

Appendix D, <vi and Vim: Source Code and Building=, describes where to get the

<Heirloom= vi, as well as how to get Vim for your Unix, GNU/Linux, MS-Windows,
or Macintosh system.

How the Material Is Presented
Our philosophy is to give you a good overview of what we feel are vi and Vim
survival materials for the new user. Learning a new editor, especially an editor with all
the options of Vim, can seem like an overwhelming task. We have made an effort to
present basic concepts and commands in an easy-to-read and logical manner.

After providing the basics for vi and Vim, which are usable everywhere, we move on
to cover Vim in depth. The following sections describe the conventions used in this
book.

Discussion of vi Commands
For each keyboard command or group of related commands, you will find a brief
introduction to the main concept before it is broken down into task-oriented sec‐
tions. We then present the appropriate command to use in each case, along with a
description of the command and the proper syntax for using it.

Conventions
In syntax descriptions and examples, what you would actually type is shown in the

constant width font, as are all command names and program options. Variables
(which you would not type literally but would replace with an actual value when you

Preface | xvii

type the command) are shown in Constant width italic. Brackets indicate that a
variable is optional. For example, in the syntax line:

vi [filename]

filename would be replaced by an actual filename. The brackets indicate that the

vi command can be invoked without specifying a filename at all. The brackets
themselves are not typed.

Certain examples show the effect of commands typed at the shell prompt. In such

examples, what you actually type is shown in constant width bold, to distinguish it
from the system response. For example:

$ ls

ch01.xml ch02.xml ch03.xml ch04.xml

In code examples, italic indicates a comment that is not to be typed. In the text, italic
refers to filenames, introduces special terms, and emphasizes anything that needs
emphasis.

Following traditional Unix documentation convention, references of the form

printf(3) refer to the online manual (accessed via the man command). This example

refers to the entry for the printf() function in section 3 of the manual. You would

type man -s 3 printf on most systems to see it.

Keystrokes
Special keystrokes are shown in a box. For example:

iWith a ESC

Throughout the book, you will also find columns of vi/Vim commands and their
results:

Keystrokes Results

ZZ "practice" [New] 6L, 104C written

Give the write and save command, ZZ. Your �le is saved as a regular disk �le.

In the preceding example, the command ZZ is shown in the left column. In the
column to the right is a line (or several lines) of the screen that shows the result of the

command. Cursor position is shown in reverse video. In this instance, since ZZ saves
and writes the file, you see the status line shown when a file is written; the cursor
position is not shown. Below the command/result is an explanation of the command
and what it does.

xviii | Preface

1 Perhaps this is because keyboards have the uppercase letters on the keys, not the lowercase ones.

In some of these demos, we show shell commands and their results. In such cases, the

commands are preceded by the standard $ shell prompt and the command is in bold:

Keystrokes Results

$ ls ch01.asciidoc ch02.asciidoc ch03.asciidoc

Sometimes vi commands are issued by pressing the CTRL key and another key
simultaneously. In the text, this combination keystroke is usually written within a box
(for example, CTRL-G). In code examples, it is written by preceding the name of the

key with a caret (^). For example, ^G means to hold down CTRL while pressing the
G key. It is universal convention to refer to control characters using uppercase letters

(^G, not ^g) even though you do not hold down the SHIFT key when typing them.1

Additionally, when uppercase letters are shown using the keycap notation, we do so

as SHIFT-X for any character X. Thus, a is represented as A , and A is represented as
SHIFT-A .

Cautions, Notes, and Tips

This is a cautionary note. It describes things you need to watch out
for or be careful about.

This is just a plain, regular old note. It point outs things that may
be of interest or that may not have been obvious.

This is a tip. It provides helpful shortcuts or time-saving things you
can do.

Problem Checklists
A problem checklist is included in those sections where you may run into some
trouble. You can skim these checklists and go back to them when you actually
encounter a problem.

Preface | xix

What You Need to Know Before Starting
This book assumes that you have basic Unix user-level knowledge. In particular, you
should already know how to:

• Open a terminal window on your laptop or workstation to get to a shell prompt•

• Log in and log out, typically via ssh, if using a remote system•

• Enter shell commands•

• Change directories•

• List files in a directory•

• Create, copy, and remove files•

Familiarity with grep (a global search program) and wildcard characters is also
helpful.

Although modern systems let you run Vim from a GUI menu system, you lose
access to the flexibility provided by Vim’s command-line options. Thus, throughout

the book, our examples continue to demonstrate running vi and Vim from the
command-line prompt.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://www.github.com/learning-vi/vi-�les.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: <Learning the vi and
Vim Editors by Arnold Robbins and Elbert Hannah (O’Reilly). Copyright 2022 Elbert
Hannah and Arnold Robbins, 978-1-492-07880-7.=

xx | Preface

https://www.github.com/learning-vi/vi-files
mailto:bookquestions@oreilly.com

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/viVim8.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Preface | xxi

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/viVim8
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

2 <vi Tips for Power Users,= UnixWorld, April 1990; and <Using vi to Automate Complex Edits,= UnixWorld,

May 1990. Both articles are by Walter Zintz.

3 Ray Swartz, <Answers to Unix,= UnixWorld, August 1990.

About the Previous Editions
In the fifth edition of this book (then called Learning the vi Editor), the ex editor com‐
mands were first discussed more fully. In Chapters 5, 6, and 7, the complex features

of ex and vi were clarified by adding more examples, covering topics such as regular
expression syntax, global replacement, .exrc files, word abbreviations, keyboard maps,
and editing scripts. A few of the examples were drawn from articles in UnixWorld

magazine. Walter Zintz wrote a two-part tutorial2 on vi that taught us a few things
we didn’t know, and that also had a lot of clever examples illustrating features we did
already cover in the book. Ray Swartz also had a helpful tip in one of his columns.3

We are grateful for the ideas in these articles.

The sixth edition of Learning the vi Editor introduced coverage of four freely available
<clones,= or work-alike editors. Many of them have improvements over the original

vi. One could thus say that there is a <family= of vi editors, and the book’s goal was

to teach you what you needed to know to use them. That edition treated nvi, Vim,

elvis, and vile equally. A new appendix described vi’s place in the larger Unix and
internet culture.

The seventh edition of Learning the vi and Vim Editors retained all the good features

of the sixth edition. Time had proven Vim to be the most popular vi clone, so the
seventh edition added considerably expanded coverage of that editor (and gave Vim
a place in the title). However, to be relevant for as many users as possible, it retained

and updated the material on nvi, elvis, and vile.

About the Eighth Edition
This eighth edition of Learning the vi and Vim Editors retains all the good features of
the seventh edition. Vim now <rules the roost,= so this edition updates the coverage

of Vim and removes the material on nvi, elvis, and vile. Part I now uses Vim as
the context for its instruction and examples. Furthermore, references to problems

with older versions of the original vi that are simply no longer relevant have been
removed. We have attempted to streamline the book and keep it as relevant and
useful as possible.

What’s New
The following features are new for this edition:

xxii | Preface

• Once again, we have corrected errors in the basic text.•

• We have thoroughly revised and updated the material in Part I and Part II. In•

Part I, we shifted the emphasis from the original Unix version of vi to being <vi
in the context of Vim.= We also added a new chapter to Part II.

• The additional chapters in Part III are brand new.•

• We have changed the focus of Appendix C.•

• We have moved the material on getting or building Vim from the mainline text•
to Appendix D.

• The other appendixes have been updated as well.•

Versions
The following programs were used for testing out various vi features:

• The <Heirloom= vi from https://github.com/n-t-ro�/heirloom-ex-vi served as the•

reference version of the original Unix vi.

• Solaris 11 /usr/xpg7/bin/vi. (On Solaris 11, /usr/bin/vi is actually Vim! The•

versions of vi in /usr/xpg4/bin, /usr/xpg6/bin, and /usr/xpg7/bin appear to

be derived from the original Unix vi.)

• Versions 8.0, 8.1, and 8.2 of Bram Moolenaar’s Vim.•

Acknowledgments from the Sixth Edition
First and foremost, thanks to my wife, Miriam, for taking care of the kids while I
was working on this book, particularly during the <witching hours= right before meal
times. I owe her large amounts of quiet time and ice cream.

Paul Manno, of the Georgia Tech College of Computing, provided invaluable help in
pacifying my printing software. Len Muellner and Erik Ray of O’Reilly & Associates

helped with the SGML software. Jerry Peek’s vi macros for SGML were invaluable.

Although all of the programs were used during the preparation of the new and
revised material, most of the editing was done with Vim versions 4.5 and 5.0 under
GNU/Linux (Red Hat 4.2).

Thanks to Keith Bostic, Steve Kirkendall, Bram Moolenaar, Paul Fox, Tom Dickey,
and Kevin Buettner, who reviewed the book. Steve Kirkendall, Bram Moolenaar, Paul
Fox, Tom Dickey, and Kevin Buettner also provided important parts of Chapters 8
through 12. (These chapter numbers refer to the sixth edition.)

Without the electricity being generated by the power company, doing anything with
a computer is impossible. But when the electricity is there, you don’t stop to think

Preface | xxiii

https://github.com/n-t-roff/heirloom-ex-vi

4 See http://www.userfriendly.org if you’ve never heard of User Friendly.

about it. So too when writing a book—without an editor, nothing happens, but
when the editor is there doing her job, it’s easy to forget about her. Gigi Estabrook
at O’Reilly is a true gem. It’s been a pleasure working with her, and I appreciate
everything she’s done and continues to do for me.

Finally, many thanks to the production team at O’Reilly & Associates.

Arnold Robbins
Ra’anana, ISRAEL
June 1998

Acknowledgments from the Seventh Edition
Once again, Arnold thanks his wife, Miriam, for her love and support. The size of his
quiet time and ice cream debt continues to grow. In addition, thanks to J. D. <Illiad=
Frazer for the great User Friendly cartoons.4

Elbert would like to thank Anna, Cally, Bobby, and his parents for staying excited
about his work through the tough times. Their enthusiasm was contagious and
appreciated.

Thanks to Keith Bostic and Steve Kirkendall for providing input on revising their
editors’ chapters. Tom Dickey provided significant input for revising the chapter on

vile and the table of set options in Appendix B. Bram Moolenaar (the author of
Vim) reviewed the book this time around as well. Robert P. J. Day, Matt Frye, Judith
Myerson, and Stephen Figgins provided important review comments throughout the
text.

Arnold and Elbert would both like to thank Andy Oram and Isabel Kunkle for their
work as editors, and all of the tools and production staff at O’Reilly Media.

Arnold Robbins
Nof Ayalon
ISRAEL
April 2008

Elbert Hannah
Kildeer, Illinois
USA
April 2008

xxiv | Preface

http://www.userfriendly.org

Acknowledgments for the Eighth Edition
We would like to thank Krishnan Ravikumar, whose email to Arnold asking about a
new edition started the ball rolling to update the book.

We would also like to thank our technical reviewers (in alphabetical order): Yehezkel
Bernat, Robert P. J. Day, Will Gallego, Jess Males, Ofra Moyal-Cohen, Paul Pomerleau,
and Miriam Robbins.

Arnold would like to thank his wife, Miriam, yet again, for her doing without him
while the book was going on. He also thanks his children, Chana, Rivka, Nachum,
and Malka, as well as Sophie the dog.

Elbert would like to thank the following:

• His wife, Anna, who again accepted the odd schedule and demands of putting•
this book together. He also thanks Bobby and Cally for their support and encour‐
agement as the work progressed. Their always-cheerful attitude always uplifted.
And he extends a special thank-you to new grandson Dean. One of Dean’s first
words was <book,= and Elbert can only assume Dean was referring to this one.

• His West Highland Terrier, Poncho, who was there when he wrote the seventh•
edition and is still alive and kicking and eagerly awaiting the eighth edition. He
doesn’t know how to read but he still <gets= Vim. Good boy, Poncho! Paws always
on the keyboard, never touching the mouse.

• His CME group peers for a great 13 years in which he honed his Vim skills and•
taught others the Vim greatness.

— He gives special mention to Scott Fink, a peer, a boss, a collaborator, and a—
friend, who always asked to learn more not only about Vim but about all
things in the Vim universe. Working with Scott, he harnessed Vim <zen= to
write great applications together.

— Paul Pomerleau for being a technical reviewer of this book and someone who—
always kept him honest about the Vim/Emacs comparison. And even though
Paul used Emacs, he was one of Elbert’s greatest collaborators and friends
those 13 years.

— Michael Sciacco for showing him Microsoft’s VS Code. Michael taught this old—
dog a lot of new tricks. Michael, you’re an IDE!

— Finally, Tony Ferraro, under whom he worked his last professional days.—
Tony always encouraged Elbert to write (technical documentation), and Elbert
tried. This book is for you, Tony!

Preface | xxv

Both of us would like to thank our editors for this edition, Gary O’Brien and Shira
Evans, for patiently shepherding us through the revision process. Managing program‐
mers has been said to be akin to herding cats; no doubt the same applies to managing
authors. Similarly, we thank the tools and production staff at O’Reilly Media.

Arnold Robbins
Nof Ayalon
ISRAEL
September 2021

Elbert Hannah
Kildeer, Illinois
USA
September 2021

xxvi | Preface

PART I

vi and Vim Fundamentals

Part I is designed to get you started quickly with the vi and Vim editors. It provides
the advanced skills that will let you use them most effectively. These chapters cover

the functionality of the original, core vi, providing commands you can use on
any version. Later chapters cover advanced features in Vim. This part contains the
following chapters:

• Chapter 1, <Introducing vi and Vim=•

• Chapter 2, <Simple Editing=•

• Chapter 3, <Moving Around in a Hurry=•

• Chapter 4, <Beyond the Basics=•

• Chapter 5, <Introducing the ex Editor=•

• Chapter 6, <Global Replacement=•

• Chapter 7, <Advanced Editing=•

1 These days, the term <Unix= includes both commercial systems derived from the original Unix code base

and Unix work-alikes whose source code is available. Solaris, AIX, and HP-UX are examples of the former,

and GNU/Linux and the various BSD-derived systems are examples of the latter. Also included under this

umbrella are macOS’s terminal environment, Windows Subsystem for Linux (WSL) on MS-Windows, and

Cygwin and other similar environments for Windows. Unless otherwise noted, everything in this book

applies across the board to all those systems.

CHAPTER 1

Introducing vi and Vim

One of the most important day-to-day uses of a computer is working with text:
composing new text, editing and rearranging existing text, deleting or rewriting
incorrect and obsolete text. If you work with a word processing program such as
Microsoft Word, that’s what you’re doing! If you are a programmer, you’re also
working with text: the source code files of your program, and auxiliary files needed
for development. Text editors process the contents of any text files, whether those
files contain data, source code, or sentences.

This book is about text editing with two related text editors: vi and Vim. vi has a

long tradition as the standard Unix1 text editor. Vim builds on vi’s command mode
and command language, providing at least an order of magnitude more power and
capability than the original.

Text Editors and Text Editing
Let’s get started.

Text Editors
Unix text editors have evolved over time. Initially, there were line editors, such as

ed and ex, for use on serial terminals that printed on continuous feed paper. (Yes,

3

2 Perhaps in the same way as Pokémon do?

3 If you don’t have either vi or Vim installed, see Appendix D, <vi and Vim: Source Code and Building=.

4 GNU Emacs has become the universal version of Emacs. The only problem is that it doesn’t come standard

with most systems; you must retrieve and install it yourself, even on some GNU/Linux systems.

people really programmed on such things! Including at least one of your authors.)
Line editors were called such because you worked on your program one or a few lines
at a time.

With the introduction of cathode-ray tube (CRT) terminals with cursor addressing,

line editors evolved into screen editors, such as vi and Emacs. Screen editors let you
work with your files a full screen at a time and let you easily move around the lines on
the screen as you wished.

With the introduction of graphical user interface (GUI) environments, screen editors
evolved further into graphical text editors, where you use a mouse to scroll the visible
portion of your file, move to a particular point in a file, and select text upon which to
perform an operation. Examples of such text editors based on the X Window System

are gedit on Gnome-based systems and Notepad++ on MS-Windows. There are
others.

Of particular interest to us is that the popular screen editors have evolved into
graphical editors:2 GNU Emacs provides multiple X windows, as does Vim through

its gvim version. The graphical editors continue to work identically to their original
screen-based versions, making the transition to the GUI version almost trivial.

Of all the standard editors on a Unix system, vi is the most useful one for you to
master.3 Unlike Emacs, it is available in nearly identical form on every modern Unix
system, thus providing a kind of text-editing lingua franca.4 The same might be said

of ed and ex, but screen editors, and their GUI-based descendants, are much easier to
use. (So much so, in fact, that line editors have generally fallen into disuse.)

vi exists in multiple incarnations. There is the original Unix version, and there are

multiple <clones=: programs written from scratch to behave as vi does, but not based

on the original vi source code. Of these, Vim has become the most popular.

In the chapters in Part I, we teach you how to use vi in the general sense. Everything

in these chapters applies to all versions of vi. However, we do this in the context of
Vim, since that is the version you are likely to have on your system. While reading,

feel free to think of <vi= as standing for <vi and Vim.=

4 | Chapter 1: Introducing vi and Vim

https://www.vim.org

vi is short for visual editor and is pronounced <vee-eye.= This is
illustrated graphically in Figure 1-1.

Figure 1-1. Correct pronunciation of vi

To many beginners, vi looks unintuitive and cumbersome—instead of using special
control keys for word processing functions and just letting you type normally, it uses
almost all of the regular keyboard keys for issuing commands. When the keyboard
keys are issuing commands, the editor is said to be in command mode. You must be in
a special insert mode before you can type actual text on the screen. In addition, there
seem to be so many commands.

Once you start learning, however, you realize that the editor is well designed. You

need only a few keystrokes to tell it to do complex tasks. As you learn vi, you learn
shortcuts that transfer more and more of the editing work to the computer—where it
belongs.

vi and Vim (like any text editors) are not <what you see is what you get= word
processors. If you want to produce formatted documents, you must type in specific
instructions (sometimes called formatting codes) that are used by a separate format‐
ting program to control the appearance of the printed copy. If you want to indent
several paragraphs, for instance, you put a code where the indent begins and ends.
Formatting codes allow you to experiment with or change the appearance of your
printed files, and in many ways they give you much more control over the appearance
of your documents than a word processor does.

Text Editors and Text Editing | 5

5 From the use of red pencils to <mark up= changes in typeset galleys or proofs.

6 For more information on these languages, see https://en.wikipedia.org/wiki/Markdown and http://asciidoc.org,

respectively. This book is written in AsciiDoc.

7 troff is for laser printers and typesetters. Its <twin brother= is nroff, for line printers and terminals. Both

accept the same input language. Following common Unix convention, we refer to both with the name troff.

Today, anyone using troff uses the GNU version, groff.

Formatting codes are the specific verbs in what are more generally known as markup
languages.5 In recent years, markup languages have seen a resurgence in popularity.
Of note are Markdown and AsciiDoc,6 although there are others as well. Perhaps
the most widely used markup language today is the Hypertext Markup Language
(HTML), used in the creation of internet web pages.

Besides the markup languages just mentioned, Unix supports the troff formatting
package.7 The TeX and LaTeX formatters are popular, commonly available alterna‐
tives. The easiest way to use any of these markup languages is with a text editor.

vi does support some simple formatting mechanisms. For example,
you can tell it to automatically wrap when you come to the end
of a line, or to automatically indent new lines. In addition, Vim
provides automatic spellchecking.

As with any skill, the more editing you do, the easier the basics become, and the more
you can accomplish. Once you are used to all the powers you have while editing, you
may never want to return to any <simpler= editor.

Text Editing
What are the components of editing? First, you want to insert text (a forgotten word
or a new or missing sentence), and you want to delete text (a stray character or an
entire paragraph). You also need to change letters and words (to correct misspellings
or to reflect a change of mind about a term). You might want to move text from one
place to another part of your file. And, on occasion, you want to copy text to duplicate
it in another part of your file.

Unlike many word processors, vi’s command mode is the initial or default mode.
Complex, interactive edits can be performed with only a few keystrokes. To insert raw
text, you simply give any of the several <insert= commands and then type away.

6 | Chapter 1: Introducing vi and Vim

https://en.wikipedia.org/wiki/Markdown
http://asciidoc.org
http://www.gnu.org/software/groff
http://www.ctan.org
http://www.latex-project.org

One or two characters are used for the basic commands. For example:

i

Insert

cw

Change word

Using letters as commands, you can edit a file with great speed. You don’t have to
memorize banks of function keys or stretch your fingers to reach awkward combina‐
tions of keys. You never have to remove your hands from the keyboard, or mess
around with multiple levels of menus! Most of the commands can be remembered by
the letters that perform them. Nearly all commands follow similar patterns and are
related to each other.

In general, vi and Vim commands:

• Are case sensitive (uppercase and lowercase keystrokes mean different things; I•

is different from i).

• Are not shown (or <echoed=) on the screen when you type them.•

• Do not require that you press ENTER after a command.•

There is also a group of commands that echo on the bottom line of the screen.

Bottom-line commands are preceded by different symbols. The slash (/) and the

question mark (?) begin search commands and are discussed in Chapter 3, <Moving

Around in a Hurry=. A colon (:) begins all ex commands. ex commands are those

used by the ex line editor. The ex editor is available to you when you use any version

of vi, because ex is the underlying editor and vi is really just its <visual= mode.

ex commands and concepts are discussed fully in Chapter 5, <Introducing the ex

Editor=, but this chapter introduces you to the ex commands to quit a file without
saving edits.

A Brief Historical Perspective
Before we dive into all the ins and outs of vi and Vim, it will help to understand

vi’s worldview of your environment. In particular, this will help you make sense of

many of vi’s otherwise more obscure error messages and also appreciate how Vim

has evolved beyond the original vi.

vi dates back to a time when computer users worked on CRT terminals connected
via serial lines to central minicomputers. Hundreds of different kinds of terminals
existed and were in use worldwide. Each one did the same kind of actions (clear the
screen, move the cursor, etc.), but the commands needed to make them do these
actions were different. In addition, the Unix system let you choose the characters

A Brief Historical Perspective | 7

8 Thankfully, this kind of thing is much less common, although systems can still crash due to external

circumstances, such as a power outage. If you have an uninterruptible power supply for your system, or a

healthy battery on your laptop, even this worry goes away.

to use for backspace, generating an interrupt signal, and other commands useful on
serial terminals, such as suspending and resuming output. These facilities were (and

still are) managed with the stty command.

The original Berkeley Unix version of vi abstracted out the terminal control informa‐
tion from the code (which was hard to change) into a text-file database of terminal

capabilities (which was easy to change), managed by the termcap library. In the early

1980s, System V introduced a binary terminal information database and terminfo

library. The two libraries were largely functionally equivalent. In order to tell vi

which terminal you had, you had to set the TERM environment variable. This was
typically done in a shell startup file such as your personal .pro�le or .login.

The termcap library is no longer used. GNU/Linux and BSD systems use the ncurses

library, which provides a compatible superset of the System V terminfo library’s
database and capabilities.

Today, everyone uses terminal emulators in a graphical environment (such as Gnome

Terminal). The system almost always takes care of setting TERM for you.

You can use Vim from a PC non-GUI console too, of course. This
is very useful when doing system recovery work in single-user
mode. There aren’t too many people left who would want to work
this way on a regular basis, though.

For day-to-day use, it is likely that you will want to use a GUI version of vi, such as

gvim. On a Microsoft Windows or macOS system, this will probably be the default.

However, when you run vi (or some other screen editor of the same vintage) inside

a terminal emulator, it still uses TERM and terminfo and pays attention to the stty

settings. And using it inside a terminal emulator is just as easy a way to learn vi and
Vim as any other.

Another important fact to understand about vi is that it was developed at a time

when Unix systems were considerably less stable than they are today. The vi user of

yesteryear had to be prepared for the system to crash at arbitrary times, and so vi
included support for recovering files that were in the middle of being edited when

the system crashed.8 So, as you learn vi and Vim and see the descriptions of various
problems that might occur, bear these historical developments in mind.

8 | Chapter 1: Introducing vi and Vim

Opening and Closing Files
You can use vi to edit any text file. The editor copies the file to be edited into a
bu�er (an area temporarily set aside in memory), displays the buffer (though you can
see only one screenful at a time), and lets you add, delete, and change text. When
you save your edits, the editor copies the edited buffer back into a permanent file,
replacing the old file of the same name. Remember that you are always working on
a copy of your file in the buffer, and that your edits do not affect your original file
until you save the buffer. Saving your edits is also called <writing the buffer,= or more
commonly, <writing your file.=

Opening a File from the Command Line
vim is the Unix command that invokes the Vim editor for an existing file or for a

brand-new file. The syntax for the vim command is:

$ vim [filename]

or

$ vi [filename]

On modern systems, vi is often just a link to Vim. The brackets shown on these
command lines indicate that the filename is optional. The brackets should not be

typed. The $ is the shell prompt.

If the filename is omitted, the editor opens an unnamed buffer. You can assign the
name when you write the buffer into a file. For right now, though, let’s stick to
naming the file on the command line.

A filename must be unique inside its directory. (Some operating systems call directo‐
ries folders; they’re the same thing.)

On Unix systems, a filename can include any 8-bit character except a slash (/), which
is reserved as the separator between files and directories in a pathname, and ASCII
NUL, the character with all zero bits. You can even include spaces in a filename by
typing a backslash (\) before the space. (MS-Windows systems disallow the backslash
[\] and the colon [:] character in filenames.) In practice, though, filenames generally
consist of any combination of uppercase and lowercase letters, numbers, and the
characters dot (.) and underscore (_). Remember that Unix is case sensitive: lower‐
case letters are distinct from uppercase letters. Also remember that you must press
ENTER to tell the shell that you are finished issuing your command.

When you want to open a new file in a directory, give a new filename with the vi
command. For example, if you want to open a new file called practice in the current
directory, you would enter:

$ vi practice

Opening and Closing Files | 9

Since this is a new file, the buffer is empty, and the screen appears as follows:

~

~

~

"practice" [New file]

The tildes (~) down the lefthand column of the screen indicate that there is no text
in the file, not even blank lines. The prompt line (also called the status line) at the
bottom of the screen echoes the name and status of the file.

You can also edit any existing text file in a directory by specifying its filename.
Suppose that there is a Unix file with the pathname /home/john/letter. If you are
already in the /home/john directory, use the relative pathname. For example:

$ vi letter

brings a copy of the file letter to the screen.

If you are in another directory, give the full pathname to begin editing:

$ vi /home/john/letter

Opening a File from the GUI
Although we (strongly) recommend that you become comfortable with the command
line, you can run Vim on a file directly from your GUI environment. Typically, you
right-click on a file and then select something like <Open with …= from the menu
that pops up. If Vim is correctly installed, it will be one of the available options for
opening the file.

Usually, you may also start Vim directly from your menuing system, in which case

you then need to tell it which file to edit with the ex command :e filename.

We can’t be any more specific than this, because there are so many different GUI
environments in use today.

Problems Opening Files

• You see one of the following messages:•

Visual needs addressable cursor or upline capability

terminal: Unknown terminal type

Block device required

Not a typewriter

Your terminal type is undefined, or else there’s probably something wrong with

your terminfo entry. Enter :q to quit. Often, setting $TERM to vt100 is enough to
get going, at least in a bare-bones sort of fashion. For further help, you might use
an internet search engine or a popular technical questions forum such as Stack
Overflow.

10 | Chapter 1: Introducing vi and Vim

https://stackoverflow.com
https://stackoverflow.com

• A [new file] message appears when you think a �le already exists.•

Check that you have used correct case in the filename (Unix filenames are case

sensitive). If you have, then you are probably in the wrong directory. Enter :q to
quit. Then check to see that you are in the correct directory for that file (enter

pwd at the shell prompt). If you are in the right directory, check the list of files

in the directory (with ls) to see whether the file exists under a slightly different
name.

• You invoke vi but you get a colon prompt (indicating that you’re in ex line-editing•
mode).

You probably typed an interrupt (typically CTRL-C) before vi could draw the

screen. Enter vi by typing vi at the ex prompt (:).

• One of the following messages appears:•

[Read only]

File is read only

Permission denied

<Read only= means that you can only look at the file; you cannot save any

changes you make. You may have invoked vi in view mode (with view or vi -R),
or you do not have write permission for the file. See the section <Opening a File
from the Command Line= on page 9.

• One of the following messages appears:•

Bad file number

Block special file

Character special file

Directory

Executable

Non-ascii file

file non-ASCII

The file you’ve called up to edit is not a regular text file. Type :q! to quit, and

then check the file you wish to edit, perhaps with the file command.

• When you type :q because of one of the previously mentioned di�culties, this•
message appears:

E37: No write since last change (add ! to override)

You have modified the file without realizing it. Type :q! to leave the editor. Your
changes from this session are not saved in the file.

Modus Operandi
As mentioned earlier, the concept of the current <mode= is fundamental to the way

vi works. There are two modes, command mode and insert mode. (The ex command
mode can be considered a third mode, but we’ll ignore that for now.) You start out

Opening and Closing Files | 11

9 Note that vi and Vim do not have commands for every possible key. Rather, in command mode, the editor

expects to receive keys representing commands, not text to go into your file. We take advantage of unused

keys later, in the section <Using the map Command= on page 124.

in command mode, where every keystroke represents a command.9 In insert mode,
everything you type becomes text in your file.

Sometimes, you can accidentally enter insert mode, or conversely, you might leave
insert mode accidentally. In either case, what you type will likely affect your files in
ways you did not intend.

Press the ESC key to force the editor to enter command mode. If you are already in
command mode, the editor beeps at you when you press the ESC key. (Command
mode is thus sometimes referred to as <beep mode.=)

Once you are safely in command mode, you can proceed to repair any accidental
changes and then continue editing your text. (See the section <Problems with dele‐
tions= on page 31, and also see the section <Undo= on page 35.)

Saving and Quitting a File
You can quit working on a file at any time, save your edits, and return to the
command prompt (if you’re running inside a terminal window). The command to

quit and save edits is ZZ. Note that ZZ is capitalized.

Let’s assume that you do create a file called practice to practice vi commands, and
that you type in six lines of text. To save the file, first check that you are in command

mode by pressing ESC , and then enter ZZ:

Keystrokes Results

ZZ "practice" [New] 6L, 104C written

Give the write and save command, ZZ. Your �le is saved as a regular disk �le.

$ ls ch01.asciidoc ch02.asciidoc practice

Listing the �les in the directory shows the new �le practice that you created.

You can also save your edits with ex commands. Type :w to save (write) your file but

not quit; type :q to quit if you haven’t made any edits; and type :wq to both save your

edits and quit. (:wq is equivalent to ZZ.) We’ll explain fully how to use ex commands
in Chapter 5; for now, you should just memorize a few commands for writing and
saving files.

12 | Chapter 1: Introducing vi and Vim

Quitting Without Saving Edits
When you are first learning Vim, especially if you are an intrepid experimenter, there

are two other ex commands that are handy for getting out of any mess that you might
create.

What if you want to wipe out all the edits you have made in a session and then reload
the original file? The command:

:e! ENTER

reloads the last saved version of the file so you can start over.

Suppose, however, that you want to wipe out your edits and then just quit the editor?
The command:

:q! ENTER

immediately quits the file you’re editing and returns you to the command prompt.
With both of these commands, you lose all edits made in the buffer since the last
time you saved the file. The editor normally won’t let you throw away your edits.

The exclamation point added to the :e or :q command causes it to override this
prohibition, performing the operation even though the buffer has been modified.

Going forward, we don’t show the ENTER key on ex mode commands, but you
must use it to get the editor to execute them.

Problems Saving Files

• You try to write your �le, but you get one of the following messages:•

File exists

File file exists - use w!

[Existing file]

File is read only

Type :w! file to overwrite the existing file, or type :w newfile to save the edited
version in a new file.

• You want to write a �le, but you don’t have write permission for it. You get the•
message <Permission denied.=

Use :w newfile to write out the buffer into a new file. If you have write permis‐

sion for the directory, you can use the mv command to replace the original
version with your copy of it. If you don’t have write permission for the directory,

type :w pathname/file to write out the buffer to a directory for which you do
have write permission (such as your home directory, or /tmp). Be careful not to
overwrite any existing files in that directory.

• You try to write your �le, but you get a message telling you that the �le system is•
full.

Quitting Without Saving Edits | 13

Today, when a 500-gigabyte drive is considered small, errors like this are gener‐
ally rare. If something like this does occur, you have several courses you can
take. First, try to write your file somewhere safe on a different file system (such
as /tmp) so that your data is saved. Then try to force the system to save your

buffer with the ex command :pre (short for :preserve). If that doesn’t work,
look for some files to remove, as follows:

— Open a graphical file manager (such as Nautilus on GNU/Linux) and try to—
find old files you don’t need and can remove.

— Use CTRL-Z to suspend vi and return to the shell prompt. You can then—
use various Unix commands to try to find large files that are candidates for
removal:

— df indicates how much disk space is free on a given filesystem, or on the—
system as a whole.

— du indicates how many disk blocks are used for given files and directories.—

du -s * | sort -nr is an easy way to get a list of files and directories
sorted by how much space they use in descending order.

When done removing files, use fg to put vi back into the foreground; you can
then save your work normally.

While we’re at it, besides using CTRL-Z and job control, you should know that

you can type :sh to start a new shell in which to work. Type CTRL-D or exit to

terminate the shell and return to vi. (This even works from with gvim!)

You can also use something like :!du -s * to run a shell command from within vi
and then return to your editing when the command is done.

Exercises
The only way to learn vi and Vim is to practice. You now know enough to create a
new file and to return to the command prompt. Create a file called practice, insert
some text, and then save and quit the file.

Open a �le called practice in the current directory: $ vi practice

Enter insert mode: i

Insert text: any text you like

Return to command mode: ESC

Quit vi, saving edits: ZZ

14 | Chapter 1: Introducing vi and Vim

CHAPTER 2

Simple Editing

This chapter introduces you to editing with vi and Vim, and it is set up to be read as
a tutorial. In it you will learn how to move the cursor and how to make some simple
edits. If you’ve never worked with these editors, you should read the entire chapter.

Later chapters show you how to expand your skills to perform faster and more
powerful edits. One of the biggest advantages for an adept user is that there are so
many options to choose from. Of course, as with many advanced tools, one of the

biggest disadvantages for the newcomer to vi and Vim is that there are so many
different editor commands to learn.

You can’t learn to use the editor by memorizing every single vi command. Start out
by learning the basic commands introduced in this chapter. Note the patterns of use
that the commands have in common. We point out these patterns as we encounter
them.

As you learn, be on the lookout for more tasks that you can delegate to the editor, and
then find the command that accomplishes it. In later chapters you will learn more

advanced features of vi and Vim, but before you can handle the advanced, you must
master the simple.

This chapter covers:

• Moving the cursor•

• Simple edits: Adding, changing, deleting, moving, and copying text•

• More ways to enter insert mode•

• Joining lines•

• Mode indicators•

15

1 Some versions show that you’re in input mode in the status line. This is discussed in the section <Mode

Indicators= on page 38.

vi Commands
As we’ve seen, vi and Vim have two primary modes: command mode and insert

mode. The command line (or colon prompt), where you issue ex commands, can be
considered a third mode; its use is more advanced and is covered in later chapters.

When you first open a file, you are in command mode, and the editor is waiting for
you to enter a command. Commands enable you to move anywhere in the file, to
perform edits, or to enter insert mode to add new text. Commands can also be given
to exit the file (saving or ignoring your edits) in order to return to the shell prompt.

You can think of the different modes as representing two different keyboards. In
insert mode, your keyboard functions regularly. In command mode, each key has a
new meaning or initiates some instruction.

There are several ways to tell Vim that you want to begin insert mode. One of the

most common is to press i. The i doesn’t appear on the screen, but after you press
it, whatever you type does appear on the screen and is entered into the buffer. The
cursor marks the current insertion point.1 To tell Vim that you want to stop inserting
text, press ESC . Pressing ESC moves the cursor back one space (so that it is on the
last character you typed) and returns you to command mode.

For example, suppose you have opened a new file and want to insert the word

<introduction.= If you type the keystrokes iintroduction, what appears on the screen
is:

introduction

When you open a new file, Vim starts in command mode and interprets the first

keystroke (i) as the insert command. All keystrokes made after the insert command
are considered text until you press ESC . If you need to correct a mistake while in
insert mode, backspace and type over the error. Depending on your terminal and its
settings, backspacing may erase what you’ve previously typed or may just back up
over it. In either case, whatever you back up over is deleted. Note that you can’t use
the backspace key to back up beyond the point where you entered insert mode. (If

you have disabled vi compatibility, Vim allows you to backspace beyond the point
where you entered insert mode. Most GNU/Linux distributions have Vim set up with

vi compatibility disabled, so this may work for you out of the box.)

Vim has an option that lets you define a right margin and provides a carriage return
automatically when you reach it. For right now, while you are inserting text, press
ENTER to break the lines.

16 | Chapter 2: Simple Editing

2 If you’ve muted the sound on your system, you’ll have to work harder to determine what mode you’re in by

watching how the editor responds to what you type.

Sometimes you don’t know whether you are in insert mode or command mode.
Whenever Vim does not respond as you expect, press ESC once or twice to check
which mode you are in. When you hear the beep, you are in command mode.2

Moving the Cursor in Command Mode
You may spend only a small amount of time in an editing session adding new text in
insert mode; much of the time you will be making edits to existing text by moving
around your file and issuing commands.

In command mode you can position the cursor anywhere in the file. Since you begin
all basic edits (changing, deleting, and copying text) by placing the cursor at the text
that you want to change, you want to be able to move the cursor to that place as
quickly as possible.

There are vi commands to move the cursor:

• Up, down, left, or right—one character at a time•

• Forward or backward by blocks of text such as words, sentences, or paragraphs•

• Forward or backward through a file, one screen at a time•

In Figure 2-1, the s in reverse video in seeing on the third line marks the present
cursor position. Circles show movement of the cursor from its current position to the

position that would result from various vi commands.

Figure 2-1. Sample movement commands starting from the central s

Moving the Cursor in Command Mode | 17

3 Vim, with nocompatible set, allows you to <space past= the end of the line to the next one with l or the space

bar. This is likely to be the default.

Single Movements
The keys h, j, k, and l, right under your fingertips, move the cursor as follows:

h

Left one space

j

Down one line

k

Up one line

l

Right one space

You can also use the cursor arrow keys (←, ↓, ↑, →), + and - to go up and down,
CTRL-P and CTRL-N to also go up and down, or the ENTER and BACKSPACE
keys, but they are all out of the way.

At first, it may seem awkward to use letter keys instead of arrows for cursor move‐
ment. After a short while, though, you’ll find it is one of the things you’ll like best

about vi and Vim—you can move around without ever taking your fingers off the
center of the keyboard.

Before you move the cursor, press ESC to make sure that you are in command

mode. Use h, j, k, and l to move forward or backward in the file from the current
cursor position. When you have gone as far as possible in one direction, you hear
a beep and the cursor stops. For example, once you’re at the beginning or end of a

line, you cannot use h or l to wrap around to the previous or next line; you have to

use j or k.3 Similarly, you cannot move the cursor past a tilde (~) representing a line
without text, nor can you move the cursor above the first line of text.

Why h, j, k, and l?
Mary Ann Horton, who has been involved with Berkeley Unix since almost the begin‐
ning, tells the following story:

While the vi experience was much like Notepad, it was also a very powerful editor.
Students and faculty made heavy use of the power tools available, like the <global=
command that would make the same change on all lines matching some pattern, or
the ability to give commands like <delete 13 paragraphs= or <copy the text through the

18 | Chapter 2: Simple Editing

4 Pictures of this terminal’s keyboard can be found easily by searching on the internet. —ADR

matching parenthesis.= But vi had a steep learning curve, and first-time users wanted
to use the arrow keys on their terminals to move around in the file, Notepad style.

Arrow keys didn’t work in vi, and for a very good reason. Users had a variety of
different brands of terminals, and all those terminals’ arrow keys sent different codes
when they were pressed.

Bill [Joy] didn’t have to worry about arrow keys. He had found a way to work from
home, getting a Lear-Siegler ADM-3A terminal in his apartment. The ADM-3A was
widely advertised as <the dumb terminal= because it didn’t have a lot of fancy features,
like arrow keys, allowing it to be sold for the then-low price of $995. Instead, LSI

painted arrows on the H, J, K, and L keys.4 Bill had set up vi commands to match: h

moved the cursor left, j down, k up, and l to the right. Every vi user had to learn h, j,

k, and l to move around the file.

What if you wanted to type a word with an <h= in it? vi, like ed, was a <moded= editor.
This meant you were either in <command mode,= where it treated keys you pressed as
commands, or <input mode,= where keystrokes were content to be added to the file.

A command like i for <insert= put you in input mode, and the Escape (ESC) key got
you back to command mode.

How to get arrow keys to work in vi? These special keys sent two or three character
sequences, usually beginning with Escape. We called them <escape sequences.= Escape,

however, was already an important vi command. It took you out of input mode, and
if you were already out of input mode, it beeped. One of the first things you learned

in vi was that, if you’d forgotten which mode you were in, you pressed the ESC key
until it beeped, and then you knew you were in command mode.

vi used a terminal capability database file called <termcap,= which told it which codes,
for your specific model terminal, to send to move the cursor, clear the screen, and the
like. It was easy enough to add the arrow key sequences to termcap.

If the computer received an Escape, was the user hitting the ESC key or an arrow
key? Should the editor exit input mode, or should it wait for more text to interpret
an arrow key? Once the editor tried to read more text, the program would hang until
something came in.

Fortunately, a new Unix feature allowed the editor to wait briefly to see if another

character came in. If that character might be part of a valid escape sequence, vi could
keep reading to see what other key the user had pressed. If no more characters came
in for that brief interval, the user must have pressed the ESC key. Problem solved!

Around the spring of 1979, I added code and termcap entries for vi to understand
arrow keys, Home, Page-Up, and other keys that some of the terminals had. I

Moving the Cursor in Command Mode | 19

configured termcap as if the ADM-3a had arrow keys that sent h, j, k, and l; and

then I deleted the hardcoded h, j, k, and l commands. I thought I had it all fixed up.

Within a day, I had a line of angry CS grad students outside my office door. Peter

was at the head of the line. He wanted to know why I broke hjkl on his terminal. I

explained to him that his arrow keys worked now, and he didn’t have to use hjkl; he
could use the arrow keys instead.

Peter rolled his eyes. <You don’t understand,= he said. <We like using hjkl! We’re

touch typists. Our fingers are right over the hjkl keys. We don’t want to have to

move them way to the edge of the keyboard to use arrow keys. Give us back our hjkl
commands!= The line of students agreed.

They were right. I put back hjkl and left the arrow key functionality in too. And

I realized how important the key placements of vi commands were. Almost any

command you used often was a lowercase letter. I got really fast with vi, and to this

day I prefer vi to edit text files. I’ve trained several classes of IT professionals how to

get the most out of vi and Unix power tools.

Numeric Arguments
Often, you may wish to repeat a command multiple times. Instead of just typing the
command over and over again, you can precede a command with numbers. This is
known as a repeat count or replication factor.

Figure 2-2 shows how the command 4l moves the cursor four character positions to

the right, just as if you had typed l four times (llll).

Figure 2-2. Multiplying commands by numbers

The repeat count comes before the command it quantifies because if it came after, vi
would never know when the number was finished.

The ability to multiply commands gives you more options and power for each
command you learn. Keep this in mind as we introduce additional commands.

Movement Within a Line
When you saved the file practice, Vim displayed a message telling you how many lines
are in that file. A line is not necessarily the same length as the visible line that appears
on the screen. A line is any text entered between newlines. (A newline character is

20 | Chapter 2: Simple Editing

inserted into the file when you press the ENTER key in insert mode.) If you type 200
characters before pressing ENTER , Vim regards all of those characters as a single
line (even though those characters visibly take up several lines on the screen).

We mentioned as an aside in Chapter 1, <Introducing vi and Vim=, that vi and Vim
have an option that allows you to set a distance from the right margin (the end
of the line) at which they automatically insert a newline character. This option is

wrapmargin (its abbreviation is wm). You can set a wrapmargin at 10 characters:

:set wm=10

This command doesn’t affect lines that you’ve already typed. Once you’ve set this,
try entering some new lines, and you’ll see Vim automatically wrapping those lines
for you, breaking the lines between words. We’ll talk more about setting options in
Chapter 7, <Advanced Editing=, but this one really couldn’t wait!

If you put this command into a file named .exrc in your home
directory, the editor will automatically execute it every time it starts

up. We cover vi and Vim startup files later in the book.

If you do not use the automatic wrapmargin option, you should break lines with
ENTER to keep the lines of manageable length.

Two useful commands that involve movement within a line are:

0 (digit zero)
Move to beginning of line.

$

Move to end of line.

Line numbers are displayed in the following example. (Line numbers can be displayed

by using the number option, which is enabled by typing :set nu in command mode.
This operation is described in Chapter 5.) Note that the line numbers are not part of
the file’s contents; the editor displays them for your convenience:

1 With a screen editor you can scroll the page,

2 move the cursor, delete lines, insert characters,

 and more, while seeing the results of your edits

 as you make them.

3 Screen editors are very popular.

The number of logical lines (three) does not correspond to the number of visible lines
(five) that you see on the screen. If the cursor were positioned on the d in the word

delete, and you entered $, the cursor would move to the period following the word

them. If you entered 0, the cursor would move back to the letter m in the word move,
at the beginning of line two.

Moving the Cursor in Command Mode | 21

Movement by Text Blocks
You can also move the cursor by blocks of text, such as words, sentences, paragraphs,
and so on:

w

Move forward one word (alphanumeric characters make up words)

W

Move forward one Word (whitespace separates words)

b

Move backward one word (alphanumeric characters make up words)

B

Move backward one Word (whitespace separates words)

G

Go to a specific line

The w command moves the cursor forward one word at a time, counting symbols and

punctuation as equivalent to words. The following line shows cursor movement by w:

cursor, delete lines, insert characters,

You can also move forward by word, not counting symbols and punctuation, using

the W command. (You can think of this as a <large= or <capital= Word.)

Cursor movement using W looks like this:

cursor, delete lines, insert characters,

To move backward by word, use the b command. Capital B allows you to move
backward by word, not counting punctuation (by Word).

As mentioned previously, movement commands take numeric arguments; so, with

either the w or b command you can multiply the movement with numbers. 2w moves

forward two words; 5B moves back five words, not counting punctuation.

To move to a specific line, you can use the G command. Plain G goes to the end of the

file, 1G goes to the top of the file, and 42G goes to line 42. This is described in more
detail later, in the section <The G (Go To) Command= on page 52.

We discuss movement by sentences and by paragraphs in Chapter 3, <Moving
Around in a Hurry=. For now, practice using the cursor movement commands that
you know, combining them with numeric multipliers.

22 | Chapter 2: Simple Editing

Simple Edits
When you enter text in your file, it is rarely perfect. You find typos or want to
improve on a phrase; sometimes your program has a bug. Once you enter text, you
have to be able to change it, delete it, move it, or copy it. Figure 2-3 shows the kinds
of edits you might want to make to a file. The edits are indicated by proofreading
marks.

Figure 2-3. Proofreading edits

In vi you can perform any of these edits with a few basic keystrokes: i for insert

(which you’ve already seen); a for append; c for change; and d for delete. To move or

copy text, you use pairs of commands. You move text with a d for <delete,= then a p

for <put=; you copy text with a y for <yank,= then a p for <put.= You may also use x to

delete a single character and r to replace a single character. Some commands when

doubled, such as dd, mean <apply the command to the entire line.= Other commands

when capitalized, such as P, mean <do the operation above the current line, instead

of below it.= Each type of edit is described in this section. Figure 2-4 shows the vi
commands you use to make the edits marked in Figure 2-3.

Simple Edits | 23

Figure 2-4. Edits with vi commands

The text of this file is available for you to practice on; you can get it from the book’s
companion GitHub repository. See the section <Accessing the Files= on page 471 for
more information.

Inserting New Text
You have already seen the insert command (i) used to enter text into a new file. You
also use the insert command while editing existing text to add missing characters,
words, and sentences. In the file practice, suppose you have the following sentence:

you can scroll

the page, move the cursor, delete

lines, and insert characters.

with the cursor positioned as shown. To insert With a screen editor at the beginning of
the sentence, enter the following:

Keystrokes Results

2k you can scroll

the page, move the cursor, delete

lines, and insert characters.

Move the cursor up two lines with the k command, to the line where you want to make the
insertion.

iWith□a□ With a you can scroll

the page, move the cursor, delete

lines, and insert characters.

Press i to enter insert mode and begin inserting text. The □ represents a space.

24 | Chapter 2: Simple Editing

https://www.github.com/learning-vi/vi-files

Keystrokes Results

screen□editor□ ESC With a screen editor you can scroll

the page, move the cursor, delete

lines, and insert characters.

Finish inserting text, and press ESC to end the insert and return to command mode.

Appending Text
You can append text at any place in your file with the append command, a. This

works in almost the same way as i, except that text is inserted a�er the cursor rather

than before the cursor. You may have noticed that when you press i to enter insert
mode, the cursor doesn’t move until after you enter some text. By contrast, when you

press a to enter insert mode, the cursor moves one space to the right. When you enter
text, it appears after the original cursor position.

Changing Text
You can replace any text in your file with the change command, c. To tell c how much

text to change, you combine c with a movement command. In this way, a movement

command serves as a text object for the c command to affect. For example, c can be
used to change text from the cursor:

cw

To the end of a word

c2b

Back two words

c$

To the end of the line

c0

To the beginning of the line

After issuing a change command, you can replace the identified text with any amount

of new text, with no characters at all, with one word, or with hundreds of lines. c, like

i and a, leaves you in insert mode until you press the ESC key.

When the change affects only the current line, vi marks the end of the text to

be changed with a $, so that you can see what part of the line is affected. If not
in compatibility mode, Vim behaves differently; it simply removes the text to be
changed and puts you into input mode.

Simple Edits | 25

Words

To change a word, combine the c (change) command with w for word. You can

replace a word (cw) with a longer or shorter word (or any amount of text). cw can be
thought of as <delete the word marked and insert new text until ESC is pressed.=

Suppose you have the following line in your file practice:

With an editor you can scroll the page,

and want to change an to a screen. You need to change only one word:

Keystrokes Results

w With an editor you can scroll the page,

Move with w to the place you want the edit to begin.

cw With editor you can scroll the page,

Give the change word command. Vim deletes the an and goes into insert mode.

a screen ESC With a screen editor you can scroll the page,

Type in the replacement text, and then press ESC to return to command mode.

cw also works on a portion of a word. For example, to change spelling to spelled, you

can position the cursor on the i, type cw, then type ed, and finish with ESC .

General Form of vi Commands
In the change commands we’ve mentioned up to this point, you may have noticed the
following pattern:

(command)(text object)

command is the change command c, and text object is a movement command (you

don’t type the parentheses). But c is not the only command that requires a text object.

The d command (delete) and the y command (yank) follow this pattern as well.

Remember also that movement commands take numeric arguments, so numbers can

be added to the text objects of c, d, and y commands. For example, d2w and 2dw

are commands to delete two words. With this in mind, you can see that most vi
commands follow a general pattern:

(command)(number)(text object)

or the equivalent form:

(number)(command)(text object)

Here’s how this works: number and command are optional. Without them, you simply
have a movement command. If you add a number, you have a multiple movement.

26 | Chapter 2: Simple Editing

On the other hand, you can combine a command (c, d, or y) with a text object to get
an editing command.

When you realize how many combinations are possible in this way, Vim becomes a
powerful editor indeed!

Lines

To replace the entire current line, use the special change command, cc. cc changes an
entire line, replacing that line with any amount of text entered before pressing ESC .

It doesn’t matter where the cursor is located on the line; cc replaces the entire line of
text.

With the original vi, a command like cw works differently from a command like cc.

In using cw, the old text remains until you type over it, and any old text that is left

over (up to the $) goes away when you press ESC . In using cc, though, the old text is
wiped out first, leaving you a blank line on which to insert text.

The <type over= approach happens with any change command that affects less than
a whole line, whereas the <blank line= approach happens with any change command
that affects one or more lines.

With Vim (if not in compatibility mode), both commands simply delete the specified
text and then enter input mode.

C replaces characters from the current cursor position to the end of the line. It has the

same effect as combining c with the special end-of-line indicator $ (c$).

The commands cc and C are really shortcuts for other commands, so they don’t

follow the general form of vi commands, in that you can’t specify a text object as the
point at which the command ends. You’ll see other shortcuts when we discuss the
delete and yank commands.

Characters

One other replacement edit is given by the r command. r replaces a single character
with another single character. You do not have to press ESC to return to command
mode after making the edit. There is a misspelling in the following line:

Pith a screen editor you can scroll the page,

Only one letter needs to be corrected. You don’t want to use cw in this instance

because you would have to retype the entire word. Instead, use r to replace the single
character at the cursor:

Simple Edits | 27

Keystrokes Results

rW With a screen editor you can scroll the page,

Give the replace command r, followed by the replacement character W.

Substituting text

Suppose you want to change just a few characters and not a whole word. The

substitute command (s), by itself, replaces a single character. With a preceding count,

you can replace that many characters. As with the change command (c), vi marks the

last character of the text with a $ so that you can see how much text will be changed.

Vim simply deletes the text and enters input mode. (You can think of s as being like r,
but going into insert mode instead of directly replacing the specified character[s].)

The S command, as is usually the case with uppercase commands, lets you change

whole lines. In contrast to the C command, which changes the rest of the line from

the current cursor position, the S command deletes the entire line, no matter where
the cursor is. The editor puts you in insert mode at the beginning of the line. A

preceding count replaces that many lines. (S and cc are effectively equivalent.)

Both s and S put you in insert mode; when you are finished entering new text, press
ESC .

The R command, like its lowercase counterpart, replaces text. The difference is that R
simply enters overstrike mode. The characters you type replace what’s on the screen,
character by character, until you type ESC . If you’re in the middle of a paragraph and

you type R, you can overstrike a maximum of only one line; when you type ENTER ,
the editor opens a new line, effectively putting you in insert mode.

Changing Case
Changing the case of a letter is a special form of replacement. The tilde (~) command
changes a lowercase letter to uppercase or an uppercase letter to lowercase. Position

the cursor on the letter whose case you want to change, and type a ~. The case of the
letter changes, and the cursor moves to the next character.

Provide a numeric prefix to change the case of multiple characters.

If you want to change the case of more than one line at a time, you must filter the text

through a Unix command such as tr, as described in Chapter 7.

Deleting Text
You can also delete any text in your file with the delete command, d. Like the change
command, the delete command requires a text object (the amount of text to be

28 | Chapter 2: Simple Editing

5 Robert P. J. Day points out that, unlike dw versus de, the commands cw and ce do the same thing.

operated on). You can delete by word (dw), by line (dd and D), or by other movement
commands that you will learn later.

With all deletions, you move to where you want the edit to take place and then give

the delete command (d) and the text object, such as w for word.

Words

Suppose you have the following text in the file:

Screen editors are are very popular,

since they allow you to make

changes as you read through a file.

with the cursor positioned as shown. You want to delete one are in the first line:

Keystrokes Results

2w Screen editors are are very popular,

since they allow you to make

changes as you read through a file.

Move the cursor to where you want the edit to begin (are).

dw Screen editors are very popular,

since they allow you to make

changes as you read through a file.

Give the delete word command (dw) to delete the word are.

dw deletes a word beginning where the cursor is positioned. Notice that the space
following the word is deleted as well.

dw can also be used to delete a portion of a word. In this example:

since they allowed you to make

you want to delete the ed from the end of allowed:

Keystrokes Results

dw since they allowyou to make

Give the delete word command (dw) to delete the rest of the word, beginning with the position
of the cursor.

dw always deletes the space before the next word on a line, but we don’t want to do

that in this example. To retain the space between words, use de, which deletes only to

the end of a word. Typing dE deletes to the end of a word, including punctuation.5

You can also delete backward (db) or to the end or beginning of a line (d$ or d0).

Simple Edits | 29

Let’s clarify the distinction between <words= and <Words.= Suppose you have this text
in your file:

This doesn't compute.

With the cursor at the start of the line, demonstrate the difference between dw and dW
as follows:

Keystrokes Results

w This doesn't compute.

Move the cursor to the d.

dw This 't compute.

Delete the word under the cursor, up to but not including the punctuation.

u This doesn't compute.

Restore the line to what it was before.

dW This compute.

Delete the word under the cursor, up to the next whitespace character.

Lines

The dd command deletes the entire line that the cursor is on. dd does not delete part

of a line. Like its complement, cc, dd is a special command. Using the same text as in
the earlier example, with the cursor positioned on the first line as shown here:

Screen editors are very popular,

since they allow you to make

changes as you read through a file.

you can delete the first two lines:

Keystrokes Results

2dd changes as you read through a file.

Give the command to delete two lines (2dd). Note that even though the cursor was not
positioned on the beginning of the line, the entire line is deleted.

The D command deletes from the cursor position to the end of the line. (D is a

shortcut for d$.) For example, with the cursor positioned as shown:

Screen editors are very popular,

since they allow you to make

changes as you read through a file.

you can delete the portion of the line under and to the right of the cursor:

30 | Chapter 2: Simple Editing

6 The mnemonic for x is that it is supposedly like <x-ing out= mistakes with a typewriter. Of course, who uses a

typewriter anymore?

Keystrokes Results

D Screen editors are very popular,

since they allow you to make

changes

Give the command to delete the portion of the line under and to the right of the cursor (D).

Characters

Often you want to delete only one or two characters. Just as r is a special change

command to replace a single character, x is a special delete command to delete a

single character. x deletes only the character the cursor is on. In the line here:

zYou can move text by deleting text and then

you can delete the letter z by pressing x.6 A capital X deletes the character before
the cursor. Prefix either of these commands with a number to delete that number of

characters. For example, 5x deletes the five characters under and to the right of the

cursor. After using x or X you remain in command mode.

Problems with deletions

• You’ve deleted the wrong text and you want to get it back.•

There are several ways to recover deleted text. If you’ve just deleted something

and you realize you want it back, simply type u to undo the last command (for

example, a dd). This works only if you haven’t given any further commands, since

u undoes only the most recent command. Alternatively, a U restores the line to its
pristine state, the way it was before any changes were applied to it.

You can still recover a recent deletion, however, by using the p command, since

vi saves the last nine deletions in nine numbered deletion registers. If you know,
for example, that the third deletion back is the one you want to restore, type:

"3p

to <put= the contents of deletion register number three on the line below the
cursor.

This works only for a deleted line. Words, or a portion of a line, are not saved in a

register. If you want to restore a deleted word or line fragment, and u won’t work,

use the p command by itself. This restores whatever you’ve last deleted.

Note that Vim supports <infinite= undo, which makes life much easier. See the
section <Extended Undo= on page 180 for more information.

Simple Edits | 31

7 Older vi documentation calls this the deletion bu�er. We use Vim’s term, register, to avoid confusion with the

buffers that hold file contents.

Undo undoes the last operation, whatever it was. Deleting two

words by typing dw twice is two operations: u restores only the

last deleted word. However, deleting two words by typing 2dw is a

single operation; u in this case restores both deleted words.

Moving Text
Each time you delete a text block, that deletion is saved in a special, unnamed place,
which we will call the deletion register.7 The register’s contents are overwritten upon
each new deletion.

In vi, you move text by deleting it and then placing that deleted text elsewhere in
the file, like a <cut and paste.= After deleting the text to be moved, move to another

position in your file and use the put command (p) to place that text in the new
position. You can move any block of text, although moving is more useful with lines
than with words.

The put command (p) puts the text that is in the deletion register a�er the cursor

position. The uppercase version of the command, P, puts the text before the cursor. If

you delete one or more lines, p puts the deleted text on a new line (or lines) below the

cursor, whereas P puts the text on a new line (or lines) above the cursor. If you delete

less than an entire line, p puts the deleted text into the current line, after the cursor.

Suppose in your file practice you have the text:

You can move text by deleting it and then,

like a "cut and paste,"

placing the deleted text elsewhere in the file.

each time you delete a text block.

and you want to move the second line, like a <cut and paste,= below the third line.
Using delete, you can make this edit:

Keystrokes Results

dd You can move text by deleting it and then,

placing the deleted text elsewhere in the file.

each time you delete a text block.

With the cursor on the second line, delete that line. The text is placed in the deletion register.

32 | Chapter 2: Simple Editing

Keystrokes Results

p You can move text by deleting it and then,

placing that deleted text elsewhere in the file.

like a "cut and paste"

each time you delete a text block.

Give the put command, p, to restore the deleted line at the next line below the cursor. To �nish
reordering this sentence, you would also have to change the capitalization and punctuation (with
r) to match the new structure.

Once you delete text, you must restore it before the next change
command or delete command. If you make another edit that saves
text to the deletion register, your previously deleted text will be lost.
You can repeat the put over and over, so long as you don’t make a
new edit. In the section <Making Use of Registers= on page 60, you
will learn how to save text you delete in a named register so that
you can retrieve it later.

Transposing two letters

You can use xp (delete character and put after cursor) to transpose two letters. For
example, in the word mvoe, the letters vo are transposed (reversed). To correct a

transposition, place the cursor on v and press x, then p. By coincidence, the word

transpose helps you remember the sequence xp; x stands for trans, and p stands for
pose.

There is no command to transpose words. The section <Using the map Command=
on page 124 discusses a short sequence of commands that transposes two words.

Copying Text
Often you can save editing time (and keystrokes) by copying a part of your file to

use in other places. With the two commands y (for yank) and p (for put), you can
copy any amount of text and put that copied text in another place in the file. A yank
command copies the selected text into the deletion register, where it is held until
another yank (or deletion) occurs. You can then place this copy elsewhere in the file
with the put command.

As with change and delete, the yank command can be combined with any movement

command (yw, y$, y0, 4yy). Yank is most frequently used with a line (or more) of text,
because to yank and put a word usually takes longer than simply to insert the word.

The shortcut yy operates on an entire line, just as dd and cc do. But the shortcut Y,

for some reason, does not operate the way D and C do. Instead of yanking from the

current position to the end of the line, Y yanks the whole line; that is, Y does the same

thing as yy. (Use y$ to yank from the current position to the end of the line.)

Simple Edits | 33

Suppose you have in your file practice the following text:

With a screen editor you can

scroll the page.

move the cursor.

delete lines.

You want to make three complete sentences, beginning each with With a screen editor
you can. Instead of moving through the file and making this edit over and over, you
can use a yank and put to copy the text to be added:

Keystrokes Results

yy With a screen editor you can

scroll the page.

move the cursor.

delete lines.

Yank the line of text that you want to copy into the register. The cursor can be anywhere on the
line you want to yank (or on the �rst line of a series of lines).

2j With a screen editor you can

scroll the page.

move the cursor.

delete lines.

Move the cursor to where you want to put the yanked text.

P With a screen editor you can

scroll the page.

With a screen editor you can

move the cursor.

delete lines.

Put the yanked text above the cursor line with P.

jp With a screen editor you can

scroll the page.

With a screen editor you can

move the cursor.

With a screen editor you can

delete lines.

Move the cursor down a line. Then put the yanked text below the cursor’s line with p.

Yanking uses the same register as deleting. Each new deletion or yank replaces the
previous contents of the deletion register. As we’ll see in <Making Use of Registers= on
page 60, up to nine previous yanks or deletions can be recalled with put commands.
You can also yank or delete directly into up to 26 named registers, which allows you
to juggle multiple text blocks at once.

Repeating or Undoing Your Last Command
Each edit command that you give is stored in a temporary register until you give the
next command. For example, if you insert the after a word in your file, the command
used to insert the text, along with the text that you entered, is temporarily saved.

34 | Chapter 2: Simple Editing

Repeat

Any time you make the same editing command over and over, you can save time by
duplicating it with the repeat command, the period (.). Position the cursor where you
want to repeat the editing command, and type a period.

Suppose you have just the following lines in your file:

With a screen editor you can

scroll the page.

With a screen editor you can

move the cursor.

You can delete one line, and then, to delete another line, simply type a period:

Keystrokes Results

dd With a screen editor you can

scroll the page.

move the cursor.

Delete a line with the command dd.

. With a screen editor you can

scroll the page.

Repeat the deletion.

Undo

As mentioned earlier, you can undo your last command if you make an error. Simply

press u. The cursor need not be on the line where the original edit was made.

To continue the previous example, showing deletion of lines in the file practice:

Keystrokes Results

u With a screen editor you can

scroll the page.

move the cursor.

u undoes the last command and restores the deleted line.

In vi, U, the uppercase version of u, undoes all edits on a single line, as long as the

cursor remains on that line. Once you move off a line, you can no longer use U. Vim
does not have this restriction.

Note that you can undo your last undo with u, toggling between two versions of text.

u also undoes U, and U undoes any changes to a line, including those made with u.

If you’re working with Vim, it’s likely that undo works differently, simply undoing
successive changes. Vim lets you use CTRL-R to <redo= an undone operation.
Combined with infinite undo, you can move backward and forward through the

Simple Edits | 35

history of changes to your file. See the section <Extended Undo= on page 180 for
more information.

The fact that u can undo itself leads to a nifty way to get around
in a file. If you ever want to get back to the site of your last edit,
simply undo it. You will pop back to the appropriate line. When
you undo the undo, you’ll stay on that line.

More Ways to Insert Text
You have inserted text before the cursor with the following sequence:

itext to be inserted ESC

You’ve also inserted text after the cursor with the a command. Here are some other
insert commands for inserting text at different positions relative to the cursor (some
were discussed earlier):

A

Append text to the end of the current line.

I

Insert text at the beginning of the current line.

o (lowercase letter <o=)
Open an empty line below the cursor for text.

O (uppercase letter <o=)
Open an empty line above the cursor for text.

s

Delete the character at the cursor and substitute text.

S

Delete the current line and substitute text.

R

Starting at the cursor, overstrike existing characters with new characters.

All of these commands place you in insert mode. After inserting text, remember to
press ESC to return to command mode.

A (append) and I (insert) save you from having to move your cursor to the end

or beginning of the line before invoking insert mode. (The A command saves one

keystroke over $a. Although one keystroke might not seem like much of a saving,
the more adept—and impatient—an editor you become, the more keystrokes you will
want to omit.)

36 | Chapter 2: Simple Editing

o and O (open) save you from having to insert a carriage return. You can type these
commands from anywhere within the line.

s and S (substitute) allow you to delete a character or a whole line and replace the

deletion with any amount of new text. s is the equivalent of the two-stroke command

c SPACE , and S is the same as cc. One of the best uses for s is to change one
character to several characters.

R (<large= replace) is useful when you want to start changing text, but you don’t know

exactly how much. For example, instead of guessing whether to say 3cw or 4cw, just

type R and then enter your replacement text.

Numeric Arguments for Insert Commands
Except for o and O, the insert commands just listed (plus i and a) take numeric

prefixes. With numeric prefixes, you might use the commands i, I, a, and A to insert

a row of underlines or alternating characters. For example, typing 50i* ESC inserts

50 asterisks, and typing 25a*- ESC appends 50 characters (25 pairs of asterisk and
hyphen). It’s better to repeat only a small string of characters.

With a numeric prefix, r replaces that number of characters with a repeated instance

of a single character. For example, in C or C++ code, to change || to &&, you would

place the cursor on the first pipe character and type 2r&.

You can use a numeric prefix with S to substitute several lines. It’s quicker and more

flexible, though, to use c with a movement command.

A good case for using the s command with a numeric prefix is when you want to

change a few characters in the middle of a word. Typing r wouldn’t be correct, and

typing cw would change too much text. Using s with a numeric prefix is about the

same as typing R.

There are other combinations of commands that work naturally together. For exam‐

ple, ea is useful for appending new text to the end of a word. It helps to train yourself
to recognize such useful combinations so that they become automatic.

Joining Two Lines with J
Sometimes while editing a file you end up with a series of short lines that are difficult
to scan.

Suppose your file practice reads as follows:

With a

screen editor

you can

scroll the page, move the cursor

Joining Two Lines with J | 37

When you want to merge two lines into one, position the cursor anywhere on the first
line and press SHIFT-J to join the two lines:

Keystrokes Results

J With a screen editor

you can

scroll the page, move the cursor

J joins the line the cursor is on with the line below.

. With a screen editor you can

scroll the page, move the cursor

Repeat the last command (J) with the . to join the next line with the current line.

Using a numeric argument with J joins that number of consecutive lines. Both 1J

and 2J join the current line with the line following it. A numeric argument of three
or more joins that many lines, including the line where the cursor is. In the example

here, you could have joined the first three lines by using the command 3J.

Problems with vi Commands

• When you type commands, text jumps around on the screen and nothing works the•
way it’s supposed to.

Make sure you’re not typing the J command when you mean j.

You may have hit the CAPS LOCK key without noticing it; vi and Vim are case

sensitive—that is, uppercase commands (e.g., I, A, J) are different from lowercase

commands (i, a, j)—and if you hit this key, all your commands are interpreted
not as lowercase but as uppercase commands. Press the CAPS LOCK key again
to return to lowercase, press ESC to ensure that you are in command mode,

and then type either U to restore the last line changed or u to undo the last
command. You’ll probably also have to do some additional editing to fully restore
the garbled part of your file.

Mode Indicators
As you know by now, the editor has two modes—command mode and insert mode.
Usually, you can’t tell by looking at the screen which mode you’re in. Furthermore, it’s
often useful to know where in the file you are, without having to use the CTRL-G or

ex :.= commands.

Two options address these issues: showmode and ruler. Vim has both, while the

<Heirloom= and Solaris /usr/xpg7/bin versions of vi have the showmode option.

38 | Chapter 2: Simple Editing

Table 2-1 lists the special features in each editor.

Table 2-1. Position and mode indicators

Editor With ruler, displays With showmode, displays

vi N/A Separate mode indicators for open, input, insert, append, change, replace, replace one
character, and substitute modes

Vim Row and column Insert, replace, and visual mode indicators

Review of Basic vi Commands
Table 2-2 presents a few of the commands you can perform by combining the

commands c, d, and y with various text objects. The last two rows show additional
commands for editing. Tables 2-3 and 2-4 list some other basic commands. Table 2-5
summarizes the rest of the commands described in this chapter.

Table 2-2. Edit commands

Text object Change Delete Copy (yank)

One word cw dw yw

Two words, whitespace separated 2cW or c2W 2dW or d2W 2yW or y2W

Three words back 3cb or c3b 3db or d3b 3yb or y3b

One line cc dd yy or Y

To end of line c$ or C d$ or D y$

To beginning of line c0 d0 y0

Single character r x or X yl or yh

Five characters 5s 5x 5yl

Table 2-3. Movement

Movement Commands

±, ´, ², ³ h, j, k, l

±, ´, ², ³ BACKSPACE , CTRL-N and ENTER , CTRL-P , space bar

To �rst character of next line +

To �rst character of previous line -

To end of word e or E

Forward by word w or W

Backward by word b or B

To end of line $

To beginning of line 0

To a particular line G

Review of Basic vi Commands | 39

Table 2-4. Other operations

Operations Commands

Place text from register p or P

Start vi, open �le if speci�ed vi file

Start Vim, open �le if speci�ed vim file

Save edits, quit �le ZZ

No saving of edits, quit �le :q! ENTER

Table 2-5. Text creation, deletion, and manipulation commands

Editing action Command

Insert text at current position i

Insert text at beginning of line I

Append text at current position a

Append text to end of line A

Open new line below cursor for new text o

Open new line above cursor for new text O

Put deleted text after cursor or below current line p

Put deleted text before cursor or above current line P

Replace the character under the cursor r

Overstrike existing characters with new text R

Delete the current character and enter insert mode s

Delete line and substitute text S

Delete the character under the cursor x

Delete the character in front of the cursor X

Join current and next line J

Toggle case ~

Repeat last action .

Undo last change u

Restore line to original state U

You can get by in vi and Vim using only the commands listed in these tables. How‐
ever, to harness the real power of the editor (and increase your own productivity),
you will need more tools. The following chapters describe those tools.

40 | Chapter 2: Simple Editing

CHAPTER 3

Moving Around in a Hurry

You will not, of course, just create new files. You’ll spend a lot of your time editing
existing files. You rarely want to simply open to the first line in the file and move
through it line by line; you sometimes want to get to a specific place in a file and start
working.

All edits start with you moving the cursor to where you want to begin the edit (or,

with ex line editor commands, by identifying the line numbers to be edited). This
chapter shows you how to think about movement in a variety of ways (by screens, by

text, by patterns, or by line numbers). There are many ways to move around in vi
and Vim, since editing speed depends on getting to your destination with only a few
keystrokes.

This chapter covers:

• Movement by screens•

• Movement by text blocks•

• Movement by searches for patterns•

• Movement by line number•

Movement by Screens
When you read a book, you think of <places= in the book in terms of pages: the page
where you stopped reading, or the page number in an index. You don’t have this
convenience when you’re editing files. Some files take up only a few lines, and you
can see the whole file at once. But many files have hundreds (or thousands!) of lines.

41

1 The editor knows how big your screen is, even if you adjust the size of your terminal emulator’s window while

editing.

You can think of a file as text on a long roll of paper. The screen is a window of
(often) 24 lines of text on that long roll.1

In insert mode, as you fill up the screen with text, you will end up typing on the
bottom line of the screen. When you reach the end and press ENTER , the top line
rolls out of sight, and a blank line appears on the bottom of the screen for new text.
This is called scrolling.

In command mode, you can move through a file to see any text in it by scrolling
the screen ahead or back. And since cursor movements can be multiplied by numeric
prefixes, you can move quickly to anywhere in your file.

Scrolling the Screen
There are vi commands to scroll forward and backward through the file by full and
half screens:

^F

Scroll forward one screen.

^B

Scroll backward one screen.

^D

Scroll forward a half screen (down).

^U

Scroll backward a half screen (up).

In this list of commands, the ^ symbol represents the CTRL key.

So ^F means to hold down the CTRL key and press the SHIFT-F
key simultaneously.

There are also commands to scroll the screen up one line (^E) and down one line

(^Y). However, these two commands do not send the cursor to the beginning of the
line. The cursor remains at the same point in the line as it was when the command
was issued.

42 | Chapter 3: Moving Around in a Hurry

2 Thanks to Robert P. J. Day for noticing this on his system and telling us about it.

Repositioning the Screen with z
If you want to scroll the screen up or down, but you want the cursor to remain on the

line where you left it, use the z command:

z ENTER and z+ ENTER
Move the current line to the top of the screen and scroll.

z.

Move the current line to the center of the screen and scroll.

z-

Move the current line to the bottom of the screen and scroll.

With the z command, using a numeric prefix as a multiplier makes no sense. (After
all, you would need to reposition the cursor to the top of the screen only once.

Repeating the same z command wouldn’t move anything.) Instead, z understands a
numeric prefix as a line number that it uses in place of the current line. For example,

z ENTER moves the current line to the top of the screen, but 200z ENTER moves
line 200 to the top of the screen.

Some GNU/Linux distributions come with an /etc/vimrc file that

sets the Vim option scrolloff (<scroll offset=) to a nonzero
value (typically five).2 Others use a file /usr/share/vim/vimXX/

defaults.vim where XX is the Vim version. Setting scrolloff to
a nonzero value causes Vim to always provide that many lines of

context above and below the cursor. Thus, if you type z ENTER to
move the current line to the top of the screen, but the current line
only moves to a few lines below the top of the screen, you’ll know
why.

This option also affects the H and L commands (see <Movement
Within a Screen= on page 44), and maybe others.

You can cancel the effect of such a default setting by explicitly

setting scrolloff to zero in your personal .vimrc file. (For more
information on this file, see the section <Customizing vi and Vim=
on page 114, and the section <System and User Configuration Files=
on page 171.)

Redrawing the Screen
If you’re using vi or Vim in a terminal window, messages from your computer system
may display on your screen while you’re editing. (This can happen particularly if

Movement by Screens | 43

you’re logged in to a remote server system.) These messages don’t become part of
your editing buffer, but they do interfere with your work. When system messages
appear on your screen, you need to redisplay, or redraw, the screen.

Whenever you scroll, you redraw part (or all) of the screen, so you can always get rid
of unwanted messages by scrolling them off the screen and then returning to your
previous position. But you can also redraw the screen without scrolling, by typing
CTRL-L .

Movement Within a Screen
You can also keep your current screen or view of the file and move around within the
screen using these commands:

H

Move to home—the first character on the top line on the screen.

M

Move to the first character on the middle line on the screen.

L

Move to the first character on the last line on the screen.

n H
Move to the first character on the line n lines below the top line.

n L
Move to the first character on the line n lines above the last line.

H moves the cursor from anywhere on the screen to the first or <home= line. M moves

to the middle line, L to the last; to move to the line below the first line, use 2H:

Keystrokes Results

L With a screen editor you can

scroll the page, move the cursor,

delete lines, insert characters, and more,

while seeing the results of your

edits as you make them.

Screen editors are very popular,

since they allow you to make changes

as you read through a file.

Move to the last line of the screen with the L command.

44 | Chapter 3: Moving Around in a Hurry

3 Why the |? It comes from the similar use of | as a motion command in the troff formatter.

Keystrokes Results

2H With a screen editor you can

scroll the page, move the cursor,

delete lines, insert characters, and more,

while seeing the results of your

edits as you make them.

Screen editors are very popular,

since they allow you to make changes

as you read through a file.

Move to the second line of the screen with the 2H command. (H alone moves to the top line of
the screen.)

Movement by Line
Within the current screen there are also commands to move by line. You’ve already

seen j and k. You can also use:

ENTER
Move to the first nonblank character of the next line.

+

Move to the first nonblank character of the next line. (Same as ENTER .)

-

Move to the first nonblank character of the previous line.

These three commands move down or up to the first character of the line, ignoring

any spaces or tabs. j and k, by contrast, move the cursor down or up to the first
position of a line, even if that position is blank (and assuming that the cursor started
at the first position).

Movement on the current line

Don’t forget that h and l move the cursor to the left and right, and that 0 (zero) and

$ move the cursor to the beginning or end of the line. You can also use the following
commands:

^

Move to the first nonblank character of the current line.

n |
Move to the character in column n of the current line, or to the end of the line if
n is greater than the number of characters on the line.3

Movement by Screens | 45

As with the line movement commands shown earlier, ^ moves to the first character of

the line, ignoring any spaces or tabs. 0, by contrast, moves to the first position of the
line, even if that position is blank.

Movement by Text Blocks
Another way that you can think of moving through a vi file is by text blocks—words,
sentences, paragraphs, or sections.

You have already learned to move forward and backward by word (w, W, b, or B). In
addition, you can use these commands:

e

Move to the end of the current word (punctuation and whitespace separate
words).

E

Move to the end of the current word (whitespace separates words).

(

Move to the beginning of the current sentence.

)

Move to the beginning of the next sentence.

{

Move to the beginning of the current paragraph.

}

Move to the beginning of the next paragraph.

[[

Move to the beginning of the current section.

]]

Move to the beginning of the next section.

To find the end of a sentence, vi and Vim look for one of these punctuation

marks: ?, ., or !. vi locates the end of a sentence when the punctuation is followed
by at least two spaces or when it appears as the last nonblank character on a line.
If you have left only a single space following a period, or if the sentence ends with

a quotation mark, vi won’t recognize the sentence. However, Vim is not quite as
old-fashioned, requiring only a single space following the terminating punctuation.

46 | Chapter 3: Moving Around in a Hurry

4 This is less useful than it used to be. troff is still used, but not as much as when Unix was young.

A paragraph is defined as text up to the next blank line, or up to one of the default

paragraph macros (.IP, .PP, .LP, or .QP) from the troff MS macro package.4 Simi‐

larly, a section is defined as text up to the next default section macro (.NH, .SH, .H

1, or .HU). The macros that are recognized as paragraph or section separators can be

customized with the :set command, as described in Chapter 7, <Advanced Editing=.

Remember that you can combine numbers with movement. For example, 3) moves
ahead three sentences. Also remember that you can edit using movement commands:

d) deletes to the end of the current sentence; 2y} copies (yanks) two paragraphs
ahead.

Remember too that you can use motion commands with editing commands such as

cw and ce. Robert P. J. Day points out that, interestingly, <while w and e are slightly

different movement commands, the change commands cw and ce do exactly the same
thing.=

Movement by Searches
One of the most useful ways to move around quickly in a large file is by searching
for text, or, more properly, for a pattern of characters. Sometimes a search can be
performed to find a misspelled word or to find each occurrence of a variable in a
program.

The search command is the special character / (slash). When you enter a slash, it
appears on the bottom line of the screen; you then type in the pattern that you want

to find: /pattern.

A pattern can be a whole word or any other sequence of characters (called a <charac‐
ter string=). For example, if you search for the characters red, you will match red
as a whole word, but you’ll also match occurred. If you include a space before or
after pattern, the spaces are treated as part of the text to be matched. As with all
bottom-line commands, press ENTER to finish.

vi and Vim, like all other Unix editors, have a special pattern-matching language that
allows you to look for variable text patterns—for example, any word beginning with
a capital letter, or the word �e at the beginning of a line. We’ll talk about this more
powerful pattern-matching syntax in Chapter 6, <Global Replacement=. For right now,
simply think of a pattern as a word or phrase.

Movement by Searches | 47

5 The exact messages vary with different editor versions, but their meanings are the same. In general, we won’t

bother noting everywhere that the text of a message may be different; in all cases the information conveyed is

the same.

The editor begins the search at the cursor and searches forward, wrapping around
to the start of the file if necessary. The cursor moves to the first occurrence of the
pattern. If there is no match, the message <Pattern not found= is shown on the status
line.5

Using the file practice, here’s how to move the cursor by searches:

Keystrokes Results

/edits ENTER With a screen editor you can scroll the

page, move the cursor, delete lines, insert

characters, and more, while seeing the

results of your edits as you make them.

Search for the pattern edits. The cursor moves directly to the matching text. Note that you do not
type a space after edits before hitting ENTER .

/scr ENTER With a screen editor you can scroll the

page, move the cursor, delete lines, insert

characters, and more, while seeing the

results of your edits as you make them.

Search for the pattern scr. The search wraps around to the front of the �le.

Note that you can give any combination of characters; a search does not have to be
for a complete word.

To search backward, type a ? instead of a /:

?pattern

In both cases, the search wraps around to the beginning or end of the file, if
necessary.

Repeating Searches
The last pattern that you searched for stays available throughout your editing session.

After a search, instead of repeating your original keystrokes, you can use a vi com‐
mand to search again for the last pattern:

n

Repeat the search in the same direction.

N

Repeat the search in the opposite direction.

48 | Chapter 3: Moving Around in a Hurry

/ ENTER
Repeat the search forward.

? ENTER
Repeat the search backward.

Since the last pattern stays available, you can search for a pattern, do some work,

and then search again for the same pattern without retyping it by using n, N, /, or ?.

The direction of your search (/ is forward, ? is backward) is displayed at the bottom

left of the screen. Vim goes beyond vi by putting the search text into the command
line and letting you scroll through a saved history of search commands, using the up
and down arrow keys. The section <Introducing the history windows= on page 341
discusses how to take full advantage of the saved search text history.

To continue with the previous example, since the pattern scr is still available for
search, you can do the following:

Keystrokes Results

n With a screen editor you can scroll the

page, move the cursor, delete lines, insert

characters, and more, while seeing the

results of your edits as you make them.

Move to the next instance of the pattern scr (from screen to scroll) with the n (next) command.

?you ENTER With a screen editor you can scroll the

page, move the cursor, delete lines, insert

characters, and more, while seeing the

results of your edits as you make them.

Search backward with ? from the cursor to the �rst occurrence of you. You need to press ENTER
after typing the pattern.

N With a screen editor you can scroll the

page, move the cursor, delete lines, insert

characters, and more, while seeing the

results of your edits as you make them.

Repeat the previous search for you but in the opposite direction (forward).

Sometimes you want to find a word only if it is further ahead; you don’t want the

search to wrap around earlier in the file. There is an option, wrapscan, that controls
whether searches wrap. You can disable wrapping like this:

:set nowrapscan

When nowrapscan is set and a forward search fails, vi’s status line displays the
following message:

Address search hit BOTTOM without matching pattern

Vim displays this message:

E385: search hit BOTTOM without match for: foo

Movement by Searches | 49

When nowrapscan is set and a backward search fails, the messages display <TOP=
instead of <BOTTOM.=

Changing through searching

You can combine the / and ? search operators with the commands that change text,

such as c and d. Continuing with the previous example:

Keystrokes Results

d?move ENTER With a screen editor you can scroll the

page, your edits as you make them.

Delete from before the cursor up to and through the word move.

Note how the deletion occurs on a character basis, and whole lines are not deleted.

This section has given you only the barest introduction to searching for patterns.
Chapter 6 teaches you more about pattern matching and its use in making global
changes to a file.

Current Line Searches
There are also miniature versions of the search commands that operate within the

current line. The command fx moves the cursor to the next instance of the character

x (where x stands for any character). The command tx moves the cursor to the

character before the next instance of x. (f is short for �nd; t is short for to, meaning
<up to.=) Semicolons can then be used repeatedly to <find= your way along.

The inline search commands are summarized here. None of these commands move
the cursor to the next line:

fx

Find (move cursor to) the next occurrence of x in the line, where x stands for any
character.

Fx

Find (move cursor to) the previous occurrence of x in the line.

tx

Find (move cursor to) the character before the next occurrence of x in the line.

Tx

Find (move cursor to) the character a�er the previous occurrence of x in the line.

;

Repeat the previous find command in the same direction.

50 | Chapter 3: Moving Around in a Hurry

, (comma)
Repeat the previous find command in the opposite direction.

With any of these commands, a numeric prefix n locates the nth occurrence.

Suppose you are editing in practice, on this line:

With a screen editor you can scroll the

You can find occurrences of the letter o as follows:

Keystrokes Results

fo With a screen editor you can scroll the

Find the �rst occurrence of o in your current line with f.

; With a screen editor you can scroll the

Move to the next occurrence of o with the ; command (�nd next o).

dfx deletes up to and including the named character x. This command is useful in

deleting or yanking partial lines. You might need to use dfx instead of dw if there are

symbols or punctuation within the line that makes counting words difficult. The t

command works just like f, except that it positions the cursor before the character

searched for. For example, the command ct. could be used to change text up to the
end of a sentence, leaving the period.

Movement by Line Number
Lines in a file are numbered sequentially, and you can move through a file by
specifying line numbers.

Line numbers are useful for identifying the beginning and end of large blocks of
text you want to edit. Line numbers are also useful for programmers, since compiler

error messages refer to line numbers. Finally, line numbers are used by ex commands,
which you will learn in the following chapters.

If you are going to move by line numbers, you must have a way to identify them.

Line numbers can be displayed on the screen using the :set nu option described in
Chapter 5. You can also display the current line number on the bottom of the screen.

The command CTRL-G causes vi to display the following at the bottom of your
screen: the current line number, the total number of lines in the file, and what
percentage of the total the present line number represents. For example, for the file
practice, CTRL-G might display:

"practice" line 3 of 6 --50%--

Movement by Line Number | 51

Vim provides more information:

"practice" 4 lines --75%-- 3,23 All

The next-to-last field is the cursor position (line 3, character 23). In a larger file, the
final field becomes a percentage indicating how far along in the file you are.

CTRL-G is useful either for displaying the line number to use in a command or for
orienting yourself if you have been distracted from your editing session.

If you have modified the file but not yet written it out, [Modified] appears in the
status line after the filename.

The G (Go To) Command
You can use line numbers to move the cursor through a file. The G (go to) command
uses a line number as a numeric argument and moves directly to that line. For

instance, 44G moves the cursor to the beginning of line 44. G without a line number
moves the cursor to the last line of the file.

Typing two backquotes (``) returns you to your original position (the position where

you issued the last G command), unless you have done some edits in the meantime.
If you have made an edit and then moved the cursor using some command other

than G, `` returns the cursor to the site of your last edit. If you have issued a search

command (/ or ?), `` returns the cursor to its position when you started the search.

A pair of apostrophes ('') works much like two backquotes, except that it returns the
cursor to the beginning of the line instead of the exact position on that line where
your cursor had been.

The total number of lines shown with CTRL-G can give you a rough idea of how
many lines to move. If you are on line 10 of a 1,000-line file:

"practice" 1000 lines --1%-- 10,1 1%

and you know that you want to begin editing near the end of that file, you could give

an approximation of your destination with 800G.

Movement by line number is a tool that can move you quickly from place to place
through a large file.

Review of vi Motion Commands
Table 3-1 summarizes the commands covered in this chapter.

52 | Chapter 3: Moving Around in a Hurry

Table 3-1. Movement commands

Movement Command

Scroll forward one screen ^F

Scroll backward one screen ^B

Scroll forward a half screen ^D

Scroll backward a half screen ^U

Scroll forward one line ^E

Scroll backward one line ^Y

Move current line to top of screen and scroll z ENTER

Move current line to center of screen and scroll z.

Move current line to bottom of screen and scroll z-

Redraw the screen ^L

Move to home—the top line of screen H

Move to middle line of screen M

Move to bottom line of screen L

Move to �rst character of next line ENTER

Move to �rst character of next line +

Move to �rst character of previous line -

Move to �rst nonblank character of current line ^

Move to column n of current line n |

Move to end of word e

Move to end of word (ignore punctuation) E

Move to beginning of current sentence (

Move to beginning of next sentence)

Move to beginning of current paragraph {

Move to beginning of next paragraph }

Move to beginning of current section [[

Move to beginning of next section]]

Search forward for pattern /pattern ENTER

Search backward for pattern ?pattern ENTER

Repeat last search n

Repeat last search in opposite direction N

Repeat last search forward /

Repeat last search backward ?

Move to next occurrence of x in current line fx

Move to previous occurrence of x in current line Fx

Move to just before next occurrence of x in current line tx

Review of vi Motion Commands | 53

Movement Command

Move to just after previous occurrence of x in current line Tx

Repeat previous �nd command in same direction ;

Repeat previous �nd command in opposite direction ,

Go to given line n n G

Go to end of �le G

Return to previous mark or context ``

Return to beginning of line containing previous mark ''

Show current line (not a movement command) ^G

54 | Chapter 3: Moving Around in a Hurry

CHAPTER 4

Beyond the Basics

You have already been introduced to the basic editing commands, i, a, c, d, and y.
This chapter expands on what you already know about editing. It covers:

• Descriptions of additional editing facilities, with a review of the general com‐•
mand form

• vi and Vim command-line options, including different ways to open a file for•
editing

• Making use of registers that store yanks and deletions•

• Marking your place in a file•

• Other advanced edits•

More Command Combinations
In Chapter 2, <Simple Editing=, you learned the edit commands c, d, and y, as well as

how to combine them with movements and numbers (such as 2cw or 4dd). In Chap‐
ter 3, <Moving Around in a Hurry=, you added many more movement commands
to your repertoire. Although the fact that you can combine edit commands with
movement is not a new concept to you, Table 4-1 presents several additional editing
options you have not seen before.

55

Table 4-1. More editing commands

Change Delete Copy From cursor to…

cH dH yH Top of screen

cL dL yL Bottom of screen

c+ d+ y+ Next line

c5| d5| y5| Column 5 of current line

2c) 2d) 2y) Second sentence following

c{ d{ y{ Previous paragraph

c/pattern d/pattern y/pattern Pattern

cn dn yn Next pattern

cG dG yG End of �le

c13G d13G y13G Line number 13

Notice how all of the sequences in Table 4-1 follow one of two general patterns:

(command)(number)(text object)

or:

(number)(command)(text object)

number is the optional numeric argument. command in this case is one of c, d, or y.
text object is a movement command.

The general form of a vi command is discussed in Chapter 2. You may wish to review
Tables 2-2 and 2-3 as well.

Options When Starting vi and Vim
So far, you have invoked the editor from the shell with the command:

$ vi file

or with

$ vim file

There are other options to the vim command that can be helpful. You can open a file
directly to a specific line number or pattern. You can also open a file in read-only
mode. Another option recovers all changes to a file that you were editing when the
system crashed.

The options described in the following section apply both to vi and to Vim.

56 | Chapter 4: Beyond the Basics

1 It is the shell that imposes the quoting requirement, not the editor.

Advancing to a Speci�c Place
When you begin editing an existing file, you can call the file in and, then move to the
first occurrence of a pattern or to a specific line number. You can also specify your
first movement by search or by line number right on the command line. You do this

using -c command; for backward compatibility with earlier versions of vi, you may

also use +command:

$ vim -c n file
Open �le at line number n.

$ vim -c /pattern file
Open �le at the first occurrence of pattern.

$ vim + file
Open �le at the last line.

In the file practice, to open the file and advance directly to the line containing the
word Screen, enter the following:

Keystrokes Results

$ vim -c /Screen practice With a screen editor you can scroll

the page, move the cursor, delete

lines, and insert characters, while

seeing the results of your edits as

you make them. Screen editors are

very popular, since they allow you

to make changes as you read

Give the vim command with the option -c /pattern to go directly to the line
containing Screen.

As you see in this example, your search pattern is not necessarily positioned at the top
of the screen. Interestingly, the cursor is placed on the first character of the line and
not on the first character of the matching text! If you include spaces in the pattern,
you must enclose the whole pattern within single or double quotes:1

-c /"you make"

or escape the space with a backslash:

-c /you\ make

In addition, if you want to use the general pattern-matching syntax described in
Chapter 6, <Global Replacement=, you may need to protect one or more special
characters from interpretation by the shell with either single quotes or backslashes.

Options When Starting vi and Vim | 57

2 Typically view is just a link to vi. Some systems arrange things such that view executes vim -R.

Using -c /pattern is helpful if you have to leave an editing session before you’re

finished. You can mark your place by inserting a pattern such as ZZZ or HERE. Then,

when you return to the file, all you have to remember is /ZZZ or /HERE.

After the editor opens your file and does a pattern search for the pattern you gave it

with -c, you can continue to the next occurrence of that pattern simply by using n.

Normally, when you’re editing in vi and Vim, the wrapscan
option is enabled. If you’ve customized your environment so that

wrapscan is always disabled (see the section <Repeating Searches=

on page 48), you might not be able to use -c /pattern. If you try
to open a file this way, the editor opens the file at the last line
and displays the message, <Address search hit BOTTOM without
matching pattern.= The message will likely vary among different

versions of vi and Vim.

Read-Only Mode
There will be times when you want to look at a file but want to protect that file
from inadvertent keystrokes and changes. (You might want to call in a lengthy file

to practice vi movements, or you might want to scroll through a command file or
program.) You can enter a file in read-only mode and use all the regular movement
commands, but you won’t be able to change the file.

To look at a file in read-only mode, enter either:

$ vim -R file

or:

$ view file

(The view command, like Vim, can use any of the command-line options for advanc‐
ing to a specific place in the file.2) If you do decide to make some edits to the file, you

can override read-only mode by adding an exclamation point to the write command:

:w!

or:

:wq!

Note that if you edit a file for which you do not have write permission, you will also

be in read-only mode. In that case, if you own the file, a :w! or :wq! will still work;

vi temporarily changes the permissions of the file to allow you to write it. Otherwise,
saving the file will fail.

58 | Chapter 4: Beyond the Basics

If you have a problem writing out the file, see the problem checklist in the section
<Problems Saving Files= on page 13.

Recovering a Bu�er
Occasionally a system failure may happen while you are editing a file. Ordinarily, any

edits made after your last write (save) are lost. However, there is an option, -r, which
lets you recover the edited buffer as it was at the time of a system crash.

Recovery in vi

On a traditional Unix system with the original vi, when you first log on after the
system is running again, you will receive a mail message stating that your buffer has
been saved. In addition, if you type the command:

$ ex -r

or:

$ vi -r

you will get a list of any files that the system has saved.

Use the -r option with a filename to recover the edited buffer. For example, to
recover the edited buffer of the file practice after a system crash, enter:

$ vi -r practice

It is wise to recover the file immediately, lest you inadvertently make edits to the file
and then have to resolve a version skew between the preserved buffer and the newly
edited file.

You can force the system to preserve your buffer even when there is not a crash by

using the command :pre (short for :preserve). You may find it useful if you have
made edits to a file and then discover that you can’t save your edits because you
don’t have write permission. (You could also just write out a copy of the file under
another name or into a directory where you do have write permission. See the section
<Problems Saving Files= on page 13.)

Recovery in Vim

Recovery in Vim works somewhat differently. Vim usually keeps its working file
(called a swap �le) in the same directory as the file being edited. For practice, Vim’s
working file would be named .practice.swp.

If that file exists when you next go to edit practice, Vim asks you if you want
to recover. You should do so, and write the file back out. You should then quit
immediately and manually remove .practice.swp; Vim does not do that for you. After
doing so, you may go back into Vim and continue editing your file normally.

Options When Starting vi and Vim | 59

The directory option to the :set command lets you control where Vim places the

swap file. For more information, see the entry for directory in Table B-2 in the
section <Vim 8.2 Options= on page 464.

Making Use of Registers
You have seen that while you are editing, your last deletion (d or x) or yank (y) is
saved in the unnamed register. You can access the contents of that register and put the

saved text back in your file with the put command (p or P).

The last nine deletions are stored in numbered registers. You can access any of these
numbered registers to restore any (or all) of the last nine deletions. (Small deletions,
of only parts of lines, are not saved in numbered registers, however. These deletions

can be recovered only by using the p or P command immediately after you’ve made
the deletion.)

You may also place yanks (copied text) into registers identified by letters. You can
fill up to 26 registers (named a–z) with yanked text and restore that text with a put
command at any time in your editing session.

Recovering Deletions
Being able to delete large blocks of text in a single bound is all very well and good,
but what if you mistakenly delete 53 lines that you need? You can recover any of your
past nine deletions, for they are saved in numbered registers. The last delete is saved
in register 1, the second-to-last in register 2, and so on.

To recover a deletion, type " (double quote), identify the deleted text by number, and
then give the put command. To recover your second-to-last deletion (from register
2), type:

"2p

The deletion in register 2 is placed after the cursor.

If you’re not sure which register contains the deletion you want to restore, you don’t

have to keep typing "np over and over again. You can use "1p to place the first

delete text; if that’s not right, use u to undo it. You can then use the repeat command

(.) to place the next one, u to undo it, and so on. When you do this, the editor
automatically increments the register number. As a result, you can search through the
numbered registers using:

"1pu.u.u etc.

to put the contents of each succeeding register in the file one after the other. Each

time you type u, the restored text is removed; when you type a dot (.), the contents of

60 | Chapter 4: Beyond the Basics

the next register are restored to your file. Keep typing u and . until you’ve recovered
the text you’re looking for.

Yanking to Named Registers
You have seen that you must put (p or P) the contents of the unnamed register before

you make any other edit, or else the register is overwritten. You can also use y and d
with a set of 26 named registers (a–z) that are specifically available for copying and
moving text. If you name a register to store the yanked text, you can retrieve the
contents of the named register at any time during your editing session.

To yank into a named register, precede the yank command with a double quote (")
and the character for the name of the register you want to load. For example:

"dyy Yank the current line into register d

"a7yy Yank the next seven lines into register a

After loading the named registers and moving to the new position, use p or P to put
the text back:

"dP Put the contents of register d before the cursor

"ap Put the contents of register a a�er the cursor

There is no way to put part of a register into the text—it is all or nothing.

In the next chapter, you’ll learn how to edit multiple files. Once you know how
to travel between files without leaving the editor, you can use named registers to
selectively transfer text between files. When using Vim’s multiple-window feature,
you can also use the unnamed deletion register to transfer data between files.

The unnamed and named deletion registers are shared within the
same Vim session, so you can easily copy/paste text between files
being edited in multiple windows in one Vim session. But these
buffers are not shared between multiple Vim sessions! (You might

have gvim open on several files at once, for example.) However,

gvim can access the system clipboard just like any other graphical
application. So you can use GUI-level copy and paste to move text
between files with no problems.

You can also delete text into named registers using much the same procedure:

"a5dd Delete �ve lines into register a

If you specify a register name with a capital letter, your yanked or deleted text is
appended to the current contents of the corresponding lowercase register. This allows
you to be selective in what you move or copy. For example:

Making Use of Registers | 61

"zd)

Delete from the cursor to the end of the current sentence and save the text in

register z.

2)

Move two sentences further on.

"Zy)

Add the next sentence to register z. You can continue adding more text to a
named register for as long as you like, but be warned: if you forget once, and
you yank or delete to the register without specifying its name in capitalized form,
you’ll overwrite the register, losing whatever you had accumulated in it.

Marking Your Place
During an editing session, you can mark your place in the file with an invisible
<bookmark,= perform edits elsewhere, and then return to your marked place. Why
would you need to do this? Will Gallego explains:

One of my favorite uses of marking is deleting/yanking/modifying a large chunk of
text. For example, say I want to delete a large number of lines. I might not want to

count all those lines and then do numdd, but instead jump to the bottom, mark it with

something like ma (mark, then a to use register a as the location), then jump to where

I want to start deleting and hit d`a to delete the current line and all lines up to and

including where a is. yy and other related commands may be used in a similar fashion.

Here’s how you mark locations in command mode:

m x

Mark the current position with x (x can be any letter). (The original vi allows
only lowercase letters. Vim distinguishes between uppercase and lowercase
letters.)

' x (apostrophe)
Move the cursor to the first character of the line marked by x.

` x (backquote)
Move the cursor to the character marked by x.

`` (backquotes)
Return to the exact position of the previous mark or context after a move.

'' (apostrophes)
Return to the beginning of the line of the previous mark or context.

62 | Chapter 4: Beyond the Basics

Place markers are set only during the current session; they are not
stored in the file.

Other Advanced Edits
There are other advanced edits that you can execute with vi and Vim, but to use

them you must first learn a bit more about the ex editor by reading the next chapter.

Review of Register and Marking Commands
Table 4-2 summarizes the command-line options common to all versions of vi.
Tables 4-3 and 4-4 summarize the register and marking commands.

Table 4-2. Command-line options

Option Meaning

-c n file Open �le at line number n (POSIX standard version).

+n file Open �le at line number n (traditional vi version).

+ file Open �le at last line.

-c /pattern file Open �le at �rst occurrence of pattern (POSIX standard version)

+/pattern file Open �le at �rst occurrence of pattern (traditional vi version).

-c command file Run command after opening �le; usually a line number or search.

-r Recover �les after a crash.

-R Operate in read-only mode (same as using view).

Table 4-3. Register names

Register names Register use

1–9 The last nine deletions, from most to least recent.

a–z Named registers for you to use as needed. Uppercase letters append to the register.

Table 4-4. Register and marking commands

Command Meaning

"bcommand Do command with register b.

mx Mark current position with x.

'x Move cursor to the �rst character of the line marked by x.

`x Move cursor to the character marked by x.

`` Return to the exact position of the previous mark or context.

'' Return to the beginning of the line of the previous mark or context.

Other Advanced Edits | 63

CHAPTER 5

Introducing the ex Editor

If this is a book on vi and Vim, why would we include a chapter on another editor?

Well, ex is not really another editor. vi is the visual mode of the more general,

underlying line editor, which is ex. Some ex commands can be useful to you while

you are working in vi, since they can save you a lot of editing time. Most of these

commands can be used without ever leaving vi: You can think of the ex command
line as a third mode, alongside the regular command and insert modes.

The various vi motion and text-modification commands we’ve seen in the previous
chapters are nice, but if that’s all you’ve got, you may as well use Notepad or some‐

thing similar. The reason vi lovers love vi is because of ex: ex is where the power is!

Vim provides the underlying ex editor, with many enhancements

over the original one. On systems where vi is Vim, ex usually also

invokes Vim in ex mode.

In this and the following chapters in Part I, we don’t distinguish

much between vi and Vim, since everything in these chapters

applies to both. While reading, feel free to think of <vi= as standing

for <vi and Vim.=

You already know how to think of files as a sequence of numbered lines. ex gives

you editing commands with greater mobility and scope. With ex, you can move easily
between files and transfer text from one file to another in a variety of ways. You can
quickly edit blocks of text larger than a single screen. And with global replacement
you can make substitutions throughout a file for a given pattern.

65

1 ex is descended from the venerable Unix line editor ed, itself based on an earlier line editor known as QED.

Versions of these editors for modern systems are still available.

This chapter introduces ex and its commands. You will learn how to:

• Move around a file by using line numbers•

• Use ex commands to copy, move, and delete blocks of text•

• Save files and parts of files•

• Work with multiple files (reading in text or commands, traveling between files)•

ex Commands
Long before vi or any other screen editor was invented, people communicated with
computers on printing terminals, rather than on today’s bitmapped screens with
pointing devices and terminal emulation programs. Line numbers were a way to
quickly identify a part of a file to be worked on, and line editors evolved to edit those
files. A programmer or other computer user would typically print out a line (or lines)
on the printing terminal, give the editing commands to change just that line, and
then reprint to check the edited line.1

We don’t edit files on printing terminals anymore, but some ex line editor commands

are still useful to users of the more sophisticated visual editor built on top of ex.

Although it is simpler to make many edits with vi, the line orientation of ex gives it
an advantage when you want to make large-scale changes to more than one part of a
file.

Many of the commands we’ll see in this chapter have filename
arguments. Although it’s possible, it is usually a very bad idea to

have spaces in your files’ names. ex will be confused to no end,
and you will go to more trouble than it’s worth trying to get the
filenames to be accepted. Use underscores, dashes, or periods to
separate the components of your filenames, and you’ll be much
happier.

Before you start off simply memorizing ex commands (or worse, ignoring them), let’s

first take some of the mystery out of line editors. Seeing how ex works when it is
invoked directly will help make sense of the sometimes obscure command syntax.

Open a file that is familiar to you and try a few ex commands. Just as you can invoke

the vi editor on a file, you can invoke the ex line editor on a file by running the ex

66 | Chapter 5: Introducing the ex Editor

command at the shell prompt. If you invoke ex, you will see a message about the total
number of lines in the file, and a colon command prompt. For example:

$ ex practice

"practice" 8L, 261B

Entering Ex mode. Type "visual" to go to Normal mode.

:

You won’t see any lines in the file unless you give an ex command that causes one or
more lines to be displayed.

ex commands consist of a line address (which can simply be a line number) plus a
command; they are finished by hitting ENTER . One of the most basic commands is

p for print (to the screen). So, for example, if you type 1p at the prompt, you see the
first line of the file:

:1p

With a screen editor you can

:

In fact, you can leave off the p, because a line number by itself is equivalent to a print
command for that line. To print more than one line, you can specify a range of line

numbers (such as 1,3—two numbers separated by a comma, with or without spaces
in between). For example:

:1,3

With a screen editor you can

scroll the page, move the cursor,

delete lines, insert characters, and more,

A command without a line number is assumed to affect the current line. So, for

example, the substitute command (s), which allows you to substitute one word for
another, could be entered like this:

:1

With a screen editor you can

:s/screen/line/

With a line editor you can

Notice that the changed line is reprinted after the command is issued. You could also
make the same change like this:

:1s/screen/line/

With a line editor you can

Even though you will be invoking ex commands from vi and will not be using them

directly, it is worthwhile to spend a few minutes in ex itself. You will get a feel for
how you need to tell the editor which line (or lines) to work on, as well as which
command to execute.

After you have given a few ex commands in your practice file, you should invoke

vi on that same file, so that you can see it in the more familiar visual mode. When

working in ex, the command :vi gets you from ex to vi.

ex Commands | 67

To invoke an ex command from vi, you must type the special bottom-line character :

(colon). Then type the ex command and press ENTER to execute it. So, for example,

in the ex editor you move to a line simply by typing the number of the line at the

colon prompt. To move to line 6 of a file using this command from within vi, enter:

:6

And then press ENTER .

After the following exercise, we discuss ex commands only as they are executed from

vi.

Exercise: The ex Editor
This exercise should be run from inside a terminal emulator window:

At the shell prompt, invoke the ex editor on a �le called practice: ex practice

A message appears: "practice" 8L, 261B

Entering Ex mode. Type "visual" to

go to Normal mode.

Go to and print (display) the �rst line: :1

Print (display) lines 1 through 3: :1,3

Substitute line for screen on line 1: :1s/screen/line/

Invoke the vi editor on �le: :vi

Go to the �rst line: :1

Problem Getting to Visual Mode

• While editing in vi, you accidentally end up in the ex editor.•

A Q in the command mode of vi invokes ex. Any time you are in ex, the

command vi returns you to the vi editor.

Editing with ex
Many ex commands that perform normal editing operations have an equivalent in vi

that does the job more simply. Obviously, you will use dw or dd to delete a single word

or line rather than using the delete command in ex. However, when you want to

make changes that affect numerous lines, you will find the ex commands more useful.
They allow you to modify large blocks of text with a single command.

These ex commands are listed here, along with abbreviations for those commands.

Remember that in vi, each ex command must be preceded with a colon. You can use
the full command name or the abbreviation, whichever is easier to remember:

68 | Chapter 5: Introducing the ex Editor

Full name Abbreviation Meaning

delete d Delete lines

move m Move lines

copy co Copy lines

t Copy lines (a synonym for co; short for “to”)

You can separate the different elements of an ex command with spaces, if you find
the command easier to read that way. For example, you can separate line addresses,
patterns, and commands in this way. You cannot, however, use a space as a separator
inside a pattern or at the end of a substitute command. (We show some examples
later, in the section <Combining ex Commands= on page 74.)

Line Addresses
For each ex editing command, you have to tell ex which line number(s) to edit. And

for the ex move and copy commands, you also need to tell ex where to move or copy
the text to.

You can specify line addresses in several ways:

• With explicit line numbers•

• With symbols that help you specify line numbers relative to your current position•
in the file

• With search patterns as addresses that identify the lines to be affected•

Let’s look at some examples.

De�ning a Range of Lines
You can use line numbers to explicitly define a line or range of lines. Addresses that
use explicit numbers are called absolute line addresses. For example:

:3,18d

Delete lines 3 through 18, inclusive.

:160,224m23

Move lines 160 through 224 to follow line 23. (Like delete and put in vi.)

:23,29co100

Copy lines 23 through 29 and put them after line 100. (Like yank and put in vi.)

To make editing with line numbers easier, you can also display all line numbers on
the left of the screen. The command:

:set number

Editing with ex | 69

or its abbreviation

:set nu

displays line numbers. The file practice then appears:

1 With a line editor "screen" changed to "line" earlier

2 you can scroll the page,

3 move the cursor, delete lines,

4 insert characters, and more

The displayed line numbers are not saved when you write a file, and they do not print
if you print the file. Remember that long lines wrap on the screen but still count as a
single line with respect to their numbers. Line numbers are displayed either until you

quit the editing session or until you disable the set option:

:set nonumber

or:

:set nonu

Vim lets you toggle the setting with:

:set nu!

To temporarily display the line numbers for a set of lines, you can use the # sign as a
command. For example:

:1,10#

displays the line numbers from line 1 to line 10.

As described in the section <Movement by Line Number= on page 51, you can also
use the CTRL-G command to display the current line number. You can thus identify
the line numbers corresponding to the start and end of a block of text by moving to
the start of the block, typing CTRL-G , and then moving to the end of the block and
typing CTRL-G again.

Yet another way to identify line numbers is with the = command in ex:

:=

Print the total number of lines.

:.=

Print the line number of the current line. (The period is a shorthand that means
<the current line=; we discuss this next.)

:/pattern/=

Print the line number of the next line that matches pattern. (The search starts
from the current line. The use of search patterns is described shortly, in the
section <Search Patterns= on page 72.)

70 | Chapter 5: Introducing the ex Editor

2 In a relative address, you shouldn’t separate the plus or minus symbol from the number that follows it. For

example, +10 means <10 lines following,= but + 10 means <11 lines following (1 + 10),= which is probably not

what you mean (or want).

Line-Addressing Symbols
Besides line numbers, you can also use symbols for line addresses. A dot (.) stands

for the current line, and $ stands for the last line of the file. % stands for every line

in the file; it’s the same as the combination 1,$. These symbols can also be combined
with absolute line addresses. For example:

:.,$d

Delete from the current line to the end of the file.

:20,.m$

Move from line 20 through the current line (inclusive) to the end of the file.

:%d

Delete all the lines in the file.

:%t$

Copy all the lines and place them at the end of the file (making a consecutive
duplicate).

In addition to an absolute line address, you can specify an address relative to the

current line. The symbols + and - work like arithmetic operators. When placed before
a number, these symbols add or subtract the value that follows. For example:

:.,.+20d

Delete from the current line through the next 20 lines.

:226,$m.-2

Move lines 226 through the end of the file to two lines above the current line.

:.,+20#

Display line numbers from the current line to 20 lines further on in the file.

In fact, you don’t need to type the dot (.) when you use + or - because the current line
is the assumed starting position.

Without a number following them, + and - are equivalent to +1 and –1, respectively.2

Similarly, ++ and -- each extend the range by an additional line, and so on. Thus :+++

moves you forward by three lines. The + and - can also be used with search patterns,
as shown in the next section.

Editing with ex | 71

The number 0 stands for the top of the file (imaginary line zero). 0 is equivalent to 1-,
and both allow you to move or copy lines to the very start of a file, before the first line
of existing text. For example:

:-,+t0

Copy three lines (the line above the cursor through the line below the cursor)
and put them at the top of the file.

Search Patterns
Another way that ex can address lines is by using search patterns. For example:

:/pattern/d

Delete the next line containing pattern.

:/pattern/+d

Delete the line below the next line containing pattern. (You could also use +1

instead of + alone.)

:/pattern1/,/pattern2/d

Delete from the first line containing pattern1 through the first line containing
pattern2.

:.,/pattern/m23

Take the text from the current line (.) through the first line containing pattern
and put it after line 23.

Note that a pattern is delimited by a slash both before and a�er. Any spaces or tab
characters between the slashes are interpreted as part of the pattern to search for.

Use ? as the delimiter instead of / if you want to search backward in the file.

If you make deletions by pattern with vi and ex, there is a difference in the way the
two editors operate. Suppose your file practice contains the lines:

With a screen editor you can scroll the

page, move the cursor, delete lines, insert

characters, and more, while seeing results

of your edits as you make them.

To delete through the word while, do the following:

Keystrokes Results

d/while With a screen editor you can scroll the

page, move the cursor, while seeing results

of your edits as you make them.

The vi delete to pattern command deletes from the cursor up to the word while but leaves the
remainder of both lines.

72 | Chapter 5: Introducing the ex Editor

Keystrokes Results

:.,/while/d With a screen editor you can scroll the

of your edits as you make them.

The ex command deletes the entire range of addressed lines—in this case, both the current line
and the line containing the pattern. All lines are deleted in their entirety.

Rede�ning the Current Line Position
Sometimes, using a relative line address in a command can give you unexpected
results. For example, suppose the cursor is on line 1 and you want to print line 100
plus the five lines below it. If you type:

:100,+5 p

you’ll get an error message from Vim saying, <E16: Invalid range.= vi will tell you,
<First address exceeds second.= The reason the command fails is that the second
address is calculated relative to the current cursor position (line 1), so your command
is really saying this:

:100,6 p

What you need is some way to tell the command to think of line 100 as the <current
line,= even though the cursor is on line 1.

ex provides such a way. When you use a semicolon instead of a comma, the first line
address is recalculated as the current line. For example, the command:

:100;+5 p

prints the desired lines. The +5 is now calculated relative to line 100. A semicolon is
useful with search patterns as well as with absolute addresses. For example, to print
the next line containing pattern, plus the 10 lines that follow it, enter the command:

:/pattern/;+10 p

Global Searches
You already know how to use / (slash) to search for patterns of characters in your

files. ex has a global command, g, that lets you search for a pattern and display all

lines containing the pattern when it finds them. The command :g! does the opposite

of :g. Use :g! (or its synonym, :v) to search for all lines that do not contain pattern.

You can use the global command on all lines in the file, or you can use line addresses
to limit a global search to specified lines or to a range of lines:

:g/pattern

Find (move to) the last occurrence of pattern in the file.

Editing with ex | 73

:g/pattern/p

Find and display all lines in the file containing pattern. Vim displays the line and
then prompts you, <Press ENTER or type command to continue.=

:g!/pattern/nu

Find and display all lines in the file that don’t contain pattern; also display the line
number for each line found.

:60,124g/pattern/p

Find and display any lines between lines 60 and 124 containing pattern.

As you might expect, g can also be used for global replacements. We’ll talk about that
in Chapter 6, <Global Replacement=.

Combining ex Commands
You don’t always need to type a colon to begin a new ex command. In ex, the vertical

bar (|) is a command separator, allowing you to combine multiple commands from

the same ex prompt (in much the same way that a semicolon separates multiple

commands at the shell prompt). When you use the |, keep track of the line addresses
you specify. If one command affects the order of lines in the file, the next command
does its work using the new line positions. For example:

:1,3d | s/thier/their/

Delete lines 1 through 3 (leaving you now on the top line of the file), and then
make a substitution on the current line (which was line 4 before you invoked the

ex prompt).

:1,5 m 10 | g/pattern/nu

Move lines 1 through 5 after line 10, and then display all lines (with numbers)
containing pattern.

Note the use of spaces to make the commands easier to read.

Saving and Exiting Files

Figure 5-1. Not everyone gets vi (from https://twitter.com/iamdevloper/status/
435555976687923200, used with permission)

74 | Chapter 5: Introducing the ex Editor

https://twitter.com/iamdevloper/status/435555976687923200
https://twitter.com/iamdevloper/status/435555976687923200

3 The difference between :wq and :x is important when editing source code and using make, which performs

actions based on file modification times.

Unlike IAmDevloper (see Figure 5-1), you have learned the vi command ZZ to write

(save) your file and quit. But you will frequently want to exit a file using ex com‐
mands, because these commands give you greater control. We’ve already mentioned
some of these commands in passing. Now let’s take a more formal look:

:w

Write (save) the buffer to the file but do not exit. You can (and should) use :w
throughout your editing session to protect your edits against system failure or a
major editing error.

:q

Quit the editor (and return to the shell prompt).

:wq

Write the file and then quit the editor. The write happens unconditionally, even if
the file was not changed. This updates the modification time of the file.

:x

Write the file and then quit (exit) the editor. The file is written only if it has been
modified.3

The editor protects existing files and your edits in the buffer. For example, if you want
to write your buffer to an existing file, you will get a warning. Likewise, if you have

invoked vi on a file, made edits, and want to quit without saving the edits, vi gives
you an error message, such as:

No write since last change.

These warnings can prevent costly mistakes, but sometimes you want to proceed with

the command anyway. An exclamation point (!) after your command overrides the
warning:

:w!

:q!

Vim helpfully tells you this when you try to quit without saving the file:

E37: No write since last change (add ! to override)

:w! can also be used to save edits in a file that was opened in read-only mode with

vi -R or view (assuming you have write permission for the file).

:q! is an essential editing command that allows you to quit without affecting the
original file, regardless of any changes you made in the session.4 The contents of the
buffer are discarded.

Saving and Exiting Files | 75

4 Only changes made since the last write are thrown away.

Renaming the Bu�er
You can also use :w to save the entire buffer (the copy of the file you are editing)
under a new filename.

Suppose you have a file practice, which contains 600 lines. You open the file and make
extensive edits. You want to quit but also save both the old version of practice and
your new edits for comparison. To save the edited buffer in a file called practice.new,
give the command:

:w practice.new

Your old version, in the file practice, remains unchanged (provided that you didn’t

previously use :w). You can now quit editing the new version by typing :q.

Saving Part of a File
While editing, you will sometimes want to save just part of your file as a separate, new
file. For example, you might have entered formatting codes and text that you want to
use as a header for several files.

You can combine ex line addressing with the write command, w, to save part of a file.
For example, if you are in the file practice and want to save part of practice as the file
new�le, you could enter:

:230,$w newfile

Save from line 230 to end of file in new�le.

:.,600w newfile

Save from the current line to line 600 in new�le.

Appending to a Saved File
You can use the Unix redirect and append operator (>>) with w to append all or part
of the contents of the buffer to an existing file. For example, if you entered:

:1,10w newfile

and then:

:340,$w >> newfile

new�le would contain lines 1–10 and from line 340 to the end of the buffer.

76 | Chapter 5: Introducing the ex Editor

Copying a File into Another File
Sometimes you want to copy text or data from some other existing file into the file

you are editing. You read in the contents of another file with the ex command:

:read filename

or its abbreviation:

:r filename

This command inserts the contents of �lename starting on the line after the cursor
position in the file. If you want to specify a line other than the one the cursor’s on,

simply type the line number (or other line address) you want before the :read or :r
command.

Let’s suppose you are editing the file practice and want to read in a file called data
from another directory called /home/tim. Position the cursor one line above the line
where you want the new data inserted, and enter:

:r /home/tim/data

The entire contents of /home/tim/data are read into practice, beginning below the line
with the cursor.

To read in the same file and place it after line 185, you would enter:

:185r /home/tim/data

Here are other ways to read in a file:

:$r /home/tim/data

Place the read-in file at the end of the current file.

:0r /home/tim/data

Place the read-in file at the very beginning of the current file.

:/pattern/r /home/tim/data

Place the read-in file in the current file, after the line containing pattern.

Editing Multiple Files
ex commands enable you to switch between multiple files. The advantage of editing

multiple files is speed; it takes time to exit and reenter vi or Vim for each file you
want to edit. Staying in the same editing session and traveling between files is not
only faster for access, but you also save abbreviations and command sequences that
you have defined (see Chapter 7, <Advanced Editing=), and you keep yank registers so
that you can copy text from one file to another.

Copying a File into Another File | 77

Invoking Vim on Multiple Files
When you first invoke the editor, you can name more than one file to edit and then

use ex commands to travel between the files. For example:

$ vim file1 file2

edits �le1 first. After you have finished editing the first file, the ex command :w writes

(saves) �le1 and :n calls in the next file (�le2).

Suppose you want to edit two files, practice and note:

Keystrokes Results

$ vim practice note With a screen editor you can

scroll the page, move the cursor,

delete lines, insert characters, and more,

Open the two �les practice and note. The �rst-named �le, practice, appears on your screen.
Perform any edits.

:w "practice" 8L, 261C 8,1 All

Save the edited �le practice with the ex command w.

:n Dear Mr.

Henshaw:

Thank you for the prompt . . .

Call in the next �le, note, with the ex command n. Perform any edits.

:x "note" 19L, 571C written 19,1 All

Save the second �le, note, and quit the editing session.

Using the Argument List
ex actually lets you do more than just move to the next file in the argument list

with :n. The :args command (abbreviated :ar) lists the files named on the com‐
mand line, with the current file enclosed in brackets:

Keystrokes Results

$ vim practice note With a screen editor you can

scroll the page, move the cursor,

delete lines, insert characters, and more,

Open the two �les practice and note. The �rst-named �le, practice, appears on your screen.

:args [practice] note 8,1 All

Vim displays the argument list in the status line, with brackets around the current �lename.

vi’s :rewind (:rew) command resets the current file to be the first file named on the

command line. Vim provides a corresponding :last command to move to the last
file on the command line. If you just want to go back to the previous file, Vim gives

you the :prev command.

78 | Chapter 5: Introducing the ex Editor

Calling in New Files
You don’t have to call in multiple files at the beginning of your editing session. You

can switch to another file at any time with the ex command :e. If you want to edit

another file, you first need to save your current file (:w) and then give the command:

:e filename

Suppose you are editing the file practice and want to edit the file letter and then return
to practice:

Keystrokes Results

:w "practice" 8L, 261C 8,1 All

Save practice with :w. practice is saved and remains on the screen. You can now switch to
another �le, because your edits are saved.

:e letter "letter" 23L, 1344C 1,1 All

Call in the �le letter with :e. Perform any edits.

Filename Shortcuts
The editor <remembers= two filenames at a time as the current and alternate file‐

names. These can be referred to by the symbols % (current filename) and # (alternate

filename). # is particularly useful with :e, since it allows you to switch easily back and
forth between two files. In the example just given, you could return to the first file,

practice, by typing the command :e #. You could also read the file practice into the

current file by typing :r #.

If you have not first saved the current file, the editor does not allow you to switch files

with :e or :n unless you tell it imperatively to do so by adding an exclamation point
after the command.

For example, if after making some edits to letter, you wanted to discard the edits and

return to practice, you could type :e! #.

The following command is also useful; it discards your edits and returns to the last
saved version of the current file:

:e!

In contrast to the # symbol, % is useful mainly when writing out the contents of the
current buffer to a new file. For example, in the earlier section <Renaming the Buffer=
on page 76, we showed you how to save a second version of the file practice with the
command:

:w practice.new

Editing Multiple Files | 79

Since % stands for the current filename, that line could also have been typed:

:w %.new

Switching Files from Command Mode
Since switching back to the previous file is something that you will tend to do a lot,

you don’t have to move to the ex command line to do it. The vi command CTRL-^
(the CTRL key plus the caret key) does this for you. Using this command is the same

as typing :e #. As with the :e command, if the current buffer has not been saved, the
editor does not let you switch back to the previous file.

Edits Between Files
When you give a yank register a one-letter name, you have a convenient way to move
text from one file to another. Named registers are not cleared when a new file is

loaded into the editing buffer with the :e command. Thus, by yanking or deleting
text from one file (into multiple named registers if necessary), calling in a new file

with :e, and putting the named register(s) into the new file, you can transfer material
between files.

The following example illustrates how to transfer text from one file to another:

Keystrokes Results

"f4yy With a screen editor you can scroll

the page, move the cursor, delete lines,

insert characters, and more, while seeing

the results of the edits as you make them

Yank four lines into register f.

:w "practice" 8L, 261C 8,1 All

Save the �le.

:e letter Dear Mr.

Henshaw:

I thought that you would be interested to know that:

Yours truly,

Enter the �le letter with :e. Move the cursor to where the copied text will be placed.

"fp Dear Mr.

Henshaw:

I thought that you would

be interested to know that:

With a screen editor you can scroll

the page, move the cursor, delete lines,

insert characters, and more, while seeing

the results of the edits as you make them

Yours truly,

Place yanked text from named register f below the cursor.

80 | Chapter 5: Introducing the ex Editor

Another way to move text from one file to another is to use the ex commands :ya

(yank) and :pu (put). These commands work the same way as the equivalent vi

commands y and p, but they are used with ex’s line-addressing capability and named
registers.

For example:

:160,224ya a

yanks (copies) lines 160 through 224 into register a. Next, you would move with :e to
the file where you want to put these lines. Place the cursor on the line where you want
to put the yanked lines. Then type:

:pu a

to put the contents of register a after the current line.

ex Command Summaries
Here are summary tables of the ex commands presented in this chapter (see Tables
5-1 through 5-7). Appendix A, <The vi, ex, and Vim Editors=, provides a fuller

command reference for the most useful ex commands in vi and Vim.

Table 5-1. Line printing commands

Full name Abbreviation Meaning

Address Print line at address

Address range Print lines at address range

print p Print lines

Print lines with line numbers

Table 5-2. Line deletion, moving, and copying

Full name Abbreviation Meaning

delete d Delete lines

move m Move lines

copy co Copy lines

t Copy lines (a synonym for co; short for “to”)

yank ya Yank lines into a named register

put pu Put lines from a named register

ex Command Summaries | 81

Table 5-3. Line-addressing symbols

Symbol Meaning

n Line number n

. Current line

$ Last line

% All lines in the �le

. + n Current line plus n

. - n Current line minus n

/pattern/ Search forward for �rst line that matches pattern

?pattern? Search backward for �rst line that matches pattern

Table 5-4. Operating globally

Full name Abbreviation Meaning

global command g command Globally (on all lines) execute command

global! pattern command g! pattern command On all lines not matching pattern execute command

v pattern command On all lines not matching pattern execute command

Table 5-5. Working with bu�ers and �les

Full name Abbreviation Meaning

args ar Show the argument list, with the current �lename in square brackets

edit e Switch to editing the named �le

last la Go to the last �le in the argument list

next n Move on to the next �le named on the command line

previous prev Go back to the previous �le

read r Read the named �le into the editing bu�er

rewind rew Go back to the �rst �le in the argument list

write w Write the editing bu�er to disk

CTRL-^ Go back to the previous �le (vi command)

82 | Chapter 5: Introducing the ex Editor

Table 5-6. Exiting the editor

Full name Abbreviation Meaning

quit q Quit the editor

wq Write the �le unconditionally, and then quit

xit x Write the �le only if it has changed, and then quit

Q Switch to ex (vi command)

visual vi Switch from ex to vi

Table 5-7. Filename shorthands

Character Meaning

% Current �lename

Previous �lename

ex Command Summaries | 83

CHAPTER 6

Global Replacement

Sometimes, halfway through a document or at the end of a draft, you may recognize
inconsistencies in the way that you refer to certain things. Or, in a manual, some
product whose name appears throughout your file is suddenly renamed (marketing!).
Often enough it happens that you have to go back and change what you’ve already
written, and you need to make similar or identical changes in several places.

The way to make these changes is with a powerful feature called global replacement.
With one command you can automatically replace a word (or a string of characters)
wherever it occurs in the file.

In a global replacement, the ex editor checks each line of a file for a given pattern of

characters. On all lines where the pattern is found, ex replaces the pattern with a new
string of characters. For right now, we’ll treat the search pattern as if it were a simple
string; later in the chapter we’ll look at the powerful pattern-matching language
known as regular expressions.

Global replacement really uses two ex commands: :g (global) and :s (substitute).
Since the syntax of global replacement commands can get fairly complex, let’s look at
it in stages.

The Substitute Command
The substitute command has the syntax:

:s/old/new/

This changes the �rst occurrence of the pattern old to new on the current line. The /
(slash) is the delimiter between the various parts of the command and is optional
when it is the last character on the line. (Actually, you can use any punctuation
character for the delimiter; this is discussed later in the chapter.)

85

The :s command allows options following the substitution string. For example, a
substitute command with the syntax:

:s/old/new/g

changes every occurrence of old to new on the current line, not just the first occur‐

rence. The g option in this syntax also stands for global. (The g option affects each

pattern on a line; don’t confuse it with the :g command, discussed shortly, which
affects each line of a file.)

By prefixing the :s command with addresses, you can extend its range to more than
one line. For example, this command changes every occurrence of old to new from
line 50 to line 100:

:50,100s/old/new/g

The following command changes every occurrence of old to new within the entire
file:

:1,$s/old/new/g

You can also use % instead of 1,$ to specify every line in a file. Thus, the preceding
command could also be given like this:

:%s/old/new/g

Global replacement is much faster than finding each instance of a string and replac‐
ing it individually. Because the command can be used to make many different kinds
of changes, and because it is so powerful, we first illustrate simple replacements and
then build up to complex, context-sensitive replacements.

Con�rming Substitutions
It makes sense to be overly careful when using a search and replace command. It
sometimes happens that what you get is not what you expect. You can undo any

search and replacement command by entering u, provided that the command was the
most recent edit you made. But you don’t always catch undesired changes until it is
too late to undo them.

Another way to protect your edited file is to save the file with :w before performing a
global replacement. Then at least you can quit the file without saving your edits and
go back to where you were before the change was made. You can also read the last

saved version of the file back in with :e!. (Saving your file is a good idea in any case.)

It’s wise to be cautious and know exactly what is going to be changed in your file. If
you’d like to see what the search turns up and confirm each replacement before it is

made, add the c option (for <confirm=) at the end of the substitute command:

:1,30s/his/the/gc

86 | Chapter 6: Global Replacement

ex (in Vim) displays the entire line where the string has been located, highlights the
text to be replaced, and prompts for confirmation:

copyists at his school

~

~

~

replace with the (y/n/a/q/l/^E/^Y)?

If you want to make the replacement, you must enter y (for yes). If you don’t want to

make a change, simply press n (for no).

Quoting from the Vim documentation, here is the meaning of the possible responses:

y to substitute this match

n to skip this match

a to substitute this and all remaining matches

q to quit substituting

l to substitute this match and then quit (“last”)

CTRL-E to scroll the screen up

CTRL-Y to scroll the screen down

ESC to quit substituting

Vim provides a number of additional options beyond just g and c. Issue the com‐

mand :help s_flags for more information.

The combination of the vi commands n (repeat last search) and dot (.) (repeat last
command) is also an extraordinarily useful and quick way to page through a file and
make repetitive changes that you may not want to make globally. So, for example, if
your (human) editor has told you that you’re using which when you should be using
that, you can spot-check every occurrence of which, changing only those that are
incorrect:

/which Search for which

cwthat ESC Change to that

n Repeat search

n Repeat search, skip a change

. Repeat change (if appropriate)

(Etc.)

Con�rming Substitutions | 87

Doing Things Globally Across the File
ex provides a powerful command that lets you apply a second command across all

relevant lines in a file. This is the global command, :g, which has the form:

:g/pattern/ command

Upon receiving this command, ex traverses the entire editing buffer, remembering
each line that matches pattern. Then, for each line that matched, it executes the given
command. Here are two examples:

g/# FIXME/d

Delete all lines with <FIXME= comments on them.

g/# FIXME/s/FIXME/DONE/

Change all instances of <FIXME= comments to say <DONE.=

The global command (:g) is most often used in tandem with the substitute command

(s), as we are about to see. But you can combine it with other ex commands as well,
which we describe later in the chapter.

Context-Sensitive Replacement
The simplest global replacements substitute one word or phrase for another. If you
have typed a file with several misspellings (editer for editor), you can do the global
replacement:

:%s/editer/editor/g

This substitutes editor for every occurrence of editer throughout the file.

Using the global command, :g, you can search for a pattern, and then, once you find
the line with the pattern, make a substitution on a string different from the pattern.
You can think of this as context-sensitive replacement.

The syntax is as follows:

:g/pattern/s/old/new/g

The first g tells the command to operate on all lines of the file that match pattern. On

those lines containing pattern, ex is to replace (substitute, s) the characters matching

old with the characters in new. The last g indicates that the substitution is to occur
globally on that line. This means that all matches of old are replaced by new, not just
the first match on each relevant line.

For example, as we write this book, the HTML directives

and embedded in the AsciiDoc place a box around ESC to show the Escape
key. You want ESC to be all in caps, but you don’t want to change any instances of

88 | Chapter 6: Global Replacement

1 Much more information on regular expressions can be found in the two O’Reilly books sed & awk, 2nd ed. by

Dale Dougherty and Arnold Robbins, and Mastering Regular Expressions, 3rd ed. by Jeffrey E. F. Friedl.

2 Technically speaking, we should probably call these metasequences, since sometimes two characters together,

not just a single character, have special meaning. Nevertheless, the term metacharacters is in common use in

Unix literature, so we follow that convention here.

Escape that might be in the text. To change instances of Esc to ESC only when Esc is

on a line that contains the class="keycap" notation, you could enter:

:g/class="keycap"/s/Esc/ESC/g

If the pattern being used to find the line is the same as the one you want to change,
you don’t have to repeat it. The command:

:g/string/s//new/g

searches for lines containing string and substitutes for that same string.

Note that:

:g/editer/s//editor/g

has the same effect as:

:%s/editer/editor/g

You can save some typing by using the second form. As we mentioned earlier, you

can combine the :g command with :d, :m, :co, and other ex commands besides :s.
As we’ll show, you can thus make global deletions, moves, and copies.

Pattern-Matching Rules
In making global replacements, Unix editors such as vi and Vim allow you to search
not just for fixed strings of characters but also for variable patterns of words, referred
to as regular expressions.

When you specify a literal string of characters, the search might turn up other
occurrences that you didn’t want to match. The problem with searching for words in
a file is that a word can be used in different ways, or one word might be embedded
in another (consider the <top= in <stopper=). Regular expressions help you conduct a
search for words in context. Note that regular expressions can be used with the search

commands / and ?, as well as in the ex commands :g and :s.

For the most part, the same regular expressions work with other Unix programs, such

as grep, sed, and awk.1

Regular expressions are made up by combining normal characters with a number of
special characters called metacharacters.2 The metacharacters and their uses are listed
next.

Pattern-Matching Rules | 89

https://www.oreilly.com/library/view/sed-awk/1565922255
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124

Metacharacters Used in Search Patterns
Here are the metacharacters and what they do:

. (period, dot)
Match any single character except a newline. Remember that spaces are treated as

characters. For example, p.p matches character strings such as pep, pip, and pcp.

*

Match zero or more (as many as there are) of the single character that immedi‐

ately precedes it. For example, slo*w matches slow (one o) or slw (no o). (It also
matches sloow, slooow, and so on.)

The * can follow a metacharacter. For example, since . (dot) means any charac‐

ter, .* means <match any number of any character.=

Here’s a specific example of this: the command :s/End.*/End/ removes all char‐
acters after End (it replaces the remainder of the line with nothing).

^

When used at the start of a regular expression, require that the following regular

expression be found at the beginning of the line. For example, ^Part matches

Part when it occurs at the beginning of a line, and ^... matches the first three

characters of a line. When not at the beginning of a regular expression, ^ stands
for itself.

$

When used at the end of a regular expression, require that the preceding regular

expression be found at the end of the line; for example, here:$ matches only
when here: occurs at the end of a line. When not at the end of a regular expres‐

sion, $ stands for itself.

The ^ and $ are referred to as anchors, since they anchor the match to the
beginning or end of the line, respectively.

\

Treat the following special character as an ordinary character. For example, \.

matches an actual period instead of <any single character,= and * matches an
actual asterisk instead of <any number of a character.= The \ (backslash) prevents
the interpretation of a special character. This prevention is called <escaping the

character.= Use \\ to get a literal backslash.

[]

Match any one of the characters enclosed between the brackets. For example,

[AB] matches either A or B, and p[aeiou]t matches pat, pet, pit, pot, or put.
You specify a range of consecutive characters by separating the first and last

90 | Chapter 6: Global Replacement

3 The hold buffer is different from both the file editing buffer and the text deletion registers.

characters in the range with a hyphen. For example, [A-Z] matches any upper‐

case letter from A to Z, and [0-9] matches any digit from 0 to 9.

You can include more than one range inside brackets, and you can specify a

mix of ranges and separate characters. For example, [:;A-Za-z()] matches four
different punctuation marks, plus all the English letters.

When regular expressions and vi were first developed, they
were meant to work only with the ASCII character set. In
today’s global market, modern systems support locales, which
provide different interpretations of the characters that lie

between a and z. To get accurate results, you should use
POSIX bracket expressions (discussed shortly) in your regular

expressions, and avoid ranges of the form a-z.

Most metacharacters lose their special meaning inside brackets, so you don’t need
to escape them if you want to use them as ordinary characters. Within brackets,

the three metacharacters you still need to escape are \, -, and]. The hyphen (-)
acquires meaning as a range specifier; to use an actual hyphen, you can also place

it as the first character inside the brackets. (This is also true of].)

A caret (^) has special meaning only when it is the first character inside the

brackets, but in this case the meaning differs from that of the normal ^ meta‐

character. As the first character within brackets, the ^ reverses their sense: the

brackets match any one character not in the list. For example, [^0-9] matches
any character that is not a digit.

\(\)

Save the subpattern enclosed between \(and \) into a special holding space, or a
hold bu�er.3 Up to nine subpatterns can be saved in this way on a single line. For
example, the pattern

\(That\) or \(this\)

saves �at in hold buffer number 1 and saves this in hold buffer number 2.
The text matching the held subpatterns can be <replayed= in substitutions by the

sequences \1 to \9. For example, to rephrase �at or this to read this or �at, you
could enter:

:%s/\(That\) or \(this\)/\2 or \1/

You can also use the \n notation within a search or substitute string. For example:

:s/\(abcd\)\1/alphabet-soup/

Pattern-Matching Rules | 91

changes abcdabcd into alphabet-soup.

\< \>

Match characters at the beginning (\<) or at the end (\>) of a word. The end or
beginning of a word is determined either by a punctuation mark or by a space.

For example, the expression \<ac matches only words that begin with ac, such

as action. The expression ac\> matches only words that end with ac, such as

maniac. Neither expression matches react. Note that unlike \(…\), these do not
have to be used in matched pairs.

In the original vi, there is an additional metacharacter:

~

Match whatever regular expression was used in the last search. For example,

if you searched for �e, you could search for �en with /~n. Note that you

can use this pattern only in a regular search (with /). It won’t work as the
pattern in a substitute command. It does, however, have a similar meaning in the
replacement portion of a substitute command. (This is described shortly, in the
section <Metacharacters Used in Replacement Strings= on page 94.)

This use of ~ is a rather flaky feature of the original vi. After using it, the saved

search pattern is set to the new text typed after the ~, not the combined new
pattern, as one might expect. While this feature exists, it has little to recommend
its use. Also, Vim does not behave this way.

Note that Vim supports an extended regular expression syntax. See the section
<Extended Regular Expressions= on page 176 for more information.

POSIX Bracket Expressions
We have just described the use of brackets for matching any one of the enclosed

characters, such as [a-z]. The POSIX standard introduced additional facilities for
matching characters that are not in the English alphabet. For example, the French è

is an alphabetic character, but the typical character class [a-z] would not match it.
Additionally, the standard provides for sequences of characters that should be treated
as a single unit when matching and collating (sorting) string data.

POSIX also formalizes the terminology. Groups of characters within brackets are
called bracket expressions in the POSIX standard. Within bracket expressions, along‐
side literal characters such as a, !, and so on, you can have additional components.
These components are:

92 | Chapter 6: Global Replacement

4 On Solaris 10, /usr/xpg4/bin/vi and /usr/xpg6/bin/vi support POSIX bracket expressions, but /usr/bin/vi does

not. On Solaris 11, all versions do support POSIX bracket expressions.

Character classes

A POSIX character class consists of keywords bracketed by [: and :]. The
keywords describe different classes of characters, such as alphabetic characters,
control characters, and so on (see Table 6-1).

Collating symbols
A collating symbol is a multicharacter sequence that should be treated as a unit. It

consists of the characters bracketed by [. and .].

Equivalence classes
An equivalence class lists a set of characters that should be considered equivalent,

such as e and è. It consists of a named element from the locale, bracketed by [=

and =].

All three of these constructs must appear inside the square brackets of a bracket

expression. For example, [[:alpha:]!] matches any single alphabetic character or

the exclamation point, [[.ch.]] matches the collating element ch but does not match

just the letter c or the letter h. In a French locale, [[=e=]] might match any of e, è, or
é. Classes and matching characters are shown in Table 6-1.

Table 6-1. POSIX character classes

Class Matching characters

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:blank:] Space and tab characters only

[:cntrl:] Control characters

[:digit:] Numeric characters

[:graph:] Printable and visible (nonspace) characters

[:lower:] Lowercase characters

[:print:] Printable characters (includes whitespace)

[:punct:] Punctuation characters

[:space:] All whitespace characters (space, tab, newline, vertical tab, etc.)

[:upper:] Uppercase characters

[:xdigit:] Hexadecimal digits

Modern systems are sensitive to the locale chosen at installation time; you can
expect to get reasonable results, particularly when trying to match only lowercase or
uppercase letters, just by using the POSIX bracket expressions.4

Pattern-Matching Rules | 93

How Do I Choose My Locale?
You choose the locale for commands to use by setting certain environment variables,

whose names begin with the characters LC_. The details are beyond the scope of this

book, other than to say that the simplest way to set a locale is to set the LC_ALL
environment variable. A default locale is set up when the system is installed, if you do
not override it.

You can see the list of available locales on your system, usually with the locale
command:

$ locale -a On GNU/Linux

C

C.UTF-8

en_AG

en_AG.utf8

en_AU.utf8

...

Note that files do not have locales associated with them; locales specify how com‐
mands treat the data they read from files. Typically, files encoded in UTF-8 should be
properly handled in all Unicode-based locales, but your mileage may vary.

Metacharacters Used in Replacement Strings
When you make global replacements, the regular expression metacharacters dis‐
cussed earlier carry their special meanings only within the search portion (the first
part) of the command.

For example, when you type this:

:%s/1\. Start/2. Next, start with $100/

note that the replacement string treats the characters . and $ literally, without your
having to escape them. By the same token, let’s say you enter:

:%s/[ABC]/[abc]/g

If you’re hoping to replace A with a, B with b, and C with c, you’ll be surprised.
Since brackets behave like ordinary characters in a replacement string, this command
changes every occurrence of A, B, or C to the five-character string [abc].

To solve problems like this, you need a way to specify variable replacement strings.
Fortunately, there are additional metacharacters that have special meaning in a
replacement string:

\n

Replace the \n with the text matching the nth subpattern previously saved by

\(and \), where n is a number from 1 to 9, and previously saved subpatterns

94 | Chapter 6: Global Replacement

5 Modern versions of the standard ed editor use % as the sole character in the replacement text to mean <the

replacement text of the last substitute command.=

(kept in hold buffers) are counted from the left on the line. See the explanation

for \(and \) in the earlier section <Metacharacters Used in Search Patterns= on
page 90.

\

Treat the following special character as an ordinary character. Backslashes are
metacharacters in replacement strings as well as in search patterns. To specify a

real backslash, type two in a row (\\).

&

Replace the & with the entire text matched by the search pattern. This is useful
when you want to avoid retyping text:

:%s/Washington/&, George/

The replacement will say Washington, George. The & can also replace a variable
pattern (as specified by a regular expression). For example, to surround each line
from 1 to 10 with parentheses, type:

:1,10s/.*/(&)/

The search pattern matches the whole line, and the & <replays= the line, included
within your text.

~

The string found is replaced with the replacement text specified in the last
substitute command. This is useful for repeating an edit. For example, you

could say :s/thier/their/ on one line and repeat the change on another line

with :s/thier/~/. The search pattern doesn’t need to be the same, though. For

example, you could say :s/his/their/ on one line and repeat the replacement

on another with :s/her/~/.5

\u or \l
Cause the next character in the replacement string to be changed to uppercase or
lowercase, respectively. For example, to change yes, doctor into Yes, Doctor, you
could say:

:%s/yes, doctor/\uyes, \udoctor/

This is a pointless example, though, since it’s easier just to type the replacement

string with initial caps in the first place. As with any regular expression, \u and

\l are most useful with a variable string. Take, for example, the command we
used earlier:

:%s/\(That\) or \(this\)/\2 or \1/

Pattern-Matching Rules | 95

The result is this or �at, but we need to adjust the cases. We’ll use \u to

uppercase the first letter in this (currently saved in hold buffer 2), and we’ll use \l
to lowercase the first letter in �at (currently saved in hold buffer 1):

:s/\(That\) or \(this\)/\u\2 or \l\1/

The result is �is or that. Don’t confuse the number one with the lowercase l; the
one comes after.

\U or \L and \e or \E

\U and \L are similar to \u or \l, but all following characters are converted to

uppercase or lowercase until the end of the replacement string or until \e or \E is

reached. If there is no \e or \E, all characters of the replacement text are affected

by the \U or \L. For example, to uppercase Fortran, you could say:

:%s/Fortran/\UFortran/

or, using the & character to repeat the search string:

:%s/Fortran/\U&/

All pattern searches are case sensitive. That is, a search for the does not find �e. You
can get around this by specifying both uppercase and lowercase in the pattern:

/[Tt]he

You can also instruct the editor to ignore case by typing :set ic. See the section
<The :set Command= on page 114 for additional details.

More Substitution Tricks
You should know some additional important facts about the substitute command:

• A simple :s is the same as :s//~/. In other words, repeat the last substitution.•
This can save enormous amounts of time and typing when you are working your
way through a document making the same change repeatedly but you don’t want
to use a global substitution.

• If you think of the & as meaning <the same thing= (as in, what was just matched),•

this command is relatively mnemonic. You can follow the & with a g to make the
substitution globally on the line, and even use it with a line range:

:%&g Repeat the last substitution everywhere

• The & key can be used as a vi-mode command to perform the :& command,•

i.e., to repeat the last substitution. This can save even more typing than :s
ENTER —one keystroke versus three.

• The :~ command is similar to the :& command but with a subtle difference:•
the search pattern used is the last regular expression used in any command, not

96 | Chapter 6: Global Replacement

6 Thanks to Keith Bostic, in the nvi documentation, for this example.

necessarily the one used in the last substitute command. For example, in the
sequence:

:s/red/blue/

:/green

:~

the :~ is equivalent to :s/green/blue/.6

• Besides the / character, you may use any nonalphanumeric, nonspace character•

as your delimiter, except backslash, double quotes, and the vertical bar (\, ", and

|). This is particularly handy when you have to make a change to a pathname.
For example:

:%s;/user1/tim;/home/tim;g

• When the edcompatible option is enabled, the editor remembers the flags (g for•

global and c for confirmation) used on the last substitution and applies them to
the next one.

This is most useful when you are moving through a file and you wish to make
global substitutions. You can make the first change:

:s/old/new/g

:set edcompatible

and after that, subsequent substitute commands are global.

Note that, despite the name, no known version of Unix ed actually works this
way.

Pattern-Matching Examples
Unless you are already familiar with regular expressions, the preceding discussion of
special characters probably looks forbiddingly complex. A few more examples should
make things clearer. In the examples that follow, a square (□) marks a space; it is not
a special character.

Let’s work through how you might use some special characters in a replacement.
Suppose that you have a long file and that you want to substitute the word child with

the word children throughout that file. You first save the edited buffer with :w and
then try this global replacement:

:%s/child/children/g

When you continue editing, you notice occurrences of words such as childrenish. You
have unintentionally matched the word childish. Returning to the last saved buffer

with :e!, you now try:

Pattern-Matching Examples | 97

:%s/child□/children□/g

Note that there is a space after child. But this command misses the occurrences child.,
child,, child:, and so on. After some thought, you remember that brackets allow you to
specify one character from among a list, so you realize a solution:

:%s/child[□,.;:!?]/children[□,.;:!?]/g

This searches for child followed by either a space (indicated by □) or any one of the

punctuation characters ,.;:!?. You expect to replace this with children followed by
the corresponding space or punctuation mark, but you’ve ended up with a bunch of
punctuation marks after every occurrence of children. You need to save the space and

punctuation marks inside a \(and \). Then you can <replay= them with a \1. Here’s
the next attempt:

:%s/child\([□,.;:!?]\)/children\1/g

When the search matches a character inside the \(and \), the \1 on the righthand
side restores the same character. The syntax may seem awfully complicated, but this
command sequence can save you a lot of work. Any time you spend learning regular
expression syntax will be repaid a thousandfold!

The command is still not perfect, though. You’ve noticed that occurrences of Fairchild
have been changed, so you need a way to match child when it isn’t part of another
word.

As it turns out, vi and Vim (but not all other programs that use regular expressions)
have a special syntax for saying <only if the pattern is a complete word.= The character

sequence \< requires the pattern to match at the beginning of a word, whereas \>
requires the pattern to match at the end of a word. Using both restricts the match

to a whole word. So, in the example task, \<child\> finds all instances of the word
child, whether followed by punctuation or spaces. Here’s the substitution command
you should use:

:%s/\<child\>/children/g

One final possibility is:

:%s/\<child\>/&ren/g

Search for General Class of Words
Suppose your subroutine names begin with the prefixes mgi, mgr, and mga:

mgibox routine,

mgrbox routine,

mgabox routine,

98 | Chapter 6: Global Replacement

If you want to save the prefixes while changing the name box to square, either of the
following replacement commands does the trick. The first example illustrates how

\(and \) can be used to save whatever pattern was actually matched. The second
example shows how you can search for one pattern but change another:

:g/mg\([ira]\)box/s//mg\1square/g

mgisquare routine,

mgrsquare routine,

mgasquare routine,

The global replacement keeps track of whether an i, r, or a is saved. In that way, box is
changed to square only when box is part of the routine’s name:

:g/mg[ira]bo$/s/box/square/g

mgisquare routine,

mgrsquare routine,

mgasquare routine,

This has the same effect as the previous command, but it is a little less safe since
it could change other instances of box on the same line, not just those within the
routine names.

Block Move by Patterns
You can also move blocks of text delimited by patterns. For example, assume you
have a 150-page reference manual written in a specialized version of XML. Each

page is organized into three paragraphs with the same three headings: <syntax>,

<description>, and <parameters>. A sample of one reference page follows:

<reference>

<description>Get status of named file</description>

<shortname>STAT</shortname>

<syntax>

int stat(const char *filename, struct stat *data);

...

retval = stat(filename, data);</syntax>

<description><para>

Writes the fields of a system data structure into the

structure pointed to by data.

These fields contain (among other

things) information about the file's access

privileges, owner, and time of last modification.

</para></description>

<parameters>

<param><name>filename</name>

<para>A character string variable or constant containing

the Unix pathname for the file whose status you want

to retrieve.

You can give the ...

</para></param></parameters>

</reference>

Pattern-Matching Examples | 99

7 We could have moved it to the line after </description>, using move /<\/description>/. It’s not obvious if

this is more readable or less readable.

Suppose that you decide to move <description> above the <syntax> paragraph.
With pattern matching, you can move blocks of text on all 150 pages with one
command!

:g /<syntax>/.,/<description>/-1 move /<parameters>/-1

This command works as follows. First, ex finds and marks each line that matches
the first pattern (i.e., that contains the word <syntax>). Second, for each marked

line, it sets . (dot, the current line) to that line and executes the command. This
command moves the block of lines from the current line (dot) to the line before the

one containing the word <description> (/<description>/-1) to just before the line

containing <parameters> (/<parameters>/-1).7

Note that ex can place text only below the line specified.

To tell ex to place text above a line, you first subtract one with -1, and then ex places
your text below the previous line.

In a case like this, one command saves literally hours of work. This is a real-life
example—we once used a pattern match like this to rearrange a reference manual
containing hundreds of pages.

Block definition by patterns can be used equally well with other ex commands.

For example, if you wanted to delete all <description> paragraphs in the reference
chapter, you could enter:

:g/<description>/,/<parameters>/-1d

This very powerful kind of change is implicit in ex’s line-addressing syntax, but it
is not readily apparent even to experienced users. For this reason, whenever you are
faced with a complex, repetitive editing task, take the time to analyze the problem
and determine if you can apply pattern-matching tools to get the job done.

More Examples
Since the best way to learn pattern matching is by example, here is a list of pattern-
matching examples, with explanations. Study the syntax carefully so that you under‐
stand the principles at work. You should then be able to adapt these examples to your
own situation.

100 | Chapter 6: Global Replacement

A Word About tro�
The standard text formatting tools on Unix are troff, for typesetters and laser
printers, and its twin brother nroff, for terminals and line printers. They accept the
same input language.

Input for troff consists of text to be formatted intermingled with command lines
and escape sequences (such as to italicize or embolden text).

Once upon a time, knowledge of and skill with troff and nroff were a required part
of becoming a <Unix wizard.= Over time, their use has fallen off, but they remain
necessary for one critical task: authoring manual pages.

So, while we’ve reduced the number of troff-related examples in the book, we haven’t
removed all of them. We hope the ones that remain will be helpful to you.

1. Put troff italicization codes around the word ENTER:1.

:%s/ENTER/\\fI&\\fP/g

Notice that two backslashes (\\) are needed in the replacement, because the
backslash in the troff italicization code will be interpreted as a special character.
(\fI alone would be interpreted as fI; you must type \\fI to get \fI.)

2. Modify a list of pathnames in a file:2.

:%s/\/home\/tim/\/home\/linda/g

A slash (used as a delimiter in the global replacement sequence) must be escaped
with a backslash when it is part of the pattern or replacement; use \/ to get /.
An alternate way to achieve this same effect is to use a different character as
the pattern delimiter. For example, you could make the previous replacement
using colons as delimiters. (The delimiter colons and the ex command colon are
separate entities.) Thus:

:%s:/home/tim:/home/linda:g

This is much more readable.

3. Put HTML italicization codes around the word ENTER:3.

:%s:ENTER:<I>&</I>:g

Notice here the use of & to represent the text that was actually matched and, as
just described, the use of colons as delimiters instead of slashes.

4. Change all periods to semicolons in lines 1 to 10:4.

:1,10s/\./;/g

A dot has special meaning in regular expression syntax and must be escaped with
a backslash (\.).

Pattern-Matching Examples | 101

5. Change all occurrences of the word help (or Help) to HELP:5.

:%s/[Hh]elp/HELP/g

or:

:%s/[Hh]elp/\U&/g

The \U changes the pattern that follows to all uppercase. The pattern that follows
is the replayed search pattern, which is either help or Help.

6. Replace one or more spaces with a single space:6.

:%s/□□*/□/g

Make sure you understand how the asterisk works as a special character.
An asterisk following any character (or following any regular expression that
matches a single character, such as . or [[:lower:]]) matches zero or more
instances of that character. Therefore, you must specify two spaces followed by an
asterisk to match one or more spaces (one space, plus zero or more spaces).

7. Replace one or more spaces following a colon with exactly two spaces:7.

:%s/:□□*/:□□/g

8. Replace one or more spaces following a period or a colon with exactly two spaces:8.

:%s/\([:.]\)□□*/\1□□/g

Either of the two characters within brackets can be matched. This character is
saved into a hold buffer, using \(and \), and restored on the righthand side by
the \1. Note that within brackets a special character such as a dot does not need
to be escaped.

9. Standardize various uses of a word or heading:9.

:%s/^Note[□:s]*/Notes:□/g

The brackets enclose three characters: a space, a colon, and the letter s. There‐
fore, the pattern Note[□s:] matches Note□, Notes, or Note:. An asterisk is added
to the pattern so that it also matches Note (with zero spaces after it) and Notes:
(the already correct spelling). Without the asterisk, Note would be missed entirely
and Notes: would be incorrectly changed to Notes:□:. Simultaneously, this trun‐
cates multiple spaces down to one, so that Note:□□ becomes Notes:□.

10. Delete all empty lines:10.

:g/^$/d

What you are actually matching here is the beginning of the line (^) followed by
the end of the line ($), with nothing in between.

11. Delete all empty lines, plus any lines that contain only whitespace:11.

:g/^[□tab]*$/d

102 | Chapter 6: Global Replacement

In the example, a tab is shown as tab. A line may appear to be empty but may
in fact contain spaces or tabs. The previous example does not delete such a line.
This example, like the previous one, searches for the beginning and end of the
line. But instead of having nothing in between, the pattern tries to find any
number of spaces or tabs. If no spaces or tabs are matched, the line is empty.
To delete lines that contain whitespace but that aren’t empty, you would have to
match lines with at least one space or tab:

:g/^[□tab][□tab]*$/d

12. Delete all leading spaces on every line:12.

:%s/^□□*\(.*\)/\1/

Use ^□□* to search for one or more spaces at the beginning of each line; then
use \(.*\) to save the rest of the line into the first hold buffer. Restore the line
without leading spaces, using \1. This can be done more simply with s/^□□*//.

13. Delete all spaces at the end of every line:13.

:%s/□□*$//

For each line, remove one or more spaces at the end of the line.

Because of the ^ and $ anchors, the substitutions in this example and the previ‐
ous one happen only once on any given line, so the g option doesn’t need to
follow the replacement string.

14. Insert a //□ at the start of each line from the current line to the next line that14.
starts with }:

:.,/^}/s;^;//□;

What we’re really doing here is <replacing= the start of the line with //□. Of
course, the start of the line (being a logical construct, not an actual character)
isn’t really replaced!

What this does is comment-out all lines from the current line (dot) to the next
line that starts with a right (closing) brace, using C++ // comments. Typically,
you’d use this by placing the cursor at the first line of a function definition to
comment-out an entire function.

Note the use of a semicolon as the delimiter for the substitute command when
the substitution text contains one or more slashes.

15. Add a period to the end of the next six lines:15.

:.,+5s/$/./

The line address indicates the current line plus five lines. The $ indicates the end
of line. As in the previous example, the $ is a logical construct. You aren’t really
replacing the end of the line.

16. Reverse the order of all hyphen-separated items in a list:16.

Pattern-Matching Examples | 103

8 From an article by Walter Zintz in UnixWorld, May 1990.

:%s/\(.*\)□-□\(.*\)/\2□-□\1/

Use \(.*\) to save text on the line into the first hold buffer, but only until you
find □-□. Then use \(.*\) to save the rest of the line into the second hold buffer.
Restore the saved portions of the line, reversing the order of the two hold buffers.
The effect of this command on several items is shown here:

more - display files

becomes:

display files - more

and:

lp - print files

becomes:

print files - lp

This can be done even more succinctly:

:%s/\(.*\)\(□-□\)\(.*\)/\3\2\1/

17. Change every letter in a file to uppercase:17.

:%s/.*/\U&/

or:

:%s/./\U&/g

The \U flag at the start of the replacement string tells the editor to change the
replacement to uppercase. The & character replays the text matched by the search
pattern as the replacement.

These two commands are equivalent; however, the first form is considerably
faster, since it results in only one substitution per line (.* matches the entire line,
once per line), whereas the second form results in repeated substitutions on each
line (. matches only a single character, with the replacement repeated on account
of the trailing g).

18. Reverse the order of lines in a file:818.

:g/.*/mo0

The search pattern matches all lines (a line contains zero or more characters).
Each line is moved, one by one, to the top of the file (that is, moved after
imaginary line zero). As each matched line is placed at the top, it pushes the
previously moved lines down, one by one, until the last line is on top. Since all
lines have a beginning, the same result can be achieved more succinctly:

:g/^/mo0

104 | Chapter 6: Global Replacement

19. In a text-file database, on all lines not marked Paid in full, append the phrase19.
Overdue:

:g!/Paid in full/s/$/ Overdue/

or the equivalent:

:v/Paid in full/s/$/ Overdue/

To affect all lines except those matching your pattern, you add a ! to the :g
command, or you can just use the v command.

20. For any line that doesn’t begin with a number, move the line to the end of the file:20.

:g!/^[[:digit:]]/m$

or:

:g/^[^[:digit:]]/m$

As the first character within brackets, a caret negates the sense, so the two
commands have the same effect. The first one says, <Don’t match lines that begin
with a number,= and the second one says, <Match lines that don’t begin with a
number.=

Note that there is a rather subtle difference between the commands. The first one
affects empty lines; the second one does not. How so? /^[[:digit:]]/ matches
lines that start with a digit. The ! after the :g negates that, matching lines that
don’t start with a digit. This includes empty lines. However, /^[^[:digit:]]/
matches lines that start with a nondigit character; in order to match, there has to
be a character present on the line.

21. Change manually numbered section heads (e.g., 1.1, 1.2, etc.) to HTML <h1>21.
heading markers:

:%s;^[1-9]\.[1-9] \(.*\);<h1>\1</h1>;

The search string matches a digit other than zero, followed by a period, followed
by another nonzero digit, followed by a space, followed by anything. The com‐
mand just shown won’t find chapter numbers containing two or more digits. To
do so, modify the command like this:

:%s;^[1-9][0-9]*\.[1-9] \(.*\);<h1>\1</h1>;

Now it matches chapters 10 to 99 (digits 1 to 9, followed by a digit), 100 to
999 (digits 1 to 9, followed by two digits), and so on. The command still finds
chapters 1 to 9 (digits 1 to 9, followed by no digit) as well.

22. Remove numbering from section headings in a document. You want to change22.
the sample lines:

2.1 Introduction

10.3.8 New Functions

into the lines:

Pattern-Matching Examples | 105

Introduction

New Functions

Here’s the command to do this:

:%s/^[1-9][0-9]*\.[1-9][0-9.]*□//

The search pattern resembles the one in the previous example, but now the
numbers vary in length. At a minimum, the headings contain number, period,
number, so you start with the search pattern from the previous example:

[1-9][0-9]*\.[1-9]

But in this example, the heading may continue with any number of digits or
periods:

[0-9.]*

23. Change the word Fortran to the phrase FORTRAN (acronym of FORmula23.
TRANslation):

:%s/\(For\)\(tran\)/\U\1\2\E□(acronym□of□\U\1\Emula□\U\2\Eslation)/g

First, since we notice that the words FORmula and TRANslation use portions
of the original words, we decide to save the search pattern in two pieces:
\(For\) and \(tran\). The first time we restore it, we use both pieces together,
converting all characters to uppercase: \U\1\2. Next, we undo the uppercase
with \E; otherwise, the remaining replacement text would all be uppercase. The
replacement continues with actual typed words, and then we restore the first
hold buffer. This buffer still contains For, so again we convert to uppercase first:
\U\1. Immediately after, we lowercase the rest of the word: \Emula. Finally, we
restore the second hold buffer. This contains tran, so we precede the <replay=
with uppercase, follow it with lowercase, and type out the rest of the word:
\U\2\Eslation).

A Final Look at Pattern Matching
We conclude this chapter by presenting sample tasks that involve complex pattern-
matching concepts. Rather than solve the problems right away, we’ll work toward the
solutions step by step.

Deleting an Unknown Block of Text
Suppose you have a few lines with this general form:

the best of times; the worst of times: moving

The coolest of times; the worst of times: moving

The lines that you’re concerned with always end with moving, but you never know
what the first two words might be. You want to change any line that ends with moving
to read:

106 | Chapter 6: Global Replacement

9 More formally, the longest, le�most text is what matches.

The greatest of times; the worst of times: moving

Since the changes must occur on certain lines, you need to specify a context-sensitive
global replacement. Using :g/moving$/ matches lines that end with moving. Next,
you realize that your search pattern could be any number of any character, so the
metacharacters .* come to mind. But these match the whole line unless you some‐
how restrict the match. Here’s your first attempt:

:g/moving$/s/.*of/The□greatest□of/

This search string, you decide, will match from the beginning of the line to the first
of. Since you needed to specify the word of to restrict the search, you simply repeat it
in the replacement. Here’s the resulting line:

The greatest of times: moving

Something went wrong! The replacement gobbled the line up to the second of instead
of the first. Here’s why: when given a choice, the action of <match any number of any
character= matches as much text as possible.9 In this case, since the word of appears
twice, your search string finds:

the best of times; the worst of

rather than:

the best of

Your search pattern needs to be more restrictive:

:g/moving$/s/.*of□times;/The□greatest□of□times;/

Now the .* matches all characters up to the instance of the phrase of times;. Since
there’s only one instance, it has to be the first.

There are cases, though, when it is inconvenient, or even incorrect, to use the .*
metacharacters. For example, you might find yourself typing many words to restrict
your search pattern, or you might be unable to restrict the pattern by specific words
(if the text in the lines varies widely). The next section presents such a case.

Switching Items in a Textual Database
Suppose you want to switch the order of all last names and first names in a (text)
database. The lines look like this:

Name: Feld, Ray; Areas: PC, Unix; Phone: 765-4321

Name: Joy, Susan S.; Areas: Graphics; Phone: 999-3333

Each field name ends with a colon, and each field is separated by a semicolon. Using
the top line as an example, you want to change Feld, Ray to Ray Feld. We’ll present

A Final Look at Pattern Matching | 107

some commands that look promising but don’t work. After each command, we show
you the line the way it looked before the change and after the change:

:%s/: \(.*\), \(.*\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, Unix; Phone: 765-4321 Before

Name: Unix Feld, Ray; Areas: PC; Phone: 765-4321 A�er

We’ve highlighted the contents of the first hold buffer in bold and the contents of the
second hold buffer in italic. Note that the first hold buffer contains more than you
want. Since it was not sufficiently restricted by the pattern that follows it, the hold
buffer was able to save up to the second comma. Now you try to restrict the contents
of the first hold buffer:

:%s/: \(....\), \(.*\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, Unix; Phone: 765-4321 Before

Name: Ray; Areas: PC, Unix Feld; Phone: 765-4321 A�er

Here you’ve managed to save the last name in the first hold buffer, but now the
second hold buffer saves anything up to the last semicolon on the line. Now you
restrict the second hold buffer, too:

:%s/: \(....\), \(...\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, Unix; Phone: 765-4321 Before

Name: Ray Feld; Areas: PC, Unix; Phone: 765-4321 A�er

This gives you what you want, but only in the specific case of a four-letter last name
and a three-letter first name. (The previous attempt included the same mistake.) Why
not just return to the first attempt, but this time be more selective about the end of
the search pattern?

:%s/: \(.*\), \(.*\); Area/: \2 \1; Area/

Name: Feld, Ray; Areas: PC, Unix; Phone: 765-4321 Before

Name: Ray Feld; Areas: PC, Unix; Phone: 765-4321 A�er

This works, but we’ll continue the discussion by introducing an additional concern.
Suppose that the Area field isn’t always present or isn’t always the second field. The
command just shown won’t work on such lines.

We introduce this problem to make a point. Whenever you rethink a pattern match,
it’s usually better to work toward refining the variables (the metacharacters), rather
than using specific text to restrict patterns. The more variables you use in your
patterns, the more powerful your commands will be.

In the current example, think again about the patterns you want to switch. Each word
starts with an uppercase letter and is followed by any number of lowercase letters, so
you can match the names like this:

[[:upper:]][[:lower:]]*

108 | Chapter 6: Global Replacement

A last name might also have more than one uppercase letter (McFly, for example), so
you’d want to search for this possibility in the second and succeeding letters:

[[:upper:]][[:alpha:]]*

It doesn’t hurt to use this for the first name, too (you never know when McGeorge
Bundy will turn up). Your command now becomes:

:%s/: \([[:upper:]][[:alpha:]]*\), \([[:upper:]][[:alpha:]]*\);/: \2 \1;/

Quite forbidding, isn’t it? It still doesn’t cover the case of a name like Joy, Susan S.
Since the first-name field might include a middle initial, you need to add a space
and a period within the second pair of brackets. But enough is enough. Sometimes,
specifying exactly what you want is more difficult than specifying what you don’t
want. In your sample database, the last names end with a comma, so a last-name field
can be thought of as a string of characters that are not commas:

[^,]*

This pattern matches characters up until the first comma. Similarly, the first-name
field is a string of characters that are not semicolons:

[^;]*

Putting these more efficient patterns back into your previous command, you get:

:%s/: \([^,]*\), \([^;]*\);/: \2 \1;/

The same command could also be entered as a context-sensitive replacement. If all
lines begin with Name, you can say:

:g/^Name/s/: \([^,]*\), \([^;]*\);/: \2 \1;/

You can also add an asterisk after the first space, in order to match a colon that has
extra spaces (or no spaces) after it:

:g/^Name/s/: *\([^,]*\), \([^;]*\);/: \2 \1;/

Using :g to Repeat a Command
In the usual way we’ve seen the :g command used, it selects lines that are typically
then edited by subsequent commands on the same ex command line—for example,
we select lines with :g and then make substitutions on them, or we select them and
delete them:

:g/mg[ira]box/s/box/square/g

:g/^$/d

A Final Look at Pattern Matching | 109

10 Part 1, <vi Tips for Power Users,= appears in the April 1990 issue of UnixWorld; Part 2, <Using vi to Automate
Complex Edits,= appears in the May 1990 issue. The examples presented are from Part 2. The tutorial is
available in this book’s GitHub repository.

However, in his two-part tutorial in UnixWorld,10 Walter Zintz makes an interesting
point about the :g command. This command selects lines, but the associated editing
commands need not actually affect the lines that are selected.

Instead, he demonstrates a technique by which you can repeat ex commands some
arbitrary number of times. For example, suppose you want to place 10 copies of lines
12 through 17 of your file at the end of your current file. You could type:

:1,10g/^/ 12,17t$

This is a very unexpected use of :g, but it works! The :g command selects line 1,
executes the specified t command, and then goes on to line 2 to execute the next copy
command. When line 10 is reached, ex will have made 10 copies.

Collecting Lines
Here’s another advanced :g example, again building on suggestions provided in
Zintz’s tutorial. Suppose you’re editing a document that consists of several parts.
Part 2 of this file is shown here, using ellipses to show omitted text and displaying
line numbers for reference:

301 Part 2

302 Capability Reference

303 .LP

304 Chapter 7

305 Introduction to the Capabilities

306 This and the next three chapters ...

400 ... and a complete index at the end.

401 .LP

402 Chapter 8

403 Screen Dimensions

404 Before you can do anything useful

405 on the screen, you need to know ...

555 .LP

556 Chapter 9

557 Editing the Screen

558 This chapter discusses ...

821 .LP

822 Part 3

823 Advanced Features

824 .LP

825 Chapter 10

826

110 | Chapter 6: Global Replacement

https://www.github.com/learning-vi/vi-files

Each chapter number appears on one line, the chapter title appears on the line below,
and the chapter text (marked in bold for emphasis) begins on the line below that. The
first thing you’d like to do is copy the beginning line of each chapter, sending it to an
already existing file called begin.

Here’s the command that does this:

:g /^Chapter/ .+2w >> begin

You must be at the top of your file before issuing this command. First, you search
for Chapter at the start of a line, but then you want to run the command on the begin‐
ning line of each chapter—the second line below Chapter. Because a line beginning
with Chapter is now selected as the current line, the line address .+2 indicates the
second line below it. The equivalent line addresses +2 or ++ work as well. You want to
write these lines to an existing file named begin, so you issue the w command with the
append operator >>.

Suppose you want to send the beginnings of chapters that are only within Part 2. You
need to restrict the lines selected by :g, so you change your command to this:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin

Here, the :g command selects the lines that begin with Chapter, but it searches only
that portion of the file from a line starting with Part 2 through a line starting with
Part 3. If you issue the command just shown, the last lines of the file begin will read as
follows:

This and the next three chapters ...

Before you can do anything useful

This chapter discusses ...

These are the lines that begin Chapters 7, 8, and 9.

In addition to the lines you’ve just sent, you’d like to copy chapter titles to the end of
the document, in preparation for making a table of contents. You can use the vertical
bar to tack on a second command after your first command, like so:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin | +t$

Remember that with any subsequent command, line addresses are relative to the
previous command. The first command has marked lines (within Part 2) that start
with Chapter, and the chapter titles appear on a line below such lines. Therefore, to
access chapter titles in the second command, the line address is + (or the equivalents
+1 or .+1). Then use t$ to copy the chapter titles to the end of the file.

As these examples illustrate, thought and experimentation may lead you to some
unusual editing solutions. Don’t be afraid to try things. Just be sure to back up
your file first! Of course, with the infinite <undo= facility in Vim, you may not even
need to save a backup copy; see the section <Extended Undo= on page 180 for more
information.

A Final Look at Pattern Matching | 111

CHAPTER 7

Advanced Editing

This chapter introduces you to some of the more advanced capabilities of vi and
Vim and the ex editor underlying them. You should be reasonably familiar with the
material presented in the earlier chapters of this book before you start working with
the concepts presented here.

As we did in earlier chapters, this chapter presents facilities common to all versions
of vi, but in the context of Vim. When you see <vi= by itself here, you can generally
read it as <vi and Vim.=

We have divided this chapter into five parts. The first part discusses a number of
ways to set options that allow you to customize your editing environment. You’ll
learn how to use the set command and how to create a number of different editing
environments using .exrc files.

The second part discusses how you can execute Unix commands from within the
editor, and how you can use the editor to filter text through Unix commands.

The third part discusses various ways to save long sequences of commands by reduc‐
ing them to abbreviations, or even to commands that use only one keystroke (this is
called mapping keys). It also includes a section on @-functions, which allow you to
store command sequences in a register.

The fourth part discusses the use of ex scripts from the Unix command line or from
within shell scripts. Scripting provides a powerful way to make repetitive edits.

The fifth part discusses some features that are especially useful to programmers.
There are options that control line indentation and an option to display invisible
characters (specifically tabs and newlines). There are search commands that are
useful with program code blocks or with C and C++ functions.

113

1 The location of this database varies from vendor to vendor. Try the command man terminfo to get more
information about your specific system.

Customizing vi and Vim
vi and Vim operate differently on various terminals.

On modern Unix systems, the editor gets operating instructions about your terminal
type from the terminfo terminal database.1

There are also a number of options that you can set from within the editor that affect
how it operates. For example, you can set a right margin that causes vi to wrap lines
automatically so you don’t need to hit ENTER .

You change options from within the editor by using the ex command :set. In
addition, whenever vi and Vim start up, they read a file in your home directory
called .exrc for further operating instructions. By placing :set commands in this file,
you can modify the way the editor acts whenever you use it.

You can also set up .exrc files in local directories to initialize various options that
you want to use in different environments. For example, you might define one set
of options for editing English text, and another set for editing source programs.
The .exrc file in your home directory is executed first, and then the one in your
current directory.

Finally, any commands stored in the environment variable EXINIT are executed on
startup. The settings in EXINIT take precedence over those in the home directory .exrc
file.

The :set Command
There are two types of options that can be changed with the :set command: toggle
options, which are either on or off, and options that take a numeric or string value
(such as the location of a margin or the name of a file).

Toggle options may be on or off by default. To turn a toggle option on, the command
is:

:set option

To turn a toggle option off, the command is:

:set nooption

For example, to specify that pattern searches should ignore case, type:

:set ic

114 | Chapter 7: Advanced Editing

2 The result of :set all depends very much on the version of vi you have. This particular display is typical

of Unix vi. The order is alphabetical going down the columns, ignoring any leading no. Vim has many more
options than what is shown here.

If you want vi to return to being case sensitive in searches, give the command:

:set noic

Many options have both complete names and abbreviations. In the previous example,
ic is short for ignorecase; you could also have entered set ignorecase to ignore
case, and set noignorecase to restore the default behavior.

Vim lets you toggle the value of an option with:

:set option!

Some options have a value assigned to them. For example, the window option sets the
number of lines shown in the screen’s <window.= You set values for these options with
an equals sign (=):

:set window=20

During an editing session, you can check which options are in use. The command:

:set all

displays the complete list of options, including options that you have set and defaults
that the editor has <chosen.=

The display should look something like this:2

autoindent nomodelines noshowmode

autoprint nonumber noslowopen

noautowrite open nosourceany

nobeautify nooptimize tabstop=8

directory=/var/tmp paragraphs=IPLPPPQPP LIpplpipbp taglength=0

noedcompatible prompt tags=tags /usr/lib/tags

noerrorbells noreadonly term=xterm

noexrc redraw noterse

flash remap timeout

hardtabs=8 report=5 ttytype=xterm

noignorecase scroll=11 warn

nolisp sections=NHSHH HUnhsh window=23

nolist shell=/bin/bash wrapscan

magic shiftwidth=8 wrapmargin=0

mesg showmatch nowriteany

You can find out the current value of any individual option by name, using the
command:

:set option?

The command:

:set

Customizing vi and Vim | 115

3 The original versions of vi automatically read both files, if they existed. The exrc option closes a potential
security hole.

shows options that you have specifically changed, or set, either in your .exrc file or
during the current session. For example, the display might look like this:

number sect=AhBhChDh window=20 wrapmargin=10

The .exrc File
The .exrc file that controls your own editing environment is in your home directory.
You can modify the .exrc file with Vim, just as you can any other text file. (Of course,
any new settings don’t take effect until you restart Vim or explicitly reread the file
with the :source command.)

If you don’t yet have an .exrc file, simply create one as you would any other file. Enter
into this file the set, ab, and map commands that you want to have in effect whenever
you edit. (ab and map are discussed later in this chapter.) A sample .exrc file might
look like this:

set nowrapscan wrapmargin=7

set sections=SeAhBhChDh nomesg

map q :w^M:n^M

ab ORA O'Reilly Media, Inc.

Since the file is actually read by ex before it enters visual mode (vi), commands
in .exrc need not have a preceding colon.

Alternate Environments
In addition to reading the .exrc file in your home directory, the editor will read a file
called .exrc in the current directory. This lets you set options that are appropriate to a
particular project.

In all modern versions of vi, including Vim, you have to first set the exrc option in
your home directory’s .exrc file before the editor will read the .exrc file in the current
directory:

set exrc

This mechanism prevents other people from placing an .exrc file into your working
directory whose commands might jeopardize the security of your system.3

For example, you might want to have one set of options in a directory mainly used for
programming:

set number autoindent sw=4 terse

set tags=/usr/lib/tags

and another set of options in a directory used for text editing:

116 | Chapter 7: Advanced Editing

4 On a computer, entering a carriage return means pressing the ENTER key. The term comes from typewriters,
where, upon finishing a line, you used a lever to shift the paper up one line and return the carriage (the part

set wrapmargin=15 ignorecase

Note that you can set certain options in the .exrc file in your home directory and
unset them in a local directory.

You can also define alternate editing environments by saving option settings in a
file other than .exrc and reading in that file with the :so command. (so is short for
source.)

For example:

:so .progoptions

The editor does not use a search path to find files for :so. Thus, filenames that do not
start with a / are considered to be relative to the current directory.

Local .exrc files are also useful for defining abbreviations and key mappings
(described later in this chapter). Authors using a markup language to write a book
or other document can easily save all the abbreviations to be used in that book in
an .exrc file in the directory in which the book is being created.

Note that this assumes all the book’s files are in the same directory. If they are divided
among subdirectories, you’d have to copy the .exrc file to each subdirectory, or do
something different, like using Vim’s autocmd feature, which allows you to set options
or perform actions based on the filename extension of the file you’re editing. This
makes it easy to customize your editing one way for, say, DocBook XML, and another
way for, say, AsciiDoc or LaTeX. See the section <Autocommands= on page 300.

Some Useful Options
As you can see when you type :set all, there are an awful lot of options that can
be set. Many of them are used internally by the editor and aren’t usually changed.
Others are important in certain cases but not in others (for example, noredraw and
window can be useful over a cross-continental ssh session). Table B-1 in the section
<Heirloom and Solaris vi Options= on page 461 contains a brief description of each
option. We recommend that you take some time to play with setting options. If an
option looks interesting, try setting it (or unsetting it) and watch what happens while
you edit. You may find some surprisingly useful tools.

As discussed earlier in the section <Movement Within a Line= on page 20, one option,
wrapmargin, is essential for editing nonprogram text. wrapmargin specifies the size
of the right margin that is used to autowrap text as you type. (This saves manually
typing carriage returns.)4 A typical value is 7 to 15:

Customizing vi and Vim | 117

holding the paper) back to the beginning of the line. This is the genesis of the ASCII characters LF and CR
(linefeed and carriage return).

:set wrapmargin=10

Three other options control how the editor acts when conducting a search. Normally,
a search differentiates between uppercase and lowercase (foo does not match Foo),
wraps around to the beginning of the file (meaning that you can begin your search
anywhere in the file and still find all occurrences), and recognizes wildcard char‐
acters when pattern matching. The default settings that control these options are
ignorecase, wrapscan, and magic, respectively. To change any of these defaults, you
would set the opposite toggle options: noignorecase, nowrapscan, and nomagic.

Options that may be of particular interest to programmers include autoindent,
expandtab, list, number, shiftwidth, showmatch, and tabstop, as well as their
opposite toggle options.

Finally, consider using the autowrite option. When set, the editor automatically
writes out the contents of a changed buffer when you issue the :n (next) command to
move to the next file to be edited, and before running a shell command with :!.

Executing Unix Commands
You can display or read in the results of any Unix command while you are editing. An
exclamation mark (!) tells ex to create a shell and to regard what follows as a Unix
command:

:!command

So if you are editing and you want to double-check the current directory without
exiting vi, you can enter:

:!pwd

The full path of the current directory appears on your screen; press ENTER to
continue editing at the same place in your file.

If you want to give several Unix commands in a row without returning to the editing
session in between, you can create a shell with the following ex command:

:sh

When you want to exit the shell and return to vi, press CTRL-D . (This works even
from within gvim, the GUI version of Vim.)

118 | Chapter 7: Advanced Editing

You can combine :read with a call to the shell to read the results of a Unix command
into your file. As a very simple example:

:read !date

or more simply:

:r !date

reads the system’s date information into the text of your file. By preceding the :r
command with a line address, you can read the result of the command in at any
desired point in your file. By default, it is brought in after the current line.

Suppose you are editing a file and want to read in four phone numbers from a file
called phone, but in alphabetical order. phone reads:

Willing, Sue 333-4444

Walsh, Linda 555-6666

Quercia, Valerie 777-8888

Dougherty, Nancy 999-0000

The command:

:r !sort phone

reads in the contents of phone after they have been passed through the sort filter:

Dougherty, Nancy 999-0000

Quercia, Valerie 777-8888

Walsh, Linda 555-6666

Willing, Sue 333-4444

Suppose you are editing a file and want to insert text from another file in the
directory, but you can’t remember the new file’s name. You could perform this task the
long way: exit your file, give the ls command, note the correct filename, reenter your
file, and search for your place.

Or you could do the task in fewer steps:

Keystrokes Results

:!ls file1 file2 letter

newfile practice

Display a list of �les in the current directory. Note the correct �lename. Press ENTER to continue
editing.

:r newfile "newfile" 35L, 1569C 2,1 Top

Read in the new �le.

Executing Unix Commands | 119

One of the authors very often combines the r command with %
as the filename to make it easy to correct spelling errors in a
document:

:w

:$r !spell %

This saves the file and then reads the output of the spell com‐
mand on the file into the buffer at the end. (On some systems you
might want to use :r !spell % | sort -u to get a sorted list of
misspelled words.)

With the list of misspelled words in the buffer, our author then
goes through them one by one, searching through the file and
correcting errors, and deleting each word from the list when done.

Filtering Text Through a Command
You can also send a block of text as standard input to a Unix command. The output
from this command replaces the block of text in the buffer. You can filter text through
a command from either ex or vi. The main difference between the two methods is
that you indicate the block of text with line addresses in ex and with text objects
(movement commands) in vi.

Filtering text with ex

The first example demonstrates how to filter text with ex. Assume that the list of
names in the preceding example, instead of being contained in a separate file called
phone, is already contained in the current file on lines 96 through 99. You simply type
the addresses of the lines you want to filter, followed by an exclamation mark and the
shell command to be executed. For example, the command:

:96,99!sort

passes lines 96 through 99 through the sort filter and replaces those lines with the
output of sort.

Filtering text with vi motion commands

In vi mode, text is filtered through a Unix command by typing an exclamation mark
followed by any of the vi movement keystrokes that indicate a block of text, and then
by the shell command line to be executed. For example:

!)command

passes the next sentence through command.

120 | Chapter 7: Advanced Editing

5 Of course, there’s always an exception. In this example, Vim changes only the current line.

There are a few unusual aspects of the way vi acts when you use this feature:

• The exclamation mark doesn’t appear on your screen right away. When you type•
the keystroke(s) for the text object you want to filter, the exclamation mark
appears at the bottom of the screen, but the character you type to reference the
object does not.

• Text blocks must be more than one line, so you can use only the keystrokes•
that move more than one line (G, { }, (), [[]], +, -). To repeat the effect,
a number may precede either the exclamation mark or the text object. (For
example, both !10+ and 10!+ indicate the next 10 lines.) Objects such as w do
not work unless enough of them are specified so as to exceed a single line. You
can also use a slash (/) followed by a pattern and a carriage return to specify the
object. This takes the text up to the pattern as input to the command.

• Entire lines are affected. For example, if your cursor is in the middle of a line•
and you issue a command to go to the end of the next sentence, the entire
lines containing the beginning and end of the sentence are changed, not just the
sentence itself.5

• There is a special text object that can be used only with this command syntax;•
you can specify the current line by entering a second exclamation mark:

!!command

Remember that either the entire sequence or the text object can be preceded by a
number to repeat the effect. For instance, to change lines 96 through 99 as in the
previous example, you could position the cursor on line 96 and enter either:

4!!sort

or:

!4!sort

As another example, assume you have a portion of text in a file that you want to
change from lowercase to uppercase letters. You could process that portion with
the tr command to change the case. In this example, the second sentence is the
block of text to be filtered through the command:

One sentence before.

With a screen editor you can scroll the page

move the cursor, delete lines, insert characters,

and more, while seeing the results of your edits

as you make them.

One sentence after.

Executing Unix Commands | 121

Keystrokes Results

!) One sentence after.

~

~

~

.,.+4!

Line numbers and an exclamation mark appear on the last line to prompt you for
the shell command. The) indicates that a sentence is the unit of text to be �ltered.

tr '[:lower:]' '[:upper:]' One sentence before.

WITH A SCREEN EDITOR YOU CAN SCROLL THE PAGE

MOVE THE CURSOR, DELETE LINES, INSERT CHARACTERS,

AND MORE, WHILE SEEING THE RESULTS OF YOUR EDITS

AS YOU MAKE THEM.

One sentence after.

Enter the shell command and press ENTER . The input is replaced by the output.

To repeat the previous command, the syntax is:

! object !

It is sometimes useful when editing electronic mail to filter your text through the fmt
program to <beautify= it before sending the message. Remember that the <original=
input is replaced by the output. Fortunately, if there is a mistake—such as an error
message being sent instead of the expected output—you can undo the command and
restore the lines.

Saving Commands
Often you type the same long phrases over and over in a file. There are a number of
different ways of saving long sequences of commands, both in command mode and
in insert mode. When you call up one of these saved sequences to execute it, all you
do is type a few characters (or even only one), and the entire sequence is executed as
if you had entered the whole sequence of commands one by one.

Word Abbreviation
You can define abbreviations that the editor will automatically expand into the full
text whenever you type the abbreviation in insert mode. To define an abbreviation,
use this ex command:

:ab abbr phrase

abbr is an abbreviation for the specified phrase. The sequence of characters that make
up the abbreviation is expanded in insert mode only if you type it as a full word; abbr
is not expanded within a word.

122 | Chapter 7: Advanced Editing

Suppose in the file practice you want to enter text that contains a frequently recurring
phrase, such as a difficult product or company name. The command:

:ab imrc International Materials Research Center

abbreviates International Materials Research Center to the initials imrc. Now whenever
you type imrc in insert mode, imrc expands to the full text:

Keystrokes Results

ithe imrc the International Materials Research Center

Abbreviations expand as soon as you press a nonalphanumeric character (e.g., punc‐
tuation), a space, a carriage return, or ESC (returning to command mode). When
you are choosing abbreviations, choose combinations of characters that don’t ordi‐
narily occur while you are typing text. If you create an abbreviation that ends up
expanding in places where you don’t want it to, you can disable the abbreviation by
typing:

:unab abbr

(The abbreviation is expanded when you hit ENTER for the :unab command, but
don’t worry—it is still disabled correctly.) To list your currently defined abbreviations,
type:

:ab

The characters that compose your abbreviation cannot also appear at the end of your
phrase. For example, if you issue the command:

:ab PG This movie is rated PG

vi gives you the message <No tail recursion,= and the abbreviation won’t be set.
The message means that you have tried to define something that will expand itself
repeatedly, creating an infinite loop. If you issue the command:

:ab PG the PG rating system

you won’t get a warning message.

When tested, we obtained the following results on these vi versions:

Solaris /usr/xpg7/bin/vi and <Heirloom= vi
The tail recursive version is not allowed, while the version with the name in the
middle of the expansion expands only once.

Vim
Both forms are detected and expand only once.

If you are using Unix vi, we recommend that you test your version before repeating
your abbreviation as part of the defined phrase.

Saving Commands | 123

Using the map Command
While you’re editing, you may find that you are using a command sequence fre‐
quently, or that you occasionally use a very complex command sequence. To save
yourself keystrokes, or the time that it takes to remember the sequence, you can
assign the sequence to an unused key by using the map command.

The map command acts a lot like ab except that you define a macro for command
mode instead of for insert mode:

:map x sequence
Define character x as a sequence of editing commands.

:unmap x
Disable the sequence defined for x.

:map

List the characters that are currently mapped.

Before you can start creating your own maps, you need to know the keys that vi
doesn’t use in command mode that are available for user-defined commands:

Letters

g, K, q, V, and v

Control keys

^A, ^K, ^O, ^W, and ^X

Symbols

_, *, \, and =

Vim does use all of these characters, except for ^K, ^_, and \.

The = is used by vi if Lisp mode is set, and to do text formatting
by Vim. In many modern versions of vi, the _ is equivalent to the
^ command, and Vim has a <visual mode= that uses the v, V, and
^V keys. (See the section <Visual Mode Motion= on page 175.) The
moral is to test your version carefully.

Depending on your terminal, you may also be able to associate map sequences with
special function keys. You can also map keys that the command mode already uses,
but in that case you lose access to the key’s default function; we show an example
later, in the section <More Examples of Mapping Keys= on page 128. The section
<Several Convenience Maps= on page 339 provides some additional, more heavy-duty
mapping examples.

124 | Chapter 7: Advanced Editing

With maps, you can create simple or complex command sequences. As a simple
example, you could define a command to reverse the order of words. In vi, with the
cursor as shown:

you can the scroll page

the sequence to put the after scroll would be dwelp: delete word, dw; move to the end
of next word, e; move one space to the right, l; put the deleted word there, p. Saving
this sequence:

:map v dwelp

enables you to reverse the order of two words at any time in the editing session with
the single keystroke v .

Mapping with a Leader
Vim uses almost every key for something. This can make it tricky or confusing to
decide what key(s) to map. Therefore, Vim provides an alternative way to map by
letting you define a map with the special variable mapleader. By default mapleader
has the value \ (a backslash).

Now you can define a key mapping without picking obscure, unused Vim keys or
sacrificing an existing Vim key/action. When defined with the mapleader, you simply
type the leader character and then the key defined in the map.

For example, suppose you want to create a mnemonic to quit Vim and choose q as the
easy-to-remember key, but you don’t want to give up using q as the starting character
for certain multicharacter Vim commands (e.g., qq to start recording a macro). To do
so, map q with the leader. Here’s how to do it:

:map <leader>q :q<cr>

You can now execute the ex command :quit with the keystrokes \q.

Set mapleader to your favorite choice if you prefer something other than \. Since
mapleader is a Vim variable, the syntax to do so is:

:let mapleader="X"

where X is your leader character of choice.

Protecting Keys from Interpretation by ex
Note that when defining a map, you cannot simply type certain keys, such as
ENTER , ESC , BACKSPACE , and DELETE , as part of the command to be map‐
ped, because these keys already have meaning within ex. If you want to include one
of these keys as part of the command sequence, you must escape the key’s normal
meaning by preceding it with CTRL-V . The keystroke ^V appears in the map as the ^

Saving Commands | 125

character. Characters following the ^V also do not appear as you expect. For example,
a carriage return appears as ^M, escape as ^[, backspace as ^H, and so on.

On the other hand, if you want to use a control character as the character to be
mapped, in most cases all you have to do is hold down the CTRL key and press the
letter key at the same time. So, for example, all you need to do to map ^A is to type:

:map CTRL-A sequence

There are, however, three control characters that must be escaped with a ^V. They are
^T, ^W, and ^X. So, for example, if you want to map ^T, you must type:

:map CTRL-V CTRL-T sequence

The use of CTRL-V applies to any ex command, not just a map command. This
means that you can type a carriage return in an abbreviation or a substitution
command. For example, the abbreviation:

:ab 123 one^Mtwo^Mthree

expands to this:

one

two

three

Here we show the sequence CTRL-V ENTER as ^M, the way it would appear on
your screen. (Vim highlights the ^M in a different color so that you can tell it’s actually
a control character.)

You can also globally add lines at certain locations. The command:

:g/^Section/s//As you recall, in^M&/

inserts, before all lines beginning with the word Section, a phrase on a separate line.
The & restores the search pattern.

Unfortunately, one character always has special meaning in ex commands, even if
you try to quote it with CTRL-V . Recall that the vertical bar (|) has special meaning
as a separator of multiple ex commands. You cannot use a vertical bar in insert mode
maps.

Now that you’ve seen how to use CTRL-V to protect certain keys inside ex com‐
mands, you’re ready to define some powerful map sequences.

A Complex Mapping Example
Assume that you have a glossary with entries like this:

map - an ex command which allows you to associate

a complex command sequence with a single key.

126 | Chapter 7: Advanced Editing

You would like to convert this glossary list to a custom XML format, so that it looks
like this:

<glossaryitem>

<name>map</name>

<para>An ex command...

The best way to define a complex map is to do the edit once manually, writing down
each keystroke that you have to type, and then re-create these keystrokes as a map.
You want to execute the following sequence:

1. Insert the <glossaryitem> tag, a newline, and the <name> tag.1.

2. Press ESC to terminate insert mode.2.

3. Move to the end of the first word (e) and add the </name> tag, a newline, and the3.
<para> tag.

4. Press ESC to terminate insert mode.4.

5. Move forward one character, off of the closing > character (l).5.

6. Remove the space, the hyphen, and the following space (3x) and capitalize the6.
next word (~).

That will be quite an editing chore if you have to repeat it more than just a few times.

With :map you can save the entire sequence so that it can be re-executed with a single
keystroke:

:map g I<glossaryitem>^M<name>^[ea</name>^M<para>^[l3x~

Note that you have to <quote= both the ESC and the ENTER characters with
CTRL-V . ^[is the sequence that appears when you type CTRL-V followed by ESC .
^M is the sequence shown when you type CTRL-V ENTER .

Now, simply typing g performs the entire series of edits. On a slow connection you
can actually see the edits happening individually. On a fast one it will seem to happen
by magic.

Don’t be discouraged if your first attempt at key mapping fails. A small error in
defining the map can give very different results from the ones you expect. Type u to
undo the edit, and then try again. (That’s exactly what we had to do while developing
this map.)

For some command input maps that make editing XML easier, see the later section
<Mapping Multiple Input Keys= on page 134.

Saving Commands | 127

6 Vim provides :wn to do this combined operation, but a :map q :wn^M would still be useful.

More Examples of Mapping Keys
The following examples give you an idea of the clever shortcuts possible when
defining keyboard maps:

1. Add text whenever you move to the end of a word:1.

:map e ea

Most of the time, the only reason you want to move to the end of a word is to
add text. This map sequence puts you in insert mode automatically. Note that the
mapped key, e, has meaning in vi. You’re allowed to map a key that is already
used by vi, but the key’s normal function is unavailable as long as the map is in
effect. This isn’t so bad in this case, since the E command is often identical to e.

2. Transpose two words:2.

:map K dwElp

We discussed this sequence earlier in the chapter, but now you need to use E
(assume here, and in the remaining examples, that the e command is mapped
to ea). Remember that the cursor begins on the first of the two words. Unfortu‐
nately, because of the l command, this sequence (and the earlier version) doesn’t
work if the two words are at the end of a line: during the sequence, the cursor
ends up at the end of the line, and l cannot move further right.

3. Save a file and edit the next one in a series:3.

:map q :w^M:n^M

(Use CTRL-V ENTER to get ^M into the map.) Notice that you can map keys
to ex commands, but be sure to finish each ex command with a carriage return.
This sequence makes it easy to move from one file to the next and is useful when
you’ve opened many short files with one vi command. Mapping the letter q helps
you remember that the sequence is similar to a <quit.=6

4. Put troff emboldening codes around a word:4.

:map v i\fB^[e\fP^[

This sequence assumes that the cursor is at the beginning of the word. First
you enter insert mode, and then you type the code for the bold font. In map com‐
mands, you don’t need to type two backslashes to produce one backslash. Next,
you return to command mode by typing a <quoted= ESC . Finally, you append
the closing troff code at the end of the word, and you return to command
mode.

128 | Chapter 7: Advanced Editing

7 From <vi Tips for Power Users= by Walter Zintz, in UnixWorld, April 1990. This is intended for parenthesized
text, not nested parenthesized equations.

Notice that when we appended to the end of the word, we didn’t need to use ea,
since this sequence is itself mapped to the single letter e. This shows you that
map sequences are allowed to contain other mapped commands. The ability to
use nested map sequences is controlled by the remap option, which is normally
enabled.

5. Put HTML emboldening codes around a word, even when the cursor is not at the5.
beginning of the word:

:map V lbi^[e^[

This sequence is similar the previous one; besides using HTML instead of troff,
it uses lb to handle the additional task of positioning the cursor at the beginning
of the word. The cursor might be in the middle of the word, so you want to
move to the beginning with the b command. But if the cursor were already at the
beginning of the word, the b command would move the cursor to the previous
word instead. To guard against that, type an l before moving back with b so that
the cursor never starts on the first letter of the word. You can define variations of
this sequence by replacing the b with B and the e with Ea. In all cases, though, the
l command prevents this sequence from working if the cursor is at the end of a
line. (You could append a space to get around this.)

6. Repeatedly find and remove parentheses from around a word or phrase:76.

:map = xf)xn

This sequence assumes that you first found an open parenthesis by typing /(fol‐
lowed by ENTER .

If you choose to remove the parentheses, use the map command: delete the open
parenthesis with x, find the closing one with f), delete it with x, and then repeat
your search for an open parenthesis with n.

If you don’t want to remove the parentheses (for example, if they’re being used
correctly), don’t use the mapped command: press n instead to find the next open
parenthesis.

You could also modify the map sequence in this example to handle matching
pairs of quotes.

7. Place C/C++ comments around an entire line:7.

:map g I/* ^[A */^[

This sequence inserts /* at the line’s beginning and appends */ at the line’s end.
You could also map a substitute command to do the same thing:

Saving Commands | 129

8 From <vi Tips for Power Users.=

:map g :s;.*;/* & */;^M

Here, you match the entire line (with .*), and when you replay it (with &),
you surround the line with the comment symbols. Note the use of semicolon
delimiters to avoid having to escape the / characters in the comment.

As a final word, you should know that there are many keys that either perform the
same tasks as other keys or are rarely used. (For example, ^J acts the same as j.)
However, you should be familiar with the vi commands before you boldly disable
their normal use by using them in map definitions.

Mapping Keys for Insert Mode
Normally, maps apply only to command mode—after all, in insert mode, keys stand
for themselves and shouldn’t be mapped as commands. However, by adding an
exclamation mark (!) to the map command, you can force it to override the ordinary
meaning of a key and produce the map in insert mode. This feature is useful when
you find yourself in insert mode but need to escape briefly to command mode, run a
command, and then return to insert mode.

For example, suppose you just typed a word but forgot to italicize it (or place quotes
around it, etc.). You can define this map:

:map! + ^[bi<I>^[ea</I>

Now when you type a + at the end of a word, you surround the word with HTML
italicization codes. The + won’t show up in the text.

The sequence just shown escapes to command mode (^[), backs up to insert the
first code (bi<I>), escapes again (^[), and moves ahead to append the second code
(ea</I>). Since the map sequence begins and ends in insert mode, you can continue
entering text after marking the word.

Here’s another example: suppose that you’ve been typing your text and you realize
that the previous line should have ended with a colon. You can correct that by
defining this map sequence:8

:map! % ^[kA:^[jA

Now if you type a % anywhere along your current line, you’ll append a colon to the
end of the previous line. This command escapes to command mode, moves up a line,
and appends the colon (^[kA:). The command then escapes again, moves down to
the line you were on, and leaves you in insert mode at the end of the line (^[jA).

130 | Chapter 7: Advanced Editing

9 Function key F1 is often a <help= key, reserved for use by the terminal emulator; thus our example uses F2 .

Note that we used uncommon characters (+ and %) for the previous map commands.
When a character is mapped for insert mode, you can no longer type that character as
text (unless you precede it with CTRL-V).

To reinstate a character for normal typing, use the command:

:unmap! x

where x is the character that was previously mapped for insert mode. (Although the
editor expands x on the command line as you type it, making it look like you are
unmapping the expanded text, it does correctly unmap the character.)

Insert-mode mapping is often more appropriate for tying character strings to special
keys that you wouldn’t otherwise use. It is especially useful with programmable
function keys, as we’re about to describe.

Mapping Function Keys
In the past, serial terminals came with programmable function keys. Using a special
setup mode in the terminal, you would set up these keys to send whatever character
or characters you wanted. Application programs could then take advantage of these
function keys, using them as <shortcuts= for common or important actions.

Today’s personal computer and laptop keyboards also have function keys, usually
10 or 12 keys in a row at the top, labeled F1 through F12 . Instead of setting up
their behavior via a special hardware mode, what they do is defined by the terminal
emulators and other programs running on your system.

Since the terminal emulators have entries in the terminfo database, the editor can
recognize the escape sequences generated by the function keys, allowing you to map
them to specific actions should you so choose. This is done in ex, using the syntax:

:map #1 commands

for function key number 1, and so on.

As with other keys, maps apply by default to command mode, but by using the map!
command as well, you can define two separate values for a function key—one to be
used in command mode, the other in insert mode. For example, if you are an HTML
user, you might want to put font-switch codes on function keys, like so:9

:map #2 i<I>^[

:map! #2 <I>

If you are in command mode, the first function key enters insert mode, types in the
three characters <I>, and returns to command mode. If you are already in insert

Saving Commands | 131

10 What you’d see on your system is likely different from the escape sequences shown here.

mode, the key simply types the three-character HTML code. If the sequence contains
^M, which is a carriage return, press CTRL-V CTRL-M .

For instance, in order to have F2 available for mapping, the terminal database entry
for your terminal must have a definition of k2, such as:

k2=^A@^M

In turn, the characters from the definition:

^A@^M

must be what is output when you press that key.

Seeing what function keys generate

To see what a function key puts out, use the od (octal dump) command with the -c
option (show each character). You need to press ENTER after the function key, and
then CTRL-D to get od to print the information. For example:

$ od -c od reads from standard input

^[[[A function key pressed

^D Control-D, EOF

0000000 033 [[A \n

0000005

Here, the function key sent Escape, two left brackets, and an A.

Mapping Other Special Keys
Many keyboards have special keys, such as HOME , END , PAGE UP , and
PAGE DOWN , that duplicate vi commands. If your terminal emulator’s terminfo
description is complete, the editor recognizes these keys. But if it isn’t, you can use the
map command to make them available. These keys generally send an escape sequence
to the computer—an Escape character followed by a string of one or more other
characters. To trap the Escape, you should press ^V before pressing the special key
in the map. For example, to map the HOME key on a standard keyboard to a
reasonable vi equivalent, you might define the following map:

:map CTRL-V HOME 1G

This appears on your screen as:

:map ^[[H 1G

Similar map commands display as follows:10

:map CTRL-V END G displays :map ^[[Y G

:map CTRL-V PAGE UP ^F displays :map ^[[V ^F

:map CTRL-V PAGE DOWN ^B displays :map ^[[U ^B

132 | Chapter 7: Advanced Editing

11 The % sign has to be escaped in the mapping so that Vim doesn’t replace it with the current filename.

You’ll probably want to place these maps in your .exrc file. Note that if a special key
generates a long escape sequence (containing multiple nonprinting characters), ^V
quotes only the initial escape character, and the map doesn’t work. You will have to
find the entire escape sequence (using od, as shown earlier) and type it in manually,
quoting at the appropriate points, rather than simply pressing ^V and then the key.

If you use different kinds of terminals (such as both the command window on a
Windows system and an xterm), you cannot expect that mappings like those just
presented will always work. For this reason, Vim provides a portable way to describe
such key mappings:

:map <Home> 1G Enter six characters: < H o m e > (Vim)

vi and Vim typically provide these mappings as described, and if
not, you can map them as just directed. However, we find such
mappings to be counter to the vi philosophy of <never leave the
keyboard.= When we show users how to use Vim, one of the first
things we do (or recommend) is to map the HOME , END ,
PAGE UP , PAGE DOWN , INSERT , DELETE , and all arrow
keys to <no operation= to encourage learning native vi commands.
The end result is more efficient editing and better muscle memory
for the real vi commands, and a bunch of keys are now available to
map for other heavy lifting.

For example, one of us regularly edits datafiles from four ice cream shops that he
manages. The data has occasional lines with sales information, whitespace separated,
for the stores for a day. He uses Vim’s autocommand feature to detect that he’s editing
a file matching the shop names. (For more information on autocommands, see the
section <Autocommands= on page 300.) This in turn defines the END key to sum
the four values and to change the line to show the values and the total. The mapping
looks like this:11

:noremap <end> !!awk 'NF == 4 && $1 + $2 + $3 + $4 > 0 {

 printf "\%s total: $\%.2f\n", $0, $1 + $2 + $3 + $4;

 exit }; { print $0 }'<cr>

This is one long line in the .vimrc file; we split it across several lines so that it fits on
the page. So the <heavy lift= is to use the END key on a line in the datafile that looks
like:

450 235 1002 499

which gets converted to:

450 235 1002 499 total: $2186.00

Saving Commands | 133

when he presses the END key. Note that there is a double sanity check in the map,
using an awk command to do the math, but only if there are four fields (NF == 4),
and only if adding them results in a value greater than zero. (See :help :map-modes
for information about the :noremap command.)

Mapping Multiple Input Keys
Mapping multiple keystrokes is not restricted just to function keys. You can also map
sequences of regular keystrokes. This can help make it easier to enter certain kinds of
text, such as DocBook XML or HTML.

Here are some :map commands, thanks to Jerry Peek, that make it easier to enter
DocBook XML markup. The lines beginning with a double quote are comments (this
is discussed later in the section <Comments in ex Scripts= on page 142):

:set noremap

" bold:

map! =b </emphasis>^[F<i<emphasis role="bold">

map =B i<emphasis role="bold">^[

map =b a</emphasis>^[

" Move to end of next tag:

map! =e ^[f>a

map =e f>

" footnote (tacks opening tag directly after cursor in text-input mode):

map! =f <footnote>^M<para>^M</para>^M</footnote>^[kO

" Italics ("emphasis"):

map! =i </emphasis>^[F<i<emphasis>

map =I i<emphasis>^[

map =i a</emphasis>^[

" paragraphs:

map! =p ^[jo<para>^M</para>^[O

map =P O<para>^[

map =p o</para>^[

" less-than:

map! *l <

...

Using these commands, to enter a footnote you would enter insert mode and type
=f. The editor would then insert the opening and closing tags and leave you in insert
mode between them:

All the world's a stage.<footnote>

<para>

</para>

</footnote>

These macros proved quite useful during the development of earlier editions of this
book; they could be easily adapted to a different markup language, such as AsciiDoc,
LaTeX, Texinfo, or Sphinx.

134 | Chapter 7: Advanced Editing

12 This is a little tricky. The dd gets the newline at the end of the line too, causing @g to move the cursor down

one line after changing the current word. To do this exactly right, you have to type "gdf^V^[. Whew!

@-Functions
Named registers provide yet another way to create macros—complex command
sequences that you can repeat with only a few keystrokes.

If you type a command line in your text (either a vi sequence or an ex command
preceded by a colon) and then delete it into a named register, you can execute the
contents of that register with the @ command. For example, open a new line and
enter:

cwgadfly CTRL-V ESC

This appears as:

cwgadfly^[

on your screen. Press ESC again to exit insert mode, and then delete the line into
register g by typing "gdd. Now whenever you place the cursor at the beginning of a
word and type @g, that word in your text is changed to gad�y.12

Since @ is interpreted as a vi command, a dot (.) repeats the entire sequence, even if
the register contains an ex command. @@ repeats the last @, and u or U can be used to
undo the effect of @.

Vim makes it easier to save text into a named register. In vi command mode, a q
followed by a register name starts recording what you type into the named register.
Use q by itself to end recording. Vim puts a message that it’s recording into the status
line to remind you. Using register a for the previous example in Vim, you would type
qacwgadfly^[q, which you could then execute with @a.

This is a simple example. @-functions are useful because they can be adapted to
very specific commands. They are especially useful when you are editing between
files, because you can store the commands in their named registers and access them
from any file you edit. @-functions are also useful in combination with the global
replacement commands discussed in Chapter 6, <Global Replacement=.

Of course, if you use named registers both for @-functions and for storing yanked
or deleted text, you want to be careful to keep them separate, perhaps using letters
earlier in the alphabet for storage and reserving letters toward the end of the alphabet
for @-functions.

Saving Commands | 135

Executing Registers from ex
You can also execute text saved in a register from ex mode. In this case, you would
enter an ex command, delete it into a named register, and then use the @ command
from the ex colon prompt. For example, enter the following text:

ORA publishes great books.

ORA is my favorite publisher.

1,$s/ORA/O'Reilly Media/g

With your cursor on the last line, delete the command into the g register: "gdd. Move
your cursor to the first line: kk. Then execute the register from the colon command
line: :@g ENTER . Your screen should now look like this:

O'Reilly Media publishes great books.

O'Reilly Media is my favorite publisher.

Some versions of vi treat * identically to @ when used from the ex command line.
Vim also does this, but only if the compatible option is set. In addition, if the register
character supplied after the @ or * command is *, the command is taken from the
default (unnamed) register.

Using ex Scripts
Certain ex commands you use only within vi, such as maps, abbreviations, and so
on. If you store these commands in your .exrc file, the commands are automatically
executed when you invoke vi or Vim. Any file that contains commands to execute is
called a script.

The commands in a typical .exrc script are of no use outside vi. However, you can
save other ex commands in a script and then execute the script on a file or on
multiple files. Mostly you’ll use substitute commands in these external scripts.

For a (technical) writer, a useful application of ex scripts is to ensure consistency of
terminology—or even of spelling—across a document set. For example, let’s assume
that you’ve run the Unix spell command on two files and that the command has
printed out the following list of misspellings:

$ spell sect1 sect2

chmod

ditroff

myfile

thier

writeable

As is often the case, spell has flagged a few technical terms and special cases it
doesn’t recognize, but it has also identified two genuine spelling errors.

Because we checked two files at once, we don’t know which files the errors occurred
in or where they are in the files. Although there are ways to find this out, and the

136 | Chapter 7: Advanced Editing

13 Traditionally, ex used a single minus sign for this purpose. Typically, for backward compatibility, both are
accepted.

job wouldn’t be too hard for only two errors in two files, you can easily imagine how
time-consuming the job could grow to be for a poor speller or for a typist proofing
many files at once.

To make the job easier, you could write an ex script containing the following
commands:

%s/thier/their/g

%s/writeable/writable/g

wq

Assume you’ve saved these lines in a file named exscript. The script could be executed
from within vi with the command:

:so exscript

or the script can be applied to a file right from the command line. Then you could
edit the files sect1 and sect2 as follows:

$ ex -s sect1 < exscript

$ ex -s sect2 < exscript

The -s (for either <script mode= or <silent mode=) following the invocation of ex is the
POSIX way to tell the editor to suppress the normal terminal messages.13

If the script were longer than the one in our simple example, we would already have
saved a fair amount of time. However, you might wonder if there isn’t some way to
avoid repeating the process for each file to be edited. Sure enough, we can write a
shell script that includes—but generalizes—the invocation of ex, so that it can be used
on any number of files.

Looping in a Shell Script
You may know that the shell is a programming language as well as a command-line
interpreter. To invoke ex on a number of files, we use a simple type of shell script
command called the for loop. A for loop allows you to apply a sequence of com‐
mands for each argument given to the script. The for loop is probably the single
most useful piece of shell programming for beginners. You’ll want to remember it
even if you don’t write any other shell programs.

Here’s the syntax of a for loop:

for variable in list

do

 command(s)

done

Using ex Scripts | 137

14 Spaces in filenames are not good practice but are also not uncommon. Robust scripts should also work for
such files.

For example:

for file in "$@"

do

 ex -s "$file" < exscript

done

(The ex command doesn’t need to be indented; we indented it for clarity.) Quoting
the expansion of the file variable ($file) allows the script to work even when
filenames have spaces in their names.14

After we create this shell script, we save it in a file called correct and make it
executable with the command chmod 755 correct. Now type the following:

$./correct sect1 sect2

The for loop in correct assigns each argument (each file in the list specified by "$@",
which stands for all arguments) to the variable file and executes the ex script on the
contents of that variable.

It may be easier to grasp how the for loop works with an example whose output is
more visible. Let’s look at a script to rename files:

for file in "$@"

do

 mv "$file" "$file.x"

done

Assuming this script is in an executable file called move, here’s what we can do:

$ ls

ch01 ch02 ch03 move

$./move ch?? Just the chapter �les

$ ls Check the results

ch01.x ch02.x ch03.x move

With creativity, you could rewrite the script to rename the files more specifically:

for nn in "$@"

do

 mv "ch$nn" "sect$nn"

done

With the script written this way, you’d specify numbers instead of filenames on the
command line:

$ ls

ch01 ch02 ch03 move

$./move 01 02 03

$ ls

sect01 sect02 sect03 move

138 | Chapter 7: Advanced Editing

The for loop need not take "$@" (all arguments) as the list of values to be substituted.
You can specify an explicit list as well. For example:

for variable in a b c d

assigns variable to a, b, c, and d in turn. Or you can substitute the output of a
command. For example:

for variable in $(grep -l "Alcuin" *)

assigns variable in turn to the name of each file in which grep finds the string Alcuin.
(grep -l prints the filenames whose contents match the pattern, without printing the
actual matching lines.)

If no list is specified:

for variable

the variable is assigned to each command-line argument in turn, much as it was in
our initial example. The four-character sequence "$@" expands to "$1", "$2", "$3",
and so on. Quotation marks prevent further interpretation of special characters and
keep filenames with spaces in their names as single items.

Let’s return to our main point and our original script:

for file in "$@"

do

 ex -s "$file" < exscript

done

It may seem a little inelegant to have to use two scripts—the shell script and the ex
script. And in fact, the shell does provide a way to include an editing script inside a
shell script, as we are about to see.

Here Documents
In a shell script, the operator << means to take the following lines, up to a specified
string, as input to a command. (This is often called a here document.) Using this
syntax, we could include our editing commands in correct like this:

for file in "$@"

do

ex -s "$file" << end-of-script

g/thier/s//their/g

g/writeable/s//writable/g

wq

end-of-script

done

The string end-of-script is entirely arbitrary—it just needs to be a string that won’t
otherwise appear in the input and can be used by the shell to recognize when the here

Using ex Scripts | 139

document is finished. It also must be placed at the start of the line. By convention,
many users specify the end of a here document with the string EOF, or E_O_F, to
indicate the end of the file.

There are advantages and disadvantages to each approach shown. If you want to
make a one-time series of edits and don’t mind rewriting the script each time, the
here document provides an effective way to do the job.

However, it’s more flexible to write the editing commands in a separate file from
the shell script. For example, you could establish the convention that you always put
editing commands in a file called exscript. Then you only need to write the correct
script once. You can store it away in your personal <tools= directory (which you’ve
added to your search path) and use it whenever you like.

Sorting Text Blocks: A Sample ex Script
Suppose you want to alphabetize a file of glossary definitions encoded in a custom
version of XML. Each definition is bracketed by <glossaryitem> and </glossary
item>. The name of each item is bracketed by <name> and </name>. The glossary file
looks something like this:

<glossaryitem>

<name>TTY_ARGV</name>

<para>The command, specified as an argument vector,

that the TTY subwindow executes.</para>

</glossaryitem>

<glossaryitem>

<name>ICON_IMAGE</name>

<para>Sets or gets the remote image for icon's image.</para>

</glossaryitem>

<glossaryitem>

<name>XV_LABEL</name>

<para>Specifies a frame's header or an icon's label.</para>

</glossaryitem>

<glossaryitem>

<name>SERVER_SYNC</name>

<para>Synchronizes with the server once.

Does not set synchronous mode.</para>

</glossaryitem>

You can alphabetize a file by running the lines through the Unix sort command, but
you don’t really want to sort on a line-by-line basis. You want to sort only the glossary
terms, moving each definition—untouched—along with its corresponding term. As it
turns out, you can treat each text block as a unit by joining the block into one line.
Here’s the first version of your ex script:

g/^<glossaryitem>/,/^<\/glossaryitem>/j

%!sort

wq

140 | Chapter 7: Advanced Editing

Each glossary entry is found between <glossaryitem> and </glossaryitem> tags.
(Note the use of \/ to escape the slash in the closing tag.) j is the ex command to
join a line (the equivalent in vi mode is J). So the first command joins every glossary
entry into one <line.= The second command then sorts the file, producing lines like
this:

<glossaryitem> <name>ICON_IMAGE</name> <para>Sets ... </glossaryitem>

<glossaryitem> <name>SERVER_SYNC</name> <para>Synchronizes ... </glossaryitem>

<glossaryitem> <name>TTY_ARGV</name> <para>The command, ... </glossaryitem>

<glossaryitem> <name>XV_LABEL</name> <para>Specifies ... </glossaryitem>

The lines are now sorted by glossary entry; unfortunately, each line also has XML tags
and text mixed in (we’ve used ellipses […] to show omitted text). Somehow, you need
to insert newlines to <un-join= the lines. You can do this by modifying your ex script:
mark the joining points of the text blocks before you join them, and then replace the
markers with newlines. Here’s the expanded ex script:

g/^<glossaryitem>/,/^<\/glossaryitem>/-1s/$/@@/ Append @@ to the end of each line

g/^<glossaryitem>/,/^<\/glossaryitem>/j Join the entries

%!sort Sort them

%s/@@ /^@/g Break the lines apart

wq Save the �le

The first three commands produce lines like this:

<glossaryitem>@@ <name>ICON_IMAGE</name>@@ <para>Sets ...</para>@@ </glossaryitem>

<glossaryitem>@@ <name>SERVER_SYNC</name>@@ <para>Synchronizes ...</para>@@ </glossaryitem>

<glossaryitem>@@ <name>TTY_ARGV</name>@@ <para>The command, ...</para>@@ </glossaryitem>

<glossaryitem>@@ <name>XV_LABEL</name>@@ <para>Specifies ...</para>@@ </glossaryitem>

Note the extra space following each @@. The spaces result from the j command,
because it converts each newline into a space.

The first command marks the original line breaks with @@. You don’t need to mark
the end of the block (after the </glossaryitem>), so the first command uses a -1 to
move back up one line at the end of each block. The fourth command restores the
line breaks by replacing the markers (plus the extra space) with newlines. (You enter
the newline as CTRL-V CTRL-J . This is discussed shortly.) Now your file is sorted
by blocks.

A subtle vi/Vim di�erence

In the script we just finished writing for use with Vim’s version of ex, we entered a
newline as CTRL-V CTRL-J , and it showed up as ^@. When editing interactively
in Vim, however, you must do this differently; you enter the newline as CTRL-V
ENTER , and it shows up as ^M.

The original vi doesn’t distinguish. If you’re using the original vi, you enter the
newline, both interactively and in a script, as CTRL-V ENTER .

Using ex Scripts | 141

Comments in ex Scripts
You may want to reuse a script like the one we just developed, adapting it to a new
situation. With a complex script like this, it is wise to add comments so that it’s
easier for someone else (or even yourself!) to reconstruct how it works. In ex scripts,
anything following a double quote is ignored during execution, so a double quote
can mark the beginning of a comment. Comments can go on their own line. They
can also go at the end of any command that doesn’t interpret a quote as part of the
command. For example, a quote has meaning to map commands and shell escapes, so
you can’t end such lines with a comment.

Besides using comments, you can specify a command by its full name, something that
would ordinarily be too time-consuming from within vi. Finally, if you add spaces,
the ex script shown previously becomes this more readable one:

" Mark lines between each <glossaryitem>...</glossaryitem> block

global /^<glossaryitem>/,/^<\/glossaryitem>/-1 substitute /$/@@/

" Now join the blocks into one line

global /^<glossaryitem>/,/^<\/glossaryitem>/ join

" Sort each block--now really one line each

%!sort

" Restore the joined lines to original blocks

%substitute /@@ /^@/g

" Write the file back out and exit

wq

In previous editions of this book, we wrote:

Surprisingly, the substitute command does not work
in ex, even though the full names for the other commands
do.

And that was correct at the time, at least for the Solaris version of
vi.

However, upon testing the <Heirloom= and Solaris 11 versions of
vi, we found that substitute worked just fine as an ex command.
Nonetheless, before using the full command in a script, you should
check out your local version and make sure that it works.

Beyond ex
If this discussion has whetted your appetite for even more editing power, you should
be aware that Unix systems provide editors even more powerful than ex: the sed
stream editor and the awk data manipulation language. There is also the extremely
popular perl programming language. For information on these programs, see the
O’Reilly books sed & awk by Dale Dougherty and Arnold Robbins, E�ective awk
Programming by Arnold Robbins, Learning Perl by Randal L. Schwarz, brian d foy,

142 | Chapter 7: Advanced Editing

https://www.oreilly.com/library/view/sed-awk/1565922255
https://www.oreilly.com/library/view/effective-awk-programming/9781491904930
https://www.oreilly.com/library/view/effective-awk-programming/9781491904930
https://www.oreilly.com/library/view/learning-perl-8th/9781492094944

and Tom Phoenix, and Programming Perl by Tom Christiansen, brian d foy, Larry
Wall, and Jon Orwant.

Editing Program Source Code
All of the features discussed so far are of interest whether you are editing regular text
or program source code. However, there are a number of additional features that are
of interest chiefly to programmers. These include indentation control, searching for
the beginning and end of procedures, and using ctags.

The following discussion is adapted from documentation provided by MKS, Inc. (for‐
merly Mortice Kern Systems), with its excellent implementation of vi for MS-DOS-
and Windows-based systems, available as a part of the MKS Toolkit. It is reprinted by
permission of MKS, Inc.

Indentation Control
Source code for a program differs from ordinary text in a number of ways. One
of the most important of these is the way in which source code uses indentation.
Indentation shows the logical structure of the program: the way in which statements
are grouped into blocks. vi provides automatic indentation control. To use it, issue
the command:

:set autoindent

Now when you indent a line with spaces or tabs, the following lines are automatically
indented by the same amount. When you press ENTER after typing the first inden‐
ted line, the cursor goes to the next line and automatically indents the same distance
as the previous line.

As a programmer, you will find this saves you quite a bit of work getting the indenta‐
tion right, especially when you have several levels of indentation.

When you are entering code with autoindent enabled, typing CTRL-T at the start
of a line gives you another level of indentation, and typing CTRL-D takes one level
away.

We should point out that CTRL-T and CTRL-D are typed while you are in insert
mode, unlike most other commands, which are typed in command mode.

There are two additional variants of the CTRL-D command:

^ ^D

When you type ^ ^D (^ CTRL-D), the editor shifts the cursor back to the
beginning of the line, but only for the current line. The next line you enter will
start at the current autoindent level. This is particularly useful for entering C
preprocessor commands while typing in C/C++ source code.

Editing Program Source Code | 143

https://www.oreilly.com/library/view/programming-perl-4th/9781449321451
https://www.ptc.com/en/products/developer-tools/mks-toolkit
https://www.mkssoftware.com

0 ^D

When you type 0 ^D, the editor shifts the cursor back to the beginning of the
line. In addition, the current autoindent level is reset to zero; the next line you
enter is not autoindented.

Finally, there is your terminal’s line erase character, typically CTRL-U , which erases
the entire input line you’ve typed so far. This also works in the GUI version of Vim.

Try using the autoindent option when you are entering source code. It simplifies the
job of getting indentation correct. It can even sometimes help you avoid bugs—e.g.,
in C source code, where you usually need one closing curly brace (}) for every level of
indentation you go backward.

The << and >> commands are also helpful when indenting source code. By default,
>> shifts a line right eight spaces (i.e., adds eight spaces of indentation) and << shifts
a line left eight spaces. For example, move the cursor to the beginning of a line and
press > twice (>>). You will see the line move right. If you now press < twice (<<),
the line moves back again.

You can shift a number of lines by typing the number followed by >> or <<. For
example, move the cursor to the first line of a good-sized paragraph and type 5>>.
This shifts the first five lines in the paragraph.

The default shift is eight spaces (right or left). This default can be changed with a
command such as:

:set shiftwidth=4

It is convenient to have a shiftwidth that is the same size as the width between tab
stops. The default tab stop is also eight character positions.

The editor attempts to be smart when doing indenting. Usually, when you see text
indented by eight spaces at a time, it actually inserts tab characters into the file, since
tabs usually expand to eight spaces. This is the Unix default; it is most noticeable
when you type a tab during normal input and when files are sent to a printer—Unix
expands them with a tab stop of eight spaces.

If you wish, you can change how tabs are represented on your screen by changing
the tabstop option. For example, if you have something that is deeply indented, you
might wish to use a tab stop setting of every four characters, so that the lines do not
wrap. The following command makes this change:

:set tabstop=4

You should change the shiftwidth at the same time and to the same value as the tab
stop.

144 | Chapter 7: Advanced Editing

15 Spaces versus tabs can be a religious issue. See this wonderful segment from the Silicon Valley TV show:
https://www.youtube.com/watch?v=SsoOG6ZeyUI.

Change your tab stops with consideration. Although vi and Vim
can display the file using an arbitrary tab stop setting, the tab
characters in your files are still expanded using an eight-character
tab stop by many other Unix programs.

Even worse: mixing tabs, spaces, and unusual tab stops makes your
file completely unreadable when viewed outside the editor, with a
pager such as more, or when printed.

When programming and dealing with tabs and tab stops, you have two alternatives:

• Accept that eight-character tab stops are a fact of life on Unix, and just get used•
to them.

• Have the editor expand tabs into spaces as you enter them. You do this with:•

:set expandtab

When expandtab is set, every time you hit the TAB key, the editor enters
enough spaces to move the cursor over to the next tab stop.

If everyone on your team does this, then all your code will be formatted consis‐
tently, and things will work well. This is particularly important for a language
like Python, where indentation of your code indicates statement grouping and
mismatched spaces and tabs becomes a recipe for disaster.15 As a side note, you

can use the expand utility to convert preexisting tabs to spaces.

Sometimes indentation won’t work the way you expect, because what you believe to
be a tab character is actually one or more spaces. Normally, your screen displays both
a tab and a space as whitespace, making the two indistinguishable. You can, however,
issue the command:

:set list

This alters your display so that a tab appears as the control character ^I and an

end-of-line appears as a $. This way, you can spot a true space, and you can see extra

spaces at the end of a line. A temporary equivalent is the :l command. For example,
the command:

:5,20 l

displays lines 5 through 20, showing tab characters and end-of-line characters.

Editing Program Source Code | 145

https://www.youtube.com/watch?v=SsoOG6ZeyUI

16 Some versions also match < and > with %.

17 Note that the editor also counts brackets inside quoted strings and comments, so % isn’t foolproof.

18 In Vim, showmatch also shows you matching square brackets ([and]).

A Special Search Command
The characters (, [, and { can all be called opening brackets. When the cursor is
resting on one of these characters, pressing the % key moves the cursor from the

opening bracket forward to the corresponding closing bracket—),], or }—keeping
in mind the usual rules for nesting brackets.16 For example, if you were to move the

cursor to the first (in:

if (cos(a[i]) == sin(b[i]+c[i]))

{

 printf("cos and sin equal!\n");

}

and press % , you would see that the cursor jumps to the parenthesis at the end of the
line. This is the closing parenthesis that matches the opening one.

Similarly, if the cursor is on one of the closing bracket characters, pressing % moves
the cursor backward to the corresponding opening bracket character. For example,

move the cursor to the closing brace after the printf line just shown and press % .

The editor is even smart enough to find a bracket character for you. If the cursor is
not on a bracket character, when you press % , it searches forward on the current line
to the first open or close bracket character it finds, and then it moves to the matching

bracket! For instance, with the cursor on the = in the first line of the example just

shown, % finds the open parenthesis and then moves to the close parenthesis.

Not only does this search character help you move forward and backward through a
program in long jumps, it also lets you check the nesting of brackets and parentheses

in source code. For example, if you put the cursor on the first { at the beginning of a

C function, pressing % should move you to the } that (you think) ends the function.

If it’s the wrong one, something has gone wrong somewhere. If there is no matching }
in the file, the editor beeps at you.17

Another technique for finding matching brackets is to turn on the following option:

:set showmatch

Unlike %, setting showmatch (or its abbreviation sm) helps you while you’re in insert

mode. When you type a) or a },18 the cursor moves briefly back to the matching (or

{ before returning to your current position. If the match doesn’t exist, the terminal
beeps. If the match is merely off-screen, the editor silently keeps going. Using the

matchparen plug-in, which is loaded by default, Vim can highlight the matching
parenthesis or brace.

146 | Chapter 7: Advanced Editing

Using Tags
The source code for a large C or C++ program is usually spread over several files.
Sometimes it is difficult to keep track of which file contains which function defini‐

tions. To simplify matters, you can use a Unix command called ctags together with

the :tag command of ex.

You issue the ctags command at the shell command line. Its purpose is to create
an information file that the editor can use later to determine which files define
which functions. By default, this file is called tags. From within an editing session, a
command of the form:

:!ctags file.c

creates a file named tags in your current directory that contains information on the
functions defined in �le.c. A command such as:

:!ctags *.c

creates a tags file describing all the C source files in the directory.

Legacy Unix versions of ctags handle the C language and often
Pascal and Fortran 77. Sometimes they even handle assembly lan‐
guage. Almost universally, however, they do not handle C++. Other
versions are available that can generate tags files for C++ and
for other languages and file types. For more information, see the
section <Enhanced Tags= on page 148.

Now suppose your tags file contains information on all the source files that make up a
C program. Also suppose that you want to look at or edit a function in the program,

but you do not know where the function is. From within vi mode, the command:

:tag name

looks at the tags file to find out which file contains the definition of the function
name. It then reads in that file and positions the cursor on the line where the name is
defined. In this way, you don’t have to know which file you have to edit; you only have
to decide which function you want to edit.

You can use the tag facility from vi’s command mode as well. Place the cursor on the
identifier you wish to look up, and then type CTRL-] . The editor performs the tag
lookup and moves to the file that defines the identifier. Be careful where you place
the cursor; the editor uses the <word= under the cursor starting at the current cursor
position, not the entire word containing the cursor.

Editing Program Source Code | 147

If you try to use the :tag command to read in a new file and you
haven’t saved your current text since the last time you changed it,
the editor does not let you go to the new file. You must either write

out your current file with the :w command and then issue :tag, or
else type:

:tag! name

to override the editor’s reluctance to discard edits.

Enhanced Tags
Unix ctags works but is limited. The <Exuberant ctags= program, written by Darren

Hiebert, is a ctags clone that is considerably more capable than Unix ctags. It
produced an extended tags file format that makes the tag searching and matching
process more flexible and powerful.

Unfortunately, Exuberant ctags was last updated in 2009. The <Universal ctags=

project provides a maintained version of ctags, starting from the Exuberant ctags
code base.

In this section we first describe the Universal ctags program and then describe the
enhanced tags file format.

This section also describes tag stacks: the ability to save multiple locations visited

with the :tag or ^] commands. Vim and (surprisingly enough) the Solaris versions of

vi support tag stacking.

Universal ctags

The Universal ctags home page is at https://ctags.io/. The source code is at https://
github.com/universal-ctags/ctags. You will have to do an internet search to see if your
system’s package manager allows you to install a precompiled version, or if you may
need to build it from source code.

The following list of the program’s features is adapted from the old-docs/

README.exuberant file in the Universal ctags distribution:

• It is capable of generating tags for all types of C and C++ language tags, including•
class names, macro definitions, enum names, enumerators (values inside an
enumeration), function (method) definitions, function (method) prototypes/dec‐
larations, structure members and class data members, struct names, typedefs,
union names, and variables. (Whew!)

• It supports both C and C++ code.•

• 41 languages are supported, including C# and Java.•

148 | Chapter 7: Advanced Editing

https://ctags.io/
https://github.com/universal-ctags/ctags
https://github.com/universal-ctags/ctags

• It is very robust in parsing code and is far less easily fooled by code containing•

#if preprocessor conditional constructs.

• It can be used to print out a human-readable list of selected objects found in•
source files.

• It supports generation of GNU Emacs–style tags files (etags).•

• It works on a large variety of operating systems, including Unix, OpenVMS, and•
MS-Windows.

Universal ctags produces tags files in the form described next.

The new tags format

Traditionally, a tags file has three tab-separated fields: the tag name (typically an
identifier), the source file containing the tag, and an indication of where to find the

identifier. This indication is either a simple line number or a nomagic search pattern
enclosed either in slashes or question marks. Furthermore, the tags file is always
sorted.

This is the format generated by the Unix ctags program. In fact, many versions of

vi allowed any command in the search pattern field (a rather gaping security hole).
Furthermore, due to an undocumented implementation quirk, if the line ended with

a semicolon and then a double quote (;"), anything following those two characters
would be ignored. (The double quote starts a comment, as it does in .exrc files.)

The new format is backward compatible with the traditional one. The first three fields

are the same: tag, filename, and search pattern. Universal ctags generates only search

patterns, not arbitrary commands. Special attributes are placed after a separating ;".
Each attribute is separated from the next by a tab character and consists of two
colon-separated subfields. The first subfield is a keyword describing the attribute; the
second is the actual value. Table 7-1 lists the supported keywords.

Table 7-1. Extended ctags keywords

Keyword Meaning

arity For functions. De�nes the number of arguments.

class For C++ member functions and variables. The value is the name of the class.

enum For values in an enum data type. The value is the name of the enum type.

file For tags that are “static,” i.e., local to the �le. The value should be the name of the �le.

If the value is given as an empty string (just file:), it is understood to be the same as the �lename
�eld; this special case was added partly for the sake of compactness, and partly to provide an easy way
to handle tags �les that aren’t in the current directory. The value of the �lename �eld is always relative
to the directory in which the tags �le itself resides.

function For local tags. The value is the name of function in which they’re de�ned.

Editing Program Source Code | 149

Keyword Meaning

kind The value is a single letter that indicates the tag’s lexical type. It can be f for a function, v for a
variable, and so on. Since the default attribute name is kind, a solitary letter can denote the tag’s type
(e.g., f for a function).

scope Intended mostly for C++ class member functions. It is usually private for private members or
omitted for public members, so users can restrict tag searches to only public members.

struct For �elds in a struct. The value is the name of the structure.

union For �elds in a union. The value is the name of the union.

If the field does not contain a colon, it is assumed to be of type kind. Here are some
examples:

ALREADY_MALLOCED awk.h /^#define ALREADY_MALLOCED /;" d

ARRAYMAXED awk.h /^ ARRAYMAXED = 0x4000,;" e enum:exp_node::flagvals

array.c array.c 1;" F

ALREADY_MALLOCED is a C macro. ARRAYMAXED is a C enum defined in awk.h. The third
line is a bit different: it is a tag for the actual source file! This is generated with the

--extras=f option to Universal ctags, and it allows you to give the command :tag

array.c. More usefully, you can put the cursor over a filename and use the ^]
command to go to that file (for example, if you’re editing a Make�le and wish to go to
a particular source file).

Within the value part of each attribute, the backslash, tab, carriage return, and

newline characters are encoded as \\, \t, \r, and \n, respectively.

Universal tags files may have some number of initial tags that begin with !_TAG_.
These tags usually sort to the front of the file and are useful for identifying which

program created the file. Here is what Universal ctags generates:

!_TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/

!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted, 2=foldcase/

!_TAG_OUTPUT_EXCMD mixed /number, pattern, mixed, or combineV2/

!_TAG_OUTPUT_FILESEP slash /slash or backslash/

!_TAG_OUTPUT_MODE u-ctags /u-ctags or e-ctags/

!_TAG_PATTERN_LENGTH_LIMIT 96 /0 for no limit/

!_TAG_PROC_CWD /home/arnold/Gnu/gawk/gawk.git/ //

!_TAG_PROGRAM_AUTHOR Universal Ctags Team //

!_TAG_PROGRAM_NAME Universal Ctags /Derived from Exuberant Ctags/

!_TAG_PROGRAM_URL https://ctags.io/ /official site/

!_TAG_PROGRAM_VERSION 5.9.0 /p5.9.20201206.0/

Editors can take advantage of these special tags to implement special features. For

example, Vim pays attention to the !_TAG_FILE_SORTED tag and uses a binary search
to search the tags file instead of a linear search if the file is indeed sorted.

If you use tags files, we recommend that you get and install Universal ctags.

150 | Chapter 7: Advanced Editing

19 This information was discovered based on experimentation. YMMV (your mileage may vary).

Tag stacks

The ex command :tag and the vi command-mode ^] command provide a limited
means of finding identifiers, based on the information provided in a tags file. Vim

and the Solaris vi extend this ability by maintaining a stack of tag locations. Each

time you issue the ex command :tag or use the vi mode ^] command, the editor
saves the current location before searching for the specified tag. You may then return

to a saved location using (usually) the vi command ^T or an ex command.

Solaris vi tag stacking and an example are presented next. Vim’s tag stacking is
described in the section <Tag Stacking= on page 269.

Solaris vi

Surprisingly enough, the Solaris versions of vi support tag stacking. Perhaps not so
surprisingly, this feature is completely undocumented in the Solaris ex(1) and vi(1)

manual pages. For completeness, we summarize Solaris vi tag stacking in Tables 7-2,

7-3, and 7-4. Tag stacking in Solaris vi is quite simple.19

Table 7-2. Solaris vi tag commands: ex commands

Command Function

ta[g][!] tag
string

Edit the �le containing tagstring as de�ned in the tags �le. The ! forces vi to switch to the new �le if
the current bu�er has been modi�ed but not saved.

po[p][!] Pop the tag stack by one element.

Table 7-3. Solaris vi command mode tag commands

Command Function

^] Look up the location of the identi�er under the cursor in the tags �le, and move to that location. If tag stacking
is enabled, the current location is automatically pushed onto the tag stack.

^T Return to the previous location in the tag stack, i.e., pop o� one element.

Table 7-4. Solaris vi options for tag management

Option Function

taglength, tl Controls the number of signi�cant characters in a tag that is to be looked up. The default value of zero
indicates that all characters are signi�cant.

tags The value is a list of �lenames in which to look for tags. The default value is "tags /usr/lib/
tags".

tagstack When set to true, vi stacks each location on the tag stack. Use :set notagstack to disable tag
stacking.

Editing Program Source Code | 151

Universal ctags and Vim

To give you a feel for using tag stacks, we present a short example that uses Universal

ctags and Vim.

Suppose you are working with a program that uses the GNU getopt_long function,
and you need to understand more about it.

GNU getopt consists of three files: getopt.h, getopt.c, and getopt1.c.

First, you create the tags file, and then you start by editing the main program, found
in main.c:

$ ctags *.[ch]

$ ls

getopt1.c getopt.c getopt.h getopt_int.h main.c Makefile tags

$ vim main.c

Keystrokes Results

/getopt_ /* option processing. ready, set, go! */

while ((c = getopt_long(argc, argv, optlist, optab, NULL)) != EOF) {

 switch (c) {

 case 'l':

Edit main.c and move to the call to getopt_long.

^] int getopt_long (int argc, char *const *argv, const char *options,

 const struct option *long_options, int *opt_index)

{

 return _getopt_internal (argc, argv, options, long_options, opt_index, 0);

}

"getopt1.c" 195L, 4750B

Do a tag lookup on getopt_long. Vim moves to getopt1.c, placing the cursor on the de�nition of
getopt_long.

It turns out that getopt_long is a <wrapper= function for _getopt_internal. You

place the cursor on _getopt_internal and do another tag search:

Keystrokes Results

3jf_ ^] int _getopt_internal (int argc, char *const *argv, const char *optstring,

 const struct option *longopts, int *longind, int long_only)

{

 int result;

 getopt_data.optind = optind;

 getopt_data.opterr = opterr;

 result = _getopt_internal_r (argc, argv, optstring, longopts,

 longind, long_only, &getopt_data);

 optind = getopt_data.optind;

"getopt.c" 1294L, 34298B

152 | Chapter 7: Advanced Editing

Keystrokes Results

You have now moved to getopt.c. To �nd out more about struct option, move the cursor to
option and do another tag search.

jfo; ^] one). For long options that have a zero `flag' field, `getopt'

 returns the contents of the `val' field. */

struct option

{

 const char *name;

 /* has_arg can't be an enum because some compilers complain about

 type mismatches in all the code that assumes it is an int. */

 int has_arg;

 int *flag;

 int val;

};

/* Names for the values of the `has_arg' field of `struct option'. */

"getopt.h" 191L, 6644B

The editor moves to the de�nition of struct option in getopt.h. You may now look over the
comments that explain how it’s used.

:tags # TO tag FROM line in file/text

 1 1 getopt_long 29 main.c

 2 1 _getopt_internal 70 getopt1.c

 3 1 option 1185 getopt.c

The :tags command in Vim displays the tag stack.

Typing ^T three times would move you back to main.c, where you started. The tag
facilities make it easy to move around as you edit source code.

Editing Program Source Code | 153

PART II

Vim

Part II describes the most popular vi clone, named Vim (which stands for <vi
improved=). This part contains the following chapters:

• Chapter 8, <Vim (vi Improved): Overview and Improvements over vi=•

• Chapter 9, <Graphical Vim (gvim)=•

• Chapter 10, <Multiple Windows in Vim=•

• Chapter 11, <Vim Enhancements for Programmers=•

• Chapter 12, <Vim Scripts=•

• Chapter 13, <Other Cool Stuff in Vim=•

• Chapter 14, <Some Vim Power Techniques=•

CHAPTER 8

Vim (vi Improved): Overview and
Improvements over vi

<Look! Up in the sky! It’s a bird!=
<It’s a plane!=
<It’s Superman!=

Yes, it’s Superman! Strange visitor from another planet who came to Earth with powers
and abilities far beyond those of mortal men.

—The 1950s Superman TV Show

While Vim is neither strange nor from another planet, it does have powers and
abilities far beyond those of mortal text editors!

In this chapter, we introduce the most noteworthy of Vim’s many technical advances

over vi, along with a bit of history. We continue with some pointers to special Vim
modes and teaching tools for new users. We then move on to introduce some of Vim’s

improvements over vi, ranging from multiple color syntax definitions to full-blown
scripting.

If vi is excellent (it is), Vim is amazing. In this first chapter of Part II we discuss how

Vim fills in many features that users have complained were missing from vi. This
chapter introduces:

• Editing enhancements over vi•

• Built-in help•

• Startup and initialization options•

• New motion commands•

• Extended regular expressions•

157

1 We note that Wikipedia cites the original attribution for Vim: <At the time of its first release, the name ‘Vim’

was an acronym for ‘Vi IMitation.’ =

• Extended undo•

• Incremental searching•

• Left-to-right scrolling•

The remaining Part II chapters cover:

• The Vim graphical user interface (GUI)•

• Multiwindow editing•

• Programming enhancements•

• Vim scripts•

• Other cool stuff•

• Some Vim power techniques•

About Vim
Vim stands for <vi improved.=1 It was written and is maintained by Bram Moolenaar.

Today, Vim is perhaps the most widely used vi implementation. As of this writing,
the current version is 8.2.

Computer capability increased dramatically in the time between the seventh edition
of this book and this edition. In 2008, 1 gigabyte was a lot of memory. And while
memory became increasingly affordable and more expansive (i.e., more gigabytes),
users still had to configure their applications and tools to share the available comput‐
ing resources.

Today it’s common to see 16 gigabytes of memory, and many computers ship with
super fast drives, typically solid state drives (SSDs). These technology improvements
obviate many old habits. Consequently, many Vim configuration suggestions provide
greater upper limits for greater editing power. Later on, we discuss things like com‐
mand and search history, as well as the history of changes for undos.

Unconstrained by standards or committees, Vim continues to grow in functionality.
An entire community has grown up around it. Collectively, the members of the
community decide what new features to add and what existing features to modify by
nominating and voting for suggestions during development cycles.

Inspired by Bram’s dedicated energy and the voting system, Vim enjoys a strong fol‐
lowing. It maintains its value by growing and changing with the computing industry

158 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

https://en.wikipedia.org/wiki/Vim_(text_editor)#History
https://www.vim.org

2 Ease of use is subjective, but we strongly believe that users who invest the time to learn Vim’s extended

features will agree with this assessment.

3 This section is adapted from material supplied by Bram Moolenaar, Vim’s author. We thank him. You can find

more information on Vim’s history in Bram’s <Vim 25= talk.

and, correspondingly, with editing needs. For instance, its context-specific language
editing started with C and has grown to encompass C++, Java, and now C#.

Vim includes many features that facilitate the editing of code in many new languages.
As the computing landscape changes, Vim evolves with it.

Today Vim is so ubiquitous, especially among Unix and its variants (e.g., BSD and

GNU/Linux), that for many (if not most) users Vim is synonymous with vi. Indeed,
most if not all distributions of GNU/Linux come with a default installation of Vim as
the /usr/bin/vi binary!

Vim provides features not in vi that are considered essential in modern-day text edi‐
tors, such as ease of use,2 graphical terminal support, color, and syntax highlighting
and formatting, as well as extended customization.

Overview
This section provides an overview of Vim and many of its enhancements, with
cross-references to where in the book those enhancements are described.

Author and History
Bram started work on Vim after buying an Amiga computer in the second half

of 1988.3 As a Unix user, he’d been using the vi-like editor called stevie, one
he considered far from perfect. Fortunately, it came with the source code, and he

began making the editor more compatible with vi and fixing bugs. After a while the
program became quite usable. The first version of Vim was created on November 2,
1991, and was published in January 1992; Vim version 1.14 was published on Fred
Fish disk 591 (a collection of free software for the Amiga).

Other people began to use the program, liked it, and started helping with its develop‐
ment. A port to Unix was followed by ports to MS-DOS and other systems, and

subsequently Vim became one of the most widely available vi clones. More features
were added gradually: multilevel undo, multiwindowing, and numerous others. Some

features were unique to Vim, but many were inspired by other vi clones. The goal
was and remains to provide the best features to the user.

Today Vim is probably the most full-featured of all the vi-style editors. The online
help is extensive.

Overview | 159

https://www.youtube.com/watch?v=ayc_qpB-93o

4 You can find these files from your Vim session. The help directory is doc under the $VIMRUNTIME

directory. Type the ex command :!ls $VIMRUNTIME/doc.

One of the more obscure features of Vim is its support for typing from right to left,
which is useful for languages such as Hebrew and Farsi and which illustrates Vim’s
versatility.

Being a rock-stable editor on which professional software developers can rely is
another of Vim’s design goals. Vim crashes are rare, and when they happen, you can
recover your changes.

Development on Vim continues. The group of people helping to add features and
port Vim to more platforms is growing, and the quality of the ports to different
computer systems is increasing. The Microsoft Windows version has dialogs and a

file-selector, which opens up the hard-to-learn vi commands to a large group of
users.

Why Vim?
Vim so dramatically extends the traditional vi functionality that one might more

easily ask, <Why not Vim?= vi introduced the standard from which other clones
borrowed, and Vim took the baton and ran with it. Vim dared to radically extend
features, sometimes pushing processors to the edge of their ability to perform Vim’s
work with adequate response time. We don’t know whether it was an article of faith
by Bram that processor and memory speeds would improve enough to catch up with
Vim’s demands, but fortunately, modern processors and computers handle even the
toughest Vim tasks well.

Compare and Contrast with vi
Vim is more universally available than vi. There is at least some version of Vim

available on virtually all operating systems, whereas vi is available only on Unix or
Unix work-alike systems.

vi is the original and has changed little over the years. It is the POSIX standard-

bearer and fulfills its role well. Vim starts where vi leaves off, providing all of vi’s
functionality and then extending that to add graphical interfaces and features such as

complex options and scripting that go far beyond vi’s original capabilities.

Vim ships with its own built-in documentation in the form of a directory of spe‐
cialized text files. A casual inspection of this directory (using the standard Unix

word count tool, wc -l *.txt) shows 140 files comprising almost 200,000 lines of
documentation!4 This is the first hint at the scope of Vim’s features. Vim accesses

these files via its internal <help= command, another feature not available in vi. We

160 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

look more closely at Vim’s help system later and offer tips and tricks to maximize
your learning experience.

In the current version, Vim’s vi_di� help file gives an overview of how Vim differs

from the original vi. The details got to be so numerous that the help files’ annotations

of what was <not in vi= created too much clutter and were removed!

This and the following chapters cover some of the more interesting Vim features.

From extensions of the historic vi to new functionality, we describe the best and
most popular productivity features. We cover topics universally recognized as useful
enhancements, such as syntax color highlighting. We also look at some more obscure
features that are useful for added productivity. For example, in the section <Autocom‐
mands= on page 300, we show a way to customize the Vim status line to show a
real-time update of the date and time whenever you move the cursor.

Categories of Features
Vim’s features span the range of activities common to virtually any text-editing

task. Some features just extend what users wanted the original vi to do; others are

completely new and not in vi. And if you need something that’s not there, Vim offers
built-in scripting for unlimited extensibility and customization. Some categories of
Vim features include:

Initialization

Vim, like vi, uses configuration files to define sessions at startup time, but Vim
has a greatly expanded repertoire of definable behaviors. You can keep it as

simple as setting a few options, as you would in vi, or you can write an entire
suite of customizations that define your session based on any context you define.
For example, you can script your initialization files to precompile code based
on which directory you’re editing files in, or you can retrieve information from
some real-time source and incorporate it into your text at startup. See the section
<Startup and Initialization Options= on page 167 in this chapter.

In�nite undo

Unix vi allows you to undo only your last change or to restore the current line to
the state it was in before you started making any changes. Vim provides <infinite
undo,= the ability to keep undoing your changes, all the way back to the state the
file was in before you started any editing. See the section <Extended Undo= on
page 180, later in this chapter, for more information.

Graphical user interface (GUI) features
Vim extends usability to a more general population by allowing point-and-click
editing, like many modern easy-to-use editors. All of the power-user functional‐
ity gets the boost of simple GUI accessibility for lighter and simpler editing tasks.
See Chapter 9, <Graphical Vim (gvim)=, for more information.

Overview | 161

Multiple windows
As mentioned already, Vim provides the ability to have multiple windows open
simultaneously, on the same file and on different files. This is discussed fully in
Chapter 10, <Multiple Windows in Vim=.

Programmer assistance
Although Vim doesn’t try to provide all programming needs, it offers many
features normally found in integrated development environments (IDEs). From
quick edit-compile-debug cycles to autocompletion of keywords, Vim has speci‐
alized features to let you do more than edit quickly—it helps you program. See
Chapter 11, <Vim Enhancements for Programmers=, for more information.

Of course, if you want to, you can turn Vim into an IDE; see Chapter 15, <Vim as
IDE: Some Assembly Required=, for more information.

Keyword completion
Vim lets you complete partially typed words with context-sensitive completion
rules. For example, Vim can look up words in a dictionary or in a file containing
keywords specific to a language. This is discussed in the section <Keyword and
Dictionary Word Completion= on page 260.

Syntax extensions
Vim lets you control indentation and syntax-based color coding of your text.
And you have many options to define this automatic formatting. If you don’t
like the color highlighting, you can change it. If you need a certain style of inden‐
tation, Vim provides it, or if you have a specialized need, it lets you customize
your environment. See the section <Syntax Highlighting= on page 271 for more
information.

Scripting and plug-ins
You can write your own Vim extensions or download plug-ins from the internet.
You can even contribute to the Vim community by publishing your extensions
for others to use. See Chapter 12, <Vim Scripts=, for more information.

Postprocessing
In addition to performing initialization functions, Vim lets you define what to do
a�er you’ve edited a file. You can write cleanup routines to delete temporary files
accumulated from compiles, or do real-time edits to the file before it’s written
back to storage. For example, you can check Python code layout for consistent
adherence to local formatting rules. You have complete control to customize any
postediting activities.

162 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

5 Well, up to the maximum value of a C long—2,147,483,647 on a 32-bit computer, considerably more on a

64-bit system.

Arbitrary length lines and binary data

Historic versions of vi often had limits of around one thousand characters per
line; longer lines would be truncated. Vim handles lines of any length.5

Vim is Unicode-aware and displays multibyte encoded Unicode characters as a
single glyph when possible. Vim is also 8-bit clean, meaning that it can edit files
containing any 8-bit character. You can even edit binary and executable files,
if necessary. This can be really useful at times. Editing binary files is discussed
in the section <Editing Binary Files= on page 318. Also see the section <Vim

8.2 Options= on page 464 for more information about options, specifically file

format and filetype.

There is one tricky detail. Traditional vi always writes the file with a final
newline appended. When editing a binary file, this might add one character to

the file and cause problems. Vim is compatible with vi by default and adds that

newline. You can set the binary option so that this doesn’t happen.

Session context
Vim keeps session information in a file, .viminfo. Ever wonder <Where was I?=
when revisiting and editing a file? The .viminfo configuration file fixes that! You
can define how much and what kind of information to preserve across sessions.
For example, you can define how many <recent documents= or last-edited files
to track, how many edits (deletions, changes) to remember per file, how many
commands to remember from the command history, and how many registers
and lines to keep from previous editing actions (<puts,= <deletes,= etc.).

Vim also remembers which line you were on for each of your most recently
edited files. If you exit your editing session with the cursor on line 25, it reposi‐
tions you on line 25 the next time you edit that file. See the section <viminfo:
Now, Where Was I?= on page 330 for more information.

Transitions
Vim manages state transitions. When you move within a session from buffer to
buffer or window to window (usually the same thing), Vim automatically does
pre- and postaction housekeeping.

Transparent editing
Vim detects and automatically unbundles archived or compressed files. For
example, you can directly edit a compressed file such as my�le.txt.gz. You can
even edit directories. Vim lets you navigate a directory and select files to edit

using familiar vi-style navigation commands.

Overview | 163

Meta-information
Vim offers four handy read-only registers from which the user may extract

meta-information for <puts=: the current filename (%), the alternate filename (#),

the last command-line command executed (:), and the last inserted text (., a
period).

�e black hole register
This is an obscure but useful extension of editing registers. Normally, text dele‐
tions put the deleted text into registers using a rotation scheme (see the section
<Making Use of Registers= on page 60), which is useful for cycling through old
deletes to get back old and deleted text. Vim provides the <black hole= register
as a place to throw deleted text away without affecting the rotation of deleted
text in the normal registers. If you’re a Unix user, this register is Vim’s version
of /dev/null. From the Vim help file change.txt:

Black hole register "_
When writing to this register, nothing happens. This can be used to delete
text without affecting the normal registers. When reading from this register,
nothing is returned.

Vim also lets you drop back to a vi-compatible mode with its compatible option

(:set compatible). Most of the time you’ll probably want Vim’s extra features, but
it’s a thoughtful touch to provide for backward compatibility if you need it.

Philosophy
Vim’s philosophy aligns closely with vi’s. Both provide power and elegance in editing.
Both rely on modality (command mode versus input mode). And both keep editing
at the keyboard; that is, you can perform all of your editing work quickly and
efficiently and never touch a mouse. We like to think of this as <touch editing,= which
is analogous to <touch typing,= reflecting the corresponding increase in speed and
efficiency that both bring to their respective tasks.

Vim extends that philosophy by providing features for less experienced users (GUI,
visual highlight mode) and giving power options for the power users (scripting,
extended regular expressions, configurable syntax, and configurable indenting).

And for the super power users who like to code, Vim comes with source code. Users
are free (and even encouraged) to improve on the improvements. Philosophically,
Vim strikes a balance for all users’ needs.

Aids and Easy Modes for New Users
Recognizing that both vi and Vim make some learning demands on new users, Vim
provides several features that make it easier to use and learn:

164 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

Graphical Vim (gvim)

When you invoke the gvim command, Vim display a rich graphical window,
offering full Vim functionality with the addition of the point-and-click features

made popular by modern GUI programs. In many environments, gvim is a
different binary file created by compiling Vim with all of the GUI options turned

on. It can also be invoked through vim -g.

<Easy= Vim (evim)

The evim command substitutes some simple behaviors for standard vi features,

which users who are unfamiliar with vi might find to be a more intuitive way to
edit files. Expert users probably won’t find this mode easy, because they’re already

used to standard vi behavior. It can also be invoked through vim -y.

vimtutor

Vim comes with vimtutor, a separate command that essentially starts Vim with
a special help file. This invocation of Vim gives users another starting point for

learning the editor. vimtutor takes about 30 minutes to complete.

You can also find any number of interactive Vim tutorials on the internet. One such
tutorial is OpenVim. Another is VIM Adventures, which treats learning Vim as an
adventure game.

Built-In Help
As mentioned earlier, Vim comes with close to two hundred thousand lines of
documentation. Almost all of this documentation is immediately available to you

from Vim’s built-in help facility. In its simplest form, you invoke the :help command.
This is interesting because it exposes users to their first example of Vim’s multiple
window editing.

While this is nice, it presents a bit of a chicken-and-egg conundrum because the

built-in help requires a modicum of understanding of vi navigation techniques; for it
to be really effective, users must know how to jump back and forth in tags. We’ll give
an overview of help screen navigation here.

The :help command brings up something similar to:

help.txt For Vim version 8.2. Last change: 2020 Aug 15

VIM - main help file

 k

 Move around: Use the cursor keys, or "h" to go left, h l

 "j" to go down, "k" to go up, "l" to go right. j

Close this window: Use ":q<Enter>".

 Get out of Vim: Use ":qa!<Enter>" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. |bars|) and hit CTRL-].

 With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).

Built-In Help | 165

https://www.openvim.com
https://vim-adventures.com

 Double-click the left mouse button on a tag, e.g. |bars|.

Jump back: Type CTRL-O. Repeat to go further back.

Get specific help: It is possible to go directly to whatever you want help

 on, by giving an argument to the |:help| command.

 Prepend something to specify the context: *help-context*

 WHAT PREPEND EXAMPLE ~

 Normal mode command :help x

 Visual mode command v_ :help v_u

 Insert mode command i_ :help i_<Esc>

 Command-line command : :help :quit

 Command-line editing c_ :help c_

 Vim command argument - :help -r

 Option ' :help 'textwidth'

 Regular expression / :help /[

 See |help-summary| for more contexts and an explanation.

 Search for help: Type ":help word", then hit CTRL-D to see matching

 help entries for "word".

 Or use ":helpgrep word". |:helpgrep|

 Getting started: Do the Vim tutor, a 30-minute interactive course for the

 basic commands, see |vimtutor|.

 Read the user manual from start to end: |usr_01.txt|

Vim stands for Vi IMproved. Most of Vim was made by Bram Moolenaar, but only

through the help of many others. See |credits|.

Thankfully, Vim accommodates the potential navigation problem for beginners and
considerately opens with basic guidelines for navigation, and it even tells you how to
exit the help screen. We recommend this as a starting point and urge you to spend
time exploring the help.

Once you are familiar with :help, you can branch out by using tab completion in

Vim’s command line. For any command at the command prompt (:), pressing TAB
results in context-sensitive command-line completion. For example, the following:

:e /etc/pas TAB

on any Unix system would expand to:

:e /etc/passwd

The :e command implies that the command argument is a file, so command comple‐
tion looks for files that match the partial filename to complete the input.

But :help has its own context, covering the help topics. The partial topic string you
type is matched by a substring in any available Vim help topic. We strongly encourage
you to learn and use this feature. It saves time and reveals new and interesting
features you probably didn’t know about.

For example, suppose you want to know how to split a screen. Start with:

:help split

166 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

and press TAB . In the current session, the help command cycles through:

split(); :split; :split_f; splitfind; splitview; g:netrw_browse_split; :diff

split; :dsplit; :isplit; :vsplit; +vertsplit; 'splitright'; 'splitbelow'; and
many more. To see help for any topic, press the ENTER key when that topic is

highlighted. You’ll not only see what you’re probably looking for (:split), but you

will also discover things you didn’t realize you could do, such as :vsplit, the <vertical
split= command.

Startup and Initialization Options
Vim uses different mechanisms to set up its environment at startup. It inspects
command-line options. It also self-inspects (how was it invoked, and by what name?).
There are different compiled binaries to serve different needs (GUI versus text win‐
dow). Vim also uses a sequence of initialization files in which uncountable combina‐
tions of behaviors can be defined and modified. There are too many options to cover
completely; we will touch on some of the interesting ones. In the next sections, we
discuss Vim’s starting sequence in the following order:

• Command-line options•

• Behaviors associated to command name•

• Configuration files (system-wide and per-user)•

• Environment variables•

This section introduces you to some of the ways to start Vim. For a more detailed
discussion of many more options, use the help command:

:help startup

Command-Line Options
Vim’s command-line options provide flexibility and power. Some options invoke
extra features, whereas others override and suppress default behavior. We discuss the
command-line syntax as it would be used in a typical Unix environment. Single-letter

options begin with - (one hyphen), as in -b, which allows editing of binary files.

Word-length options begin with -- (two hyphens), as in --noplugin, which overrides
the default behavior of loading plug-ins. A command-line argument of two hyphens
by themselves tells Vim that the rest of the command line contains no options. This is
standard Unix behavior.

Following the command-line options, you can optionally list one or more filenames
to be edited. Actually, there is an interesting case in which a filename can be a single
hyphen, telling Vim that input comes from the standard input, stdin, but this is an
advanced usage.

Startup and Initialization Options | 167

The following is a partial list of Vim command-line options not available in vi (all vi
options are available in Vim):

-b

Edit in binary mode. This is self-explanatory and very cool. Editing binary files
is an acquired taste, but this is a powerful way to edit files not touchable by most
other tools. If interested, you should read Vim’s help section on editing binary
files.

-c command

Execute command as an ex command. vi has this same option, but Vim allows

up to 10 -c instances in one command. Each command instance must use its

own -c flag.

-C

Run Vim in compatible (vi) mode. For obvious reasons, this option would never

be in vi.

--cmd command

Execute command before vimrc files. This is the long form of the -c option.

-d

Start in diff mode. Vim performs a diff on two, three, or four files and sets

options making inspection of file differences simple (scrollbind, foldcolumn,
etc.).

Vim uses the native file difference program, which is diff on Unix systems. The
Windows version offers a downloadable executable with which Vim can perform
the diff.

-E

Start in improved ex mode. For example, improved ex mode would use extended
regular expressions.

-F or -A
Farsi or Arabic modes, respectively. These require key and character maps to be
useful and draw the screen from right to left.

-g

Start gvim (GUI).

-M

Turn off the write option. Buffers will not be modifiable. While you can’t mod‐

ify the buffer, Vim ensures no changes by disabling both the :w and :w! ex
commands.

168 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

-o[n]
Open all files in separate windows. Optionally an integer can specify the number
of windows to open. Files named on the command line fill that number of
windows only (the rest are in Vim buffers). If the specified number of windows
exceeds the listed files, Vim opens empty windows to satisfy the requested count
of windows.

-O[n]

Like -o, but opens vertically split windows.

-y

Run Vim in <easy= mode. This sets options to a more intuitive behavior for
beginners. While <easy= may help the uninitiated, seasoned users will find this
mode confusing and irritating.

-Z

Run in restricted mode. This basically turns off all external interfaces and pre‐

vents access to the system features. For example, users can’t use !G!sort to sort

from the current line in the buffer to the end of the file; the filter sort will not be
available.

The following is a series of related options to use a remote instance of a server Vim.

The --remote options tell a remote Vim (which may or may not be executing on
the same machine) to edit a file or evaluate an expression in that remote server. The

--server options tell Vim which server to send to or indicate that Vim can declare

itself as a server. --serverlist simply lists available servers:

--remote file

--remote-expr expr

--remote-send keys

--remote-silent file

--remote-tab

--remote-tab-silent

--remote-tab-wait

--remote-tab-wait-silent

--remote-wait file …

--remote-wait-silent file …

--serverlist

--servername name

For a more complete discussion of all command-line options, including the complete

vi set, refer to the section <Command-Line Syntax= on page 415. For more informa‐

tion on the --remote options, issue the Vim command :help remote.

Startup and Initialization Options | 169

Behaviors Associated to Command Name
Vim comes in two main flavors: graphical (using the X Window System under Unix
variants and native GUIs in other operating systems) and textual, each of which can
start up with subsets of characteristics. Unix users simply use one of the commands
in the following list to get the desired behavior:

vim

Start the text-based Vim.

gvim

Start Vim in graphical mode. In many environments, gvim is a different binary
file of Vim with all of the GUI options turned on during compilation. This has

the same effect as starting Vim with vim -g.

view, gview

Start Vim or gvim in read-only mode. This has the same effect as starting Vim

with vim -R.

rvim

Start Vim in restrictive mode. All external access to shell commands is disabled,

as well as the ability to suspend the editing session with the ^Z command.

rgvim

This has the same effect as starting Vim with rvim but for the graphical version.

rview

Analogous to view, but start in restricted mode. In restricted mode, users do not
have access to filters, outside environments, or OS features. This has the same

effect as starting Vim with vim -Z (the -R option invokes just the read-only effect
described previously).

rgview

This has the same effect as starting Vim with rview but for the graphical version.

evim, eview
Use <easy= mode for editing or read-only viewing. Vim sets options and features
so it behaves in a more intuitive way for those who are not familiar with the Vim

paradigm. This has the same effect as starting Vim with vim -y. Expert users

probably won’t find this mode easy because they’re already used to standard vi
behavior.

Note there is no analogous gXXX version of these commands, because gvim is
ostensibly thought to be already easy, or at least intuitive to learn, with predicta‐
ble point-and-click behavior.

170 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

vimdiff, gvimdiff
Start in <diff = mode and perform a diff on the input files. This is covered in depth
later in the section <What’s the Difference?= on page 328.

ex, gex

Use line-editing ex mode. Useful in scripts. This has the same effect as starting

Vim with vim -e.

MS-Windows users can access a similar choice of Vim versions in the program list
(Start menu).

System and User Con�guration Files
Vim looks for initialization cues in a special sequence. It executes the first set of
instructions it finds (either in the form of an environment variable or in a file) and
begins editing. Thus, the first element of the following list that is encountered is the
only element of the list that is executed. The sequence follows:

1. VIMINIT: This is an environment variable. If it is nonempty, Vim executes its1.

content as an ex command.

2. User vimrc files: The vimrc (Vim resource) initialization file is a cross-platform2.
concept, but because of subtle operating system and platform differences, Vim
looks for it in different places in the following order:

$HOME/.vimrc Unix, OS/2,a and Mac OS X

$HOME/_vimrc MS-Windows and MS-DOS

$VIM/_vimrc MS-Windows and MS-DOS

s:.vimrc Amiga

home:.vimrc Amiga

$VIM/.vimrc OS/2 and Amiga
a We don’t know how many people still have OS/2 or Amiga systems. But if you do, it’s nice to know that Vim supports
you!

3. Local .exrc and vimrc files: If the Vim exrc option is set, Vim looks for the three3.
additional configuration files: .vimrc; .gvimrc; and .exrc. On non-POSIX systems,
the filename may start with something different than a period.

The .vimrc file is a good place to configure Vim’s editing characteristics. Virtually any
Vim option can be set or unset in this file, and it is particularly suited to setting up
global variables and defining functions, abbreviations, key mappings, and so forth.
Here are a few things to know about the .vimrc file:

Startup and Initialization Options | 171

• Comments begin with a double quote ("), and the double quote can be anywhere•
in the line. All text after and including the double quote is ignored.

• ex commands can be specified with or without a colon. For example, set•

autoindent is identical to :set autoindent.

• The file is much more manageable if you break large sets of option definitions•
into separate lines. For example:

set terse sw=1 ai ic wm=15 sm nows ruler wc=<Tab> more

is equivalent to:

set terse " short error and info messages

set shiftwidth=1

set autoindent

set ignorecase

set wrapmargin=15

set nowrapscan " don't scan past end or top of file in searches

set ruler

set wildchar=<TAB>

set more

Notice how much more readable the second set of commands is. The second method
is also much easier to maintain through deletions, insertions, and temporarily com‐
menting out lines when debugging settings in the configuration file. For example,
should you want to temporarily disable line numbering in the startup configuration,

you simply insert a double quote (") at the beginning of the set number line in your
configuration file.

Environment Variables
Many environment variables affect Vim’s startup behavior and even some editing
session behavior. These are mostly transparent and are handled with defaults if not
configured.

How to set environment variables

The command environment you have when you log in (called the shell in Unix)
sets variables to reflect or control its behavior. Environment variables are especially
powerful because they affect programs invoked within the command environment.
The following instructions are not specific to Vim; they can be used to set any
environment variables you want set in the command environment:

MS-Windows
To set an environment variable:

1. Bring up the control panel.1.

2. Double-click System.2.

172 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

3. Click the Advanced tab.3.

4. Click the Environment Variables button.4.

The result is a window divided into two environment variable areas, User and

System. Novices shouldn’t modify the System environment variables. In the User
area, you can set environment variables related to Vim and make them persist
across login sessions.

Unix/Linux Bash and other Bourne shells
Edit the appropriate shell configuration file (such as .bashrc for Bash users) and
insert lines resembling:

VARABC=somevalue VARXYZ=someothervalue MYVIMRC=/path/to/my/vimrc/file

export VARABC VARXYZ MYVIMRC

The order of these lines is irrelevant. The export statement just makes variables
visible to programs that run in the shell, and thus turns them into environment
variables. The value of exported variables can be set before or after exporting
them.

Unix/Linux C shells
Edit the appropriate shell configuration file (such as .cshrc) and insert lines
resembling the following:

setenv VARABC somevalue

setenv VARXYZ someothervalue

setenv MYVIMRC /path/to/my/vimrc/file

Environment variables relevant to Vim

The following list shows most of Vim’s environment variables and their effects.

The Vim -u command-line option overrides Vim’s environment variables and goes

directly to the specified initialization file. The -u does not override non-Vim environ‐
ment variables:

EXINIT

Same as VIMINIT; used if VIMINIT isn’t defined.

MYVIMRC

Overrides Vim’s search for initialization files. If MYVIMRC has a value when start‐
ing, Vim assumes the value is the name of an initialization file and, if the file
exists, takes initial settings from it. No other file is consulted (see the search
sequence in the previous section).

Startup and Initialization Options | 173

SHELL

Specifies which shell or external command interpreter Vim uses for shell com‐

mands (!!, :!, etc.). In an MS-Windows command window, if SHELL is not set,

the COMSPEC environment variable is used instead.

TERM

Sets Vim’s internal term option. This is somewhat unnecessary, because the editor
sets its terminal itself as it deems appropriate. In other words, Vim probably
knows what the terminal is better than a predefined variable.

VIM

Contains the path of a system directory where standard Vim installation infor‐
mation is found (for information only and not used by Vim).

VIMINIT

Specifies ex commands to execute when Vim starts. Define multiple commands

by separating them with vertical bars (|).

If more than one version of Vim exists on a machine, VIM will
likely reflect different values depending on which version you start.
For example, on one author’s machine, the Cygwin version sets the

VIM environment variable to /usr/share/vim, whereas the vim.org
package sets it to C:\Program Files\Vim.

This is important to know if you are making changes to Vim files,
as changes may not take effect if you edit the wrong files!

VIMRUNTIME

Points to Vim support files, such as online documentation, syntax definitions,
and plug-in directories. Vim typically figures this out on its own. If you set the
variable—for example, in the .bashrc file—it can cause errors if a newer version of

Vim is installed because your personal VIMRUNTIME variable may point to an old,
nonexistent, or invalid location.

New Motion Commands
Vim provides all vi movement or motion commands, most of which are listed in
Chapter 3, <Moving Around in a Hurry=, and adds several others, summarized in
Table 8-1.

174 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

Table 8-1. Motion commands in Vim

Command Description

n CTRL-END Go to the end of the �le, i.e., the last character of the last line of the �le. If n was speci�ed, go to the last
character of the line n.

HOME Go to the �rst nonblank character of the �rst line of the �le. This di�ers from CTRL-END in that HOME does
not move the cursor to whitespace.

count % Go to the line count percent into the �le, putting the cursor on the �rst nonblank line. It’s important to note
that Vim bases its calculation on the number of lines in the �le, not the total character count. This may
not seem important, but consider an example of a �le containing 200 lines, of which the �rst 195 contain
5 characters (for example, prices such as $4.98), and the last 4 lines contain 1,000 characters. In Unix,
accounting for the newline character, the �le would contain approximately:
(195 * (5 + 1)) (The number of characters in the �rst �ve-character lines)

+ 2 + (4 * (1000 + 1)) (The number of characters in the thousand-character lines)

or 5,200 characters. A by-character 50% count would place the cursor on line 96, whereas Vim’s 50% motion
command places the cursor on line 100.

:go n

:n go
Go to the nth byte in the bu�er. All characters, including end-of-line characters, are counted.

The notation <C-xxx> is Vim’s way of describing key combinations in a system-

independent manner. In this case, the leading C- means to hold the CTRL key while

pressing the other key for xxx. For example, <C-End> means press CTRL and END .

Visual Mode Motion
Vim lets you define selections visually and perform editing commands on the visual
selection. This is similar to what you may see in graphical editors in which you
highlight areas by clicking and dragging the mouse. What Vim offers with its visual
mode is the convenience of seeing the selection on which work is done and all of the
powerful Vim commands with which to do work on the visually selected text. This
lets you do much more sophisticated work on highlighted text than the traditional cut
and paste actions in less advanced editors.

You can select a visual area in Vim in the same manner as other editors, by clicking
and dragging the mouse. But Vim also lets you use its powerful motion commands
and some special visual mode commands to make the selection.

For example, you can type v in command mode to start visual mode. Once you are in
visual mode, any motion commands move the cursor and highlight text as the cursor

moves to a new position. So, the <next word= command (w) in visual mode moves
the cursor to the next word and highlights the selected text. Additional movements
extend the selected region appropriately.

In visual mode, Vim uses some specialized commands with which you conveniently
extend the selected text by selecting the text object around the cursor. For example,
the cursor can be within a <word,= and at the same time be within a <sentence,= and

New Motion Commands | 175

also be within a <paragraph.= Vim lets you add to the visual selection with commands
that extend the highlighted region to a text object. To visually select a word, you use

aw (when in visual mode).

You can highlight visual areas of the buffer in several ways. In text-based mode,

simply type v to toggle visual mode on and off. When on, visual mode selects and

highlights the buffer as the cursor moves. In gvim, just click and drag the mouse
across the desired region. This sets Vim’s visual flag. Table 8-2 shows some of Vim’s
visual mode motion commands.

Table 8-2. Visual mode motion commands in Vim

Command Description

n aw, n aW Select n words. Intervening whitespace is included. This is slightly di�erent from iw (see next entry). Lowercase
w looks for punctuation-delimited words, whereas uppercase W looks for whitespace-delimited words.

n iw, n iW Select n words. Add words but not whitespace. Lowercase w looks for punctuation-delimited words, whereas
uppercase W looks for whitespace-delimited words.

as, is Add sentence, or inner sentence.

ap, ip Add paragraph, or inner paragraph.

For a more detailed discussion of text objects and how they are used in visual mode,
use the help command:

:help text-objects

We recommend that you play around with visual mode and get used to it. In par‐
ticular, it’s a great way to choose the text to which you wish to apply a substitute
command, or when you want send text through a filter.

Extended Regular Expressions
The metacharacters available in vi’s search and substitution regular expressions are
described back in Chapter 6 in the section <Metacharacters Used in Search Patterns=
on page 90.

Vim provides extended regular expressions, which are always available. Some of these

additional metasequences give power equivalent to that provided by egrep (or grep

-E on fully POSIX-compliant systems). Some of the descriptive text in the following
list is borrowed from the Vim documentation:

\|

Indicates alternation. For example, a\|b matches either a or b. However, this

construct is not limited to single characters: house\|home matches either of the
strings house or home.

176 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

6 The *, \+, and \= operators can be reduced to \{0,}, \{1,}, and \{0,1}, respectively, but the former are

much more convenient to use. Also, interval expressions were developed later in the history of Unix regular

expressions.

\&

Indicates a <concat.= A concat matches the part after the last \&, but only if all

the previous parts matched. The Vim help gives these examples: foobeep\&...

matches foo in foobeep, and .*Peter\&.*Bob matches in a line containing both
Peter and Bob.

\+

Match one or more of the preceding regular expressions. This is either a single
character or a group of characters enclosed in parentheses. Note the difference

between \+ and *. The * is allowed to match nothing, but with \+ there must be

at least one match. For example, ho(use\|me)* matches ho as well as home and

house, but ho(use\|me)\+ does not match ho.

\=

Match zero or one of the preceding regular expression. This is the same as

egrep’s ? operator.

\?

Match zero or one of the preceding regular expression. This is the same as

egrep’s ? operator and is more natural for people familiar with egrep and awk.

\{…}

Defines an interval expression. Interval expressions describe counted numbers
of repetitions. Vim requires only the left brace to be preceded by a backslash,
not the right brace. In the following descriptions, n and m represent integer
constants:

\{n,m}

Match n to m of the preceding regular expression, as much as possible. The
bounding is important, since it controls how much text would be replaced
during a substitute command.6 n and m are nonnegative numbers (this
includes zero).

\{n}

Match exactly n repetitions of the previous regular expression. For example,

(home\|house){2} matches homehome, homehouse, househome, and house‐
house, but nothing else.

Extended Regular Expressions | 177

\{n,}

Match at least n of the preceding regular expression, as much as possible.
Think of it as <as least n= repetitions.

\{,m}

Match zero to m of the preceding regular expression, as much as possible.

\{}

Matches zero or more of the preceding regular expression, as much as

possible (same as *).

\{-n,m }
Matches n to m of the preceding regular expression, as few as possible.

\{-n}

Matches n of the preceding regular expression.

\{-n,}

Matches at least n of the preceding regular expression, as few as possible.

\{-,m}

Matches zero to m of the preceding regular expression, as few as possible.

~

Matches the last given substitute (i.e., replacement) string.

\(…\)

Provides grouping for *, \+, \?, and \=, as well as making matched subtexts

available in the replacement part of a substitute command (\1, \2, etc.).

\1

Matches the same string that was matched by the first subexpression in \(and

\). For example, \([a-z]\).\1 matches ata, ehe, tot, etc. \2, \3, and so on may
be used to represent the second, third, and so on subexpressions.

The isident, iskeyword, isfname, and isprint options define the characters that
appear in identifiers, keywords, and filenames, and that are printable. Use of these
options makes regular expression matching very flexible.

Vim provides a number of additional special sequences that act as shorthands for sev‐
eral nonprinting characters, as well as for commonly used bracket expressions. Vim
calls these character classes after the earlier, original usage in Unix documentation.
They are presented in Table 8-3.

178 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

Table 8-3. Vim regular expression characters and character classes

Sequence Meaning

\a Alphabetic character: same as [A-Za-z].

\A Nonalphabetic character: same as [^A-Za-z].

\b Backspace.

\d Digit: same as [0-9].

\D Nondigit: same as [^0-9].

\e Escape.

\f Matches any �lename character, as de�ned by the isfname option.

\F Like \f, but excluding digits.

\h Head of word character: same as [A-Za-z_].

\H Non-head-of-word character: same as [^A-Za-z_].

\i Matches any identi�er character, as de�ned by the isident option.

\I Like \i, but excluding digits.

\k Matches any keyword character, as de�ned by the iskeyword option.

\K Like \k, but excluding digits.

\l Lowercase character: same as [a-z].

\L Nonlowercase character: same as [^a-z].

\n Matches a newline. Can be used to match multiline patterns.

\o Octal digit: same as [0-7].

\O Non-octal digit: same as [^0-7].

\p Matches any printable character, as de�ned by the isprint option.

\P Like \p, but excluding digits.

\r Carriage return.

\s Matches a whitespace character (exactly a space or a tab).

\S Matches anything that isn’t a space or a tab.

\t Matches a tab.

\u Uppercase character: same as [A-Z].

\U Nonuppercase character: same as [^A-Z].

\w Word character: same as [0-9A-Za-z_].

\W Nonword character: same as [^0-9A-Za-z_].

\x Hexadecimal digit: same as [0-9A-Fa-f].

\X Nonhexadecimal digit: same as [^0-9A-Fa-f].

_x Where x is any of the previous characters above: match the same character class but with newline included.

Extended Regular Expressions | 179

Finally, Vim provides quite a number of additional, very esoteric ways to match regu‐

lar expressions. See :help regexp for the full details if you are interested. However,
we think that the list and table in this section provide quite enough features to keep
you busy for now.

Extended Undo
Beyond the convenience of undoing an arbitrary number of edits, Vim offers an
interesting twist called branching undos.

To use this feature, first decide how much control you want over undoing edits. Use

the undolevels option to define the number of undoable changes you can make in an
editing session. The default is one thousand, which is probably more than enough for

most users. If you want vi compatibility, set undolevels to zero:

:set undolevels=0

In vi, the undo command (u) is basically a toggle between the file’s current state and
its most recent change. The first undo reverts to the state before the last change. The
next undo redoes the undone change. Vim behaves quite differently, and therefore the
commands are implemented differently.

Instead of toggling the most recent change, repeated invocations of Vim’s undo rolls
back the state of the file through the most recent changes, in order, for as many

changes as defined by the undolevels option. Because the undo command, u, only
moves backward, we need a command to roll forward and <redo= changes. Vim does

this with the redo command, :redo, or the CTRL-R key. The CTRL-R key accepts a
numeric prefix to redo several changes at once.

When rolling forward and backward through changes with the redo and undo com‐
mands, Vim maintains a map of the file’s state and knows when the last possible
undo has been performed. When all possible undos are undone, Vim resets the file’s

modi�ed status, which allows quitting without the ! suffix. Although this is a modest
benefit for general user interaction, it is more useful for behind-the-scenes scripting
where the modified state of the file is important.

For most users, simply undoing and redoing changes is sufficient. But consider a
more complex scenario. What if you make seven changes to a file, and undo three?
So far, so good, nothing unusual to consider. But now suppose that after undoing
three out of seven changes, you then make a change different from the next forward
change in Vim’s collection of changes; Vim defines that point in the change history
as a branch from which different paths of changes occur. With that path you can now
move back and forth chronologically, with the added twist that at a branch point you
can move forward along any of the different paths of recorded changes.

180 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

7 Emacs has always had incremental searching.

For more complete descriptions of how to navigate changes as a tree, use Vim’s help
command:

:help usr_32.txt

For deeper analyses of Vim change-trees, check out some of the undo plug-ins at
https://vimawesome.com/?q=undo.

Incremental Searching
When incremental searching is used, the editor moves the cursor through the file,
matching text as you type the search pattern. When you finally type ENTER , the

search is finished.7 Vim enables incremental searching with the incsearch option.
When enabled, Vim highlights the text that matches what you’ve typed so far, chang‐
ing what it highlights as you enter more characters into the search pattern.

If you’ve never seen it before, it is rather disconcerting at first. However, after a while
you get used to it, and eventually you come to wonder how you ever did without it.

We strongly recommend adding set incsearch to your .vimrc file.

Left-Right Scrolling
By default, vi and Vim wrap long lines around the screen. Thus, a single logical line
of the file may occupy multiple physical lines on your screen.

There are times when it might be preferable for a long line to simply disappear off
the righthand edge of the screen instead of wrapping. Moving onto that line and then
moving to the right would <scroll= the screen sideways.

In Vim, a numeric option (sidescroll, default value zero) controls how much to

scroll the screen, and a Boolean option (wrap, default true) controls whether lines
wrap or disappear off the edge of the screen. Thus, to get side scrolling, you’d

use :set nowrap and give sidescroll a reasonable value such 8 or 16.

Summary
For many years vi was the standard text-editing tool on Unix. vi was almost revolu‐
tionary in its time, with its dual mode orientation and touch-edit philosophy. Vim

continues where vi left off, and it is the next evolutionary step for powerful editing
and text management:

Incremental Searching | 181

https://vimawesome.com/?q=undo

• Vim extends vi, building on the excellent standard set by the older editor.•
Although other editors have also built upon the original, Vim has emerged as the

most popular and widely used vi clone.

• Vim offers far (far!) more than vi, so much more as to become the new standard.•

Vim is the de facto standard in that most Unix-like operating systems link the vi
command to Vim.

• Vim is for beginners and for power users. For beginners, it offers various learning•

tools and <easy= modes, whereas for experts it offers powerful extensions to vi,
along with a platform on which power users can enhance and tune Vim to their
exact needs.

• Vim runs everywhere. As discussed earlier, in environments in which Vim wasn’t•
available, others stepped in and ported it to most useful OS platforms. Vim may
not literally be everywhere, but it’s close!

• Vim is free. Furthermore, Vim is charityware. The work Bram Moolenaar has•
done creating, improving, maintaining, and sustaining Vim is one of the truly
remarkable feats in the free software market. If you like his work, Bram invites
you to learn about his favorite cause, helping children in Uganda. More informa‐
tion is available at the website ICCF Holland, or you can simply use Vim’s built-in

help command, topic <uganda= (:help uganda).

182 | Chapter 8: Vim (vi Improved): Overview and Improvements over vi

http://iccf-holland.org

CHAPTER 9

Graphical Vim (gvim)

As a vi derivative, Vim began as a project to extend vi by adding features not

available in vi. As an independent effort Vim added and improved on the excellent

vi, and Vim could do this quickly, based on user feedback, without the onus of
POSIX requirements.

Already at the time of this book’s seventh edition, Vim offered mature and compre‐
hensive graphical user interface (GUI) features discussed in this chapter. In the years
since then, Vim continued enhancing the GUI, and today it is better than ever.

A longtime complaint about vi and its clones was their lack of a GUI. Especially for

those caught up in the Emacs versus vi religious wars, vi’s lack of a GUI was the

ultimate trump card to argue that vi was a nonstarter when discussing editors. That
is a complaint long since answered.

The vi clones and <work-alikes= created their own GUI versions. Graphical Vim is

called gvim. Like the other vi clones, gvim offers robust and extensible GUI functions
and features. We’ll cover the most useful ones in this chapter.

Some of gvim’s graphical functionality wraps commonly used Vim features, whereas
others introduce the point-and-click convenience most computer users now expect.
Although some veteran Vim users may cringe at the thought of grafting a GUI

onto their workhorse editor, gvim is thoughtfully conceived and implemented. gvim
offers functionality and features spanning the range of its users’ abilities, softening
Vim’s steep learning curve for beginners and transparently bringing expert users extra
editing power. This strikes a nice compromise.

183

1 Especially now that MS-Windows offers Windows Subsystem for Linux (WSL), a complete GNU/Linux

subsystem with the option for users to install their favorite GNU/Linux distribution. We describe one way to

start the native Linux gvim within WSL and display the session natively in Windows.

2 We’ve discovered that Vim doesn’t always generate an error and in fact starts with no error messages. The

caveat stands because even when Vim doesn’t generate an error, Vim tries to reconfigure the definition of your

console/screen/terminal accordingly. Some terminals or consoles adapt correctly, but it’s more likely that you

will end up with a semicorrect behavior of your terminal. The effects can interfere with the correct behavior of

other applications that depend on and use terminal definitions.

gvim for MS-Windows comes with a menu entry labeled <easy

gvim.= This is indeed valuable to people who have never used Vim,
but ironically, it is anything but easy for expert users.

In this chapter we first discuss the general gvim GUI concepts and features, with
a brief introductory section about mouse interaction. Additionally, we refine the

discussion around differences and things you should know for different gvim envi‐
ronments. Specifically, we focus on MS-Windows and the X Window System, the two
main graphical platforms.1 We also provide a brief list of GUI options with synopses.

General Introduction to gvim
gvim brings all the functionality, power, and features of Vim while adding the conve‐
nience and intuitive nature of a GUI environment. From traditional menus to visual

highlighting, gvim provides the GUI experience today’s users expect. For veteran,

console-based, text-environment vi users, gvim still gives the familiar core power and

doesn’t dumb down the paradigm that garnered vi its reputation as a power editor.

Starting gvim
You start a graphical session with the gvim command or with vim -g. In MS-
Windows, the self-installing executable adds an <edit with Vim= context-menu

entry. This gives quick and easy access to gvim by integrating it into the Windows
environment.

The configuration files and options recognized by gvim are slightly different from

those used by Vim. gvim reads and executes two startup files: .vimrc, followed

by .gvimrc. Although you can put gvim-specific options and definitions in .vimrc,
it’s better to define them in .gvimrc. This provides a nice separation of regular Vim

and gvim customization. It also assures proper behavior on startup. For example, :set

columns=100 isn’t valid in regular Vim and generates an error when Vim is started.2

184 | Chapter 9: Graphical Vim (gvim)

If a system gvimrc file exists (usually in $VIM/gvimrc), it is executed. Administrators
can use this system-wide configuration file to set common options for their users.
This provides a baseline configuration so that users will share a common editing
experience.

More experienced Vim users can add their own favorite custom settings and features.

After gvim reads the optional system configuration, it looks in four places for addi‐
tional configuration information, in the following order, and stops searching after
finding any one of these:

• An exrc command stored in the $GVIMINIT environment variable.•

• A user’s gvimrc file, usually stored in $HOME/.gvimrc. If it is found, it is sourced.•

• In a Windows environment, if $HOME is not set, gvim looks in $VIM/_gvimrc.•
This is the normal situation for Windows users, but it’s an important distinction

for users who have Unix work-alikes installed and are likely to have the $HOME
variable set. One example would be the popular Cygwin suite of Unix tools.

• If _gvimrc isn’t found, gvim finally looks for .gvimrc.•

If gvim finds a nonempty file to execute, that file’s name is stored in the $MYGVIMRC
variable and further initialization stops.

There is one more option for customization. If, in the cascading sequence of initiali‐

zation just described, the option exrc is set:

:set exrc

gvim additionally looks in the current directory for .gvimrc, .exrc, or .vimrc and
sources that file if it isn’t one of the previously listed files (i.e., if it hasn’t already been
discovered as an initialization file and already executed).

In a Unix environment, there are security issues around local direc‐

tories containing configuration files (both .gvimrc and .vimrc). gvim
defaults to enforcing some restrictions on what can be executed

from these files by setting the secure option if the file is not
owned by the user. This helps prevent malicious code from being

executed. If you want to be sure, set the secure option explicitly
in your .vimrc or .gvimrc file. See the section <Vim 8.2 Options= on

page 464 for more information on the secure option.

General Introduction to gvim | 185

Using the Mouse
The mouse in gvim does something useful in every editing mode. Let’s look at the

standard Vim editing modes and how gvim treats the mouse in each:

ex command mode
You enter this mode when you open the command buffer at the bottom of the

window by typing a colon (:). If the window is in command mode, you can
use the mouse to reposition the cursor anywhere in the command line. This is

enabled by default or when you include the c flag in the mouse option.

Insert mode
This is the mode for entering text. If you click in a buffer that’s in insert mode,
the mouse repositions the cursor and lets you immediately start entering text at

that position. This mode is enabled by default or when you include the i flag in

the mouse option.

The mouse’s behavior in insert mode provides easy and intuitive point-and-click
positioning. In particular, it bypasses the need to exit insert mode, navigate with
the mouse, motion commands, or other methods, and then reenter insert mode.

Superficially, this seems like a great idea, but in practice it will appeal to only a
subset of users. It may be more annoying than helpful to experienced Vim users.

Consider what happens when you are in insert mode and leave gvim for some

other application. When you click back into the gvim window, the point you click
is now the insertion point for text, and probably not the one you want. In a

single-window gvim session, you could land in a different spot from where you

were originally working; in a multiple-window gvim screen, you could end up
with the mouse in a completely different window. You might end up entering text
into the wrong file!

vi command mode
This includes any time you’re not in insert mode or on the command line.
Clicking the mouse in the screen simply leaves the cursor on the character where

you clicked. This mode is enabled by default or when you include the n flag in the

mouse option.

vi command mode provides a straightforward and easy method to position the
cursor, but it offers only clunky support for moving beyond the top or bottom
of the visible window. Click and hold the mouse and slide to the top or bottom

of a window; gvim will scroll up and down correspondingly. If scrolling stops,

move the mouse back and forth sideways to make it resume. It’s not clear why vi
command mode acts this way.

186 | Chapter 9: Graphical Vim (gvim)

Another drawback to vi command mode is that users, especially beginners, can
come to rely on point and click as the positioning method of choice. This can
hold back their motivation to learn Vim’s navigation commands, and hence its
power-editing methods. Finally, it creates the same potential confusion as insert
mode.

Additionally, gvim offers visual mode, also known as select mode. This mode is

enabled by default, or when you include the v flag in the mouse option. Visual is the
most versatile mode, because it lets you select text by dragging the mouse, which

highlights the selection. It can be used in combination with command, insert, and vi
command modes.

Any combination of flags can be specified in the mouse option. The syntax to use is
illustrated by the following commands:

:set mouse=""

Disable all mouse behavior.

:set mouse=a

Enable all mouse behavior (the default).

:set mouse+=v

Enable visual mode (v). This example uses the += syntax to add a flag to the

current mouse setting.

:set mouse-=c

Disable mouse behavior in vi command mode (c). This example uses the -=

syntax to remove a flag from the current mouse setting.

Beginners may prefer more <on= settings, whereas experts may turn the mouse off
completely (as one of us does).

If you use the mouse, we recommend choosing a familiar behavior through

gvim’s :behave command, which accepts either mswin or xterm as an argument.

As suggested by the names of the arguments, mswin sets options to closely mimic

Windows behavior, whereas xterm mimics a window on the X Window System.

Vim has a number of other mouse options, including mousefocus, mousehide, mouse

model, and selectmode. For more information, refer to the Vim built-in documenta‐
tion for these options.

If you have a mouse with a scroll wheel, gvim handles it well by default, scrolling

the screen or window up and down predictably, regardless of how you set the mouse
option.

General Introduction to gvim | 187

Useful Menus
One nice touch gvim brings to the GUI environment is menu actions that simplify
some of Vim’s more esoteric commands. There are two worth mentioning.

gvim’s Window menu

gvim’s Window menu contains many of the most useful and common Vim window
management commands: commands that split a single GUI window into multiple
display areas. You may find it worth <tearing off = this menu, as shown in Figure 9-1,
so that you can conveniently open and bounce around among windows. The result is
shown in Figure 9-2. (We discuss tear-off menus shortly.)

Figure 9-1. gvim’s Window menu

Notice how the menu in Figure 9-2 is moved and floats over a completely unrelated
application. This is a nice way to have an often-used menu conveniently available but
out of the way of the editing. Both of these are handy for common select, cut, copy,
delete, and paste operations. Users of other GUI editors employ this kind of feature
all the time, but this is useful even for longtime Vim users. It is especially useful in
that it interacts with the Windows clipboard in a predictable way.

188 | Chapter 9: Graphical Vim (gvim)

Figure 9-2. gvim’s Window menu, torn o� and �oating

gvim’s right-click pop-up menu

gvim pops up the menu shown in Figure 9-3 when you right-click within a buffer
you’re editing.

Figure 9-3. gvim general editing menu

General Introduction to gvim | 189

If any text is selected (highlighted), another menu pops up when you right-click, as
shown in Figure 9-4.

Figure 9-4. gvim editing menu when text is selected

Customizing Scrollbars, Menus, and Toolbars
gvim provides the usual GUI widgets, such as scrollbars, menus, and toolbars. Like
most modern GUI applications, these widgets are customizable.

The gvim window, by default, shows several menus and a toolbar at the top, as
illustrated in Figure 9-5.

Figure 9-5. Top of the gvim window (Linux version)

Scrollbars
Scrollbars, which let you quickly navigate up and down or right and left through a

file, are optional in gvim. You can display or hide them with the guioptions option,
described at the end of this chapter in the section <GUI Options and Command
Synopsis= on page 211.

190 | Chapter 9: Graphical Vim (gvim)

Because Vim’s standard behavior is to show all the text in a file (wrapping lines in the
window if necessary), it’s interesting to note that the horizontal scrollbar serves no

purpose in typically configured gvim sessions.

Turn the left and right scrollbars on and off by including or excluding r or l in the

guioptions option. l makes sure the screen always has a left scrollbar, whereas r

makes it always have a right scrollbar. The uppercase variants L and R tell gvim to
show left or right scrollbars only when there is a vertically split window.

The horizontal scrollbar is controlled by including or excluding b in the guioptions
option.

And yes, you can scroll the right and left scrollbars at the same time! More precisely,
scrolling either one causes the other to move in the corresponding direction. It can be
pretty convenient to have scrollbars configured on both sides. Depending on where
your mouse is positioned, you simply click and drag the nearest scrollbar.

Many options, including guioptions, control multiple behaviors,
and thus can include many flags by default. New flags could even

be added in future versions of gvim. Hence, it is important to use

the += and -= syntax in the :set guioptions command to avoid

deleting desirable behaviors. For example, :set guioptions+=l

adds the <scrollbar always on left= option to gvim, leaving the other

components in the guioptions string intact.

Menus
gvim has a fully customizable menu feature. In this section we describe the default
menu characteristics, which appeared earlier in Figure 9-5, and show how you can
control the menu layout.

Figure 9-6 shows one example of using a menu. In this case we’re choosing Global

Settings from the Edit menu.

It’s interesting to note these menu options are merely wrappers for Vim commands.
In fact, that is exactly how you can create and customize your own menu entries,
which we discuss shortly.

Customizing Scrollbars, Menus, and Toolbars | 191

Figure 9-6. Cascading edit menu (Windows version)

If you pay attention to the menus, including the keystrokes or com‐
mands shown on the right side, you can learn Vim commands over
time. For example, in Figure 9-6, although it’s handy for beginners
to find the familiar Undo command in the Edit menu, where it
appears in other popular applications, it is much faster and easier to

use the Vim u keystroke, which is shown in the menu.

192 | Chapter 9: Graphical Vim (gvim)

As shown in Figure 9-6, each menu starts with a dashed line containing a picture
of scissors. Clicking this line <tears off = the menu to create a freestanding window
in which that submenu’s options are available without going to the menu bar. If you

clicked the dashed line above the Toggle Pattern Highlight menu option in Fig‐
ure 9-6, you would see something like Figure 9-7. You can position the free-floating
menu anywhere on your desktop.

Figure 9-7. Tearing o� a menu

Now all of the commands on this submenu are immediately available with just one
click in the submenu’s window. Each menu selection is mapped to a button. If a menu
selection itself is a submenu, it is represented by a button with greater-than signs
(which look like rightward-pointing arrows) at the right side of the button. Clicking
these arrows expands the submenu.

Basic menu customization

gvim stores menu definitions in a file named $VIMRUNTIME/menu.vim.

Defining menu items is similar to mapping. As you saw in the section <Using the map
Command= on page 124, you can map a key like this:

:map <F12> :set syntax=html<CR>

Customizing Scrollbars, Menus, and Toolbars | 193

Menus are handled very similarly.

Suppose that, rather than map F12 to set the syntax to html, we want a special

<HTML= entry on our File menu to do this task. Use the :amenu command:

:amenu File.HTML :set filetype=html<CR>

The four characters <CR> are to be typed as shown and are part of the command.

Now look at your File menu. You should see a new HTML entry, as shown in

Figure 9-8. By using amenu instead of menu, we ensure that the entry is available in all
modes (command, insert, and normal).

Figure 9-8. HTML menu item under the File menu

The menu command adds the entry to the menu only in command
mode; the entry does not appear in insert and normal modes.

The location for a menu entry is specified by a series of cascading menu names

separated by periods (.). In our example, File.HTML added the menu entry <HTML=
to the File menu. The last entry in the series is the one you want to add. Here we’ve
added it to an existing menu, but we’ll soon see that we can just as easily create a
whole cascading series of new menus.

Be sure to test your new menu selection. For example, we started editing a file that
Vim treats as an XML file, as can be seen in the status line in Figure 9-9 (see the
section <A Nice Vim Piggybacking Trick= on page 296 for how to set up the status

194 | Chapter 9: Graphical Vim (gvim)

line). We’ve customized the status line so that Vim and gvim display the currently
active file type on the far right.

Figure 9-9. Status line showing XML �le type before the new menu action

After invoking our new HTML menu item, the Vim status line verifies that the menu
item worked and that the file type is now HTML—see Figure 9-10.

Figure 9-10. Status line showing HTML �le type a�er the new menu action

Notice that the HTML menu item we added doesn’t have a shortcut or command
on the righthand side. So let’s redo the menu addition and include this nice
enhancement.

First, delete the existing entry:

:aunmenu File.HTML

If you add a menu entry for ex command mode using only the

menu command, you can remove it using unmenu.

Next, add a new HTML menu item that displays the command you associated to the
item:

:amenu File.HTML<TAB>filetype=html<CR> :set filetype=html<CR>

The specification of the menu entry is now followed by <TAB> (typed literally) and

filetype=html<CR>. In general, to display text on the righthand side of the menu,

place it after the string <TAB> and terminate it with <CR>. Figure 9-11 shows the
resulting File menu.

Customizing Scrollbars, Menus, and Toolbars | 195

Figure 9-11. HTML menu item displaying associated command

If you want spaces in the descriptive text of the menu item (or in

the menu name itself), quote the spaces with backslashes (\). If
you don’t, Vim uses everything after the first space character for
the definition of the menu action. In the previous example, if we

wanted :set filetype=html instead of just filetype=html for the

descriptive text, the :amenu command would have to be:

:amenu File.HTML<TAB>set\ filetype=html<CR> :set filetype=html<CR>

In most cases, it’s probably best not to modify the default menu definitions but
instead to create separate, independent entries. This requires defining a new menu at
the root level, but this is just as simple as adding an entry to an existing menu.

Continuing our example, let’s create a new menu tree called MyMenu on the menu bar,
and then add an HTML menu item to it. First, remove the HTML item from the File
menu:

:aunmenu File.HTML

Next, enter the command:

:amenu MyMenu.HTML<TAB>filetype=html :set filetype=html<CR>

196 | Chapter 9: Graphical Vim (gvim)

Figure 9-12 shows how your menu bar may appear.

Figure 9-12. Menu bar with <MyMenu= menu added

The menu commands offer more subtle control over where the menus appear and
over their behavior, such as whether the command indicates any activity, or even
whether the menu item is visible. We discuss these possibilities further in the follow‐
ing section.

More menu customization

Now that we see how easy it is to modify and extend gvim’s menus, let’s look at more
examples of customization and control.

Our previous example didn’t specify where to put the new MyMenu menu, and gvim
arbitrarily placed it on the menu bar between Window and Help. gvim lets us control
the position with its notion of priority, which is simply a numerical value assigned to
each menu to determine where it goes on the menu bar. The higher this value is, the
further to the right the menu appears. Unfortunately, the way users think of priority
is the opposite of how it’s defined by gvim. To get priority straight, look back at the
order of menus in Figure 9-5 and compare it to gvim’s default menu priorities, as
listed in Table 9-1.

Table 9-1. gvim’s default menu priorities

Menu Priority

File 10

Edit 20

Tools 40

Syntax 50

Bu�ers 60

Window 70

Help 9999

Most users would consider File a higher priority than Help (which is why File is on
the left and Help is on the right), but the priority of Help is higher. So just think of the
priority value as an indication of how far to the right a menu appears.

Customizing Scrollbars, Menus, and Toolbars | 197

You can define a menu’s priority by prepending its numeric value to the menu com‐
mand. If no value is specified, a default value of 500 is assigned, which explains why
MyMenu ended up where it did in our earlier example: it landed between Window
(priority 70) and Help (priority 9999).

Assume we want our new menu to be between the File and Edit menus. We need to
assign MyMenu a numeric priority greater than 10 and less than 20. The following
command assigns a priority of 15, leading to the desired effect:

:15amenu MyMenu.HTML<TAB>filetype=html :set filetype=html<CR>

Once a menu exists, its position is fixed for an entire editing ses‐
sion and does not change in response to additional commands that
affect the menu. For example, you cannot change a menu’s position
by adding a new item to it and prefixing the command with a
different priority value.

To add some more confusion to priorities and menu placement, you can also control
item placement within a menu by specifying a priority. Higher-priority menu items
appear further down in the menu than lower-priority items, but the syntax is different
from priority definitions for menus.

We’ll extend one of our earlier menu examples by assigning a very high value (9999)
to the HTML menu item, so that it appears at the bottom of the File menu:

:amenu File.HTML .9999 <TAB>filetype=html<CR> :set filetype=html<CR>

Why is there a period before 9999? You need to specify two priorities here, separated
by a period: one for File and one for HTML. We are leaving the File priority blank
because it’s a preexisting menu and can’t be changed.

In general, priorities for a menu item appear between the item’s menu placement
and the item’s definition. For every level in the menu hierarchy, you must specify a
priority or else include a period to indicate that you’re leaving it blank. Thus, if you
add an item deep in the menu hierarchy—such as under Edit → Global Settings →
Context lines → Display—and you want to assign the priority 30 to the last item
(Display), you would specify the priority as …30, and the placement together with the
priority would look like:

Edit.Global\ Settings.Context\ lines.Display ...30

As with menu priorities, menu item priorities are fixed once they are assigned.

Finally, you can control menu <whitespace= with gvim’s menu separators. Use the
same definition as you would to add a menu item, but instead of a plain command
name, place a hyphen (-) before and after it. See the line in the next example with the
identifiers 2 and 3.

198 | Chapter 9: Graphical Vim (gvim)

Putting it all together

Now we know how to create, place, and customize menus. Let’s make our example a
permanent part of our gvim environment by adding the commands we discussed to
the .gvimrc file. The sequence of lines should look something like:

" add XML/HTML/XHTML menu between File and Edit menus

 15amenu MyMenu.XML<TAB>filetype=xml :set filetype=xml<CR>

 amenu .600 MyMenu.-Sep- :

 amenu .650 MyMenu.HTML<TAB>filetype=html :set filetype=html<CR>

 amenu .700 MyMenu.XHTML<TAB>filetype=xhtml :set filetype=xhtml<CR>

We now have a top-level, personalized menu with three favorite file type commands
quickly available to us. There are a few important things to note in this example:

• The first command () uses the prefix 15, telling gvim to use priority 15. For an•
uncustomized environment, this places the new menu between the File and Edit
menus.

• The subsequent commands (, , and) do not specify the priority, because•
once a priority is determined, no other values are used.

• We’ve used the submenu priority syntax (, , and) after the first command•
to ensure the correct order for each new item. Notice we started with the first
definition of .600. This assures that the submenu item is placed behind the first
one we defined, because we didn’t assign that priority and it therefore defaulted
to 500.

For even handier access, click on the <scissors= tear-off line to have your personalized
floating menu, as shown in Figure 9-13.

Figure 9-13. Personalized �oating tear-o� menu

Toolbars
Toolbars are long strips of icons that allow quick access to program functions. On
GNU/Linx, for instance, gvim displays the toolbar shown in Figure 9-14 at the top of
the window.

Figure 9-14. gvim’s toolbar (Linux version)

Customizing Scrollbars, Menus, and Toolbars | 199

Table 9-2 shows the toolbar icons and their meanings.

Table 9-2. gvim toolbar icons and their meanings

Icon Description Icon Description

Open �le dialog Find next occurrence of search pattern

Save current �le Find previous occurrence of search pattern

Save all �les Choose saved edit session to load

Print bu�er Save current edit session

Undo last change Choose Vim script to run

Redo last action Make the current project with the make command

Cut selection to clipboard Build tags for the current directory tree

Copy selection to clipboard Jump to tag under cursor

Paste clipboard into bu�er Open help

Find and replace Search help

If these icons are not familiar or intuitive, you can make the toolbar show both text
and icons. Issue this command:

:set toolbar="text,icons"

As with many advanced features, Vim requires toolbar features to
be turned on during compilation so people who don’t want them
can save memory by not including them. The toolbar does not exist
unless one of the +GUI_GTK, +GUI_Athena, +GUI_Motif, or +GUI_Pho
ton features is compiled into your version of gvim. Appendix D, <vi
and Vim: Source Code and Building=, explains how to recompile
Vim, during which the link to the gvim executable is created.

200 | Chapter 9: Graphical Vim (gvim)

We modify the toolbar very much like we do menus. As a matter of fact, we use
the same :menu command, but with extra syntax to specify graphics. Although an
algorithm exists to help gvim find the icon associated with each command, we
recommend explicitly specifying the icon graphic.

gvim treats the toolbar as a one-dimensional menu. And just as you control the
right-to-left position of new menus, you can control the position of new toolbar
entries by prefixing the menu command with a number that determines its positional
priority. Unlike menus, there is no notion of creating a new toolbar. All new toolbar
definitions appear on the single toolbar. The syntax for adding a toolbar selection is:

:amenu icon=/some/icon/image.bmp ToolBar.NewToolBarSelection Action

where /some/icon/image.bmp is the path of the file containing the toolbar button or
image (usually an icon) to display in the toolbar, NewToolBarSelection is the new
entry for the toolbar button, and Action defines what the button does.

For example, let’s define a new toolbar selection that, when clicked or selected, brings
up a DOS window in Windows. Assuming the Windows path is set up correctly,
we will define our toolbar selection to start a DOS window from within gvim by
executing the following (this is its Action):

:!cmd

For the new selection’s toolbar button, or image, we use an icon showing a DOS
command prompt, shown in Figure 9-15, which on our system is stored in $HOME/
dos.bmp.

Figure 9-15. DOS icon

Execute the command:

:amenu icon="c:$HOME/dos.bmp" ToolBar.DOSWindow :!cmd<CR>

This creates a toolbar entry and adds our icon at the end of the toolbar. The toolbar
should now look like Figure 9-16. The new icon appears on the rightmost end of the
toolbar.

Figure 9-16. Toolbar with added DOS command button

Customizing Scrollbars, Menus, and Toolbars | 201

Tooltips
gvim lets you define tooltips for both menu entries and toolbar icons. Menu tooltips
display in the gvim command-line area when the mouse is over that menu selection.
Toolbar tooltips pop up graphically when the mouse hovers over a toolbar icon. For
example, Figure 9-17 shows the tooltip that pops up when we put the mouse over the
toolbar’s Find Previous button.

Figure 9-17. Tooltip for the Find Previous icon

The :tmenu command defines tooltips for both menus and toolbar items. The syntax
is:

:tmenu TopMenu.NextLevelMenu.MenuItem tool tip text

where TopMenu.NextLevellMenu.MenuItem defines the menu as it cascades from the
top level all the way to the menu item for which you wish to define a tooltip. So, for
example, a tooltip for the Open menu item under the File menu would be defined
with the following command:

:tmenu File.Open Open a file

Use ToolBar for the top-level <menu= if you are defining a toolbar item (there is no
real top-level menu for a toolbar).

Let’s define a pop-up tooltip for the DOS toolbar icon we created in the previous
section. Enter the command:

:tmenu ToolBar.DOSWindow Open up a DOS window

Now when you hover over the newly added toolbar icon, you can see the tooltip, as
shown in Figure 9-18.

Figure 9-18. Toolbar with added DOS command and its new tooltip

gvim in Microsoft Windows
gvim is increasingly popular among MS-Windows users. Veteran vi and Vim users
will find the Windows version excellent, and it is probably the most current version
across all operating systems.

202 | Chapter 9: Graphical Vim (gvim)

The self-installing executable should automatically and seamlessly
integrate Vim into the Windows environment. If it doesn’t, consult
the gui-w32.txt help file in the Vim runtime directory for regedit
instructions. Because this involves editing the Windows Registry,
do not try it if it’s a procedure with which you are the slightest
bit uncomfortable. You may be able to find someone with more
expertise to help you. It is a common but nontrivial exercise.

Longtime Windows users are familiar with the clipboard, a storage area where text
and other information is kept to facilitate copy, cut, and paste operations. Vim sup‐
ports interaction with the Windows clipboard. Simply highlight text in visual mode
and click the Copy or Cut menu item to store Vim text in the Windows clipboard.
You can then paste that text into other Windows applications.

gvim in the X Window System
Users familiar with the X environment can define and use many of the tunable
X features. For example, you can define many resources with the standard class
definitions typically defined in the .Xdefaults file.

Note that these standard X resources are useful only for the Motif
or Athena versions of the GUI. Obviously, the Windows version
has no understanding of X resources. Not so obviously, X resources
are not picked up by KDE or Gnome either, and on a modern
system, gvim is likely to be based on one of those two toolkits.

Running gvim in Microsoft Windows WSL
As of this writing, Microsoft has released two major versions of its virtualized sup‐
port for GNU/Linux distributions, Windows Subsystem for Linux (WSL). They are
commonly referred to as WSL and WSL 2.

WSL provides compatible interfaces that allow GNU applications to run and thus
enables full GNU/Linux distributions to run under Windows. WSL 2 ups the ante
and provides a running native Linux kernel executing in a virtual environment. The
deep details are beyond this book’s scope, but it bears mentioning that one of us has
successfully used WSL often and productively and attests to Vim’s full functionality
when executed in Microsoft’s Terminal application (it’s a console application). While
this was a pleasant surprise, it was even more exciting to learn that Microsoft is
adding more GUI support for WSL Linux.

This section will help you run gvim from WSL 2, displayed in native Windows.
For those familiar with X11, the approach is fairly standard, but there are some

gvim in the X Window System | 203

configuration tweaks necessary for Windows, and an appropriate gvim package must
be installed for the target GNU/Linux distribution.

Installing gvim in WSL 2
We describe the installation and configuration of gvim in a WSL 2 Ubuntu
distribution.

First, to verify whether gvim exists, use dpkg to search for the gvim binary. To elimi‐
nate false positive results (man pages, configuration files, etc.), search for <bin/gvim=:

$ dpkg -S bin/gvim

vim-gui-common: /usr/bin/gvimtutor

Nope, no gvim! gvimtutor is not gvim and simply drops back to terminal-based Vim
when gvim is not installed.

Now, as root (via sudo), install the gvim package. While we happen to know that
the package is vim-gtk3, it’s sometimes useful to let the Ubuntu package manager
apt provide hints. Ask apt simply to install gvim, and you see three possibilities, the
vim-gtk3 package being our choice:

vim@office-win10:~$ sudo apt install gvim

[sudo] password for vim:

Reading package lists... Done

Building dependency tree

Reading state information... Done

Package gvim is a virtual package provided by:

 vim-gtk 2:8.0.1453-1ubuntu1.4

 vim-athena 2:8.0.1453-1ubuntu1.4

 vim-gtk3 2:8.0.1453-1ubuntu1.4

You should explicitly select one to install.

Now we know the package we want and install that package with apt:

vim@office-win10:~$ sudo apt install vim-gtk3

...

All things being equal (we can’t go through all the possibilities of failed installations,
but this should be reliable), gvim should now be available in your Linux subsystem.
Accordingly, the installation updates your PATH and rehashes gvim into your available
commands. Verify this with the type command:

$ type gvim

gvim is /usr/bin/gvim

Okay, we’re almost there. You can execute gvim, but it’s still not quite what we want. If
you execute gvim, you’ll see a response like:

$ gvim

E233: cannot open display

Press ENTER or type command to continue

204 | Chapter 9: Graphical Vim (gvim)

3 This can be a little confusing. Bear with us. Windows and X Windows are not the same, but both are
important here. Windows is Windows, your familiar Microsoft Desktop. X Windows is a graphical server
running in your Microsoft Windows and knows how to display graphics from remote systems.

and when you press ENTER to continue, gvim falls back to the text-based terminal
Vim. We need to complete X Window setup by establishing an X Windows server in
the Windows environment and asking the Linux gvim to display graphically to it.3

Installing an X Server for Windows
As just mentioned, we must establish a server from Microsoft Windows to receive
graphical requests, enabling our WSL Linux instance of gvim to display transparently
on the Windows Desktop. In our example we will use the freely available Windows
server <Xming.=

Download the latest Xming server installer and execute it. The installer splash banner
can be seen in Figure 9-19.

Figure 9-19. Xming installer

Con�guring the X Server for Windows
Xming installs two executables:

• <XLaunch,= a configuration wizard simplifying common instances of Xming•

• <Xming,= the actual X server•

Running gvim in Microsoft Windows WSL | 205

https://sourceforge.net/projects/xming

4 The explanation of the various options are out of scope for this book. Briefly, we choose <Multiple windows=

because that option lets gvim display graphically in a Windows window.

Open the Windows Applications menus and find the Xming folder. You will see
something like Figure 9-20.

Figure 9-20. Xming apps installed from Xming Setup

Execute XLaunch to configure Xming. XLaunch guides you through standard X-ish
stuff. Figure 9-21 is XLaunch’s first screen. Select the same options as you see in these
figures.

Figure 9-21. XLaunch opening dialog, <Display settings=; we select <Multiple windows=

Select <Multiple windows,= and fill in Display number with the number zero, 0.4

The next dialog defines the X <Session type,= as represented in Figure 9-22.

206 | Chapter 9: Graphical Vim (gvim)

Figure 9-22. XLaunch dialog, <Session type=; we select <Start no client=

Select <Start no client.= This simply tells XLaunch to start the Xming X Window
server by itself. In that role, Xming will wait and display applications requesting
display from the remote host, which in this case is our WSL Linux host.

Next, XLaunch records other miscellaneous common X Windows parameters. See
Figure 9-23.

Figure 9-23. XLaunch dialog, <Additional parameters=; we select <Clipboard= and <No
Access Control=

Running gvim in Microsoft Windows WSL | 207

Select <Clipboard= and <No Access Control.= Note that the selection <No Access
Control= is not preselected.

We select the option <No Access Control= for the convenience of
not dealing with X Windows security mechanisms. We do this
under the assumption that the computer is in a <safe= environment,
e.g., a home network wherein no attacks would occur against the
Xming X server. This would not be the proper choice in any public
network or business office setting.

We have now configured Xming and are ready to launch. The final XLaunch dialog
in Figure 9-24 shows options to save your new configuration (we won’t) and start
Xming.

Figure 9-24. XLaunch <Finish con�guration” dialog

Once you’ve started Xming, verify it is running and ready to display Ubuntu X Win‐
dows applications by looking for the Xming icon in the system tray (see Figure 9-25).

Figure 9-25. Xming icon in the Windows system tray

208 | Chapter 9: Graphical Vim (gvim)

5 Yes, your MS-Windows computer now has a network interface visible to the Linux subsystem. This is how
WSL works, as it is a virtual computer with its own network address, thus requiring real network semantics so
Linux and MS-Windows can talk to each other.

6 Note the 0.0 form for the display number. This is related to the display and possible multiple screens. For

most use cases (simple ones), the display should be 0.0.

So we have all the working pieces to start our Ubuntu instance of gvim, but we’re not
quite done. If you execute gvim, it still displays an error message and degrades to the
terminal Vim.

This is because we need to tell our Ubuntu system where to display gvim. In this case,
we must tell Ubuntu to point to our Microsoft Windows Desktop. While it’s painfully
obvious to us prima facie, X Windows applications by definition must request an X
server to display their content, which we have not done.

We define in Ubuntu where we want to display gvim with our Microsoft Windows
network address and its associated X server display.5 The format is hostname:DIS‐

PLAY, where hostname will be our Windows IP address, and DISPLAY will be 0.

The easiest way to find the Microsoft Windows IP address is to look in the configura‐
tion file /etc/resolv.conf in Ubuntu, where Ubuntu’s <nameserver= is the Microsoft
Windows address:

$ cat /etc/resolv.conf

This file was automatically generated by WSL. To stop automatic generation of

this file, add the following entry to /etc/wsl.conf:

[network]

generateResolvConf = false

nameserver 172.17.224.1

or:

$ grep nameserver /etc/resolv.conf

nameserver 172.17.224.1

We see in our case that Ubuntu’s nameserver is 172.17.224.1. So the definition for our
X server will be 172.17.224.1:0.0.6

There are multiple ways to convey to gvim the display on which to present. The most
common way is by the environment variable DISPLAY, which we set with the shell
export command:

$ export DISPLAY=172.17.224.1:0.0

Now we’re ready. Start gvim, and you should now see a GUI version running as a
window in your Desktop. See Figure 9-26. Note that this is real: we’ve captured a
moment in time of authoring this book with gvim editing this chapter. You’ll notice
underneath the terminal and command line where we edited the real chapter file.
Cool. ☺

Running gvim in Microsoft Windows WSL | 209

7 You may not realize it, but this entire exercise also enables any and all X Windows applications available in the

Ubuntu instance, xeyes being one of many. Once you have set up the X server and defined the network and

DISPLAY, all X Windows applications use the same display. Congratulations! You’ve just completed a useful

lesson in X Windows. To verify further, try executing the X Windows terminal application, xterm.

Figure 9-26. Ubuntu gvim displayed in Microso� Windows Desktop

Notice the numbered callouts:

This is the actual gvim window running transparently as an application on the
Microsoft Windows Desktop.

This is the underlying Microsoft Terminal in which we are running a WSL
instance of Ubuntu. You can see the command lines executed that we just men‐
tioned in the text.

This is xeyes, a frivolous but popular little X Windows application, watching us
as we work.7

We’ve shown you now how to configure and use gvim from a Microsoft Windows
WSL Linux instance and display that session transparently. There are myriad ways
to set up and configure X Windows servers and clients. What you’ve learned here
is a big step toward using gvim and understanding X Windows fundamentals. A
full discussion of X and how you configure and customize it has been exhaustively
documented elsewhere and is beyond the scope of this book. For a brief (or not so
brief) introduction to X, we suggest the X man page.

210 | Chapter 9: Graphical Vim (gvim)

GUI Options and Command Synopsis
Table 9-3 summarizes the commands and options specifically associated with gvim.
These are added to Vim when it is compiled with GUI support, and they take effect
when it is invoked as gvim or vim -g.

Table 9-3. gvim-speci�c options

Command, option, or �ag Type Description

guicursor Option Settings for cursor shape and blinking

guifont Option Names of single-byte fonts to be used

guifontset Option Names of multibyte fonts to be used

guifontwide Option List of font names for double-wide characters

guiheadroom Option Number of pixels to leave for window decorations

guioptions Option Which components and options are used

guipty Option Use a pseudo-tty for “:!” commands

guitablabel Option Custom label for a tab page

guitabtooltip Option Custom tooltip for a tab page

toolbar Option Items to show in the toolbar

-g Flag Start the GUI (which also allows the other options)

-U gvimrc Flag Use gvim startup �le, named gvimrc or something similar,
when starting the GUI

:gui Command Start the GUI (on Unix-like systems only)

:gui filename… Command Start the GUI and edit the speci�ed �les

:menu Command List all menus

:menu menupath Command List menus starting with menupath

:menu menupath action Command Add menu menupath, to perform action

:menu n menupath action Command Add menu menupath with positional priority of n

:menu ToolBar.toolbarname action Command Add toolbar item toolbarname to perform action

:tmenu menupath text Command Create tooltip for menu item menupath with text of text

:unmenu menupath Command Remove menu menupath

GUI Options and Command Synopsis | 211

CHAPTER 10

Multiple Windows in Vim

By default, Vim edits all its files in a single window, showing just one buffer at a time
as you move between files or to different parts of a single file. But Vim also offers
multiwindow editing, which can make complex editing tasks easier. This is different
from starting multiple instances of Vim on a graphical terminal. This chapter covers
the use of multiple windows in a single instance of a running Vim process (which
we’ll call a session).

You can initiate your editing session with multiple windows or create new windows
after a session starts. You can add windows to your editing session up to the limit
imposed by sanity, and you can delete them back to a single window.

Multiple windows today makes more sense than ever with high-resolution monitors
being the norm. At the time of the seventh edition of this book, WXGA (1280x800)
was considered decent resolution. Today (late 2021), for about the same price, it’s easy
to find monitors in 4K resolution (Ultra HD: 3840x2160) for around $400. That’s
around nine times the resolution!

�en Vim’s multiple-windows feature enhanced users’ editing by offering multiple
viewports and glimpses into a single file or multiple files simultaneously. This was a
giant step forward for powerful editing, but it was often at the cost of compromising
real estate by either setting line wrap parameters so entire lines remained visible or
setting line shift options to scroll left and right as lines were clipped at the sides of
windows.

213

1 Of course, as described in this chapter, you still have the option to slice and dice windows to very tiny sizes for
whatever fills your editing needs.

Now with high-resolution screens, Vim’s multiple windows provide the same power‐
ful features, and users can easily split windows side-by-side and still get full-width
text displays for each window.1

Here are some examples of when multiple windows make your life easier:

• Editing a number of files that need to be formatted the same way, where you•
would like to compare them visually as you go along

• Cutting and pasting text quickly and repeatedly among multiple files or multiple•
parts of a single file

• Displaying one part of a file for reference, to facilitate work elsewhere in the same•
file

• Comparing two versions of a file•

Vim offers many window-managing convenience features, including the ability to:

• Split windows horizontally or vertically•

• Navigate from one window to another and back again quickly•

• Copy and move text to and from multiple windows•

• Move and reposition windows•

• Work with buffers, including hidden buffers (to be described later)•

• Use external tools such as the diff command with multiple windows•

In this chapter, we guide you through the multiwindow experience. We show you
how to start a multiwindow session, discuss features and tips for the editing session,
and describe how to exit your work and ensure that all your work is properly saved
(or abandoned, if you wish!). The following topics are covered:

• Initializing or starting multiwindow editing•

• Multiwindow :ex commands•

• Moving the cursor from window to window•

• Moving windows around the display•

• Resizing windows•

• Buffers and their interaction with windows•

• Playing tag with windows•

214 | Chapter 10: Multiple Windows in Vim

• Tabbed editing (like the tabs offered by modern internet browsers and dialog•
boxes)

• Closing and quitting windows•

Initiating Multiwindow Editing
You can initiate multiwindow editing when you start Vim, or you can split windows
within your editing session. Multiwindow editing is dynamic, allowing you to open,
close, and navigate among multiple windows at any point, from most contexts.

Multiwindow Initiation from the Command Line
By default, Vim opens only one window for a session, even if you specify more than
one file. While we don’t know for sure why Vim would not open multiple windows
for multiple files, it may be because using just a single window is consistent with vi.
Multiple files occupy multiple buffers, with each file in its own buffer. (Buffers are
discussed shortly.)

To open multiple windows from the command line, use Vim’s -o option. For example:

$ gvim -o file1.txt file2.txt

This opens the editing session with the display horizontally split into two equal-sized
windows, one for each file (see Figure 10-1). For each file named on the command
line, Vim tries to open a window for editing. If Vim cannot split the screen into
enough windows for the files, the first files listed in the command-line arguments
get windows, while the remaining files are loaded into buffers not visible (but still
available) to you.

Figure 10-1. Results of gvim -o file1.txt file2.txt (Linux gvim)

Initiating Multiwindow Editing | 215

Another form of the command line preallocates the windows by appending a number
n to -o:

$ gvim -o5 file1.txt file2.txt

This opens a session with the display horizontally split into five equal-sized windows,
the topmost of which contains �le1.txt and the second of which contains �le2.txt (see
Figure 10-2).

Figure 10-2. Results of gvim -o5 file1.txt file2.txt (Linux gvim)

When Vim creates more than one window, its default behavior is to
create a status line for each window (whereas the default behavior
for a single window is not to display any status line). You can
control this behavior with Vim’s laststatus option, e.g.:

:set laststatus=1

Set laststatus to 2 to always see a status line for each window,
even in single window mode. It is best to set this in your .vimrc file.

Because window size affects readability and usability, you may want to control Vim’s
limits for window sizes. Use Vim’s winheight and winwidth options to define reason‐
able limits for the current window (other windows may be resized to accommodate
it).

216 | Chapter 10: Multiple Windows in Vim

Multiwindow Editing Inside Vim
You can initiate and modify the window configuration from within Vim. Create a
new window with the :split command. This breaks the current window in half,
showing the same buffer in both halves. Now you can navigate independently in each
window on the same file.

There are convenience key sequences for many of the commands
in this chapter. In this case, for instance, CTRL-W S splits
a window. All Vim window-related commands begin with CTRL-
W , with the <W= being mnemonic for <window.= For the purposes
of discussion, we show only the command-line methods because
they provide the added power of optional parameters that custom‐
ize the default behavior. If you find yourself using commands rou‐
tinely, you can easily find the corresponding key sequence in the
Vim documentation, as described in <Built-In Help= on page 165.

Similarly, you can create a new, vertically separated editing window with the :vsplit
command (see Figure 10-3).

Figure 10-3. Vertically split window (Linux gvim)

For each of these methods, Vim splits the window (horizontally or vertically), and
since no file was specified on the :split command line, you end up editing the same
file with two views or windows.

Don’t believe you’re editing the same file at the same time? Split
the editing window and scroll each window so that each shows
the same area of the file. Make changes. Watch the other window.
Magic!

Initiating Multiwindow Editing | 217

Why or how is this useful? One common use, when writing shell scripts or C
programs, is to code a block of text that describes the program’s usage. Typically, the
program will display the block when passed a --help option. We split the display so
that one window displays the usage text, and we use this as a template to edit the
code in the other window that parses all the options and command-line arguments
described in the usage text. Often (almost always) this code is complex and ends up
far enough from the usage text that we can’t display everything in a single window.

If you want to edit or browse another file without losing your place in your current
file, provide the new file as an argument to your :split command. For instance:

:split otherfile

The next section describes splitting and unsplitting windows in more detail.

Opening Windows
This section goes into depth about how to get the precise behavior you want when
you split your window.

New Windows
As discussed previously, the simplest way to open a new window is to issue :split
(for a horizontal division) or :vsplit (for a vertical division). A more in-depth dis‐
cussion of the many commands and variations follows. We also include a command
synopsis for quick reference.

Options During Splits
The full :split command to open a new horizontal window is:

:[n]split [++opt] [+cmd] [file]

where:

n
Tells Vim how many lines to display in the new window, which goes at the top.

opt
Passes Vim option information to the new window session (note that it must be
preceded by two plus signs).

cmd
Passes a command for execution in the new window (note that it must be
preceded by a single plus sign).

�le
Specifies a file to edit in the new window.

218 | Chapter 10: Multiple Windows in Vim

For example, suppose you are editing a file and want to split the window to edit
another file named other�le. You want to ensure that the session uses a fileformat of
unix (which ensures the use of a line feed to end each line instead of a carriage return
and line feed combination). Finally, you want the window to be 15 lines tall. Enter:

:15split ++fileformat=unix otherfile

To simply split the screen, showing the same file in both windows and using all
the current defaults, you can use the vi mode commands CTRL-W S , CTRL-W
SHIFT-S , or CTRL-W CTRL-S .

If you want windows to always split equally, set the equalalways
option, preferably putting it in your .vimrc to make it persistent
over sessions. By default, setting equalalways splits both horizon‐
tal and vertical windows equally. Add the eadirection option (hor,
ver, both, for horizontal, vertical, or both, respectively) to control
which direction splits equally.

The following form of the :split command opens a new horizontal window as
before, but with a slight nuance:

:[n]new [++opt] [+cmd] [file]

In addition to creating the new window, the WinLeave, WinEnter, BufLeave, and
BufEnter autocommands execute. (For more information on autocommands, see the
section <Autocommands= on page 300.)

Along with the horizontal split commands, Vim offers analogous vertical ones. So,
for example, to split a vertical window, instead of :split or :new, use :vsplit
and :vnew, respectively. The same optional parameters are available as for the hori‐
zontal split commands.

There are two horizontal split commands without vertical cousins:

:sview filename

Splits the screen horizontally to open a new window and sets the readonly
option for that buffer. :sview requires the filename argument.

:sfind [++ opt] [+ cmd] filename

Works like :split, but looks for the �lename in the path. If Vim does not find
the file, it doesn’t split the window.

Opening Windows | 219

Conditional Split Commands
Vim lets you specify a command that causes a window to open if a new file is
found. :topleft cmd tells Vim to execute cmd and display a new window with the
cursor at the top left if cmd opens a new file. The command can produce three
different results:

• cmd splits the window horizontally, and the new window spans the top of the•
Vim window.

• cmd splits the window vertically, and the new window spans the left side of the•
Vim window.

• cmd causes no split but instead positions the cursor at the top left of the current•
window.

In addition to the conditional split command :topleft, Vim offers analogous com‐
mands :vertical, :leftabove and :aboveleft, :rightbelow and :belowright,
and :botright. You can find detailed descriptions on their use with Vim’s :help
command.

Window Command Summary
Table 10-1 summarizes the commands for splitting windows.

Table 10-1. Summary of window commands

ex command vi command Description

:[n]split [++opt] [+cmd] [file] CTRL-W S
 CTRL-W SHIFT-S
 CTRL-W CTRL-S

Split the current window in two from side to side,
placing the cursor in the new window. The optional �le
argument places that �le in the newly created window.
The windows are created as equal in size as possible,
determined by free window space.

:[n]new [++opt] [+cmd] CTRL-W N
 CTRL-W CTRL-N

Same as :split, but start the new window editing an
empty �le. Note that the bu�er will have no name until
one is assigned.

:[n]sview [++opt] [+cmd] [file] Read-only version of :split.

:[n]sfind [++opt] [+cmd] [file] Split the window and open �le (if speci�ed) in the new
window. Look for �le in the path.

:[n]vsplit [++opt] [+cmd] [file] CTRL-W V
 CTRL-W CTRL-V

Split the current window in two from top to bottom and
open �le (if speci�ed) in the new window.

:[n]vnew [++opt] [+cmd] Vertical version of :new.

220 | Chapter 10: Multiple Windows in Vim

Moving Around Windows (Getting Your Cursor from Here
to There)
It’s easy to move from window to window with a mouse in both gvim and Vim.
gvim supports clicking with the mouse by default, whereas in Vim you can enable
the behavior with the mouse option. A good default setting for Vim is :set mouse=a,
which activates the mouse for all uses: command line, input, and navigation.

If you don’t have a mouse, or if you prefer to control your session from the key‐
board, Vim provides a full set of navigation commands to move quickly and accu‐
rately among session windows. Happily, Vim uses the mnemonic prefix keystroke
CTRL-W consistently for window navigation. The keystroke that follows defines the
motion or other action, and the window navigation commands should be familiar
to experienced vi and Vim users because they map closely to the same motion
commands for editing.

Rather than describe each command and its behavior, we will consider an example.
The command-synopsis table should then be self-explanatory.

To move from the current Vim window to the next one, type CTRL-W J (or
CTRL-W ↓ or CTRL-W CTRL-J). The CTRL-W is the mnemonic for <win‐
dow= command, and the j is analogous to Vim’s j command, which moves the cursor
to the next line.

Table 10-2 summarizes the window navigation commands.

As with many Vim and vi commands, these can be multiply exe‐
cuted by prefixing them with a count. For example, 3 CTRL-W
 J tells Vim to jump to the third window down from the current
window.

Table 10-2. Window navigation commands

Command Description

 CTRL-W W
 CTRL-W CTRL-W

Move to the next window below or to the right. Note that this command, unlike CTRL-W J ,
cycles through all of the Vim windows. When the lowermost window is reached, Vim restarts the
cycle and moves to the top leftmost window.

 CTRL-W ´
 CTRL-W CTRL-J
 CTRL-W J

Move to the next window down.
Note that this command does not cycle through the windows; it simply moves down to the next
window below the current window. If the cursor is in a window at the bottom of the screen, this
command has no e�ect. Also, this command bypasses adjacent windows on its “way down”; for
example, if there is a window to the right of the current window, the command does not jump
across to the adjacent window. (Use CTRL-W CTRL-W to cycle through windows.)

 CTRL-W ²
 CTRL-W CTRL-K
 CTRL-W K

Move to the next window up. This is the opposite-direction counterpart to the
 CTRL-W J command.

Moving Around Windows (Getting Your Cursor from Here to There) | 221

Command Description

 CTRL-W ±
 CTRL-W H
 CTRL-W BACKSPACE

Move to the window to the left of the current window.

 CTRL-W ³
 CTRL-W CTRL-L
 CTRL-W L

Move to the window to the right of the current window.

 CTRL-W SHIFT-W Move to the next window above or to the left. This is the upward counterpart to the
 CTRL-W W command (note the di�erence in case).

 CTRL-W T
 CTRL-W CTRL-T

Move to the top leftmost window.

 CTRL-W B
 CTRL-W CTRL-B

Move to the bottom rightmost window.

 CTRL-W P
 CTRL-W CTRL-P

Move to the previous (last accessed) window.

Mnemonic Tips
The letters t and b are mnemonic for top and bottom windows.

In keeping with the convention that lowercase and uppercase implement opposites,
CTRL-W W moves you through the windows in the opposite direction from
CTRL-W SHIFT-W .

The control characters do not distinguish between uppercase and lowercase; in other
words, pressing SHIFT while pressing a CTRL- key itself has no effect. However,
an upper/lowercase distinction is recognized for the regular keyboard key you press
afterward.

Moving Windows Around
You can move windows two ways in Vim. One way simply swaps the windows on the
screen. The other way changes the actual window layouts. In the first case, window
sizes remain constant while windows change position on the screen. In the second
case, windows not only move but are resized to fill the position to which they’ve
moved.

Moving Windows (Rotate or Exchange)
Three commands move windows without modifying layout. Two of these rotate the
windows positionally in one direction (to the right or down) or the other (to the
left or up), and the other one exchanges the position of two possibly nonadjacent
windows. These commands operate only on the row or column in which the current
window lives.

222 | Chapter 10: Multiple Windows in Vim

2 The shifted or capitalized letters here are a sort of amplification of managing windows. Remember that with
these commands you are moving windows, not your cursor.

CTRL-W R rotates windows to the right or down. Its complement is CTRL-W
 SHIFT-R , which rotates windows in the opposite direction.

An easier way to imagine how these work is to think of a row or column of Vim
windows as a one-dimensional array. CTRL-W R shifts each element of the array
one position to the right and moves the last element into the vacated first position.
CTRL-W SHIFT-R simply moves the elements in the other direction.

If there are no windows in a column or row that aligns with the current window, this
command does nothing.

After Vim rotates the windows, the cursor remains in the window from which the
rotate command executed; thus, the cursor moves with the window.

CTRL-W X and CTRL-W CTRL-X let you exchange two windows in a row or
column of windows. By default, Vim exchanges the current window with the next
window, and if there is no next window, Vim tries to exchange with the previous win‐
dow. You can exchange with the nth next window by prepending a count before the
command. For example, to switch the current window with the third next window,
use the command 3 CTRL-W X .

As with the two previous commands, the cursor stays in the window from which the
exchange command executes.

Moving Windows and Changing Their Layout
Five commands move and re-layout the windows: two move the current window to
a full-width top or bottom window, two move the current window to a full-height
left or right window, and the fifth moves the current window to another existing tab.
See the section <Tabbed Editing= on page 233 for information on tabbed editing. The
first four commands bear familiar mnemonic relationships to other Vim commands;
for instance, CTRL-W SHIFT-K maps to the traditional notion of k as <up.=
Table 10-3 summarizes these commands.2

Table 10-3. Commands to move and re-layout windows

Command Description

 CTRL-W SHIFT-K Move the current window to the top of the screen, using the full width of the screen.

 CTRL-W SHIFT-J Move the current window to the bottom of the screen, using the full width of the screen.

 CTRL-W SHIFT-H Move the current window to the left of the screen, using the full height of the screen.

 CTRL-W SHIFT-L Move the current window to the right of the screen, using the full height of the screen.

 CTRL-W SHIFT-T Move the current window to a new tab.

Moving Windows Around | 223

It is difficult to describe the exact behavior of these layout commands. After the move
and expansion of the window to the full height or width of the screen, Vim redoes the
window layout in a reasonable way. The behavior of the layout can also be influenced
by some of the windows’ options settings.

Window Move Commands: Synopsis
Tables 10-4 and 10-5 summarize the commands introduced in this section.

Table 10-4. Commands to rotate window positions

Command Description

 CTRL-W R
 CTRL-W CTRL-R

Rotate windows down or to the right.

 CTRL-W SHIFT-R Rotate windows up or to the left.

 CTRL-W X
 CTRL-W CTRL-X

Swap positions with the next window, or if issued with a count n, swap with nth next window.

Table 10-5. Commands to change position and layout

Command Description

 CTRL-W SHIFT-K Move the current window to the top of the screen and use the full width. The cursor stays
with the moved window.

 CTRL-W SHIFT-J Move the current window to the bottom of the screen and use the full width. The cursor
stays with the moved window.

 CTRL-W SHIFT-H Move the current window to the left of the screen and use the full height. The cursor stays
with the moved window.

 CTRL-W SHIFT-L Move the current window to the right of the screen and use the full height. The cursor
stays with the moved window.

 CTRL-W SHIFT-T Move the current window to a new tab. The cursor stays with the moved window. If the
current window is the only window in the current tab, no action is taken.

Resizing Windows
Now that you’re more familiar with Vim’s multiwindowing features, you need a little
more control over them. This section addresses how you can change the size of
the current window, with, of course, effects on other windows in the screen. Vim
provides options to control window sizes and window sizing behavior when opening
new windows with split commands.

If you’d rather control window sizes sans commands, use gvim and let the mouse do
the work for you. Simply click and drag window boundaries with the mouse to resize.
For vertically separated windows, click the mouse on the vertical separator of pipe (|)
characters. Horizontal windows are separated by their status lines.

224 | Chapter 10: Multiple Windows in Vim

3 You can modify the height of the ex command space using the cmdheight option (not to be confused with the

cmdwinheight option).

Window Resize Commands
As you’d expect, Vim has vertical and horizontal resize commands. Like the other
window commands, these all begin with CTRL-W and map nicely to mnemonic
devices, making them easy to learn and remember.

CTRL-W = tries to resize all windows to equal size. This is also influenced by the
current values of winheight and winwidth, discussed in the following section. If the
available screen real estate doesn’t divide equally, Vim sizes the windows to be as close
to equal as possible.

CTRL-W - decreases the current window height by one line. Vim also has an
ex command that lets you decrease the window size explicitly. For example, the
command :resize -4 decreases the current window by four lines and gives those
lines to the window below it.

There is another mechanism that changes window size: the lines
option. Normally Vim manages the lines value, and you can see
(and) use the value by referencing lines with the ex command
set:

:set lines

However, for gvim, you can change the size of the graphical win‐
dow by setting lines. A side effect of all of this is that in a terminal
with only one window, if you set lines to a value less than the
number of lines in the vim buffer window, Vim resizes the drawing
real estate to the smaller count. Accordingly, Vim increases the
lines allocated to the ex command line by the number of lines
<lost= to the window buffer. For example, if you set lines to 15 in
your .vimrc file and start vim in a 30-line window, Vim allocates
15 lines as the edit buffer. The remaining lines are allocated to
the status line (1 line) and the ex command buffer (14 lines),
which could be confusing since the ex command buffer is normally
only 1 line. To avoid this side effect, we recommend you use :set
lines=xx in your .gvimrc configuration file only.3

CTRL-W + increases the current window size by one line. The :resize +n
command increases the current window size by n lines. Once the window’s maximum
height is reached, further use of this command has no effect.

Resizing Windows | 225

Please see the section <Resize Your Window= on page 340 for a nice
pair of key remappings that make window resizing much easier.

:resize n sets the horizontal size of the current window to n lines. It sets an absolute
size, in contrast to the previously described commands that make a relative change.

zn sets the current window height to n lines. Note that n is not optional! Omitting it
results in the vi/Vim command z, which moves the cursor to the top of the screen.

CTRL-W < and CTRL-W > decrease and increase the window width, respec‐
tively. Think of the mnemonic device of <shift left= (<<) and <shift right= (>>) to
associate these commands to their function.

Finally, CTRL-W | resizes the current window to the widest size possible
(by default). You can also specify explicitly how to change the window width
with :vertical resize n. The n defines the window’s new width.

Window Sizing Options
Several Vim options influence the behavior of the resize commands described in the
previous section:

winheight and winwidth
These define the minimal window height and width, respectively, when a window
becomes active. For example, if the screen accommodates two equal-sized win‐
dows of 45 lines, the default Vim behavior is to split them equally. If you were to
set winheight to a value larger than 45—say, 60—Vim will resize the window to
which you move each time to 60 lines, and it will resize the other window to 30.
This is handy for editing two files simultaneously; you automatically increase the
allocated window size for maximum context when you switch from window to
window and from file to file.

equalalways

This tells Vim to always resize windows equally after splitting or closing a
window. This is a good option to set in order to ensure equitable allocation of
windows as you add and delete them.

eadirection

This defines the directional jurisdiction for equalalways. The possible values
hor, ver, and both tell Vim to make windows of equal size horizontally, vertically,
or both, respectively. The resizing applies each time you split or delete a window.

226 | Chapter 10: Multiple Windows in Vim

cmdheight

This sets the command-line height. As described previously, decreasing a win‐
dow’s height when there is only one window increases the command-line height.
You can keep the command line the height you want using this option.

winminwidth and winminheight
These tell Vim the minimum width and height to size windows. Vim considers
these to be hard values, meaning that windows will never be allowed to get
smaller than these values.

Resizing Command Synopsis
Table 10-6 summarizes the ways to resize windows. Options are set with the :set
command.

Table 10-6. Window resizing commands

Command or option Type Description

 CTRL-W = vi Command Resize all windows equally. The current window honors the settings of the
winheight and winwidth options.

:resize -n ex Command Decrease the current window size. The default amount is one line.

 CTRL-W - vi Command Same as :resize -n.

:resize +n ex Command Increase the current window size. The default amount is one line.

 CTRL-W + vi Command Same as :resize +n.

:resize n ex Command Set the current window height. The default is to maximize window height
(unless n is speci�ed).

 CTRL-W CTRL-_
 CTRL-W _

vi Command Same as :resize n.

z n ENTER vi Command Set the current window height to n.

 CTRL-W < vi Command Decrease the current window width. The default amount is one column.

 CTRL-W > vi Command Increase the current window width. The default amount is one column.

:vertical resize n ex Command Set the current window width to n. The default is to make the window as
wide as possible.

 CTRL-W | vi Command Same as :vertical resize n.

cmdheight Option Set the command-line height.

eadirection Option De�ne whether Vim resizes windows equally vertically, horizontally, or
both.

equalalways Option When the number of windows changes, either by splitting or closing
windows, resize them to be the same size.

winheight Option When entering or creating a window, set its height to at least the speci�ed
value.

winwidth Option When entering or creating a window, set its width to at least the speci�ed
value.

Resizing Windows | 227

Command or option Type Description

winminheight Option De�ne the minimum window height, which applies to all windows
created.

winminwidth Option De�ne the minimum window width, which applies to all windows created.

Bu�ers and Their Interaction with Windows
Vim uses bu�ers as containers for work. Understanding buffers completely is an
acquired skill; there are many commands for manipulating and navigating them.
However, it is worthwhile to familiarize yourself with some of the buffer basics and
understand how and why they exist throughout a Vim session.

A good starting point is to open up a few windows editing different files. For exam‐
ple, start Vim by opening �le1. Then, within the session, issue :split file2 and
then :split file3. You should now have three open files in three separate Vim
windows.

Now use the commands :ls, :files, or :buffers to list the buffers. You should
see three lines, each numbered and including the filenames, along with additional
information. These are Vim’s buffers for this session. There is one buffer for each file,
and each buffer has a unique, nonchanging associated number. In this example, �le1
is in buffer one, �le2 is in buffer two, and �le3 is in buffer three.

Additional information on each buffer can be displayed if you append an exclamation
point (!) after any of the commands.

To the right of each buffer number are status flags. These flags describe the buffers, as
shown in Table 10-7.

Table 10-7. Status �ags describing bu�ers

Code Description

u Unlisted bu�er. This bu�er is not listed unless you use the ! modi�er. To see an example of an unlisted bu�er,
type :help. Vim splits the current window to include a new window in which the built-in help appears. The
plain :ls command will not show the help bu�er, but :ls! includes it.

% or # % is the bu�er for the current window. # is the bu�er to which you would switch with the :edit
command. These are mutually exclusive.

a or h a indicates an active bu�er. That means the bu�er is loaded and visible. h indicates a hidden bu�er. The hidden
bu�er exists but is not visible in any window. These are mutually exclusive.

- or = - indicates a bu�er has the modifiable option turned o�. The �le is read-only. = is a read-only bu�er that
cannot be made modi�able (for instance, because you don’t have �lesystem privileges to write to the �le). These are
mutually exclusive.

+ or x + indicates a modi�ed bu�er. x is a bu�er with read errors. These are mutually exclusive.

228 | Chapter 10: Multiple Windows in Vim

The u flag is an interesting way to know what help file you are
viewing in Vim. For example, had you issued :help split fol‐
lowed by :ls!, you would see that the unlisted buffer refers to the
built-in Vim help file, windows.txt.

Now that you can list Vim buffers, we can talk about them and their various uses.

Vim’s Special Bu�ers
Vim uses some buffers, called special bu�ers, for its own purposes. For instance, the
help buffers described in the previous section are special. Typically, these buffers
cannot be edited or modified.

Here are four examples of Vim’s special buffers:

directory
Contains directory contents, that is, a list of files for a directory (and some
helpful extra command hints). This is a handy tool within Vim that lets you
move around in this buffer as you would in a regular text file and select files
under the cursor for editing by pressing ENTER .

help
Contains Vim help files, described earlier in the section <Built-In Help= on page
165. :help loads these text files into this special buffer.

QuickFix
Contains the list of errors created by your commands (which can be viewed
with :cwindow) or the location list (which can be viewed with the :lwindow
command). Do not edit the contents of this buffer! It helps programmers iterate
through the edit-compile-debug cycle. See Chapter 11.

scratch
These buffers contain text for general purposes. This text is expendable and can
be deleted at any time.

Hidden Bu�ers
Hidden buffers are Vim buffers that are not currently displayed in any window. This
makes it easier to edit multiple files, considering the limited screen real estate for
multiple windows, without constantly retrieving and rewriting files. For example,
imagine you are editing the my�le file but wish to momentarily edit another file,
myOther�le. If the hidden option is set, you can edit myOther�le through :edit
myOther�le, causing Vim to hide the my�le buffer and display myOther�le in its
place. You can verify this with :ls and see both buffers listed, with my�le flagged as
<hidden.=

Bu�ers and Their Interaction with Windows | 229

Bu�er Commands
There are almost 50 commands that specifically target buffers. Many are useful but
are for the most part outside the scope of this discussion. Vim manages buffers
automatically as you open and close multiple files and windows. The suite of buffer
commands allows you to do almost anything with buffers. Often they are used within
scripts to handle such tasks as unloading, deleting, and modifying buffers.

Two buffer commands are worth knowing for general use because of their power to
do lots of work across many files:

windo cmd
Short for <window do= (at least we think it’s a decent mnemonic), this pseudo-
buffer command (actually it’s a window command) executes the command cmd
in each window. It acts as if you go to the top of the screen (CTRL-W T) and
cycles through each window to execute the specified command as :cmd in that
window. It acts only within the current tab and stops at any window where :cmd
generates an error. The window in which the error occurs becomes the new
current window. See the section <Tabbed Editing= on page 233 for a discussion of
Vim tabs.

cmd is not permitted to change the state of the windows; that is, it cannot delete,
add, or change the order of the windows.

cmd can concatenate multiple ex commands with the pipe
(|) symbol. The commands are executed in sequence, with
the first command executed sequentially through all windows,
then the second command in all windows, and so on.

As an example of :windo in action, suppose you are editing a suite of Java files,
and for some reason you have a class name that is improperly capitalized. You
need to repair this by changing every occurrence of myPoorlyCapitalizedClass
to MyPoorlyCapitalizedClass. With :windo you can do that with:

:windo %s/myPoorlyCapitalizedClass/MyPoorlyCapitalizedClass/g

Pretty cool!

bufdo[!] cmd

This is analogous to windo but operates on all of the buffers in your editing
session, not just visible buffers in the current tab. bufdo stops at the first error
encountered, just like windo, and leaves the cursor in the buffer where the
command fails.

The following example changes all buffers to Unix file format:

230 | Chapter 10: Multiple Windows in Vim

:bufdo set fileformat=unix

Bu�er Command Synopsis
Table 10-8 makes no attempt to describe all the commands related to buffers; instead,
it summarizes the ones described in this section and some other popular commands.

Table 10-8. Summary of bu�er commands

Command Description

:ls[!]

:files[!]

:buffers[!]

List bu�ers and �le names. Include unlisted bu�ers if the ! modi�er is included.

:ball

:sball
Edit all args or bu�ers. (sball opens them in new windows.)

:unhide

:sunhide
Edit all loaded bu�ers. (sunhide opens them in new windows.)

:badd file Add �le to list.

:bunload[!] Unload the current bu�er from memory. The ! modi�er forces a modi�ed bu�er to be unloaded
without being saved.

:bdelete[!] Unload the current bu�er and delete it from the bu�er list. The ! modi�er forces a modi�ed
bu�er to be unloaded without being saved.

:buffer [n]

:sbuffer [n]
Move to bu�er n. sbuffer opens a new window.

:bnext [n]

:sbnext [n]
Move to the nth next bu�er. sbnext opens a new window.

:bNext [n]

:sbNext [n]

:bprevious [n]

:sbprevious [n]

Move to the nth next or previous bu�er. sbNext and sbprevious open a new window.

:bfirst

:sbfirst
Move to the �rst bu�er. sbfirst opens a new window.

:blast

:sblast
Move to the last bu�er. sblast opens a new window.

:bmod [n]

:sbmod [n]
Move to the nth modi�ed bu�er. sbmod opens a new window.

Playing Tag with Windows
Vim extends the vi tag functionality into windows by offering the same tag traversal
mechanisms through multiple windows. (See the section <Using Tags= on page 147
for a discussion of vi tags.) Following a tag can also open a file in the associated place
in a new window.

Playing Tag with Windows | 231

The tag windowing commands split the current window and follow a tag either to a
file matching the tag or to the file matching the filename under the cursor:

:stag[!] tag
This splits the window to display the location for the tag found. The new file
containing the matched tag becomes the current window, and the cursor is
placed over the matched tag. If no tag is found, the command fails, and no new
window is created.

As you become more familiar with Vim’s help system, you can
use :stag to split your way through the help system rather
than jumping from file to file in the same window.

CTRL-W] or CTRL-W ^
These split the window and open a window above the current window. The new
window becomes the current window, and the cursor is placed on the matching
tag. If there is no match for the tag, the command fails.

CTRL-W G
This splits the window and creates a new window above the current window.
In the new window, Vim performs the command :tselect tag, where tag was
the tag identifier under the cursor. The cursor is placed in the new window, and
that new window becomes the current window. If no matching tag exists, the
command fails.

CTRL-W G CTRL-]
This works exactly like CTRL-W G , except that instead of perform‐
ing :tselect, it performs :tjump.

CTRL-W F or CTRL-W CTRL-F
These split the window and edit the filename underneath the cursor. Vim looks
sequentially through the files set in the option variable path to find the file. If the
file doesn’t exist in any of the path directories, the command fails and does not
create a new window.

CTRL-W SHIFT-F
This splits the window and edits the filename under the cursor. The cursor is
placed in the new window editing that file and positioned at the line number
matching the number following the filename in the first window.

CTRL-W G F
This opens the file under the cursor in a new tab. If the file doesn’t exist, the new
tab is not created.

232 | Chapter 10: Multiple Windows in Vim

4 Wow, when the seventh edition of this book was released, Chrome did not even exist! And today all browsers
have tabs, and all users should be familiar with them.

CTRL-W G SHIFT-F
This opens the file under the cursor in a new tab and positions the cursor on the
line specified by the number following the filename in the first window. If the file
doesn’t exist, the new tab is not created.

Tabbed Editing
Did you know that in addition to editing in multiple windows, you can create
multiple tabs? Vim lets you create new tabs, each of which behaves independently. In
each tab you can split the screen, edit multiple files—virtually anything you would
normally do in a single window; but now all of your work is easily managed in one
window with tabs.

Many Chrome and Firefox users are very familiar with and dependent on tabbed
browsing and will recognize the value that this feature brings to power editing.4 For
the uninitiated, it’s worth trying.

You can use tabs in both regular Vim and gvim, but gvim is much nicer and easier.
Some of the more important ways to create and manage tabs include:

:tabnew filename or :tabedit filename
Open a new tab and edit a file (optional). If no file is specified, Vim opens a new
tab with an empty buffer.

:tabclose

Close the current tab.

:tabonly

Close all other tabs. If other tabs have modified files, they are not removed unless
the autowrite option is set, in which case all modified files are written before the
other tabs are closed.

In gvim you can activate any tab simply by clicking the tab at the top of the screen.
You can also activate tabs in character-based terminals with the mouse if the mouse is
configured (see the mouse option). Also, it’s easy to move right or left from tab to tab
with CTRL PAGEDOWN (move one tab to the right) and CTRL PAGEUP (move
one tab to the left). If you are in the leftmost or rightmost tabs and you try to move
left or right, respectively, Vim moves to the far right or far left tab.

gvim offers right-click pop-up menus for the tab, from which you can open a new tab
(with or without a new file to edit) and close a tab.

Tabbed Editing | 233

Figure 10-4 is an example of a set of tabs (notice the tab pop-up menu). Figure 10-5 is
the same example in a terminal emulator.

Figure 10-4. Example of gvim tabs and tabbed editing

Figure 10-5. Same tabbed example in a terminal emulator (Linux Vim)

The Vim command-line option -p opens multiple files, causing
each file to occupy a separate tab. Our examples in Figures 10-4
and 10-5 were invoked this way:

gvim -p ~/.vimrc ~/.gvimrc /etc/hosts /etc/resolv.conf/etc/sysctl.conf

vim -p ~/.vimrc ~/.gvimrc /etc/hosts /etc/resolv.conf/etc/sysctl.conf

Closing and Quitting Windows
There are four different ways to close a window that are specific to window editing—
quit, close, hide, and close all others:

CTRL-W Q or CTRL-W CTRL-Q
These are really just window versions of the :quit command. In their simplest
form (i.e., in a single session with only one window), they behave exactly like

234 | Chapter 10: Multiple Windows in Vim

vi’s :quit command. If the hidden option is set and the current window is the
last window on the screen referencing that file, the window is closed but the file
buffer is retained and hidden (it can be retrieved). In other words, Vim is still
storing the file, and you can return to editing it later. If hidden is not set, the
window is the last one referencing that file, and there are unsaved changes, the
command fails in order to avoid losing your changes. But if some other window
displays the file, the current window closes.

CTRL-W C or :close[!]

These close the current window. If the hidden option is set and this is the last
window referencing this file, Vim closes the window and the buffer is hidden.
If this window is on a tab and is the last window for that tab, the window and

the tab are closed. As long as you don’t use the ! modifier, this command will
not abandon any file with unsaved changes. The ! modifier tells Vim to close the
current window unconditionally.

Note that this command does not use CTRL-W CTRL-C ,
because Vim uses CTRL-C to cancel commands. Therefore,
if you try to use CTRL-W CTRL-C , the CTRL-C simply
cancels the command.

Similarly, while the CTRL-W commands are used in combi‐
nation with CTRL-S and CTRL-Q , some users may find
their terminal emulators frozen because some terminal emula‐
tors interpret CTRL-S and CTRL-Q as control characters to
stop and start displaying information to the screen. If you find
your screen freezing mysteriously when using these combina‐
tions, try the other listed combinations instead.

CTRL-W O , CTRL-W CTRL-O , and :only[!]

These close all windows except the current window. If the hidden option is set,
all closed windows hide their buffers. If it’s not set, any window referencing a file
with unsaved changes remains on the screen, unless you include the ! modifier,
in which case all windows are closed and the files are abandoned. The behavior of
this command can be affected by the autowrite option: if it’s set, all windows are
closed, but windows containing unsaved changes are written to their files on disk
before being exited.

:hide [cmd]
This quits the current window and hides the buffer if no other window references
it. If the optional cmd is supplied, the buffer is hidden, and the command is
executed.

Closing and Quitting Windows | 235

Table 10-9 provides a summary of these commands.

Table 10-9. Commands for closing and quitting windows

Command Keystrokes Description

:quit[!] CTRL-W Q
 CTRL-W CTRL-Q

Quit the current window.

:close[!] CTRL-W C Close the current window.

:only[!] CTRL-W O
 CTRL-W CTRL-O

Make the current window the only window.

:hide[cmd] Close the current window and hide the bu�er. Execute
cmd if present.

Summary
As you now appreciate, Vim ramps up the editing horsepower with its many window‐
ing features. Vim lets you create and delete windows easily and on the fly. Addition‐
ally, Vim provides the under-the-hood power of the raw buffer commands, buffers
being the underlying file management infrastructure with which Vim manages win‐
dow editing. This is once again a perfect example of how Vim brings multiwindow
editing to beginners while simultaneously giving power users the tools they need to
tune their windowing experience.

236 | Chapter 10: Multiple Windows in Vim

1 Not to be confused with Microsoft’s VS Code, which is free and excellent.

CHAPTER 11

Vim Enhancements for Programmers

Text editing is only one of Vim’s strong suits. Good programmers demand powerful
tools to ensure efficient and proficient work. A good editor is only a start and by
itself isn’t enough. Many modern programming environments attempt to provide
comprehensive solutions, when all that is really necessary is a powerful and efficient
editor with some extra smarts.

Programming tools offer extra features ranging from editors with syntax coloring,
auto indentation and formatting, keyword completion, and so on to full-blown inte‐
grated development environments (IDEs) with sophisticated integration that build up
complete development ecosystems. These IDEs can be expensive (e.g., Visual Studio1)
or free (Eclipse), and even though computer resource demands aren’t as dominant,
often something lightweight is sufficient. Vim fulfills the lightweight space by provid‐
ing some IDE-ish features and, with community-provided plug-ins, approaches IDE
functions. (For a deeper dive into developing with Vim IDE plug-ins, see Chapter 15,
<Vim as IDE: Some Assembly Required=.)

Programmers’ tasks vary, and so do their technology requirements. Small develop‐
ment tasks are easily completed with simple editors that offer little more than
text editing capabilities. Large multicomponent, multiplatform, and multistaff efforts
almost demand the heavy lifting IDEs provide. But from anecdotal experience, many
veteran programmers feel that IDEs offer little more than extra complexity without
higher probability of success.

Vim strikes a nice compromise between simple editors and monolithic IDEs. It has
features that until recently were available only in expensive IDEs. It lets you do quick
and simple programming tasks without the overhead and learning curve of an IDE.

237

The many options, features, commands, and functions especially suited to making
the programmer’s life easier range from folding lines of code into one line to syntax
coloring and automatic formatting. Vim affords programmers many tools that can be
fully appreciated only by using them. At the high end, it offers a sort of mini-IDE
called QuickFix, but it also has convenience features specific to various programming
tasks. We present the following topics in this chapter:

• Folding•

• Auto and smart indenting•

• Keyword and dictionary word completion•

• Tags and extended tags•

• Syntax highlighting and highlight authoring (rolling your own)•

• QuickFix, Vim’s mini-IDE•

Folding and Outlining (Outline Mode)
Folding lets you define what parts of the file you see. For instance, in a block of
code you can hide anything within curly braces, or hide all comments. Folding is
a two-stage process. First, using any of several fold methods (which we describe
soon), you define what constitutes a block of text to fold. Then, when you use a
fold command, Vim hides the designated text and leaves in its place a one-line
placeholder. Figure 11-1 shows what folds look like in Vim. You can manage the lines
hidden by the fold with the fold placeholder.

Figure 11-1. Example of Vim folds (MacVim, color scheme: zellner)

238 | Chapter 11: Vim Enhancements for Programmers

2 Perhaps this might actually be <requires looking at the trees rather than the forest.= Maybe it’s both. Folds give
you that!

In the example, line 11 is hidden by a two-line fold starting with line 10. An eight-line
fold starting at line 15 hides lines 15 through 22. And a four-line fold starting at line
26 hides lines 26 through 29.

There are virtually no limits on how many folds you can create. You can even create
nested folds (folds within folds).

Several options control how Vim creates and displays folds. Also, if you’ve taken
the time to create many folds, Vim provides the convenience commands :mkview
and :loadview to preserve folds between sessions so that you don’t have to create
them again.

Folds require some effort to learn but, when mastered, add a powerful way to control
what to display and when. Do not underestimate the power this brings. Correct and
maintainable programs require robust design at several levels, so good programming
often requires looking at the forest rather than the trees2—in other words, ignoring
details of implementation in order to see the overall structure of a file.

For power users, Vim offers six different ways to define, create, and manipulate folds.
This flexibility lets you create and manage folds in different contexts. Ultimately,
once created, folds open and close and behave similarly for the whole suite of fold
commands.

The six methods of creating folds are:

diff

The differences between two files define folds.

expr

Regular expressions define folds.

indent

Folds and fold levels correspond to the indentation of text and the value of the
option shiftwidth.

manual

Folds and fold levels result from user Vim commands (for example, folding a
paragraph).

marker

Predefined (but also user-definable) markers in the file specify fold boundaries.

Folding and Outlining (Outline Mode) | 239

3 Please note and take care not to confuse <deleting folds= with Vim’s delete command. Deleting a fold
removes the visual semantic of hidden lines. Deleting the content of a fold does just that!

syntax

Folds correspond to the semantics of a file’s language (e.g., a C program’s function
blocks could fold).

You use these terms as the value of the foldmethod option. The manipulation of
folds (opening and closing, deleting, etc.) is the same for all methods. We’ll examine
manual folds and discuss Vim fold commands in detail. We address some details for
the other methods, but they are complex, specialized, and beyond the scope of this
introduction. We hope our coverage will prompt you to explore the richness of these
other methods.

So let’s take a brief look at the important fold commands and go through a short
example of what folds look like.

The Fold Commands
Fold commands all begin with z. As a mnemonic to remember this, think of the side
view of a folded piece of paper (when folded correctly) and how it looks like the letter
<z.=

There are about 20 z fold commands. With these commands you create and delete
folds, open and close folds (hide and expose text belonging to folds), and toggle the
expose/hide state of the folds. Here are short descriptions:3

zA

Toggle the state of folds, recursively.

zC

Close folds, recursively.

zD

Delete folds, recursively.

zE

Delete all folds.

zf

Create a fold from the current line to the one where the following motion
command takes the cursor.

[count] zF

Create a fold covering count lines, starting with the current line.

240 | Chapter 11: Vim Enhancements for Programmers

zM

Set option foldlevel to zero.

zN, zn

Set (zN) or reset (zn) the foldenable option.

zO

Open folds, recursively.

za

Toggle the state of one fold.

zc

Close one fold.

zd

Delete one fold.

zi

Toggle the value of the foldenable option.

zj, zk

Move the cursor to the start (zj) of the next fold or to the end (zk) of the
previous fold. Note the mnemonic of the j and k motion commands and how
they are analogous to motions within the context of folds.

zm, zr

Decrement (zm) or increment (zr) the value of the foldlevel option by one.

zo

Open one fold.

Don’t confuse deleting a fold with deleting text. Use the <delete fold=
(zd) command to remove, or undefine, a fold. A deleted fold has
no effect on the text contained in that fold. You may notice we
mention this more than once. It’s important to know. One of us
has lost work thinking he merely deleted folds when, in fact, he
deleted content. Of course this is something that is always discov‐
ered inconveniently late.

zA, zC, zD, and zO are called recursive because they operate on all folds nested within
the one where you issue the commands.

Folding and Outlining (Outline Mode) | 241

Manual Folding
If you know Vim motion commands, you already know half of what you must learn
to be proficient with manual fold commands.

For example, to hide three lines in a fold, enter either of the following:

3zF

2zfj

3zF executes the zF folding command over three lines, starting with the current one.
2zfj executes the zf folding command from the current line to the line where j
moves the cursor (two lines down).

Let’s try a more sophisticated command of use to C programmers. To fold a block of
C code, position the cursor over the beginning or ending brace ({ or }) of a block of
code and type zf%. (Remember that % moves to the matching brace.)

Create a fold from the cursor to the beginning of the file by typing zfgg. (gg goes to
the beginning of the file.)

It is easier to understand folds by seeing an example. We’ll take a simple file, create
and manipulate folds, and watch the behavior. We’ll also see some of the enhanced
visual folding cues that Vim provides.

First consider the example file in Figure 11-2, which contains some (meaningless)
lines of C code. Initially, there are no folds.

Figure 11-2. Sample �le with no folds (MacVim, color scheme: zellner)

242 | Chapter 11: Vim Enhancements for Programmers

4 Folding is general; you can use the concept of text objects introduced in Part I. Thus, you can fold anywhere

within an object—in this case, anywhere within the braces. The vi command would be za{.

There are a few things to note in this picture. First, Vim displays line numbers on
the left side of the screen. We recommend that you always turn them on (using the
number option) for added visual information about file location, and in this context
the information becomes more valuable when you fold lines out of view. Vim tells
you how many lines are not displayed, and the line numbers confirm and reinforce
that information.

Also notice the gray columns to the left of the line numbers. These columns are
reserved for more folding visual cues. As we create and use folds, we will see the
visual cues that Vim inserts into these columns.

In Figure 11-2, notice that the cursor is on line 18. Let’s fold that line and the two
following lines into one fold. We type zf2j. Figure 11-3 shows the result.

Figure 11-3. �ree lines folded at line 18 (MacVim, color scheme: zellner)

Notice how Vim creates an easily identified marker with the +-- as a prefix, and how
it displays text from the first folded line in the fold placeholder. Now notice where
Vim inserted the + at the far left side of the screen. This is another visual cue.

In the same file, we’ll next fold the block of code between and including the braces
after the if statement. Position the cursor on either one of the braces and type zf%.4

The file now appears as in Figure 11-4.

Folding and Outlining (Outline Mode) | 243

Figure 11-4. Block of code folded following an if statement (MacVim, color scheme:
zellner)

Now there are eight lines of code folded, three of which are contained in a previously
created fold. This is called a nested fold. Note that there is no indication of the nested
fold.

Our next experiment is to position the cursor on line 25 and fold all lines up to and
including the function declaration for fcn. This time we use the Vim search motion.
We initiate the fold command with zf, search backward to the beginning of the fcn
function using ?int fcn (the backward search command in Vim), and press the
ENTER key. The screen now looks like Figure 11-5.

Figure 11-5. Folding to the beginning of a function (MacVim, color scheme: zellner)

If you count lines and create a fold that spans another fold (for
example, 3zf), all lines contained in the spanned fold count as
one line. For example, if the cursor is on line 30, and lines 31–35
are hidden in a fold on the next screen line so that the next line
on the screen displays line 36, 3zf creates a new fold containing
three lines as they appear on the screen: the text line 30, the five
lines contained in the fold holding lines 31–35, and the text line 36
displayed in the next line on the screen. Confusing? A little. You
might say that the zf command counts lines in accordance with the
rule <What you see is what you fold.=

Let’s try some other features. First, open all the folds with the command zO (that’s z
followed by the letter O, not z followed by a zero). Now we start seeing some visual

244 | Chapter 11: Vim Enhancements for Programmers

cues in the left margin about the folds we made, as shown in Figure 11-6. Each of the
columns in this margin is called a fold column.

Figure 11-6. All folds opened (MacVim, color scheme: zellner)

In this figure, the first line of each fold is marked with a minus sign (–), and all the
other lines of the fold are marked by a vertical bar or pipe character (|). The largest
(outermost) fold is in the leftmost column, and the innermost fold is in the rightmost
column. As you see in our picture, lines 5–25 represent the lowest fold level (in this
case, one), lines 15–22 represent the next fold level (two), and lines 18–20 represent
the highest fold level.

By default, this helpful visual metaphor is turned off (we don’t
know why—perhaps because it uses up screen space). Turn it on
and define its width with the following command:

:set foldcolumn=n

where n is the number of columns to use (maximum is twelve,
default is zero). In the figure, we use foldcolumn=5. For those
paying close attention, yes, the earlier figures had foldcolumn set to
three. We changed the value for a better visual presentation.

Now create more folds to observe their effects.

Folding and Outlining (Outline Mode) | 245

First, refold the deepest fold, which covers lines 18–20, by positioning the cursor on
any line within the range of that fold and typing zc (close fold). Figure 11-7 shows the
result.

Figure 11-7. A�er refolding lines 18–20 (MacVim, color scheme: zellner)

See the change in the gray margin? Vim maintains the visual cues, making visualiza‐
tion and management of your folds easy.

Now let’s see what a typical <one line= command does to a fold. Position the cursor on
the folded line (18). Type ~~ (toggle case for all characters in the current line). Note
that this is the usage for changing case inline when the Vim option tildeop is set;
otherwise the command would be g~~. Remember that in Vim, ~ is an object operator
(unless the compatible option is set) and therefore should toggle the case of all the
characters in the line. Next, open the fold by typing zo (open fold). The code now
looks like Figure 11-8.

Figure 11-8. Case change applied to a fold (MacVim, color scheme: zellner)

246 | Chapter 11: Vim Enhancements for Programmers

This is a powerful feature. Line commands or operators act on the entire text repre‐
sented by a fold line! Admittedly this may seem like a contrived example, but it nicely
illustrates the potential of this technique.

As we just saw, any action on a fold affects the whole fold. For
instance, in Figure 11-7, if you position the cursor over line 18—a
fold hiding lines 18 through 20—and type dd (delete line), all three
lines are deleted and the fold is removed.

It’s also important to note that Vim manages all edit actions as
if there were no folds, so any undos will undo an entire edit’s
action. So if we typed u (undo) after the previous change, all three
lines that had been deleted would be restored. The undo feature
is separate from the <one line= actions discussed in this section,
although sometimes they seem to act similarly.

Now is a good time to familiarize yourself with the visual cues in the fold column
margin. They make it easy to see what fold you are about to act on. For example, the
zc (close fold) command closes the innermost fold containing the line the cursor is
on. You can see how large this fold is through the vertical bars in the fold columns.
Once mastered, actions such as opening, closing, and deleting folds become second
nature.

Outlining
Consider the following simple (and contrived) file using tabs for indentation:

1. This is Headline ONE with NO indentation and NO fold level.

 1.1 This is sub-headline ONE under headline ONE

 This is a paragraph under the headline. Its fold

 level is 2.

 1.2 This is sub-headline TWO under headline ONE.

2. This is Headline TWO. No indentation, so no folds!

 2.1 This is sub-headline ONE under headline TWO.

 Like the indented paragraph above, this has fold level 2.

 - Here is a bullet at fold level 3.

 A paragraph at fold level 4.

 - Here is the next bullet, again back at fold level 3.

 And, another set of bullets:

 - Bullet one.

 - Bullet two.

 2.2 This is sub-heading TWO under Headline TWO.

3. This is Headline THREE.

You can use Vim folds to look at your file as a pseudo-outline. Define your folding
method as indent:

:set foldmethod=indent

In our file we define the shiftwidth (the indentation level for tabs) to be 4. Now
we can open and close folds based on indentation of lines. For each shiftwidth (a

Folding and Outlining (Outline Mode) | 247

multiple of four columns in this case) to a line that is indented, its fold level increases
by one. For example, the subheadlines in our file are indented one shiftwidth, or
four columns, and hence have a fold level of one. Lines indented eight columns (two
shiftwidths) have a fold level of two, and so on.

You can control the level of folds you see with the foldlevel command. It takes an
integer as its argument and displays only lines whose fold levels are less than or equal
to the argument. In our file we can ask to view only the highest-level headings with:

:set foldlevel=0

and our screen now looks like Figure 11-9.

Figure 11-9. Results of :set foldlevel=0 (Linux gvim, color scheme: zellner)

Display everything up to and including the bullets by setting foldlevel to two.
Everything with a fold level greater than or equal to two is then displayed, as in
Figure 11-10.

Using this technique to inspect your file, you can quickly expand and collapse the
level of detail you see with Vim’s fold increment (zr) and decrement (zm) commands.

Figure 11-10. Results of :set foldlevel=2 (Linux gvim, color scheme: zellner)

248 | Chapter 11: Vim Enhancements for Programmers

A Few Words About the Other Fold Methods
We can’t cover all of the other fold methods, but to whet your appetite, we’ll take a
quick peek at the syntax folding method.

We use the same C file as before, but this time we let Vim decide what to fold based
on C syntax. The rules governing folding within C are complex, but this simple
snippet of code suffices to demonstrate Vim’s automatic capabilities.

First, make sure to get rid of all folds by typing zE (eliminate all folds). The screen
now displays all code with no visual markers in the fold column.

Make sure folding is turned on with the command:

:set foldenable

You didn’t need to do this before for manual folding, because by default foldenable
is enabled and foldmethod is set to manual. Now enter these two Vim ex commands:

:syntax on

:set foldmethod=syntax

The folds appear as in Figure 11-11.

Figure 11-11. A�er the command :set foldmethod=syntax (Linux gvim, color scheme:
zellner)

Vim folded all bracketed blocks of code, because those are logical semantic blocks in
C. If you type zo on line 6 of this example, Vim expands the fold and reveals the inner
fold.

Each fold method uses different rules to define folds. We encourage you to roll
up (fold up?) your sleeves and read more on these powerful methods in the Vim
documentation.

The Vim diff mode (also invoked through the vimdiff command) is a powerful
combination of folding, windowing, and syntax highlighting, a feature we discuss
later. As illustrated in Figure 11-12, the mode shows the differences between files,
usually between two versions of the same file.

Folding and Outlining (Outline Mode) | 249

Figure 11-12. Vim di� feature and its use of folds (Linux gvim, color scheme: zellner)

Auto and Smart Indenting
Vim offers four increasingly complex and powerful methods to automatically indent
text. In its simplest form, Vim behaves almost identically to vi’s autoindent option,
and indeed it uses the same name to describe the behavior. (See the section <Indenta‐

tion Control= on page 143 for information on how vi does automatic indentation.)

You can choose the indentation method simply by specifying it in a :set command,
such as:

:set cindent

Vim offers the following methods, listed in order of increasing sophistication:

autoindent

Auto indentation closely mimics vi’s autoindent. It differs subtly as to where the
cursor is placed after indentation is deleted.

smartindent

This is slightly more powerful than autoindent, but it recognizes some basic C
syntax primitives for defining indentation levels.

cindent

As its name implies, cindent embodies a much richer awareness of C syntax
and introduces sophisticated customization beyond simple indentation levels.

For example, cindent can be configured to match your (or your boss’s) favorite

coding style rules, including but not limited to how braces ({}) indent, where
braces are placed, whether either or both braces are indented, and even how
indentation matches included text.

indentexpr

This lets you define your own expression, which Vim evaluates in the context
of each new line you begin. With this feature, you write your own rules. We
refer you to Chapter 12, <Vim Scripts=, and to the Vim documentation for
details. If the other three options don’t give you enough flexibility for automatic

indentation, indentexpr certainly will.

250 | Chapter 11: Vim Enhancements for Programmers

Vim autoindent Extensions to vi’s autoindent
autoindent for Vim behaves almost like vi’s and can be made identical by setting

the compatible option. One nice extension to vi’s autoindent is Vim’s ability to
recognize a file’s <type= and insert appropriate comment characters when comment
lines in a file wrap to a new line. This feature works cooperatively with either the

wrapmargin option (text wraps within wrapmargin columns of the right margin) or

the textwidth option (text wraps when characters in a line exceed textwidth charac‐

ters). Figure 11-13 shows the results of identical inputs, one using Vim’s autoindent

and the other using vi.

Figure 11-13. Di�erence between Vim and vi autoindent (Linux gvim, color scheme:
zellner)

Notice that in the second block of text (line 16 and beyond) there is no leading

comment character. Also, with the compatible option set (to mimic vi’s behavior),

the textwidth option isn’t recognized, and now the text wraps only because option

wrapmargin has a value.

smartindent
smartindent extends autoindent, slightly. It’s useful, but if you are writing code in a
C-like programming language with a fairly complex syntax, you are better served by

using cindent instead.

smartindent automatically inserts indents when:

Auto and Smart Indenting | 251

• A new line follows a line with a left brace ({).•

• A new line begins with a keyword that’s contained in the option cinwords.•

• A new line is created preceding a line starting with a right brace (}), if the cursor•
is positioned on the line containing the brace and the user creates a new line

using the O (open line above) command.

• A new line is a closing, or right, brace (}).•

Normally, you should turn on autoindent when using

smartindent:

:set autoindent

cindent
Regular Vim users who program in C-like languages will want to use either cindent

or indentexpr for coding. Although indentexpr is more powerful, flexible, and

customizable, cindent is more practical for most programming tasks. It has plenty of
settings for most programmers’ needs (and corporate standards). Try it for a while
with its default settings, and then customize it if your standards differ.

If the indentexpr option is nonempty, it overrides cindent’s
actions.

Three options define cindent’s behavior:

cinkeys

Defines keyboard keys that signal Vim to reevaluate indentation.

cinoptions

Defines the indentation style.

cinwords

Defines keywords that signal when Vim should add an extra indent in subse‐
quent lines.

cindent uses the string defined by cinkeys as its ruleset to define how to indent.

We’ll examine the default value of cinkeys and then look at other settings you can
define and how they work.

252 | Chapter 11: Vim Enhancements for Programmers

The cinkeys option

cinkeys is a comma-separated list of values:

0{,0},0),:,0#,!^F,o,O,e

Here are the values, broken into their separate contexts, with brief descriptions for
each behavior:

0{

0 (zero) sets a beginning of line context for the following character, {. That is, if

you type the character { as the first character of a line, Vim will reevaluate the
indentation for that line.

Do not confuse the zero in this option with the behavior <use zero indentation
here,= a common practice in C indentation. The zero here means <if the character
is typed at the beginning of the line,= not <force the character to appear at the
beginning of the line.=

The default indentation for { is zero: no added indentation beyond the current
level. The following example shows typical results:

main ()

{

 if (argv[0] == (char *)NULL)

 { ...

0}, 0)
As in the previous description, these two settings define beginning of line context.

Thus, if you type either } or) at the beginning of a line, Vim reevaluates
indentation.

The default indentation for } matches the indentation defined for its matching

open brace. The default indentation for) is one shiftwidth.

:

This is the C label or case-statement context. If a : (colon) is typed at the end of

a label or case statement, Vim reevaluates indentation.

The default indentation for : is column one, the first column in a line. Do
not confuse this with zero indentation, which leaves the new line at the same
indentation level as the previous one. When the indentation is one, the first
character of a new line is shifted left all the way to the first column.

0#

Again, this is a beginning of line context. When # is the first character typed in a
line, Vim reevaluates indentation.

Auto and Smart Indenting | 253

Default indentation, as in the previous definition, shifts the entire line to the
first column. This is consistent with the practice of beginning macro definitions

(#define …) in column one.

!^F

The special character ! defines any following character as a trigger to reevaluate

the indentation in the current line. In this case, the triggering character is ^F,
which stands for CTRL-F , so the default behavior is for Vim to reevaluate a line’s
indentation any time you type CTRL-F .

o

This context defines any new line you create, whether by pressing the ENTER

key in insert mode or by using the o (open new line) command.

O

This context covers the creation of a new line above the current line using the O
(open new line above) command.

e

This is the else context. If you begin a line with the word else, Vim reevaluates
indentation. Vim does not recognize this context until the final <e= of else is
typed.

cinkeys syntax rules

Each cinkeys definition consists of an optional prefix (one of !, *, or 0) and the key
for which indentation is reevaluated. The prefixes have the following meanings:

!

Indicates a key (default CTRL-F) that causes Vim to reevaluate indentation
on the current line. You can add an additional key definition as a command

(by using the += syntax) without overriding the preexisting command. In other
words, you can provide multiple keys to trigger line indentation. Any key you

add to the ! definition still performs its old function as well.

*

Tells Vim to reevaluate the current line indentation before inserting the key.

0

Sets a beginning of line context. The key you specify after the 0 triggers a reevalua‐
tion of indentation only when typed as the first character of a line.

254 | Chapter 11: Vim Enhancements for Programmers

Be aware of the distinction in vi and Vim between <first character
in a line= and <first column in a line.= You already know that typing

^ moves to the first character of a line, not necessarily to the first

column (flush left); the same is true of inserting with I. In the

same way, the 0 prefix applies to entering a character as the first
character in a line, regardless of whether it is flush left.

cinkeys has special key names and provides ways to override any reserved charac‐
ters, such as those used as prefix characters. Here are the special key options:

<>

Use this form to define keys literally. For special nonprinting keys, use the
spelled-out versions. For example, you can define the literal character <:= with

<:>. Another example for a nontyping key is to define the <up arrow= as <Up>.

^

Use the caret (^) to signify a control character. For example, ^F defines the key
CTRL-F .

o, O, e, :

We saw these special keys in the default value for cinkeys.

= word, =~ word
Use these to define a word that should receive special behavior. Once the string
word is matched, if it is the first text on a new line, Vim reevaluates indentation.

The form =~word is the same as =word except that it ignores case.

The term word is an unfortunate misnomer. More properly, it
represents beginning of word, because the trigger occurs as soon as
the string matches, but it does not require that the matched end
of string also be the end of a word. Vim’s documentation gives the

example of end matching both end and endif.

The cinwords option

cinwords defines keywords that, when typed, trigger extra indentation on the follow‐
ing line. The option’s default value is:

if,else,while,do,for,switch

This covers the standard keywords in the C programming language.

Auto and Smart Indenting | 255

These keywords are case sensitive. In checking for them, Vim even

ignores the setting of the ignorecase option. If you need variations
for different cases of keywords, you must specify all combinations

in the cinwords string.

The cinoptions option

cinoptions controls how Vim reindents lines of text in their C context. It includes
settings to control a number of code formatting standards, such as:

• How far to indent a code block enclosed by braces•

• Whether to insert a newline in front of a brace that follows a condition statement•

• How to align blocks of code relative to their enclosing braces•

cinoptions defines 28 settings with its default value:

s,e0,n0,f0,{0,}0,^0,:s,=s,l0,b0,gs,hs,ps,ts,is,+s,c3,C0,/0,(2s,us,U0,w0,W0,

 m0,j0,)20,*30

The very length of the option gives you a sense of how many ways Vim lets you cus‐

tomize indentation. Most customizations with cinoptions define slight differences in
context blocks. Some customizations define how far to scan (how many lines forward
and backward in the file to go) in order to establish the right context and properly
evaluate indentation.

Settings that alter the amount of indentation for various contexts can increase or
decrease levels of indentation. Also, you can redefine the number of columns to use

for indentation. For example, setting cinoptions=f5 causes an opening brace ({) to
be indented five columns, so long as it is not inside any other braces.

Another way to define increments of indentation is by some multiplier (which doesn’t

have to be an integer) of shiftwidth. If, in the previous example, you append w to the

definition (i.e., cinoptions=f5w), the opening brace shifts five shiftwidths.

Insert a minus sign (-) before any numeric value to alter the indentation level to the
left (a negative indentation).

This option and its string value should be modified with great care.

Remember that when you use = syntax, you redefine an option

completely. Because cinoptions carries so many possible settings,

use very fine-grained commands to make changes: += to add a

setting, -= to remove an existing setting, and -= followed by += to
change an existing setting.

256 | Chapter 11: Vim Enhancements for Programmers

The following is a brief list of the options you are most likely to change. It is a small

subset of the settings in cinoptions, and you may find the other (or even all) settings
useful to customize:

>n (default is s)
Any line for which indentation is indicated should be indented n places. The

default for this is s, meaning that the default indentation for a line is one
shiftwidth.

f n, { n

The f defines how far to indent an opening unnested brace ({). The default value
is zero, thus aligning braces with their logical counterpart. For example, a brace

following a line with a while statement is placed under the w of the while.

The { behaves the same way as the f but applies to nested opening braces. Again,
this one defaults to an indent level of zero.

Figures 11-14 and 11-15 show two examples of identical text entry in Vim—the

first example with cinoptions=s,f0,{0, and the second with cinoptions=s,fs,

{s. For both examples, option shiftwidth has the value 4 (four columns).

Figure 11-14. Results of :set cinoptions=s,f0,{0 (WSL Ubuntu Linux terminal,
color scheme: zellner)

Figure 11-15. Results of :set cinoptions=s,fs,{s (WSL Ubuntu Linux terminal,
color scheme: zellner)

Auto and Smart Indenting | 257

} n
Use this setting to define a closing brace’s offset from its matching brace. The
default is zero (aligned with the matching brace).

^ n

Add n to the current indentation inside a set of braces ({…}) if the opening brace
is in column one.

: n, = n, b n

These three control indentation in case statements. With :, Vim indents a case

label n characters from the position of its corresponding switch statement. The
default is one shiftwidth.

The = setting defines the offset for lines of code from their corresponding case
label. The default is to indent statements one shiftwidth.

The b setting defines where to place break statements. The default (zero) aligns

break with the other statements within the corresponding case block. Any

nonzero value aligns the break with its corresponding case label.

) n, * n
These two settings tell Vim how many lines to scan to find unclosed parentheses
(default is 20 lines) and unclosed comments (default is 30 lines), respectively.

Ostensibly, these last two settings limit how hard Vim has to work
to look for matches. With today’s powerful computers, you should
consider increasing these values to assure more complete scope
management to match comments and parentheses. Try doubling
them to 40 and 60, respectively, as a starting point.

indentexpr
indentexpr, if defined, overrides cindent so that you can define indentation rules
and tailor them exactly to your language editing needs.

indentexpr defines an expression to be evaluated each time a new line is created in a
file. This expression resolves to an integer that Vim uses as the indentation of the new
line.

In addition, the option indentkeys can define useful keywords in the same way that

cinkeys keywords define lines after which indentation is reevaluated.

The bad news is that it is a nontrivial project to write customized indentation rules
from scratch for any language. The good news is that it’s likely that the work is
already done. Look in the $VIMRUNTIME/indent directory to see whether your

258 | Chapter 11: Vim Enhancements for Programmers

favorite language is represented. A quick peek today (version 8.2) reveals more than
120 indent files.

The most common programming languages are represented, including ada, awk,
docbook (the indent file is named docbk), ei�el, fortran, html, java, lisp, pascal, perl,
php, python, ruby, scheme, sh, sql, and zsh. There is even an indent file defined for

xinetd!

You can tell Vim to automatically detect your file type and load the indent file by

putting the command filetype indent on in your .vimrc file. Now Vim will try to
detect what file type you are editing and load a corresponding indent definition
file for you. If the indent rules do not fulfill your needs—for example, if they
indent in some unfamiliar or unwanted fashion—turn the definitions off with the

command :filetype indent off.

We encourage power users to explore and learn from the indent definition files that
come with Vim. And if you develop new definition files or improvements to existing
ones, we encourage you to submit them to vim.org for possible addition to the Vim
package.

A Final Word on Indentation
Before ending our discussion, it’s worth noting the following points about working
with automatic indenting:

When automatic indenting isn’t
Any time you act on a line in an editing session with automatic indenting and
you change that line’s indentation manually, Vim flags that line and will no longer
try to automatically define its indentation.

Copy and paste
When you paste text into your file where automatic indenting is turned on,
Vim considers this regular input and applies all automatic indentation rules. In
most cases, this is probably not what you intend. Any indentation in pasted
text is tacked on to applied indentation rules. Typically the result is text that
progressively skews to the right side of the screen, with large indentation and no
corresponding retreat to the left side.

To avoid this awkward situation and to paste text intact without side effects, set

Vim’s paste option before adding the imported text. paste comprehensively
reconfigures all of Vim’s automatic features to faithfully incorporate pasted

text. To return to automatic mode, simply reset the paste option with the com‐

mand :set nopaste.

Auto and Smart Indenting | 259

https://www.vim.org

Keyword and Dictionary Word Completion
Vim offers a comprehensive suite of insertion completion capabilities. From program‐
ming language–specific keywords to filenames, dictionary words, and even entire
lines, Vim knows how to offer possible completions to partially entered text. Not
only that, but Vim abstracts the semantics of dictionary-based completion to include
completions based on synonyms for the completed word from a thesaurus!

In this section we look at the different completion methods, their syntaxes, and
descriptions of how they work with examples. The methods of completion include:

• Whole line•

• Current file keywords•

• dictionary option keywords•

• thesaurus option keywords•

• Current and included file keywords•

• Tags (as in ctags)•

• Filenames•

• Macros•

• Vim command line•

• User-defined•

• Omni•

• Spelling suggestions•

• complete option keywords•

Except for complete keywords, all completion commands start with CTRL-X . The
second key specifically defines the type of completion Vim attempts. For example, the
command to autocomplete filenames is CTRL-X CTRL-F . Not all the commands
are so mnemonic, unfortunately. Vim uses unmapped keys, which allows you to
shorten most of these commands to just the second keystroke by mapping the
commands appropriately. For instance, you can map CTRL-X CTRL-N to just
CTRL-N .

All completion methods have virtually identical behavior: they cycle through a list
of candidate completions as you retype the second keystroke. Thus, if you choose
filename autocompletion through CTRL-X CTRL-F and you don’t get the right
word on the first try, you can repeatedly press CTRL-F to see the other options.
Additionally, if you press CTRL-N (for <next=), you move forward through the
possibilities, whereas CTRL-P (for <previous=) moves backward.

260 | Chapter 11: Vim Enhancements for Programmers

Let’s look at some of these autocompletion methods with examples and consider how
they might be useful.

Insertion Completion Commands
These methods (used in insert mode) range in function from simply looking for
words in your current file to spanning the range of function, variable, macro, and
other names throughout an entire suite of code. The final method combines features
of the others for a nice compromise between power and sophistication.

You may want to find your favorite completion method and map it
to a single easy-to-use key. One of us maps his to the TAB key:

:imap Tab <C-P>

This may sacrifice the ability to insert tabs easily, but it allows
him to use the same key as used for completion in command-line

environments such as DOS and the shell (xterm, konsole, etc.).

Remember, you can always insert a tab by quoting it with
CTRL-V . Mapping to the TAB key also corresponds to the nor‐

mal completion key in Vim’s ex command mode.

The following subsections describe the numerous ways Vim lets you do completion.

Completing whole lines

You complete whole lines by typing CTRL-X CTRL-L . The method looks backward
in the current file for a line matching the characters you’ve typed. We’ll try an
example to give you a sense of how completion works.

Consider a file that contains terminal, or console, definitions that characterize the
features of terminals and how to manipulate them. Say your screen resembles
Figure 11-16.

Figure 11-16. Example of completion by line (Linux gvim, color scheme: zellner)

Note the highlighted line containing <This terminal is widely used in our company…=
You need this line in many places as you mark terminals as <widely used= for your
company. Simply type enough of the line to make it unique, or close to unique, and
then type CTRL-X CTRL-L . Thus, Figure 11-17 contains the partial input line:

Thi

Keyword and Dictionary Word Completion | 261

5 The pop-up is in gvim; Vim behaves slightly differently.

Figure 11-17. Partially typed line waiting for completion (Linux gvim, color scheme:
zellner)

CTRL-X CTRL-L causes Vim to show a set of possible completions for the line,
based on lines previously entered in the file. The list of completions is shown in
Figure 11-18.

Figure 11-18. A�er typing CTRL-X CTRL-L (Linux gvim, color scheme: zellner)

It is hard to see in grayscale (in the printed book), but the screen offers a colored
pop-up window containing multiple occurrences of lines matching the beginning
of our partial line. Also displayed, but not visible in the screenshot, is information

describing where the match is found. This method uses the complete option to define
the scope for searching for matches. Scope is discussed in detail in the last method of
this section.

The pop-up5 list highlights selections as you move forward (CTRL-N) or backward
(CTRL-P) through the list. You may also use the arrow keys to move up and down
through the list. Press ENTER to select your match. If you do not want any of the
choices in the list, type CTRL-E to halt the match method without substituting any
text. Your cursor returns to its original position on the same partial input.

Figure 11-19 shows the results after we select the desired option from the list.

262 | Chapter 11: Vim Enhancements for Programmers

Figure 11-19. A�er typing CTRL-X CTRL-L and selecting the matching line (Linux

gvim, color scheme: zellner)

Completion by keyword in �le

CTRL-X CTRL-N searches forward through the current file for keywords matching
the keyword in front of the cursor. Once you enter those keystrokes, you can use
CTRL-N and CTRL-P to search forward or backward, respectively. Press ENTER
to select a match. You may also use the arrow keys to go up and down in the list.

Note that <keyword= is loosely defined. While it may match key‐
words programmers are familiar with, it can really match any word
in the file. Words are defined as a contiguous set of characters in

the iskeyword option. The iskeyword defaults are pretty sane, but
you can redefine the option if you want to include or leave out

some punctuation. Characters in iskeyword can be specified either

directly (such as a–z) or through their corresponding ASCII codes

(such as using 97-122 to represent a–z).

For instance, the defaults allow an underscore as part of a word
but consider a period or hyphen to be a delimiter. This works fine
for C-like languages, but it may not be the best choice for other
environments.

Completion by dictionary

CTRL-X CTRL-K searches forward through the files defined by the dictionary
option for keywords matching the keyword in front of the cursor.

The default setup leaves the dictionary option undefined. There are common places
to find dictionary files, and you can define your own. The most common dictionary
files are:

• /usr/share/dict/words (Cygwin on MS-Windows, Ubuntu GNU/Linux)•

• /usr/share/dict/web2 (FreeBSD)•

• $HOME/.mydict (personal list of dictionary words)•

Completion by thesaurus

CTRL-X CTRL-T searches forward through the files defined by the thesaurus
option for keywords that match the keyword in front of the cursor.

Keyword and Dictionary Word Completion | 263

6 Note that the words in each line of synonyms are comma-separated. To include a comma in a word, quote it

with a backslash.

This method offers an interesting twist. When Vim finds a match, if the line in the
thesaurus file contains more than one word, Vim includes all the words in the list of
completion candidates.

Ostensibly (and implied by the option’s name), this method provides synonyms but
allows you to define your own standard. Consider the example file containing these
lines:6

fun,enjoyable,desirable

funny,hilarious,lol,rotfl,lmao

retrieve,getchar,getcwd,getdireentries,getenv,getgrent,getgrgid,...

The first two lines are typical English-language synonyms (matching <fun= and
<funny,= respectively), while the third line might be useful for C programmers who

regularly insert function names that begin with get. The synonym we use for these
functions is <retrieve.=

In real life, we’d separate the English-language thesaurus from the C-language one,
because Vim can search multiple thesauruses.

In input mode, type the word fun and then CTRL-X CTRL-T . Figure 11-20 shows

the resulting pop-up in gvim.

Figure 11-20. �esaurus completion of <fun= (WSL Ubuntu Linux, color scheme: zellner)

Notice the following:

• Vim matches any word it can find in a thesaurus entry, not just the first word of•
each line in the thesaurus file.

• Vim includes candidate words from all lines in the thesaurus that have a match•
with the keyword in front of the cursor. Thus, in this case, it finds the matches for
both <fun= and <funny.=

264 | Chapter 11: Vim Enhancements for Programmers

Another interesting and perhaps unanticipated behavior of thesau

rus is that the match can be on words on a line in the thesaurus file
other than the first word. For instance, in the line from the previous
example file:

funny hilarious lol rotfl lmao

If you type hilar and complete it, Vim will include in the list all

words from hilarious on that line, i.e., <hilarious,= <lol,= <rotfl,=
and <lmao.= Funny!

Did you notice the extra information in the list of candidates for completion? You can
get information about where Vim found the match in the pop-up menu by adding the

value preview to the completeopt option.

Now consider an example, using the same file as before, in which you type the partial

word retrie. This matches <retrieve,= a synonym we like as a mnemonic for <getting=
stuff, and we include all <get= function names as synonyms. Now CTRL-X CTRL-T

gives us the pop-up menu (in gvim) of all of our functions as choices for completion.
See Figure 11-21.

Figure 11-21. �esaurus completion of string retrie (WSL Ubuntu Linux, color
scheme: zellner)

As with other completion methods, press ENTER to select the match.

Thesaurus completion should not be confused with spellchecking,
another nice Vim feature. Visit the section <Spell It! (i-t)= on page
315 for a discussion of Vim’s spellchecking.

Completion by keyword in the current �le and in included �les

This feature is of use to C and C++ programmers, where #include files are used a lot.
CTRL-X CTRL-I searches forward through the current file and included files for

Keyword and Dictionary Word Completion | 265

keywords matching the keyword in front of the cursor. This method differs from the
<search current file= method (CTRL-X CTRL-P) in that Vim inspects the current
file for include file references and searches those files, too.

Vim uses the value in include to detect lines referencing include files. The default is a
pattern telling Vim to find lines matching the standard C construct:

include <somefile.h>

In this case, Vim would find matches in the file some�le.h in the standard include

file directories on the system. Vim also uses the path option as a list of directories to
search for the included files.

Completion by tag

CTRL-X CTRL-] searches forward through the current file and included files for
keywords matching tags. See the section <Using Tags= on page 147 for a discussion of
tags.

Completion by �lename

CTRL-X CTRL-F searches for filenames matching the keyword in front of the
cursor. Note that this causes Vim to complete the keyword with the name of the �le,
not with words found in files.

As of Vim 8.2, Vim searches only in the current directory for
files with possible filename matches. This is in contrast to many

Vim features that use the path option to look for files. The Vim
documentation hints that this behavior is temporary by pointing

out that path isn’t used <yet.= However, this has been the case for
over a decade…

Completion by macro and de�nition names

CTRL-X CTRL-D searches forward through the current file and included files for

macro names and definitions defined by the #define directive.

Completion method with Vim commands

This method, invoked through CTRL-X CTRL-V , is meant for use on the Vim
command line and tries to guess the best completions for words. This context is
provided to assist users developing Vim scripts.

Completion by user functions

This method, invoked through CTRL-X CTRL-U , lets you define the completion
method with your own function. Vim uses the function pointed to by the option

266 | Chapter 11: Vim Enhancements for Programmers

completefunc to make the completion. Refer to Chapter 12 for discussions about
scripting and writing Vim functions.

Completion by omni function

This method, invoked through CTRL-X CTRL-O , uses user-defined functions
much like the previous user function method. The significant difference is that this
method expects the functions to be file type–specific and hence to be determined
and loaded as a file is loaded. Omni completion files are already available for C, CSS,
HTML, JavaScript, PHP, Python, Ruby, SQL, and XML.

Completion for spelling correction

This method is invoked through CTRL-X CTRL-S . The word in front of the cursor
is used as the base word for which Vim offers candidates for completion. If the word
appears to be badly spelled, Vim suggests <more correct= spellings.

Completion with the complete option

This is the most generic option, invoked through CTRL-N , and lets you combine all
the other searches into one search. For many users, this may be the most satisfactory
because it requires little understanding of the nuances of the more specific methods.

You define where and how this completion acts by setting the comma-separated list

of available sources in the complete option. Each available source is (usually) denoted
by a single character. The choices include:

. (period)
Search the current buffer.

w

Search buffers in other windows (within the screen containing your Vim
session).

b

Search other loaded buffers in the buffer list (which might not be visible in any
Vim windows).

u

Search the unloaded buffers in the buffer list.

U

Search the buffers not in the buffer list.

k

Search the dictionary files (listed in the dictionary option).

Keyword and Dictionary Word Completion | 267

kspell

Use the current spellchecking scheme (this is the only option that is not a single
character).

s

Search the thesaurus files (listed in the thesaurus option).

i

Search the current and included files.

d

Search the current and included files for defined macros.

t,]
Search for tag completion.

Some Final Comments on Vim Autocompletion
We’ve covered a lot of material related to autocompletion, but there’s lots more. The
autocompletion methods yield great returns for the time you invest in mastering their
use. If you edit a lot, and if there’s any notion or context of text to be completed, find
the method best suited to that and learn it.

One final tip: combinations with two keystrokes (more if you are a typical Unix user
and count key combinations as <more than one=) can be error-prone, especially given
that they are combinations with the CTRL key. If you think you’d use autocomple‐
tion heavily, consider mapping your favorite autocompletion to just one keystroke or
key combination. Large numbers of autocompletion commands abbreviated to half
the length offer that much more efficiency.

The following example shows why we find this customization so valuable. One of us
maps the TAB key to generic keyword matching, as mentioned earlier. While editing
this book using DocBook XML tags (for the seventh edition), your author typed

(using a conservative grep of the files) <emphasis= more than 1,200 times! Using
keyword completion, he knew that the partial <emph= always matched one choice, the
<emphasis= tag he wanted. Thus, for each occurrence of this word, he saved at least
three keystrokes (assuming perfect typing for the three initial letters), giving him a
total savings of at least 3,600 keystrokes!

Here’s another way to measure the efficiency of this method: your author already
knows that he types about four characters per second, thus gaining a savings in
typing for one keyword alone of 3,600 divided by 4, or 15 minutes saved. For the same
DocBook files, he completed another 20 to 30 keywords in the same fashion. The
savings in time accrue quickly!

268 | Chapter 11: Vim Enhancements for Programmers

Tag Stacking
Tag stacking is described earlier, in the section <Tag stacks= on page 151.

Besides moving back and forth among the tags you search for, you can choose among
multiple matching tags. You can also do tag selection and window splitting with

one command. The Vim ex mode commands for working with tags are provided in
Table 11-1.

Table 11-1. Vim tag commands

Command Function

ta[g][!] [tagstring] Edit the �le containing tagstring as de�ned in the tags �le. The ! forces Vim to switch to
the new �le if the current bu�er has been modi�ed but not saved. The �le may or may not

be written out, depending on the setting of the autowrite option.

[count]ta[g][!] Jump to the countth newer entry in the tag stack.

[count]po[p][!] Pop a cursor position o� the stack, restoring the cursor to its previous position. If supplied,
go to the countth older entry.

tags Display the contents of the tag stack.

ts[elect][!] [tagstring] List the tags that match tagstring, using the information in the tags �le(s). If no tagstring
is given, the last tag name from the tag stack is used.

sts[elect][!] [tagstring] Like :tselect, but split the window for the selected tag.

[count]tn[ext][!] Jump to the countth next matching tag (default is one).

[count]tp[revious][!] Jump to the countth previous matching tag (default is one).

[count]tN[ext][!]

[count]tr[ewind][!] Jump to the �rst matching tag. With count, jump to the countth matching tag.

tl[ast][!] Jump to the last matching tag.

Normally, Vim shows you which matching tag out of how many it has jumped to. For
example:

tag 1 of >3

It uses a greater-than sign (>) to indicate that it has not yet tried all the matches.

You can use :tnext or :tlast to try more matches. If this message is not displayed

because of some other message, use :0tn to see it.

Here is the output of the :tags command, with the current location marked with a

greater-than sign (>):

 # TO tag FROM line in file

 1 1 main 1 harddisk2:text/vim/test

 > 2 2 FuncA 58 -current-

 3 1 FuncC 357 harddisk2:text/vim/src/amiga.c

Tag Stacking | 269

The :tselect command lets you pick from more than one matching tag. The <prior‐

ity= (pri field) indicates the quality of the match (global versus static, exact case ver‐
sus case-independent, etc.); this is described more fully in the Vim documentation:

 nr pri kind tag file ~

 1 F f mch_delay os_amiga.c

 mch_delay(msec, ignoreinput)

> 2 F f mch_delay os_msdos.c

 mch_delay(msec, ignoreinput)

 3 F f mch_delay os_unix.c

 mch_delay(msec, ignoreinput)

Enter nr of choice (<CR> to abort):

The :tag and :tselect commands can be given an argument that starts with /. In
that case, the command uses it as a regular expression, and Vim will find all the tags
that match the given regular expression.

For example, :tag /normal will find the macro NORMAL, the function normal_cmd,

and so on. Use :tselect /normal and enter the number of the tag you want.

The Vim command mode commands are described in Table 11-2. Besides using the
keyboard, you can also use the mouse if mouse support is enabled in your version of
Vim.

Table 11-2. Vim command mode tag commands

Command Function

^] Look up the location of the identi�er under the cursor in the tags �le, and move to that location.
The current location is automatically pushed onto the tag stack.

g <LeftMouse>

CTRL-<LeftMouse>

^T

Return to the previous location in the tag stack, i.e., pop o� one element. A preceding count
speci�es how many elements to pop o� the stack.

The Vim options that affect tag searching are described in Table 11-3.

Table 11-3. Vim options for tag management

Option Function

taglength,

tl

Controls the number of signi�cant characters in a tag that is to be looked up. The default value of zero
indicates that all characters are signi�cant.

tags The value is a list of �lenames in which to look for tags. As a special case, if a �lename starts with ./, the
dot is replaced with the directory part of the current �le’s pathname, making it possible to use tags �les

in a di�erent directory. The default value is ./tags,tags.

tagrelative When set to true (the default) and using a tags �le in another directory, �lenames in that tags �le are
considered to be relative to the directory where the tags �le is.

270 | Chapter 11: Vim Enhancements for Programmers

7 Well, with the exception of one of our reviewers!

Vim can use Emacs-style etags files, but this is only for backward compatibility; the
format is not documented in the Vim documentation, nor is the use of etags files
encouraged.

Finally, Vim also looks up the entire word containing the cursor, not just the part of
the word from the cursor location forward.

Syntax Highlighting
One of Vim’s strongest enhancements to vi is its syntax highlighting. Vim’s syntax
formatting relies heavily on the use of color, but it also degrades gracefully on screens
that do not support color. In this section we discuss three topics: getting started,
customizing, and rolling your own. Syntax highlighting for Vim contains features that
go beyond the scope of this book, so we focus on providing enough information to
get you familiar with it and enable you to extend it to fit your needs.

Because the impact of Vim’s syntax highlighting is most dramatic
in color, and this book isn’t in color, we strongly encourage you
to try syntax highlighting to fully appreciate the power of color in
defining context. We never met a user who tried it and did not
continue to always use it.7

Getting Started
Displaying a file’s syntax highlighting is simple. Just issue the command:

:syntax enable

If all is well, when you edit a file with a formal syntax, such as a programming
language, you should see text in various colors, all determined by context and syntax.
If nothing changed, try turning syntax highlighting on:

:syntax on

When syntax on Isn’t Enough
Enabling syntax highlighting should be enough by itself, but we have encountered
situations in which more work was required.

If you still see no syntax highlights, Vim may not know what your file type is and
thus not understand which syntax is appropriate. There are a number of reasons this
happens.

Syntax Highlighting | 271

For example, if you create a new file and don’t use a recognized suffix, or any suffix
at all, Vim cannot determine the file type because the file is new and therefore empty.
For instance, we often write shell scripts without any .sh suffix. Each new shell script
begins its editing life without syntax highlighting. Fortunately, once the file contains
code, Vim knows how to figure out the file type, and syntax highlighting works as
expected.

It’s also possible (though not likely) that Vim doesn’t have a syntax description for
your file type. This is very rare, and usually you just need to specify a file type explic‐
itly, because someone has already written a syntax file for the language. Unfortunately,
creating one from scratch is a complex undertaking, although we give you some tips
later in this chapter.

You can force Vim to use a particular syntax highlighting style by setting the syntax

manually from the ex command line. When starting a new shell script, for instance,
we always define the syntax with:

:set syntax=sh

The section <Dynamic File Type Configuration Through Scripting= on page 300
shows a clever if rather roundabout way to avoid this step.

When you enable syntax highlighting, Vim sets it up by going through a checklist.
Without getting mired in too many technical details, we’ll just say that Vim ultimately
determines your file type, finds the appropriate syntax definition file, and loads it for
you. The standard location for syntax files is the $VIMRUNTIME/syntax directory.

To get a sense of the comprehensive coverage of syntax definitions, the Vim syntax
file directory contains almost 500 syntax �les. Available syntaxes span the gamut from
languages (C, Java, HTML) to content (calendar) to well-known configuration files
(fstab, xinetd, crontab). If Vim doesn’t recognize your file type, try looking in the
$VIMRUNTIME/syntax directory for a syntax file that closely matches yours.

Customization
Once you start using syntax highlighting, you may find that some of the colors do not
work for you. They may be difficult to see or may just not suit your taste. Vim has a
few ways to customize and tune colors.

Here are some things to try before taking more drastic measures (e.g., writing your
own syntax description, as described in the next section) to make syntax highlighting
work for you.

Two of the most common and dramatic symptoms of syntax highlighting gone amok
are:

272 | Chapter 11: Vim Enhancements for Programmers

• Bad contrast, with colors too similar and hard to see distinctly as different from•
each other

• Too many or too varied colors, which gives a harsh look to the text•

Although these are subjective deficiencies, it’s nice that Vim lets you make correc‐

tions. Two commands, colorscheme and highlight, and one option, background,
can probably bring the colors to a satisfactory balance.

There are a few other commands and options with which you can customize your
syntax highlighting. After a brief introduction to syntax groups, we talk about these
commands and options in the following sections, with an emphasis on the three just
mentioned.

Syntax groups

Vim classifies different types of text into groups. These groups each receive color and
highlight definitions. Additionally, Vim allows groups of groups. You can address
definitions at different levels. If you assign a definition to a group containing
subgroups, unless otherwise defined, each subgroup inherits the parent group’s
definitions.

Some high-level groups for syntax highlighting include:

Comment
Comments specific to the programming language, e.g.:

// I am both a C++ and a JavaScript comment

Constant

Any constant—e.g., TRUE.

Identi�er
Variable and function names.

Type

Declarations, such as int and struct in C.

Special
Special characters, such as delimiters.

Taking the special group from the previous list, we can look at an example of
subgroups:

• SpecialChar•

• Tag•

• Delimiter•

Syntax Highlighting | 273

8 We’ve noticed that some instances of Vim may have a slightly different set of default color schemes.

• SpecialComment•

• Debug•

With a basic understanding of syntax highlighting, groups, and subgroups, we now
know enough to modify syntax highlighting to suit our tastes.

The colorscheme command

This command changes colors for different syntax highlights such as comments,
keywords, or strings by redefining these syntax groups. Vim ships with the following
color scheme choices:8

blue delek evening murphy ron torte

darkblue desert koehler pablo shine zellner

default elflord morning peachpuff slate

These files are in the directory $VIMRUNTIME/colors. You can activate any one of
them with:

:colorscheme scheme_name

In Vim and gvim, you can quickly cycle through the different schemes this way: type

the partial command :color, press TAB to start command completion, press the
space bar, and then repeatedly press TAB to cycle through the different choices.

In gvim, the choice is even easier. Click on the Edit menu, move the mouse over the
Colorscheme submenu, and tear off the menu. Now you can look at all the choices by
clicking each button.

There are many color schemes available, all contributed by Vim’s user community.
You may be interested in the GitHub repository, from which almost a thousand color
schemes are available for download.

Setting the background option

When Vim sets colors, it first tries to determine what kind of background color your
screen has. Vim has just two categories for background: dark or light. Based on Vim’s
determination, it sets colors differently for each, with the end result hopefully being
a set of colors that works well with that background (i.e., one with good contrast and
color compatibility). Although Vim does try very hard, a correct assessment is tricky,
and an assignment to dark or light is subjective. Sometimes the contrasts render the
session uncomfortable to view, and sometimes they are unreadable.

274 | Chapter 11: Vim Enhancements for Programmers

https://github.com/flazz/vim-colorschemes/tree/master/colors

9 To view Figures 11-22 through 11-27 in color, please visit the O’Reilly website.

So if the colors don’t look good, try explicitly choosing a background setting. Make
sure first to identify the setting:

:set background?

so that you know that you are changing the setting. Then issue a command such as:

:set background=dark

Use the background option in tandem with the colorscheme command to fine-tune
your screen colors. These two together can usually produce a satisfactory color
palette that is comfortable to view.

The highlight command

Vim’s highlight command lets you manipulate different groups and control how
they are highlighted in your editing session. This command is powerful. You can
inspect settings for various groups either as a list or by requesting specific group
highlight information. For example:

:highlight comment

returns Figure 11-22. The first field lists the highlight name (in this example, <Com‐
ment=). The second field always displays the string <xxx= as it appears as defined by
the highlight definitions in the terminal or GUI.

Figure 11-22. Highlight for comments (WSL Ubuntu Linux terminal, color scheme:
zellner)

The output shows how comments in this file will appear. The xxx is dark gray on

the printed page, but on the screen it’s red.9 The term=bold output means that on a

terminal incapable of color, Comments will be shown in bold. ctermfg=12 means that

on a color terminal, such as an xterm on a color monitor, the foreground color for

Comments will be the matching DOS color blue. Finally, guifg=Red means the GUI

interface will display Comments with the foreground color red.

Syntax Highlighting | 275

https://oreil.ly/LhSuQ

The DOS color scheme is a more restricted set of colors than
in modern GUI sets. In this scheme, there are only eight colors:

black, red, green, yellow, blue, magenta, cyan, and white. Each of
them can be set for text foreground or background and optionally
can be defined as <bright,= a brighter color on the screen. Vim uses
analogous mappings for defining text colors in non-GUI windows,

e.g., in xterms.

GUI windows offer virtually unlimited color definitions. Vim lets

you define some colors with common names such as Blue, but
you can also define these colors with red, green, and blue values.

The format is #rrggbb where the # is literal, and rr, gg, and bb
are hexadecimal numbers representing the level of each color. For

example, red could be defined with #ff0000.

Use the highlight command to change settings for groups whose colors you don’t
like. For example, we can find that identifiers in this file are dark cyan for our GUI
interface, as shown in the output in Figure 11-23:

:highlight identifier

Figure 11-23. Highlight for identi�ers

We can redefine the color for identifiers with the command:

:highlight identifiers guifg=red

Now all identifiers on the screen are (a rather ugly) red. This kind of customization is
fairly inflexible: it applies to all file types and does not adapt to different backgrounds
or color schemes.

To see how many highlight definitions exist and what their values are, again use

highlight:

:highlight

Figure 11-24 shows a small sample of the results from the highlight command.

276 | Chapter 11: Vim Enhancements for Programmers

Figure 11-24. Partial results from the :highlight command (WSL Ubuntu Linux
terminal, color scheme: zellner)

Note how some lines contain full definitions (listing term, ctermfg, and so on),

whereas others receive their attributes from parent groups (e.g., String links back to

Constant).

Overriding syntax �les

In the previous section, we learned how to define syntax group attributes for all
instances of a group. Suppose you want to change a group for only one or a few
syntax definitions. Vim lets you do this with the a�er directory. This is a directory in
which you can create any number of a�er syntax files that Vim will execute after the
normal syntax file.

To do this, simply include highlight commands (or any processing commands—the
notion of <after= processing is generic) in the specific file in a directory named

a�er that is included in the runtimepath option. Now when Vim sets up syntax
highlighting rules for your file type, it will also execute your custom commands in the
a�er file.

For example, let’s apply a customization to XML files, which use the xml syntax.
This means Vim loaded syntax definitions from a file in the syntax directory named
xml.vim. As in the previous example, we want to define identifiers always to be red.
So we create our own file named xml.vim in a directory named ~/.vim/a�er/syntax. In
our xml.vim file we put the following line:

highlight identifier ctermfg=red guifg=red

Before this customization works, we must ensure that ~/.vim/a�er/syntax is in the

runtimepath path:

:set runtimepath+=~/.vim/after/syntax In our .vimrc �le

To make the change permanent, of course, the line should go in our .vimrc file.

Now, whenever Vim loads syntax definitions for xml, it will override the definitions

for identifier with our own customization.

Syntax Highlighting | 277

Rolling Your Own
With the building blocks from the previous sections, we now have enough knowledge
to write our own syntax files, simple as they might be. There are still many facets to
learn before we can fully develop a syntax file.

We will incrementally build our own syntax file. Because syntax definitions can be
extremely complex, let’s consider something simple enough to be easily grasped, but
complex enough to show its potential power.

Consider an excerpt from a generated Latin file, loremipsum.latin:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin eget

tellus. Suspendisse ac magna at elit pulvinar aliquam. Pellentesque

iaculis augue sit amet massa. Aliquam erat volutpat. Donec et dui at

massa aliquet molestie. Ut vel augue id tellus hendrerit porta. Quisque

condimentum tempor arcu. Aenean pretium suscipit felis. Curabitur semper

eleifend lectus. Praesent vitae sapien. Ut ornare tempus mauris. Quisque

ornare sapien congue tortor.

In dui. Nam adipiscing ligula at lorem. Vestibulum gravida ipsum iaculis

justo. Integer a ipsum ac est cursus gravida. Etiam eu turpis. Nam laoreet

ligula mollis diam. In aliquam semper nisi. Nunc tristique tellus eu

erat. Ut purus. Nulla venenatis pede ac erat.

...

You create a new syntax file by creating a new file of that syntax name, in this case

latin. Its corresponding Vim file is latin.vim, which you can create in your personal
Vim runtime directory, $HOME/.vim/syntax. Then start your syntax definition sim‐

ply by creating some keywords with the syntax keyword command. Choosing lorem,
dolor, nulla, and lectus as keywords, you can inaugurate the syntax file with the line:

syntax keyword identifier lorem dolor nulla lectus

There still isn’t any syntax highlighting when you edit loremipsum.latin. More work
needs to be done before highlighting is automatic. But for the time being, activate the
syntax with the command:

:set syntax=latin

The text should now look something like Figure 11-25.

Figure 11-25. Latin �le with keywords de�ned

278 | Chapter 11: Vim Enhancements for Programmers

On the screen, the text words are black with the keywords in red. In the printed book,
it’s harder to distinguish; the keywords are dark gray instead of black.

You may have noticed that the first occurrence of Lorem isn’t highlighted. By default,
syntax keywords are case sensitive. Add the following line at the top of the syntax file:

:syntax case ignore

and you should now see Lorem included as a highlighted keyword.

Before we try this again, let’s make it all work automatically. After Vim tries to detect
any file type, it optionally checks for other definitions, or even overriding definitions

(which are not recommended), in a directory named �detect in your runtimepath.
Therefore, create that directory under $HOME/.vim and create a file in it named
latin.vim containing this single line:

au BufRead,BufNewFile *.latin set filetype=latin

This tells Vim that any files with the suffix .latin are latin files, and therefore that
Vim should execute the syntax file in $HOME/.vim/syntax/latin.vim when displaying
them.

Now when you edit loremipsum.latin, you see Figure 11-26.

Figure 11-26. Latin �le with keywords de�ned, ignoring case (WSL Ubuntu Linux
terminal, color scheme: zellner)

First, notice that the syntax was active right away, as Vim correctly detected your new
syntax file type, latin. And keywords now match without any sensitivity to case.

For some more interesting extensions, define a match and assign it to group Comment.

The match method uses a regular expression to define what is highlighted. For exam‐

ple, we will define all words beginning with s and ending with t to be Comment syntax

(remember, this is just an example!). Our regular expression is: \<s[^\t]*t\>. We

also will define a region and highlight it as a Number. Regions are defined with a start

and end regular expression.

Syntax Highlighting | 279

Our region begins with Suspendisse and ends with sapien\.. To add even more

of a twist, we decide that the keyword lectus is contained within our region. Our
latin.vim syntax file now looks like:

syntax case ignore

syntax keyword identifier lorem dolor nulla lectus

syntax keyword identifier lectus contained

syntax match comment /\<s[^\t]*t\>/

syntax region number start=/Suspendisse/ end=/sapien\./ contains=identifier

Now when we edit loremipsum.latin, we see Figure 11-27.

Figure 11-27. New latin syntax highlighting (WSL Ubuntu Linux terminal, color
scheme: zellner)

There are several things to notice, which you can see much more easily if you run the
example and view the results in color:

• The new match highlights appear. On the first line, dolor sit is highlighted in red•

because it satisfies the regular expression for the match.

• The new region highlights appear. The entire section of the paragraph beginning•
with Suspendisse through sapien. is highlighted in purple (ick).

• The keywords are still highlighted as before.•

• Within the highlighted region, the keyword lectus is still highlighted in red•

because we defined group identifier as contained and defined our region as

contains identifier.

This example only begins to tap the rich powers of syntax highlighting. Although
this particular example is somewhat useless, we hope that it demonstrates enough to
convince you of this feature’s power and encourages you to experiment and create
your own syntax definitions.

280 | Chapter 11: Vim Enhancements for Programmers

10 The file is available in the book’s GitHub repository; see the section <Accessing the Files= on page 471.

Compiling and Checking Errors with Vim
Vim isn’t an IDE, but it tries to make life a little easier for programmers by incorpo‐
rating compilation into the editing session and providing a quick and easy way to find
and correct errors.

Additionally, Vim offers some convenience functions to track and navigate locations
in your files. We discuss a simple example: the edit-compile-edit cycle using Vim’s
built-in features and some of its related commands and options, as well as the

convenience functions. All of these depend on the same Vim Quickfix List window.

As a simple starting point, Vim lets you compile files using make each time you
change one. Vim uses default behavior to manage the results of your build so that
you can easily alternate between editing and compilation. Compilation errors appear

in Vim’s special Quickfix List window, where you can inspect, jump to, and correct
errors.

For this discussion we use a little C program that generates Fibonacci numbers.10 In
its correct and compilable form, the code is:

include <stdio.h>

include <stdlib.h>

int main(int argc, char *argv[])

 {

 /*

 * arg 1: starting value

 * arg 2: second value

 * arg 3: number of entries to print

 *

 */

 if (argc - 1 != 3)

 {

 printf ("Three command line args: (you used %d)\n", argc-1);

 printf ("usage: value 1, value 2, number of entries\n");

 return (1);

 }

 /* count = how many to print */

 int count = atoi(argv[3]);

 /* index = which to print */

 long int index;

 /* first and second passed in on command line */

 long int first, second;

Compiling and Checking Errors with Vim | 281

https://www.github.com/learning-vi/vi-files

 /* these get calculated */

 long int current, nMinusOne, nMinusTwo;

 first = atoi(argv[1]);

 second = atoi(argv[2]);

 printf("%i fibonacci numbers with starting values: %li, %li\n", count, first,

 second);

 printf("=======================================\n");

 /* print the first 2 from the starter values */

 printf("%i %04li\n", 1, first);

 printf("%i %04li ratio (golden?) %.3f\n", 2, second, (double) second/first);

 nMinusTwo = first;

 nMinusOne = second;

 for (index=1; index<=count; index++)

 {

 current = nMinusTwo + nMinusOne;

 printf("%li %04li ratio (golden?) %.3f\n",

 index,

 current,

 (double) current/nMinusOne);

 nMinusTwo = nMinusOne;

 nMinusOne = current;

 }

 }

From Vim, compile this program (assuming a filename of �bonacci.c) with the
command:

:make fibonacci

By default, Vim passes the make command through to the external shell and captures

the results in the special Quickfix List window. After compiling the previous code,

the screen with the Quickfix List window looks something like Figure 11-28.

Figure 11-28. Quickfix List window a�er a clean compile (WSL Ubuntu Linux
terminal, color scheme: zellner)

282 | Chapter 11: Vim Enhancements for Programmers

If you don’t see the QuickFix window (it did not open automati‐

cally), you can open it with the Vim ex command :copen.

Next, we change enough lines in our program to introduce a healthy number of
errors.

Change:

 long int current, nMinusOne, nMinusTwo;

to the following invalid declaration:

 longish int current, nMinusOne, nMinusTwo;

Change:

 nMinusTwo = first;

 nMinusOne = second;

to misspelled variables xfirst and xsecond:

 nMinusTwo = xfirst;

 nMinusOne = xsecond;

Change:

 printf("%d %04li ratio (golden?) %.3f\n", 2, second, (double) second/first);

to this, with missing commas:

 printf("%d %04li ratio (golden?) %.3f\n", 2 second (double) second/first);

Now recompile the program. Figure 11-29 shows what the QuickFix List window
now contains.

Figure 11-29. Quickfix List window a�er a compilation with errors (WSL Ubuntu
Linux terminal, color scheme: zellner)

Line 1 of the Quickfix List window shows the compilation command executed. If
there had been no errors, this would be the only line in the window. But because there
are errors, line 3 begins the list of errors and their contexts.

Compiling and Checking Errors with Vim | 283

Vim lists all the errors in the Quickfix List window and lets you access the code,
where errors are indicated in several ways. Vim starts with the convenience behavior

by highlighting the first error in the Quickfix List window. It then repositions the
source file (scrolling if necessary) and places the cursor at the beginning of the source
code line corresponding to the error.

As you fix errors, you can navigate to the next error in one of two ways: enter

the command :cnext, or position the cursor over the error line in the Quickfix

List window and press ENTER . Again, Vim scrolls the source file if necessary, and
positions the cursor at the beginning of the offending source code line.

After you’ve made changes and are satisfied that you’ve corrected your errors, you’re
ready to begin the compile-edit cycle again using the same technique. If you have
a standard developer’s environment (which is almost always true for Unix/Linux
machines), Vim’s default behaviors will handle edit-compile-edit as described without
any tweaking.

If Vim’s defaults don’t find a proper compilation program, it has options you can
use to define where utilities are located, to let you do your work. The details about
programming environments and compilers are outside the scope of this discussion,
but we present these Vim options as a starting point in case you need to play with
your environment:

:cnext, :cprevious
Commands that move the cursor to next and previous error locations, as defined

in the Quickfix List window, respectively.

:colder, :cnewer
Vim remembers the last 10 lists of errors. These commands load the next older or

next newer list of errors in the QuickFix List window. Each command takes an
optional integer n to load the nth older or newer error list.

errorformat

An option defining a format that Vim matches to find errors returned from a
compile. Vim’s built-in documentation gives much more detailed information on
how this is defined, but the default almost always works. If you need to tune the
option, view its details with:

:help errorformat

makeprg

An option containing the name of the development environment’s make or com

pile program.

284 | Chapter 11: Vim Enhancements for Programmers

11 The notation changed some more later on.

More Uses for the Quick�x List Window
Vim also lets you build your own list of locations within files, specifying the locations

through a grep-like syntax. The QuickFix List window returns the results you asked
for in a format closely resembling the lines returned from the compilation process

described earlier. This is done with the :vimgrep command, whose syntax is:

:vimgrep[!] /pattern/[g][j] file(s)

This is essentially a built-in version of the standard grep(1) utility. It searches the �les
for lines that match the pattern and places the results into the QuickFix window. (See
the Vim documentation for the details on the flags and their meanings.)

This feature is useful for such tasks as refactoring. As an example, we composed
this manuscript in AsciiDoc. At some point in the composition process we switched

the notation for any occurrence of <++vim++= from ++vim++ to __vim__.11 So, each
occurrence like:

++vim++

needed to be changed to:

__vim__

After executing this command:

:vimgrep /++vim++/ *.asciidoc

the Quickfix List window contained the information shown in Figure 11-30.

Figure 11-30. Quickfix List window a�er :vimgrep command (WSL Ubuntu Linux
terminal, color scheme: shine)

Remember to open the QuickFix window with the Vim ex com‐
mand:

:copen

Otherwise you will not see the results.

Compiling and Checking Errors with Vim | 285

Notice in Figure 11-30 how Vim displays the :vimgrep output. On the left are the
QuickFix buffer line numbers, which simply indicate how many lines are in the

output; they can be turned off with the Vim ex command:

:set nonumber

The :vimgrep output comprises three fields separated by the pipe character (|). The

first field is the name of the file where vimgrep matched the pattern. The second field
describes the line and column where the matching pattern was found. The third field
is the actual text of the matching line.

You can navigate to any of the matches by moving the cursor to the line you are
interested in, or you can double-click the line of interest. Vim opens that file in
another (split) window and positions the cursor over the first matching pattern
character.

In Figure 11-30 the highlighted line (which is a little difficult to read, though we tried
to select a color scheme as readable as possible) is a pointer to line 98, column 32, in
file ch04.asciidoc. See Figure 11-31 for the results after double-clicking that line; you
can see how Vim placed the cursor in the correct line and column in ch04.asciidoc in
the corresponding window.

Figure 11-31. Vim positioning the cursor in the �le, line, and column from the vimgrep
QuickFix window (WSL Ubuntu Linux terminal, color scheme: shine)

So it was a simple matter to navigate through all occurrences and quickly change to
the new values.

286 | Chapter 11: Vim Enhancements for Programmers

This example may seem to solve a problem more easily solved with
this simple command:

:%s/++vim++/__vim__/g

But remember, vimgrep is more general and operates against mul‐

tiple files. This is an example of what vimgrep does, not a definitive
way to perform this task. In Vim, there are usually many ways to
get something done.

Some Final Thoughts on Vim for Writing Programs
We have looked at many powerful features in this chapter. Spend some time master‐

ing these techniques and you’ll gain great productivity. If you’re a longtime vi user,
you’ve already climbed one steep learning curve. The extra effort to learn Vim’s
additional features is worth a second learning curve.

If you’re a programmer, we hope this chapter shows how much Vim offers for your
programming tasks. We encourage you to try some of these features and even to
extend Vim to suit your own needs. And maybe you will create extensions to give
back to the Vim community. Now, go program!

Some Final Thoughts on Vim for Writing Programs | 287

1 We’ve heard others report slightly different numbers and default color schemes, but this is pretty close.

CHAPTER 12

Vim Scripts

Sometimes customization alone isn’t enough for your editing environment. Vim lets
you define all of your favorite settings in your .vimrc file, but maybe you want more
dynamic or <just in time= configuration. Vim scripts let you do that.

From inspecting buffer contents to handling unanticipated external factors, Vim’s
scripting language lets you complete complex tasks and make decisions based on your
needs.

If you have a Vim configuration file (.vimrc, .gvimrc, or both), you are already
scripting in Vim; you just don’t know it. All of the Vim commands and options are
valid inputs to scripts. And, as you’d expect, Vim provides all of the standard flow

control statements (if…then…else, while, etc.), variables, and functions typical in any
language.

In this chapter, we’ll walk through an example and incrementally build up a script.
We’ll look at simple constructs, use some of Vim’s built-in functions, and examine
rules you must consider in order to write well-behaved and predictable Vim scripts.

What’s Your Favorite Color (Scheme)?
Let’s begin with the simplest of configurations. We’ll customize our environment to a
color scheme we prefer. This is simple and uses one of the basics of Vim scripts, the
simple Vim command.

Vim ships with 17 customized color schemes.1 You can choose and activate a color

scheme by putting the colorscheme command in your .vimrc or .gvimrc file. A
favorite <understated= color scheme of one author is the desert scheme:

289

:colorscheme desert

Put a colorscheme like that in your configuration file, and now every time you edit
with Vim you will see your favorite colors.

So our first script is trivial. What if your tastes for your color scheme are more
complex? What if you like more than one color scheme? What if the time of day
correlates to your preferences? Vim scripts easily let you do this.

Choosing an alternate color scheme depending on the time of day
may seem trite, but maybe not as much as you may think. Even
Google changes the colors and tone of your iGoogle home page
throughout the day.

Conditional Execution
One of us likes to divide the day into four partitions, each with its own dedicated
color scheme:

darkblue

Midnight to 6 a.m.

morning

6 a.m. to noon

shine

Noon to 6 p.m.

evening

6 p.m. to midnight

We’ll build a nested if…then…else… block of code for this purpose. There are several
different syntaxes you can use for this block. One is more traditional, with an explic‐
itly laid-out syntax:

if cond expr

 line of vim code

 another line of vim code

 ...

elseif some secondary cond expr

 code for this case

else

 code that runs if none of the cases apply

endif

290 | Chapter 12: Vim Scripts

The elseif and else blocks are optional, and you can include multiple elseif
blocks. Vim also allows this more terse and C-like construct:

cond ? expr 1 : expr 2

Vim checks the condition cond. If it’s true, expr 1 executes; otherwise, expr 2 executes.

Using the strftime() function

Now that we can conditionally execute code, we need to figure out what part of
the day it is. Vim has built-in functions that return this kind of information. In

our case, we use the strftime() function. strftime() accepts two parameters, the
first of which defines the output format of a time string. This format is system
dependent and not portable, so you must pay due care when choosing a format. For‐
tunately, most mainstream formats are common across systems. The second optional
parameter is a time measured in seconds since January 1, 1970 (the standard C
time representation). This optional parameter defaults to the current time. For our

example, we can use the time format %H, producing strftime("%H"), because the
hour of the day is all we need to decide on our color scheme.

Now that we know how to use conditional code, we have the Vim built-in function
to give us the information about the time of day with which we choose our matching
color scheme. Put this code into your .vimrc file:

" progressively check higher values... falls out on first "true"

if strftime("%H") < 6

 colorscheme darkblue

 echo "setting colorscheme to darkblue"

elseif strftime("%H") < 12

 colorscheme morning

 echo "setting colorscheme to morning"

elseif strftime("%H") < 18

 colorscheme shine

 echo "setting colorscheme to shine"

else

 colorscheme evening

 echo "setting colorscheme to evening"

endif

Notice that we introduce another Vim script command, echo. As a convenience, we
add this to echo the current scheme to ourselves; it also lets us check that the code
actually ran and produced the desired result. The message should appear in Vim’s
command status window or as a pop-up, depending on where in the startup sequence

the echo command is encountered.

What’s Your Favorite Color (Scheme)? | 291

2 An observation by a technical reviewer, with which we agree: �e variable name currentHour is a bit of a

misnomer, because its value isn’t really an hour. �is current name re�ects its heritage, but alternatively, we could

name the variable for its usage: colorIndex. Still, we will leave the script in its original form.

When we issue the command colorscheme, we use the name of the

scheme (e.g., desert) without surrounding quotes, but when we

use the echo command, we do quote the name ("desert"). This is
an important distinction!

In the case of the colorscheme command in our script, we are issu‐
ing a direct Vim command, and the parameter for this command
is a literal. If we include surrounding quotes, the quotes are inter‐

preted as part of the name of the color scheme by colorscheme.
This is an error because none of the schemes include quotes in
their names.

On the other hand, the echo command interpolates words without
quotes as expressions (calculations that return values) or functions.
Therefore, we need to quote the name of the color scheme we
choose.

Variables
If you are a programmer, you probably see a problem with the script we just presen‐
ted. While it’s unlikely to be a big concern in what we are trying to do, we are

executing a conditional check of the hour of the day by invoking the strftime()
function at each conditional point. Technically, we are conditionally checking one
thing, but we are evaluating it as an expression multiple times, potentially making a
conditional decision on something that changes value mid-execution.

Instead of executing the function each time, let’s evaluate it once and store the results
in a Vim script variable. We can then use the variable as often as we want in our
conditional, without incurring the overhead of a function call.

You assign a value to a variable with the :let command:

:let var = "value"

For our purposes, we can define our variable any way we want (context allowing)
because we use it only once (though this will change later). For now, we let Vim treat
it as global by default. Later we will see that you can use special prefixes to define a
variable’s scope.

Let’s call our variable currentHour.2 By assigning the result from strftime() only
once, we now have a more efficient script:

" progressively check higher values... falls out on first "true"

let currentHour = strftime("%H")

292 | Chapter 12: Vim Scripts

echo "currentHour is " currentHour

if currentHour < 6

 colorscheme darkblue

 echo "setting colorscheme to darkblue"

elseif currentHour < 12

 colorscheme morning

 echo "setting colorscheme to morning"

elseif currentHour < 18

 colorscheme shine

 echo "setting colorscheme to shine"

else

 colorscheme evening

 echo "setting colorscheme to evening"

endif

We can clean up the code a little more and get rid of a few lines by introducing a

variable named colorScheme. This variable holds the value of the color scheme that
we determine by time of day. We’ll add a capital S to distinguish the variable from the

name of the colorscheme command, but we could have used the exact same letters
and it wouldn’t matter—Vim can determine from the context what is a command and
what is a variable:

" progressively check higher values... falls out on first "true"

let currentHour = strftime("%H")

echo "currentHour is " . currentHour

if currentHour < 6

 let colorScheme ="darkblue"

elseif currentHour < 12

 let colorScheme = "morning"

elseif currentHour < 18

 let colorScheme = "shine"

else

 let colorScheme = "evening"

endif

echo "setting color scheme to " . colorScheme

colorscheme colorScheme

Notice the use of the dot (.) notation with the echo command. This operator concat‐

enates expressions into one string, which echo ultimately displays. In this case we

concatenate a literal string, "setting color scheme to ", and the value assigned to

the variable colorScheme.

We made an incorrect assumption about executing commands
within this script. If you coded along with the example, you already
know this. We correct the error in the next section.

The execute Command
So far we have improved how we pick our color scheme, but our last change intro‐

duced a slight twist. Initially, we decided to execute a discrete colorscheme command

What’s Your Favorite Color (Scheme)? | 293

based on time of day. Our last improvement looks correct, but after defining a vari‐

able (colorScheme) to hold the value of our color scheme, we find that the command:

colorscheme colorScheme

results in the error shown in Figure 12-1.

Figure 12-1. colorscheme colorScheme error

We need a way to execute a Vim command that refers to a variable instead of a literal

string such as darkblue. Vim gives us the execute command for this purpose. When
passed a command, it evaluates variables and expressions and substitutes their values
into the command. We can exploit this feature along with the concatenation shown in

the previous section to pass the value of our variable to the colorscheme command:

execute "colorscheme " . colorScheme

The exact syntax used here (particularly the quotation marks) may be confusing.

The execute command expects variables or expressions, but colorscheme is just a

plain string, not a variable or an expression. We don’t want execute to evaluate

colorscheme; we just want it to accept the name as is. So we turn the name of the
command into a literal string by enclosing it in quotation marks. While we’re at it,
we add a blank space to the end, before the final quotation mark. This is important
because we need a space between the command and the value.

Our variable colorScheme must be outside the quotation marks so that it’s evaluated

by execute. Think of execute’s behavior this way:

• Plain words are evaluated as variables or expressions, and execute substitutes•
their values.

• Quotation marks enclosing strings are taken literally; execute does not try to•
evaluate them to return a value.

Using execute fixes our error, and Vim now loads the color scheme as expected.

After loading Vim, you can verify that you loaded the proper color scheme. The

colorscheme command sets its own variable, colors_name. In addition to echoing

294 | Chapter 12: Vim Scripts

values of the variables you set in your script, you can manually execute the echo

command and examine the colors_name variable to see whether our script has in fact

executed the correct colorscheme command based on the time of day:

:echo colors_name

De�ning Functions
So far we’ve created a script that works nicely for us. Now let’s create code we can
execute at any time during a session, not just when Vim starts. We will give an
example of this soon, but first we need to create a function containing the code of our
script.

Vim lets you define your own functions with function…endfunction statements.
Here is a sample skeleton of a user-defined function:

function MyFunction(arg1, arg2...)

 line of code

 another line of code

endfunction

We can easily turn our script into a function. Notice that we don’t need to pass in any
arguments, so the parentheses in the function definition are empty:

function SetTimeOfDayColors()

 " progressively check higher values... falls out on first "true"

 let currentHour = strftime("%H")

 echo "currentHour is " . currentHour

 if currentHour < 6

 let colorScheme = "darkblue"

 elseif currentHour < 12

 let colorScheme = "morning"

 elseif currentHour < 18

 let colorScheme = "shine"

 else

 let colorScheme = "evening"

 endif

 echo "setting color scheme to " . colorScheme

 execute "colorscheme " . colorScheme

endfunction

Vim user-defined function names must begin with a capital letter.

Now we have a function defined in our .gvimrc file. But if we don’t call it, the code

will never execute. You call a function with Vim’s call statement. In our example it
would look like:

call SetTimeOfDayColors()

What’s Your Favorite Color (Scheme)? | 295

Now we can set our color scheme at any time, anywhere within a Vim session. One

option is just to put the previous call line in our .gvimrc. The results are the same
as our earlier example, where we ran the code without using a function. But in the
next section, we’ll see a neat Vim trick that calls our function repeatedly so that our
color scheme gets set regularly throughout our session, thus changing dynamically
throughout the day! Of course, this introduces other problems that we must address.

A Nice Vim Piggybacking Trick
In the previous section we defined a Vim function, SetTimeOfDayColors(), which
we call once to define our color scheme. What if we want to repeatedly check the
time of day and change the color scheme accordingly? Obviously the onetime call
in .gvimrc doesn’t accomplish this. To fix this, we introduce a neat Vim trick using the

statusline option.

Most Vim users take the Vim status line for granted. By default, statusline has no
value, but you can define it to display virtually any information available to Vim in
the status line. And because the status line can display dynamic information, such as
the current line and column, Vim recalculates and redisplays the status line any time
the edit status changes. Almost any action in Vim triggers a status line redraw. So
we’ll use this as a trick to call our color scheme function and change the color scheme
dynamically. But as we will soon see, this is an imperfect approach.

The statusline accepts an expression, evaluates it, and displays it in the status line.

This includes functions. We use this feature to call our SetTimeOfDayColors() every
time the status line is updated, which is often. Because this feature overrides the
default status line and we don’t want to lose the valuable information we get by
default, let’s incorporate a wealth of information into the following initial definition
of our status line:

set statusline=%<%t%h%m%r\ \ %a\ %{strftime(\"%c\")}%=0x%B\

 \\ line:%l,\ \ col:%c%V\ %P

The definition for statusline is split across two lines. Vim consid‐

ers any line with an initial nonblank character of backslash (\) to
be a continuation of the previous line, and it ignores all whitespace
up to the backslash. So if you use our definition, make sure it is
copied and entered exactly. If you can’t get it to work, you can

revert to starting with an undefined statusline.

You can look up the meaning of the various characters preceded by percent signs in
the Vim documentation. The definition produces a status line like the following:

ch12.asciidoc Thu 26 Aug 2021 12:39:26 PM EDT 0x3C line:1, col:1 Top

296 | Chapter 12: Vim Scripts

Our focus in this chapter is not on what the status line can display but on exploiting

the statusline option to evaluate a function.

Now we add our SetTimeOfDayColors() function to the statusline. By using +=
instead of a plain equals sign, we add something to the end instead of replacing what
we defined earlier:

set statusline += \ %{SetTimeOfDayColors()}

Now our function is part of the status line. Though it doesn’t contribute interesting
information to the status line, it now checks the time of day and potentially updates
our color scheme as the hour of the day progresses. There are two problems with this:

• We now have a Vim script function that inspects the hour of the day each time•
the Vim status line gets updated. Earlier, we put some effort into eliminating a

few calls to strftime() for the sake of efficiency, but now we’ve added so many
calls to our session that the number is dizzying.

• When our session happens to evaluate the statusline at the proper hour of the•
day, it does what we want and changes the color scheme. But as we’ve defined
it, it checks the time and resets the color scheme regardless of whether there’s a
change.

In the next section, we examine more efficient means to our end by using global
variables outside of our function.

Tuning a Vim Script with Global Variables
Vim provides scalar variables (numbers and strings) and arrays. Furthermore, you
can specify the scope of a variable.

Variable scopes

Vim variables are fairly straightforward, but there are a few things to know and
manage before discussing global variables. Specifically, we must manage our variable’s
scope. Vim defines a variable’s scope through a convention that depends on the name’s
pre�x. The prefixes include:

a:

A function argument.

b:

A variable recognized in a single Vim buffer.

g:

A variable recognized globally—i.e., it can be referenced anywhere.

What’s Your Favorite Color (Scheme)? | 297

l:

A variable recognized within a function (a local variable).

s:

A variable recognized within a sourced Vim script.

t:

A variable recognized in a single Vim tab.

v:

A Vim variable—one controlled by Vim (these are also global variables).

w:

A variable recognized in a single Vim window.

If you do not define a variable’s scope with a prefix, it defaults to

being global (g:) when defined outside a function, and to being

local (l:) when defined within a function.

Global variables

As we discovered with our last modification to our Vim script, we almost have the
desired behavior. Our function is called every time the Vim status line is updated, but
because that happens quite often, it’s problematic on several levels.

First, because it’s called so often, we might be concerned about the load it creates on
the computer’s processor. Fortunately, with today’s computers this is unlikely to be of
much concern, but it’s still probably bad form to redefine the color scheme over and
over so often. If this were the only issue, we might consider our script complete and
not bother tuning it further. However, it is not.

If you’ve coded along with the examples, you already know the problem. The con‐
stant reestablishment of the color scheme while you move around in the edit session
creates a noticeable and annoying flicker, because each definition of the color scheme,
even if it’s the same as the current color scheme, requires Vim to reread the color
scheme definition script, reinterpret the text, and reapply all of the color syntax
highlight rules. Even computers with extremely high computing power are unlikely
to provide enough graphics processing power to render the constant updating flicker-
free. We need to fix this.

We can define our color scheme once and then, within a conditional block, deter‐
mine each time whether the color scheme changes and consequently needs to be
defined and drawn. We do this by taking advantage of the global variable set by

the colorscheme command: colors_name. Let’s recast our function to take this into
consideration:

298 | Chapter 12: Vim Scripts

function SetTimeOfDayColors()

 " progressively check higher values... falls out on first "true"

 let currentHour = strftime("%H")

 if currentHour < 6

 let colorScheme = "darkblue"

 elseif currentHour < 12

 let colorScheme = "morning"

 elseif currentHour < 18

 let colorScheme = "shine"

 else

 let colorScheme = "evening"

 endif

 " if our calculated value is different, call the colorscheme command.

 if g:colors_name !~ colorScheme

 echo "setting color scheme to " . colorScheme

 execute "colorscheme " . colorScheme

 endif

endfunction

Now we have a dynamic and efficient function. We make one last improvement in the
following section.

Arrays
It would be nice if somehow we could just extract our color scheme value without the

extended if…then…else block. With Vim arrays, we can improve the script and make
it eminently more readable.

You create an array by defining a variable’s value as a comma-separated list of values

within square brackets. We introduce an array named Favcolorschemes for our
function. We could define it within the scope of the function, but to leave open the
possibility of accessing the array elsewhere in our session, we’ll define it outside of the
function as a global array:

let g:Favcolorschemes = ["darkblue", "morning", "shine", "evening"]

This line should go in your .gvimrc file. Now we can reference any value within the

array variable g:Favcolorschemes by its subscript, starting with element zero. For

example, g:Favcolorschemes[2] is equal to the string "shine".

Taking advantage of Vim’s treatment of math functions, where results of integer
division are integers (the remainder gets truncated), we can now quickly and easily
get our preferred color scheme based on the hour of the day. Let’s look at a final
version of our function:

function SetTimeOfDayColors()

 " currentHour will be 0, 1, 2, or 3

 let g:CurrentHour = strftime("%H") / 6

 if g:colors_name !~ g:Favcolorschemes[g:CurrentHour]

 execute "colorscheme " . g:Favcolorschemes[g:CurrentHour]

 echo "execute " "colorscheme " . g:Favcolorschemes[g:CurrentHour]

 redraw

 endif

endfunction

What’s Your Favorite Color (Scheme)? | 299

The echo … statement prints the information and <announces= the change that just

occurred from the script’s actions. The redraw statement tells Vim to redraw the
screen immediately.

Congratulations! You have built a complete Vim script that takes into consideration
many of the factors needed to build any useful script you may want.

Dynamic File Type Con�guration Through Scripting
Let’s look at another nifty script example. Normally, when editing a new file, the only

clue Vim gets to determine the file’s type and set filetype is the file’s extension. For
example, .c means the file is C code. Vim easily determines this and loads the correct
behavior to make it easy to edit a C program.

But not all files require an extension. For example, while it’s become common con‐
vention to create shell scripts with a .sh extension, we don’t like or abide by this
convention, especially having created thousands of scripts before this convention
became popular. Vim is actually sufficiently well trained to recognize a shell script
without the crutch of a file extension by looking at the text inside the file. However,
it can do so only on the second edit, when the file provides some context for
determining the type. Vim scripts can fix that!

Autocommands
In our first script example, we relied on Vim’s habit of updating the status line
constantly and <hid= our function in the status line to set the color scheme by time
of day. Our script to dynamically determine the file type relies on a more formal Vim
convention, autocommands.

Autocommands include any valid Vim commands. Vim uses events to execute com‐
mands. Here are some events, all of which trigger an associated command when the
event happens:

BufNewFile

When Vim begins editing a new file.

BufReadPre

Before Vim moves to a new buffer.

BufRead, BufReadPost
When editing a new buffer, but a�er reading the file.

BufWrite, BufWritePre
Before writing a buffer to a file.

300 | Chapter 12: Vim Scripts

FileType

After setting filetype.

VimResized

After a Vim window size has changed.

WinEnter, WinLeave
Upon entering or leaving a Vim window, respectively.

CursorMoved, CursorMovedI

Every time the cursor moves in vi command mode or in insert mode,
respectively.

Altogether there are almost 80 Vim events. For any of these events, you can define an

automatic autocmd that executes when that event occurs. The autocmd format is:

autocmd [group] event pattern [nested] command

The elements of this format are:

group
An optional command group (described later).

event
The event that will trigger command.

pattern
The pattern matching the filename for which command should execute.

nested

If present, allows this autocommand to be nested within others.

command
The Vim command, function, or user-defined script to execute when the event
occurs.

Our goal is to identify the file type for any new file we open, so we use * for pattern.

The next decision is which event to use to trigger our script. Because we want to try
to identify our file type as early as possible, two good candidates suggest themselves:

CursorMoved and CursorMovedI.

CursorMoved triggers an event when the cursor moves, which seems wasteful, because
merely moving the cursor is not likely to provide more information about a file’s type.

CursorMovedI, in contrast, fires when text is input and therefore seems like the best
candidate.

We must write a function to do the work each time. Let’s call it CheckFileType(). We

now have enough information to define our autocmd command. It looks like this:

Dynamic File Type Con�guration Through Scripting | 301

autocmd CursorMovedI * call CheckFileType()

Checking Options
In our CheckFileType function, we need to inspect the value of the filetype option.
Vim scripts use special variables to extract values from options by prefixing the

option name (filetype in our case) with an ampersand (&) character. Hence we use

the variable &filetype in our function.

We start with a simple version of CheckFileType():

function CheckFileType()

 if &filetype == ""

 filetype detect

 endif

endfunction

The Vim command filetype detect is a Vim script installed in the $VIMRUNTIME
directory. It runs through many criteria and tries to assign a file type to your file.

Normally this occurs once, so if the file is new and filetype cannot determine a file
type, the editing session cannot assign syntax formatting.

There is a problem: we call our function each time the cursor moves during input
mode, continually trying to detect the file type. To solve this, we first check to
see whether the file already has a file type, which would mean that our function
succeeded in its previous execution and therefore does not need to do it anymore. We
won’t worry about anomalies, such as a mistaken identification or a file that we start
in one programming language and then decide to change to another.

Let’s edit a new shell script file and see the results:

$ vim ScriptWithoutSuffix

Input the following:

#! /bin/sh

inputFile="DailyReceipts"

By now, Vim has turned on color syntax, as shown in Figure 12-2.

Figure 12-2. File type of new �le detected (MS Windows gvim, color scheme: morning)

302 | Chapter 12: Vim Scripts

You can tell from the picture that Vim is using gray for the string, but the printed

image does not show that #! /bin/sh is blue, inputFile= is black, and "Daily

Receipts" is purple. Unfortunately, these aren’t the colors for shell syntax highlight‐

ing! A quick check of the filetype option through the command :set filetype
displays the message shown in Figure 12-3.

Figure 12-3. conf �le type detected (MS Windows gvim, color scheme: morning)

Vim assigned file type conf to our file, which is not what we want. What went wrong?

If you try this example, you will see that Vim assigned the file type immediately when

you entered the first character, #, at the first CursorMovedI event. Configuration files

for Unix utilities and daemons typically use the # character to start a comment, so

Vim’s heuristics assume that a # at the beginning of the line is the beginning of a
comment in a configuration file. We have to teach Vim to be more patient.

Let’s change our function to allow for more context. Instead of trying to detect the file
type at the first available opportunity, let’s allow the user to enter about 20 characters
first.

Bu�er Variables
We need to introduce a variable into our function to tell Vim to hold off and not try

to detect the file type until the CursorMovedI autocommand calls the function more
than 20 times. Our notion of what is a new file, as well as the number of characters we
want to enter into that file, is specific to a buffer. In other words, cursor movement in
other buffers of the editing session should not count against the check. Therefore, we

use a buffer variable and call it b:countCheck.

Next, we revise the function to check for at least 20 moves of the cursor in input
mode (implying approximately 20 characters entered), along with checking whether a
file type has already been assigned:

function CheckFileType()

 let b:countCheck += 1

 " Don’t start detecting until approximately 20 chars.

 if &filetype == "" && b:countCheck > 20

 filetype detect

 endif

endfunction

But now we get the error shown in Figure 12-4.

Dynamic File Type Con�guration Through Scripting | 303

Figure 12-4. b:countCheck generates an “unde�ned” error

That’s a familiar error. As before, we had the gall to increment a variable before it was
defined. And this time, it’s all our fault because our script is responsible for defining

b:countCheck. We’ll handle this subtlety in the next section.

The exists() Function
It’s important to know how to manage all of your variables and functions: Vim
requires you to define each one so that it already exists before any type of evaluation
references it.

We can easily resolve our script error by checking for b:countCheck’s existence and

assigning it a value with the :let command shown earlier:

function CheckFileType()

 if exists(“b:countCheck”) == 0

 let b:countCheck = 0

 endif

 let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.

 if &filetype == "" && b:countCheck > 20

 filetype detect

 endif

endfunction

Now test the code. Figure 12-5 shows the moment before the 20-character limit is
reached, and Figure 12-6 shows the effect of entering the 21st character.

Figure 12-5. No �le type detected yet (MS Windows gvim, color scheme: morning)

304 | Chapter 12: Vim Scripts

Figure 12-6. File type detected (MS Windows gvim, color scheme: morning)

The /bin/sh text suddenly has syntax color highlighting. A quick check with set

filetype verifies that Vim has made the correct assignment, as shown in Figure 12-7.

Figure 12-7. Correct detection

For all practical purposes, we have a complete and satisfactory solution, but for
good form we add another check to stop Vim from trying to detect a file type after
approximately 200 characters have been entered:

function CheckFileType()

 if exists("b:countCheck") == 0

 let b:countCheck = 0

 endif

 let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.

 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200

 filetype detect

 endif

endfunction

Now, even though CheckFileType() is called each time Vim’s cursor moves, we incur
little overhead because the initial checks exit the function once a file type is detected
or the threshold of 200 characters is exceeded. Although this is probably all we
need for reasonable functionality and minimal processing overhead, we’ll continue to
look at more mechanisms to give us a more complete and satisfactory solution that
not only incurs minimal overhead but actually <goes away= when we don’t need it
anymore.

Dynamic File Type Con�guration Through Scripting | 305

You may have noticed that we’ve been slightly vague about the
exact meaning of our threshold count of 20 characters. This ambi‐
guity is intentional. Because we are counting cursor movements, in
input mode it’s reasonable to assume each movement of the cursor
corresponds to a new character, adding to the <sufficient= context

text from which CheckFileType() will determine the file type.

However, all cursor movement in input mode counts, so any back‐
spacing to correct typing errors also counts against the threshold

counter. To confirm this, try our example, type #, and backspace
over it and retype it 10 times. The 11th time should reveal a

color-coded #, and the file type should now be (incorrectly) set to

conf.

Autocommands and Groups
Our script so far ignores any side effects introduced by calling our function for every
movement of the cursor. We minimized overhead through reasonableness checks that

avoid calling the heavy filetype detect command unnecessarily. But what if even
minimal code for our function is expensive? We need a way to stop calling code when
we don’t need it. For this we leverage Vim’s notion of autocommand groups and their
ability to remove commands based on their group association.

We modify our example by first associating our function called by the CursorMovedI

event with a group. Vim provides an augroup command to do this. Its syntax is:

augroup groupname

All subsequent autocmd definitions become associated with group groupname until
the following statement:

augroup END

There’s also a default group for commands not entered within an augroup block.

Now we associate our previous autocmd command with our own group:

augroup newFileDetection

 autocmd CursorMovedI * call CheckFileType()

augroup END

Our CursorMovedI-triggered function is part of the autocommand group newFile

Detection. We explore the usefulness of this in the next section.

Deleting Autocommands
To implement our function as cleanly as possible, we want it to remain effective only
as long as necessary. We want to undefine its reference once it has exceeded its useful
life (that is, as soon as we’ve either detected a file type or decided that we can’t do

306 | Chapter 12: Vim Scripts

so). Vim lets you delete an autocommand simply by referencing the event, the pattern
that filenames must match, or its group:

autocmd! [group] [event] [pattern]

The usual Vim <force= character—an exclamation point (!)—follows the autocmd
keyword to indicate that commands associated with the group, event, or pattern are
to be removed.

Because we previously associated our function with our user-defined group new

FileDetection, we now have control over it and can remove it by referencing the
group in the autocommand remove syntax. We do so with:

autocmd! newFileDetection

This deletes all autocommands associated with the group newFileDetection, which
in our case is only our function.

We verify both the definition and removal of our autocommand by querying Vim at
startup (when creating the new file) with the command:

:autocmd newFileDetection

Vim responds as shown in Figure 12-8.

Figure 12-8. Response to autocmd newFileDetection command (MS Windows gvim,
color scheme: morning)

After a file type has been detected and assigned or the threshold of 200 characters has
been exceeded, we no longer want the autocommand definition. So we add the final

touch to our code. Combining the definition of our augroup, our autocmd command,
and our function, the lines in our .vimrc look like:

augroup newFileDetection

 autocmd CursorMovedI * call CheckFileType()

augroup END

function CheckFileType()

 if exists("b:countCheck") == 0

 let b:countCheck = 0

 endif

 let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.

 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200

 filetype detect

 " If we’ve exceeded the count threshold (200), OR a filetype has been detected

Dynamic File Type Con�guration Through Scripting | 307

 " delete the autocmd!

 elseif b:countCheck >= 200 || &filetype != ""

 autocmd! newFileDetection

 endif

endfunction

After the syntax color highlighting begins, we can verify that our function deletes
itself by entering the same command as when we entered the buffer:

:autocmd newFileDetection

Vim’s response is shown in Figure 12-9.

Figure 12-9. A�er the deletion criteria have been met for our autocommand group (MS

Windows gvim, color scheme: morning)

Notice now that no autocommands are defined for the newFileDetection group. You
can delete the auto group as follows:

augroup! groupname

but doing so does not delete the associated autocommands, and Vim will create an
error condition each time those autocommands are referenced. Therefore, make sure
to delete the autocommands within a group before deleting the group.

Do not confuse deleting autocommands with deleting auto groups.

Congratulations! You have completed your second Vim script. This script extends
your Vim knowledge and gives you a peek at the different features accessible with
scripting.

Some Additional Thoughts About Vim Scripting
We’ve covered only a small corner of the entire Vim scripting universe, but we hope
you get the sense of Vim’s power. Virtually everything you can do interactively using
Vim can be coded in a script.

In this section we look at a nice example included in the built-in Vim documentation,
discuss in more detail concepts we touched on earlier, and look at a few new features.

308 | Chapter 12: Vim Scripts

A Useful Vim Script Example
Vim’s built-in documentation includes a handy script we think you’ll want to use. It

specifically addresses keeping a current timestamp in the <meta> line of an HTML
file, but it could easily be used for many other types of files for which it is useful to
have the most recent modification time of the file within the text of that file.

Here is the example essentially intact (we have modified it slightly):

autocmd BufWritePre,FileWritePre *.html mark s|call LastMod()|'s

fun LastMod()

 " if there are more than 20 lines, set our max to 20, otherwise, scan

 " entire file.

 if line("$") > 20

 let lastModifiedline = 20

 else

 let lastModifiedline = line("$")

 endif

 exe "1," . lastModifiedline . "g/Last modified: .*/s//Last modified: " .

 \ strftime("%Y %b %d")

endfun

Here’s a brief breakdown of the autocmd command:

BufWritePre, FileWritePre
These are the events for which the command is triggered. In this case, Vim
executes the autocommand before the file or buffer gets written to the storage
device.

*.html

Execute this autocommand for any file whose name ends in .html.

mark s

We changed this for readability from the original. Instead of ks, we used the

equivalent but more obvious command mark s. This simply creates a marked

position named s in the file so we can return to this point later.

|

Pipe characters separate multiple Vim commands that are executed within an
autocommand definition. These are simple separators with no relationship to
Unix shell pipes.

call LastMod()

This calls our user-defined LastMod() function.

|

Same as previous.

's

Return to the line we marked with the name s.

Some Additional Thoughts About Vim Scripting | 309

It’s worth verifying this script by editing a .html file, adding the line:

Last modified:□

and issuing the w command.

This example is useful, but it’s not canonically correct in relation

to its stated goal of substituting the HTML <meta> statement. More

appropriately, if it were indeed meant to address a <meta> state‐

ment, the substitution should look for the content=… part of the

<meta> statement. Still, this example is a good start toward solving
that problem and is a useful example for other file types.

More About Variables
We now discuss in more detail what makes up Vim variables and how they’re used.
Vim has five variable types:

Number
A signed 32-bit number. This number can be represented in decimal, hexadec‐

imal (e.g., 0xffff), or octal (e.g., 0177). If supported by the compiler, Vim

supports 64-bit numbers. The ex command :version shows whether 64-bit is
supported or compiled into the editor. See Figure 12-10.

Figure 12-10. Results from :version showing 64-bit number support (WSL Ubuntu
Linux, color scheme: zellner)

String
A string of characters.

Funcref
A reference to a function.

List
This is Vim’s version of an array. It is an ordered list of values and can contain
any mix of Vim values as elements.

Dictionary
This is Vim’s version of a hash, often also referred to as an associative array. It is
an unordered collection of value pairs, the first being a key that can be used to
retrieve an associated value.

310 | Chapter 12: Vim Scripts

Expressions
Vim evaluates expressions in a fairly straightforward way. An expression can be as
simple as a number or literal string, or it can be as complex as a compound statement,
itself composed of expressions.

It is important to note that Vim’s math functions work with integers only. If you
want floating-point and precision, you need to use extensions, such as system calls to
external math-capable routines.

Extensions
Vim offers a number of extensions and interfaces to other scripting languages.
Notably, these include Perl, Python, and Ruby, three of the most popular scripting
languages. See Vim’s built-in documentation for details on usage.

A Few More Comments About autocmd
In the section <Dynamic File Type Configuration Through Scripting= on page 300,

we used Vim’s autocmd command to key on events from which our user-defined
functions are called. This is very powerful, but do not discount simpler uses of

autocmd. For example, you can use autocmd to tune specific Vim options for different
file types.

A good example might be to change the shiftwidth option for different file types.
File types with copious indentation and nesting levels may benefit from more modest

indentation. You may want to define your shiftwidth as 2 for HTML to prevent

code from <walking= off the right side of the screen, but use a shiftwidth of 4 for C
programs. To accomplish this distinction, include these lines in your .vimrc or .gvimrc
file:

autocmd BufRead,BufNewFile *.html set shiftwidth=2

autocmd BufRead,BufNewFile *.c,*.h set shiftwidth=4

Internal Functions
In addition to all the Vim commands, you have access to about 200 built-in func‐
tions. It is beyond our scope to identify and document all of these functions, but
knowing what categories or types of functions are available is useful. The following
categories are taken from the Vim built-in help file, usr_41.txt:

String manipulation
All of the standard string functions that programmers expect are included in
these functions, from conversion routines to substring routines and more.

Some Additional Thoughts About Vim Scripting | 311

List functions
This is an entire array of array functions. They mirror closely the array functions
found in Perl.

Dictionary (associative array) functions
These functions include extraction, manipulation, verification, and other types of
functions. Again, these closely resemble Perl’s hash functions.

Variable functions
These functions are <getters= and <setters= to move variables around in Vim

windows and buffers. There is also a type() function to determine variable types.

Cursor and position functions
These functions allow moving around in files and buffers, and creating marks so
that positions can be remembered and returned to. There are also functions that
give positional information (e.g., cursor line and column).

Text in current bu�er functions
These functions manipulate text within buffers—for example, changing a line,
retrieving a line, and so on. There are also search functions.

System and �le manipulation functions
These include functions to navigate the operating system on which Vim is
running, such as finding files within paths, determining the current working

directory, and creating and deleting files. This group includes the system()
function, which passes commands to the operating system for external execution.

Date and time functions
These do a wide variety of manipulations of date and time formats.

Bu�er, window, and argument list functions
These functions provide mechanisms to gather information about buffers, and
the arguments for each one. For example, when Vim starts, the list of files

comprises its argument list, and the function argc() returns the count of that
list. Argument list functions are specific to arguments passed from the Vim
command line. The buffer functions provide information specific to buffers and
windows. There are 25 functions. For more detailed information, search for
Bu�ers, windows, and the argument list in the Vim’s usr_41.txt help file. Or you

can quickly get to the types of Vim functions with the ex command:

:help function-list

Command-line functions
These functions get command-line position, the command line, and the
command-line type and set the cursor position within the command line.

312 | Chapter 12: Vim Scripts

QuickFix and location lists functions
These functions retrieve and modify the QuickFix lists.

Insert mode completion functions
These functions are used for command and insertion completion features.

Folding functions
These functions give information for folds and expand text displayed for closed
folds.

Syntax and highlighting functions
These functions retrieve information about syntax highlighting groups and syn‐
tax IDs.

Spelling functions
These functions find suspected misspelled words and offer suggested correct
spellings.

History functions
These functions get, add, and delete history items.

Interactive functions
These functions provide an interface to the user for activities such as file
selection.

GUI functions
There are three simple functions here to get the name of the current font, get the
GUI window x coordinate, and get the GUI window y coordinate.

Vim server functions
These functions communicate with a (possibly) remote Vim server.

Window size and position functions
These functions get window information and allow for saving and restoring
window <views.=

Various functions
These are the miscellaneous <other= functions that don’t fit nicely in the previous

categories. They include functions such as exists(), which checks for the exis‐

tence of a Vim item, and has(), which checks to see whether Vim supports a
certain feature.

Resources
We hope we’ve piqued enough interest and provided enough information to get you
started with Vim scripts. An entire book could be devoted to the subject of Vim
scripting. Luckily, there are other resources to turn to for help.

Resources | 313

A good starting point is to go to the source of Vim itself and visit the pages specifi‐
cally dedicated to scripting. Here you will find over two thousand scripts available for
download. The entire body of work is searchable, and you are invited to participate
by rating scripts and even contributing your own.

We also remind you that the built-in Vim help is invaluable. The most productive
help topics we recommend are:

help autocmd

help scripts

help variables

help functions

help usr_41.txt

And don’t forget the myriad Vim scripts in the Vim runtime directories. All of

the files with the suffix .vim are scripts, and these provide an excellent and fertile
playground for learning to code by example.

Go play. It’s the best way to learn.

314 | Chapter 12: Vim Scripts

https://www.vim.org/scripts/index.php

CHAPTER 13

Other Cool Stu� in Vim

Chapters 8 through 12 covered powerful Vim features and techniques we think you
should know to make effective use of the editor. From real-time spellchecking (with
suggested corrections) to editing binary files and managing the state of your Vim
session, this chapter takes a lighter look at Vim. It’s a catchall for some of the features
that didn’t fit into previous topics, ideas about editing and the Vim philosophy, and
some fun things about Vim (not that the earlier chapters weren’t fun!).

Spell It! (i-t)
Vim’s spellchecking excels in speed and flexibility. Per Vim’s ownspellchecker built-

in help, Vim recommends replacing the vimspell plug-in with Vim’s built-in spell‐

checking features. See the help file spell.txt, or find help with the ex command:

:help spell

Vim defaults to no spellchecking. Turn spellchecking on with the ex command:

:setlocal spell

and the spellchecking region:

:setlocal spelllang=en_us

Vim flags <bad= words (because one person’s misspelled word is another one’s <good=
word, hence a distinction between <bad= and <good= rather than <correct= and <incor‐
rect=), uncapitalized words starting sentences, <rare= words (don’t ask), and <local=
(regional) words. See Figure 13-1 for an example of how Vim highlights <bad= and
<cap= flagged words, and see Figure 13-2 for an example of highlighted words.

315

1 There is a third method, best, which Vim suggests is best for English text, but the fastest still is fast.

Figure 13-1. Vim spellchecking syntax highlighting (MacVim, color scheme: zellner)

Figure 13-2. Highlighted <bad= words

Once spellchecking is turned on, you advance to the next or previous bad word

with the vi command mode commands]s and [s, respectively. When the cursor

is positioned anywhere in a bad word, the vi command z= suggests words in a
numbered list to replace the bad word. Type the corresponding number and hit
ENTER to replace the bad word. Or if you are in a GUI Vim session or have the
mouse enabled, select the replacement word by clicking on your choice. To cancel the
operation, type ESC or ENTER with no selection.

Vim manages spelling lists by loading encoded word files into memory and applying
two main algorithms to detect misspellings. One is fast; the other is slow. Vim lets
you turn either one on or off. The fast spellchecking assumes that misspelled words
will closely match the correctly spelled word and that the error is likely a transposi‐
tion of characters or a missing character. These misspelled words are considered to be
a <short distance= from correctness, and hence the algorithm is efficient and fast.

The slow algorithm assumes that the word could be a <large= distance from correct‐
ness. For example, you may have spelled the word phonetically, without knowing
what is really correct.

Per Vim’s documentation, if you are a good speller, your errors are likely to be of
the fast-algorithm kind, and Vim recommends for efficiency that you use only that

option. You select your preferred spellchecking method by choosing one of fast or

double as the value of the Vim option spellsuggest.1

316 | Chapter 13: Other Cool Stu� in Vim

We have listed the more common vi command-mode commands in Table 13-1.

Table 13-1. Common Vim command-mode spellchecking commands

Command Action

]s Advance the cursor to the next occurrence of a misspelled word.

[s Advance the cursor to the previous occurrence of a misspelled word.

zg Add the word under the cursor to the list of good words.

zG Add the word under the cursor to the list of good words in the internal-wordlist (see the Vim help).

Words added to the internal-wordlist are considered transient and are discarded upon exiting Vim.

zw Add the word under the cursor to the list of bad words. If this word is in the good words list, it will be
removed from there.

zW Add the word under the cursor to the list of bad words in the internal-wordlist. As with zG, this
addition is discarded upon exiting Vim.

[number] z= Display the list of suggestions for replacement of a bad word. Vim displays the suggestions as a numbered

list, and you select the replacement by entering the corresponding number. If you precede z= with a
number, Vim automatically replaces the bad word with the suggested word matching number.

Some notes:

• The Vim option wrapscan applies to]s and [s. That is, if there are no more•
misspelled words between the current location and the end of the buffer (or
the beginning, depending on the direction of the command), the cursor is not
advanced.

• Vim distinguishes words as <good= or <bad,= rather than <correctly spelled= or•
<incorrectly spelled,= because there may be terms that are correct in context but
are not necessarily actual words.

• For zg and zG, the words you add to both the good word list and the bad word•

list are added to the file defined in the Vim option spellfile. This keeps these
added words separate from the more global Vim spelling files.

• For z=, if you are using GUI Vim or have enabled mouse actions, you can select•
the replacement by clicking on the suggested word.

Vim documentation hints that the most common numeric prefix might be 1,
assuming that the first suggestion is likely the one that would replace the bad
word.

Table 13-2 lists the ex commands and how they are used.

Spell It! (i-t) | 317

Table 13-2. Common Vim ex commands for spellchecking

Command Action

:[n]spellgood word Add word to the good word list. If the command is preceded by a count, add word to the nth �le

in the list of �les de�ned by spellfile. If there isn’t a corresponding nth �le (e.g., a count

of three, but only two �les are de�ned by the Vim spellfile option), Vim �ags an error, and
no word is added.

:spellgood! word Add word to the good word list in internal-list. Vim discards the internal-list
after each session.

:spellwrong word Add word to the bad word list.

:spellwrong! word Add word to the bad word list in internal-list. Vim discards the internal-list after
each session.

Vim documentation gives detailed instructions beyond simply checking for misspel‐
led words. For example, you can define your own word files, and Vim’s help file
spell.txt in section 3, <Generating a spell file,= shows how to create word files from
starter sets like the words from OpenOffice, for example. You can use freely available
files, create your own, or go with some combination of the two. Visit Vim’s documen‐

tation (:help spell) for more detailed descriptions of setting up custom spelling
configurations and of more available commands and options.

For a Di�erent Take on Words, Try Thesaurus
Not to be confused with spellchecking, Vim also provides word completion by the‐
saurus. For more detailed discussion on Vim’s thesaurus options, see <Completion
by thesaurus= on page 263. It’s interesting, alluring, amusing, attractive, beautiful,
compelling, curious, delightful, engaging, exotic, fascinating, impressive, intriguing,
lovely, pleasing, provocative, readable, refreshing, stimulating, and striking. ☺

Editing Binary Files
Officially, Vim, like vi, is a text editor. But in a pinch, Vim also lets you edit files
containing data that is normally unreadable by humans.

Why would you ever want to edit a binary file? Aren’t binary files binary for a reason?
Aren’t binary files typically generated by some application in a well-defined and
specific format?

It’s true that binary files are typically created by a computerized or analog process
and are not intended to be edited manually. For example, digital cameras often store
pictures in JPEG format, a compressed binary format for digital pictures. These are
binary, but they have well-defined sections or blocks in which standard information
is stored (that is, they do if they’re implemented according to specification). Digital
pictures in JPEG format store picture meta-information (time of picture, resolution,
camera settings, date, etc.) in reserved blocks separate from the compressed digital

318 | Chapter 13: Other Cool Stu� in Vim

picture data. A practical application might use Vim’s binary file editing feature to edit

a directory of JPEG pictures to change all of the year fields in the <created= block to
correct the picture’s <date of creation= field.

While we enjoy Vim’s binary editing feature, we do not present an
in-depth discussion of potential serious issues to consider while
editing binary files. For example, some binary files contain digi‐
tal signatures or checksums to ensure file integrity. Editing the
files risks damaging their integrity and rendering them unusable.
Therefore, do not consider this an endorsement of casual binary
editing.

Figure 13-3 shows an editing session on a JPEG file. Notice how the cursor is
positioned over the date field. You can directly edit information about this picture by
changing the fields shown here.

Figure 13-3. Editing a binary JPEG �le

For power users familiar with a particular binary format, Vim can be extremely
handy for making changes directly that might otherwise require tedious, repetitive
access with other tools.

Binary Editing to the Rescue
One of us had a real-life experience in which Vim’s binary editing feature saved the
day. He was tasked with porting a legacy application from a deprecated computer
to a new computer. The application was partially composed of many Python classes
(compiled .pyc files). In a classic IT dilemma, he discovered that no original Python
code existed, and hence there was no option to port the classes by compiling them on
the new computer.

The classes actually were executable on the new computer but had old, obsolete
computer names and addresses embedded within them. On a hunch, your author
edited the classes in binary mode and discovered that all the old host names had the
same string length as the new computer names. After a simple mass substitution and
save, the Python classes worked perfectly on the new system. Yes, it was a stroke of
luck that the computer names, old and new, were the same length. Still, without Vim,
it would have been a much more difficult task.

Editing Binary Files | 319

There are two main ways to edit binary files. You can set the binary option from the
Vim command line:

:set binary

or start Vim with the -b option.

To facilitate binary editing and protect Vim from damaging the files’ integrity, Vim
sets the following options accordingly:

• The textwidth and wrapmargin options are set to zero. This stops Vim from•
inserting spurious newline sequences into the file.

• The modeline and expandtab options are unset (nomodeline and noexpandtab).•

This stops Vim from expanding tabs to shiftwidth spaces and prevents it from
interpreting commands in a modeline, which potentially would set options that
introduce unexpected and unwanted side effects.

Be careful when moving from window to window, or from buffer
to buffer, while using binary mode. Vim uses entry and exit events
to set and change options for switching buffers and windows, and
you may confuse it into removing some of the protections just
listed. We recommend a single-window, single-buffer session when
editing binary files.

Digraphs: Non-ASCII Characters
Do you say that Messiah is composed by George Frideric Händel, not George Frideric
Handel? Do you think your résumé conveys a little more cachet than a resume? Use
Vim’s digraphs to enter special characters.

Even English-language text files occasionally need a special character, especially when
making references to a globalized world. Text files in languages other than English
need scads of special characters.

The term digraph traditionally describes a two-letter combination that represents a
single phonetic sound, such as the ph in <digraph= or <phonetic.= Vim borrows the
notion of two-letter combinations to describe its input mechanism for characters
with special characteristics, typically accents or other markings such as the umlaut
on ä. These special marks are properly called diacritics, or diacritical marks. In other
words, Vim uses digraphs to create diacritics. (Glad we could clear that up.)

Vim lets you enter special characters (diacritics) in a number of ways, and two of
them are relatively straightforward and intuitive. One defines a digraph using a prefix
character (CTRL-K). The second uses the BACKSPACE key between two keyboard
characters. (The other methods are more suited to entering characters by their raw

320 | Chapter 13: Other Cool Stu� in Vim

numerical values, specified as decimal, hexadecimal, or octal numbers. While power‐
ful, these methods do not lend themselves to easy mnemonics for digraphs.)

The first input method for diacritics is a three-character sequence consisting of
CTRL-K , the base letter, and a punctuation character indicating the accent or mark
to be added. For example, to create a c with a cedilla (ç), enter CTRL-K C , . To
create an a with a grave accent (à), enter CTRL-K a ! .

Greek letters are created by entering a corresponding Latin letter followed by an
asterisk (for instance, enter CTRL-K P * for a lowercase π). Russian letters are
created by entering a corresponding Latin letter followed by an equals sign (=) or,
in a few places, a percent sign (%). Use CTRL-K ? SHIFT-I to enter an inverted
question mark (¿) and CTRL-K S S to enter a German sharp S (ß).

To use Vim’s second method, set the digraph option:

:set digraph

Now you create special characters by typing the first character of the two-character
combination, then a backspace character (BACKSPACE), and then the punctuation
that creates a mark. Thus, enter ç using C BACKSPACE , and à through A
BACKSPACE ! .

Setting the digraph option doesn’t preclude you from entering digraphs with the
CTRL-K method. Consider using only the CTRL-K method if your typing is less
than stellar. Otherwise, you may find yourself inadvertently entering digraphs more
often than you want as you backspace and type corrections.

Use the :digraph command to show all the default sequences; more verbose descrip‐

tions can be obtained with :help digraph-table. Figure 13-4 shows a partial list

from the :digraph command.

In the display, each digraph is represented by three columns. The display is a bit
jumbled because Vim jams as many three-column combinations on each line as the
screen permits. For each of the groups, column one shows the digraph’s two-character
combination, column two displays the digraph, and column three lists the decimal
Unicode value for the digraph.

Digraphs: Non-ASCII Characters | 321

Figure 13-4. Vim digraphs (MacVim, color scheme: zellner)

For your convenience, Table 13-3 lists the punctuation to use as the final character in
the sequence to enter the most commonly needed accents and marks.

Table 13-3. How to enter accents and other marks

Mark Example Character to enter as part of the digraph

Acute accent �ancé Apostrophe (')

Breve publică Left parenthesis (

Caron Dubček Less-than sign (<)

Cedilla français Comma (,)

Circum�ex or caret português Greater-than sign (>)

Grave accent voilà Exclamation point (!)

Macron ātmā Hyphen (-)

Stroke Søren Slash (/)

Tilde señor Question mark (?)

Umlaut or diaeresis Noël Colon (:)

Editing Files in Other Places
Thanks to seamless integration of network protocols, Vim lets you edit files on
remote machines just as if they were local! If you simply specify a URL for a filename,
Vim opens it in a window and writes your changes to it on the remote system.
(This depends on your access rights.) For instance, the following command edits a

shell script owned by user elhannah on the system flavoritlz. The remote machine
offers the SSH secure protocol on port 122 (this is a nonstandard port, providing
additional security through obscurity):

$ vim scp://elhannah@flavoritlz:122//home/elhannah/bin/scripts/manageVideos.sh

322 | Chapter 13: Other Cool Stu� in Vim

Because we’re editing a file in elhannah’s home directory on the remote machine, we
can shorten the URL by using a simple filename. It’s treated as a pathname relative to
the user’s home directory on the remote system:

$ vim scp://elhannah@flavoritlz:122/bin/scripts/manageVideos.sh

Let’s dissect the full URL so you can learn how to build URLs for your particular
environment:

scp:
The first part, up to the colon, represents the transport protocol. In this example,

the protocol is scp, a file copy protocol built on the Secure Shell (SSH) protocol.

The following : is required.

//
This introduces host information, which for most transport protocols takes the

form [user@]hostname[:port].

elhannah@

This is optional. For secure protocols such as scp, it specifies which user to log
in as on the remote machine. When omitted, it defaults to your username on the
local machine. When you are prompted for a password, you must enter the user’s
password on the remote machine.

�avoritlz
This is the remote machine’s symbolic name, and it can also be specified as a

numeric IP address, e.g., 192.168.1.106.

:122
This is optional and specifies the port on which the protocol is provided. The
colon separates the port number from the preceding hostname. All standard
protocols use well-known ports, so this element of the URL can be omitted if the

standard port is used. In this example, 122 is not the standard port for the scp

protocol, and because the administrator of the flavoritlz system has chosen to
provide the service on port 122, this specification is required.

//home/elhannah/bin/scripts/manageVideos.sh
This is the file on the remote machine we want to edit. We start with two slashes
because we’re specifying an absolute path. A relative path or simple filename
requires only a single slash to separate it from the preceding hostname. A relative
path is relative to the home directory of the user that you logged in as. (In this
example, it would be relative to /home/elhannah.)

Editing Files in Other Places | 323

2 We have verified and successfully set up scp: remote access to edit remote files without needing to enter

passwords. Setting up scp: (as well as the other protocols) remains outside our scope, but we consider it

worthwhile for convenient and transparent remote editing.

Here is a partial list of the supported protocols:

ftp: and sftp:
Regular FTP and secure FTP.

scp:

Secure remote copy over SSH.

http:

File transfer using standard browser protocol.

dav:

A relatively new but popular proposed open standard for web transfer.

rcp:

Remote copy. Note that this protocol is insecure; you should never use it.

What we’ve described so far is enough to allow remote editing, but the process may
not be as transparent as editing a file locally. That is, because of the intervening
requirement to move data from remote hosts, you may be prompted for passwords to
do your work. This can become tedious if you are used to periodically writing your
file to disk while editing, as each of the <writes= is interrupted to prompt you to enter
a password to complete the transaction.

All of the transport protocols in the preceding list allow you to configure the service
to allow password-free access, but the details vary. Use the service’s documentation
for specific protocol details and configurations.2

Navigating and Changing Directories
If you’ve used Vim a lot, you may have accidentally discovered that you can view a
directory and move through it using keystrokes similar to those used with files.

Let’s consider a directory containing two repository directories, /home/elhan‐
nah/.git/vim (these are two different git directories). Edit /home/elhannah/.git/vim
with:

$ vim /home/elhannah/.git/vim

Figure 13-5 is a partial screenshot of something similar to what you might see.

324 | Chapter 13: Other Cool Stu� in Vim

Figure 13-5. Vim <editing= the <vim= directory (WSL Ubuntu Linux, color scheme:
zellner)

Vim displays three types of information: introductory comments (surrounded by
equals signs), directories (displayed with trailing slashes), and files. Each directory or
file is on its own line.

There are many ways to use this feature, but with little effort you can be immediately

and intuitively productive with the standard Vim motion commands (e.g., w to move

to the next word, j or the down arrow to move down one line) and by clicking the
mouse over entries. Here are some particular features of directory mode:

• When the cursor is positioned over a directory name, move to that directory by•
pressing the ENTER key.

• If the cursor is over a filename, pressing ENTER edits that file.•

If you want to keep the directory window around for further work

in that directory, edit the file under the cursor by typing o, and Vim
will split the window, editing the file in the newly created window.
This is also true for moving to another directory when the cursor
is over a directory name; Vim splits the window and <edits= the
directory to which you moved in the new window.

• You can delete and rename files and directories. You do so typing SHIFT-R .•
Probably a little counterintuitively, Vim creates a command-line prompt with
which you perform the rename. It should look something like Figure 13-6.

To complete the rename, edit the second command-line argument.

Deleting a file works similarly. Simply position the cursor over the filename you
want to delete and type SHIFT-D . Vim prompts you with a verification dialog to
delete the file. As with the rename function, Vim prompts for verification in the
command-line area of the screen.

Navigating and Changing Directories | 325

Figure 13-6. Prompt for rename in <edit= directory (WSL Ubuntu Linux, color scheme:
zellner)

• One advantage of editing directories is quick access to files with Vim’s search•
function. For example, suppose you want to edit the file ch12.asciidoc in
the /home/elhannah/.git/vim/oreilly/learning-the-vi-and-vim-editors-8e directory
described earlier. To quickly navigate to and edit this file, you can search for part

or all of the filename. In this case we search simply for the number 12:

/12

and with the cursor over that filename, press ENTER or O .

When you read the online help for directory editing, you will see
that Vim describes it as part of the entire suite of editing files with
network protocols, which was described in the previous section.
We have made directory editing its own topic because it is useful,
and because it could get lost in the large volume of detail about
network protocol editing.

Backups with Vim
Vim helps protect you from unintentionally losing data by letting you make a backup
of the files you edit. For an editing session that has gone terribly wrong, this can be
useful because you can recover your previous file.

Backups are controlled by the settings of two options: backup and writebackup.

Where and how backups are created is controlled by four other options: backupskip,

backupcopy, backupdir, and backupext.

If both the backup and writebackup options are off (i.e., nobackup and nowrite

backup), Vim makes no backup files. If backup is on, Vim deletes any old backups

and creates a backup for the current file. If backup is off and writebackup is on, Vim
creates a backup file for the duration of the editing session and deletes the backup
afterward.

The backupdir is a comma-separated list of directories in which Vim creates backup
files. For example, if you want backups to always be created in your system’s tempo‐

rary directory, set backupdir to C:\TEMP for Windows or to /tmp for Unix and GNU/
Linux.

326 | Chapter 13: Other Cool Stu� in Vim

If you’d like to always create a backup of your file in the current

directory, you can specify <.= (a dot) as your backup directory.
Or you could try to create a backup in a hidden subdirectory
first if it exists, and then in the current directory if the hidden

subdirectory doesn’t exist. Do this by defining backupdir’s value

to be something like ./.mybackups,. (the single dot at the end
denotes the file’s current directory). This is a flexible option that
supports many strategies for defining backup locations.

If you want to make backups while editing but not for all files, use the backupskip
option to define a comma-separated list of patterns. Vim will not make a backup of
any file matching any of the patterns. For example, you may never want to back up
any files edited in the /tmp or /var/tmp directories. Prevent Vim from doing so by

setting backupskip to /tmp/*,/var/tmp/*.

By default, Vim creates your backup with the same filename as the original and

the suffix ~ (a tilde). This is a fairly safe suffix, because filenames ending in that

character are rare. Change the suffix to your preference with the backupext option.

For example, if you want your backups to have the suffix .bu, set backupext to the

string .bu.

Finally, the backupcopy option defines how a backup copy is created. We recommend

setting this option to auto to let Vim make a calculated choice of the best method for
the backup.

HTML Your Text
Have you ever needed to present your code or text to a group? Have you ever tried
to do a code review but were using someone else’s Vim configuration and couldn’t
figure it out? Consider converting your text or code to HTML and viewing it from a
browser.

Vim provides three methods to create an HTML version of your text. They all create
a new buffer with the same name as the original file and the added suffix .html. Vim
splits the current session window and displays the HTML version of the file in the
new window:

gvim <Convert to HTML=

This is the friendliest method and is built into the gvim graphical editor

(described in Chapter 9). Open the Syntax menu in gvim and select <Convert
to HTML.=

2html.vim script
This is the underlying script invoked by the <Convert to HTML= menu option
described in the previous item. Invoke it through the command:

HTML Your Text | 327

:runtime!syntax/2html.vim

It doesn’t accept a range; it converts the whole buffer.

tohtml command

This is more flexible than the 2html.vim script, because you can specify an exact
range of lines you want to convert. For instance, to convert lines 25 through 44 of
a buffer, enter:

:25,44tohtml

While the Vim distribution still includes tohtml.vim in the
plug-in (and autoload) directories, we were not able to suc‐
cessfully use this feature. Your mileage may vary. The other
conversions do work.

One advantage of using gvim for HTML conversion is that the GUI lets it accurately
detect colors and create correct corresponding HTML directives. These methods still
work in a non-GUI context, but the results are less assured to be accurate and may
not be very useful.

It’s up to you to manage the newly created file. Vim does not save
it for you; it merely creates a buffer. We recommend providing
a management policy to save and synchronize HTML versions of
your text files. For example, you could create some autocommands
to trigger the creation and saving of your HTML files.

The saved HTML file can be viewed in any web browser. Some people may not be
familiar with ways to open files on the local system in their browsers. It’s quite easy,
though: virtually all browsers offer an Open File menu option in the File menu and
display a file selection dialog to let you navigate to the folder containing the HTML
file. If you plan on using this feature on a regular basis, we recommend building up a
collection of bookmarks for all of your files.

What’s the Di�erence?
Changes between different versions of a file are often subtle, and a tool that lets
you view precise differences at a glance could save hours of work. Vim integrates

the well-known Unix diff command into a very sophisticated visualization interface

invoked through its vimdiff command.

328 | Chapter 13: Other Cool Stu� in Vim

There are two equivalent ways to invoke this feature—as a standalone command and
as an option to Vim:

$ vimdiff old_file new_file

$ vim -d old_file new_file

Typically, the first file to be compared is an old version of a file, and the second is a
newer version, but that is by convention only. Indeed, it’s possible to make a case for
reversing the order.

Figure 13-7 shows an example of vimdiff output. Because of limited real estate, we’ve

squeezed the width and turned off Vim’s wrap option to allow illustration of the
differences.

Figure 13-7. vimdiff results (WSL Ubuntu gvimdiff, color scheme: zellner)

Although the figure does not convey the full impact of the visual content in the
printed book, it shows some key characteristic behaviors:

What’s the Di�erence? | 329

• On line 4, you can see the word new on the left line that isn’t in the right line.•
This is a highlighted (in red) word indicating the difference between the two
lines. Similarly, on line 32, the righthand line highlights in red the word re�ect
that is not in the left line.

• On line 11 of both sides, Vim has created a 15-line fold. These 15 lines in both•
files are identical, so Vim folds them to maximize useful <diff = information on
the screen.

• Lines 41–42 on the left are highlighted, whereas in the corresponding positions•

on the right, strings of hyphens (-) indicate that the lines are missing. The line
numbering differs from this point on, because the right side has two lines fewer,
but corresponding lines in the two files still line up horizontally.

• Line 49 on the left side, corresponding to line 47 on the right, shows another fold,•
this one 2010 lines, which shows that for the remaining 2010 lines of both files
the content is identical.

The vimdiff feature comes with all Unix-like Vim installations because the diff
command is a Unix standard. Non-Unix Vim installations should come with Vim’s

own version of diff. Vim allows drop-in replacements of diff commands as long as

they create standard diff output.

The diffexpr variable defines the replacement expression for the default vimdiff
behavior and is typically implemented as a script that operates on the following
variables:

v:fname_in

The first input file to be compared.

v:fname_new

The second file to be compared.

v:fname_out

A file that captures the diff output.

viminfo: Now, Where Was I?
Most text editors start editing files at line 1, column 1. That is, each time the editor
starts, the file is loaded and editing begins from line 1. If you edit a file many times,
progressing through it, you would find it more convenient to begin your new session
where the last one ended. Vim lets you do just that.

There are two different methods to save session information for future use: the

viminfo option and the :mksession command. We look at both in this section.

330 | Chapter 13: Other Cool Stu� in Vim

The viminfo Option
Vim uses the viminfo option to define what, how, and where to save editing session
information. The option is a string with comma-delimited parameters that tell Vim

how much information to save and where to save it. Some of viminfo’s suboptions
are defined by the following:

<n

Tells Vim to save lines for each register, up to a maximum of n lines.

If you do not specify any value for this option, all lines are saved.
While at first this may seem a normal and reasonable default,
consider whether you commonly edit very large files and make
large changes to those files. For example, if you commonly edit a
10,000-line file and delete all lines (possibly to pare it down from
rapid growth caused by some external application) and then save it,
all 10,000 lines get saved in the .viminfo file for that entry. If you do
this often for many files, the .viminfo file will grow very large. You
may then notice long delays when starting Vim, even for files not
related to the large file, because Vim must process the .viminfo file
each time it starts up.

We recommend specifying some sane but useful limit. We use 50.

/n

The number of search-pattern history items to be saved. If not specified, Vim

uses the value in the history option.

:n

The maximum number of commands from the command-line history to save. If

not specified, Vim uses the value in the history option.

'n

The maximum number of files for which Vim maintains information. If you

define the viminfo option, this parameter is required.

Here is what Vim saves in the viminfo file:

• Command-line history•

• Search string history•

• Input-line history•

• Registers•

• File marks (e.g., a mark created by mx is saved, and you can move the cursor to•

mark x when reediting the file)

viminfo: Now, Where Was I? | 331

• The last search and substitute patterns•

• The buffer list•

• Global variables•

This option is really handy for sustaining continuity across sessions. For example,
if you edit a large file in which you are changing a pattern, the search pattern
is remembered as well as where the cursor is positioned in the file. To continue

searching in a new session, you need only type n to move to the next occurrence of
the search pattern.

The mksession Command
Vim saves all information specific to a session with its :mksession command. The

sessionoptions option contains a comma-separated string specifying which compo‐
nents of a session to save. This way of saving session information is much more com‐

prehensive but much more specific than viminfo. Saving session information this
way is specific to all of the files, buffers, windows, and so on, in the current session,

and mksession saves the information so that the entire session can be reconstructed.
All of the files being edited and all of the settings for all options, even window sizes,
are saved so that reloading the information brings back an exact re-creation of the

session. Contrast this with viminfo, which only restores editing information on a
per-file basis.

To save a session this way, enter:

:mksession [filename]

where �lename specifies a file in which to save the session information. Vim creates

a script file that, when executed later with the source command, reconstructs the
session. The default filename, if none was specified, is Session.vim. So if you save a
session with the command:

:mksession mysession.vim

you could later reestablish the session with the command:

:source mysession.vim

Here is what you can save from a session, and the parameter in the sessionoptions
option to save it:

blank

Empty windows.

buffers

Hidden and unloaded buffers.

332 | Chapter 13: Other Cool Stu� in Vim

curdir

The current directory.

folds

Manually created folds, opened/closed folds, and local fold options.

It wouldn’t make any sense to save anything but manually
created folds. Automatically created folds will be automatically
re-created!

globals

Global variables, which start with an uppercase letter and contain at least one
lowercase letter.

help

The help window.

localoptions

Options defined locally to a window.

options

Options set by :set.

resize

Size of the Vim window.

sesdir

The directory in which the session file is located.

slash

Backslashes in filenames replaced with forward slashes.

tabpages

All tab pages.

If you do not specify this in the sessionoptions string, only
the current tab session is saved as a standalone entity. This
gives you the flexibility of defining sessions either at the tab
level or globally across all tabs.

unix

Unix end-of-line format.

viminfo: Now, Where Was I? | 333

winpos

The position of Vim’s window on the screen.

winsize

The size of buffer windows on the screen.

So, for example, if you want to save a session to retain all information for all buffers,
all folds, global variables, all options, window size, and window position, you would

define the sessionoptions option with:

:set sessionoptions=buffers,folds,globals,options,resize,winpos

What’s My Line (Size)?
Vim allows lines of virtually unlimited lengths. You can have them either wrap onto
multiple screen lines, so that you can see them all without horizontal scrolling, or you
can display the beginning of each line on one screen line and scroll to the right to see
hidden parts.

If you prefer one line of text per screen line, turn off the wrap option:

:set nowrap

With nowrap, Vim displays as many characters as the screen width permits. Think
of the screen as a view port or window through which the wide line is viewed.
For example, a 100-character line contains 20 characters too many for a screen that
is 80 columns wide. Depending on what character is displayed in the screen’s first
column, Vim determines which characters in the 100-character line are not displayed.
For example, if the screen’s first column is the line’s fifth character, characters 1–4
are to the left of the visible screen and therefore are invisible—that is, they are not
displayed. Characters 5–84 are visible in the screen, and the remaining characters,
from 85 to 100, are to the right of the screen and are also invisible.

Vim manages how the line is displayed as you move left and right through the long

line. Vim shifts the line left and right a minimum of sidescroll characters. You can
set its value as follows:

:set sidescroll=n

where n is the number of columns to scroll. We recommend setting sidescroll to
1, because modern PCs easily provide the processing power necessary to smoothly
shift the screen one column at a time. If your screen slows down and response times
lag, you may need to increase the value to something higher to minimize the screen
redraws.

The sidescroll value defines a minimum shift. As you probably expect, Vim shifts

far enough to complete any motion commands. For example, typing w moves the
cursor to the next word in the line. However, Vim’s treatment of the movement is a

334 | Chapter 13: Other Cool Stu� in Vim

bit tricky. If the next word is partially visible (on the right), Vim moves to the first

character of that word but does not shift the line. The next w command shifts the line
to the left far enough to position the cursor over the first character of the next word,
but only far enough to expose this first character.

You can control this behavior with the sidescrolloff option. sidescrolloff defines
the minimum number of columns to maintain to the right and left of the cursor.

So, for example, if you defined sidescrolloff to be 10, Vim maintains at least 10
characters of context as the cursor nears either side of the screen. Now when you
move left and right on a line, your cursor will never get closer than 10 columns from
either side of the screen, as Vim shifts enough text into view to maintain that context.

This is probably a better way to configure Vim in nowrap mode.

Vim provides convenient visual cues with the listchars option. listchars defines

how to display characters when Vim’s list option is set. Vim also provides two
settings in this option that control whether to use characters to indicate if there are
more characters to the left or right of the visible screen for long lines. For example:

:set listchars=extends:>

:set listchars+=precedes:<

tells Vim to display a < in column one if a long line contains more characters to

the left of the visible screen, and a > in the last column to indicate there are more
characters to the right of the visible screen. Figure 13-8 shows an example.

Figure 13-8. A long line in nowrap mode (WSL Ubuntu Linux, color scheme: morning)

In contrast, if you prefer to see a whole line without scrolling, tell Vim to wrap the

lines with the wrap option:

:set wrap

Now the line appears as in Figure 13-9.

Figure 13-9. A long line in wrap mode (WSL Ubuntu Linux, color scheme: morning)

Very long lines that can’t be entirely displayed on the screen are displayed with the

single character @ in the first position, until the cursor and file are positioned in such
a way that the line can be displayed completely. The line in Figure 13-9 appears as
shown in Figure 13-10 when it is near the bottom of the screen.

What’s My Line (Size)? | 335

Figure 13-10. Long line indicator (WSL Ubuntu Linux, color scheme: morning)

Finally, Vim lets you make space characters visible. Sometimes for a quick visual
check we define the period as the representation of a space, and we later remove it. To

make space characters visible, add the period to listchars like so:

:set list

:set listchars+=space:.

To remove it:

:set list

:set listchars-=space:.

Abbreviations of Vim Commands and Options
There are so many commands and options in Vim that we recommend learning them
by name first. Almost all commands and options (at least any that have more than
a few characters) have some associated short form. These can save time, but be sure
you know what you’re abbreviating! We have had some embarrassing and unexpected
results using short forms thought to be one thing that turned out to be something
quite different.

As you become more experienced and develop your favorite subset of Vim com‐
mands and options, using some of the abbreviated forms for commands and options
saves time. Vim typically tries for Unix-like abbreviations for options and allows for
the shortest unique initial substring for command abbreviations.

Some abbreviations for common commands include:

n next

prev previous

q quit

se set

w write

Some abbreviations for common options include:

ai autoindent

bg background

ff fileformat

336 | Chapter 13: Other Cool Stu� in Vim

ft filetype

ic ignorecase

li list

nu number

sc showcmd (not showcase—there is no such option)

sm showmatch

sw shiftwidth

wm wrapmargin

Short forms for commands and options save time when you know your commands
and options well. But for scripting and setting up sessions with commands in
your .vimrc or .gvimrc files, you’re more likely to save time in the long run by sticking
with full command and option names. Your configuration file and scripts are easier to
read and debug when you use full names.

Note that this is not the approach taken with the suite of Vim

script files (syntax, autoindent, colorscheme, etc.) in the Vim
distribution, though we take no issue with their approach. We just
recommend, for ease of managing your own scripts, that you stay
with full names.

A Few Quickies (Not Necessarily Vim-Speci�c)
We now offer several techniques—some of which are offered by basic vi as well as
Vim—that are worth remembering and having handy:

A quick swap
A common typing error is to enter two characters in the wrong order. Position

the cursor over the first wayward character and type xp (delete character, put
character). (This was mentioned earlier, in the section <Transposing two letters=
on page 33.)

Another quick swap

Got two lines you’d rather swap? Position the cursor on the top line, and type ddp
(delete line, put line after current line).

Quick help
Don’t forget about Vim’s built-in help. A quick tap on the F1 function key splits

your screen and displays the introduction to the online help. (This is true of gvim.
If you’re in a terminal emulator, that program may preempt F1 for itself.)

A Few Quickies (Not Necessarily Vim-Speci�c) | 337

3 Thanks and a tip of the hat to Carlo Teubner, who maintains the current Vim HTML documentation.

What was that great command I used?
In its simplest form, Vim lets you access recently executed commands by using
the arrow keys in the command line. Moving up and down with the arrow keys,
Vim displays recent commands, any one of which you may edit. Whether or
not you edit a command from Vim’s history, you can execute the command by
pressing the ENTER key.

You can get even more sophisticated by invoking Vim’s built-in command history
editing. Do this by entering CTRL-F on the command line. A small <command=
window opens up (with the default height of 7) in which you can navigate with
normal Vim motion commands. You can search as if in a normal Vim buffer and
make changes.

In the command editing window, you can easily find a recent command, modify
it if necessary, and execute it by pressing ENTER . You can write the buffer to a
filename of your choice to record the command history for future reference.

For a more detailed exercise using the command-line history win‐
dow as a tool, see the section <Introducing the history windows= on
page 341.

A bit of humor
Try entering the command:

:help "the weary"

and read Vim’s reply.

More Resources
Helpful online resources include HTML renditions of Vim’s built-in help for the two
most recent major Vim releases, Vim 7 and Vim 8.3

Additionally, https://vimhelp.org/vim_faq.txt.html is a Vim FAQ list. It doesn’t link
questions to answers, but it is all on one page. We recommend scrolling down to the
section with the answers and scanning from there.

The official Vim page used to host tips on Vim, but because of problems with
spammers, the administrators moved the tips to a wiki where spam is more easily
managed.

338 | Chapter 13: Other Cool Stu� in Vim

http://vimdoc.sourceforge.net/htmldoc/version7.html
https://vimhelp.org
https://vimhelp.org/vim_faq.txt.html
http://vim.wikia.com/wiki/Category:Integration

CHAPTER 14

Some Vim Power Techniques

This chapter demonstrates some of the lessons learned over many (too many?) years
learning and using Vim. Tweaking some defaults and remapping default commands
make hours-long daily use of Vim much more pleasurable. We hope that these ideas
and techniques will nudge you to new ideas and cause you to create your own power
techniques.

Several Convenience Maps
Command mode in Vim has enough actions and commands that hardly any keys are
available to freely use without changing the default behavior. Fortunately, Vim mostly
gets it right, and while you may or may not initially agree with its choices, you almost
always quickly develop muscle memory for the commands you like to use.

We have picked some convenient alternatives by replacing mappings that either didn’t
make sense, were redundant and served by more than one key, or were better served
by simply mapping them to something more useful.

Exiting Vim Simpli�ed
Way back in the section <Saving and Exiting Files= on page 74, we introduced the

several options for exiting vi and Vim. As was demonstrated in Figure 5-1, not
everyone gets it the first time. Indeed, <How to exit the Vim editor?= is one of the
most popular questions on Stack Overflow, having been asked by more than one
million users!

We can easily reduce the three or four keystrokes needed to exit Vim to just one,
using these simple key remappings:

:nmap q :q<cr>

:nmap Q :q!<cr>

339

https://stackoverflow.blog/2017/05/23/stack-overflow-helping-one-million-developers-exit-vim
https://stackoverflow.blog/2017/05/23/stack-overflow-helping-one-million-developers-exit-vim

1 The minus-sign key is essentially redundant with k, with the slight difference that it positions the cursor to

the first nonblank character, while the + character is completely redundant with ENTER and really can be

remapped without losing any functionality.

2 Yes, technically the shifted keys represent underscore and plus, but the mnemonic is the juxtaposition of the

keys, with the one key that does have minus adjacent to the other key that does have plus. (Just sayin’.)

:nmap is a variant of the standard ex :map command. Vim has multiple such variants.

We won’t go into detail; instead, see :help :map-modes.

These two maps let you exit Vim, either regularly (Q) or forcefully (SHIFT-Q), with
just a single keystroke!

Resize Your Window
We like to be able to easily resize windows as needed. GUI Vim implementations
make this easy by letting you grab and drag status lines between windows, though
as purists, we prefer to avoid switching from the keyboard to the mouse. So we
found two adjacent keys, _ (underscore, i.e., SHIFT plus minus sign) and + ,
that not only are redundant1 with other more easily accessible keys but, happily,
mnemonically match <get smaller= and <get bigger,= respectively.2

So to the point, we map _ to decrement the focused window size, and we map
 + as its complement to increment the focused window size. Try this either by

entering the following lines (as ex commands) to see the behavior, or by adding them
to your .vimrc file:

map _ :resize -1<CR>

map + :resize +1<CR>

Now in any window you can decrease or increase the window with _ or +, respec‐
tively. This is useful! And it will come in handy for our discussion later about Vim’s
command history window.

Double Your Fun
One of us has two more favorite remaps he thinks align better with the general Vim

philosophy. That is, when a command character in vi command mode is doubled up,

it is typically a shortcut to a default or intuitive behavior. For example, dw deletes a

word, and the doubled d (dd) deletes the current line. Similarly, yy yanks the current
line.

We apply this philosophy to two mappings, making Vim features quickly avail‐
able with more intuitive keystrokes. These configurations activate Vim’s powerful
command and search histories, both of which, when activated, appear in a new,
horizontally split window.

340 | Chapter 14: Some Vim Power Techniques

Introducing the history windows

Vim has a seemingly little-known feature that we think is one of its most powerful

ones: the command-line window. Vim stores histories of your ex commands and
of your search patterns. These stored commands and patterns are accessed in Vim’s
command-line window, which consists of a new, short window opened at the bottom
of your screen. This window is used for both histories. Commands and search
patterns are stored, accessed, and manipulated separately.

You can go to the command-line or search-pattern window in two ways (each). The

default Vim behavior uses either CTRL-F or q: (a vi command mode command)
to open the command-line window. For more detailed information, use Vim’s help to
read about the command-line window:

:help c_CTRL-F

As with any Vim window, use the regular :q command to close it.

We talk shortly about some of the cool things to do in this window. But first, let’s

make it easier and more intuitive to open it. (CTRL-F and q: are easy enough, but
really, are they intuitive?)

So let’s map our way to the command-line window.

Two colons are better than one

In keeping with <double-something does something-amplified and hopefully intuitive,=
we decided that a good fit is to double up the colon, which by itself starts an

ex command. It makes sense that a double colon, ::, would be <ex amplified= by
opening the command-line window.

Remember that we are defining a map and assuming it’s invoked in command mode.

Further, and importantly, since we are mapping :: to a sequence with a q, let’s make it

safer by requiring that it not be remapped. This calls for the :noremap command.

As with the :map command, Vim has multiple variants of the :noremap command.

Without going into detail here either (see :help :map-modes), to map :: correctly,

we want to use the :nnoremap command. The command looks like this:

:nnoremap :: q:

Now let’s try it out. Enter this command interactively, or add it to your .vimrc
file. Then in command mode, quickly type two colons. You should now see the

command-line window with the cursor placed on the last line. When visiting from vi
command mode, this will always be a blank line.

Why? There are two different behaviors. If you are in the middle of typing an ex
command and you enter CTRL-F , Vim opens the command-line history window in

Several Convenience Maps | 341

vi command mode, with the cursor at the end of the last line, showing the partial
command you were entering.

When entering the command-line window from vi command mode, there is no ex
command in progress, so the cursor is on a blank line.

And two slashes are better than one

We find it equally intuitive that a double-slash (//) be used to quickly activate the
command-line search history window.

The default ways to activate the search history window are q/ and q?. Analogous to

the previous section’s :: to activate the command-line window for command history,
the same approach makes logical sense for visiting Vim’s search-pattern history. Just

as / initiates a search from command mode, we chose // as the intuitive mapping

for the search history window. Since ? activates a backward search, we also provide a

mapping for ??.

As with ::, which we assumed is invoked in vi command mode, we use the :nnore

map command. The commands are:

:nnoremap // q/

:nnoremap ?? q?

How Tall Is Your Command Window?
As an aside, the default height of Vim’s command-line window is seven lines. We find
ten lines to be more satisfactory and set it in our .vimrc file, like so:

set cmdwinheight = 10

Note that, as discussed earlier, if you’ve mapped _ and + to expand and shrink your
focused window, you can conveniently resize the command-line window.

Now let’s try it out. In command mode, quickly type two slashes. You should now
see the pattern history window with the cursor placed on the last line, which is the
last-used search pattern.

Note that Vim inserts a single character in the leftmost column of the command-line

window indicating which mode the window is in, using : for command-line history,

and / or ? for search-pattern history.

342 | Chapter 14: Some Vim Power Techniques

You are in a window of commands (or search patterns). This

window is special; there are some ex commands that you cannot

use. In particular, the commands :e, :grep, :help, and :sort
are unavailable. Nor can you use the commands that move you
to another window, leaving this window open, such as CTRL-W
CTRL-W . While these restrictions do not diminish the power of
the command-line window, they do emphasize that the window is a
special-purpose one.

Some points to be aware of:

• You can navigate this buffer like any other Vim buffer. Don’t be shy! Play around•
with your favorite Vim commands:

:w filename

To save the buffer to a file.

:r filename

To read a file into the command-line buffer.

• You can write/save the contents of the command-line buffer much like any other•
buffer.

• Going the other way, you can read files into the command-line buffer.•

These final two points are important, as they give you the flexibility to save
command-line history you may find useful for later. You can then <load up= a file
containing commands into a session and selectively find and execute your very best
commands.

Moving into the Fast Lane
Now that we’ve tamed the command-line window, let’s do some other interesting
things.

Finding a Hard-to-Remember Command
We’ll start by discussing different ways to find that one command you need to
execute.

Directly searching for the command

You know you used a Vim command to save a lot of time, but you don’t remember
what it was, nor do you even remember if it was very recent. You do remember that

it was related to converting some TEST descriptions to PROD. So you type ::, and

Moving into the Fast Lane | 343

3 This also applies to the behavior in the command-line window for search patterns.

you’re ready to find that command. There are various approaches, all leveraging Vim
to find Vim commands.

For example, probably the easiest, most direct approach is to simply search backward
in the command-line command history buffer. You know you used something with
TEST and then PROD in the same command. Simply search up through the com‐
mands with the search:

?.*TEST..*PROD

and Vim positions the cursor on the first found line matching that regular expression.
Now you can simply re-execute that command by hitting ENTER . Vim closes the
command-line window and executes the command automatically.

If the first match isn’t what you’re seeking, the vi command n moves you to the next

match. Use n as many times as necessary until you find your desired command.

When searching back through commands in the command-line

window, Vim honors your wrapscan setting.3 If you’ve set

nowrapscan and there is no occurrence of your pattern between
the current line position and the top of buffer (or the bottom,
depending on the direction of the search), Vim displays <search hit
top…= (or bottom) without finding the pattern.

Filtering the bu�er

You may not like searching as described in the previous section for various reasons;
there are many similar commands, the commands are scattered, and so on.

You can filter/alter the command-line window buffer the same way you filter text
in regular Vim windows. Continuing with the previous example, assume that you’re
interested in finding versions of commands with TEST and then PROD somewhere in
the commands.

Rather than simply searching up through the buffer, declutter the buffer by inverting

a global search (:vg) to delete lines not matching your target:

:vg/.*TEST..*PROD/d

Now you have only lines matching your target. Choose your match and execute.

Lines deleted in this way stay deleted (inaccessible) until the end of your editing
session. But the next time you open the file in Vim, all the saved command lines will
be there.

344 | Chapter 14: Some Vim Power Techniques

Massaging the �lter results

Since Vim provides editing in the command-line window itself, it’s a natural next step
to consider more than simply finding commands and re-executing them. Often the
task at hand is similar but not identical to tasks completed earlier whose commands
are in the history buffer. However, the task is similar enough to use commands from
the history buffer with slight modifications.

Continuing again with the previous example, consider that we want to do the same
Vim commands but instead of transforming TEST to PROD, we want to transform
PROD to QA.

As before, start by finding and perhaps filtering candidate commands from the
history buffer. Now change PROD to QA, and change TEST to PROD (assuming it’s
that simple a translation). Hit ENTER on the edited history line to execute it, and
you’re done!

Analyzing a Famous Speech
One of us found the back-and-forth concerning a particular political speech fascinat‐
ing. There was much said and argued about the speech and what it said and meant.
So he had an idea. Why not edit the speech transcript with Vim and filter the
transcript by word frequency?

This use case references a very famous and politically charged
speech. It is not our intent to make inferences or imply ideology. It
is simply an example of how one of us quickly used Vim as a tool to
analyze information not normally thought of as the kind of editing
one would expect to use Vim for.

To make life easy, the speech is included in the book’s GitHub repository (see the
section <Accessing the Files= on page 471) in the file book_examples/famous-speech.txt.

With the speech in hand, your author invoked awk to begin incrementally developing
a command, iterating until he achieved the desired end result. Remember that you
can replace a range of lines in a buffer with the output of a command performed on

that range. In this case, in vi command mode he typed:

:%!awk 'END { print NR }'

knowing that it would simply replace the buffer with the line count of the buffer. This
is not what he wanted, but it made a good starting point.

Now that the <seed= of a command was in Vim’s command history, it was easy to start
improving. In the course of less than ten minutes he iterated in Vim’s command-line
history window as follows (line numbers added for annotation, long lines wrapped to
stay on the page):

Moving into the Fast Lane | 345

https://www.github.com/learning-vi/vi-files

 1 1,$!awk '{ while (i = 1; i <= NF; i++) word[$i]++ } END { print word }'

 2 1,$!/usr/bin/awk '{ while (i = 1; i<= NF; i++) word[$i]++ }

 END { print word }'

 3 1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { print word }'

 4 1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }'

 5 1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }'

 6 1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort

 7 1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort

 8 wq

 9 1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort -n

10 g/fight

11 1,$!/usr/bin/awk 'BEGIN { FS= "[,.]+" } { for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort -n

12 g//

13 g/law

You may notice the different invocations of awk in the preceding
list. This is an artifact of the author’s frequent moves from one
computer and OS to another. We have left the variants visible and
expect that you would use the one that works in your environment.

It’s very important to understand that the accumulated incremental
commands in the preceding list are the result of iterating on one
command. After iterating to completion, the result is these com‐
mands in the command-line history window.

For example, after changing line 1 (wrapped):

1,$!awk '{ while (i = 1; i <= NF; i++) word[$i]++ }

 END { print word }'

to (wrapped):

1,$!/usr/bin/awk '{ while (i = 1; i<= NF; i++) word[$i]++ }

 END { print word }'

the next time you visit the command-line command history win‐
dow, these will be the last two nonblank lines in that window.

Line 2 corrected line 1 to point to the correct location for awk. When executed (since

the range was specified as 1,$), Vim replaced the entire buffer with:

awk: cmd. line:1: { while (i = 1; i <= NF; i++) word[$i]++ } END { print word }

awk: cmd. line:1: ^ syntax error

awk: cmd. line:1: { while (i = 1; i <= NF; i++) word[$i]++ } END { print word }

awk: cmd. line:1: ^ syntax error

346 | Chapter 14: Some Vim Power Techniques

4 Using u makes it easy to iterate on different manipulations in buffers. Once you get the muscle memory for

this, it becomes very natural.

So that was bad. Fortunately, typing u resets the buffer to the original speech
transcript.4

Remember, type :: to edit your last command to match the next example command
above. Line 3 fixed one syntax error. Line 4 yet another. This is a bit embarrassing.

Finally, the next line (line 5, wrapped to fit the page):

1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }'

yields real results! The first few lines in the buffer now look something like:

3 weeks.

4 State

1 you’ve

1 written

25 you’re

1 telephone

1 Congress

1 ever,

5 biggest

38 are

We now see a line for every word in the speech, with a count preceding that word
indicating the number of occurrences. This is cool but a little bit unorganized. So let’s
sort the results (line 6, wrapped):

1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort

This is a little better, but a numeric sort is even better…To do that, add the -n option

(numeric sort) to sort (we are now at line 9, wrapped):

1,$!/usr/bin/awk '{ for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort -n

This is a much better result. The last few lines of the buffer now look something like:

115 that

125 they

134 you

146 in

167 I

203 a

227 and

265 of

326 to

394 the

It’s no surprise that the common word the is the most frequent.

Moving into the Fast Lane | 347

Let’s do one last iteration. If you’ll notice in the next-to-last iteration we just looked
at, some of the words still have their attached punctuation. This leads to misleading
counts of words like <car=, <car,=, and <car.=, all of which should probably be considered
the same word. So for the final change, let’s define the field separator to be a regular

expression in awk’s BEGIN rule (line 11, again wrapped):

1,$!/usr/bin/awk 'BEGIN { FS= "[,.]+" } { for (i = 1; i<= NF; i++) word[$i]++ }

 END { for (words in word) print word[words], words }' | sort -n

Note the difference in counts, indicating that we probably have something closer to a
true result:

144 that

153 in

155 you

168 I

203 a

210

227 and

266 of

328 to

394 the

Remember to undo (u) after each iteration in order to pass the
original text to the next command.

Our example leaned on awk as the filter du jour, but in the spirit of Unix and GNU/
Linux, there are many powerful commands that, when applied to a Vim buffer, give

equally useful results. Both of us prefer awk, but we often use, in no particular order

of preference, sed, grep, wc, head, tail, sort, and many others. It’s also worth noting
that pipes just work and amplify the power of massaging Vim buffers.

While this may seem like a somewhat contrived example, your author did this
exercise while discussing said speech, and the results were used to settle <arguments.=

The time spent iterating from the initial awk command through to the final, refined
command was just a few minutes. The results were a touchstone in an energetic
discussion about what was in the speech. We offer no opinion for that, but emphasize
that this was a productive and useful exercise in a social setting. Yes, Vim is probably
not a common player in social gatherings, but maybe it can be. ☺

Some More Use Cases
As mentioned, the speech example may seem contrived, but it is one of many exam‐
ples in which we have massaged files to extract useful information without resorting
to external tools. Other examples include:

348 | Chapter 14: Some Vim Power Techniques

Exported �les
One of us tracks his exercise via a few applications. His favorite is Garmin™.
Garmin export files are CSV text files (see Figure 14-1 for an example). Consider
how you might extract information in a similar fashion to our example.

System log �les
We have used the same technique(s) to extract, massage, and format Unix system
log files (e.g., /var/log/messages). While there are many real-time and supplemen‐
tary tools that do monitor and analyze these files (such as Splunk, sometimes it’s
enough to simply jump in and quickly apply customized commands from Vim’s
command-line history window.

Vendor log �les
Filtering these is similar to filtering system log files.

Figure 14-1. Sample Garmin CSV �le

We’ve mentioned before that it’s useful to set the amount of com‐
mand history Vim saves to a large number, and we thought we’d

mention it again here. This is set by the viminfo option, which
should be defined in your .vimrc configuration file:

" example

set viminfo='50,:1000

Interestingly, when you edit a command in the command-line history buffer, if the
editing context could offer a completion, the TAB key pops up a completion menu
that, with repeated TAB s, cycles through the list. You may also use the arrow keys.
The desired match is selected by hitting ENTER . Be careful, as this triggers the
execution of the modified command immediately. Figure 14-2 shows completion for
partial matches of options. Figure 14-3 presents an example of filename completion.
(Command-line completion is discussed in the section <Built-In Help= on page 165.)

Moving into the Fast Lane | 349

https://www.garmin.com/en-US
https://www.splunk.com

Figure 14-2. Example list of completions for a command requiring an argument (in this
case, a color scheme)

Figure 14-3. Example list of completions for a command requiring a �lename

Also, to ensure that you’ve saved important commands you’ve developed and that
they don’t fall out of the saved commands limit, you may find it useful to curate these
commands and store them in text files. These files can then be <loaded= into your
command-line history window.

Hitting the Speed Limit
As we’ve done for command line history, let’s consider some approaches to making
your search-pattern history more useful. We use the pattern search history window
to edit, iterate, and improve searches. And the searches, once tuned, are then easily
retrieved.

Recall our key mapping to more intuitively open the pattern search window:

:nnoremap // q/

:nnoremap ?? q?

Vim’s search-pattern window is really the same buffer as the command-history win‐
dow; you can have only one active at any time. The only differences are the content
loaded into the window and the actions taken by hitting ENTER on any line in the

buffer (execute an ex command versus search for a pattern). Thus, the same features

350 | Chapter 14: Some Vim Power Techniques

exist as described earlier. You can search for any pattern that you’ve searched with
before. Yes, we’re searching for searches, which is a little meta. If your search-pattern
history is large enough, it’s likely to have effective searches you’ve used previously.

Within this window, you use the normal Vim editing features to navigate, modify,
and execute searches from past searches.

Just as earlier we incrementally built a useful filter by iterating on a command using
the command-line history window, we can use the same technique and hone searches
by incrementally building search patterns.

Vim uses regular expressions for searches, which can be quite complex. Consider the
example that a file may contain names of production executables, which are named
by convention to identify their role. For example, a production executable may be
named by convention where period-delimited fields describe attributes of that exe‐

cutable (e.g., production.accounting.receivables.east.rollup). The requirement
is that the first field be one of production, test, or devel, and that the entire name
comprises five fields.

We won’t go into the same detail as in the development of the earlier command (in
the section <Moving into the Fast Lane= on page 343), but it’s simple enough to start
by looking for a line containing production:

/production/

That would find all lines containing any instance of production anywhere in the line.

A quick // takes us to the search-pattern history window, and a quick edit to insert a

required delimiter <.= narrows the search (note that we’ve removed the slashes since
they do not appear in the search-pattern history window):

production\.

Eventually, a viable result could look something like:

\(production\|test\|devel\)\(\.[[:alnum:]_]*\)\{3}\.[[:alnum:]_]\{1,}

We once used a pattern similar to this and created a match command in our .vimrc
file to automatically highlight executable names while editing files, supplementing the
normal syntax highlighting.

We leave it to you to decode the final regular expression. The point
is less about the regular expression and how it works, and more
about the means to the end: how to develop a powerful regular
expression using Vim’s search-pattern history window.

Just as in the command-line history example, you can curate and save favorite regular
expressions that can be loaded later into the search-pattern window buffer.

Hitting the Speed Limit | 351

Enhancing the Status Line
Vim, for some reason, provides a status line lacking in much useful information (see
Figure 14-4).

Figure 14-4. �e default Vim status line

Without going into great detail, and providing only minimal explanation (see :help

statusline for the full story), the following .vimrc line provides enhanced informa‐
tion about the current file:

set statusline=%<%t%h%m%r\ \ %a\ %{strftime(\"%c\")}%=0x%B\ \ line:%l,\ \ col:%c%V\ %P\ %v

See Figure 14-5 for an example of a status line using these settings.

Figure 14-5. Elbert’s status line

Elbert’s .vimrc file, from which this example comes, is available in the book’s GitHub
repository; see the section <Accessing the Files= on page 471.

Here’s a brief explanation of the built-in flags used in the example. Flags all start with

the % character:

%a

Argument list status. For example, if Vim is editing the fourth file of eight, the

status line would display (4 of 8).

%B

Hexadecimal representation of the character under the cursor.

%c

The current column number.

%h

Buffer <help= flag (not shown in this case, since we’re not editing a help file).

%l

The current line number.

%m

The modified flag ([+] if the buffer has been modified; not present otherwise).

352 | Chapter 14: Some Vim Power Techniques

https://www.github.com/learning-vi/vi-files
https://www.github.com/learning-vi/vi-files

%P

The current location in the buffer as a percentage.

%r

The read-only flag ([RO] if the buffer is read only; otherwise not present).

%{strftime…}

The results of running the command within braces (in this case, strftime).

Passing %c asks for the standard date and time.

%t

The current filename (the final component of the filename, equivalent to the
output of basename(1)).

%v

The type of the file being edited. This is more than just inspection of the filename
for an extension. Vim detects the type of a file based on its content. While we
cannot prove it, it appears that Vim uses a mechanism similar or identical to that

of the file command. (See the �le(1) manual page, if interested.)

%V

The current virtual column number.

%=

Center information around this anchor (everything before is left-justified; every‐
thing after is right-justified).

%<

Truncate here if the status line is too long.

Summary
We hope that the material presented in this chapter whets your appetite for further
exploration of Vim’s capabilities. You’ll find that there’s always something more to
learn about Vim. Doing so will make your work easier and more productive.

Summary | 353

PART III

Vim in the Larger Milieu

Part III takes a step back to look at the bigger picture, looking at Vim’s role in the
larger software development and computer usage worlds. It then closes off the book
with a short epilogue. This part contains the following chapters:

• Chapter 15, <Vim as IDE: Some Assembly Required=•

• Chapter 16, <vi Is Everywhere=•

• Chapter 17, <Epilogue=•

CHAPTER 15

Vim as IDE: Some Assembly Required

Although vi is a general-purpose text editor, from Day One it was also a programm‐
er’s text editor. It has multiple features for making programming easier, particularly

programming in C. (Consider the showmatch option, the automatic indentation fea‐

tures, and in particular the ctags facilities, as well as the facilities for maneuvering

within troff documentation.)

Unsurprisingly, Vim continues in this tradition, but unlike vi, it itself is programma‐
ble, and in particular it supports plug-ins, the ability to load new code and add
features directly into the editor.

As with many of the popular scripting languages, this extensibility has led to an
explosion of new features and facilities for use with Vim—many more than any one
person could have ever created working alone.

Also not surprisingly, a large percentage of these plug-ins are aimed at making
programming and software development with Vim much easier.

In this chapter we look (briefly!) at plug-in managers and at some of the more
interesting and popular plug-ins for use in software development.

Be aware, however, that the universe of Vim plug-ins is very large. Thorough cover‐
age of all the possible plug-ins would require a separate book—one much bigger than
this one is! Therefore, our treatment here involves much less hand-holding than do
other chapters in the book; please bear this in mind as you read.

Plug-In Managers
Besides plug-ins that actually do something, there are also plug-ins that manage other
plug-ins. Their job is to load and initialize plug-ins, and to make it easy for you

357

install and use plug-ins without having to manually download them or add a lot of
plug-in-specific code to your .vimrc file.

Vim has its own plug-in manager, accessed with the :packadd (<package add=) com‐
mand. You can use this command with the plug-ins that come standard with Vim,

or for any other plug-ins that match the criteria given by :help packadd (which we
won’t get into here). We show one of these standard plug-ins later, and we encourage
you to check out the others that come with Vim.

One of the most popular plug-in managers is called Vundle (short for <Vim bundle=).
The website has <quick start= instructions, which we attempt to summarize here,
assuming a GNU/Linux or other POSIX-style system:

1. Make sure you have Git and curl installed on your system.1.

2. Save a copy of your .vimrc file and .vim directory someplace safe, just in case.2.

3. Clone Vundle directly into its place:3.

git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim

4. Configure your plug-ins. This is what your .vimrc should look like (or you can4.
copy/paste from the Vundle home page); we’ve omitted some commentary to
keep this short:

set nocompatible " be iMproved, required

filetype off " required

" set the runtime path to include Vundle and initialize

set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

" alternatively, pass a path where Vundle should install plugins

"call vundle#begin('~/some/path/here')

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.

" Keep Plugin commands between vundle#begin/end.

" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

...

" All of your Plugins must be added before the following line

call vundle#end() " required

filetype plugin indent on " required

" To ignore plugin indent changes, instead use:

"filetype plugin on

"

...

"

" see :h vundle for more details or wiki for FAQ

" Put your non-Plugin stuff after this line

358 | Chapter 15: Vim as IDE: Some Assembly Required

https://github.com/VundleVim/Vundle.vim

5. Pick and choose your plug-ins, and place them between the calls to5.

vundle#begin() and vundle#end(). (This is the hard part. ☺)

6. Install the plug-ins you’ve listed in your .vimrc file. You can do this either with6.

the :PluginInstall Vim command or from the command line:

vim +PluginInstall +qall

This launches Vim, installs the plug-ins, and then quits. Run :PluginInstall
every time you add new plug-ins to your .vimrc file; Vundle then handles the
downloading and installation of the plug-in for you.

Finding Just the Right Plug-In
There are thousands of Vim plug-ins. Many (maybe even most) of them are hosted
on GitHub, but not all of them are. Locating the right plug-ins for what you need
done could become a daunting task. (See Figure 15-1.)

Figure 15-1. GitHub search for Vim plug-ins; 8,852 results and counting

Fortunately, you’re not the first one to notice this. The people at Vim Awesome have
done amazing work in scavenging the internet for plug-ins and collecting informa‐
tion about them all in one place. See Figure 15-2.

Finding Just the Right Plug-In | 359

https://vimawesome.com

Figure 15-2. Vim Awesome

Not only can you search for plug-in information at Vim Awesome, but you can also
set up your own private copy of their database. The source code and instructions for
doing so are at https://github.com/vim-awesome/vim-awesome.

Why Do We Want an IDE?
An integrated development environment (IDE) is just what it sounds like—a single
environment that provides everything you need to do software development. There
are many such environments, both commercial and open source. If you’re a software
developer, it’s likely that you are familiar with at least one.

IDEs generally provide at least the following features:

• Text editing (of course).•

• Viewing and navigating the software project’s file tree.•

• Navigation among source objects (e.g., going from a function call to the defini‐•
tion of the function).

• Integration with one or more source code control systems. For our purposes,•
integration with Git is what we want.

• Text completion during typing. For example, as you type the name of a function,•
the IDE shows you what parameters are expected.

360 | Chapter 15: Vim as IDE: Some Assembly Required

https://vimawesome.com
https://github.com/vim-awesome/vim-awesome

• Semantic error highlighting. If you have a semantic error in your program (such•
as an undeclared variable), the IDE highlights the error, often by drawing a
colored wavy line underneath it.

• Integrated debugging. The IDE shows the source code as the debugger moves•
around within the source.

Given that many programmers spend large amounts of time working in Vim, it’s
natural to want Vim to provide features similar to those of IDEs, since they increase
productivity. We will see shortly how Vim plug-ins provide these features, and how
you can customize Vim into an IDE that suits your personal needs.

Doing It Yourself
The early Unix systems were notable in that they focused on mechanism, not policy.
That is, the system provided the user the capability to do many things, without
enforcing a single way of working.

Vim demonstrates its Unix heritage in a similar fashion: you have the facilities to
build almost anything you want. Of course, this means that you then have to invest
the time and effort into learning how to build what you want! The return on this
investment is an environment exactly suited to your needs.

Fortunately, as we saw earlier, it’s likely that there already exists a Vim plug-in to do
just about anything you would need. You just have to go and find it!

In the following subsections we take a look at a very few of the most popular
plug-ins for software development. Later on, we give an overview of several all-in-one
solutions that focus on turning Vim into an IDE.

As you review this section, remember that this survey just barely scratches the
surface, and that there’s much more out there!

EditorCon�g: Consistent Text Editing Setup
During our research, we came across the EditorConfig project. The project’s goal is to
define a specification for how different text editors and IDEs should format different
kinds of files. For example, for one kind of file you might want all of your editors to
indent by four spaces, and for others you might want them to indent with real TAB
characters. A single .editorcon�g file lets you do that. Your editor, no matter what it is,
reads this file and then formats your work appropriately.

A large number of IDEs support .editorcon�g files out-of-the-box. Vim requires
a plug-in, which may be found at https://github.com/editorcon�g/editorcon�g-vim.
Installation instructions are included. See also https://www.vim.org/scripts/script.php?
script_id=3934 for more information and description.

Doing It Yourself | 361

https://editorconfig.org
https://github.com/editorconfig/editorconfig-vim
https://www.vim.org/scripts/script.php?script_id=3934
https://www.vim.org/scripts/script.php?script_id=3934

NERDTree: File Tree Traversal Within Vim
The NERDTree plug-in is a major step forward in making Vim function like a stan‐

dard IDE. Once installed, you open and close its window with the :NERDTreeToggle
command. The documentation suggests mapping this to a keyboard sequence such as
CTRL-N , like so:

map <C-n> :NERDTreeToggle<CR>

This command opens a new window on the left side of the screen, showing a

standard file tree. Type ? in the NERDTree window to see a list of commands you can
use to expand or contract directories and to open files in the current or new windows.
The behavior varies depending on whether the current line in the NERDTree window
is a file or a directory. Some of the commands are:

?

Toggle display of NERDTree help.

i

Open a file in a new window with the :split command.

o

Expand/contract a directory. For a file, open the file in the previous window.

s

Open a file in a new window with the :vsplit command.

t

Open the file or directory in a new tab. Tabs were described in the section
<Tabbed Editing= on page 233.

T

Silently open the file or directory in a new tab.

There are quite a number of other capabilities. Comprehensive documentation is
provided in the file doc/NERDTree.txt.

(What? No figure? Patience. See the next section.)

nerdtree-git-plug-in: NERDTree with Git Status Indicators
NERDTree in and of itself is exceedingly useful. However, these days everyone uses
a source code control system, typically Git. Many IDEs can show the source code
control status of a file in their file explorers (modified, not under source code

control, subdirectory contains untracked files, and so on). The nerdtree-git-plugin
plug-in at https://github.com/Xuyuanp/nerdtree-git-plugin enhances NERDTree with
this capability.

362 | Chapter 15: Vim as IDE: Some Assembly Required

https://github.com/preservim/nerdtree
https://github.com/Xuyuanp/nerdtree-git-plugin

Figure 15-3 shows two editing windows and the NERDTree window with the

nerdtree-git-plugin plug-in on the left side. In that window we see that the
atomtable directory is untracked (not checked into Git), and that the support direc‐
tory contains a modified file, as does the helpers directory. Other icons (not shown
here) indicate the modified/untracked status of a given file. All of this makes the Git
status of your project’s files easily discernible.

Figure 15-3. NERDTree with Git indicators

Fugitive: Running Git from Within Vim
Vim users who manage their files with Git end up moving back and forth between
their Vim window and their terminal window in order to issue Git commands. The
Fugitive plug-in allows you to stay within Vim while working with Git.

The change to make is very simple. Instead of running the git command in a

terminal emulator, use :Git (or even just :G) and continue as usual (:Git add, :Git

status, :Git commit, etc.). Fugitive places any output from Git into a new temporary
buffer, if necessary. When committing a file, you edit the commit message in the
current Vim instance.

Quoting from its web page, Fugitive does more than just run the git command for
you:

Doing It Yourself | 363

https://github.com/tpope/vim-fugitive

• The default behavior is to directly echo the command’s output. Quiet commands•

like :Git add avoid the dreaded <Press ENTER or type command to continue=
prompt.

• :Git commit, :Git rebase -i, and other commands that invoke an editor do•
their editing in the current Vim instance.

• :Git diff, :Git log, and other verbose, paginated commands have their output•

loaded into a temporary buffer. Force this behavior for any command with :Git

--paginate or :Git -p.

• :Git blame uses a temporary buffer with maps for additional triage. Press enter•

on a line to view the commit where the line changed, or g? to see other available
maps. Omit the filename argument and the currently edited file will be blamed in
a vertical, scroll-bound split.

• :Git mergetool and :Git difftool load their changesets into the quickfix list.•

• Called with no arguments, :Git opens a summary window with dirty files and•

unpushed and unpulled commits. Press g? to bring up a list of maps for numerous
operations including diffing, staging, committing, rebasing, and stashing. (This is

the successor to the old :Gstatus.)

• This command (along with all other commands) always uses the current buffer’s•
repository, so you don’t need to worry about the current working directory.

To demonstrate, Figure 15-4 shows the output of :Git blame on this chapter.

Figure 15-4. Running :Git blame on a window

Moving the cursor to the fourth line (commit ID afc75e3d) and hitting ENTER
brings up the view shown in Figure 15-5.

364 | Chapter 15: Vim as IDE: Some Assembly Required

Figure 15-5. Viewing a single commit

There are several <screencasts= demonstrating Fugitive’s capabilities. These are worth
checking out:

• <A complement to command line git=•

• <Working with the git index=•

• <Resolving merge conflicts with vimdiff =•

• <Browsing the git object database=•

• <Exploring the history of a git repository=•

We recommend reviewing them and spending some time to come up to speed on this
plug-in. After spending just a few minutes with it, we were hooked!

Completion
One of the most powerful features that IDEs provide is completion. Depending on the
IDE, the programming language you’re working in, and possibly various settings, as
you type, the IDE offers to help you complete what you’re typing. For example, it may
fill in the name of a long function for you—or upon your typing the open parenthesis
of a function call, it may show the expected types of the parameters, allowing you to

Doing It Yourself | 365

http://vimcasts.org/e/31
http://vimcasts.org/e/32
http://vimcasts.org/e/33
http://vimcasts.org/e/34
http://vimcasts.org/e/35

1 Real Programmers only use Make.

fill in appropriate values. In this section we look in detail at one completion plug-in
for Vim and provide pointers to several others.

YouCompleteMe: Dynamic completion and semantic checking

The YouCompleteMe plug-in is very powerful. It provides as-you-type completion
and semantic error checking for multiple programming languages. As of this writing,
it supports C, C++, C#, Go, JavaScript, Python, Rust, and TypeScript. You may have
to install additional software to get things to work for your language.

You can install YouCompleteMe directly from source—instructions are included at
the GitHub site. However, you may be able to install it using your system’s package
manager, and we found this to be the easier way to go.

On one of our Ubuntu GNU/Linux systems, the steps were:

sudo apt install vim-addon-manager

sudo apt install vim-youcompleteme

vim-addon-manager install youcompleteme

The first command installs vim-addon-manager, which is yet another plug-in man‐
ager for Vim. There were no conflicts using it with Vundle.

The second command installs YouCompleteMe. The third one installs it into Vim,

but only for you as the current user (it’s run without sudo).

Once installed, Vim begins to offer you completion options in a pop-up window
as you type. Press TAB to cycle among the options. As you continue to type,
YouCompleteMe reduces the number of completion options in the pop-up window.
See Figure 15-6.

In and of itself, this is already very cool. But YouCompleteMe goes further by offering

semantic analysis of your code. For C and C++ it uses clangd, part of the LLVM
compiler suite, to continuously recompile your program. It uses different engines for
other languages, which you may have to install.

For C and C++, to enable semantic analysis, you have to let YouCompleteMe know
how you compile your program. This is done differently depending on how your
project is built (Make, CMake, Gradle, etc.).

For Makefile-based projects,1 this is quite easy. You have to install a simple Python

program called compiledb, as follows (here too, this is for Ubuntu; other GNU/Linux
systems should have an equivalent mechanism):

sudo apt install python3-pip

sudo pip3 install compiledb

compiledb make

366 | Chapter 15: Vim as IDE: Some Assembly Required

https://github.com/ycm-core/YouCompleteMe

Figure 15-6. YouCompleteMe’s pop-up window

You only need to run compiledb make one time (unless you change your compilation
options). This creates a compile_commands.json file in the top-level directory of your
project that YouCompleteMe can use. Once that’s done, Vim marks lines with both
compilation errors and compilation warnings. See Figure 15-7.

Figure 15-7. YouCompleteMe error indicators

Doing It Yourself | 367

In Figure 15-7, the first problem indicator is highlighted in red, indicating a compila‐
tion error. Moving the cursor to that line causes Vim to show the error in the status
line. Here, it’s an undeclared variable.

The second problem indicator is highlighted in yellow, indicating a warning. Here,

the problem is a type mismatch between a size_t argument, which is unsigned, and

an int parameter, which is what printf() is expecting.

Note how both problem areas are underlined with a wavy line to show where the
errors are (errors in red, warnings in blue). As soon as you fix the errors, the problem
indicators go away. This is extremely seductive—we wish we’d known about this
plug-in years ago!

Configuring YouCompleteMe can be challenging. Putting the fol‐
lowing into ~/.ycm_extra_conf.py may be helpful when working

with C instead of C++. Or it may be enough to have '-std=c99' in
your compile_commands.json file. To be honest, we found this part
of YouCompleteMe to be frustrating. However, having the semantic
warnings is worth it!

import os

import ycm_core

flags = [

 '-fexceptions',

 '-ferror-limit=10000',

 '-DNDEBUG',

 '-std=c99',

 '-xc',

 '-isystem/usr/include/',

]

SOURCE_EXTENSIONS = ['.cpp', '.cxx', '.cc', '.c',]

def FlagsForFile(filename, **kwargs):

 return {

 'flags': flags,

 'do_cache': False # True

 }

Interestingly enough, YouCompleteMe is not restricted to program source code. It
works while editing almost anything, such as a ChangeLog file and even the AsciiDoc
text of this book!

368 | Chapter 15: Vim as IDE: Some Assembly Required

Other completion and checking engines

There are a number of other completion engines for Vim. Here are some of them:

• The Asynchronous Lint Engine (ALE). This focuses on dynamic linting (seman‐•
tic checking) of programs, with support for many languages and some support
for completion.

• Syntastic. A powerful syntax checking engine with support for many languages,•
often used with other plug-ins.

• Conquer of Completion. This is a general plug-in with support for many lan‐•
guages and file formats.

• Jedi-vim. This provides Python autocompletion. It’s what YouCompleteMe uses•
under the hood for Python.

• Kite. This plug-in provides AI-based autocompletion for Vim and many other•
editors and IDEs. It supports Python, C, C++, C#, Go, Java, Bash, and many
other languages. It is commercial software, with a free version as well as a for-pay
professional version.

Using these engines together with YouCompleteMe doesn’t look like it will work. You
will want to experiment with them and choose the best setup for you.

Termdebug: Use GDB Directly Within Vim
Beginning with Vim 8.1, it’s possible to have a terminal session inside a Vim window.
This lets you run programs that interact with a user inside a window. Vim ships with
a plug-in named Termdebug that takes advantage of this, letting you run GDB (the
GNU debugger) from inside Vim.

To do this, start by editing a file. Then load the Termdebug plug-in with Vim’s

built-in package manager (:packadd) and start it, like so:

:packadd termdebug

:Termdebug

This splits the screen into three windows. The top window runs GDB. The middle
window has the output from the command being debugged, and the bottom window
is the source file. You may want to move the source file over to the right, as in
Figure 15-8. The section <Moving Windows Around= on page 222 describes how to
rearrange the layout of Vim’s windows.

In the figure, you see the GDB interactions at top left. On the bottom left is the

output from a previous run command where the author mistyped the command
(oops!).

Doing It Yourself | 369

https://github.com/dense-analysis/ale
https://github.com/vim-syntastic/syntastic
https://github.com/neoclide/coc.nvim
https://github.com/davidhalter/jedi-vim
https://www.kite.com

Figure 15-8. Termdebug plug-in running on a �le

The righthand window shows the source code, highlighting and marking the line
where the breakpoint was hit. Buttons at the top let you continue debugging.

This is a nice integration of GDB with Vim, even better than that provided by Clewn
(see the section <The Clewn GDB Driver= on page 384).

If you expect to use GDB frequently, you should put the :packadd termdebug com‐
mand into your .vimrc file.

All-in-One IDEs
By now, if you’ve been adding the plug-ins we’ve covered, you have Vim providing
much of the functionality of an IDE. It’s not to be wondered at that many other
people have made this journey before us and offered up their own recipes for turning
Vim into an IDE.

Here are some of the ones we’ve discovered, which you may wish to check out. At the
very least, they offer you pointers to useful plug-ins that we haven’t covered.

Caveat emptor: We have not tried all of these, and of those that we did try, we tried
only for a short time. Think of this list as a starting point for your own explorations:

Vim as an IDE
This is something of a tutorial on Vim plug-ins for software development, as
opposed to something that is ready to just drop in and go. It’s valuable because
of the many links to sources for more information. See https://github.com/jez/
vim-as-an-ide.

370 | Chapter 15: Vim as IDE: Some Assembly Required

https://github.com/jez/vim-as-an-ide
https://github.com/jez/vim-as-an-ide

vimspector
This is <a multi language graphical debugger for Vim.= The focus here is on
debugging code, not on being a full-featured IDE. See https://github.com/pure
mourning/vimspector.

C/C++ IDE
This combination of plug-ins works to provide an IDE for C and C++. Quoting
from the web page, you get:

• Automatic download [sic] the latest version of libclang and compile the ycm_core•
library that YCM needs

• One-step install•

• Supported all GNU/Linux•

• On-demand loading for faster startup time•

• Semantic auto-completion•

• Syntax checking•

• Syntax highlighting for C++11/14•

• Preservation of historical records•

• Instantly preview markdown files•

The following are for Python:

Python-mode
Quoting from the web page:

The plugin contains all you need to develop python applications in Vim.

• Support Python and 3.6+•

• Syntax highlighting•

• Virtualenv support•

• Run python code (<leader>r)•

• Add/remove breakpoints (<leader>b)•

• Improved Python indentation•

• Python motions and operators (]], 3[[,]]M, vaC, viM, daC, ciM, …)•

• Improved Python folding•

• Run multiple code checkers simultaneously (:PymodeLint)•

• Autofix PEP8 errors (:PymodeLintAuto)•

• Search in python documentation (<leader>K)•

• Code refactoring•

• IntelliSense code-completion•

• Go to definition (<C-c>g)•

All-in-One IDEs | 371

https://github.com/puremourning/vimspector
https://github.com/puremourning/vimspector
https://github.com/kingofctrl/vim.cpp
https://github.com/python-mode/python-mode

Vim and Python—A Match Made in Heaven
This page from the Real Python folks gives step-by-step instructions for config‐
uring Vim to be a Python IDE.

Vim Upgrade 2017
This page is similar, providing instructions on configuring Vim and recommend‐
ing different plugins for day-to-day programming.

Vim as a Python IDE
Quoting yet again:

This project aims to use Vim as a powerful and complete Python IDE. In order
to do that, we curated a list of awesome plugins available in the community and
provided an automatic installation procedure for this set.

This project is interesting in that it leaves nothing to chance. It checks out,
configures, and builds a specific version of Vim in order to make sure that
everything will work. If you want to use Vim for Python development and are
OK with the choices it makes for you, this may be the easiest way to go.

chen�m’s VimPlugins
This is a collection of Vim configuration files that builds an IDE out of 24
different plug-ins. There are terse installation instructions in English, and a
tutorial in Chinese. Nonetheless, because it uses so many plug-ins, it’s a good
source for pointers to additional plug-ins that you may wish to investigate. See
https://github.com/chen�m/VimPlugins.

Coding Is Great, but What If I’m a Writer?
There are lots of plug-ins aimed at helping people use Vim for writing, not just
software development.

Tomas Fernández presents a nice list in the blog post <Top 10 Vim Plugins for
Writers=. It’s easiest just to quote the article’s list of plug-ins with descriptions and
links:

vim-pencil
My favorite writing plugin. Vim-pencil brings a ton of nice things like navigation
aids, smarter undo based on punctuation, and proper soft wrapping. (See https://
github.com/reedes/vim-pencil.)

vim-ditto
Ditto highlights repeated words in a paragraph, just what I need to avoid repeat‐
ing words all the time. (See https://github.com/dbmrq/vim-ditto.)

vim-goyo
A Writeroom lookalike for Vim, goyo removes all distracting elements like mode‐
line and line numbers. (See https://github.com/junegunn/goyo.vim.)

372 | Chapter 15: Vim as IDE: Some Assembly Required

https://realpython.com/vim-and-python-a-match-made-in-heaven
https://haridas.in/vim-upgrade-2017.html
https://rapphil.github.io/vim-python-ide
https://github.com/chenfjm/VimPlugins
https://tomfern.com/posts/vim-for-writers
https://tomfern.com/posts/vim-for-writers
https://github.com/reedes/vim-pencil
https://github.com/reedes/vim-pencil
https://github.com/dbmrq/vim-ditto
https://github.com/junegunn/goyo.vim

vim-colors-pencil
An elegant, low contrast colorscheme geared toward writing. (See https://git
hub.com/reedes/vim-colors-pencil.)

vim-litecorrect
Litecorrect automatically corrects common typing errors like <teh= instead of
<the.= (See https://github.com/reedes/vim-litecorrect.)

vim-lexical
Combined spellchecker and thesaurus. Vim-lexical lets me navigate between spell

errors with]s, [s and quickly find synonyms with <leader> t. (See https://git
hub.com/reedes/vim-lexical.)

vim-textobj-sentence
A plugin for better sentence navigation. I can move between sentences with

(and), I can cut a sentence with dis. Depends on vim-textobj-user. (See https://
github.com/reedes/vim-textobj-sentence.)

vim-textobj-quote
This plugin smartly creates <quotes= so I don’t have to. (See https://github.com/
reedes/vim-textobj-quote.)

ALE
The Asynchronous Lint Engine is a polyglot analysis tool that is not limited to
code. It supports a bunch of style checkers like proselint and LanguageTool. (See
https://github.com/dense-analysis/ale.)

There is more to the article; it’s worth reviewing the whole thing.

Conclusion
The Vim Awesome folks got it right: Vim truly is awesome! This chapter has touched
only the tip of the iceberg that is the world of Vim plug-ins. We hope that you will set
up your own IDE and take full advantage of Vim’s powers and abilities, which are far
beyond those of mortal text editors.

Just remember to come up for air occasionally as you’re exploring all the options
available to you. Good luck!

Conclusion | 373

https://github.com/reedes/vim-colors-pencil
https://github.com/reedes/vim-colors-pencil
https://github.com/reedes/vim-litecorrect
https://github.com/reedes/vim-lexical
https://github.com/reedes/vim-lexical
https://github.com/kana/vim-textobj-user
https://github.com/reedes/vim-textobj-sentence
https://github.com/reedes/vim-textobj-sentence
https://github.com/reedes/vim-textobj-quote
https://github.com/reedes/vim-textobj-quote
http://proselint.com
https://languagetool.org
https://github.com/dense-analysis/ale

1 We won’t discuss csh, except to mention that the original csh and vi were written by the same person: Bill Joy,

when he was a graduate student at the University of California at Berkeley. We also note that almost all shells

implement the Bourne shell language, whereas csh is different.

CHAPTER 16

vi Is Everywhere

Introduction
We’ve described many features that make vi and Vim the powerful editors they are.

But vi is more than just an editor. It is a philosophy. It is a way to think about
words in a different way. It lets us view text as objects. These objects, once learned,
form an approach to editing far different from <point and click= and <what you
see is what you get= (WYSIWYG). Text-as-objects is an interesting abstraction, one
so popular that it’s rippled into other tools, some of which may surprise you. This

chapter introduces some of the common instances of vi-think and some of the less
common (but surprisingly useful) instances.

Improving the Command-Line Experience
Just as vi users are power users, their <power= can extend beyond text editing.
For years command-line tools (terminal emulators, DOS windows, etc.) provided
rudimentary command-line editing and history. More and more, open source contri‐

butions have brought dramatic improvements to command-line environments. vi is
one of the more popular implementations of command-line history management for
many command-line environments.

In Unix the command line is called the shell. There are many shells. Some of the most

popular are sh (the original Bourne shell), Bash (the GNU Bourne-again shell), csh

(the C shell),1 ksh (the Korn shell), and zsh (Z shell).

375

Most but not all modern shells provide vi-mode command-line editing, as we are
about to see.

Sharing Multiple Shells

Before you test what we’re about to present, we strongly recommend
that you follow the directions we are about to give. We did not do
so, and we lost a history file containing almost 8,000 stored history
commands!

In the following examples, we describe briefly the option(s) necessary to enable
command history editing and then how to navigate your command history with

vi keystrokes. Since you will necessarily invoke different shells to test the different
options, you will create shell instances that each have their own notion of <environ‐
ment,= i.e., variables and behaviors specific to each shell. However, some shells have
default values for history files, and when you start or invoke them, they don’t bother
to override an existing definition of a history file.

For example, if you regularly use zsh and invoke a different shell (ksh), doing so does

not change the value of the history file variable (HISTFILE), dutifully recording ksh

commands in the zsh history file. When you exist ksh, the existing zsh is left dazed
and confused, and with a corrupt history file to boot! While this is not the end of the
world, if you want the power of history, don’t let this happen to you! So here’s what
you do:

1. In your home directory, create or edit a startup file for each of the shells: ksh1.

(.kshrc), Bash (.bashrc), and zsh (.zshrc). Make sure you don’t overwrite any such
file that you already have.

2. In each of these startup files, ensure that you won’t lose any valuable history data2.
by adding or verifying that these lines exist:

make BACKSPACE key do what it should do

stty sane

set command-line editing to vi mode.

set -o vi

keep history files in a hidden folder please.

myhistorydir=${HOME}/.history

make the directory, fail silently if it's already there

mkdir -p ${myhistorydir}

save lots of commands. computer memory is cheap and reliable.

HISTSIZE=5000

HISTFILESIZE=5000

save command history in this file. Note that we incorporate the shell's name

376 | Chapter 16: vi Is Everywhere

into the file name. this prevents collisions and corrupt history

files inadvertently assigned by different shells (it happens!)

HISTFILE=${myhistorydir}/.$(basename $0).history

The end result of this is that each shell’s history is stored in a separate file, based on
the name of the shell.

The readline Library
Many GNU and GNU/Linux tools use the readline library for interactive input. The

readline library allows a C (or C++) program to read user input, while providing
line editing on the input line.

The Bash Shell
Interactive editing of the shell command line, using either the Emacs or vi command
set, was first introduced in the Korn shell in the 1980s. The GNU Bourne-again shell
(Bash) chose to provide the same features, but built on top of a standalone reusable

library called readline.

When readline is enabled, you get a one-command <window= in your terminal on
which you can perform any edits you like using the familiar commands of your

favorite text editor, be that either Emacs or vi. To enable line editing, you use either

set -o emacs for Emacs mode or set -o vi for vi mode. We, of course, prefer the
latter. Typically, you would place one or the other of these commands into the .bashrc
file in your home directory, so that your desired option is always set.

Furthermore, readline stores a history of commands that you’ve executed, so you
can move up and down in the list of commands in order to recall and then edit

previous commands. For example, k moves up and j moves down in the history list. h

and l provide the normal horizontal motions within the current line.

Besides the regular vi commands, readline provides some additional commands in
command mode that perform expansions that are useful on the command line. These
are described in Table 16-1.

Table 16-1. Additional vi commands for use in the shell

Command Action

Insert a # at the front of the line, commenting out the line

= List �les with the given pre�x

* Insert the expansion of all �les with the given pre�x

TAB Take the preceding pre�x, and expand it as far as possible while remaining unique e.g., with a number of

chapterXX �les, and a pre�x of ch, TAB would expand ch into chapter

The readline Library | 377

Command-line editing in Bash

Taking a real-life example, one of us taught himself Unix by exploring commands in
the various Unix command directories (/bin, /usr/bin, /usr/local/bin, etc.). Leveraging
the ability to write complicated commands at the shell prompt, he wrote an on-the-fly

script to easily examine various commands with the man command, as shown here.

The $ is the main or primary prompt; the > is the secondary prompt issued when Bash
knows that the command is not yet complete:

$ cd /usr/bin

$ for man in a*

> do

> printf "\n\n\n$man, look at man page? "

> read yesno

> if [${yesno:-yes} = "yes"]

> then

> man $man

> fi

> printf "\n\nhit enter to continue "

> read dummy

> done

The shell runs a question/answer loop for each file in /usr/bin starting with the letter

a. To look at commands starting with other letters, he used Bash’s vi editing mode
by typing ESC K to edit the just-run command line for execution with a new
letter. Editing single-line commands in Bash is straightforward. However, multiline
commands are a bit messier. The preceding command, when recalled, is presented on
a single, very long line, which wraps around on the screen:

$ for man in b*; do printf "n\n\n$man, look at man page? ";

read yesno; if [${yesno:-yes} = "yes"]; then

man $man; fi; printf "\n\nhit enter to continue ";

read dummy; done

Note that the shell separator ; separates all the lines, and note that Bash preserved all

of the spacing. To move to each new line, start with f; to move to the first semicolon.

Using ; to move to the next occurrence and , to move to the previous occurrence,
each line is easily found for editing, albeit in a slightly clunky way.

In our example, your author wishes to change the a to b or to some other character.

To do so, he uses his favorite vi commands to move to a* and make the change.
Command-line editing, combined with a large stored history, enables him to return
to this <script= at any time by locating it in the Bash history and editing it again.

Multiline commands in Bash

Bash does have an option that makes editing multiline commands more pleasant:

shopt -s lithist. This causes Bash to store multiline commands in the history
file as multiple lines, instead of squashed together onto one line with semicolon
separators. When enabled, the recalled command looks like this:

378 | Chapter 16: vi Is Everywhere

2 Thanks to Chet Ramey, Bash’s maintainer, for this tip.

$ for man in a*

do

 printf "\n\n\n$man, look at man page? "

 read yesno

 if [${yesno:-yes} = "yes"]

 then

 man $man

 fi

 printf "\n\nhit enter to continue "

 read dummy

done

You still have to use horizontal motion commands to move around within the

recalled text; j and k move up and down in the history list and not within the
recalled multiline command. However, you can add additional key bindings to move

between physical screen lines. The readline commands to do that are next-screen-

line and previous-screen-line.2 You do that in your .inputrc file; see the section
<The .inputrc File= on page 380, and the readline(3) manual page.

Using Vim to edit Bash commands

If the built-in editor just doesn’t do it for you, you can invoke your favorite editor

on the command you want to change just by typing v. This puts the contents of your

command line into whatever editor is defined by your EDITOR environment variable.

We expect that this will be vi or Vim, of course; however, you can choose any editor
you like.

Here’s the catch. Bash immediately executes whatever is in the
editor buffer when the editor exits. Suppose you enter something
like:

$ rm -fr /

and then type ESC , and v to enter your editor. If you then decide

you don’t want to do anything and quit the editor (:q or :q!), that
original text executes, and kaboom!

A safe way to exit Vim and avoid this side effect is to exit with

the :cq command. This tells Vim to exit with a nonzero return
code. That, in turn, tells Bash that an error occurred and that no
command should be executed.

Having been burned by this feature, Elbert feels that this is enough
justification to consider the Z shell (see further on).

The readline Library | 379

Other Programs
Bash isn’t the only program that uses readline. If it’s available when the program

is built, GDB (the GNU debugger) uses it, as does GNU Awk (gawk) for its built-in

AWK debugger. On most GNU/Linux systems, the ftp program for interactive inter‐
net file transfers also uses it.

Having readline integrated with GDB is particularly helpful, as debugging often
involves entering repetitive commands, and being able to easily search for and edit
previous commands makes debugging much less of a chore. Consider following a
chain of <next= pointers in a linked list, for example.

The .inputrc File
But wait! There’s more!

—Just about every late-night TV commercial ever made

You can customize readline’s behavior by putting commands into its initialization

file. The INPUTRC environment variable points to this file. If INPUTRC isn’t set, then

readline looks for a file named .inputrc in your home directory. If that file isn’t

available, readline falls back to /etc/inputrc.

The readline(3) man page describes the format and possible contents of this file. The
library grows and develops over time, so we won’t provide a description of everything
here. Instead we present one author’s personal .inputrc file:

set editing-mode vi

set horizontal-scroll-mode On

control-h: backward-delete-char

set comment-begin #

set expand-tilde On

"\C-r": redraw-current-line

Here is a brief explanation of what each of these lines does:

set editing-mode vi

This turns on vi editing mode. The default is Emacs mode. Thus, even in GDB,

ftp, or any other program using readline, the vi command set is used.

set horizontal-scroll-mode On

This causes readline to display only a single line on the screen. Instead of

wrapping long lines, the right margin is marked with a > character. Moving to the

right past the > scrolls the line. When the left side of the line goes off the screen,

the left side is marked with a < character.

380 | Chapter 16: vi Is Everywhere

3 For Emacs users, this is usually your reverse history search key combination. vi’s reverse search is simply /

(after initiating history search mode by hitting ESC).

4 The Korn shell is still available and being updated.

control-h: backward-delete-char

This causes ^H (which is usually sent by the BACKSPACE key) to delete
characters.

set comment-begin #

This causes readline to insert a # character when the # command (<insert
comment=) is issued. For the shell, this comments out the current line but inserts
it into the history for later recall and editing. This is the default for Bash, anyway,
but our author’s file hasn’t changed since 2002!

set expand-tilde On

This causes readline to do tilde expansion when doing word expansion. This is

useful if readline is being used with a shell that doesn’t do tilde expansion, such

as the rc shell.

"\C-r": redraw-current-line

This causes CTRL-R to redraw the current line. This is useful if output from the
system gets intermixed with your input.3

Check out the readline man page; there are many more options, including some that
cause the output to be colored on terminal emulators that support color.

Other Unix Shells
The primeval shell with command-line editing is the Korn shell (ksh), originally

developed by David Korn while at Bell Laboratories. To enable vi mode, use set -o

vi (this is where Bash got it from). ksh’s editor is not based on the readline library.4

Similarly, the Z shell (zsh) has its own vi command-line mode; it is somewhat

different from that of ksh and Bash, and you may have to add additional key bindings
if you are used to one of those shells. We discuss the Z shell specifics in more detail

in the following section. On the plus side, zsh lets you edit multiline commands with
ease.

Finally, tcsh (the <Tenex csh=) also provides a vi mode, which is enabled with

bindkey -v. As neither of us are tcsh users, we don’t have much else to say about it.

Other Unix Shells | 381

https://github.com/ksh93/ksh

The Z Shell (zsh)
As mentioned previously, the Z shell has its own command-line mode with a pow‐
erful multiline history editor. Consider the example from earlier. The following illus‐

trates the differences in zsh, differences that provide more visual contextual clarity by
way of specialized prompts:

{elhannah,/usr/bin} for man in a*

for> do

for> printf "\n\n\n$man, look at man page? "

for> if [${yesno:-yes} = "yes"]

for if> then

for then> man $man

for then> fi

for> printf "\n\nhit enter to continue "

for> read dummy

for> done

And now we get to the real difference in command-line editing! Here we show how

zsh presents a multiline command in edit mode after entering ESC K :

{elhannah,/usr/bin} for man in a*

do

 printf "\n\n\n$man, look at man page? "

 if [${yesno:-yes} = "yes"]

then

 man $man

fi

 printf "\n\nhit enter to continue "

 read dummy

done

You now have a miniature vi session for much more accurate editing.

While this miniature session lets you insert (<open=) new lines of

code with o and O, be aware that you must finish the inserted line

with ESC . If you hit ENTER , zsh executes the entire block of text
immediately.

Keep As Much History As You Can
By now you should have an appreciation for the value of command-line history
and editing. In the section <Sharing Multiple Shells= on page 376, where we showed
you how to <save your work,= we defined history variables (related to how many
commands to save) thusly:

HISTSIZE=5000

HISTFILESIZE=5000

HISTFILE=${myhistorydir}/.$(basename $0).history

382 | Chapter 16: vi Is Everywhere

https://www.zsh.org

Think of your dialog, your history of commands issued in your favorite shell, as
a large file. Now your command-line history is a living document, with the added
benefit of command-line editing for quick and powerful retrieval of long-since-issued

commands. The larger the value of HISTSIZE, the further back your shell’s memory
extends.

Modern computers have an abundance of memory and disk storage. This obviates
the old-school need to carefully control your history size. We chose 5,000 as a happy
medium. We find this number provides searchable command history measured in
years.

The following use case illustrates how powerful command-line history and editing
leverage <things we’ve done before.= One of us occasionally works on graphics and
videos. However, he often works on other projects and goes many days, weeks,
and even months without using any video/graphics applications or commands. But
knowing even fragments of commands, or a core application or utility name, he easily
finds old examples to refresh his memory on usage and is presented with editable
commands for immediate productivity. For example, he makes heavy use of the

ffmpeg command, which has many options and combinations of parameters. Simply

by searching (ESC /ffmpeg ENTER) and iterating with n or N, all saved ffmpeg
commands are easily retrieved and available for editing.

Command-Line Editing: Some Closing Thoughts
As you start to use vi-mode command-line editing, keep in mind the notion that
your command history is like an editable file. Previous commands are right there at
your fingertips (on the HOME keys, no less!). Take advantage of this to improve your
mastery of applications by retrieving previous commands (<What was the syntax for
that command again?=). Set your saved commands settings big! Let your machine do
the work. We’ve given you the starting set of how-tos. Now you should explore the
man pages and look for the history settings (there are many).

Remember that everything typed in a shell is interpreted as if you
are entering a script. Knowing this, leverage some of the shell’s
behaviors. For example, take advantage of the fact that anything

beyond (and including) the # symbol is a comment and is not exe‐
cuted. Adding strategic comments to commands you might want to
easily remember gives you one more way of finding old commands.

While it was poor security practice, one of us often used # system

name passwd appended to an echo command whenever he changed
a password for a computer. Then he could easily search his history
for the most recent password.

Other Unix Shells | 383

5 NetBeans is an open source IDE for Java, JavaScript, HTML5, PHP, C/C++, and other languages. Vim’s

NetBeans interface allows it to be used as the editor within NetBeans.

Windows PowerShell
PowerShell is Microsoft’s object-oriented command-line environment. It is Micro‐
soft’s way to provide quick and powerful automation, forgoing often tedious GUI
navigation. The look and feel is reminiscent of Unix shells, and its object-oriented
nature extends Unix’s <everything is text= philosophy to <everything is an object.= The

command-line parsing is familiar to any user of the MS-DOS command.com/cmd.exe
consoles, with some IntelliSense niceties built in. For us, though, it’s not enough!

Fortunately, you can navigate the PowerShell console with vi commands. At the
PowerShell prompt, simply enter the command:

Set-PSReadlineOption -EditMode vi

To make this setting permanent you must add this command to PowerShell’s version
of .pro�le. As PowerShell has at least six different profile files, we leave the choice of
file to you as one of those proverbial exercises for the reader.

Developer Tools
Developers use many development tools and have to learn new tools often as they

stay current in technology. Having vi functionality in development tools makes them

more immediately usable and comfortable for developers familiar with vi and Vim.

In this section we look at debugging tools with vi functionality and at Vim plug-ins
for two versions of Microsoft’s Visual Studio© IDE.

The Clewn GDB Driver
Clewn implements full gdb support in the vim editor: breakpoints, watch variables,
gdb command completion, assembly windows, etc.

[...]

Clewn is a program controlling vim through the netBeans socket interface, it runs
concurrently with vim and talks to vim. Clewn can only be used with gvim, the
graphical implementation of vim, as vim on a terminal does not support netBeans.

—The Clewn Project home page

Clewn is an interesting program. It allows you to use Vim to see your source code as
you debug in GDB. Clewn controls Vim via the NetBeans interface.5

384 | Chapter 16: vi Is Everywhere

https://netbeans.org
http://clewn.sourceforge.net

To use Clewn, start it in a terminal window. Clewn prompts you with the (gdb)

prompt and causes gvim to open another window for displaying your source. This is
illustrated in Figure 16-1.

Figure 16-1. Clewn in action

Sadly, Clewn is unmaintained. However, one of us uses it regularly, and it continues
to compile <out of the box= and work just fine on current GNU/Linux systems.

The Clewn project home page is at http://clewn.sourceforge.net. Source code for
Clewn is included in this book’s GitHub repository. See the section <Accessing the
Files= on page 471 for more information.

CGDB: Curses GDB
CGDB is a very lightweight console frontend to the GNU debugger. It provides a split
screen interface showing the GDB session below and the program’s source code above.
The interface is modeled after vim’s, so vim users should feel right at home using it.

—The CGDB GitHub page

Debugging seems to be a theme here. This is perhaps not surprising, as vi and
Vim are first and foremost programmers’ editors, and thus it makes a software
development tool more acceptable when it too provides an interface similar to Vim’s.

You use CGDB in a terminal emulator window. CGDB splits the screen, showing the

(gdb) command prompt in the lower window and your source code in the upper
window. What’s nice is that the source code is syntax highlighted with different
colors. See Figure 16-2.

Developer Tools | 385

http://clewn.sourceforge.net
https://www.github.com/learning-vi/vi-files
https://github.com/cgdb/cgdb

Figure 16-2. CGDB in action

You use i to move from the command window to the source code window, and ESC
to move back to the command window. Once in the source code window, you can use
Vim searching commands to move around, including the use of regular expressions.

CGDB comes with a full Texinfo manual that explains its use. It provides a nice
alternative to Clewn and is considerably nicer than GDB’s own built-in text user

interface (gdb -tui).

The CGDB project home page is at https://github.com/cgdb/cgdb. Check it out!

Vim Inside Visual Studio
Microsoft’s Visual Studio is perhaps the world’s most widely used IDE. It can be
extended with plug-ins, also called extensions.

VsVim is an open source extension that provides a Vim emulator for use within
Visual Studio. As of this writing, it supports Visual Studio 2017 and 2019, and the
project is actively developed and maintained.

386 | Chapter 16: vi Is Everywhere

https://github.com/cgdb/cgdb
https://github.com/VsVim/VsVim

If you have to use Visual Studio but would prefer to have Vim-style editing, you
should check this one out.

Vim for Visual Studio Code

We discuss Vim plug-ins for Visual Studio and Microsoft Visual
Studio Code. That is because they are different. Although they are
often conflated to be the same application, they are not, hence,
different plug-ins.

Visual Studio Code: A quick introduction

Visual Studio Code is Microsoft’s lightweight version of their flagship IDE, Visual
Studio. It is commonly referred to as VS Code. VS Code, like its nonfree commercial
big brother, is a powerful development and project-management integration ecosys‐
tem. While it offers much of the same functionality, it is different enough that the
Vim plug-in options are also different. This is mostly a nit since it is quite easy in
either application to add Vim plug-ins.

Obviously, the first thing to do is to download and install VS Code. The installation is
very easy and straightforward.

VS Code extensions

Add-ons to VS Code are interchangeably referred to as extensions or plug-ins. The
quickest way to get to VS Code features is to know and use the universal <do this=
command. Simply type the command CTRL SHIFT-P for Microsoft Windows and
GNU/Linux, or COMMAND SHIFT-P for MacOS. (Interestingly, F1 also does this
on all three operating systems.) Begin typing <install extensions= and VS Code will
display a drop-down selection list. See Figure 16-3.

Figure 16-3. �e VS Code <do this= window

Developer Tools | 387

https://code.visualstudio.com

VS Code displays a vertical lefthand-side window summarizing installed extensions
and providing search for any installed extension as for well as extensions available
in the (vast) plug-in ecosystem. Enter <vim= in the search box and you should see
something like Figure 16-4.

Figure 16-4. Searching for an extension in VS Code

The highlighted item, vscodevim, is the plug-in choice. Click the <Install= button.
This brings up the dialog box shown in Figure 16-5.

Figure 16-5. Install vscodevim dialog

Any time you want to disable or uninstall an extension, find the extension the same
way as you did earlier. This brings up the dialog in Figure 16-6. Now click <Disable=
or <Uninstall.=

388 | Chapter 16: vi Is Everywhere

Figure 16-6. Disable or uninstall vscodevim dialog

vscodevim settings

To see the available settings for the vscodevim plug-in, use the VS Code universal
command, CTRL SHIFT-P , and search for settings. There will probably be many,
but choose <Preferences: Open Settings (UI).= See Figure 16-7.

Figure 16-7. Searching for settings in VS Code

Now search in the settings dialog, and you’ll see that there are almost 100 settings

related to vim, as shown in Figure 16-8.

Figure 16-8. VS Code settings for Vim

Developer Tools | 389

6 Remember that ^M is how Vim shows a carriage return, which you enter by typing CTRL-V CTRL-M . See

the section <Using the map Command= on page 124.

We leave the preferences to you to curate. Notice that many of the preferences simply
provide a link to open VS Code’s JSON settings file. Unfortunately, some common
Vim customizations require you to get comfortable with editing this file.

For example, as described in the section <Exiting Vim Simplified= on page 339, we

like to simplify quitting from Vim by mapping q and Q in vi command mode to :q^M

and :q!^M, respectively (quit Vim and really quit Vim!).6 You can’t do this in the VS
Code extensions preferences. Here is a block of JSON code to create the mapping:

"vim.normalModeKeyBindingsNonRecursive": [

 {

 "before": ["q"],

 "commands": [":q"]

 },

 {

 "before": ["Q"],

 "commands": [":q!"]

 },

 {

 "before": ["ctrl+v"],

 "commands": ["Ctrl+Shift+G"]

 }

],

Since this activity occurs within VS Code, IntelliSense is quite

useful for completing vim.XX, where XX is the vscodevim setting
in play. Note that in the preceding example we use the version

"NonRecursive" for normalModeKeyBindings to stop q from being
reinterpreted as needing mapping again. This is a common and
well-known technique in Vim mapping, defined by prefixing map

commands contextually with noremap. (See <Using the map Com‐

mand= on page 124 for a more complete discussion on mapping vi
commands.)

Vim is not just for VS Code

We chose VS Code to discuss Vim plug-ins for IDEs. VS Code has become extremely
popular as Microsoft aggressively attends to its development and evolution.

However, VS Code is only one of many IDEs, virtually all of which either offer their
own Vim emulation for editing or have readily available Vim-like plug-ins. We have
used and verified Vim plug-ins or emulation in NetBeans, Eclipse, PyCharm, and
JetBrains. There are many others. Chances are that there is a Vim plug-in for your
IDE.

390 | Chapter 16: vi Is Everywhere

Unix Utilities
The vi abstractions hide in many Unix/Linux utilities that you may be unaware of.

Here are some examples of utilities and how vi commands improve your efficiency
when not editing.

More or Less?
more is the original screen-based pager program: a program designed to present data
one screen at a time. It was developed as part of BSD Unix, in the same timeframe

as the original vi. Besides presenting file contents, more reads standard input if not
given any files, making it easy to use at the end of a pipeline.

Some time after more became standard, less, its name a pun on more, was written as
an enhanced pager. Today, both are generally available on modern systems.

We think (ironically) that more is actually less, and less is more. more is a legacy Unix

tool with basic pagination and interaction, while less is almost a streaming editor.

less lacks real editing features but provides robust navigation similar to Vim.

One of us, on his personal computers (GNU/Linux), always renames more to

more_or_less, and links /usr/bin/less to /usr/bin/more (thus making all things more,

less).

If you lack administrative permission or share a system where others may object, you
can set up the same thing with an alias that you would add to your personal .bashrc
file:

alias 'more=less'

One of our technical reviewers warned that renaming more and

linking less to more could cause unexpected behaviors and confu‐
sion, possibly affecting the execution of scripts and installers that

expect more’s original behavior. We agree with the warning, and the
advice is worth noting. You should make these modifications with
discretion.

For the record, we have made the modifications just described

on every GNU/Linux installation since the advent of the less
command and have never noticed any adverse effects in the system.
Nonetheless, your mileage may vary.

Another option to cause less to be used instead of more (at least most of the time) is

to set the PAGER environment variable in your .bashrc file:

export PAGER=less

Unix Utilities | 391

With that, <the less said, the better.= Here are less’s Vim-like features:

b, d

Go up or down one page, respectively (not available in more).

gg, G
Go to the beginning or bottom of the input file or stream respectively (not

available in more).

/pattern, ?pattern, n, N
Search forward or backward for pattern, and find the next match in the same
direction, or in the opposite direction.

v

Open the current file in the editor named by the EDITOR environment variable.
This works only for a file, not for standard input.

Conoguring less’s display

A somewhat obscure feature of less is the ability to configure how it displays text.

For most uses this isn’t interesting, but now that we’ve exchanged less for more,
a real difference and a nice enhancement changes how you’ll see manual pages by
issuing the following commands. Try viewing a few manual pages before and after to

appreciate the visual effect (e.g., man man):

variables and dynamic settings to improve less

export LESS="-ces -r -i -a -PM"

Green:

export LESS_TERMCAP_mb=$(tput bold; tput setaf 2)

Cyan:

export LESS_TERMCAP_md=$(tput bold; tput setaf 6)

export LESS_TERMCAP_me=$(tput sgr0)

Yellow on blue:

export LESS_TERMCAP_so=$(tput bold; tput setaf 3; tput setab 4)

export LESS_TERMCAP_se=$(tput rmso; tput sgr0)

White:

export LESS_TERMCAP_us=$(tput smul; tput bold; tput setaf 7)

export LESS_TERMCAP_ue=$(tput rmul; tput sgr0)

export LESS_TERMCAP_mr=$(tput rev)

export LESS_TERMCAP_mh=$(tput dim)

export LESS_TERMCAP_ZN=$(tput ssubm)

export LESS_TERMCAP_ZV=$(tput rsubm)

export LESS_TERMCAP_ZO=$(tput ssupm)

export LESS_TERMCAP_ZW=$(tput rsupm)

This file is available in the book’s GitHub repository. See the section <Accessing the
Files= on page 471.

There are many more features. We leave the rest for you to explore. Hint: At the less

prompt, type h to get help.

392 | Chapter 16: vi Is Everywhere

https://www.github.com/learning-vi/vi-files

screen
screen is a terminal session multiplexer providing multiple concurrent working
sessions inside one terminal window. With terminal emulators available today with

multiple sessions, usually implemented across tabs, what makes screen worthwhile?

We will answer that question after presenting how to use screen, and in particular
after showing a useful sample configuration file. So patience, please.

screen provides faithful terminal behavior for its sessions and thus requires you to
use a special prefix character to activate its commands and functions. The default is

CTRL-A . For example, to display a summary of most available screen commands,

the screen command is ? . So you must type CTRL-A ? to display the summary.

Keep this in mind when experimenting with screen.

The following presentation assumes the use of a GNU/Linux or

Unix system and that the screen application is available. Verify

your system has screen with the type command from the shell
prompt:

$ type screen

A response like screen is /usr/bin/screen is good. If you don’t

get such a response, install screen with your package manager.
Start at https://www.gnu.org/so�ware/screen if you want (or need)

to build screen from source.

Getting started with screen

screen, like many Unix applications, reads an optional user configuration file to set

options and define sessions. The screen configuration file, .screenrc, lives in your
home directory. To help follow the discussion, you can either copy the .screenrc file
from the book’s GitHub repository or create the file yourself and put the following
lines in it:

startup_message off

defscrollback 20000

Help screen, key bindings:

bindkey -k k9 exec sed -n '/^# Help/s/^/^M/p;/^# F[1-9]/p' $HOME/.screenrc

F2 : list windows:

bindkey -k k2 windowlist

F3 : detach screen (retains active sessions -- can reconnect later):

bindkey -k k3 detach

F10: previous window (e.g., window 4 -> window 3):

bindkey -k k; prev

F11: next window (e.g., window 2 -> window 3):

bindkey -k F1 next

F12: kill all windows and quit screen (you will be prompted):

bindkey -k F2 quit

Unix Utilities | 393

https://www.gnu.org/software/screen
https://www.github.com/learning-vi/vi-files

screen -t "edits for chapter 1"

screen -t "manage screen captures"

screen -t "manage todos"

screen -t "email and messages"

screen -t "git status and commits"

screen -t "system status"

screen -t "remote login to NAS" ssh 10.0.0.999

screen -t "solitaire"

select 1

Now start screen:

$ screen

You should see a normal-looking session, i.e., a command prompt in a window. The

last line in the preceding code block, select 1, tells screen to start your interaction

in the first window or session (defined as <edits for chapter 1=). The beauty of screen
is that you are in a session, one of eight defined in the configuration file, each
completely independent from the others.

screen has many ways to select sessions and navigate among them. We want to

illustrate the vi-like navigation.

screen uses single-character commands for most actions. Each of

these single-character actions must be preceded by screen’s leader
command-character, which by default is CTRL-A .

The screen menu

screen’s command to display a list of available sessions is the double-quote (").
So, keeping the preceding tip in mind, you display the session menu with the two
keystrokes, CTRL-A " . When you do, you should see something like Figure 16-9.

Figure 16-9. Available sessions in screen

While it’s only very basic, you can select a session line with the standard line-up

and line-down vi commands, k, and j. That’s not a lot of vi, but obviously in this

394 | Chapter 16: vi Is Everywhere

context anything else is not really necessary. The point is that this is a philosophy of

movement, and the screen developers chose vi.

Navigating your session’s output

There is much more vi interaction in the screen sessions themselves. screen buffers

text during your session(s), and you can navigate through this saved text using vi

commands by typing CTRL-A ESC . By default, screen stores only about 100 lines
of text. As you can see in our configuration above, we changed that default to 20,000.
This is much more reasonable on modern systems. Really, make sure you set this.
One hundred cached lines of text isn’t much at all.

Each buffer is maintained separately per session. Thus, in addition to command-line

history that you can search, edit, and re-execute, you have vi-like access to both your
commands and your commands’ outputs!

The basics for searching a screen buffer start with vi-basics. After typing CTRL-A

ESC . you can search the buffer with motion commands (line up is k, line down is

j, scroll up is ^B, scroll down is ^F, etc.). Forward search, as you might expect, is

initiated with /, and backward search is initiated with ?. Note that using ? for your
first search from the bottom of a buffer as a forward search will find nothing, since

you are at the bottom already. To get more complete vi-like instructions for screen,

go to screen’s man page and search for <vi-like.= See Figure 16-10.

Figure 16-10. vi instructions for screen

With screen and its vi-like buffer navigation, you have access to information you’d
probably thought you’d lost. That’s been our experience more than once.

Take advantage of screen’s key bindings

In the sample .screenrc code shown earlier, there are lines unrelated to defining
terminal sessions. These are our recommended key bindings. For example, the lines:

F2 : list windows

bindkey -k k2 windowlist

Unix Utilities | 395

bind function key 2 (k2 denoting F2) to the command windowlist, which is nor‐

mally invoked within a screen session by CTRL-A " . This is a more intuitive
shortcut for an action you’ll probably use all the time: seeing the menu of available

running screen sessions.

The others mapped in our sample configuration include:

F3

Detach totally from the screen session.

F10

Move to the screen session numerically minus one from the current session (e.g.,
if you are in session four, go to session three).

F11
This is the complement to F10: go to the next available session.

F12

Kill all sessions and quit screen. You probably won’t use this often, but when you
want to, it’s nice to have a function key ready to use.

So now you know how to nicely map keys to common or interesting screen com‐
mands, but how do you keep track or remember what you mapped? For that, see the
binding to F9 :

Help screen, key bindings:

bindkey -k k9 exec sed -n '/^# Help/s/^/^M/p;/^# F[1-9]/p' $HOME/.screenrc

We have bound F9 to execute the sed stream editor. It extracts the commented
portion of all of the configuration file key mappings and displays that output at your

prompt. Just like in the shell, everything including and beyond the # symbol is a
comment. Typing F9 ends up looking something like this:

$ F9 pressed

Help screen, key bindings

F2 : list windows

F3 : detach screen (retains active sessions -- can reconnect later)

F10: previous window (e.g., window 4 -> window 3)

F11: next window (e.g., window 2 -> window 3)

F12: kill all windows and quit screen (you will be prompted)

We chose F9 because some terminal emulators reserve F1 for their own help.

What makes screen great

Earlier, we posed the question, <With terminal emulators available today with multi‐

ple sessions, usually implemented across tabs, what makes screen worthwhile?=

The answer is that you can leave the sessions and return to them. They are maintained

and active. As was just explained, we defined F3 to detach from screen. Try it.

396 | Chapter 16: vi Is Everywhere

You are returned to the command prompt and shell you were in before you entered

screen. Try F2 now and verify it does nothing since you are not part of a screen
session.

You can discover which screen session(s) you can attach to with screen’s <list=
command:

$ screen -list

There is a screen on:

 8491.pts-0.office-win10 (04/06/21 18:58:39) (Detached)

1 Socket in /run/screen/S-elhannah.

Reattach and resume any and all work in that set of screen sessions with the attach
option. You attach by entering the ID number:

$ screen -Ar 8491

You are now back in your set of sessions within screen. No worries about closing the

window that is running screen; that qualifies as a <detach,= and you reattach as just

described! We have used this feature and sustained multiple sessions within screen
(typically between 5 and 8), detaching and reattaching from various remote logins,
and kept those sessions active for more than three months at a time!

And …, Browsers!
In many ways, internet browsers have been playing catch-up with technology since
the day they were introduced. When browsers first appeared, they were crude (by
today’s standards), displaying information with links to click on and other informa‐
tion. Graphics were primitive, printing didn’t exist, and a hodgepodge of standards
created an unpleasant and inconsistent user experience.

Thankfully, standards have matured and merged, graphics and presentation became
powerful, compatible, and portable (mostly), and browsers today are consistent and
usable by casual users. Recently, third parties have provided extensions that bring
Vim abstractions to the browser experience.

We have two favorite Chrome extensions we’ll demonstrate: Wasavi, an implementa‐
tion of Vim for editing text fields in the browser (e.g., filling out a text area in a
customer feedback form), and Vimium, a way to navigate pages, bookmarks, URLs,
and searches using Vim-like abstractions. Both of these extensions can dramatically
improve your browsing efficiency.

These examples are for Chrome, implying they are available for any
Chromium-based browser. This is good news for Microsoft Edge
users, as Microsoft provides Chrome extension compatibility with
Edge.

And …, Browsers! | 397

Wasavi
Wasavi is an open source plug-in for Chrome. The source code is available on
GitHub.

Let’s take a look. Figure 16-11 presents a text widget with lines that need to be moved.

Figure 16-11. A browser text widget to be edited

1. Lines to be moved to a different location in a text widget. Let’s do it the vi way1.
with Wasavi.

Figure 16-12 presents the same text widget, but with Wasavi in action.

Figure 16-12. A browser text widget to be edited with Wasavi

1. Numbered lines give us a visual cue we are in vi.1.

2. The alternating background shade gives us another visual cue.2.

398 | Chapter 16: vi Is Everywhere

https://chrome.google.com/webstore/detail/wasavi/dgogifpkoilgiofhhhodbodcfgomelhe
https://github.com/akahuku/wasavi

3. We can use vi commands to move these lines.3.

4. Wasavi’s vi status line!4.

Finally, Figure 16-13 shows the same text widget after we’ve rearranged the contents.

Figure 16-13. �e text widget, a�er editing

1. The simple vi steps 11G, 3dd, gg, p do the trick. (11G goes to line 11; 3dd deletes1.

the three lines that we want to move; gg goes to the top of the file; and p puts the
three lines we deleted into their new location.)

2. Saving the <file.=2.

Vim + Chromium = Vimium
Vimium is a Chrome extension providing a Vim-like experience. You can read about
it at its home page. It’s also available in some form for other browsers, e.g., Firefox
and Safari, for example.

Vimium lets you navigate the internet in a vi-like way. Since a browser is not an
editor, of course, it makes sense that there is not a one-to-one mapping of Vim
commands to Vimium actions. However, if you are familiar with and comfortable
in Vim, the learning curve is pretty easy, and the Vim-isms make sense (mostly).
Very much in the flavor of Vim, Vimium transforms the browser experience from a
point-and-click exercise to the familiar <do everything from the keyboard= one. We
find Vimium to be a must for browsing.

Keep the Vimium control handy

We recommend pinning the Vimium extension to the Chrome list of extensions; that
is, keep it visible. This provides a visual cue indicating whether Vimium is active or

And …, Browsers! | 399

https://chrome.google.com/webstore/detail/vimium/dbepggeogbaibhgnhhndojpepiihcmeb?hl=en

inactive. It also serves as a toggle should you need to temporarily turn Vimium off
for bad behavior, which happens occasionally. It’s rare that you would toggle Vimium
on; for most websites where Vimium is off, it’s off for a reason—on Google Mail, for
example, where Google has already provided a full suite of key mappings to navigate
mail.

There are so many things Vimium does. We’ll highlight some useful features to get
you going.

Finding links, and going to a link without clicking

Vimium abstracts the Vim f command by highlighting all visible links in the browser
with badges. Typically these badges take the form of unique one- or two-character
IDs. This powerful feature lets you quickly go to links, bypassing the need to slide the
mouse and (accurately) click a link. For pages with minimal links, this usually takes

only two keystrokes. The first keystroke is always f, and the second is the one- or
two-character ID of the link. For a small number of links, Vimium tries to minimize
IDs to a single character.

For web pages with many links, in addition to making it quick and easy to access a
link, Vimium provides a uniform presentation of IDs and makes it simple to see what
links exist on the page. Consider the sample Facebook page in Figure 16-14, with
numbered explanations of the sections of the page. Depending on the resolution of
your media, the badges/IDs may not be legible—they are clear when browsing.

1. SC goes to the author’s Facebook profile.1.

2. AD goes to the author’s friends list.2.

3. FD goes to the author’s groups list.3.

4. DE goes to the shortcut to <The Vim text editor= Facebook forum.4.

5. XX, where XX is any matching ID to contact, initiates a message with that contact.5.

400 | Chapter 16: vi Is Everywhere

Figure 16-14. A Facebook page with Vimium badges

Vimium abstracts the Vim F command similarly to what it does for f, but going one
step further by opening the link associated with the ID in a new tab.

Text search

Just as / initiates a search in Vim, Vimium initiates a search the same way. It’s
important to verify that the search is initiated by looking for the input box at the
bottom of the browser window. See Figure 16-15.

Figure 16-15. Searching for text with Vimium

Most savvy browser users already know that CTRL-F or CMD-F for Mac invokes

the native browser search, but in the spirit of a Vim experience, / is a more natural
and convenient <stay on the home keys= experience. As you type in a search string,
the browser scrolls to the first match and highlights the matching pattern. Hitting
ENTER terminates the search string.

And …, Browsers! | 401

Just as n and N go to the next and previous matches of a search pattern in Vim,
Vimium positions the browser to next and previous matches the same way.

Vimium defaults to plain text searches, i.e., what you see is what
you find. It does support regular expressions, in options that we
leave for you to explore.

Browser navigation

Vimium abstracts Vim movements for navigating browser history and browser tabs.
Here is a brief summary of what should be familiar to you:

j, k
Scroll the browser up and down by lines at a time.

H, L
Go to the <back= and <forward= pages, respectively. Note the case—it is case
sensitive!

K, J
Go to the tab immediately to the right and left, respectively. Again, case sensitive!

We use these two familiar Vim commands to go to the top or bottom of the web page:

gg

Go to the top of the web page.

G

Go to the bottom of the web page.

Other commands help you move between pages and tabs:

]], [[
For websites that have multiple pages linked as a forward and backward series,
go to the next or previous page. Typically such pages have left- and right-arrow
buttons on the bottom, or <NEXT= and <PREV= buttons providing the links.

A good example of this would be lists of product reviews on a shopping website
that has many pages of reviews. Also, for sites with annoying clickbait slide
shows, this mechanism is wonderful for cruising through the slides without
having to fight off the <click mes.=

^ (up arrow or caret)
Visit the last visited tab. For example, if you have many tabs up and are focusing

on two that are geographically far away from each other, the ^ character quickly
jumps back and forth between the two most recently used tabs.

402 | Chapter 16: vi Is Everywhere

Useful key remappings

We found the K (go to immediate right tab) and J (go to immediate left tab) com‐
mands to be confusingly contrary to the intuitive and matching sense of natural

order. That is, since k is a <scroll up,= it would seem more natural for K to move to
the immediate left tab instead of the immediate right tab. Fortunately, this can be
remapped in Vimium options, and that’s what we did.

Similarly, in the section <Marking Your Place= on page 62, we described how the vi

command '' (two apostrophes) returns to the beginning of the line of the previous

mark or context. We find it useful to map '' to Vimium’s visitPreviousTab com‐

mand (the same as ^, just described). This lets you jump back and forth between tabs
by typing a single quote consecutively.

To do this, open the Vimium options and enter the custom key mappings, as shown
in Figure 16-16. This includes all three key remappings, as well as a new mapping for

q.

Figure 16-16. Useful Vimium key remappings

When you get lost and confused

In any web page where Vimium is active, you can quickly get help by typing ?.
Vimium overlays the page with a summary of the commands and their actions. It is
notable and convenient that Vimium actions work on Vimium’s own help page. This
comes in handy for searching for specific features. The ESC key returns you to your
original web page. Figure 16-17 provides a partial snapshot of Vimium’s help overlay.

And …, Browsers! | 403

Figure 16-17. Vimium’s help

A use case

Consider a common activity: shopping for a laptop online, such as on a large ecom‐
merce website.

One important requirement is that the new laptop have excellent battery life. Once a
candidate product is identified, it is easy to go and view all the reviews, knowing in
advance that the reviews are sequenced across some number of <next= and <previous=

pages. Starting on the first page, we search for any reference to battery with /battery
ENTER . Now we can navigate up and down in the page of reviews to all the
instances and references to reviewers’ comments about battery life.

Next, since Vimium knows the common links that go to the next and previous

sequenced pages, we use [[and]] to move forward and backward through the pages

of reviews. Vimium remembers the search pattern, so it’s easy to use n and N to find
more comments in reviews related to battery. This is a common exercise that we use
to quickly research products. Think about power, reliability, and many other desirable
characteristics in a product.

404 | Chapter 16: vi Is Everywhere

vi for MS Word and Outlook
Many software developers who work in a Unix or GNU/Linux environment find
themselves having to use Microsoft Word for documentation and Microsoft Outlook
for email in their office environment.

As software developers, it is our shared experience that switching gears after long

coding exercises using Vim is always a speed bump. Being able to use vi commands
for editing in Word would allow developers like us to create better documentation
faster. As it is, we end up getting in and out of Word as quickly as possible.

Similarly, we find Outlook to be something we have to fight with, instead of using
it comfortably. A simple and common use case is a conversation thread in which it’s
important to reference comments in the thread. We would prefer to find relevant

text and quote it by copying and pasting into our narrative. If only we could use /

to search for text, y to yank it, and then '' (return to last location) and p, the time
savings would be enormous. And the efficiencies gained from not burning calories
navigating, highlighting, and copying and pasting would improve thought processes.
Instead of diverting to a mouse, scrolling, getting stuff, and pasting it, we could rely

on vi muscle memory and quickly manipulate text more naturally, while focusing

our important mental energy on what we are trying to say. This is aligned with the vi
meme <editing at the speed of thought.=

Fortunately there is a commercial plug-in for Word and Outlook that solves these
problems: ViEmu.

Arnold no longer uses Word or Outlook. Elbert does. While he was skeptical at first,
Elbert gave it a try and eventually ended up buying the plug-in. As Outlook’s editing
paradigm is essentially the same as that of MS Word, and since the plug-in is for both,
we will simply talk about <Word,= but be aware that everything applies to both Word
and Outlook.

The behavior of ViEmu is very vi-like, and the plug-in is easily activated and deacti‐

vated to suit your needs. Since we have described the vi way many times by now, we

won’t dwell on how to use ViEmu. It is sufficient to know that there is enough vi-ness
such that Vim users will instantly understand and appreciate how to use it.

Download the free trial from and install ViEmu. Once it is installed, you can verify
that the plug-in is active by the yellow status line at the bottom of the application. See
Figure 16-18.

Figure 16-18. ViEmu’s status line in Word or Outlook

vi for MS Word and Outlook | 405

http://www.viemu.com
http://www.viemu.com

Toggle ViEmu off by typing CTRL ALT SHIFT-V . Figure 16-19 shows the status
line when ViEmu is inactive.

Figure 16-19. ViEmu’s status line when ViEmu is inactive

Figure 16-20 shows the available options/preferences for the plug-in.

Figure 16-20. ViEmu settings

ViEmu strikes a balance between emulating vi functionality and staying faithful to
Word. There are some things to note about the plug-in’s behavior, some of which are

the result of how each vi action or command is ultimately passed through to Word
and handled by it. Consider the following points:

• Fonts are retained in the context of document.•

• Ordered lists are automatically renumbered as they are shuffled with vi com‐•
mands (e.g., delete a list item, and put it somewhere else in the list). We show an
example shortly.

• Because Word has its own idea of what comprises lines in a document, the•
plug-in treats blocks of text in a kind of duality. For normal navigation up and
down, the cursor moves intuitively up and down one line in the screen, much
like it does with the arrow keys. However, since Word treats paragraphs as blocks,

406 | Chapter 16: vi Is Everywhere

the plug-in deletes an entire paragraph when you use the delete-line command,

dd. This way of working is immediately recognizable.

Here is an example of the ordered list magic, using the first three habits from Stephen
R. Covey’s �e 7 Habits of Highly E�ective People (Simon & Schuster). While entering
the list (see Figure 16-21), we realized that the order of the habits was wrong. Note
that the cursor is on habit 2.

Figure 16-21. �e �rst three of the <7 Habits,= out of order

We type the vi command to swap lines, ddp, and voilà! They are now ordered
properly. See Figure 16-22.

Figure 16-22. �e �rst three habits, now in correct order

Again, all of these behaviors become comfortable and familiar. As an appetizer and
assurance of ViEmu robustness, here is a partial list of observed and verified features:

• Change/delete in objects:•

— In parentheses: ci(, di(—

— In square brackets: ci[, di[—

— In curly braces: ci{, di{—

• Delete at objects (deletion including the enclosing characters):•

— At parentheses: da(—

— At square brackets: da[—

— At curly braces: da{—

• Full and selectable regular expression support. You can set the plug-in to honor•
your favorite regular expression flavor.

• Full documentation at http://www.viemu.com/wo/viemu_doc.html—always a big•
plus!

vi for MS Word and Outlook | 407

http://www.viemu.com/wo/viemu_doc.html

The rest of how to use ViEmu is left for you to explore. It’s worth a look if you use
Word a lot and prefer Vim behavior.

The plug-in website describes available options and pricing.

Honorable Mention: Tools with Some vi Features
It’s difficult to define what is and what isn’t vi. Take the case of regular expressions,

which existed for many years preceding vi and Vim. However, some tools have some
convenience features baked in that are worth mentioning because they have some

flavor of what vi is all about: powerful fast editing, powerful search and replacement,
and so on. We mention them here to highlight that tools with such features are out
there and are worth looking for.

Google Mail
Google Mail has its own set of mapped keyboard shortcuts. You’ll find some of the

navigation mappings quite familiar. For most interactions, j and k are sufficient for

navigating the list of emails. s <selects= the current line for any actions. x deletes any

emails selected by s. mU marks selected emails as unread. ENTER opens the current
email.

In an open email, x deletes the email, and u moves you <up= to the list of emails.

For a comprehensive list of keyboard shortcuts, enter ? in the listing panel (not in
input mode).

Microsoft PowerToys
Microsoft has an add-on, PowerToys, with a myriad of cool additions to improve
Windows. Most of them are outside the scope of this book. However, one tool worth
mentioning is PowerToys’ PowerRename utility. It provides a robust way to rename
many files at once using criteria to accomplish what normally would be long and
tedious one-at-a-time exercises. What sets PowerRename apart from similar tools
is the ability to use regular expressions both to identify files to be renamed and to
determine how the renaming is to be applied.

PowerToys also has a powerful keyboard mapping tool, Keyboard Manager, which
lets you map the keyboard to your liking. While navigating a Windows desktop is

unlikely to ever feel like a vi experience, at least there is now a way to easily map

actions to vi-like keystrokes. Other, previous keyboard managers were either not
free, not easy to manage, or both.

408 | Chapter 16: vi Is Everywhere

https://docs.microsoft.com/en-us/windows/powertoys

Summary
From well-known examples like command-line history editing, to software ecosys‐

tems like IDEs, to internet browsers, it’s clear that vi is a popular editing paradigm.
Anecdotally, Jon, the author of the ViEmu plug-in for Microsoft Word, received
requests from Microsoft engineers for his plug-in! We have found that almost all
of the highest-rated and most popular text editors either include a Vim setting for
emulation or have plug-ins to emulate Vim behavior. Even Emacs has Viper, an

installable plug-in for vi emulation! (See the section <Tastes Great, Less Filling= on
page 480.) So if you ever sit down to a new environment, look around or ask others

where the vi/Vim setting or plug-in is. It probably exists.

Summary | 409

CHAPTER 17

Epilogue

If you’ve made it to here, we thank you for your patience and interest.

We’ve come a long way since the beginning of this book. We started with the basics—

<What are text editors and text editing?=—and progressed through understanding vi

command mode and the underlying ex editor, including regular expressions and the

powerful command language underlying vi and Vim.

From there we did a deep dive into just some of Vim’s many features, which make

Vim at least an order of magnitude more powerful than the original vi. Vim is
great at editing regular text (we composed this book in it), but it really shines as a
programmer’s editor.

Finally, we looked at how Vim’s extensibility allows you to build it into a full-fledged

IDE, as well as at how vi’s command-driven editing model can be found in other
tools.

If and as long as you manage textual information from a keyboard, we think it
well worth your time to learn Vim. Much as touch-typing is more efficient than
hunt-and-peck typing, Vim is a quantum level better at text and program editing than
any mouse-driven GUI editor.

Enjoy!

411

PART IV

Appendixes

Part IV provides reference material that should be of interest to a vi or Vim user.
This part contains the appendixes:

• Appendix A, <The vi, ex, and Vim Editors=•

• Appendix B, <Setting Options=•

• Appendix C, <The Lighter Side of vi=•

• Appendix D, <vi and Vim: Source Code and Building=•

APPENDIX A

The vi, ex, and Vim Editors

This appendix summarizes the standard features of vi in quick-reference format.

Commands entered at the colon prompt (known as ex commands because they date
back to the original creation of that editor) are included, as well as the most popular
Vim features.

This appendix presents the following topics:

• Command-line syntax•

• Review of vi operations•

• vi commands•

• vi configuration•

• ex basics•

• Alphabetical summary of ex commands•

Command-Line Syntax
The three most common ways of starting a Vim session are:

vim [options] file

vim [options] -c num file

vim [options] -c /pattern file

You can open �le for editing, optionally at line num or at the first line matching
pattern. If no �le is specified, the editor opens with an empty buffer.

415

1 If you use Vim and set .viminfo to restore the file’s last cursor location, the search starts in the direction

mentioned from the restored cursor location. Also, depending on the setting of the wrapscan (ws) option in

the .vimrc configuration file, the search will stop (:set nowrapscan) or continue (:set wrapscan) past the

top or bottom line in the file.

Command-Line Options
Because vi and ex are the same program, they share the same options. However,
some options make sense for only one version of the program. Brackets indicate
optional items. Command-line options specific to Vim are so marked:

+[num]

Start editing at line number num, or at the last line of the file if num is omitted.

+/pattern

Start editing at the first line matching pattern.1

+?pattern

Start editing at the last line matching pattern.1

-b

Edit the file in binary mode. {Vim}

-c command

Run the given ex command upon startup. Only one -c option is permitted for vi;

Vim accepts up to 10. The older form of this option, +command, is still supported.

--cmd command

Like -c, but execute the command before any configuration files are read. {Vim}

-C

Solaris 10 vi: same as -x, but assume the file is encrypted already. Not in Solaris

11 vi.

Vim: start the editor in vi-compatible mode.

-d

Run in diff mode. Works like vimdiff. {Vim}

-D

Debugging mode for use with scripts. {Vim}

-e

Run as ex (line-editing rather than full-screen mode).

-h

Print help message, then exit. {Vim}

416 | Appendix A: The vi, ex, and Vim Editors

-i file
Use the specified �le instead of the default (~/.viminfo) to save or restore Vim’s
state. {Vim}

-l

Enter Lisp mode for running Lisp programs (not supported in all versions).

-L

List files that were saved due to an aborted editor session or system crash (not

supported in all versions). For Vim, this option is the same as -r.

-m

Start the editor with the write option turned off so that the user cannot write to
files. Vim still permits changes to the buffer but will not permit writing the file,

even with the :w! override. {Vim}

-M

Do not allow text in files to be modified. This is similar to -m but additionally
blocks any changes to the buffer. {Vim}

-n

Do not use a swap file; record changes in memory only. {Vim}

--noplugin

Do not load any plug-ins. {Vim}

-N

Run Vim in a non-vi-compatible mode. {Vim}

-o[num]

Start Vim with num open windows. The default is to open one window for each
file. {Vim}

-O[num]

Start Vim with num open windows arranged horizontally (split vertically) on the
screen. {Vim}

-r [file]

Recovery mode; recover and resume editing on �le after an aborted editor ses‐
sion or system crash. Without �le, list files available for recovery.

-R

Edit files in read-only mode. Vim warns you if you make changes and allows the
changes to occur. If you try to save the file with changes, Vim prompts you to
override the read-only context.

The vi, ex, and Vim Editors | 417

-s

Silent; do not display prompts. Useful when running a script. This behavior also

can be set through the older - option. For Vim, applies only when used together

with -e.

-s scriptfile
Read and execute commands given in the specified script�le as if they were typed
in from the keyboard. {Vim}

-S commandfile
Read and execute commands given in command�le after loading any files for

editing specified on the command line. Shorthand for vim -c 'source command

file'. {Vim}

-t tag
Edit the file containing tag, and position the cursor at its definition.

-T type

Set the term (terminal type) option. This value overrides the $TERM environment
variable. {Vim}

-u file
Read configuration information from the specified configuration file instead of

the default .vimrc configuration file. If the �le argument is NONE, Vim reads
no configuration files, loads no plug-ins, and runs in compatible mode. If the

argument is NORC, it reads no configuration files, but it does load plug-ins. {Vim}

-v

Run in full-screen mode (default for vi).

--version

Print version information, then exit. {Vim}

-V[num]

Verbose mode; print messages about what options are being set and what files are
being read or written. You can set a level of verbosity to increase or decrease the
number of messages received. The default value is 10 for high verbosity. {Vim}

-w rows
Set the window size so rows lines at a time are displayed; useful when editing over

a long-distance internet connection. Older versions of vi do not permit a space
between the option and its argument. Vim does not support this option.

-W scriptfile
Write all typed commands from the current session to the specified script�le. The

file thus created can be used with the -s option. {Vim}

418 | Appendix A: The vi, ex, and Vim Editors

2 This option is obsolete; the crypt command’s encryption is weak and you shouldn’t use it.

-x

Prompt for a key that will be used to try to encrypt or decrypt a file using crypt
(not supported in all versions).2

-y

Modeless vi; run Vim in insert mode only, without a command mode. This is the

same as invoking Vim as evim. {Vim}

-Z

Start Vim in restricted mode. Do not allow shell commands or suspension of the
editor. {Vim}

Although most people know ex commands only by their use within vi, the editor
also exists as a separate program and can be invoked from the shell (for instance, to

edit files as part of a script). Within ex, you can enter the vi or visual command to

start vi. Similarly, within vi, you can enter Q to quit the vi editor and enter ex.

You can exit ex in several ways:

:x Exit (save changes and quit).

:q! Quit without saving changes.

:vi Enter the vi editor.

Review of vi Operations
This section provides a review of the following:

• vi modes•

• Syntax of vi commands•

• Status-line commands•

Command Mode
Once the file is opened, you are in command mode. From command mode, you can:

• Invoke insert mode•

• Issue editing commands•

• Move the cursor to a different position in the file•

• Invoke ex commands•

The vi, ex, and Vim Editors | 419

• Invoke a shell•

• Save the current version of the file•

• Exit the editor•

Insert Mode
In insert mode, you enter new text into the file. You normally enter insert mode with

the i command. Press the ESC key to exit insert mode and return to command
mode. The full list of commands that enter insert mode is provided later, in the
section <Insert Commands= on page 425.

Syntax of vi Commands
In vi, editing commands have the following general form:

[n] operator [m] motion

The basic editing operators are:

c Begin a change.

d Begin a deletion.

y Begin a yank (or copy).

If the current line is the object of the operation, the motion is the same as the

operator: cc, dd, yy. Otherwise, the editing operators act on objects specified by

cursor-movement commands or pattern-matching commands. For example, cf.
changes up to the next period. n and m are the number of times the operation is
performed, or the number of objects the operation is performed on. If both n and m
are specified, the effect is n × m.

An object of operation can be any of the following text blocks:

word
Includes characters up to a whitespace character (space or tab) or punctuation
mark. A capitalized object is a variant form that recognizes only whitespace.

sentence

Up to ., !, or ?, followed by two spaces. Vim looks only for a single following
space.

paragraph

Up to the next blank line or nroff/troff paragraph macro defined by the para=
option.

420 | Appendix A: The vi, ex, and Vim Editors

section

Up to the next nroff/troff section heading defined by the sect= option.

motion
Up to the character or other text object as specified by a motion specifier,
including pattern searches.

Examples

2cw Change the next two words.

d} Delete up to the next paragraph.

d^ Delete back to the beginning of the line.

5yy Copy the next �ve lines.

y]] Copy up to the next section.

cG Change to the end of the edit bu�er.

More commands and examples may be found later in this appendix, in the section
<Changing and deleting text= on page 426.

Visual mode (Vim only)

Vim provides an additional facility, visual mode. This allows you to highlight blocks
of text, which then become the object of edit commands such as deletion or saving
(yanking). Graphical versions of Vim allow you to use the mouse to highlight text in
a similar fashion. See the earlier section <Visual Mode Motion= on page 175 for more
information.

v Select text in visual mode one character at a time.

V Select text in visual mode one line at a time.

CTRL-V Select text in visual mode in blocks.

Status-Line Commands
Most commands are not echoed on the screen as you input them. However, the status
line at the bottom of the screen is used to edit these commands:

/ Search forward for a pattern.

? Search backward for a pattern.

: Invoke an ex command.

! Invoke a Unix command that takes as its input an object in the bu�er and replaces it with output from the command.
You type a motion command after the ! to describe what should be passed to the Unix command. The command itself is
shown on the status line.

The vi, ex, and Vim Editors | 421

3 If you are using the original vi or have set the Vim compatible option, the ESC key will execute the

command. This can be unexpected. Vim (in nocompatible mode) simply cancels the command and takes no

action.

Commands that are entered on the status line must be completed by pressing the
ENTER key.3 In addition, error messages and output from the CTRL-G command
are displayed on the status line.

vi Commands
vi supplies a large set of single-key commands when in command mode. Vim
supplies additional multikey commands.

Movement Commands
Some versions of vi do not recognize extended keyboard keys (e.g., arrow keys, page
up, page down, home, insert, and delete); some do. All versions, however, recognize

the keys in this section. Many users of vi prefer to use these keys, as it helps them
keep their fingers on the home row of the keyboard. A number preceding a command
repeats the movement. Movement commands are also used after an operator. The
operator works on the text that is moved.

Character

h, j, k, l Left, down, up, right (± , ´ , ² , ³)

Space bar Right

BACKSPACE Left

CTRL-H Left

CTRL-N Down

CTRL-P Up

Text

w, b Forward, backward by “word” (letters, numbers, and underscores make up words).

W, B Forward, backward by “Word” (only whitespace separates items).

e End of word.

E End of Word.

ge End of previous word. {Vim}

gE End of previous Word. {Vim}

), (Beginning of next, current sentence.

422 | Appendix A: The vi, ex, and Vim Editors

}, { Beginning of next, current paragraph.

]], [[Beginning of next, current section.

][, [] End of next, current section. {Vim}

Lines

Long lines in a file may show up on the screen as multiple lines. They wrap around
from one screen line to the next. Although most commands work on the lines as
defined in the file, a few commands work on lines as they appear on the screen. The

Vim option wrap allows you to control how long lines are displayed.

0, $ First, last position of the current line.

^, _ First nonblank character of the current line.

+, - First nonblank character of the next, previous line.

ENTER First nonblank character of the next line.

num | Column num of the current line.

g0, g$ First, last position of the screen line. {Vim}

g^ First nonblank character of the screen line. {Vim}

gm Middle of the screen line. {Vim}

gk, gj Move up, down one screen line.a {Vim}

H Top line of the screen (Home position).

M Middle line of the screen.

L Last line of the screen.

num H num lines after the top line.

num L num lines before the last line.

a These are redundant, since removing the g results in the same action.

Screens

CTRL-F , CTRL-B Scroll forward, backward one screen.

CTRL-D , CTRL-U Scroll down, up a half screen.

CTRL-E , CTRL-Y Show one more line at the bottom, top of the screen. If possible, Vim maintains the cursor position on
the same line—e.g., if the cursor is on line 50 and you use this movement, the cursor moves up or down
to stay on line 50.

z ENTER Reposition the line with the cursor to the top of the screen.

z. Reposition the line with the cursor to the middle of the screen.

z- Reposition the line with the cursor to the bottom of the screen.

CTRL-L Redraw the screen (without scrolling).

CTRL-R vi: redraw the screen (without scrolling).

Vim: redo the last undone change.

The vi, ex, and Vim Editors | 423

Within a Screen

H Move to home—the �rst character of the top line on the screen.

M Move to the �rst character of the middle line on the screen.

L Move to the �rst character of the last line on the screen.

n H Move to the �rst character of the line n lines below the top line.

n L Move to the �rst character of the line n lines above the last line.

Searches

/pattern Search forward for pattern. End with ENTER .

/pattern/+ num Go to line num after pattern. Forward search for pattern.

/pattern/- num Go to line num before pattern. Forward search for pattern.

?pattern Search backward for pattern. End with ENTER .

?pattern?+ num Go to line num after pattern. Backward search for pattern.

?pattern?- num Go to line num before pattern. Backward search for pattern.

:noh Suspend search highlighting until next search. {Vim}

n Repeat the previous search.

N Repeat the previous search in the opposite direction.

/ Repeat the previous search forward. End with ENTER .

? Repeat the previous search backward. End with ENTER .

* Search forward for the word under the cursor. Matches only exact words. {Vim}

Search backward for the word under the cursor. Matches only exact words. {Vim}

g* Search forward for the word under the cursor. Matches the characters of this word when embedded in
a longer word. {Vim}

g# Search backward for the word under the cursor. Matches the characters of this word when embedded
in a longer word. {Vim}

% Find match of current parenthesis, brace, or bracket.

f x Move the cursor forward to x on current line.

F x Move the cursor backward to x on current line.

t x Move the cursor forward to the character before x in current line.

T x Move the cursor backward to the character after x in current line.

, Reverse the search direction of the last f, F, t, or T.

; Repeat the last f, F, t, or T.

Line numbering

CTRL-G Display the current line number.

gg Move to the �rst line in the �le. {Vim}

424 | Appendix A: The vi, ex, and Vim Editors

num G Move to line number num.

G Move to the last line in the �le.

: num Move to line number num.

Marks

m x Place mark x at the current position.

` x (Backquote.) Move cursor to mark x.

' x (Apostrophe.) Move to the start of the line containing x.

`` (Backquotes.) Return to the position before the most recent jump.

'' (Apostrophes.) Like preceding, but return to the start of the line.

'" (Apostrophe quote.) Move to the position when last editing the �le. {Vim}

`[, `] (Backquote bracket.) Move to the beginning/end of the previous text operation. {Vim}

'[, '] (Apostrophe bracket.) Like preceding, but return to the start of the line where the operation occurred. {Vim}

`. (Backquote period.) Move to the last change in the �le. {Vim}

'. (Apostrophe period.) Like preceding, but return to the start of the line. {Vim}

'0 (Apostrophe zero.) Move to where you were when you last exited Vim. {Vim}

:marks List active marks. {Vim}

Insert Commands

a Append after the cursor.

A Append to the end of the line.

c Begin change operation.

C Change to the end of the line.

gi Insert at the place at which you were last editing the �le. {Vim}

gI Insert at the beginning of the line. {Vim}

i Insert before the cursor.

I Insert at the beginning of the line.

o Open a line below the cursor.

O Open a line above the cursor.

R Begin overwriting text.

s Substitute a character.

S Substitute the entire line.

ESC Terminate insert mode.

The vi, ex, and Vim Editors | 425

The following commands work in insert mode:

BACKSPACE Delete the previous character.

DELETE Delete the current character.

TAB Insert a tab.

CTRL-A Repeat the last insertion. {Vim}

CTRL-D Shift line left to the previous shiftwidth.

 ^ CTRL-D Shift cursor to the beginning of the line, but only for one line.

 0 CTRL-D Shift cursor to the beginning of the line, and reset the autoindent level to zero.

CTRL-E Insert the character found just below the cursor. {Vim}

CTRL-H Delete the previous character (same as backspace).

CTRL-I Insert a tab.

CTRL-K Begin insertion of a multikeystroke character. {Vim}

CTRL-N Insert the next completion of the pattern to the left of the cursor. {Vim}

CTRL-P Insert the previous completion of the pattern to the left of the cursor. {Vim}

CTRL-T Shift the line right to the next shiftwidth. {Vim}

CTRL-U Delete the current line.

CTRL-V Insert the next character verbatim.

CTRL-W Delete the previous word.

CTRL-Y Insert the character found just above the cursor. {Vim}

CTRL-[(ESC) Terminate insert mode.

Some of the control characters listed in the previous table are set by stty. Your
terminal emulator’s settings may differ.

Edit Commands
Recall that c, d, and y are the basic editing operators.

Changing and deleting text

The following list is not exhaustive, but it illustrates the most common operations:

cw Change a word.

cc Change the line.

c$ Change text from the current position to the end of the line.

C Same as c$.

dd Delete the current line.

num dd Delete num lines.

d$ Delete text from the current position to the end of the line.

426 | Appendix A: The vi, ex, and Vim Editors

D Same as d$.

dw Delete a word.

d} Delete up to the next paragraph.

d^ Delete back to the beginning of the line.

d/pattern Delete up to the �rst occurrence of pattern.

dn Delete up to the next occurrence of pattern.

df x Delete up to and including x on the current line.

dt x Delete up to (but not including) x on the current line.

dL Delete up to the last line on the screen.

dG Delete to the end of the �le.

gqap Reformat the current paragraph to textwidth. {Vim}

g~w Switch the case of word. {Vim}

guw Change word to lowercase. {Vim}

gUw Change word to uppercase. {Vim}

p Insert the last deleted or yanked text after the cursor.

P Insert the last deleted or yanked text before the cursor.

gp Same as p, but leave the cursor at the end of the inserted text. {Vim}

gP Same as P, but leave the cursor at the end of the inserted text. {Vim}

]p Same as p, but match the current indentation. {Vim}

[p Same as P, but match the current indentation. {Vim}

r x Replace character with x.

R text Replace with new text (overwrite), beginning at cursor. ESC ends replace mode.

s Substitute one character.

4s Substitute four characters.

S Substitute the entire line.

u Undo the last change.

CTRL-R Redo the last change. {Vim}

U Restore the current line.

x Delete the character at the current cursor position.

X Delete back one character.

5X Delete the previous �ve characters.

. Repeat the last change.

~ Reverse case and move the cursor right. {vi, and Vim with option notildeop}

~w Reverse the case of a word. {Vim with option tildeop}

~~ Reverse the case of the line. {Vim with option tildeop}

CTRL-A Increment the number under the cursor. {Vim}

CTRL-X Decrement the number under the cursor. {Vim}

The vi, ex, and Vim Editors | 427

Copying and moving

Register names are the letters a–z. Uppercase names append text to the correspond‐
ing register:

Y Copy the current line.

yy Copy the current line.

" x yy Copy the current line to register x.

ye Copy text to the end of the word.

yw Like ye, but include the whitespace after the word.

y$ Copy the rest of the line.

" x dd Delete the current line into register x.

" x d motion Delete into register x.

" x p Put contents of register x.

y]] Copy up to the next section heading.

J Join the current line to the next line.

gJ Same as J, but without inserting a space. {Vim}

:j Same as J.

:j! Same as gJ.

Saving and Exiting
Writing a file means overwriting the file with the current text in the editing buffer.

ZZ Quit vi, writing the �le only if changes were made.

:x Same as ZZ.

:wq Write the �le and quit.

:w Write the �le.

:w file Save a copy to �le.

:n,m w file Write lines n to m to new �le.

:n,m w >> file Append lines n to m to existing �le.

:w! Write the �le (overriding protection).

:w! file Overwrite �le with the current text.

:w %.new Write the current bu�er named �le as file.new.

:q Quit the editor (fails if changes were made).

:q! Quit the editor (discarding edits).

Q Quit vi and invoke ex.

:vi Return to vi after Q command.

% Replaced with the current �lename in editing commands.

428 | Appendix A: The vi, ex, and Vim Editors

Replaced with the alternate �lename in editing commands.

Accessing Multiple Files

:e file Edit another �le; the current �le becomes the alternate, named by #.

:e! Return to the version of the current �le as of the time of the last write.

:e + file Begin editing at the end of �le.

:e +num file Open �le at line num.

:e # Open to the previous position in the alternate �le.

:ta tag Edit the �le at location tag.

:n Edit the next �le in the list of �les.

:n! Force editing of the next �le.

:n files Specify a new list of �les.

:rewind Edit the �rst �le in the argument list.

CTRL-G Show the current �le and line number.

:args Display the list of �les being edited.

:prev Edit the previous �le in the list of �les. {Vim}

:last Edit the last �le in the list of �les. {Vim}

Window Commands (Vim)
The following table lists common commands for controlling windows in Vim. See

also the split, vsplit, and resize commands in the section <Alphabetical Summary
of ex Commands= on page 435. For brevity, control characters are marked in the

following list by ^.

All single-character keys are lowercase. Uppercase keys are denoted
with a <SHIFT-= prefix.

:new Open a new window.

:new file Open �le in a new window.

:sp[lit] [file] Split the current window. With �le, edit that �le in the new window.

:sv[split] [file] Same as :sp, but make the new window read-only.

:sn[ext] [file] Edit the next �le in the �le list in the new window.

:vsp[lit] [file] Like :sp, but split vertically instead of horizontally.

:clo[se] Close the current window.

:hid[e] Hide the current window, unless it is the only visible window.

The vi, ex, and Vim Editors | 429

:on[ly] Make the current window the only visible one.

:res[ize] num Resize the window to num lines.

:wa[ll] Write all changed bu�ers to their �les.

:qa[ll] Close all bu�ers and exit.

CTRL-W S Same as :sp.

CTRL-W N Same as :new.

CTRL-W ^ Open the new window with the alternate (previously edited) �le.

CTRL-W C Same as :clo.

CTRL-W O Same as :only.

CTRL-W J Move the cursor to the next window.

CTRL-W K Move the cursor to the previous window.

CTRL-W P Move the cursor to the previous window.

CTRL-W H / CTRL-W L Move the cursor to the window on the left/right of screen.

CTRL-W T / CTRL-W B Move the cursor to the window on the top/bottom of screen.

CTRL-W SHIFT-K / CTRL-W SHIFT-B Move the current window to the top/bottom of screen.

CTRL-W SHIFT-H / CTRL-W SHIFT-L Move the current window to the far left/right of screen.

CTRL-W R / CTRL-W , SHIFT-R Rotate the windows down/up.

CTRL-W + / CTRL-W - Increase/decrease the current window size.

CTRL-W = Make all windows the same height.

Interacting with the System

:r file Read in the contents of �le after the cursor.

:r !command Read in the output from command after the current line.

:num r !command Like previous, but place after line num (use zero for the top of the �le).

:! command Run command, then return.

!motion command Send the text covered by motion to command; replace with output.

:n,m !command Send lines n–m to command; replace with output.

num !! command Send num lines to command; replace with output.

:!! Repeat the last system command.

:sh Create a subshell; return to editor with EOF.

CTRL-Z Suspend the editor, resume with fg. This iconi�es gvim.

:so file Read and execute ex commands from �le.

Macros

:ab in out Use in as an abbreviation for out in insert mode.

:unab in Remove the abbreviation for in.

430 | Appendix A: The vi, ex, and Vim Editors

:ab List abbreviations.

:map string sequence Map characters string as sequence of commands. Use #1, #2, etc. for the function keys.

:unmap string Remove the map for characters string.

:map List character strings that are mapped.

:map! string sequence Map characters string to input mode sequence.

:unmap! string Remove input mode map for characters string (you may need to quote the characters with
CTRL-V).

:map! List character strings that are mapped for input mode.

q x Record typed characters into the register speci�ed by letter x. If the letter is uppercase,
append to the register. {Vim}

q Stop recording. {Vim}

@x Execute the register speci�ed by the letter x.

@@ Execute the last register command.

In vi, the following characters are unused in command mode and can be mapped as
user-defined commands:

Letters

g, K, q, V, and v

Control keys
CTRL-A , CTRL-K , CTRL-O , CTRL-W , CTRL-X , CTRL-_ , and CTRL-\

Symbols

_, *, \, =, and #

The = is used by vi if Lisp mode is set. Different versions of vi may
use some of these characters, so test them before using.

Vim does not use CTRL-K , CTRL-_ , or CTRL-\ . See :help noremap in Vim for
additional mapping functionality.

Miscellaneous Commands

< Shift the text described by the following motion command left by one shiftwidth. {Vim}

> Shift the text described by the following motion command right by one shiftwidth. {Vim}

<< Shift the line left by one shiftwidth (default is eight spaces).

>> Shift the line right by one shiftwidth (default is eight spaces).

>} Shift right to the end of the paragraph.

The vi, ex, and Vim Editors | 431

<% Shift left until the matching parenthesis, brace, or bracket. (The cursor must be on the matching symbol.)

[count] == Indent count lines in C-style, or using the program speci�ed in the equalprg option. {Vim}

g Start many multiple character commands in Vim.

K Look up the word under the cursor in the manual pages (or via the program de�ned in keywordprg). {Vim}

CTRL-O Return to the previous jump. {Vim}

CTRL-Q Same as CTRL-V . {Vim} (On some terminals, resume data �ow.)

CTRL-T Return to the previous location in the tag stack. {Solaris vi, Vim.}

CTRL-] Perform a tag lookup on the text under the cursor.

CTRL-\ Enter ex line-editing mode.

CTRL-^ Return to the previously edited �le.

vi Con�guration
This section describes the following:

• The :set command•

• Example .exrc file•

The :set Command
The :set command allows you to specify options that change characteristics of your
editing environment. Options may be put in the ~/.exrc or ~/.vimrc files or set during
an editing session.

The colon does not need to be typed if the command is put in .exrc:

:set x Enable Boolean option x; show the value of other options.

:set no x Disable option x. Do not supply a space between no and x.

:set x = value Give value to option x.

:set Show changed options.

:set all Show all options.

:set x ? Show the value of option x.

Appendix B, <Setting Options=, provides tables of :set options for the <Heirloom=

and Solaris versions of vi, and for Vim. Please see that appendix for more
information.

432 | Appendix A: The vi, ex, and Vim Editors

Example .exrc File
In an ex script file, comments start with the double-quote character. The following
lines of code are an example of a customized .exrc file:

set nowrapscan " Searches don't wrap at end of file

set wrapmargin=7 " Wrap text at 7 columns from right margin

set sections=SeAhBhChDh nomesg " Set troff macros, disallow message

map q :w^M:n^M " Alias to move to next file

map v dwElp " Move a word

ab ORA O'Reilly Media, Inc. " Input shortcut

The q alias isn’t needed for Vim, which has the :wn command. The

v alias would hide the Vim command v, which enters character-at-
a-time visual mode operation.

ex Basics
The ex line editor serves as the foundation for the screen editor vi. Commands in ex

work on the current line or on a range of lines in a file. Most often, you use ex from

within vi. In vi, ex commands are preceded by a colon and executed when you press
ENTER .

You can also invoke ex on its own—from the command line—just as you would

invoke vi. (You could execute an ex script this way.) Or you can use the vi command

Q to enter ex.

Syntax of ex Commands
To enter an ex command from vi, type:

:[address] command [options]

An initial : indicates an ex command. As you type the command, it is echoed on the
status line. Execute the command by pressing the ENTER key. Address is the line
number or range of lines that are the object of command. Options and addresses are

described later. ex commands are described in the section <Alphabetical Summary of
ex Commands= on page 435.

You can exit ex in several ways:

:x Exit (save changes and quit).

:q! Quit without saving changes.

:vi Switch to the vi editor on the current �le.

The vi, ex, and Vim Editors | 433

Addresses
If no address is given, the current line is the object of the command. If the address
specifies a range of lines, the format is:

x,y

where x and y are the first and last addressed lines (x must precede y in the buffer).

x and y each may be a line number or a symbol. Using ; instead of , sets the current

line to x before interpreting y. The notation 1,$ addresses all lines in the file, as

does %.

Address Symbols

1,$ All the lines in the �le.

x,y Lines x through y.

x;y Lines x through y, with the current line reset to x before computing y.

0 The top of the �le.

. The current line.

num Absolute line number num.

$ The last line.

% All lines; same as 1,$.

x - n n lines before x.

x + n n lines after x.

-[num] One or num lines previous.

+[num] One or num lines ahead.

' x (Apostrophe.) The line marked with x.

'' (Apostrophe apostrophe.) The previous mark.

/pattern/ Forward to the line matching pattern.

?pattern? Backward to the line matching pattern.

See Chapter 6, <Global Replacement=, for more information on using patterns.

Options

!

Indicates a variant form of the command, overriding the normal behavior. The !
must come immediately after the command.

count

The number of times the command is to be repeated. Unlike in vi com‐
mands, count cannot precede the command, because a number preceding an

434 | Appendix A: The vi, ex, and Vim Editors

ex command is treated as a line address. For example, d3 deletes three lines,
beginning with the current line; 3d deletes line 3.

�le

The name of a file that is affected by the command. % stands for the current file; #
stands for the previous file.

Alphabetical Summary of ex Commands
ex commands can be entered by specifying any unique abbreviation. In the following
list of reference entries, the full name appears as the heading of the reference entry,
and the shortest possible abbreviation is shown in the syntax line below it. Examples
are assumed to be typed from vi, so they include the : prompt.

abbreviate

ab [string text]

Define string when typed to be translated into text. If string and text are not specified,
list all current abbreviations.

Examples

Note: ^M appears when you type ^V followed by ENTER .

:ab ora O'Reilly Media, Inc.

:ab id Name:^MRank:^MPhone:

append

[address] a[!]

text

.

Append new text at the specified address, or at the present address if none is specified.
Add a ! to toggle the autoindent setting that is used during input. That is, if
autoindent was enabled, ! disables it. Enter new text after entering the command.
Terminate the input of new text by entering a line consisting of just a period.

Example

:a Begin appending to the current line

Append this line

and this line too.

. Terminate input of text to append

The vi, ex, and Vim Editors | 435

args

ar

args file ...

Print the members of the argument list (files named on the command line), with the
current argument (the file being edited) printed in brackets ([]).

The second syntax is for Vim, which allows you to reset the list of files to be edited.

bdelete

[num] bd[!] [num]

Unload buffer num and remove it from the buffer list. Add a ! to force removal of an
unsaved buffer. The buffer may also be specified by filename. If no buffer is specified,
remove the current buffer. {Vim}

bufer

[num] b[!] [num]

Begin editing buffer num in the buffer list. Add a ! to force a switch from an unsaved
buffer. The buffer may also be specified by filename. If no buffer is specified, continue
editing the current buffer. {Vim}

bufers

buffers[!]

Print the members of the buffer list. Some buffers (e.g., deleted buffers) are not listed.
Add ! to show unlisted buffers. ls is another abbreviation for this command. {Vim}

436 | Appendix A: The vi, ex, and Vim Editors

cd

cd dir

chdir dir

Change the editor’s current directory to dir.

center

[address] ce [width]

Center the line within the specified width. If width is not specified, use textwidth.
{Vim}

change

[address] c[!]

text

.

Replace (change) the specified lines with text. Add a ! to switch the autoindent
setting during input of text. Terminate the input by entering a line consisting of just a
period.

close

clo[!]

Close the current window unless it is the last window. If the buffer in the window is
not open in another window, unload it from memory. This command will not close a
buffer with unsaved changes, but you may add ! to hide it instead. {Vim}

copy

[address] co destination

The vi, ex, and Vim Editors | 437

Copy the lines included in address to the specified destination address. The command
t (short for <to=) is a synonym for copy.

Example

:1,10 co 50 Copy �rst 10 lines to just a�er line 50

cquit

cq[!]

Quit Vim with an error code. This is useful with Bash’s <invoke an external editor
for the command line= feature, when you don’t want Bash to execute the text in the
editing buffer. {Vim}

delete

[address] d [register] [count]

Delete the lines included in address. If register is specified, save or append the text to
the named register. Register names are the lowercase letters a–z. Uppercase names
append text to the corresponding register. If count is specified, delete that many lines.

Examples

:/Part I/,/Part II/-1d Delete to the line above <Part II=

:/main/+d Delete the line below <main=

:.,$d x Delete from this line to the last line into register x

edit

e[!] [+num] [filename]

Begin editing �lename. If no �lename is given, start over with a copy of the current
file. Add a ! to edit the new file even if the current file has not been saved since the
last change. With the +num argument, begin editing on line num. Alternatively, num

may be a pattern, of the form /pattern.

438 | Appendix A: The vi, ex, and Vim Editors

Examples

:e file Edit �le in the current editing bu�er

:e +/^Index # Edit the alternate �le at the �rst line matching the given pattern

:e! Start over again on the current �le

ole

f [filename]

Change the filename for the current buffer to �lename. The next time the buffer is
written, it will be written to file �lename. When the name is changed, the buffer’s
<not edited= flag is set, to indicate that you are editing a nonexistent file. If the new
filename is the same as a file that already exists on the disk, you will need to use :w!
to overwrite the existing file. When specifying a filename, the % character can be used
to indicate the current filename. A # can be used to indicate the alternate filename. If
no �lename is specified, print the current filename and status of the buffer.

Example

:f %.new

fold

address fo

Fold the lines specified by address. A fold collapses several lines on the screen into
one line, which can later be unfolded. It doesn’t affect the text of the file. {Vim}

foldclose

[address] foldc[!]

Close folds in the specified address, or at the present address if none is specified. Add
a ! to close more than one level of folds. {Vim}

The vi, ex, and Vim Editors | 439

foldopen

[address] foldo[!]

Open folds in the specified address, or at the present address if none is specified. Add
a ! to open more than one level of folds. {Vim}

global

[address] g[!]/pattern/[commands]

Execute commands on all lines that contain pattern or, if address is specified, on all
lines within that range. If commands are not specified, print all such lines. Add a ! to
execute commands on all lines not containing pattern. See also v, later in this list.

Examples

:g/Unix/p Print all lines containing <Unix=

:g/Name:/s/tom/Tom/ Change <tom= to <Tom= on all lines containing <Name:=

hide

hid

Close the current window unless it is the last window, but do not remove the buffer
from memory. This command is safe to use on an unsaved buffer. {Vim}

insert

[address] i[!]

text

.

Insert text at the line before the specified address, or at the present address if none is
specified. Add a ! to switch the autoindent setting during input of text. Terminate
the input of new text by entering a line consisting of just a period.

440 | Appendix A: The vi, ex, and Vim Editors

join

[address] j[!] [count]

Place the text in the specified range on one line, with whitespace adjusted to provide
two space characters after a period (.), no space characters before a), and one space
character otherwise. Add a ! to prevent whitespace adjustment.

Example

:1,5j! Join the �rst �ve lines, preserving whitespace

jumps

ju

Print the jump list used with the CTRL-I and CTRL-O commands. The jump list
is a record of most movement commands that skip over multiple lines. It records the
position of the cursor before each jump. {Vim}

k

[address] k char

Same as mark; see mark, later in this list.

last

la[!]

Edit the last file from the command-line argument list. {Vim}

left

[address] le [count]

The vi, ex, and Vim Editors | 441

Left-align the lines specified by address, or the current line if no address is specified.
Indent the lines by count spaces. {Vim}

list

[address] l [count]

Print the specified lines so that tabs display as ^I and the ends of lines display as $. l
is like a temporary version of :set list.

map

map[!] [string commands]

Define a keyboard macro named string as the specified sequence of commands. string

is usually a single character or the sequence #num, the latter representing a function
key on the keyboard. Use a ! to create a macro for input mode. With no arguments,
list the currently defined macros.

Examples

:map K dwwP Transpose two words

:map q :w^M:n^M Write the current �le; go to the next �le

:map! + ^[bi(^[ea) Enclose the previous word in parentheses

Vim has K and q commands, which the example aliases would hide.

mark

[address] ma char

Mark the specified line with char, a single lowercase letter. Same as k. Return later
to the line with 'x (apostrophe plus x, where x is the same as char). Vim also uses
uppercase and numeric characters for marks. Lowercase letters work the same as in
vi. Uppercase letters are associated with filenames and can be used between multiple

442 | Appendix A: The vi, ex, and Vim Editors

files. Numbered marks, however, are maintained in a special .viminfo file and cannot
be set using this command.

marks

marks [chars]

Print a list of marks specified by chars, or all current marks if no chars are specified.
{Vim}

Example

:marks abc Print marks a, b, and c

mkexrc

mk[!] file

Create an .exrc file containing set commands for changed ex options and key map‐
pings. This saves the current option settings, allowing you to restore them later. �le
defaults to .exrc in the current directory if not specified. {Vim}

move

[address] m destination

Move the lines specified by address to the destination address.

Example

:.,/Note/m /END/ Move a text block to a�er the line containing <END=

new

[count] new

Create a new window count lines high with an empty buffer. {Vim}

The vi, ex, and Vim Editors | 443

next

n[!] [[+num] filelist]

Edit the next file from the command-line argument list. Use args to list these files. If
�lelist is provided, replace the current argument list with �lelist and begin editing on
the first file. With the +num argument, begin editing on line num. Alternatively, num

may be a pattern, of the form /pattern.

Example

:n chap* Start editing all <chapter= �les

nohlsearch

noh

Temporarily stop highlighting all matches to a search when using the hlsearch
option. Highlighting is resumed with the next search. {Vim}

number

[address] nu [count]

 or

[address] # [count]

Print each line specified by address, preceded by its buffer line number. Use # as an
alternate abbreviation for number. count specifies the number of lines to show, starting
with address.

only

on [!]

Make the current window be the only one on the screen. Windows open on modified
buffers are not removed from the screen (hidden), unless you also use the ! character.
{Vim}

444 | Appendix A: The vi, ex, and Vim Editors

open

[address] o [/pattern/]

Enter open mode (vi) at the lines specified by address, or at the lines matching
pattern. Exit open mode with Q. Open mode lets you use the regular vi commands,
but only one line at a time. It may be useful on very distant internet ssh connections.

packadd

pa[!] packagename...

Search for a plugin directory matching packagename and load the plugin. See the Vim
help for details. {Vim}

preserve

pre

Save the current editor buffer as though the system were about to crash.

previous

prev[!]

Edit the previous file from the command-line argument list. {Vim}

print

[address] p [count]

Print the lines specified by address. count specifies the number of lines to print,
starting with address. P is another abbreviation.

The vi, ex, and Vim Editors | 445

Example

:100;+5p Show line 100 and the next �ve lines

put

[address] pu [char]

Place previously deleted or yanked lines from the named register specified by char to
the line specified by address. If char is not specified, the last deleted or yanked text is
restored.

qall

qa[!]

Close all windows and terminate the current editing session. Use ! to discard changes
made since the last save. {Vim}

quit

q[!]

Terminate the current editing session. Use ! to discard changes made since the last
save. If the editing session includes additional files in the argument list that were
never accessed, quit by typing q! or by typing q twice. Vim closes the editing window
only if there are still other windows open on the screen.

read

[address] r filename

Copy the text of �lename after the line specified by address. If �lename is not speci‐
fied, the current filename is used.

Example

:0r $HOME/data Read the named �le in at the top of the current �le

446 | Appendix A: The vi, ex, and Vim Editors

read

[address] r !command

Read the output of command into the text after the line specified by address.

Example

:$r !spell % Place the results of spellchecking at the end of the �le

recover

rec [file]

Recover �le from the system save area.

redo

red

Restore last undone change. Same as CTRL-R . {Vim}

resize

res [[±]num]

Resize the current window to be num lines high. If + or - is specified, increase or
decrease the current window height by num lines. {Vim}

rewind

rew[!]

Rewind the argument list and begin editing the first file in the list. Add a ! to rewind
the list even if the current file has not been saved since the last change.

The vi, ex, and Vim Editors | 447

right

[address] ri [width]

Right-align lines specified by address, or the current line if no address is specified, to
column width. Use the value of the textwidth option if no width is specified. {Vim}

sbnext

[count] sbn [count]

Split the current window and begin editing the count next buffer from the buffer list.
If no count is specified, edit the next buffer in the buffer list. {Vim}

sbufer

[num] sb [num]

Split the current window and begin editing buffer num from the buffer list in the new
window. The buffer to be edited may also be specified by filename. If no buffer is
specified, open the current buffer in the new window. {Vim}

set

se parameter1 parameter2...

Set a value to an option with each parameter, or if no parameter is supplied, print
all options that have been changed from their defaults. For Boolean options, each
parameter can be phrased as option or nooption; other options can be assigned with
the syntax option=value. Specify all to list the current settings. The form set option?
displays the value of option. See the tables that list set options in Appendix B.

Examples

:set nows wm=10

:set all

448 | Appendix A: The vi, ex, and Vim Editors

shell

sh

Create a new shell. Resume editing when the shell terminates.

snext

[count] sn [[+num] filelist]

Split the current window and begin editing the next file from the command-line
argument list. If count is provided, edit the count next file. If �lelist is provided,
replace the current argument list with �lelist and begin editing the first file. With the
+n argument, begin editing on line num. Alternatively, num may be a pattern of the
form /pattern. {Vim}

source

so file

Read (source) and execute ex commands from �le.

Example

:so $HOME/.exrc

split

[count] sp [+num] [filename]

Split the current window and load �lename in the new window, or load the same
buffer in both windows if no file is specified. Make the new window count lines high,
or if count is not specified, split the window into equal parts. With the +n argument,
begin editing on line num. num may also be a pattern of the form /pattern. {Vim}

The vi, ex, and Vim Editors | 449

sprevious

[count] spr [+num]

Split the current window and begin editing the previous file from the command-line
argument list in the new window. If count is specified, edit the count previous file.
With the +num argument, begin editing on line num. num may also be a pattern of
the form /pattern. {Vim}

stop

st

Suspend the editing session. Same as CTRL-Z . Use the shell fg command to resume
the session.

substitute

[address] s [/pattern/replacement/] [options] [count]

Replace the first instance of pattern on each of the specified lines with replacement.
If pattern and replacement are omitted, repeat the last substitution. count specifies the
number of lines on which to substitute, starting with address.

Options

c Prompt for con�rmation before each change.

g Substitute all instances of pattern on each line (global).

p Print the last line on which a substitution was made.

Examples

:1,10s/yes/no/g Substitute on the �rst 10 lines

:%s/[Hh]ello/Hi/gc Con�rm global substitutions

:s/Fortran/\U&/ 3 Uppercase <Fortran= on the next three lines

:g/^[0-9][0-9]*/s//Line &:/ For every line beginning with one or more digits,

 add <Line= and a colon

450 | Appendix A: The vi, ex, and Vim Editors

suspend

su

Suspend the editing session. Same as CTRL-Z . Use the shell fg command to resume
the session.

sview

[count] sv [+num] [filename]

Same as the split command, but set the readonly option for the new buffer. {Vim}

t

[address] t destination

Copy the lines included in address to the specified destination address. t is equivalent
to copy and is short for <to.=

Example

:%t$ Copy the �le and add it to the end

tag

[address] ta tag

In the tags file, locate the file and line matching tag and start editing there.

Example

Run ctags, then switch to the file containing main:

:!ctags *.c

:tag main

The vi, ex, and Vim Editors | 451

tags

tags

Print the list of tags in the tag stack. {Vim}

unabbreviate

una word

Remove word from the list of abbreviations.

undo

u

Reverse the changes made by the last editing command. In vi the undo command
undoes itself, redoing what you undid. Vim supports multiple levels of undo. Use
redo to redo an undone change in Vim.

unhide

[count] unh

Split the screen to show one window for each active buffer in the buffer list. If
specified, limit the number of windows to count. {Vim}

unmap

unm[!] string

Remove string from the list of keyboard macros. Use ! to remove a macro for input
mode.

452 | Appendix A: The vi, ex, and Vim Editors

v

[address] v/pattern/[command]

Execute command on all the lines not containing pattern. If command is not specified,
print all such lines. v is equivalent to g!. See global, earlier in this list.

Example

:v/#include/d Delete all lines except <#include= lines

version

ve

Print the editor’s version information.

view

vie [+num] [filename]

Same as edit, but set the file to readonly. When executed in ex mode, return to
normal or visual mode. {Vim}

visual

[address] vi [type] [count]

Enter visual mode (vi) at the line specified by address. Return to ex mode with Q. type

can be one of -, ^, or . (see the z command, later in this section). count specifies an
initial window size.

The vi, ex, and Vim Editors | 453

visual

vi [+num] file

Begin editing �le in visual mode (vi), optionally at line num. Alternatively, num may
be a pattern of the form /pattern. {Vim}

vsplit

[count] vs [+num] [filename]

Same as the split command, but split the screen vertically. The count argument can
be used to specify a width for the new window. {Vim}

wall

wa[!]

Write all changed buffers with filenames. Add ! to force writing of any buffers
marked readonly. {Vim}

wnext

[count] wn[!] [[+num] filename]

Write the current buffer and open the next file in the argument list, or the count next
file if specified. If �lename is specified, edit it next. With the +num argument, begin
editing on line num. num may also be a pattern of the form /pattern. Add ! to force
writing of any buffers marked readonly. {Vim}

wq

wq[!]

454 | Appendix A: The vi, ex, and Vim Editors

Write and quit the file in one action. The file is always written. The ! flag forces the
editor to write over any current contents of �le.

wqall

wqa[!]

Write all changed buffers and quit the editor. Add ! to force writing of any buffers
marked readonly. xall is an alias for this command. {Vim}

write

[address] w[!] [[>>] file]

Write the lines specified by address to �le, or write the full contents of the buffer if
address is not specified. If �le is also omitted, save the contents of the buffer to the
current filename. If >> �le is used, append lines to the end of the specified �le. Add a !
to force the editor to write over any current contents of �le.

Examples

:1,10w name_list Copy the �rst 10 lines to the �le name_list

:50w >> name_list Now append line 50

write

[address] w !command

Write the lines specified by address to command.

Example

:1,66w !pr -h myfile | lpr Print the �rst page of the �le

X

X

The vi, ex, and Vim Editors | 455

Prompt for an encryption key. This can be preferable to :set key, as typing the key is
not echoed to the console. To remove an encryption key, just reset the key option to
an empty value. {Vim}

xit

x

Write the file if it was changed since the last write, and then quit.

yank

[address] y [char] [count]

Place the lines specified by address in the named register char. Register names are the
lowercase letters a–z. Uppercase names append text to the corresponding register. If
no char is given, place the lines into the general register. count specifies the number of
lines to yank, starting with address.

Example

:101,200 ya a Copy lines 101–200 to register a

z

[address] z [type] [count]

Print a window of text with the line specified by address at the top. count specifies the
number of lines to be displayed.

Type

+

Place the specified line at the top of the window (default).

-

Place the specified line at the bottom of the window.

.

Place the specified line in the center of the window.

456 | Appendix A: The vi, ex, and Vim Editors

^

Print the previous window.

=

Place the specified line in the center of the window and leave the current line at
this line.

&

[address] & [options] [count]

Repeat the previous substitute (s) command. count specifies the number of lines on
which to substitute, starting with address. options are the same as for the substitute
command.

Examples

:s/Overdue/Paid/ Substitute once on the current line

:g/Status/& Redo the substitution on all <Status= lines

:g/Status/&g Redo the substitution on all <Status= lines globally

@

[address] @ [char]

Execute the contents of the register specified by char. If address is given, move the
cursor to the specified address first. If char is @, repeat the last @ command.

=

[address] =

Print the line number of the line indicated by address. The default is the line number
of the last line.

The vi, ex, and Vim Editors | 457

!

[address] !command

Execute command in a shell. If address is specified, use the lines specified by address
as standard input to command, and replace those lines with the output and error
output. This is called �ltering the text through the command.

Examples

:!ls List �les in the current directory

:11,20!sort -f Sort lines 11–20 of the current �le

< >

[address] < [count]

 or

[address] > [count]

Shift lines specified by address either left (<) or right (>). Only leading spaces and tabs
are added or removed when shifting lines. count specifies the number of lines to shift,
starting with address. The shiftwidth option controls the number of columns that
are shifted. Repeating the < or > increases the shift amount. For example, :>>> shifts
three times as much as :>.

~

[address] ~ [count]

Replace the last-used regular expression (even if from a search and not from an
s command) with the replacement pattern from the most recent s (substitute) com‐
mand. This is rather obscure; see Chapter 6 for details.

address

address

Print the lines specified by address.

458 | Appendix A: The vi, ex, and Vim Editors

ENTER

Print the next line in the file. (For ex only, not from the : prompt in vi.)

The vi, ex, and Vim Editors | 459

APPENDIX B

Setting Options

This appendix describes the important set command options for the <Heirloom= vi,
Solaris /usr/xpg7/bin/vi, and Vim 8.2.

Heirloom and Solaris vi Options
Table B-1 contains brief descriptions of the important set command options. In the
first column, options are listed in alphabetical order; if the option can be abbreviated,
that abbreviation is shown in parentheses. The second column shows the default
setting that vi uses unless you issue an explicit set command (either manually or in
the .exrc file). The last column describes what the option does when enabled.

Table B-1. <Heirloom= and Solaris vi set options

Option Default Description

autoindent (ai) noai In insert mode, indent each line to the same level as the line above
or below. Use with the shiftwidth option.

autoprint (ap) ap Change the display after each editor command. For global
replacement, display the last replacement.

autowrite (aw) noaw Automatically write (save) the �le if changed before opening
another �le with :n or before giving a Unix command with :!.

beautify (bf) nobf Ignore all control characters during input (except tab, newline, or
form feed).

directory (dir) /var/tmp Names the directory in which ex/vi stores bu�er �les. The
directory must be writable.

edcompatible noedcompatible Remember the �ags used with the most recent substitute
command (global, con�rming), and use them for the next
substitute command. Despite the name, no version of ed actually
does this.

errorbells (eb) noerrorbells Sound the bell when an error occurs.

461

Option Default Description

exrc (ex) noexrc Allow the execution of .exrc �les that reside outside the user’s home
directory.

flash (fp) fp Flash the screen instead of ringing the bell.

hardtabs (ht) 8 De�ne boundaries for terminal hardware tabs.

ignorecase (ic) noic Disregard case during a search.

lisp nolisp Insert indents in appropriate Lisp format. (), { }, [[, and]]
are modi�ed to have meaning for Lisp.

list nolist Print tabs as ^I; mark ends of lines with $.

magic magic Wildcard characters . (dot), * (asterisk), and [] (brackets) have
special meaning in patterns.

mesg mesg Permit system messages to display on the terminal while editing in
vi.

novice nonovice Require the use of long ex command names, such as copy or
read. Solaris vi only.

number (nu) nonu Display line numbers on the left side of the screen during an editing
session.

open open Allow entry to open or visual mode from ex. Although not in Solaris
vi, this option has traditionally been in vi, and it may be in your
Unix’s version of vi.

optimize (opt) noopt Abolish carriage returns at the end of lines when printing multiple
lines; this speeds output on dumb terminals when printing lines
with leading whitespace (spaces or tabs).

paragraphs (para) IPLPPPQP

LIpplpipbp

De�ne paragraph delimiters for movement by { or }. The pairs of
characters in the value are the names of troff macros that begin
paragraphs.

prompt prompt Display the ex prompt (:) when vi’s Q command is given.

readonly (ro) noro Any writes (saves) of a �le fail unless you use ! after the write
(works with w, ZZ, or autowrite).

redraw (re) Redraw the screen whenever edits are made (in other words,
insert mode pushes over existing characters, and deleted lines
immediately close up). The default depends on line speed and
terminal type. noredraw is useful at slow speeds on a dumb
terminal: deleted lines show up as @, and inserted text appears to
overwrite existing text until you press ESC. This option is essentially
obsolete; let vi choose how to set it.

remap remap Allow nested map sequences.

report 5 Display a message on the status line whenever you make an edit
that a�ects at least a certain number of lines. For example, 6dd
reports the message “6 lines deleted.”

scroll [½ window] Number of lines to scroll with ^D and ^U commands.

sections (sect) SHNHH HU De�ne section delimiters for [[and]] movement. The pairs of
characters in the value are the names of troff macros that begin
sections.

462 | Appendix B: Setting Options

Option Default Description

shell (sh) /bin/sh Pathname of the shell used for shell escapes (:!) and the shell
command (:sh). The default value is derived from the shell
environment, which varies on di�erent systems but often ends up
being /bin/sh.

shiftwidth (sw) 8 De�ne the number of spaces in backward (^D) tabs when using the
autoindent option, and for the << and >> commands.

showmatch (sm) nosm In vi, when) or } is entered, move the cursor brie�y to the
matching (or {. (If no match, ring the error message bell.) Very
useful for programming.

showmode noshowmode In insert mode, display a message on the prompt line indicating
the type of insert you are making, for example, “OPEN MODE” or
“APPEND MODE.”

slowopen (slow) Hold o� display during insert. The default depends on line speed
and terminal type.

sourceany nosourceany Allow reading .exrc �les that are not owned by the current user.
“Heirloom” vi only.

tabstop (ts) 8 De�ne the number of spaces that a tab indents during an editing
session. (Printers still use the system tab of 8.)

taglength (tl) 0 De�ne the number of characters that are signi�cant for tags. The
default (zero) means that all characters are signi�cant.

tags tags /usr/lib/tags De�ne the pathname of �les containing tags. See the Unix ctags
command. By default, vi searches the �le tags in the current
directory and /usr/lib/tags.

tagstack tagstack Enable stacking of tag locations on a stack. Solaris vi only.

term Set the terminal type.

terse noterse Display shorter error messages. Ironically, there is no abbreviation
for this option.

timeout (to) timeout Keyboard maps time out after 1 second.a

ttytype Set the terminal type. This is just another name for term.

warn warn Display the warning message “No write since last change.”

window (w) Show a certain number of lines of the �le on the screen. The default
depends on line speed and terminal type.

wrapmargin (wm) 0 De�ne the right margin. If greater than zero, automatically insert
carriage returns to break lines.

wrapscan (ws) ws Wrap searches around either end of the �le.

writeany (wa) nowa Allow saving to any �le.

a When you have mappings of several keys (for example, :map zzz 3dw), you probably want to use notimeout.
Otherwise, you need to type zzz within one second. When you have an insert mode mapping for a cursor key (for
example, :map! ^[OB ^[ja), you should use timeout. Otherwise, vi won’t react to ESC until you type another key.

Setting Options | 463

Vim 8.2 Options
In the preceding section, we listed all 46 <Heirloom= and Solaris set command
options. Vim 8.2 has more than 400 (!) set command options. Table B-2 lists the
options we consider to be most useful.

Most options described in Table B-1 are not repeated here.

The summaries in this table are by necessity very brief. Much more information
about each option may be found in Vim’s online help file options.txt.

Table B-2. Vim 8.2 set options

Option Default Description

autoread (ar) noautoread Detect whether a �le inside Vim has been modi�ed
externally, not by Vim, and automatically refresh the
Vim bu�er with the changed version of the �le.

background (bg) dark or light Vim tries to use background and foreground colors
that are appropriate to the particular terminal.
The default depends on the current terminal or
windowing system.

backspace (bs) 0 Control whether you can backspace over a newline
and/or over the start of insert. Values are 0 for
vi compatibility; 1 to backspace over newlines
and indents; and 2 to backspace over the start of
newlines, insert, and indents.

backup (bk) nobackup Make a backup before overwriting a �le and then
leave it around after the �le has been successfully
written. To have a backup �le just while the �le is
being written, use the writebackup option. See
also writebackup.

backupdir (bdir) ., ~/tmp/, ~/ A list of directories for the backup �le, separated
with commas. The backup �le is created in the �rst
directory in the list where this is possible. If empty,
you cannot create a backup �le. The name . (dot)
means the same directory as where the edited �le is.

backupext (bex) ~ The string that is appended to a �lename to make the
name of the backup �le.

binary (bin) nobinary Change a number of other options to make it easier to
edit binary �les. The previous values of these options
are remembered and restored when bin is switched
back o�. Each bu�er has its own set of saved option
values. This option should be set before editing a
binary �le. You can also use the -b command-line
option.

464 | Appendix B: Setting Options

Option Default Description

breakat (brk) " ^I!@*-+;:,./?" Break line at any character in breakat string if
the set option linebreak is on. See also options
breakindent, linebreak, and showbreak for
customizing this feature.

breakindent (bri) nobreakindent Indent lines wrapped by the breakat option.

cdpath (cd) Same as value in environment
variable CDPATH

A list of directories Vim will search with ex command
cd or lcd in the same way $CDPATH works in the
shell. If you use it in your shell, this will be familiar
behavior.

cindent (cin) nocindent Enable automatic smart C program indenting.

cinkeys (cink) 0{,0},:,0#,!^F, o,O,e A list of keys that, when typed in insert mode,
cause reindenting of the current line. Only happens
if cindent is on.

cinoptions (cino) A�ects the way cindent reindents lines in a C
program. See the online help for details.

cinwords (cinw) if, else, while, do, for,
switch

These keywords start an extra indent in the next
line when smartindent or cindent is set. For
cindent, this is done only at an appropriate place
(inside {…}).

cmdwinheight (cwh) number (default 7) Number of lines in the command-line window.

colorcolumn (cc) empty string Highlight columns listed in comma-separated list. This
is a useful visual for vertical text alignment.

columns (co) 80 or terminal width Usually set by Vim. Can be useful to de�ne for your
GUI instance at launch if you have a preference (as
one of us does). See also lines.

comments (com) s1:/*,mb:*,ex:*/,://,

b:#,:%,:XCOMM,n:>,fb:-

A comma-separated list of strings that can start a
comment line. See the online help for details.

compatible (cp) cp; nocp when a .vimrc or Vim
runtime defaults.vim �le is found

Makes Vim behave more like vi in too many ways to
describe here. It is on by default, to avoid surprises.
Having a .vimrc turns o� the vi compatibility; usually
this is a desirable side e�ect.a

completeopt (cot) menu,preview A comma-separated list of options for insert mode
completion.

cpoptions (cpo) aABceFs A sequence of single character �ags, each one
indicating a di�erent way in which Vim will or will
not exactly mimic vi. When empty, the Vim defaults
are used. See the online help for details.

cursorcolumn (cuc) nocursorcolumn Highlight the screen column of the cursor with
CursorColumn highlighting. This is useful for
lining up text vertically. Can slow down the screen
display.

Setting Options | 465

Option Default Description

cursorline (cul) nocursorline Highlight the screen line of the cursor with Cursor
Row highlighting. Makes it easy to �nd the current
line in the edit session. Use in conjunction with
cursorcolumn for a crosshairs e�ect. Can slow
down the screen display.

cursorlineopt

(culopt)

string, "" De�ne the behavior of cursorline (cursor
line must be set for this to have any e�ect).
The most useful e�ect is to set it to number. This
highlights line numbers only. While it can be useful to
highlight the entire line, doing so becomes confusing
when used together with syntax coloring, as the
highlight alters the color and background of lines.

define (def) ^#\s*define A search pattern that describes macro de�nitions.
The default value is for C programs. For C++, use
^\(#\s*define\

|[a-z]*\s*const\s*[a-z]*\). When using
the :set command, you need to double the
backslashes.

dictionary (dict) empty string Comma-separated list of �lenames to use for key
word completion.

digraph (dg) nodigraph Useful for entering digraphs with character1,
BACKSPACE , character2. See the discussion in
“Digraphs: Non-ASCII Characters” on page 320.

directory (dir) ., ~/tmp, /tmp A list of directory names for the swap �le, separated
with commas. The swap �le will be created in the
�rst directory where this is possible. If empty, no
swap �le will be used and recovery is impossible! The
name . (dot) means to put the swap �le in the same
directory as the edited �le. Using . �rst in the list is
recommended so that editing the same �le twice will
result in a warning.

equalprg (ep) External program to use for = command. When this
option is empty, the internal formatting functions are
used.

errorfile (ef) errors.err Name of the error �le for the quick�x mode. When
the -q command-line argument is used, error
file is set to the following argument.

errorformat (efm) (Too long to print) scanf-like description of the format for the lines in
the error �le.

expandtab (et) noexpandtab When inserting a tab, expand it to the appropriate
number of spaces.

fileformat (ff) unix Describes the convention to terminate lines when
reading/writing the current bu�er. Possible values are
dos (CR/LF), unix (LF), and mac (CR). Vim usually
sets this automatically.

466 | Appendix B: Setting Options

Option Default Description

fileformats (ffs) dos,unix List the line-terminating conventions that Vim tries to
apply to a �le when reading. Multiple names enable
automatic end-of-line detection when reading a �le.

fixendofline (fix

eol)

boolean, on This ensures that a proper newline is appended to the
last line of a �le upon writing it out. If you don’t want
this, be sure to turn it o�. For example, you don’t
want this if you are editing a binary �le.

formatoptions (fo) Vim default: tcq; vi default: vt A sequence of letters that describes how automatic
formatting is to be done. See the online help for
details.

gdefault (gd) nogdefault Cause the substitute command to change all
instances.

guifont (gfn) A comma-separated list of fonts to try when starting
the GUI version of Vim.

hidden (hid) nohidden Hide the current bu�er when it is unloaded from a
window, instead of abandoning it.

history (hi) Vim default: 20; vi default: 0 Control how many ex commands, search strings, and
expressions are remembered in the command history.
Set this to a high number. Computer memory is
cheap! See the section “Moving into the Fast Lane” on
page 343 for an example of leveraging command-line
history.

hlsearch (hls) nohlsearch Highlight all matches of the most recent search
pattern.

icon noicon Vim attempts to change the name of the icon
associated with the window where it is running.
Overridden by the iconstring option.

iconstring String value used for the icon name of the window.

ignorecase (ic) noignorecase Ignore case in searches. See also smartcase.

include (inc) ^#\s*include De�ne a search pattern for �nding include
commands. The default value is for C programs.

incsearch (is) noincsearch Enable incremental searching.

isfname (isf) @,48-57,/,.,-,_,

+,,,$,:,~

A list of characters that can be included in �lenames
and pathnames. Non-Unix systems have di�erent
default values. The @ character stands for any
alphabetic character. It is also used in the other is
XXX options, described next.

isident (isi) @,48-57,_,192-255 A list of characters that can be included in identi�ers.
Non-Unix systems may have di�erent default values.

iskeyword (isk) @,48-57,_,192-255 A list of characters that can be included in keywords.
Non-Unix systems may have di�erent default values.
Keywords are used in searching and recognizing with
many commands, such as w, [i, and many more.

isprint (isp) @,161-255 A list of characters that can be displayed.

Setting Options | 467

Option Default Description

laststatus (ls) 2 Controls when the last window will have a status line.
Zero is never, one is only if there are at least two
windows, and two is always.

linebreak (lbr) nolinebreak Break a long line at the characters de�ned in
breakat. Vim wraps the line to keep the whole
line visible.

lines 24 or terminal height Usually set by Vim. Can be useful if you use the
GUI and prefer to de�ne the number of lines when
starting Vim. See also columns.

listchars (lcs) eol:$ Customize what Vim displays when the list option
is set. Useful for de�ning spaces as dots. (Even
more re�ned is de�ning leading and trailing spaces
with the lead:. and trail:. de�nitions: :set
listchars+=lead:.,trail:..)

makeef (mef) /tmp/vim##.err The error �lename for the :make command. Non-
Unix systems have di�erent default values. The ## is
replaced by a number to make the name unique.

makeprg (mp) make The program to use for the :make command. % and
in the value are expanded.

matchpairs (mps) (:),{:},[:] Comma-separated de�nitions of colon-separated
matching character pairs. These must be two di�erent
characters. It is useful to add <:> for HTML
matching. :set matchpairs+="<:>"

modifiable (ma) modifiable When turned o�, do not allow any changes in the
bu�er.

mouse a for GUI, MS-DOS, and Win32 Enable the mouse in non-GUI versions of Vim. This
works for MS-DOS, Win32, QNX pterm, and xterm.
See the online help for details.

mousehide (mh) nomousehide Hide the mouse pointer during typing. Restores the
pointer when the mouse is moved.

numberwidth (nuw) vi default: 8; Vim default: 4 De�ne the number column width (set with number
or relativenumber). Vim always uses the last
position for a separating space. We recommend
setting this to at least six.

paste nopaste Change a large number of options so that pasting into
a Vim window with a mouse does not mangle the
pasted text. Turning it o� restores those options to
their previous values. See the online help for details.

relativenumber

(rnu)

norelativenumber Number lines on the left side of the window relative
to the current line. For example, the current line
displays the correct line number, and all lines above
and below show the o�set from the current line. This
can be useful for block commands, removing the need
to count lines.

ruler (ru) noruler Show the line and column number of the cursor
position.

468 | Appendix B: Setting Options

Option Default Description

scrollbind (scb) noscrollbind Bind the current window to scroll with other windows
that also have scrollbind set. Useful for diff
comparisons.

scrolloff (s0) 0 (5 in defaults.vim) Set the minimum number of lines above or below
the cursor when scrolling. Useful for forcing context
lines around the current position. We like setting
scrolloff to three.

scrollopt (sbo) ver,jump De�ne scrollbind behavior. ver binds vertical
scrolling between scrollbind windows. See the
Vim help for detailed discussion.

secure nosecure Disable certain kinds of commands in the startup �le.
Automatically enabled if you don’t own the .vimrc
and .exrc �les.

shellpipe (sp) The shell string to use for capturing the output
from :make into a �le. The default value depends
on the shell.

shellredir (srr) The shell string for capturing the output of a �lter into
a temporary �le. The default value depends on the
shell.

showbreak (sbr) empty string Insert this string in front of wrapped lines.

showcmd (sc) Vim showcmd, Unix noshowcmd,
de�ned also in defaults.vim

Show vi command mode commands as they are
entered. Vim displays the command on the righthand
side of the ex command mode line. For example,
the vi command 5cw to change �ve words is
progressively displayed as it is input. Useful for
keeping track of a command as you build it.

showmode (smd) Vim default: smd; vi default: nosmd Put a message in the status line for insert, replace,
and visual modes.

sidescroll (ss) 0 How many columns to scroll horizontally. The value
zero puts the cursor in the middle of the screen.

smartcase (scs) nosmartcase Override the ignorecase option if the search
pattern contains uppercase characters.

spell nospell Turn on spellchecking.

spelllang (spl) en A comma-separated list of spellchecking language
�les.

suffixes *.bak,~,.o,.h,.info,.swp When multiple �les match a pattern during �lename
completion, the value of this variable sets a priority
among them in order to pick the one Vim will use.

taglength (tl) 0 De�ne the number of characters that are signi�cant
for tags. Default (zero) means that all characters are
signi�cant.

tagrelative (tr) Vim default: tr; vi default: notr Filenames in a tags �le from another directory are
taken to be relative to the directory where the tags
�le is.

Setting Options | 469

Option Default Description

tags (tag) ./tags,tags Filenames for the :tag command, separated by
spaces or commas. The leading ./ is replaced with
the full path to the current �le.

tildeop (top) notildeop Make the ~ command behave like an operator.

undolevels (ul) 1000 The maximum number of changes that can be
undone. A value of 0 means vi compatibility: one
level of undo and u undoes itself. Non-Unix systems
may have di�erent default values.

viminfo (vi) Read the viminfo �le upon startup, and write it upon
exiting. The value is complex; it controls the di�erent
kinds of information that Vim will store in the �le. See
the online help for details.

writebackup (wb) writebackup Make a backup before overwriting a �le. The backup
is removed after the �le is successfully written, unless
the backup option is also on.

a Since Vim 8.0, Vim sets compatible o� if a Vim runtime �le defaults.vim or system-wide defaults.vim exists. This is a
much better default behavior and addresses long-standing complaints and confusion when neophytes try Vim but see no
Vim-speci�c behaviors.

470 | Appendix B: Setting Options

APPENDIX C

The Lighter Side of vi

Sure, vi is user friendly. It’s just particular about who it makes friends with.

—Anonymous

This appendix touches on a broad range of vi-related subjects. It covers:

• Accessing the files described here and earlier in the book.•

• The online vi tutorial referenced in Part I.•

• The vi Powered logo for your website (and other logos).•

• vi-related swag.•

• The Vim clutch.•

• Some of the unusual and amazing things people have done with vi over the•
years.

• The Vi Lovers Home Page.•

• A di�erent vi clone.•

• A brief mention of vi versus Emacs.•

• Some nice vi-related quotations.•

Accessing the Files
Many of the bits and pieces we present here were once freely available on the internet.
Alas, that is no longer true. To remedy this, we have created a GitHub repository with
the various files. Simply clone https://www.github.com/learning-vi/vi-�les to make
your own copy of the repository:

git clone https://www.github.com/learning-vi/vi-files

471

https://thomer.com/vi/vi.html
https://www.github.com/learning-vi/vi-files

1 The web page footers in this copy point back to where we found them. That site may or may not be online
when you look at our copy.

Example Files
Some of the files used as examples in Part I, <vi and Vim Fundamentals=, are in the
book_examples directory.

Source for clewn
The clewn program, mentioned in the section <The Clewn GDB Driver= on page
384, is provided in the clewn-1.15 directory. To build and install it, use the following
straightforward recipe:

cd clewn-1.15

./configure

make

sudo make install

Online vi Tutorial
First up is Walter Zintz’s online tutorial from UnixWorld magazine, which was men‐
tioned several times in Part I.

This tutorial is long gone from its original site, but we managed to find a copy on the
internet at https://www.ele.uri.edu/faculty/vetter/Other-stu�/vi/009-index.html. So that
you won’t have to rely on this site still being active after this book’s publication, we
have placed a copy into our GitHub repository.1

In our GitHub repo, the tutorial is in the directory unix-world-tutorial. If you use
Firefox as your browser (for example), it should be enough to do:

$ cd unix-world-tutorial

$ firefox ./009-index.html & Use the browser of your choice

The tutorial covers the following topics:

• Editor fundamentals•

• Line-mode addresses•

• The g (global) command•

• The substitute command•

• The editing environment (the set command, tags, and EXINIT and .exrc)•

• Addresses and columns•

• The replacement commands, r and R•

472 | Appendix C: The Lighter Side of vi

https://www.ele.uri.edu/faculty/vetter/Other-stuff/vi/009-index.html
https://www.github.com/learning-vi/vi-files

• Automatic indentation•

• Macros•

The tutorial includes quiz questions at the end of several sections that you can use
to see how well you’ve absorbed the material in the tutorial. Or you can just try the
questions directly to see how well we’ve done with this book!

vi Powered!
Next up is the vi Powered logo (Figure C-1). This is a small GIF file you can add to
your personal web page to show that you used vi to create it.

Figure C-1. vi Powered!

The logo is in the directory vi-powered in the GitHub repository.

The original home page for the vi Powered logo (created by Antonio Valle) was http://
www.abast.es/~avelle/vi.html. That page was written in Spanish and is long gone.
There is now an English-language home page and it has instructions for adding the
logo, which consist of several simple steps:

1. Download the logo. Get it from our GitHub repository, or enter https://1.
darryl.com/vipower.gif into your (graphical) web browser, and then save the logo
to a file, or use a command-line web retrieval utility, such as wget.

2. Add the following code to your web page in an appropriate place:2.

This puts the logo into your page and makes it into a hypertext link that, when
selected, will go to the vi Powered home page. You may wish to add an ALT="This
Web Page is vi Powered" attribute to the tag, for users of nongraphical
browsers.

3. Add the following code to the <HEAD> section of your web page:3.

<META name="editor" content="/usr/bin/vi">

The Lighter Side of vi | 473

https://www.github.com/learning-vi/vi-files
https://darryl.com/vi.shtml
https://darryl.com/addlogo.html
https://darryl.com/addlogo.html
https://darryl.com/vipower.gif
https://darryl.com/vipower.gif

Just as the Real Programmer will eschew a WYSIWYG word processor in favor of
troff, so too will Real Webmasters eschew fancy HTML authoring tools in favor of
vi. You can use the vi Powered logo to display this fact with pride. ☺

You can find the Vim logo, in several variations, at https://www.vim.org/logos.php. A
number of Vim Powered logos for websites are at https://www.vim.org/buttons.php.

vi for Java Lovers
Despite the title, this subsection is about the java you drink, not the Java you program
in.

Our hypothetical Real Programmer, while using vi to write her C++ code, her troff
documentation, and her web page, undoubtedly will want a cup of coffee now and
then. She can now drink her coffee from a mug with a vi command reference printed
on it!

So here’s our third item: vi reference mugs, T-shirts, sweatshirts, barbecue aprons,
baby bibs, and even mouse pads are all available from https://www.cafepress.com/geek
cheat/366808.

The Vim Clutch
If changing modes in vi or Vim with your hands is bothersome, you may want to
create your very own <Vim clutch.= This USB-connected foot pedal sends i when
pressed down and ESC when released.

The project is described, with parts, links, instructions, and photographs, at https://
github.com/alevchuk/vim-clutch.

Another Vim clutch is presented at https://l-o-o-s-e-d.net/vim-clutch. Along the way,
the author describes several more Vim clutch projects besides his own.

Amaze Your Friends!
A collection of useful items related to vi were once upon a time available in the
FTP archives at alf.uib.no. The original archives were at �p://a�.uib.no/pub/vi. The
collection was mirrored at �p://�p.uu.net/pub/text-processing/vi. Both of these sites
are no longer available.

474 | Appendix C: The Lighter Side of vi

https://www.vim.org/logos.php
https://www.vim.org/buttons.php
https://www.cafepress.com/geekcheat/366808
https://www.cafepress.com/geekcheat/366808
https://github.com/alevchuk/vim-clutch
https://github.com/alevchuk/vim-clutch
https://l-o-o-s-e-d.net/vim-clutch
http://alf.uib.no/

2 Thanks also to Bakul Shah, who pointed us to the copy available online at https://web.archive.org/web/

19970209203017/http://archive.uwp.edu/pub/vi/.

Happily, Clement Cole made his copy of the archive available to us for inclusion in
our GitHub repository, for which we thank him.2

Unfortunately, these files were last updated in May 1995. Fortunately, vi’s basic func‐
tionality has not changed, and much of the information and macros in the archive are
still useful. The original archive had four subdirectories:

docs

Documentation on vi, and also some comp.editors postings.

macros

vi macros.

comp.editors

Various materials posted to comp.editors.

programs

Source code for vi clones for various platforms (and other programs).

We have not included the programs directory since it’s largely irrelevant today.

The docs and macros are the most interesting. The docs directory has a large number
of articles and references, including beginners’ guides, explanations of bugs, quick
references, and many short <how to= kinds of articles (e.g., how to capitalize just the
first letter of a sentence in vi). There’s even a song about vi!

The macros directory has more than 50 files in it that do different things. We mention
just three of them here. Files whose original archived names ended in .tar.Z have
been expanded into separate directories in our GitHub repository.

evi-tar

An Emacs <emulator.= The idea behind it is to turn vi into a modeless editor
(one that is always in input mode, with commands done with control keys). It is
actually done with a shell script that replaces the EXINIT environment variable.

hanoi

This is perhaps the most famous of the unusual uses of vi: a set of macros that
solve the Towers of Hanoi programming problem. This program simply displays
the moves; it does not actually draw the disks. For fun, we have reprinted it in
<The Towers of Hanoi, vi Version= on page 476.

The Lighter Side of vi | 475

https://web.archive.org/web/19970209203017/http://archive.uwp.edu/pub/vi/
https://web.archive.org/web/19970209203017/http://archive.uwp.edu/pub/vi/
https://www.github.com/learning-vi/vi-files
https://www.github.com/learning-vi/vi-files

turing-tar

This program uses vi to implement an actual Turing machine! It’s rather amazing
to watch it execute the programs.

There are many, many interesting macros in addition to these; take a look!

The Towers of Hanoi, vi Version
" From: gregm@otc.otca.oz.au (Greg McFarlane)

" Newsgroups: comp.sources.d,alt.sources,comp.editors

" Subject: VI SOLVES HANOI

" Date: 19 Feb 91 01:32:14 GMT

"

" Submitted-by: gregm@otc.otca.oz.au

" Archive-name: hanoi.vi.macros/part01

"

" Everyone seems to be writing stupid Tower of Hanoi programs.

" Well, here is the stupidest of them all: the hanoi solving

" vi macros.

"

" Save this article, unshar it, and run uudecode on

" hanoi.vi.macros.uu. This will give you the macro file

" hanoi.vi.macros.

" Then run vi (with no file: just type "vi") and type:

" :so hanoi.vi.macros

" g

" and watch it go.

"

" The default height of the tower is 7 but can be easily changed

" by editing the macro file.

"

" The disks aren't actually shown in this version, only numbers

" representing each disk, but I believe it is possible to write

" some macros to show the disks moving about as well. Any takers?

"

" (For maze solving macros, see alt.sources or comp.editors)

"

" Greg

"

" ------------ REAL FILE STARTS HERE ---------------

set remap

set noterse

set wrapscan

" to set the height of the tower, change the digit in the following

" two lines to the height you want (select from 1 to 9)

map t 7

map! t 7

map L 1G/t^MX/^0^M$P1GJ$An$BGC0e$X0E0F$X/T^M@f^M@h^M$A1GJ@f0lXnPU

map g IL

map I KMYNOQNOSkRTV

map J /^0[^t]*$^M

map X x

map P p

map U L

map A "fyl

map B "hyl

map C "fp

476 | Appendix C: The Lighter Side of vi

map e "fy2l

map E "hp

map F "hy2l

map K 1Go^[

map M dG

map N yy

map O p

map q tllD

map Y o0123456789Z^[0q

map Q 0iT^[

map R $rn

map S r

map T ko0^M0^M^M^[

map V Go/^[

The Vi Lovers Home Page
The Vi Lovers Home Page contains the following items:

• A table of all known vi clones, with links to the source code or binary distribu‐•
tions

• Links to other vi sites•

• A large number of links to vi documentation, manuals, help, and tutorials, at a•
number of different levels

• vi macros for writing HTML documents and solving the Towers of Hanoi, and•
FTP sites for other macro sets

• Miscellaneous vi links: poems, a story about the <real history= of vi, vi versus•
Emacs discussions, and vi coffee mugs (see the section <vi for Java Lovers= on
page 474)

Be aware that this site seems to have not been updated in a long time. Many of the
links work, but many do not.

A Di�erent vi Clone
Depicted in Figures C-2 through C-9 is the story of vigor, a di�erent vi clone.

The Lighter Side of vi | 477

http://www.thomer.com/vi/vi.html

Figure C-2. �e story of vigor—part I

Figure C-3. �e story of vigor—part II

Figure C-4. �e story of vigor—part III

478 | Appendix C: The Lighter Side of vi

Figure C-5. �e story of vigor—part IV

Figure C-6. �e story of vigor—part V

Figure C-7. �e story of vigor—part VI

The Lighter Side of vi | 479

3 OK, it’s really a religious war, but we’re trying to be nice. The other religious war, BSD versus System V, was
settled by POSIX. System V won, although BSD received significant concessions. ☺

Figure C-8. �e story of vigor—part VII

Figure C-9. �e story of vigor—part VIII

The source code for vigor is available at http://vigor.sourceforge.net.

Tastes Great, Less Filling
vi is [[13~^[[15~^[[15~^[[19~^[[18~^ a

muk[^[[29~^[[34~^[[26~^[[32~^ch better editor than this emacs. I know

I^[[14~'ll get flamed for this but the truth has to be

said. ^[[D^[[D^[[D^[[D ^[[D^[^[[D^[[D^[[B^

exit ^X^C quit :x :wq dang it :w:w:w :x ^C^C^Z^D

— Jesper Lauridsen from alt.religion.emacs

We can’t discuss vi as part of Unix culture without acknowledging what is perhaps
the longest running debate in the Unix community: vi versus Emacs.3

480 | Appendix C: The Lighter Side of vi

http://vigor.sourceforge.net

Discussions about which is better have cropped up on comp.editors (and other
newsgroups) for years and years. (This is illustrated nicely in Figure C-10.)

Figure C-10. It’s not a religious war. Really!

Some of the better arguments in favor of vi are:

• vi is available on every Unix system. If you are installing systems or moving from•
system to system, you might have to use vi anyway.

• You can usually keep your fingers on the home row of the keyboard. This is a big•
plus for touch typists.

• Commands are one (or sometimes two) regular characters; they are much easier•
to type than all of the control and metacharacters that Emacs requires.

• vi is generally smaller and less resource intensive than Emacs. Startup times are•
appreciably faster, sometimes up to a factor of 10.

• Now that Vim (and other vi clones) has added features such as incremental•
searching, multiple windows and buffers, GUI interfaces, syntax highlighting and
smart indenting, and programmability via extension languages, the functional
gap between the two editors has narrowed significantly, if not disappeared
entirely.

To be complete, one more item should be mentioned. Although GNU Emacs has
always had vi-emulation packages, they were usually not very good. However, the
viper-mode is reputed to be an excellent vi emulation. It can serve as a bridge for
learning Emacs for those who are interested in doing so.

To conclude, always remember that you are the final judge of a program’s utility. You
should use the tools that make you the most productive, and for many tasks, vi and
Vim are excellent tools.

The Lighter Side of vi | 481

vi Quotes
Finally, here are some more vi quotes, courtesy of Bram Moolenaar, Vim’s author:

THEOREM: vi is perfect.

PROOF: VI in roman numerals is 6. The natural numbers less than 6 which divide 6
are 1, 2, and 3. 1 + 2 + 3 = 6. So 6 is a perfect number. Therefore, vi is perfect.

—Arthur Tateishi

A reaction from Nathan T. Oelger:

So, where does the above leave Vim? VIM in roman numerals might be: (1000 – (5 +
1)) = 994, which happens to be equal to 2*496+2. 496 is divisible by 1, 2, 4, 8, 16, 31,
62, 124, and 248 and 1+2+4+8+16+31+62+124+248 = 496. So, 496 is a perfect number.
Therefore, Vim is twice as perfect as vi, plus a couple extra bits of goodies. ☺

That is, Vim is better than perfect.

This quote seems to sum it up for the true vi lover:

To me vi is zen. To use vi is to practice zen. Every command is a koan. Profound to
the user, unintelligible to the uninitiated. You discover truth every time you use it.

—Satish Reddy

482 | Appendix C: The Lighter Side of vi

1 For more information about this, see the Unix Heritage Society website.

2 We know. We tried.

APPENDIX D

vi and Vim: Source Code and Building

On the off chance that you don’t already have vi or Vim installed on your system, this
appendix describes where to get source code for both editors, and prebuilt installable
binaries for most popular operating systems.

Nothing Like the Original
For many, many years, the source code to the original vi was unavailable without a
Unix source code license. Although educational institutions were able to get licenses
at relatively low cost, commercial licenses were always expensive. This fact prompted
the creation of Vim and many other vi clones.

In January 2002, the source code for V7 and 32V UNIX was made available under an
open source–style license.1 This opened up access to almost all of the code developed
for BSD Unix, including ex and vi.

The original code does not compile <out of the box= on modern systems, such as
GNU/Linux, and porting it is difficult.2 Fortunately, the work has already been done.
If you would like to use the original, <real= vi, you can download the source code and
build it yourself. See https://github.com/n-t-ro�/heirloom-ex-vi for more information.

We were able to build the <Heirloom= vi with no problems on an Ubuntu GNU/
Linux system just by following the instructions in the README file.

483

https://www.tuhs.org
https://github.com/n-t-roff/heirloom-ex-vi

3 The exceptions tend to be legacy Unix-based systems, such as HP/UX and AIX, where the standard vi is the
original one.

Where to Get Vim
Most modern Unix-flavored OSs use Vim as the standard version of vi.3 That is,
when you execute vi, you get Vim.

Many such systems lag slightly behind the most current Vim. For example, as of
this publication (eighth edition, late 2021), the current release is Vim 8.2, and most
systems have Vim 8.0.

In this section we briefly discuss how to install the latest version of Vim (or any
version to your liking) on GNU/Linux (in this example, Ubuntu). For other GNU/
Linux distributions, the process is basically the same.

If the command vi or vim doesn’t start your editor, either it is not installed, or your
path doesn’t include Vim’s executable directory. Make sure your PATH environment
variable includes the following directories. (If this fails, it’s possible Vim is not
installed. Read on for instructions to install Vim.)

/usr/bin �is should be in your $PATH anyway

/bin So should this

/opt/local/bin

/usr/local/bin

Verify your Vim version with the ex command version. Vim displays something like
this:

VIM - Vi IMproved 8.2 (2019 Dec 12, compiled May 8 2021 05:44:12)

macOS version

Included patches: 1-2029

Compiled by root@apple.com

Normal version without GUI. Features included (+) or not (-):

+acl -farsi +mouse_sgr +tag_binary

-arabic +file_in_path -mouse_sysmouse -tag_old_static

+autocmd +find_in_path -mouse_urxvt -tag_any_white

+autochdir +float +mouse_xterm -tcl

-autoservername +folding +multi_byte -termguicolors

-balloon_eval -footer +multi_lang +terminal

-balloon_eval_term +fork() -mzscheme +terminfo

-browse -gettext +netbeans_intg +termresponse

+builtin_terms -hangul_input +num64 +textobjects

+byte_offset +iconv +packages +textprop

+channel +insert_expand +path_extra +timers

+cindent -ipv6 -perl +title

-clientserver +job +persistent_undo -toolbar

+clipboard +jumplist +popupwin +user_commands

+cmdline_compl -keymap +postscript -vartabs

+cmdline_hist +lambda +printer +vertsplit

+cmdline_info -langmap -profile +virtualedit

+comments +libcall +python/dyn +visual

-conceal +linebreak -python3 +visualextra

484 | Appendix D: vi and Vim: Source Code and Building

+cryptv +lispindent +quickfix +viminfo

+cscope +listcmds +reltime +vreplace

+cursorbind +localmap -rightleft +wildignore

+cursorshape -lua +ruby/dyn +wildmenu

+dialog_con +menu +scrollbind +windows

+diff +mksession +signs +writebackup

+digraphs +modify_fname +smartindent -X11

-dnd +mouse -sound -xfontset

-ebcdic -mouseshape +spell -xim

-emacs_tags -mouse_dec +startuptime -xpm

+eval -mouse_gpm +statusline -xsmp

+ex_extra -mouse_jsbterm -sun_workshop -xterm_clipboard

+extra_search -mouse_netterm +syntax -xterm_save

 system vimrc file: "$VIM/vimrc"

 user vimrc file: "$HOME/.vimrc"

 2nd user vimrc file: "~/.vim/vimrc"

 user exrc file: "$HOME/.exrc"

 defaults file: "$VIMRUNTIME/defaults.vim"

 fall-back for $VIM: "/usr/share/vim"

Compilation: gcc -c -I. -Iproto -DHAVE_CONFIG_H -DMACOS_X_UNIX -g -O2

-U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=1

Linking: gcc -L/usr/local/lib -o vim -lm -lncurses -liconv -framework Cocoa

If you see the latest release/version, and that’s what you wanted, you are done. If you
want a different version, read on.

Interestingly, on one of the authors’ Mac mini, with OS X version
10.4.10 installed, not only does a vi command invoke Vim but the
documentation (the <man page=) references Vim!

If none of the preceding measures work, you probably don’t have Vim. Vim is
available in many forms for many platforms and is (usually) relatively easy to retrieve
and install. The following sections guide you to getting Vim for your platform, in this
order:

• Unix and variants, including GNU/Linux and Cygwin•

• Windows XP and up•

• Macintosh macOS•

vi and Vim: Source Code and Building | 485

The installation procedure described here requires a development
environment capable of compiling source code. Although most
Unix variants provide compilers and related tools, some (notably
current releases of the Ubuntu GNU/Linux distribution) require
you to download and install additional packages before you can
experience the pleasures of compiling code.

There are also prepackaged Vim bundles offering easy standard
installations for GNU/Linux (Red Hat RPMs, Debian pkgs), Solaris
(Companion Software), and HP-UX. The Vim home page provides
links for all of these systems. For unusual systems, internet search‐
ing will undoubtedly prove helplful.

A quick check for gcc should indicate whether or not you are ready
to compile Vim:

$ type gcc

gcc is /usr/bin/gcc

Getting Vim for Unix and GNU/Linux
Many modern Unix environments already come with some version of Vim. Most
GNU/Linux distributions simply link the default vi location /usr/bin/vi to a Vim
executable. Most users won’t ever need to install it. As mentioned earlier in the book,
the Solaris 11 vi is actually Vim!

On Ubuntu GNU/Linux systems, a minimal version of Vim is installed as vi. For a
full version, including GUI, do:

sudo apt install vim-gtk3

On other systems, you will need to do something similar with your system’s package
manager.

Because there are so many variants of Unix and so many flavors of some variants
(e.g., Solaris, HP-UX, *BSD, all the distributions of GNU/Linux), if you can’t install
Vim by using a package manager, the next most straightforward way to get Vim is to
download its source, compile it, and install it.

Vim is distributed as a compressed tar file (using either gzip or bzip2 files—.gz

and .bz2, respectively). Along with the tar file, each major version has a number of
patches to fix problems or issues discovered after the release of each preceding major
version.

It is possible to download the tar file and the patch files and then apply the patches
individually in order to build from the latest source code. However, this process is
tedious, as there are often hundreds of patch files for any given version.

486 | Appendix D: vi and Vim: Source Code and Building

Instead, it is much easier to simply clone the source code from Vim’s Git repository on
GitHub. Doing so gives output similar to this:

$ git clone git://github.com/vim/vim

Cloning into 'vim'...

remote: Enumerating objects: 34, done.

remote: Counting objects: 100% (34/34), done.

remote: Compressing objects: 100% (27/27), done.

Receiving objects: 100% (113446/113446), 90.87 MiB | 1.07 MiB/s, done.

Resolving deltas: 100% (95729/95729), done.

Updating files: 100% (3347/3347), done.

To build, change to the src directory and run configure. You will probably want to do
some internet research with respect to options to configure before running it. The
output is voluminous:

$ cd vim/src

$./configure

configure: creating cache auto/config.cache

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables...

 ...

The next step is to run make. Here too, the output is voluminous:

$ make

/bin/sh install-sh -c -d objects

touch objects/.dirstamp

CC="gcc -Iproto -DHAVE_CONFIG_H " srcdir=. sh ./osdef.sh

gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -U_FORTIFY_SOURCE

-D_FORTIFY_SOURCE=1 -o objects/arabic.o arabic.c

gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -U_FORTIFY_SOURCE

-D_FORTIFY_SOURCE=1 -o objects/arglist.o arglist.c

gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -U_FORTIFY_SOURCE

-D_FORTIFY_SOURCE=1 -o objects/autocmd.o autocmd.c

 ...

When done, you’ll have an executable name vim. To install it, become the root user
and run make install. That’s it!

Getting Vim for Windows Environments

MS Windows gvim

There are three main options for Microsoft Windows. The first is the self-installing
executable gvim82.exe, available from the Vim home page. Download and run this,
and it should do the rest. We have installed Vim using this executable on different
Windows machines, and it’s always worked cleanly. The binary should install cor‐
rectly on all MS-Windows systems from Windows XP and later.

vi and Vim: Source Code and Building | 487

https://github.com/vim/vim

At one point in the install process, a DOS window pops up and
gives a warning about something not being verifiable. We have
never seen this become a problem.

Cygwin for Windows

The second option for Windows users is to install Cygwin, a suite of common GNU
tools ported to the Windows platform. It’s a full implementation of virtually all
mainstream software used on Unix platforms. Vim is part of the standard Cygwin
installation and runs in the Cygwin shell console.

Using Vim with Cygwin
The text-based console Vim works fine in Cygwin, but Cygwin’s gvim expects an
X Window System server to be running. It degrades gracefully into running the
text-based Vim if started without this server.

To get Cygwin’s gvim working (assuming you wish to run it on a local screen), start
Cygwin’s X server from the command line in a Cygwin shell as follows:

$ X -multiwindow &

The -multiwindow option tells the X server to let Windows manage the Cygwin
applications. There are many other ways to use Cygwin’s X server, but that discussion
is outside the scope of this book. Installation of Cygwin’s X server is also outside our
scope here; if it is not installed, see the Cygwin home page for further information.
A graphical <X= icon should appear in the Windows systray. This assures that the X
server is in fact running.

It is confusing to have both Cygwin’s Vim and vim.org’s Vim installed at the same
time. Some of the configuration files referenced for Vim configuration may reside
in different places, thus resulting in seemingly identical versions of Vim that start
up with completely different options. For instance, Cygwin and Windows may have
different notions of what is the home directory.

Windows Subsystem for Linux and Vim

The Windows Subsystem for Linux (WSL) is a virtual environment with full Linux
kernel compatibility. It is Microsoft’s platform for installing and running GNU/Linux
distributions. The list of distributions is constantly growing, and most of the favorite
GNU/Linux distributions are available.

For more discussion on WSL, see the section <Running gvim in Microsoft Windows
WSL= on page 203.

488 | Appendix D: vi and Vim: Source Code and Building

http://www.cygwin.com

WSL is a relatively recent addition to Microsoft Windows. While
we’ve not described WSL in great detail, we consider it a better
choice and recommend GNU/Linux in WSL and Vim over the
previously mentioned Cygwin.

Getting Vim for the Macintosh Environment
There are two options for using Vim under macOS. You may use the native version,
or you can install a graphical version using Homebrew. This section presents both
options.

Native macOS Vim

macOS includes Vim as a standard tool. It’s easiest to use Apple’s default since OS
updates also keep Vim up to date. Notably, macOS’s Vim is not GUI, but there is a
popular third-party GUI version of Vim, called MacVim, which we recommend.

MacVim is actively maintained and has a familiar Macintosh-like look and feel, as its
maintainers adhere to common Macintosh styles and ergonomics.

At the bottom of MacVim’s GitHub page, you’ll find the README.md information
shown in Figure D-1.

Figure D-1. MacVim home page, README.md

Click Releases from <Download the latest version from Releases=. Near the bottom of
that page, see Assets. (See Figure D-2.) We recommend downloading MacVim.dmg
and performing a standard macOS install.

vi and Vim: Source Code and Building | 489

https://github.com/macvim-dev/macvim

Figure D-2. MacVim assets (downloads)

One of us uses a zsh alias on his MacBook Pro by adding this line
to his .zshrc profile:

alias vi='/Applications/MacVim.app/Contents/bin/mvim'

Installing Vim with Homebrew

Macintosh users who prefer a more GNU-like OS are probably familiar with Home‐
brew, an application manager that provides GNU packages for Macintosh computers.

Homebrew’s GNU package install command is simply brew install gnu-package,
where gnu-package is any available Homebrew package. To install Vim with Home‐
brew, execute the command:

brew install vim

Visit <Homebrew Formulae= for more detailed information about Homebrew Vim
options.

Other Operating Systems
Vim’s vi_di�.txt help file lists more environments for which Vim is supported. Read
this file for more information. The environments include:

• IBM OS/390•

• OpenVMS•

• QNX•

A number of now-obsolete systems were supported in the past, but they are likely no
longer of interest.

490 | Appendix D: vi and Vim: Source Code and Building

https://brew.sh
https://brew.sh
https://formulae.brew.sh/formula/vim

Index

Symbols
! (exclamation point)

filtering text through a command, 120-122
mapping keys for insert mode, 130
overriding write warnings, 75
:q! quitting without saving, 11, 13, 75
toggling :set options, 115

line number display, 70
Universal tags file tags, 150
Unix command execution, 14, 118

" (double quote)
comments in ex scripts, 142, 172
recovering deletions, 60
yanking/copying to named registers, 61

(hash)
alternate filename, 79
temporary display of line numbers, 70

#include files and insertion completion, 265
$ (dollar sign)

$@ variable, 138
$file variable, 138
command output to variable, 139
cursor to end of line, 21
last line of file (ex), 71
metacharacter in search patterns, 90
shell prompt, 9

terminating a shell, 14
$@ variable, 138
$file variable, 138
% (percent)

bracket searches, 146
current filename, 79
every line in file, 71
global replacement, 86

replacement text of last substitute, 95
& (ampersand) metacharacter, 95

substitution command, 96
' (apostrophe) for marking place, 62
'' (apostrophes) cursor move, 52, 62
((left parenthesis) cursor move, 46
) (right parenthesis) cursor move, 46
* (asterisk) metacharacter, 90
+ (plus)

+-- fold placeholder, 243
moving cursor down, 18, 45
opening file at last line, 57
relative line addresses (ex), 71

, (comma) command, 51
- (hyphen)

escaping in brackets, 91
moving cursor up, 18, 45
relative line addresses (ex), 71
Vim command-line options, 167-169

filename as hyphen, 167
--cmd command-line option, 168
--help command-line option, 218
--remote command-line options, 169
--server command-line options, 169
-A command-line option, 168
-b command-line option, 168, 320
-C command-line option, 168
-c command-line option, 57-58, 168
-d command-line option, 168, 328-330
-E command-line option, 168
-E command-line option (grep), 176
-e command-line option, 171
-g command-line option, 168
-M command-line option, 168

491

-O command-line option, 169
-o command-line option, 169
-o option for multiple windows, 215
-R command-line option, 11, 58
-r command-line option, 59
-s parameter for script or silent mode, 137
-y command-line option, 169

evim and eview commands, 170
-Z command-line option, 169
. (dot)

current line (ex), 71
metacharacter in search patterns, 90
repeat last command, 35, 87

.exrc files, 114, 171
alternate file via :so, 117
changes displayed via :set command, 115
home directory .exrc file, 116
read on startup, 114, 116
right margin, 21
scripts, 136

.gvimrc file, 184
colorscheme option, 289

.vimrc file, 171
colorscheme option, 289
gvim, 184
incsearch (incremental searching), 181

/ (slash)
search commands via, 47

bottom-line command overview, 7
ex global searches, 73
ex next line matching pattern, 72
repeating search forward, 48

substitute command, 85
Unix pathnames, 9

directory navigation, 324-326
/usr/share/vim/vimXX/defaults.vim file, 43
0 (zero) beginning of line command, 21
0 (zero) line in ex, 72
: (colon)

colon prompt of ex
invoking vi gives colon, 11
Q command in vi, 68
quitting back to vi, 68

ex commands, 7, 68
in configuration files, 172

MS-Windows disallowing in filenames, 9
Unix shell commands, 14

:! for Unix command, 14, 118
:& (repeat substitution) command, 96

:.= (current line number) command, 70
:= (number of lines) command, 70
:ab (abbreviation) command, 122
:args (arguments) command, 78
:bufdo command, 230
:buffers command to list buffers, 228
:cwindow command, 229
:e (edit) command, 10, 79
:e! (revert), 13
:files command to list buffers, 228
:g (global searches) command, 73, 88-89

repeat last command via, 109
:help command, 165-167

change-tree navigation, 181
c_CTRL-F for command-line, 341
digraph-table, 321
F1 for help screen, 337
help buffer, 229
navigation, 165
new user support, 164
regexp for regular expressions, 180
scripting, 314
startup options for Vim, 167
s_flags for substitution, 87
TAB for command completion, 166
text-objects and visual mode, 176
usr_32.txt, 181

:hide (buffer) command, 235
:j (join two or more lines) command, 141
:loadview preserving folds, 239
:ls command to list buffers, 228
:lwindow command, 229
:m (move) command, 69, 89
:map command, 124, 130

command history window, 341
CTRL-V to escape keys, 125
doubling commands, 340
examples of mapping, 128-130

complex mapping example, 126
function keys, 131
insertion completion method, 261, 268
keys not used in command mode, 124
mapleader variable, 125
multiple input keys, 134
quitting Vim simplified, 339
resizing windows, 340
search-pattern history window, 342
searching for command, 343
special keys, 132-134

492 | Index

:mksession command, 332
:mkview command, 239
:n (next file) command, 78
:nmap (map) command, 339
:noremap command, 341
:p (print to screen) command, 67
:pre (preserve) command, 14
:q (quit) command, 12, 75

No write since last change message, 11
problem opening file, 10
:q! quitting without saving, 11, 13, 75
simplified via mapping, 339
:wq write and quit, 12, 75

:r (read) command, 77, 119
spellchecking, 120

:redo command, 180
:rew (rewind) command, 78
:s (substitute) command, 67

confirming substitutions, 86
edcompatible option, 97
global replacement, 85, 88
tricks to know, 96

:set command, 115
about, 114

useful options, 117
all to display all options, 115

individual option display, 115
autoindent, 143

Vim, 250-251, 259
backup, 326
backupdir, 326
binary, 320
cindent, 250, 252-258
cmdwinheight, 342
compatible, 164, 251
complete, 267
digraph, 321
expandtab, 145
.exrc file, 114, 116
exrc option in home directory .exrc file, 116
foldcolumn, 245
foldenable, 249
foldlevel, 248
foldmethod, 247, 249
guioptions, 190
Heirloom vi options, 461-463
ic to ignore case, 96, 118
indentexpr, 250, 258
laststatus for status line, 216

list, 145
listchars, 335
mouse, 187, 221
nonu for no line numbers, 70
nowrap, 181
nu for line numbers, 21, 51, 69

toggling display, 70
paragraph and section separators, 47
scripts checking options, 302
scrolloff, 43
shiftwidth, 144, 247
showmatch, 146
sidescroll, 181, 334
smartindent, 250, 251
Solaris vi options, 461-463
statusline, 296
syntax, 272
tabstop, 144
tildeop, 246
undolevels, 180
Vim 8.2 options, 464-470
viminfo, 331
winheight option, 216, 226
winwidth option, 216, 226
wm (wrapmargin), 21, 117
wrap, 334, 335
wrapscan, 118
writebackup, 326

:sh for new shell, 14, 118
:so (source) command, 117

read saved session file, 332
script execution, 137

:split command for multiple windows, 217-220
conditional split commands, 220
options, 218

:stag command, 232
:syntax command, 271
:t (copy lines to) command, 69, 110
:tab commands, 233
:tag command, 147

tag stacks, 151-153
Vim editor, 269

:tjump command, 232
:tmenu command, 202
:tselect command, 232, 270
:v command, 73, 105, 344
:vi command, 67, 419
:vimgrep command, 285
:vsplit command for multiple windows, 217

Index | 493

:w (write) command, 12, 75
appending to a saved file, 76
editing multiple files, 78
saving part of a file, 76
turning off write on startup, 168
:w filename for new file, 13, 76
:w! overriding read-only mode, 58, 75
:w! overriding write warnings, 75
:w! overwriting existing file, 13
:wq write and quit, 12, 75

:windo command, 230
:~ (repeat search pattern) command, 96
; (semicolon) command, 50
<< input command, 139
<< outdent, 144
>> (redirect and append) operator, 76
>> indent, 144
? (question mark)

individual :set option display, 115
search commands via, 7

ex searching backwards, 72
repeat search backward, 48

@-functions (at-functions), 135
[] (brackets)

character classes in POSIX, 93, 93
collating symbols in POSIX, 93
cursor movement, 46
equivalence classes in POSIX, 93
metacharacters in search patterns, 90
optional parameters, 9

[. .] for collating symbols, 93
[: :] for character classes, 93, 93
[= =] for equivalence classes, 93
[[(left brackets) moving cursor, 46
\ (backslash)

mapleader character, 125
metacharacter in replacement strings, 94
metacharacter in search patterns, 90,

176-180
escaping in brackets, 91
\< matching start of word, 91, 92
\> matching end of word, 91, 92

regular expression characters and character
classes, 178

spaces within filenames, 9
MS-Windows disallowing, 9

\& metacharacter, 177
\(\) subpattern, 178
\+ metacharacter, 177

\< matching start of word, 91, 92
\= metacharacter, 177
\> matching end of word, 91, 92
\? metacharacter, 177
\E metacharacter, 96
\e metacharacter, 96
\L metacharacter, 96
\l metacharacter, 95
\number subexpression match, 178
\U metacharacter, 96
\u metacharacter, 95
\{ } metacharacters, 177
\| metacharacter, 176
] (right bracket) in brackets, 91
]] (right brackets) moving cursor, 46
^ (caret)

metacharacter in search patterns, 90
inside brackets, 91

move to first nonblank character, 45
representing CTRL key, 42
scrolling the screen, 42

_ (underscore) as cursor position, 17
` (backquote) cursor move, 62
`` (backquotes) cursor move, 52, 62
{ (left brace) cursor move, 46
| (vertical bar) move to character, 45
} (right brace) cursor move, 46
~ (tilde)

case change, 28, 246
metacharacter in replacement strings, 95
metacharacter in search patterns, 92, 178
no text in file, 10

~~ (case change) command, 246

A
A (append to end of current line) command, 36
a (append) command, 23, 25

ea (append to end of word) command, 37
abbreviations for commands and text, 122, 336
accent marks, 320-322
ampersand (&) metacharacter, 95

substitution command, 96
analyzing a speech, 345-348

other text analysis, 348-350
apostrophe (') for marking place, 62
apostrophes ('') cursor move, 52, 62
append (a) command, 23, 25

ea (append to end of word) command, 37
Arabic mode, 168

494 | Index

arguments (:args) command, 78
arguments via $@ variable, 138
arrays, 299
arrow keys

command line for recent commands, 338
moving cursor, 18

escape sequences, 19
ASCII NUL, 9
AsciiDoc markup language, 6
asterisk (*) metacharacter, 90
at-functions (@-functions), 135
autocmd (Vim), 300, 311

about, 117
deleting, 306-308
groups, 306

autocompletion of words, 260-268
completion by complete option, 267
completion by filename, 266
completion by tag, 266
dictionary, 263
keywords in file, 263
macro names and definitions, 266
plug-ins for IDE, 365-369
spellchecking, 267
thesaurus, 263-265, 318
user functions, 266
Vim commands, 266
whole lines, 261

autoindent option, 143
Vim, 250-251, 259

autowrite option, 118
aw (select word in visual mode) command, 176
awk data manipulation language, 142

analysis of a speech, 345-348
other text analysis uses, 348-350

B
b (move backward one word) command, 22

numeric arguments, 22
B (move backward one word) command, 22

numeric arguments, 22
backquote (`) cursor move, 62
backquotes (``) cursor move, 52, 62
backslash (\)

mapleader character, 125
metacharacter in replacement strings, 94
metacharacter in search patterns, 90,

176-180
escaping in brackets, 91

\< matching start of word, 91, 92
\> matching end of word, 91, 92

regular expression characters and character
classes, 178

spaces within filenames, 9
MS-Windows disallowing, 9

backspace, 16, 18
backup option, 326
backupdir option, 326
backups, 326
Bash shell

about, 377
command-line editing, 378
multiline commands, 378
Vim to edit Bash commands, 379

beep sound
cursor movements, 18
ESC and beep mode, 12, 17

(see also command mode)
beginning of line cursor movement, 21, 45
binary mode editing, 168, 318-320
binary option, 320
black hole register, 164
book material presentation, xvii

online supplemental material, xx
Unix knowledge assumption, xx

systems that are Unix, 3
versions of vi, xxiii

bookmarks, 62
bottom-line commands

about, 7
colon (:) to invoke, 68
slash (/) for searches, 7, 47

braces ({ }) moving cursor, 46
bracket expressions in POSIX, 92
brackets ([])

character classes in POSIX, 93, 93
collating symbols in POSIX, 93
cursor movement, 46
equivalence classes in POSIX, 93
metacharacters in search patterns, 90
optional parameters, 9

branching undos (Vim), 180
browser extensions

about, 397
Vimium, 399-404
Wasavi, 398

:bufdo command, 230
buffer variables, 303

Index | 495

buffers, 9
buffer commands, 230

summary, 231
directory buffer, 229
help buffer, 229
hidden buffers, 229
:hide (buffer) command, 235
hold buffer for searches, 91
listing, 228
:pre (preserve) command, 14
QuickFix buffer, 229
recovering on startup, 59
renaming on save, 76
scratch buffers, 229
windows and, 228

:buffers command to list buffers, 228

C
C (change to end of line) command, 27
c (change) command, 23, 25

combined with other commands, 55
lines, 27
words, 26

c option for confirming substitutions, 86
capitalizing commands, 23
CAPS LOCK key and commands, 38
caret (^)

metacharacter in search patterns, 90
inside brackets, 91

move to first nonblank character, 45
representing CTRL key, 42
scrolling the screen, 42

carriage return
ENTER key for, 16, 117
right margin, 16, 117

case change, 28, 95
~~ command, 246

case sensitivity
cinwords string, 256
commands, 7
filenames, 9
search patterns, 96, 118

ignoring case, 96
cathode-ray tube (CRT) terminals, 4, 7
cedillas, 320-322
CGDB (Curses GDB), 385
change (c) command, 23, 25

combined with other commands, 55
lines, 27

words, 26
change to end of line (C) command, 27
change-trees, 181
changing directories, 324-326
changing text (see editing text)
character classes

POSIX, 93, 93
regular expressions, 178

character replacement, 27
case change, 28
deleting characters, 23, 31
s (substitute) command, 28
swapping characters, 337

Christiansen, Tom, 142
Chrome browser extensions

about, 397
Vimium, 399-404
Wasavi, 398

cindent option, 250, 252-258
cinkeys option, 253-255
cinoptions option, 256-258
cinwords option, 255
Clewn GDB driver, 384
clipboard in MS-Windows and gvim, 203
cmdheight option, 227
cmdwinheight option, 342
code editing (see source code editing)
collating symbols in POSIX, 93
collecting lines :g example, 110
colon (:)

colon prompt of ex
invoking vi gives colon, 11
Q command in vi, 68
quitting back to vi, 68

ex commands, 7, 68
in configuration files, 172

MS-Windows disallowing in filenames, 9
Unix shell commands, 14

colorscheme option, 289
scripting example, 289-300

comma (,) command, 51
command execution via :!, 118
command history, 338, 341

about, 383
history variables, 376, 382
multiples shells and, 376
simplified via mapping, 341

directly searching for command, 343
command line

496 | Index

about vi and Vim, xx
arrow keys for recent commands, 338
Bash shell, 378
command history, 338, 341

simplified via mapping, 341, 343
multiple window editing, 215-216
opening files, 9
opening window, 341

simplified via mapping, 341
tools for, 375
vi and Vim command-line options, 56-60

Vim command-line options, 167-169
window height, 342

command mode, 5
about, 11
about bottom-line commands, 7
arrow keys for recent commands, 338
beep on ESC, 12, 17
capitalizing commands, 23
command history, 338, 341
commands in review, 39, 52, 55, 63
cursor movements

about, 17
arrow keys moving cursor, 18
beep sound, 18
beginning of line, 21
c (change) combined with, 55
CAPS LOCK key problems, 38
end of a sentence, 46
end of line, 21
movement by line, 45
movement by text blocks, 22, 46
numeric arguments, 20
returning to original position, 52
screens, 41-45
scrolling the screen, 42
single movements, 18, 45
underscore as cursor position, 17
why h, j, k, l, 18
words, 22, 46

doubling for entire line, 23
simplified via mapping, 340

ENTER to issue, 9
ESC to enter, 12, 17
general form of commands, 26, 47, 55
initial default mode, 6, 11, 16
key mapping (see :map command)
keys not used by vi, 124
learning from gvim menus, 192

locales for commands, 93
mode indicators, 38
mouse use in gvim, 186
quick reference guide, 420-433
repeating last command, 35, 87

via :g, 109
stored in temporary register, 34
TAB for command-line completion, 166
tag commands, 270

command-line options of vi and Vim, 56-60,
415-419
Vim command-line options, 167

commands saved (see saving commands)
comments in ex scripts, 142, 172
compatible option, 164, 251

command-line option, 168
compiling

Fibonacci numbers example, 281
recompiling Vim and toolbar features, 200
source code sources

vi, 483
Vim, 484-490

Vim for, 281-284
complete option, 267
COMSPEC environment variable, 174
concat via \& metacharacter, 177
conditional execution in scripts, 290
configuration files (Vim), 171
copying a file into another file, 77
copying text, 23, 33

about text editing, 6
autoindent and pasting, 259
combined with other commands, 55
marking your place, 62
registers, 60

yanking to named registers, 61
CRT (cathode-ray tube) terminals, 4, 7
csh shell (C shell), 375
ctags Unix command, 147

enhanced tags, 148-153
keywords supported, 149

tags file format, 149
Universal ctags format, 149-150

CTRL-commands, 143
CTRL-B to scroll screen backward, 42
CTRL-D to scroll half screen foreward, 42
CTRL-D to terminate a shell, 14
CTRL-E to scroll screen up one line, 42
CTRL-F for command history, 338, 341

Index | 497

CTRL-F to scroll screen forward, 42
CTRL-G for line number display, 51, 70
CTRL-K for digraphs, 320-322
CTRL-L to redraw screen, 43
CTRL-N to move cursor down, 18
CTRL-P to move cursor up, 18
CTRL-PAGEDOWN for next tab, 233
CTRL-PAGEUP for previous tab, 233
CTRL-R to redo, 180
CTRL-T to indent, 143
CTRL-U for line erase, 144
CTRL-U to scroll half screen backward, 42
CTRL-V CTRL-J for newline, 141
CTRL-V ENTER for newline, 141
CTRL-V to escape keys for maps, 125
CTRL-W for window commands, 217,

224-226
closing and quitting, 234
moving windows, 221-224
tags, 231

CTRL-X for insertion completion, 261
CTRL-Y to scroll screen down one line, 42
CTRL-] for tag lookup, 147

tag stacks, 151
CTRL-^ to switch files, 80
newline characters in scripts, 141

current line number
:.= command displaying, 70
CTRL-G displaying, 51, 70
dot (.) for, 71
redefining in ex, 73

cursor arrow keys
command line for recent commands, 338
moving cursor, 18

escape sequences, 19
cursor movements

arrow keys moving cursor, 18
basic commands in review, 39, 52
beep sound, 18
beginning of line, 21, 45
c (change) combined with, 55
CAPS LOCK key problems, 38
command mode, 17-22
editing commands with, 47
end of a sentence, 46
end of line, 21, 45
movement by line, 45

line numbers, 22, 51
movement by text blocks, 22, 46

multiple window editing, 221-222
returning to original position, 52
screens

about, 41
movement within a screen, 44
redrawing the screen, 43
repositioning the screen, 43
scrolling, 42

searches moving cursor, 47
single movements, 18, 45

numeric arguments, 20
why h, j, k, l, 18

startup options, 57-58
underscore as cursor position, 17
Vim new commands, 174

visual mode, 175
words, 22, 46

customizing the editing environment, 114, 116
(see also :set command)

cw (change word) command, 7
:cwindow command, 229
Cygwin for Windows, 488

D
d (delete) command, 23, 28-32

characters, 31
combined with other commands, 55
lines, 30
moving text with, 23, 32
problems with, 31
recovering deleted text, 31, 33, 60
words, 29

deleting autocommands, 306-308
deleting text, 28-32

about text editing, 6
characters, 31
combined with other commands, 55
d (delete) command, 23, 28-32
lines, 30
marking your place, 62
moving text via, 23, 32
problems with, 31
recovering deleted text, 31, 33, 60
registers, 60

recovering deleted text, 60
unknown block via patterns, 106
words, 29
x for single character, 23

transposing two characters, 33

498 | Index

deletion register, 32, 60-62
developer tools

CGDB (Curses GDB), 385
Clewn GDB driver, 384
PowerToys (Microsoft), 408
Unix utilities, 391

df command, 14
diacritics, 320
dictionary, 310

insertion completion, 263
diff mode, 168, 328-330
digraph option, 321
digraphs, 320-322
directories as folders, 9
directory buffer, 229
directory navigation, 324-326
disk space

df for amount free, 14
du for blocks used, 14
space is full, 13

DocBook markup, 134
documentation (see :help command)
dollar sign ($)

$@ variable, 138
$file variable, 138
command output to variable, 139
cursor to end of line, 21
last line of file (ex), 71
metacharacter in search patterns, 90
shell prompt, 9

terminating a shell, 14
dot (.)

current line (ex), 71
metacharacter in search patterns, 90
repeat last command, 35, 87

double quote (")
comments in ex scripts, 142, 172
recovering deletions, 60
yanking/copying to named registers, 61

doubling commands for entire line, 23
simplified via mapping, 340

Dougherty, Dale, 142
du command, 14

Unix shell command example, 14

E
:e (edit) command, 10, 79
e (move to end of word) command, 46
E (move to end of word) command, 46

:e! (revert), 13
ea (append to end of word) command, 37
eadirection option, 226
easy mode

-y command-line option, 169
easy gvim on MS-Windows, 184
evim command, 165
Vim new user support, 164

ed line editor, 3
edcompatible option, 97
edit-compile-edit cycles, 281
editing text

about text editing, 6, 23
helpful techniques, 337

autocompletion of words, 260-268
backspace to erase, 16
basic commands, 7, 23
binary mode editing, 168, 318-320
filtering text through a command, 120-122
HTML text, 327
marking your place, 62
movement commands with, 47
multiple files

about, 77
arguments list, 78
edits between files, 80
filename shortcuts, 79
invoking Vim, 78
multiple tabs, 233-234
multiple windows, 215
opening files in separate windows, 169

(see also multiple window editing)
opening new files, 79
switching files in command mode, 80

multiple tabs, 233-234
multiwindow editing (see multiple window

editing)
non-ASCII characters, 320-322
outlining, 247
remote files, 322
right to left text entry, 168
searching commands with, 50
source code editing

about, 143, 237
autocompletion of words, 260-268
bracket searches, 146
folds, 238-247
indentation control, 143-145, 250-259
lists of locations within files, 285

Index | 499

outlining, 247
plug-in managers, 357-359
plug-ins (see plug-ins)
tags, 147
tags enhanced, 148-153

visual mode (Vim), 175
writer-oriented plug-ins, 372

EditorConfig plug-in, 361
Effective awk Programming (Robbins), 142
egrep, 176
Emacs (see GNU Emacs editor)
end of line cursor movement, 21, 45
ENTER key

carriage return, 16, 117
command execution, 9, 67
incremental searching in Vim, 181
move to next line, 45
moving cursor down, 18
newline character, 20

environment variables
COMSPEC, 174
EXINIT, 114, 173
locale for commands, 94

how to set, 172
MYVIMRC, 173
SHELL, 174
TERM, 174
VIM, 174
Vim editor, 172-174
VIMINIT, 171, 174
VIMRUNTIME, 174

equalalways option, 226
equivalence classes in POSIX, 93
erase line (CTRL-U), 144
ESC key

enter command mode, 12
escape sequences, 19
exit insert and enter command mode, 16, 36

escape sequences, 19
mapping special keys, 132-134

escaping metacharacters
backslash in replacement strings, 95
brackets in searches, 91

/etc/vimrc file, 43
eview command, 170
evim command, 165, 170
ex command, 171

mouse use in gvim, 186
ex commands

about, 7, 66-68, 433
colon (:) preceding, 7, 68, 68
editing commands (see ex editor)
invoking, 68, 68
quick reference guide, 433-459
spaces in filenames, 66
summary of, 81, 433-459

ex editor
about, 65, 66, 433
basics about, 66-68
editing with

about, 68
combining ex commands, 74
command summary, 81
confirming substitutions, 86
copying file to another file, 77
current line redefined, 73
filename shortcuts, 79
global replacement (see global replace‐

ment)
global searches, 73
line address 0 (zero), 72
line addresses, 69-72
line-addressing symbols, 71
multiple files, 77
opening file to edit, 79
relative line addresses, 71
saving and exiting files, 75-76
search patterns, 72

ex commands
about, 7, 66-68, 433
colon (:) preceding, 7, 68
combining, 74
invoking, 68
mouse use in gvim, 186
quick reference guide, 433-459
spaces in filenames, 66
summary of, 81, 433-459

history, 3, 66
improved ex mode, 168
invoking, 66
invoking accidentally

invoking vi gives colon, 11
Q in vi, 68

quitting to vi editor, 68
scripts

about, 136
colorscheme example, 289-300
here documents, 139

500 | Index

looping in shell script, 137-139
newline characters, 141
sorting text blocks example, 140

exclamation point (!)
filtering text through a command, 120-122
mapping keys for insert mode, 130
overriding write warnings, 75
:q! quitting without saving, 11, 13, 75
toggling :set options, 115

line number display, 70
Universal tags file tags, 150
Unix command execution, 14, 118

execute command for scripts, 293
EXINIT environment variable, 173

executed on startup, 114
exists() function, 304-306
exit to terminate shell, 14
expandtab option, 145
expressions in scripts, 311
.exrc files, 114, 171

alternate file via :so, 117
changes displayed via :set command, 115
home directory .exrc file, 116
read on startup, 114, 116
right margin, 21
scripts, 136

extensions to scripting, 311
Exuberant ctags program, 148

F
f (cursor move) command, 50
F (cursor move) command, 50
F1 for help screen, 337
Farsi mode, 168
fg (foreground) command, 14
Fibonacci numbers example compile, 281
file system full, 13
file type scripting example

about, 300
autocommands, 300

deleting, 306-308
groups and, 306

buffer variables, 303
checking options, 302
exists() function, 304-306

files
.exrc files (see .exrc files)
.gvimrc file, 184

colorscheme option, 289

.vimrc file, 171
colorscheme option, 289
gvim, 184
incsearch (incremental searching), 181

binary files, 168, 318-320
copying a file into another file, 77
directory navigation, 324-326
editing multiple files

about, 77
arguments list, 78
edits between files, 80
filename shortcuts, 79
invoking Vim, 78
multiple tabs, 233-234
opening new files, 79
separate windows, 169

(see also multiple window editing)
switching files in command mode, 80

file system full, 13
filenames, 9

case sensitive, 9
editing multiple files, 78
insertion completion, 266
shortcuts to, 79
spaces within, 9, 66
spaces within and scripts, 138
URLs for filenames, 322
Vim command-line options, 167
Vim, hyphen as filename for stdin, 167
:w filename for new file, 13, 76

filetype set dynamically by script, 300-308
insertion completion

current and included files, 265
dictionary, 263
keyword in file, 263
thesaurus, 263-265, 318

lists of locations within files, 285
opening, 9

command-line command, 9
ex editor command, 79
GUI environment, 10
problems, 10
remote file editing, 322
separate windows, 169

(see also multiple window editing)
Vim with multiple files, 78

read-only files
overriding to save, 58, 75
problem opening file, 11

Index | 501

startup option, 58
saving (see saving files)
security and local configuration files, 185
swap file, 59
tags file, 147

new tags format, 149-150
UTF-8 for Unicode-based locales, 94
vi_diff.txt for list of Vim supported environ‐

ments, 490
:files command to list buffers, 228
filtering text through a command, 120-122
foldcolumn option, 245
foldenable option, 249
folders as directories, 9
foldlevel option, 248
foldmethod option

outline mode, 247
syntax folding, 249
terms for value of, 239

folds in source code editing
+-- fold placeholder, 243
about, 238-240
creating folds, 239
fold commands, 240
manual folding, 242-247
outlining, 247

for loop in scripts, 137-139
foregrounding vi via fg, 14
formatting codes, 5
foy, brian d, 142
Fugitive plug-in, 363-365
funcref variables, 310
function key mapping, 131

function key codes generated, 132
functions in scripts

defining, 295
Vim internal functions, 311-313

G
:g (global searches) command, 73, 88-89

repeat last command via, 109
G (go to line number) command, 22, 52

returning to original position, 52
g option for global substitution, 86
GDB (GNU debugger) in Vim, 369
gedit graphical text editor, 4
gex command, 171
Git

book resources gathered, 471-476

Fugitive plug-in, 363-365
NERDTree plug-in, 362

global replacement
about, 85
applying edits globally, 88-89

context-sensitive replacement, 88
pattern-matching rules

about, 89, 91
examples of pattern matching, 97-111
metacharacters in replacement strings,

94-96
metacharacters in search patterns, 90-92
POSIX bracket expressions, 91, 92

:s substitute command
confirming substitutions, 86

substitute command, 85, 96
global searches in ex, 73, 88-89

pattern-matching rules, 89-96
substitution tricks, 96

global variables, 297
glossary mapped to XML example, 126

sorting text blocks script, 140
Gnome Terminal

gedit, 4
TERM setting, 8

GNU debugger GDB
CGDB (Curses GDB), 385
Clewn GDB driver, 384
readline, 380
Vim, 369

GNU Emacs editor
about, 4
multiple X windows, 4
vi versus, 480

GNU readline library
about, 377
Bash shell, 377-379
.inputrc file, 380
programs that use, 380

GNU/Linux distributions and scrolloff, 43
Google Mail, 408
graphical text editors, 4

(see also GUI)
grep

-E command-line option, 176
-l option, 139
regular expressions (see regular expres‐

sions)
groff formatting package, 6

502 | Index

GUI (graphical user interface)
-g Vim command-line option, 168
graphical text editors, 4
gvim for, 8, 184

(see also gvim editor)
option and command summary, 211

opening files, 10
rgview command, 170

guioptions option, 190
gview command, 170
gvim command, 170, 184

multiple windows option, 215
rgview command, 170
rgvim command, 170
visual mode, 176

gvim editor
-g Vim command-line option, 168
about, 165, 183

easy gvim on MS-Windows, 184
command summary, 211
customizing

about, 190
menus, 191-199
scrollbars, 190
toolbars, 199-201
tooltips, 202

GUI environment, 8
invoking via gvim, 184
menus, 188

customizing, 191-199
mouse use, 186-187, 221
MS-Windows, 202

clipboard, 203
easy gvim, 184
help in gui-w32.txt, 203
source for, 487
Windows Subsystem for Linux, 203-205
<edit with Vim= in context menu, 184

multiple tabs, 233-234
multiple X windows, 4
options summary, 211
rgvim command, 170
starting gvim

configuration files and options, 184
invoking via gvim, 170
invoking via vim -g, 184
multiple windows option, 215
options summary, 211

terminating a shell, 14

X Window System, 203
gvimdiff command, 171
.gvimrc file, 184

colorscheme option, 289

H
H (move to home) command, 44, 55
h moving cursor left, 18, 45

numeric arguments, 20
why h, j, k, l, 18

hash (#)
alternate filename, 79
temporary display of line numbers, 70

Heirloom vi options, 461-463
help buffer, 229
:help command, 165-167

change-tree navigation, 181
c_CTRL-F for command-line, 341
digraph-table, 321
F1 for help screen, 337
help buffer, 229
navigation, 165
new user support, 164
regexp for regular expressions, 180
scripting, 314
startup options for Vim, 167
s_flags for substitution, 87
TAB for command completion, 166
text-objects and visual mode, 176
usr_32.txt, 181

here documents, 139
hidden buffers, 229
:hide (buffer) command, 235
Hiebert, Darren, 148
history of commands (see command history)
history of vi, 3, 7, 66

Vim history, 7, 159
hold buffer for searches, 91, 94
HTML text, 327

as markup language, 6
hyphen (-)

escaping in brackets, 91
moving cursor up, 18, 45
relative line addresses (ex), 71
Vim command-line options, 167-169

filename as hyphen, 167

I
I (insert at beginning) command, 36

Index | 503

numeric arguments, 37
i (insert) command, 7, 16, 23

numeric arguments, 37
ic (ignorecase) option, 96, 118
IDEs (integrated development environments)

about, 237, 360
compiling with Vim, 281-284
.editorconfig file support, 361
plug-ins to create, 361-370

all-in-one IDEs, 370
completion, 365-369

Visual Studio (Microsoft), 386
Visual Studio Code (Microsoft), 387-390

if…then…else block, 290
ignorecase (ic) option, 96, 118
improved ex mode, 168
#include files and insertion completion, 265
incremental searching (Vim), 181
incsearch (incremental searching) option, 181
indentation control, 143-145, 250-259

autoindent option, 143
Vim, 250-251, 259

cindent option, 250, 252-258
cinkeys option, 253-255
cinoptions option, 256-258
cinwords option, 255

indentexpr option, 250, 258
indentexpr option, 250, 258
input via <<, 139
insert at beginning (I) command, 36

numeric arguments, 37
insert mode, 5

about text editing, 6
ESC to exit to command mode, 16, 36
i (insert) command, 7, 16, 23
inserting new text, 24, 36

numeric arguments, 37
insertion completion capabilities, 260-268
key mapping, 130
mode indicators, 38
mouse use in gvim, 186

insertion completion capabilities, 260-268
completion by complete option, 267
completion by filename, 266
completion by tag, 266
dictionary, 263
key mapping of, 261, 268
keywords in file, 263

current and included, 265

macro names and definitions, 266
omni function, 267
plug-ins for IDE, 365-369
spellchecking, 267
thesaurus, 263-265, 318
user functions, 266

omni function, 267
Vim commands, 266
whole lines, 261

integrated development environments (see
IDEs)

isident, iskeyword, isfname, isprint options, 178

J
J (join two or more lines) command, 37
:j (join two or more lines) command, 141
j moving cursor down, 18

numeric arguments, 20
typing J by mistake, 38
why h, j, k, l, 18

join two or more lines (:j) command, 141
join two or more lines (J) command, 37
Joy, Bill, 19

K
k moving cursor up, 18, 20

why h, j, k, l, 18
key mapping (see :map command)
keys not used in command mode, 124
keywords for completion in file, 263

current and included, 265
ksh shell, 381

L
L (last line of screen) command, 44, 55
l moving cursor right, 18, 45

numeric arguments, 20
why h, j, k, l, 18

last line of file as dollar sign ($), 71
laststatus option for status line, 216
LaTeX formatting package, 6
LC_ environment variables for locale, 94
Learning Perl (Schwarz, foy, and Phoenix), 142
left brace ({) cursor move, 46
left brackets ([[) moving cursor, 46
left parenthesis (() cursor move, 46
left-right scrolling (Vim), 181
less utility, 391-392

504 | Index

line editors, 3
(see also ex editor)

line erase (CTRL-U), 144
line numbers

current line number
:.= command displaying, 70
CTRL-G displaying, 51, 70
dot (.) for, 71

displaying, 21, 51, 69
display off, 70
display toggled, 70
next that matches pattern, 70, 72
temporarily displaying, 70

ex editor, 69-72
move to line, 68
print to screen, 67

movement by line numbers, 22, 51, 52
ex command, 68
startup option, 57-58

lines
about, 20
cursor movements, 45
deleting, 30

recovering recent deletion, 31
doubling commands, 23

simplified via mapping, 340
fold line counts, 244
insert commands, 36
left-right scrolling in Vim, 181
line erase (CTRL-U), 144
line numbers (see line numbers)
options for, 334-336
replacing entire line, 27
searching current line, 50
swapping lines, 337
U (undo line) command, 31, 35

Linux and gvim, 203
installing gvim in WSL 2, 204
X Server for Windows

configuration, 205-210
installation, 205

Linux readline library
about, 377
Bash shell, 377-379
.inputrc file, 380
programs that use, 380

Linux Vim source code source, 486
list option, 145

listchars option, 335

list variables, 310
listchars option, 335
:loadview preserving folds, 239
locales, 91, 93

choosing locale for commands, 94
locale command, 94

looping in shell script, 137-139
lowercase to uppercase, 28
:ls command to list buffers, 228
:lwindow command, 229

M
m (marking place) command, 62
M (middle line of screen) command, 44
:m (move) command, 69, 89
Macintosh Vim, 489
macros, 135

insertion completion, 266
magic option for wildcards, 118
make command, 281
man terminfo command, 114
:map command, 124, 130

command history window, 341
CTRL-V to escape keys, 125
doubling commands, 340
examples of mapping, 128-130

complex mapping example, 126
function keys, 131
insertion completion method, 261, 268
keys not used in command mode, 124
mapleader variable, 125
multiple input keys, 134
quitting Vim simplified, 339
resizing windows, 340
search-pattern history window, 342
searching for command, 343
special keys, 132-134

mapleader variable, 125
margins

carriage return at right, 16
setting right margin, 21

Markdown markup language, 6
marking your place, 62
markup languages, 6

AsciiDoc as, 6
DocBook as, 134
formatting codes, 5
HTML as, 6
LaTeX formatting package, 6

Index | 505

TeX formatting package, 6
troff formatting package, 6

menus in gvim editor, 188
customizing, 191-199
learning commands from, 192

meta-information for puts, 164
metacharacters

replacement strings, 94-96
search patterns, 90-92

characters and character classes, 178
escaping inside brackets, 91

Vim extended regular expressions, 176-180
Microsoft Windows (see MS-Windows)
minus-sign key (see hyphen (-))
MKS Tookit (MKS, Inc.), 143
:mksession command, 332
:mkview command, 239
mode indicators, 38
Moolenaar, Bram, xv, 158, 159
more utility, 391
mouse option, 187, 221
mouse use

gvim editor, 186-187, 221
Vim editor, 221

move (:m) command, 69, 89
moving text, 32

about text editing, 6
blocks of text via patterns, 99
delete then put, 23, 32

moving the cursor
arrow keys moving cursor, 18
basic commands in review, 39, 52
beep sound, 18
beginning of line, 21, 45
c (change) combined with, 55
CAPS LOCK key problems, 38
command mode, 17-22
editing commands with, 47
end of a sentence, 46
end of line, 21, 45
movement by line, 45

line numbers, 22, 51
movement by text blocks, 22, 46
multiple window editing, 221-222
returning to original position, 52
screens

about, 41
movement within a screen, 44
redrawing the screen, 43

repositioning the screen, 43
scrolling, 42

searches moving cursor, 47
single movements, 18, 45

numeric arguments, 20
why h, j, k, l, 18

startup options, 57-58
underscore as cursor position, 17
Vim new commands, 174

visual mode, 175
words, 22, 46

moving windows in multiple window editing,
222-224

MS (Microsoft) IDEs, 237
MS Word and vi, 405-408
MS-Windows

Cygwin, 488
gvim, 202

clipboard, 203
easy gvim, 184
help in gui-w32.txt, 203
source for, 487
<edit with Vim= in context menu, 184

PowerShell, 384
PowerToys, 408
Visual Studio, 386
Visual Studio Code, 387-390
Windows Subsystem for Linux (WSL), 203

about WSL, 488
installing gvim in WSL 2, 204
X Server for Windows configuration,

205-210
X Server for Windows installation, 205

multiple files edited
about, 77
arguments list, 78
edits between files, 80
filename shortcuts, 79
invoking Vim, 78
multiple tabs, 233-234
multiple windows, 215
opening files in separate windows, 169

(see also multiple window editing)
opening new files, 79
switching files in command mode, 80

multiple tabs, 233-234
multiple window editing

about, 213
buffers and windows, 228

506 | Index

closing and quitting windows, 234
command summary, 220
cursor movements, 221-222
help system as, 165
initiating

command line, 215-216
inside Vim, 217-220

moving windows, 222-224
multiple tabs, 233-234
opening windows, 218-220
resizing windows, 224-228

simplified via mapping, 340
window sizing options, 226-228

tags, 231
multiwindow (see multiple window editing)
MYVIMRC environment variable, 173

N
:n (next file) command, 78
n (repeat search) command, 48, 87
N (repeat search) command, 48
ncurses library, 8
NERDTree plug-in, 362
new user support

easy mode, 165, 169
easy gvim on MS-Windows, 184

gvim menus, 192
Vim, 164

newline character
line definition, 20
scripts, 141

:nmap (map) command, 339
No tail recursion message, 123
No write since last change message, 11, 75
nonu option for no line numbers, 70
:noremap command, 341
Notepad++, 4
nowrap option, 181
nroff formatting package, 6

examples of pattern matching, 100
nu option for line numbers, 21, 51, 69

toggling display, 70
number variables, 310
numeric arguments, 37

cursor movements, 20, 22, 47
z (reposition screen) command, 43

O
o (open empty line) command, 36

O (open empty line) command, 36
octal dump (od) command, 132
omni function for insertion completion, 267
open empty line (o) command, 36
open empty line (O) command, 36
opening files, 9

command-line command, 9
ex editor command, 79
GUI environment, 10
problems, 10
remote file editing, 322
separate windows, 169

(see also multiple window editing)
Vim with multiple files, 78

options (see :set command)
OR via \| metacharacter, 176
Orwant, Jon, 142
outline mode, 247

folds
+-- fold placeholder, 243
about, 238-240
fold commands, 240
manual folding, 242-247

Outlook and vi, 405-408
overstrike mode (R) command, 28, 36
overwriting existing file, 13

saving without overwriting, 13

P
:p (print to screen) command, 67
p (put) command, 23

copying text, 33
moving text, 32
recovering recent deletion, 31, 33

P (put) command
copying text, 34
moving text, 32
operation above current line, 23

paragraph macros, 47
paragraph definition, 47

pasting text and autoindent, 259
pathnames

opening an existing file, 10
slash (/), 9
Unix pathnames, 9

directory navigation, 324-326
pattern matching

case sensitivity, 96, 118
ignoring case, 96

Index | 507

examples, 97-111
global searches in ex, 73, 88-89

pattern-matching rules, 89-96
line number of next match, 70, 72
metacharacters

characters and character classes, 178
replacement strings, 94-96
search patterns, 90-92
Vim extended regular expressions,

176-180
POSIX bracket expressions, 92

locales and, 91
search-pattern history window, 342

simplified via mapping, 342
searches to move cursor, 47
substitute command (see substitute (s) com‐

mand)
wildcards and magic option, 118

Peek, Jerry, 134
percent (%)

bracket searches, 146
current filename, 79
every line jn file, 71
global replacement, 86
replacement text of last substitute, 95

period (see dot (.))
perl programming language, 142
Permission denied message, 11, 13
Phoenix, Tom, 142
plug-ins

about, 357
EditorConfig, 361
finding, 359
Fugitive, 363-365
Git-capable, 362-365
IDE creation via, 361-370

all-in-one IDEs, 370
completion, 365-369

NERDTree, 362
plug-in managers, 357-359
Termdebug, 369
ViEmu, 405-408
Visual Studio extensions, 386
writer-oriented plug-ins, 372
YouCompleteMe, 366-368

plus (+)
+-- fold placeholder, 243
moving cursor down, 18, 45
opening file at last line, 57

relative line addresses (ex), 71
POSIX bracket expressions, 92

locales and, 91, 93
choosing locale for commands, 94

PowerShell (Microsoft), 384
PowerToys (Microsoft), 408
:pre (preserve) command, 14
print to screen (:p) command, 67
program source code editing (see source code

editing)
Programming Perl (Christiansen, foy, Wall, and

Orwant), 142
prompt line, 10
protocols supported for remote editing, 324
put (p) command, 23

copying text, 33
moving text, 32
recovering recent deletion, 31, 33

put (P) command
copying text, 34
moving text, 32
operation above current line, 23

Q
Q (invoke ex) command, 68
:q (quit) command, 12, 75

No write since last change message, 11
problem opening file, 10
:q! quitting without saving, 11, 13, 75
simplified via mapping, 339
:wq write and quit, 12, 75

q register name to record, 135
q: for command-line window, 341
question mark (?)

individual :set option display, 115
search commands via, 7

ex searching backwards, 72
repeat search backward, 48

quick reference guide to vi and Vim, 415-459
QuickFix buffer, 229
QuickFix List window

compilation errors, 281
locations within files, 285

quit (:q) command, 12, 75
No write since last change message, 11
problem opening file, 10
:q! quitting without saving, 11, 13, 75
simplified via mapping, 339
:wq write and quit, 12, 75

508 | Index

quotes about vi and Vim, 482

R
R (overstrike mode) command, 28, 36
r (replace single character) command, 23, 27

numeric arguments, 37
read (:r) command, 77, 119

spellchecking, 120
read-only files

overriding to save, 58, 75
problem opening file, 11
startup option, 58

readline library for interactive input
about, 377
Bash shell, 377-379
.inputrc file, 380
programs that use, 380

recompiling Vim
source code sources

vi, 483
Vim, 484-490

toolbar features, 200
recovering buffer on startup, 59
recursive fold commands, 241
redirect and append operator (>>), 76
:redo command, 180
redrawing the screen, 43
registers

about, 60
black hole register, 164
editing multiple files, 80
executing from ex, 136
macros via, 135
marking your place, 62
meta-information for puts, 164
recovering deletions, 60
yanking to named registers, 61

regular expressions
about, 89, 91
character and character class shorthands,

178
examples of pattern matching, 97-111
:help regexp, 180
metacharacters

replacement strings, 94-96
search patterns, 90-92
Vim extended set, 176-180

POSIX bracket expressions, 92
locales and, 91

remote file editing, 322
renaming buffer on save, 76
renaming files with PowerRename, 408
repeat counts, 20
repeating last command, 35, 87

via :g, 109
replace single character (r) command, 23, 27

numeric arguments, 37
replacement string metacharacters, 94-96
replication factors, 20
resizing windows, 224-228

simplified via mapping, 340
window sizing options, 226-228

resources online
book resources gathered, 471-476
book supplemental material, xx
plug-ins, 359
scripting in Vim, 313
source code sources

vi, 483
Vim, 484-490

Stack Overflow for help, 10
Universal ctags program, 148
Vi Lovers Home Page, 477
Vim editor, 158, 338

tutorials, 165
restricted mode, 169, 170

rview command, 170
:rew (rewind) command, 78
rgview command, 170
rgvim command, 170
right brace (}) cursor move, 46
right bracket (]) in brackets, 91
right brackets (]]) moving cursor, 46
right margin

carriage return at, 16
setting, 21

right parenthesis ()) cursor move, 46
right to left text entry, 168
right-clicking in GUI, 10
Robbins, Arnold, 142
ruler option, 38
rview command, 170
rvim command, 170

S
S (substitute entire line) command, 28, 36

numeric arguments, 37
:s (substitute) command, 67

Index | 509

confirming substitutions, 86
edcompatible option, 97
global replacement, 85, 88
tricks to know, 96

s (substitute) command, 28, 36
numeric arguments, 37

saving commands
abbreviations, 122
about, 122
@-functions, 135
executing registers from ex, 136
key mapping (see :map command)
macros, 135
mapleader variable, 125

saving files, 12
about, 9
appending to a saved file, 76
ex editor, 75-76
overriding read-only mode, 58, 75
overriding write warnings, 75
overwriting existing file, 13
problems, 13
renaming the buffer, 76
saving part of a file, 76
saving without overwriting, 13
turning off write on startup, 168

Schwarz, Randal L., 142
scope of variables, 297
scratch buffers, 229
screen editors, 4
screen utility, 393-397
screens

movement within, 44-46
redrawing the screen, 43
repositioning the screen, 43
scrolling the screen, 42

scripts
<< input command, 139
about, 136
comments, 142
dynamic file type example

about, 300
autocommands, 300
buffer variables, 303
checking options, 302

example
about, 289
arrays, 299
autocommands and groups, 306

conditional execution, 290
deleting autocommands, 306-308
executing, 293
exists() function, 304-306
functions defined, 295
global variables, 297
statusline option, 296
strftime() function, 291
variables, 292

expressions, 311
extensions, 311
here documents, 139
looping in shell script, 137-139
newline character, 141
resources, 313
sorting text blocks example, 140
spaces within filenames, 138
timestamp example, 309
variables, 310

arrays, 299
example script, 292
global variables, 297
scope, 297

Vim scripts
about, 289
color scheme example, 289-300

scrollbar customization in gvim, 190
scrolling the screen, 42

left-right scrolling in Vim, 181
scrolloff option, 43
search-pattern history window, 342, 350

simplified via mapping, 342
searches

case sensitivity, 96, 118
ignoring case, 96

current line, 50
cursor movement via, 47
editing commands with, 50
examples of pattern matching, 97-111
global searches in ex, 73, 88-89

pattern-matching rules, 89-96
substitution tricks, 96

history window, 342
simplified via mapping, 342

incremental searching in Vim, 181
line number of next match, 70, 72
metacharacters

characters and character classes, 178
replacement strings, 94-96

510 | Index

search patterns, 90-92
Vim extended regular expressions,

176-180
question mark (?)

beginning a search, 7
ex searching backwards, 72
repeat search backward, 48

repeating searches, 48
current line, 50

slash (/) command, 7, 47
repeating search forward, 48

wildcards and magic option, 118
section macros, 47
security

local configuration files and, 185
X Windows server configuration, 208

sed & awk (Dougherty and Robbins), 142
sed stream editor, 142
selecting text in visual mode, 175

gvim editor, 187
semicolon (;) command, 50
sentence end, 46
server Vim

--remote options, 169
--server options, 169

session defined, 213
:set command, 115

about, 114
useful options, 117

all to display all options, 115
individual option display, 115

autoindent, 143
Vim, 250-251, 259

backup, 326
backupdir, 326
binary, 320
cindent, 250, 252-258
cmdwinheight, 342
compatible, 164, 251
complete, 267
digraph, 321
expandtab, 145
.exrc file, 114, 116
exrc option in home directory .exrc file, 116
foldcolumn, 245
foldenable, 249
foldlevel, 248
foldmethod, 247, 249
guioptions, 190

Heirloom vi options, 461-463
ic to ignore case, 96
indentexpr, 250, 258
laststatus for status line, 216
list, 145
listchars, 335
mouse, 187, 221
nonu for no line numbers, 70
nowrap, 181
nu for line numbers, 21, 51, 69

toggling display, 70
paragraph and section separators, 47
scripts checking options, 302
scrolloff, 43
shiftwidth, 144, 247
showmatch, 146
sidescroll, 181, 334
smartindent, 250, 251
Solaris vi options, 461-463
statusline, 296
syntax, 272
tabstop, 144
tildeop, 246
undolevels, 180
Vim 8.2 options, 464-470
viminfo, 331
winheight option, 216, 226
winwidth option, 216, 226
wm (wrapmargin), 21, 117
wrap, 334, 335
wrapscan, 118
writebackup, 326

:sh for new shell, 14, 118
SHELL environment variable, 174
shell prompt ($), 9

:sh for new shell, 14, 118
ctags command, 147
environment variables, 172-174
scripts (see scripts in ex)
terminating a shell, 14
Unix command execution, 14, 118

shells
Bash, 377-379
csh, 375
ksh, 381
multiple shells and command history, 376
PowerShell (Microsoft), 384
Z shell, 381

shiftwidth option, 144, 247

Index | 511

showmatch option, 146
showmode option, 38
sidescroll option, 181, 334
slash (/)

search commands via, 47
bottom-line command overview, 7
ex global searches, 73
ex next line matching pattern, 72
repeating search forward, 48

substitute command, 85
Unix pathnames, 9

directory navigation, 324-326
smartindent option, 250, 251
:so (source) command, 117

read saved session file, 332
script execution, 137

Solaris vi
options, 461-463
tag stacking, 151

sort command, 119
sorting text blocks script, 140
sound (see beep sound)
source code editing

about, 143, 237
autocompletion of words, 260-268
bracket searches, 146
folds

+-- fold placeholder, 243
about, 238-240
creating folds, 239
fold commands, 240
manual folding, 242-247

indentation control, 143-145, 250-259
lists of locations within files, 285
outlining, 247
plug-in managers, 357-359
plug-ins (see plug-ins)
source code sources

vi, 483
Vim, 484-490

tags, 147
enhanced tags, 148-153

source code sources
vi, 483
Vim, 484-490

spaces within filenames, 9, 66
scripts and, 138

special characters, 320-322
speech analysis, 345-348

other text analysis, 348-350
spellchecking, 315-318

insertion completion, 267
read command with, 120

:split command for multiple windows, 217-220
conditional split commands, 220
options, 218

Stack Overflow for help, 10
:stag command, 232
startup options

cursor movements, 57-58
EXINIT executed on startup, 114
.exrc files, 114, 116
gvim editor, 184
.gvimrc file, 184

colorscheme option, 289
read-only mode, 58
recovering a buffer, 59
vi editor command-line options, 56-60
Vim editor

-p option for separate tabs, 234
about, 167
command-line options, 56-60, 167-169
configuration files, 171

.vimrc file, 171
colorscheme option, 289
gvim, 184
incsearch, 181

status line, 10
enhancing, 352
scripting in Vim, 296

stdin (standard input) via hyphen, 167
strftime() function, 291
string variables, 310
stty command, 8
substitute (s) command, 28, 36

numeric arguments, 37
substitute entire line (S) command, 28, 36

numeric arguments, 37
swap file, 59
swapping characters and lines, 337
Swartz, Ray, xxii
:syntax command, 271
syntax highlighting

about, 271
customization, 272-277

overriding syntax files, 277
:syntax command, 271
writing own syntax files, 278-280

512 | Index

syntax option, 272
system configuration files (Vim), 171
system messages and screen redraw, 43

T
:t (copy lines to) command, 69, 110
t (cursor move) command, 50
T (cursor move) command, 50
:tab commands, 233
TAB key

context-sensitive command completion, 166
help system command completion, 166
mapping for insertion completion, 261

tabstop option, 144
:tag command, 147

tag stacks, 151-153
Vim editor, 269

tags
enhanced tags, 148-153

new tags file format, 149-150
insertion completion via, 266
multiple windows, 231
:tag command, 147
tag stacks, 151-153

Solaris vi tag stacking, 151
Universal ctags and Vim, 152
Vim editor, 269

TERM environment variable, 8, 174
problem opening file, 10

termcap library, 8
Termdebug plug-in, 369
terminal emulators, 8

Termdebug plug-in, 369
terminating a shell, 14
terminfo library, 8, 114

man terminfo for information, 114
problem opening file, 10

TeX formatting package, 6
text analysis of a speech, 345-348

other text analysis examples, 348-350
text editors

about, 3
beyond ex, 142
components of text editing, 6

backspace to erase, 16
history of, 3, 7, 159
markup languages, 5
text editing (see editing text)

thesaurus for insertion completion, 263-265,
318

tilde (~)
case change, 28, 246
metacharacter in replacement strings, 95
metacharacter in search patterns, 92, 178
no text in file, 10

tildeop option, 246
timestamp example script, 309
:tjump command, 232
:tmenu command, 202
toggle options, 114
toolbar customization in gvim, 199-201

Vim compile without, 200
tooltip customization in gvim, 202
Towers of Hanoi, vi version, 476
transpose two characters (xp) command, 33
troff formatting package, 6

examples of pattern matching, 100
paragraph macros, 47
section macros, 47

:tselect command, 232, 270
tutor command (vimtutor), 165

U
U (undo line) command, 31, 35
u (undo) command, 31, 35, 180

last operation undone, 32
undo extension in Vim, 180

:help usr_32.txt, 181
underscore (_) as cursor position, 17
undo (u) command, 31, 35

last operation undone, 32
undo extension in Vim, 180

:help usr_32.txt, 181
undo line (U) command, 31, 35
undolevels option, 180
Unicode and UTF-8 files, 94
Universal ctags program, 148-150

new tags format, 149-150
tag stacking, 152

Unix
about Unix systems, 3
case sensitivity, 9
command execution, 14, 118
ctags command, 147
filenames, 9

spaces within, 9, 66, 138
history of vi, 7

Index | 513

pathnames, 9
directory navigation, 324-326
opening files, 10
slash (/), 9

redirect and append operator (>>), 76
saving commands (see saving commands)
security and local configuration files, 185
utilities, 391
Vim source code source, 486

uppercase to lowercase, 28
URLs for filenames, 322
user configuration files (Vim), 171
user-defined functions

insertion completion method, 266
omni function, 267

scripts, 295
UTF-8 for Unicode-based locales, 94

V
v (visual mode) command, 175

gvim editor, 187
MS-Windows clipboard, 203

:v command, 73, 105, 344
variables in scripts, 292, 310

arrays, 299
buffer variables, 303
command history variables, 376, 382
exists() function, 304-306
global variables, 297
scope, 297

vertical bar (|) move to character, 45
:vi command, 67, 419
vi editor

about, 4-6
command versus insert mode, 5, 11, 16
incarnations of, 4
pronunciation, 5
versions in book, xxiii
vi as standard of Unix, 3

about vi meaning vi and Vim, 4, 113
Vim installed as vi, 159

clone vigor, 477-480
command mode, 5, 419

basic commands in review, 39, 52
bottom-line commands, 7
ENTER to issue, 9
ESC to enter, 12, 17
general form of commands, 26
initial default mode, 6, 11, 16

learning from gvim menus, 192
Q invoking ex, 68

customizing, 114
(see also :set command)

ex commands, 7
(see also ex commands)

fg to put in foreground, 14
file recovery, 8
GNU Emacs versus, 480
GUI version, 8

Vim GUI features, 161
history of, 4, 7
insert mode, 5, 420

ESC to exit to command mode, 16, 36
i (insert) command, 7, 16

keys not used in command mode, 124
mode indicators, 38
newline character, 141
quick-reference guide, 415-459
quitting, 12, 75

simplified, 339
quitting ex editor, 68
quotes about, 482
startup options, 56-60
view mode, 11

Vi Lovers Home Page, 477
ViEmu plug-in, 405-408
view mode of vi

about, 58
problem opening file, 11
read-only mode, 58
rview command, 170
view and gview commands, 170

vigor vi clone, 477-480
Vim 8.2 options, 464-470
Vim Awesome (website)

change-trees and undo plug-ins, 181
plug-in resource, 359

vim command, 9
-g option for gvim, 184
-o option for multiple windows, 215
-p option for separate tabs, 234

Vim editor
about, 158-164

command versus insert mode, 5, 11, 16
current version, 158
feature categories, 161-164
new user support, 164
overview, 159

514 | Index

philosophy, 164
versions, 4, 158
versions in book, xxiii
Vim 8.2 options, 464-470
Vim building on vi, xv, 3, 159, 160
Vim contrasted with vi, 160

about vi meaning vi and Vim, 4, 113
Vim installed as vi, 159

author Bram Moolenaar, xv, 158, 159
backups, 326
command mode, 5, 419

basic commands in review, 39, 52
bottom-line commands, 7
ENTER to issue, 9
ESC to enter, 12, 17
general form of commands, 26
initial default mode, 6, 11, 16
learning from gvim menus, 192
Q invoking ex, 68

compiling with, 281-284
recompiling for toolbar features, 200

configuration files, 171
cursor commands, 174

(see also cursor movements)
visual mode, 175

customizing, 114
(see also :set command)

environment variables, 172-174
ex commands, 7

(see also ex commands)
fg to put in foreground, 14
file recovery, 8
Git from within, 363-365
GUI version, 8, 165

-g command-line option, 168
help system, 165-167
history of, 7, 159
incremental searching, 181
insert mode, 5, 420

ESC to exit to command mode, 16, 36
i (insert) command, 7, 16

internal functions, 311-313
invoking with vim command, 9

-o option for multiple windows, 215
-p option for separate tabs, 234
behaviors associated with, 170
command-line options, 167-169, 184
gvim via vim -g, 184
multiple files opened, 78

keys not used in command mode, 124
mode indicators, 38
mouse use, 221
multiple tabs, 233-234
multiple window editing, 217-220
newline character, 141
quick-reference guide, 415-459
quitting, 12, 75

simplified, 339
quitting ex editor, 68
quotes about, 482
recompiling for toolbar features, 200
regular expression metacharacters extended,

176-180
resources online, 158, 338

tutorials, 165
scrolloff option, 43
source code sources, 484-490
spellchecker, 315-318

insertion completion, 267
read command with, 120

startup options, 56-60, 167
-p option for separate tabs, 234
command-line options, 167-169
configuration files, 171

syntax highlighting, 271
(see also syntax highlighting)

tag stacking, 152, 269-271
undo extension, 180

:help usr_32.txt, 181
view mode, 11
Vim 8.2 options, 464-470

VIM environment variable, 174
vimdiff command, 171, 249, 328-330
:vimgrep command, 285
viminfo option, 331
VIMINIT environment variable, 171, 174
Vimium Chrome browser extension, 399-404
.vimrc file, 171

colorscheme option, 289
gvim, 184
incsearch (incremental searching), 181

VIMRUNTIME environment variable, 174
vimtutor command, 165
visual mode (v) command, 175

gvim editor, 187
MS-Windows clipboard, 203

Visual Studio (Microsoft), 386
Visual Studio Code (Microsoft), 387-390

Index | 515

vi_diff.txt for list of Vim supported environ‐
ments, 490

:vsplit command for multiple windows, 217

W
w (move forward one word) command, 22

numeric arguments, 22
visual mode in Vim, 175

W (move forward one word) command, 22
numeric arguments, 22

:w (write) command, 12, 75
appending to a saved file, 76
editing multiple files, 78
saving part of a file, 76
turning off write on startup, 168
:w filename for new file, 13, 76
:w! overriding read-only mode, 58, 75
:w! overriding write warnings, 75
:w! overwriting existing file, 13
:wq write and quit, 12, 75

Wall, Larry, 142
Wasavi Chrome browser extension, 398
wildcards and magic option, 118
:windo command, 230
Windows (see MS-Windows)
windows (see multiple window editing)
Windows Subsystem for Linux (see WSL)
winheight option, 216, 226
winminheight option, 227
winminwidth option, 227
winwidth option, 216, 226
wm (wrapmargin) option, 21, 117
word frequency analysis, 345-348
words

CTRL-] for tag lookup, 147
cursor movement, 22, 46

numeric arguments, 22
deleting, 29
editing, 26
searches for, 98
word frequency analysis, 345-348
\< matching start of word, 92
\> matching end of word, 92

wrap option, 334, 335

wrapmargin (wm) option, 21, 117
wrapscan option for searches wrapping, 118
writebackup option, 326
writer-oriented plug-ins, 372
writing buffer or file (see saving files)
WSL (Windows Subsystem for Linux), 203

about WSL, 488
installing gvim in WSL 2, 204
X Server for Windows

configuration, 205-210
installation, 205

X
x (delete single character) command, 31

xp (transpose two characters) command, 33
:x (write then quit) command, 75
X Window System, 4

gvim, 203
X Server for Windows installation, 205

Xming X server
configuring, 205-210
installation, 205

XML
DocBook markup, 134
glossary mapping example, 126
sorting text blocks script, 140

xp (transpose two characters) command, 33

Y
y (yank/copy) command, 23, 33

combined with other commands, 55
marking your place, 62
yanking to named registers, 61

YouCompleteMe plug-in, 366-368

Z
z (reposition screen) command, 43
z commands for folds, 240
Z shell, 381
zero (0) beginning of line command, 21
zero (0) line in ex, 72
Zintz, Walter, xxii, 104, 110, 110
ZZ to quit and save, 12, 75

516 | Index

About the Authors

Arnold Robbins, an Atlanta native, is a professional programmer and technical
author. He is also a happy husband, the father of four wonderful children, and an
amateur Talmudist (Babylonian and Jerusalem). Since late 1997, he and his family
have been living in Israel.

Arnold has been working with Unix systems since 1980, when he was introduced
to a PDP-11 running a version of Sixth Edition Unix. His experience also includes
multiple commercial Unix systems, from Sun, IBM, HP, and DEC. He has been
working with GNU/Linux systems since 1996.

Arnold has also been a heavy awk user since 1987, when he became involved with
gawk, the GNU project’s version of awk. As a member of the POSIX 1003.2 balloting
group, he helped shape the POSIX standard for awk. He is the longtime maintainer of
gawk and its documentation.

In previous incarnations he has been a systems administrator and a teacher of Unix
and networking continuing education classes. He has also had more than one poor
experience with startup software companies, which he prefers not to think about
anymore.

In Israel, he worked for several years writing high-end Command and Con‐
trol–related software at a leading Israeli software company. He then spent a long time
working as a software engineer at Intel and later at McAfee. These days he works at
a smaller company that provides network security monitoring for the manufacturing
and building management industries. His personal website may be found at http://
www.skeeve.com.

O’Reilly has been keeping him busy: he is the author or coauthor of the bestselling
titles Unix in a Nutshell (4th ed.), Efective awk Programming (4th ed.), sed & awk
(2nd ed.) with Dale Dougherty, and Classic Shell Scripting with Nelson H. F. Beebe,
and of several pocket references.

Elbert Hannah started out as a professional musician, changed direction, and chose
computers and IT for his career. While vi, and later Vim, may not be the sole reason
for the switch, one cannot discount the contribution <finding= vi made to his change
in career choice.

Elbert finds particular joy knowing he writes and creates this book on Vim using
Vim!

Starting as a music major in college, playing cello for a living, Elbert had a life-
changing bicycling accident that changed his path forever. With no use of one
hand, unable to play cello, Elbert temporarily chose mathematics as his major while

https://www.oreilly.com/library/view/unix-in-a/0596100299
https://www.oreilly.com/library/view/effective-awk-programming/9781491904930
https://www.oreilly.com/library/view/sed-awk/1565922255
https://www.oreilly.com/library/view/classic-shell-scripting/0596005954

healing. Mathematics required computer science as a minor, and that was that. Elbert
maintained his love for music and continues to play nonprofessionally today, but IT
became his career.

Elbert discovered Unix while working in the telco industry, finding a remote job
entry (RJE) linked to the IBM mainframe. He discovered that many processes were
easier when they were diverted to the AT&T System V Unix computer by leveraging
the myriad <specialized= (do one thing and do it well) commands for transformations
and reports and then diverted back to the mainframe.

His early work with Unix required deep understanding of ed, and that set the stage
for his long journey learning, loving, and evangelizing vi and eventually Vim. The
seventh and eighth editions of Learning the vi and Vim Editors are Elbert’s way of
paying forward his appreciation and respect for Vim’s impact in the coding universe.

Elbert specialized in integration of disparate systems. There are many users who use
his applications, not aware that underneath are many separate applications. If you dig
deep enough, you might find his picture on the cover of CEO Magazine (circa early to
mid ’90s) for his work integrating telco facilities and allocation applications.

Elbert developed an external web tool providing quick, easy, and enhanced ways
to find information from a third party’s product, which quickly established itself as
a popular troubleshooting method for support teams and devops staff. He gave a
presentation demonstrating the web tool in Las Vegas in 2018.

Elbert contributed to columns in more than one hundred technical publications
(under a pseudonym) and was featured in a two-part column with Linus Torvalds,
<The Great FOSS Debates: Kernel Truths= and <FOSS Debates, Part 2: Standard
Deviations.=

Colophon

The animal on the cover of Learning the vi and Vim Editors, eighth edition, is a
tarsier, a nocturnal mammal related to the lemur. Its generic name, Tarsius, is derived
from the animal’s very long anklebone, the tarsus. Though they were once more
widespread, the 10 species and 4 subspecies of the tarsier are now limited to the
islands of the Philippines, Malaysia, Brunei, and Indonesia. The tarsier lives in the
forests, leaping from branch to branch with extreme agility and speed.

A small animal, the tarsier’s body is only 6 inches long, followed by a 10-inch tufted
tail. It is covered in silky brown or gray fur and has a round face and huge eyes.
Tarsiers have the largest eyes relative to body size of any mammal. Each eyeball is
around 16 millimeters in diameter—the same size as its brain. The eyes are so large
that they can’t rotate, but a tarsier can twist its neck a full 180 degrees in either
direction, like an owl. Its arms and legs are long and slender, as are its digits, which
are tipped with rounded, fleshy pads to improve its grip on trees. Tarsiers are active

only at night, and spend their days hiding in tangles of vines or in the tops of tall
trees. They are entirely carnivorous and subsist mainly on insects, reptiles, birds, and
even bats. Although very curious animals, they tend to be loners.

Tarsiers have such specific requirements for their habitat and diet that the majority
do not survive being put into captivity, which makes captive breeding programs
nearly impossible to implement. With their populations declining across the board
due to loss of habitat from agriculture, hunting, and logging, most species of tarsier
are listed as vulnerable on the IUCN’s Red List. The Siau Island Tarsier in particular
is considered critically endangered. Many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

Color illustration by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.

Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
2

0
19

 O
’R

e
ill

y
 M

e
d

ia
, I

n
c.

 O
’R

e
ill

y
 is

 a
 r

e
g

is
te

re
d

 t
ra

d
e

m
ar

k
o

f
O

’R
e

ill
y

 M
e

d
ia

, I
n

c.
 |

 1
7

5

https://oreilly.com

