

1

(c) 2017 Jolesoft. By Jovica Ilic. All rights reserved. Published by Jolesoft.

No part of this publication may be reproduced or distributed in any form

or by any means, or stored in any database or information storage systems,

without the prior written permission of Jolesoft.

The information in this document is accurate to the best of our knowledge

at the time of writing. As a reader you need to access full responsibility for

your actions. Results are not guaranteed, as they mostly depend on you.

The author and publisher have used their best efforts to proof and confirm the

content of the files, but you should proof and confirm information provided

in the content by yourself. The author and publisher make no warranties of

any kind, express or implied, with regard to that content or its accuracy.

For more information, please write to:

Jovica Ilic

Email: contact@jovicailic.org

Website: www.jovicailic.org

Written by Jovica Ilic. Cover images by Milena Talarek.

This is version 1.1, published in April 2018.

First publication, v.1.0: November 2017.

Published in Berlin, Germany.

Mastering Vim Quickly

Jovica Ilic

April 2018 (7527)

Contents

1 Instead of Preface 6

What this book covers . 6

What you need for this book . 6

Who this book is for . 6

Vim versions . 7

Conventions . 7

Key presses . 7

Normal mode commands . 7

Command line commands . 7

Fonts . 8

Other formatting . 8

Piracy . 8

Mastering Vim Quickly Newsletter . 9

Why this name . 9

Questions . 9

2 Introduction 10

The art of learning . 11

Pareto principle . 11

Mini habits . 12

1% improvement per day . 13

No Experience Necessary . 13

3 Mastering Vim - Basics 15

Installing Vim 8 . 15

Vim philosophy . 15

Modal editing . 16

Operators . 16

Starting Vim . 17

4 Your first Vim session 18

5 Vim Concepts 20

1

CONTENTS CONTENTS

Modes . 20

Commands . 21

6 Working with files 22

Opening files . 22

Closing files . 23

Saving files . 24

Navigation . 24

Basic movement . 24

Navigate through words . 25

Scrolling pages . 26

Jumping around the file . 26

Navigating inside the window . 26

Navigating in Insert mode . 27

Basic search . 27

Searching for the current word . 28

Search history . 28

File Manager (netrw) in Vim . 29

Changing how files are opened . 29

Set netrw split width . 30

Editing files via SSH . 30

7 Personalizing Vim 32

Vim configuration explained . 32

Make Vim look beautiful . 33

Usability improvements . 34

Status line . 36

Swap and backup files dilemma . 37

Project specific .vimrc . 38

Basic recommended configuration . 38

8 Undo and Redo 40

Undo branches . 41

Persistent Undo . 42

9 Do you speak Vim? 43

Vim Language Elements . 43

Verbs . 43

Modifiers . 44

Nouns . 44

Learn to talk to Vim . 45

The “dot” command . 46

10Substitution 49

Ranges . 49

2

CONTENTS CONTENTS

Search and replace . 50

Replacement in the whole file . 51

Replacement within a single line . 51

Replacement within a range of lines . 51

Replacement inside visual selection . 51

Replace only the whole words . 52

Replace either string1 or string2 with a new word 52

Interactive search and replace . 53

Search through multiple files . 53

Match that string . 54

The power of the global command . 55

11Registers 58

Using Vim Registers Internally . 59

The famous annoying problem finally solved . 60

The System Clipboard Registers "+ and "* . 61

12Buffers 63

13Windows, Tabs and Sessions 65

Windows and Tabs . 65

Split Windows . 66

Switching windows . 66

Moving windows . 67

Resizing windows . 67

Sessions . 67

14Macros 69

Execute macro in multiple files . 70

Editing a macro . 70

Recursive macros . 70

More macro examples . 72

15The power of Visual modes 73

Selecting characters . 73

Selecting lines . 74

Visual block selection . 74

Extend a current visual selection . 74

Run commands across selection . 75

The dot command in Visual mode . 75

Move visual selection . 76

Visual mode possibilities . 76

16Mappings 77

17Folding 80

3

CONTENTS CONTENTS

Manual folding . 81

Folding by indentation . 82

Syntax folding . 83

Persistent folds . 83

18Effective multiple file editing 85

The execute and normal commands . 85

argdo vs bufdo . 86

bufdo examples . 87

argdo examples . 88

windo command . 90

19Productivity tips 91

Relative numbers . 91

Using the Leader Key . 92

Automatic Completion . 93

Using File Templates . 94

Repeat the last Ex command . 95

Paste text while in Insert mode . 96

Delete in Insert mode . 96

Repeatable operations on search matches . 96

Copy lines without cursor movement . 97

Move lines without cursor movement . 97

Delete lines without cursor movement . 98

Vim write through . 98

Run the same command on multiple lines . 98

Generating numbered lists . 98

Increasing or decreasing numbers . 99

Why Vim 8 is great . 99

Faster delete/change to the end of the line . 100

Repeating characters . 100

Clear highlighted searches . 100

Execute multiple commands at once . 101

External program integration . 101

Auto remove trailing whitespace . 102

Open and edit archives . 102

Open the last edited file . 102

Navigation through cursor history . 102

Invert selection . 103

Quickly switching buffers . 103

Fix indentation in entire file . 104

20Plugins 105

How to install plugin manager Vundle . 105

How to install a new plugin . 106

4

CONTENTS CONTENTS

21What now 107

22References 108

23About the author 109

5

Chapter 1

Instead of Preface

What this book covers

This book covers the most important Vim concepts. Besides Vim, it also covers some of the best

learning strategies known to me (the author), and which are proven to work.

Having an understanding of how our brain works, and being aware of simple but effective

learning techniques, will help you to learn Vim (and any other topic) faster than ever before.

What you need for this book

You need to have a strong enough motivation and wish to learn Vim. That’s necessary. But it’s

not enough. Motivation is not the factor which will change your life. If someone is a fool and

becomes motivated, he merely becomes a motivated fool. That won’t lead to a positive change.

You’d have to be disciplined in going through the challenge of improving your Vim skills. This

way you’ll learn Vim quickly. But learning quickly is not equal to learning easily. You’ll have to

put in some serious work.

You might get stuck at some point. You might even think of giving up. You might think Vim is

too hard. I’ll tell you one thing: Don’t wish Vim was easier, wish you were better!

Who this book is for

This book is for everyone who’d like to learn Vim. Whether you’re a beginner and you’re starting

from scratch, or a more advanced user, I believe that you’ll find this book very useful.

6

VIM VERSIONS CHAPTER 1. INSTEAD OF PREFACE

Vim versions

All commands, shortcuts and examples in this book are tested using Vim 8. You’re free to use

different versions of Vim while learning (like gvim, macvim, neovim), but some shortcuts and

commands might behave differently than those presented in the book.

That’s why I recommend you simply use Vim 8 while learning from this book. Once you’re done

with it, you can think of moving to your preferred version of Vim.

Conventions

Before we start with the real stuff, pay attention to the typographical conventions that are used

in this book.

Key presses

Esc - Indicates that the named key (in this case key Esc) should be pressed.

Ctrl -p - Keys separated by - should be pressed simultaneously. In this example, Ctrl key should

be held down while the p key is pressed.

Normal mode commands

These are commands you type while you’re in Normal mode. For example, command to delete

four words is the command: d4w. The named characters should be entered in order.

Command line commands

You’ll learn more about commands later. Now just pay attention to the format of this commands.

Example of command line command (enable line numbers):
✞ ☎

:set nu
✝ ✆

This command enables line numbers.

All commands starting with : should be executed in Normal mode. If you’re in a different mode,

press Esc before you type a command. Within the Normal mode you can run Ex commands.

Normal mode is also known as command mode.

7

PIRACY CHAPTER 1. INSTEAD OF PREFACE

Fonts

A code block will be used to show code samples, multiple commands and some examples. Here’s

an example of presenting the read command and its shorter version:
✞ ☎

:read

:r
✝ ✆

A fixed width font is used for filenames, code, variable names and commands.

Other formatting

There are commands shown in this format: :ju[mps]. This means that you can execute this

command in two ways:
✞ ☎

:jumps

:ju
✝ ✆

As you can see, everything between [and] is optional.

Very often I’ll use bold characters in words explaining commands. For example: The command

to delete is d.

Bold characters in cases like this will indicate the command abbreviation, which should help

you remember Vim commands easier.

Commands are case sensitive. If you see g in command, that’s what you type. If you see G, it

means you type capital G.

If some commands should be typed in a system command line, they will be shown in a block

like this:
✞ ☎

$ vim
✝ ✆

This is how you start Vim from command line. Characters $ are used to indicate the command

line. You should type everything after that - in this case vim.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem. I do take the protection

of my copyright and licenses very seriously. If you come across any illegal copies of my works in

any form on the Internet, please email me at contact@jovicailic.org with a link to the suspected

pirated material.

I will greatly appreciate your help in protecting my work and ability to bring you more valuable

content.

8

MASTERING VIM QUICKLY NEWSLETTER CHAPTER 1. INSTEAD OF PREFACE

Mastering Vim Quickly Newsletter

I recommend you subscribe to my weekly newsletter Mastering Vim Quickly Newsletter avail-

able at http://masteringvim.com.

Every week I’ll send you the best tips, tricks and news on Vim. Some of them will be from this

book, but also lots of them are not covered in the book. Simply, there’s too many things you

can learn about Vim. That’s why getting a tiny bit of knowledge once a week is a great way to

steadily improve your Vim skills.

Why this name

First time I saw an advanced Vim user working on his code, my impression was like “wtf just

happened”. He would edit his code in a way I’ve never seen before. Then, when I realized how

easy it is to do this, I thought “omg I have to try this!”.

That’s how I came up with Mastering Vim Quickly: From WTF to OMG in no time.

Questions

If you have a problem with any aspect of this book, feel free to contact me at any time. My

email is: contact@jovicailic.org. I’ll do my best to address the problem.

9

http://masteringvim.com

Chapter 2

Introduction

There’s so much you want to do in life, and so little time. It’s the story of our modern lives. Now,

you want to learn Vim. Congratulations for making this decision! Now think, what’s holding

you back from getting started? It’s hard? It takes time? Effort?

Over the years, I have learned two uncomfortable truths related to learning. First: skills take

time and effort to master. And second: many things aren’t fun until you’re good at them.

While learning any skill, there is a period of time in which you’re horribly unskilled, and you’re

painfully aware of that fact. The same applies when learning Vim. This book presents my

personal quest to quickly learn Vim, and as such, it will help you to acquire new Vim skills in

record time.

One of the beautiful things about learning any subject is the fact that you don’t need to know

everything. What’s important is that you only need to understand a few critically important

concepts that provide most of the value. The same goes for Vim.

Mastering Vim Quickly is a set of foundational Vim concepts you can use to get things done.

Once you master the fundamentals, you can accomplish even the most challenging Vim magic

with surprising ease. And you will love it!

Over the past few years, I read several books on Vim, passed through hundreds of tutorials

and tips, used Vim from a few to over 10 hours a day and coded in more than a few different

programming languages. Along the way, I’ve collected, distilled and refined my findings into

the concepts and best tips which are presented in this book.

If you invest the time and energy necessary to learn these concepts, you’ll easily be in the top

5% of the human population when it comes to productivity in coding, programming and text

editing.

Think of this book as a filter. Instead of trying to absorb all of the Vim knowledge—and there’s

really a lot out there—use this book to help you with what matters most. This way you can focus

on what’s actually important: getting stuff done.

10

THE ART OF LEARNING CHAPTER 2. INTRODUCTION

Bram Moolenaar, the creator of Vim, wrote:

“Learning to drive a car takes effort. Is that a reason to keep driving your bicycle?

No, you realize you need to invest time to learn a skill. Text editing isn’t different.

You need to learn new commands and turn them into a habit.”

And I completely agree. This book will help you improve your Vim skills.

The art of learning

I’m a learning addict. I usually read few books every month. This is good, because I learn a lot.

Then I try out what I learned, and adopt what works for me. In this short chapter, I will present

the three most important principles which work for me when it comes to learning.

Don’t skip them. I believe it’s very important that each one of you has the same basic start

when it comes to learning techniques. I really want to help you learn Vim quickly. Therefore

pay attention to these principles. Once they are understood, you can use them for learning and

improving on any topic, not just Vim.

Pareto principle

Italian economist and sociologist Vilfredo Pareto (1848-1923) observed that 80% of the land in

Italy was owned by 20% of the population. While investigating other countries, he found the

same unequal distribution of income and wealth in each.

Pareto’s Principle basically states that roughly 20% of all our actions produce 80% of our results.

This means that 80% of effects come from 20% of causes. Because of these numbers, it’s also

called 80/20 principle.

We know that it doesn’t have to be 80/20. It can also be 90/10, or 70/30. That’s not important

right now. What you must know is that the 80/20 principle works, regardless of whether you’re

conscious of it working or not. This is true for your business, personal life, and everything you

learn. Including Vim.

This means that, more or less, around 80% of what you’ve done today, has been pretty much

worthless to your bottom line. You probably know there are things you should be doing, that

you’re just not doing for whatever reason. Maybe you’re overweight or out of shape and you

know you should work out more. But, back to the topic.

Why am I telling you this at all, in a book about Vim? Well, I firmly believe that this principle is

true. I use it in almost every important area of my life, and it gives me very good results. I also

used this principle to quickly master Vim. This book provides you 20% of the most important

Vim fundamentals, which will help you to learn Vim really fast.

11

THE ART OF LEARNING CHAPTER 2. INTRODUCTION

Mini habits

In order to learn Vim, you need to commit to it.

Think of the last time you made a commitment to learn something. Or to change something

in your life. It was easy to make a commitment, wasn’t it? Maybe you even had a plan! Then,

fast forward a few weeks. Where’s that commitment? Gone, right? You’re not so motivated

anymore. Your willpower is close to zero.

I know this story very well. I’ve been there, and done that. I had to read a lot and try out what

works to find my way out. And I finally did! In the next couple of paragraphs, you’ll read the

summary. That’s all you need to know.

When you commit to something, the best way to reach your goal is to create a habit. In this

case, your goal would be mastering Vim quickly, and the habit you need to adopt is to regularly

learn.

The biggest barrier to forming new habits is usually the fact that it takes discipline to keep

doing something you don’t really feel like doing. I found a workaround for this. It’s called the

mini habit. This is a game changer!

Here’s my own example: As I was working on this book, sometimes I struggled to start writing.

But once I start, I can easily write for longer periods of time. The problem is that, on some days,

I don’t want to start writing. So I won’t. I’m pretty sure you’ve experienced something similar,

even with a different activity.

The key to forming a habit is the consistency. So I decided and promised myself that, no matter

what, I’ll stick to writing every day for the next month. Here’s what happened: for the first

couple of days I was motivated to stick to the plan. Then my motivation got lower (always does),

so I used my willpower to keep going.

However, after a week or so, I missed a day. And once I missed one day, it’s was pretty easy to

miss another. So my plan failed.

That’s the biggest problem with forming new habits. If you’re not consistent, you can’t create a

habit. So I finally understood the problem. When you feel resistance to something, you probably

won’t do it. If you don’t feel like starting some activity (whether it’s writing, running or anything

else), motivation and willpower can’t really help for the long term.

With mini habits, you make a workaround for this resistance. And when there’s no resistance,

you just start and do what you should.

The workaround in my example looked like this: I’ve made a commitment to write just 50 words

a day. One paragraph or one Vim tip. That was my daily goal. It was very easy to achieve. I

didn’t feel resistance to write only 50 words. Even if I was having a bad day, I was still able to

find a couple of minutes and write those 50 words! Anyone can do that. Actually, I realized that

it was easier to write those 50 words, than it is was to not write them.

Why? Because if you make a commitment, and if, no matter how good or bad you feel, you can’t

12

NO EXPERIENCE NECESSARY CHAPTER 2. INTRODUCTION

force yourself to write the damn 50 words, then you’re basically saying to yourself that you’re a

big loser. Your pride won’t let you fail at something so ridiculously small. Especially if it takes

less than two minutes to complete.

This was a game changer for me.

You might think: “Yeah, but there’s nothing you can achieve with writing 50 words per day . . . ”

Well, that’s absolutely wrong. How so? You can try it. Sit down to write 50 words. Or trust me.

When I would start with writing (with the 50 written words goal in mind), I would usually write

far more than 50 words. Because once I would start, it was difficult to stop.

And this is the real power I want to share. No matter how you feel. No matter how busy you

are. It’s very hard to fail with such a tiny commitment. You can use this strategy for any other

activity as well, it really works great.

The whole trick for me was to make a commitment to write just 50 words every day. Your

commitment could be learning Vim quickly. That’s why you must always go in with the intention

to complete the smallest possible step. If you make it bigger, you will start to feel resistance.

1% improvement per day

You can’t master any skill in one day. You have to improve a little every singe day. It compounds.

That’s how you should approach learning Vim as well.

Every day matters. You either increase your skill level for 1% or decrease it. It’s your choice.

In the beginning, there’s no real difference between making a choice that is 1% better or 1%

worse. It won’t impact you today. But, over time these small choices compound.

When 1% compounds every day, it doubles every 72 days. If you commit to improve your Vim

skills 1% every day, in one year your skills will be 38 times better!

How do you know how much is 1%? Well, when it’s about Vim, it’s hard to measure it. I would

suggest that you decide what your 1% is going to be. It can be reading one page of this book.

Or learning one new Vim feature, command or trick.

Another way is to dedicate a fixed time for learning Vim every day. Let’s say that you dedicate

20 minutes every day to learning Vim. During those 20 minutes, you’ll improve your Vim

skills—sometimes by 1%, sometimes by less or more. It’s not important to be that precise.

What’s most important here is consistency. Keep improving your skills every single day.

No Experience Necessary

Don’t worry if you’re a complete beginner. I don’t assume that you’re already good in Vim

(but this book will still be very useful if you are!). You’ll find the information in this book more

valuable and practical than anything you learned from other Vim resources.

13

NO EXPERIENCE NECESSARY CHAPTER 2. INTRODUCTION

Each chapter is packed with examples that support detailed explanations of all the important

concepts, and they are presented in a way that helps you avoid the confusion that I faced when

I was learning. With this book and plenty of practice, you will be amazed at how quickly you

can go from complete beginner to super productive pro.

Mastering Vim Quickly is for anyone who wants to learn Vim, but who possibly doesn’t know

where to start, or has tried to learn but struggled to make progress, or is intimidated by how

difficult Vim appears to be. This book is designed to give you the head start I didn’t have.

Wherever you are, if you want to learn Vim, this book will help you learn smarter. Start exploring

Vim today, and get to productivity fast!

14

Chapter 3

Mastering Vim - Basics

Installing Vim 8

If you don’t have Vim already installed in your OS, you should do it now. I’ll assume that you’re

using some sort of Linux. However, even if you use Vim on PC or Mac operating systems, it’s

okay.

In order to install Vim, you should run the following command:

Gentoo: emerge vim

Ubuntu/Debian: apt-get install vim

CentOS/Fedora: yum install vim

MacOS: brew install vim

Now when you have installed Vim, we can start. Vim is also supported on Windows operating

systems, but be aware that some commands won’t work as presented here. However, most of

what we cover will work.

Vim philosophy

Vim is different from other text editors. Although it looks hard to learn, there are only two main

ideas you need to really understand it. Those two are actually what makes Vim so different

from other text editors. They are modal editing and operators.

15

VIM PHILOSOPHY CHAPTER 3. MASTERING VIM - BASICS

Modal editing

The purpose of Vim is to enable you to edit text effectively.

When you’re writing code, how do you spend most of your time in the editor? You’re likely not

typing most of the time, but rather moving around through existing code and editing here and

there.

Because you spend more time editing than entering the text, Vim makes editing and navigation

more powerful than any other text editor.

For example, you want to jump to the end of your file? Simply press G. You want to jump to the

top of your file? Hit gg.

You might wonder, how Vim will know whether you want to type letter G as a part of some word,

or you want to jump to the end of your file. That’s why Vim has modes. What happens when you

press G depends on the mode.

Pressing G in Normal mode moves the cursor to the last line in your file. Pressing the same key

in Insert mode will simply add G to your text. When you start Vim, it will be in Normal mode by

default. If you want to enter text, you have to enter Insert mode.

You can do it by pressing i while in Normal mode. When you’re done with typing your text,

press Esc and you’ll return to Normal mode.

Besides Normal and Insert modes, there are a few other important modes.

Operators

If you are used to moving your cursor using arrow keys, “page up,” “page down,” “home” and

“end,” you’ll be very amazed what Vim can offer. You’ll be able to move your cursor faster and

with better precision.

For example, you want to delete a text from the middle of the sentence to the end of line? Place

the cursor to the position from where you want to delete, and press d$. Here d stands for delete,

while $ means end of the line.

It may look strange now, but you’ll see it’s very easy. In fact, there’s a whole Vim language

which you’ll learn later. And once you do, you’ll love it!

In the previous example, d is the operator command. Operator commands (or operators) can

delete, change or insert text, copy or format it, etc. You’ll learn more about commands soon.

16

STARTING VIM CHAPTER 3. MASTERING VIM - BASICS

Starting Vim

When you want to start Vim from the command line, you have many options you can provide to

it. Here’s the list of some options which you’ll find useful sooner or later:

• +NUM - The cursor will be positioned on the line “NUM” for the first file you open.

• +/{pattern} - The cursor will be positioned on the first line containing “pattern” in the first

file you open.

• +cmd or -c cmd - Command “cmd” will be executed after the first file has been read. It’s

interpreted as an Ex command. You’ll learn about Ex commands soon.

• -x - Use encryption to read or write files. You need to use this option only the first time

for a given file. Every following time you’ll be asked for the password even without this

option. The encryption implementation is not strong, so don’t rely only on this protection

for your important data.

For example, to open file my_file.txt with the cursor positioned on line 33, you would start Vim

like this:
✞ ☎

$ vim +33 my_file.txt
✝ ✆

This can be very handy when you’re debugging your code, and you know at which line you have

an error to fix. Or, another case when it can be very useful is this SSH problem:
✞ ☎

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that a host key has just been changed.

The fingerprint for the ECDSA key sent by the remote host is

SHA256:+lqGiMAmByST3y6wER8uv5INGlIagx2pOVIMdAPc6LSRKI.

Please contact your system administrator.

Add correct host key in /home/jole/.ssh/known_hosts to get rid of this message.

Offending ECDSA key in /home/jole/.ssh/known_hosts:466

ECDSA host key for secret.masteringvim.com has changed and you have requested strict checking.

Host key verification failed.

jole:~/ $ vim +466 .ssh/known_hosts
✝ ✆

This SSH issue can be resolved by removing the line 466 from ~/.ssh/known_hosts file. The solution

listed above is a nice way to do it. However, the quickest way to do this is to run the following

command in your terminal: vim .ssh/known_hosts +"466d|x"

17

Chapter 4

Your first Vim session

To run Vim, open your terminal, and type: vim

This will start Vim, as always, in Normal mode. To start with inserting some text, you need to

switch to Insert mode. You do this by simply pressing i. Feel free to type some text, and then

try moving your cursor around with arrow keys, so you can gain familiarity.

Now, when you’re done with typing, let’s save this text in a file. To do so, you need to get back

to Normal mode. You do this always by pressing the Esc key.

If you have never used Vim before, you’re probably a bit confused. What in the world is a

mode? I’ll explain it to you very soon. For now, just try to understand that Vim is different than

any other text editor you’ve used. The concept of modes is very simple: you want to insert

text—then enter the Insert mode first. You’re done with typing? Exit Insert mode.

Now, whenever you want to type a command, you need to type :. This is how every command

starts. The command to save the file and exit Vim is :wq <filename>. Letter w comes from write,

letter q comes from quit. So, type :wq test.txt and press Enter. Voilà, you’ve just created a file

called test.txt.

If you want to open a file you’ve just created, just type in your terminal: vim test.txt. Press key

i and add some more text to your file. But, you don’t want to save it this time. In order to close

the file without saving it, and exit Vim, you’ll need to get back to Normal mode (press Esc) and

type :q!.

Simple as that. Of course, there are several more ways to open and close files in Vim, but this is

enough for your fist Vim session.

Now, let’s do something cool. You won’t understand everything now, but you’ll have a complete

understanding of this example when you read the entire book.

If you use https://github.com and git in the command line, you’ve probably had to squash some

of your commits at times. This example will show you how quickly you can do it with Vim, even

18

https://github.com

CHAPTER 4. YOUR FIRST VIM SESSION

though you’re just at the very start.

In case you don’t know what I’m talking about, never mind—just copy the snippet below to Vim

and try out the example.

Info: You’re squashing your commits, here’s the list of them:
✞ ☎

pick e08be68 Add initial Rexfile

pick 5b4143f Fixes

pick 855be75 fix

pick d7a5285 Initial work

pick 59e82a2 add more stuff

pick 34cfc9c Fixes
✝ ✆

Task : Change word pick from line 2 to last line (line 6) to s.

Solution:

1. Open Vim. Press i to enter Insert mode. Then copy the text from above. Paste the text in

Vim, using the shortcut for pasting in your terminal.

2. Now press Esc to get back to Normal mode. Use arrows to place your cursor on the

beginning of the second line.

3. Press Ctrl -v. Then press right-arrow three times. You’ll notice that you just selected word

pick in second line.

4. Now press down-arrow four times. You’ll notice that you’ve selected all words pick starting

from second to last line.

5. While this block of words is selected, press c. That’s a command for changing text.

6. All words in your selection will be deleted, and cursor placed on second line. Mode will

change to Insert. Now just type s. That’s what we want to replace word pick with.

7. Last final step - press Esc. And voila! You did it!

Here’s how the result should look like:
✞ ☎

pick e08be68 Add initial Rexfile

s 5b4143f Fixes

s 855be75 fix

s d7a5285 Initial work

s 59e82a2 add more stuff

s 34cfc9c Fixes
✝ ✆

This might look complicated, but trust me, it’s very easy. Keep reading, and soon you’ll

understand what actually happened in this example.

19

Chapter 5

Vim Concepts

Vim is a different text editor from all the other editors. That’s why you need to understand

some Vim concepts, as you probably have never experienced concepts like these with different

text editors.

Modes

If you want to understand and learn Vim, you need to understand Vim modes. Vim has twelve

modes in total. However, in your daily use, you’ll need to use 4 or 5 of them regularly. It’s very

important to understand those.

Here are the most important ones:

Normal mode - When you start Vim, by default you’ll be in Normal mode. In this mode you can

enter all the normal editor commands. It’s mostly used for navigation and text manipulation.

Advanced Vim users spend most of their time in Normal mode. A good habit to adopt and keep

in mind: whenever you’re not typing, it’s better to get back to Normal mode.

Insert mode - As the name says, this is for inserting new text. In this mode you can also run

some of the commands. By default, “– INSERT –” is shown at the bottom of Vim window.

Command mode - In this mode you can run Ex commands (like :set number), enter search

patterns (like /word) and enter filter commands. After running the command, Vim returns to

Normal mode.

Visual mode - For navigation and manipulation of text selections. It’s similar to Normal

mode, but the movement commands extend a highlighted area. When you use a non-movement

command, it’s executed for the highlighted area. By default, there is “– VISUAL –” shown at the

bottom of the window.

20

COMMANDS CHAPTER 5. VIM CONCEPTS

Insert Normal mode - When you’re in Insert mode, and press Ctrl -o, you’ll enter this mode.

It’s similar to Vim Normal mode, but after executing one command, Vim returns to Insert mode.

By default, ‘– (insert) –’ is shown at the bottom of the window.

Commands

Commands are probably the most important concept in Vim. Most of what you’ll do within Vim

will be the result of executing different kinds of commands. In general, we can say that there

are three ways of executing commands in Vim:

Ex commands

This is any command you can run as :{command}, for example :help. You will use them often.

You can see the entire list of these commands (it’s very long, don’t do it now) by running

:help ex-cmd-index.

Mapped commands

Any (more complex) commands, which we map or bind to some keys for easier access, belong

to this group. You’ll usually add these commands to your .vimrc file. You’ll learn more about

these in chapter Mappings.

Editing commands

These are the commands which you’ll usually use in Normal and Insert mode. These are

commands like d4w which will delete four words after your cursor. You’ll learn many of these

commands in chapter Do you speak Vim?.

21

Chapter 6

Working with files

Opening files

Here are the two most common methods for opening files in Vim.

Method 1 - Open file from terminal

Once you open your terminal, type vim and then the filename. For example:
✞ ☎

$ vim /etc/passwd
✝ ✆

Method 2 - Open file from Vim

When you start Vim by running vim in your terminal, there will be no files loaded, by default.

Then, run command: :e <filename> to open a file in your existing Vim session.

For example:
✞ ☎

$ vim

:e /etc/passwd
✝ ✆

Very often you’d like to get the content of some other file into your current opened file. Actually,

to be more precise, instead of “current opened file,” from now on, we’ll use the term “current

buffer.”

So when you open an existing file, the content of this file is loaded in one Vim buffer. You’ll learn

much more about buffers later, but for now, just remember that buffer is a piece of memory

that’s been loaded with the content of a file.

22

CLOSING FILES CHAPTER 6. WORKING WITH FILES

Of course, you could open the second file, copy the content you need, return to first file, and

paste. But, there’s a better way.

Vim has a read command:
✞ ☎

:read

:r
✝ ✆

You can use this command to insert a file, or the output from a system command, into the

current buffer.

Here are a few examples of how you can use it:

Command Description

:r file.txt Insert the file file.txt below the cursor in current buffer.

:0r file.txt Insert the file file.txt before the first line.

:r!sed -n 2,8p file.txt Insert lines 2 to 8 from file file.txt below the cursor.

:r !ls Insert a directory listing below the cursor.

Of course, all of these should be run in Normal mode. The last command will work only in Linux

or macOS.

Related tip: Using command gf, you can open a file whose name (or path) is under or after

the cursor. Remember it as "goto file". Similarly, using gx command, you can open links in

your default browser.

Closing files

There are more than a few ways to close a file in Vim. Here are some of the most common ways:

Command Description

:wq Save currently opened file and exit Vim (even if file is not changed).

:x Exit Vim but write only when changes have been made.

ZZ Equivalent to :x. Notice there’s no :. This is a key press.

:q! Exit Vim without saving currently opened file.

:qa Exit all open files in current Vim session.

23

NAVIGATION CHAPTER 6. WORKING WITH FILES

Saving files

There are several ways to save a file in Vim. When you save the file, you actually write the

contents of the buffer to the disk. That’s why, the command for saving is “write”.

Here are the most common commands you should know:

Command Description

:w Save currently opened file (which was previously saved).

:w file.txt Save currently opened file as file.txt.

:w! file.txt Save file as file.txt with overwrite option.

:sav file.txt Save current buffer as a new file file.txt.

:up[date] file.txt Like :w but only save when the buffer has been modified.

Navigation

In order to be truly efficient with Vim, you have to learn how to properly navigate through your

files, buffers, help system, etc. This section will enable you to improve your navigation speed

drastically.

Basic movement

Just like in any other text editor, you can use arrow keys (Up, Down, Left, Right) to move around

within your text in Vim. But, in Vim, there’s an alternative.

Most advanced Vim users prefer to keep their hands and fingers around the home row on

a keyboard. This is possible, because instead of arrows, you can use keys h, j, k and l for

navigation.

• h - left

• j - down

• k - up

• l - right

In the beginning, it might be hard to get used to these. The first problem is to remember which

key does what. Here’s my suggestion for how to remember them:

Look at your keyboard and notice how j looks like an arrow down, with a half head. So j takes

your cursor one position down. These keys are positioned in this way (assuming you’re using a

qwerty keyboard layout): H J K L.

The key far right is l and it will take you to the right. The key far left is h and it will take you

to the left. Two keys remain in the middle, j and k.

24

NAVIGATION CHAPTER 6. WORKING WITH FILES

As we already said, we can easily identify key j as an arrow pointing down. The only key left is

k, which must take you up—as all the other directions we already covered.

A lot of people suggest that you disable arrow keys, so you get used to h j k l keys faster. But I

think differently. You shouldn’t disable arrow keys at all. Feel free to use them as long as you

feel comfortable with them. Just, from time to time, as you progress with Vim, try using h j k l

sometimes.

Bit by bit, you’d probably realize very quickly the great advantage of h j k l. You won’t have to

move your fingers from the key home row, which is very comfortable and efficient.

But it’s best not to hurry with h j k l keys. Trying to force yourself to use only them, and not

arrow keys can often have a negative effect. So just ignore what everyone else is saying and do

whatever feels more comfortable.

Navigate through words

It will take you some time to get used to, but I highly recommend that you try to adopt this

kind of navigation. When you operate on a single line (or even a few), instead of moving one

character up, down, left or right, you can move between words. Also, there are some other

useful shortcuts you should remember:

Key Description

w Go to the start of the next word

W Go to the start of the next WORD

e Go to the end of the current word

E Go to the end of the current WORD

b Go to the previous (before) word

B Go to the previous (before) WORD

WORD consists of a sequence of non-blank characters. It’s always delimited by white space. On

the other hand, word is delimited by non-keyword characters, which are configurable. Remember

that word ends at a non-word character, such as a ., - or).

For example, in sentence:
✞ ☎

Vim "navigation" is not-so difficult!
✝ ✆

we have 5 WORDS: Vim "navigation" is not-so difficult!, all delimited by white space. However, we

have 10 words.

So if you’re navigating through source code, and want to stop at delimiters and characters like

() . { } , $ use w. If you’re working with text and want to skip these, then use W. For more

information, take a look at :help 03.1.

25

NAVIGATION CHAPTER 6. WORKING WITH FILES

Note: All of these commands for navigation can take a number as a prefix. For example 3w will

take you to the start of the 3rd next word, while 6j will take you six lines below.

Scrolling pages

When you’ll be working with a large file, you need to move through the file differently. To scroll

your file page by page, you can use the following shortcuts:

Shortcut Description

Ctrl-d Scroll down half page

Ctrl-u Scroll up half page

Ctrl-f Scroll down full page (or forwards)

Ctrl-b Scroll up full page (to beginning, or backwards)

Jumping around the file

Vim offers you simple ways to go to the beginning or end of your file. This can be very handy

when you’re working with large files. Beside these, in the table below, there are a few more

handy shortcuts for jumping through the file:

Command Description

gg Go to the top of the file

G Go to the bottom of the file

{ Go to the beginning of current paragraph

} Go to the end of current paragraph

% Go to the matching pair of (), [], {}

50% Go to line at the 50% of the file

:NUM Go to line NUM. :28 jumps to line 28

Navigating inside the window

Here are a few handy shortcuts you can benefit from, when it comes to moving your cursor in

the current Vim window:

Key Description

H Move cursor to first (highest) line in current window.

L Move cursor to the lowest line in current window.

M Move cursor to the middle of the current window.

26

BASIC SEARCH CHAPTER 6. WORKING WITH FILES

Navigating in Insert mode

If you want to move around and make edits in Insert mode, you shouldn’t, most of the time. The

proper way would be to hit Esc to get to Normal mode, go to the correct location, make an edit,

and get back to Insert mode.

For example, you could press Ctrl -o F m to move to previous m character and get to Insert mode.

However, sometimes, you’d find it easier to stay in Insert mode. In these cases, using arrow

keys to move around is usually not fast enough. Here’s what you could do:

Shortcut Description

Shift -Right-arrow Go to the right, word by word

Shift -Left-arrow Go to the left, word by word

Related tip: While in Insert mode, you can press Ctrl-o to get back to Normal mode and

execute one command, after which you’ll be automatically returned to Insert mode.

Basic search

Vim has many search related options. We’re going to cover some of these in the next chapter.

Right now, it’s important that you understand the basic theory of how search in Vim works.

All search operations are done in Normal mode.

You can search forward by pressing / and then typing your search pattern. Pressing Esc will

cancel it, while pressing Enter will perform the search. Once you hit Enter, you can press n to

search forwards for the next occurrence, or N to search backwards.

Now, let’s try to figure out what would be the command to find the first match:

1. First match, is usually placed “on the top” of all others.

2. We already mentioned that command to jump to the top of a file is gg.

3. And now we know that pressing n while searching will take us to next search pattern

occurrence.

So, if you perform a search for a pattern, and you want to jump to the first match, you need

to hit ggn. Yup, this way we tell Vim: “go to the top of the file and find next (actually first

occurrence)”.

It’s the same logic for the command to take you to the last match of your search. As you might

already guess, it’s GN.

27

BASIC SEARCH CHAPTER 6. WORKING WITH FILES

You can search backwards by pressing ? and then typing your search pattern. Pressing n

searches in the same direction (in this case backwards), while N searches in the opposite

direction (in this case forwards).

Searching for the current word

Vim can search for words under your cursor. In Normal mode, place your cursor to any word.

Press * and Vim will search forwards for the next occurrence of that word! How cool is that!

Press # and Vim will search backwards for the word under your cursor.

These two commands are searching for exact words. So if you perform the search using these

commands while your cursor is on word master, it would not find the word mastering.

So if you don’t want exact word matching, use commands g* and g# accordingly.

Search history

Vim keeps a search history. Just type / or ? and use the arrow up or down keys to go through

previous search commands. Of course, you can edit a command (or only a pattern) you find in

history and press Enter to search again.

Let’s say the cursor is on a word, and you want to search for a similar word. Instead of typing

the entire word, here’s what you can do:

1. Press /

2. Then press Ctrl -r and then Ctrl -w.

This will copy the current word under cursor to the command line, ready for searching. Now

you can edit it and press Enter.

Once you’re done with searching, you can hit Ctrl -o to jump back to your previous position (or

Ctrl -i which will jump forwards).

What if you search for the last searched pattern again? There’s no need to type the pattern

again, or ever go through history. Just press / and hit Enter - an empty search pattern will

repeat the last search. This will also work for :s and :g commands, which we’ll cover later.

Vim also allows you to enter a count before a search. For example, what if you want to jump to

the fifth occurrence of the pattern? Simply type 5/pattern. Also, typing 6* will search for the

sixth occurrence of the current word under the cursor.

We have just covered the most important search basics.

28

FILE MANAGER (NETRW) IN VIM CHAPTER 6. WORKING WITH FILES

File Manager (netrw) in Vim

Vim comes with a built-in netrw plugin which is a great way to browse files and directories

within a Vim session. This file manager supports four ways of displaying files and directories.

You can launch netrw in several ways like:

• :Ex - open current directory in current Vim window (remember it as a shortcut of Explore).

• :Ex <dir> - open specified directory <dir>.

• :Sex - open current directory in horizontal split window (fun fact: Vim is the only editor in

the world which has Sex as a command!).

• :Vex - open current directory in vertical split window.

• :Tex - open current directory in a new tab.

• :Lexplore - open current directory in vertical split on the left. Default setting opens files in

the window to the right of the netrw window.

Try out these commands and see which one works the best for you. Personally, I prefer to have

a file explorer in a vertical split, so I would usually run:
✞ ☎

:40vs +Ex
✝ ✆

to open current directory in vertical split window with width of 40 columns.

After you read the chapter on mapping, you’ll know how to create a shortcut for this command,

so you can open and close file explorer quickly.

You can change the directory listing view to show more or less information, change the sorting

order or hide some kinds of files. Once you start netrw, try to hit i to cycle through the view

types. There are four of them: thin, long, wide and tree. Once you choose your favorite, set it to

be the default one in your .vimrc file, like:
✞ ☎

let g:netrw_liststyle = 3
✝ ✆

Changing how files are opened

With Vim, not only can you open files, but you can also open directories! Yes, go ahead and try

to open some directory. For example, this command:
✞ ☎

$ vim /home/jole
✝ ✆

will open my home directory. What I’ll get is a list of all files and list of all subdirectories in the

directory I’ve opened.

29

EDITING FILES VIA SSH CHAPTER 6. WORKING WITH FILES

When you open a directory with Vim, you actually started netrw. So yes, that’s the way to start

it out of Vim. Now, it’s important to know that you can perform some of the basic file manager

operations using netrw:

• <Enter> - opens the file under the cursor, or enters the directory under the cursor

• D - deletes the file under the cursor. You can visually select multiple files and use this

command to delete all of them.

• R - renames the file under the cursor.

• X - executes the file under the cursor.

• % - creates a new file in the current directory. Vim will ask you for a file name and open a

buffer.

By default, when you hit Enter to open a file, it will be opened in the same window as the netrw.

That’s not really practical. You would usually like to keep netrw in a side split, and load your

files in another split. Fortunately, this behavior can be changed with netrw_browse_split option.

To make the selection permanent add the following to your .vimrc:
✞ ☎

let g:netrw_browse_split = 4
✝ ✆

Option 4 is the one I personally prefer. It open files in previous window (the current split you

have beside netrw split).

Set netrw split width

How file explorer will position a window for the new file you open, can be set with the

netrw_browse_split option. If you’d like to set the width of netrw split to 20% of your entire Vim

window, put this in your .vimrc:
✞ ☎

let g:netrw_winsize = 20
✝ ✆

Editing files via SSH

One of the lesser known features of Vim is the ability to edit files remotely, over the network.

This feature comes with the netrw plugin. To achieve this, netrw uses the SSH protocol, and

manages remote files via the scp command.

Here’s how to do it:
✞ ☎

vim scp://user@myserver[:port]//path/to/file.txt
✝ ✆

30

EDITING FILES VIA SSH CHAPTER 6. WORKING WITH FILES

Note the double / for the directory on the remote host, which is needed to correctly resolve the

absolute path. [:port] is optional.

So with the command above you can open a file located on a remote host for editing.

What actually happens in the background is that Vim uses scp to download the requested file

from a remote machine to a local /tmp directory, and then opens it for editing. When you save

your changes to the file, the changes are first applied to a local copy in /tmp directory. After

that, the file is uploaded via scp to the remote host.

If you open a directory on a remote host, you could also use netrw to browse through remote

files and directories. The important thing is to always specify the directory path with / at the

end.

Of course, it’s recommended that you use SSH keys for authentication. Otherwise, you might

be asked for the SSH password too often.

Beside SSH, there are other protocols supported such as sftp, ftp, dav, etc.

For example, to open a file on a remote FTP server, you could run a command like:
✞ ☎

vim ftp://hostname/path/to/file
✝ ✆

Netrw offers lots of options and possibilities for remote editing, so for more information on this,

take a look at :help scp.

31

Chapter 7

Personalizing Vim

If you’ve had any experience with some of the text editors for programmers, it’s most likely

you’ll be disappointed with how Vim looks. But this is actually a good thing. While other editors

try to force you use their features, Vim does the opposite.

The “interface” is very minimal. This means that you have to spend some time and effort to

make the Vim interface look pretty, as well as to improve your productivity. The benefit is this

process of configuration will help you understand better how Vim works.

Vim configuration explained

As a first step, we have to understand how to configure Vim. There are multiple configuration

files, which can reside on different locations in your system, depending on which operating

system you use or where have you installed Vim.

The main configuration file is vimrc. It exists in two versions—global and personal. Your personal

vimrc file is usually placed in your home directory. In Linux operating systems it’s usually a

hidden file called .vimrc.

Whatever you change in this file will overrule any previous settings in the global vimrc file. If

you’re not sure of your home directory location, run this command in Vim: :echo $HOME.

The permanent configuration is set through .vimrc. But you can also configure the current Vim

session. For example, if you’ve started Vim, and you don’t have line numbers shown, you can

run the command:
✞ ☎

:set number
✝ ✆

to enable line numbers for the current session. If you’d like to disable this option for the current

Vim session, you’d run:

32

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

✞ ☎

:set nonumber
✝ ✆

Another way to enable/disable boolean options is to use exclamation point !. In this case, we

could enable line numbers (assuming they’re disabled) with a command:
✞ ☎

:set number!
✝ ✆

Make Vim look beautiful

Vim allows its users to change the colors it uses. So yes, Vim supports color schemes. To begin,

choose some of the installed color schemes. Later you can create your own, or download some

you like, and install them in Vim.

In order to choose your color scheme, open a file with some source code. Then type: :colorscheme

and press Tab. Then press Enter. You’ll see what the scheme looks like. Repeat the same

command, just press Tab more times, until you find the color scheme you like. Once you find it,

add to your .vimrc file:
✞ ☎

colorscheme scheme_name
✝ ✆

Sometimes, in a big file with lots of code and syntax coloring, it can be difficult to track your

cursor. That’s why it’s a good tip to mark the line the cursor is currently in. You can try this out

by typing :set cursorline in Vim, or to make this permanent, add to your .vimrc file:
✞ ☎

set cursorline
✝ ✆

If you don’t like the styling of the line, you can change it like this, for example:
✞ ☎

:highlight CursorLine guibg=lightblue ctermbg=lightgrey
✝ ✆

If you really have a problem in following your cursor, then you can use a command to mark the

current column of the cursor, coloring the entire column: set cursorcolumn.

Of course, it’s really important to add the line numbers, so also put: set nu[mber] to your .vimrc

file.

If you want to enable spell checking for default, English language, you should add this: set spell.

If you want spell checking enabled for some other language, you can do it this way (example for

German language): set spelllang=de. If you want spell checking for more languages at once, no

problem: set spelllang=en,de,it. Of course, if you change spelllang setting to a language that’s

not installed, Vim will ask you if it should try to download it.

You can always check the configuration of any Vim setting by adding a ? to the end of its name.

For example:
✞ ☎

set spell?

nospell
✝ ✆

33

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

Usability improvements

Default Vim settings are not really great. If you’re going to use Vim seriously, then it’s definitely

worth it to spend some time on configuration. As we already said, all the configuration we’ll

manage through the .vimrc file.

In this part, I will give you a list of different Vim settings, which you should consider and try

out. At the end of this chapter, you’ll also find a snippet of basic recommended options, which

you can just copy to your .vimrc file. Later on, you can continue with configuration on your own.

General configuration options:

• set nocompatible - Use Vim settings, rather then Vi settings. It’s important to have this on

the top of your file, as it influences other options.

• set backspace=indent,eol,start - Allow backspacing over indention, line breaks and insertion

start.

• set history=1000 - Set bigger history of executed commands.

• set showcmd - Show incomplete commands at the bottom.

• set showmode - Show current mode at the bottom.

• set autoread - Automatically re-read files if unmodified inside Vim.

• set hidden - Manage multiple buffers effectively: the current buffer can be “sent” to the

background without writing to disk. When a background buffer becomes current again,

marks and undo-history are remembered. See chapter Buffers to understand this better.

User Interface Options

• set laststatus=2 - Always display the status bar.

• set ruler - Always show cursor position.

• set wildmenu - Display command line’s tab complete options as a menu.

• set tabpagemax=40 - Maximum number of tab pages that can be opened from the command

line.

• colorscheme desert - Change color scheme.

• set cursorline - Highlight the line currently under cursor.

• set number - Show line numbers on the sidebar.

• set relativenumber - Show line number on the current line and relative numbers on all other

lines. Works only if the option above (number) is enabled.

• set noerrorbells - Disable beep on errors.

• set visualbell - Flash the screen instead of beeping on errors.

34

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

• set mouse=a - Enable mouse for scrolling and resizing.

• set background=dark - Use colors that suit a dark background.

• set title - Set the window’s title, reflecting the file currently being edited.

Swap and backup file options - disable all of them:

• set noswapfile

• set nobackup

• set nowb

Indentation options:

• set autoindent - New lines inherit the indentation of previous lines.

• filetype plugin indent on - Smart auto indentation (instead of old smartindent option).

• set tabstop=4 - Show existing tab with 4 spaces width.

• set shiftwidth=2 - When indenting with ‘>’, use 2 spaces width.

• set expandtab - On pressing tab, insert 4 spaces.

• set nowrap - Don’t wrap lines.

Search options:

• set incsearch - Find the next match as we type the search.

• set hlsearch - Highlight searches by default.

• set ignorecase - Ignore case when searching . . .

• set smartcase - . . . unless you type a capital.

Text rendering options

• set encoding=utf-8 - Use an encoding that supports Unicode.

• set linebreak - Wrap lines at convenient points, avoid wrapping a line in the middle of a

word.

• set scrolloff=3 - The number of screen lines to keep above and below the cursor.

• set sidescrolloff=5 - The number of screen columns to keep to the left and right of the

cursor.

• syntax enable - Enable syntax highlighting.

Miscellaneous Options

• set confirm - Display a confirmation dialog when closing an unsaved file.

35

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

• set nomodeline - Ignore file’s mode lines; use vimrc configurations instead.

• set nrformats-=octal - Interpret octal as decimal when incrementing numbers.

• set shell - The shell used to execute commands.

• set spell - Enable spellchecking.

Status line

The statusline in Vim is the bar along the bottom of the Vim window. The purpose of statusline

is to give you various information about the status of the current buffer. The default statusline

includes info like file path, permissions, line numbers and a percentage number of where you

are in the file.

Although the default statusline offers quite a nice set of information, you can always improve it,

if desired. There are even a couple of quite popular plugins for this purpose.

We’re going to cover just the basics, so if you want to modify your status line, you know how to.

Status line, by default, is shown only if you have more than one buffer open. However, it’s

better to show it all the time, and you can do this by setting:
✞ ☎

"show status line

set laststatus=2
✝ ✆

in your .vimrc file. You’ll also notice a line "show status line, which is a comment describing this

option. So whenever you want to add a comment in .vimrc file, start the line with " character.

If, for some reason, you want to disable it, this is what you need:
✞ ☎

set laststatus=0
✝ ✆

Status line can be set like this in your .vimrc file:
✞ ☎

set statusline=%F%m%r%h%w%=(%{&ff}/%Y)\ (line\ %l\/%L,\ col\ %c)
✝ ✆

This can be a bit hard to read and understand if you’re a beginner. A different way of setting it

could be something like:
✞ ☎

set statusline=%t "tail of the filename

set statusline+=%{&ff} "file format

set statusline+=%h "help file flag

set statusline+=%m "modified flag

set statusline+=%r "read only flag

set statusline+=%y "filetype

set statusline+=%c, "cursor column

set statusline+=%l/%L "cursor line/total lines

set statusline+=\ %P "percent through file
✝ ✆

36

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

This format is much more useful, especially if you’d like to experiment with your status line.

The easiest way to configure your status line is with the built in flags.

For example, %m shows a [+] if the current buffer is modified. Using %L shows the total number

of lines of the current file.

Of course, there are many of them, and that’s out of the scope for this book. Take a look at

:help statusline for more information on them.

Related tip: Using command g Ctrl-g, you can show the detailed information about the

number of lines, words, characters, etc. in your current buffer.

Swap and backup files dilemma

Swap files

Sooner or later you’ll notice that, when you edit files, Vim creates files named like .filename.swp

in the same location as the file you’re editing. These files are called swap files.

Swap files store changes you’ve made to the buffer. If your Vim crashes, a swap file will allow

you to recover those changes. Another important role of swap files is to act as a lock mechanism:

if you open a file, which is already opened in another Vim session, you’ll be warned. That can

be useful, especially on a system with multiple users.

Disabling swap files

You can disable swap files entirely by adding set noswapfile to your .vimrc. However, I’d recom-

mend you not to disable them, unless you really know what you’re doing. Instead, you could

organize swap files better.

Swap files organization

Usually the most annoying thing about swap files is that they’re created all around your file

system, wherever you edit your files. To solve this, you can save all the swap files in one location.

Here’s how:

1. Create a directory for storing swap files, for example:
✞ ☎

$ mkdir ~/.vim/swp
✝ ✆

2. Put this snippet in your .vimrc:
✞ ☎

set directory=$HOME/.vim/swp//
✝ ✆

The directory option contains a list of directories where Vim will try to store swap files. The //

at the end tells Vim to use the absolute path to the file to create the swap file. This will ensure

that swap file name is unique, so there are no collisions between files with the same name from

different directories.

37

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

Backup files

Vim can make backups of files you edit, so you’re safe from losing data. I don’t use this Vim

feature personally, and I would suggest you set up a better backup solution for your work.

Of course, this feature can be useful. Backups are controlled by the settings of two options:

backup and writebackup. If interested, look these up in :help.

Just like for swap files, you can also keep backup files better organized, by creating a directory

and adding it to your .vimrc:
✞ ☎

set backupdir=~/.vim/.backup//
✝ ✆

Project specific .vimrc

If you’re working on multiple different projects, with different types of files, you might want to

have specific configurations for some types of your projects.

Vim allows you to have a project specific .vimrc file. First you need to enable it by adding this to

your .vimrc:
✞ ☎

" enable project speficific vimrc

set exrc
✝ ✆

Then you need to create your specific project .vimrc file configuration in the root of your

project folder. This way, you can keep your main .vimrc file nice and clean, and have a specific

configuration for other projects.

Basic recommended configuration

It will take you some time and experience to configure Vim to fit your needs. You can copy this

snippet to your .vimrc file to get you started. I recommend you start with this minimal (but

good!) configuration.

As you progress through the book, your configuration will improve. Most importantly, once you

start using Vim regularly, you’ll get ideas on what you’d like to improve and change. At that

time, come back to this chapter and enable additional options you might need. Also, Google is

your friend. Over time, you’ll be able to pick up tricks and configuration options from other

advanced Vim users.

But take your time, and don’t spend a lot of time tweaking your Vim configuration right now.

Use this configuration from below, and keep learning.

Here’s the basic configuration which you can use right away:

38

VIM CONFIGURATION EXPLAINED CHAPTER 7. PERSONALIZING VIM

✞ ☎

set nocompatible " Use Vim settings, rather than Vi settings

set softtabstop=2 " Indent by 2 spaces when hitting tab

set shiftwidth=4 " Indent by 4 spaces when auto-indenting

set tabstop=4 " Show existing tab with 4 spaces width

syntax on " Enable syntax highlighting

filetype indent on " Enable indenting for files

set autoindent " Enable auto indenting

set number " Enable line numbers

colorscheme desert " Set nice looking colorscheme

set nobackup " Disable backup files

set laststatus=2 "show status line

set statusline=%F%m%r%h%w%=(%{&ff}/%Y)\ (line\ %l\/%L,\ col\ %c)\

set wildmenu " Display command line's tab complete options as a menu.
✝ ✆

39

Chapter 8

Undo and Redo

Vim has a very powerful undo feature. When you press u in Normal mode, or run :u in Command

mode, you’ll call the Undo command. To undo all recent changes on the current line, press U.

When you press Ctrl -r in Normal mode or run :red[o], you’ll run the redo command.

If you want to undo multiple times, just press u the desired number of times. For example,

command uuu will undo the last three changes. To undo multiple changes you can also use

command u with a digit prefix, for example: 5u—which will undo the last five changes.

That’s not all—it gets even better. In Vim, you can travel through time! Using command

ea[rlier] you can go back in time, while using command lat[er] you can travel forward. These

two commands work on a state basis. This means that, if you make 4 changes, and run earlier 2,

last two changes would be reverted. Similarly, if you run command later 1, Vim will redo one

last change.

The best thing about these commands is that you can actually undo and redo in time frames.

For example, if you made a lot of changes in last 10 minutes, and you realized that all of them

are wrong, it would take a lot of undo actions. Instead, you can simply ask Vim to undo all the

changes you’ve made in last ten minutes by running a command earlier 10m. In similar way you

can use the later command.

Here are a couple examples which will show you all the possibilities of these commands:

Command Description

:earlier 2d Undo changes in last two days

:ea 3h Undo changes in last three hours

:ea 1m Undo changes in last one minute

:later 5m Redo all the changes in last 5 minutes

:lat 15s Redo all the changes in last 15 seconds

:earlier 3f Undo last three file states (last three buffer writes)

40

UNDO BRANCHES CHAPTER 8. UNDO AND REDO

Undo branches

Vim has one more powerful feature when it comes to undo operation. Let’s see an example:

1. Open a new file and write Hello. Press Esc.

Hello

2. Hit o to go to a new line in Insert mode, and write world. Press Esc.
✞ ☎

Hello

world
✝ ✆

3. Now you hit u. This undo action will remove word world.
✞ ☎

Hello
✝ ✆

4. Now, as your cursor is on the first line again, on the word Hello, press o, type everyone and

press Esc.
✞ ☎

Hello

everyone
✝ ✆

5. If you hit u again, you will undo everyone.
✞ ☎

Hello
✝ ✆

6. If you hit u again, you will remove Hello. But, you will never get word world again. At least

in most of the traditional editors.

So, no matter if you made an edit after undoing, you should be able to revert to world in the

previous example. Vim has a solution for this, and it’s called Undo branches. I won’t go into

details about it, but just tell you how to use this feature.

In the example from above, on step 4, after you complete step 4—and you want to get back

world again—you need to run command g-. Voila :)

Basically, Vim creates an undo branch every time you hit u. The branch represents the state

of the file before you executed undo. So, you can use g- command to move backward or g+

command to move forward between these branches.

Take a few minutes to experiment with u, Ctrl -r, g- and g+ and you’ll quickly understand how

this works. To sum it up: using only u and Ctrl -r will not get you to all possible text states, while

repeating g- and g+ does.

41

PERSISTENT UNDO CHAPTER 8. UNDO AND REDO

Persistent Undo

All of these feature are great, but there’s more! Vim (like every other text editor) can perform

undo/redo actions in your current session. Once the session is closed, and you reopen the same

file, running undo will do nothing—as you will be already at the oldest change.

Vim supports persistent undo, which means that you can run undo/redo even from your previous

sessions. Let’s say you edit some file. Then you close it. You open it again. And if you run undo,

it will undo the last action from the previous session. This is great feature indeed! This way you

can go back historically through changes of any of your files.

How this works? It’s simple—Vim creates a new hidden files where it stores the undo history.

Now, configuration is very simple. You could add only this line to your .vimrc:
✞ ☎

set undofile " Maintain undo history between sessions
✝ ✆

and it would work. However, Vim will write hidden files in the same directory as the file you

edit. Over time, this will become messy.

The better way is to create a dedicated directory for these undo history files, running a command

like:
✞ ☎

$ mkdir ~/.vim/undodir
✝ ✆

My assumption is that ~/.vim is your main Vim directory. Now, once you have created the

directory, you need to add only one more line to your .vimrc file:
✞ ☎

set undodir=~/.vim/undodir
✝ ✆

That’s all. Vim will store all the undo history files in that directory, and you’ll have persistent

undo working flawlessly. If you want to find out even more about undo feature in Vim, checkout

Vim help with :help undo.

42

Chapter 9

Do you speak Vim?

You will love this chapter! You’re about to learn a new language—Vim. We can easily adopt Vim

elements as language elements. Once you learn basic verbs, nouns and words, you’ll be able to

do amazing things in Vim, with incredible ease.

Vim Language Elements

We can split Vim elements into three different groups of language elements: verbs, modifiers

and nouns. Once you learn these, you’ll practically be able to “speak” with your editor.

Verbs

First you need some basic verbs. They can be split in two groups: powerless verbs and powerful

verbs.

The powerless verbs is the name I like to use for verbs which can apply only to a single character.

That’s why they are not really powerful—so, you get where the name comes from.

Here they are:

• x - delete character under the cursor to the right

• X - delete character under the cursor to the left

• r - replace character under the cursor with another character

• s - delete character under the cursor and enter the Insert mode

These are useful to know, and you’ll probably use them very often.

43

VIM LANGUAGE ELEMENTS CHAPTER 9. DO YOU SPEAK VIM?

The powerful verbs, are much more interesting. Here are the most important:

• y - yank (copy)

• c - change

• d - delete

• v - visually select (not really a verb, but used with verbs)

As you can see, it’s pretty easy to remember the commands for those words. It’s usually the

first character of the verb.

Note: These commands are usually known as operator commands or operators.

Modifiers

In Vim, modifiers are used right before nouns, so you can describe how you want to influence

the nouns. Here are the most important ones:

• i - inner (inside)

• a - a (around)

• NUM - number (e.g.: 1, 2, 10)

• t - searches for something and stops before it (search until)

• f - searches for that thing and lands on it (find)

• / - find a string (literal or regular expression)

Nouns

In English, nouns can be objects you do something to. It’s the same in Vim. Here are the most

important ones:

• w,W - start of next word or WORD

• b,B - start of previous word or WORD (start of word before)

• e,E - end of word or WORD

• s - sentence

• p - paragraph

• t - tag (in context of HTML/XML)

• b - block (in context of programming)

• h,j,k,l - left, down, up, right

44

VIM LANGUAGE ELEMENTS CHAPTER 9. DO YOU SPEAK VIM?

• $ - end of line

• ^, 0 - start of line

These can be expanded and give you even more power:

• aw - a (complete) word

• as - a (complete) sentence

• ap - a (complete) paragraph

• iw - inner word

• is - inner sentence

• ip - inner paragraph

Learn to talk to Vim

Now that we’ve covered basic language elements, we can start learning how to talk to Vim. You

will be able to “talk to Vim” in sentences. Let’s see some examples:

• Delete the current word: dw (delete word from cursor position to the end of the word)

• Change current sentence: cis (change inside sentence)

• Change a string inside quotes: ci" (change inside quote)

• Change until next occurrence of ‘hello’: c/hello (change search hello)

• Change everything from here to the letter Y: ctY (change until Y)

• Visually select this paragraph: vap (visual around paragraph)

Change inside quotes

For example, if you have a line:
✞ ☎

print "Hello world!"
✝ ✆

Placing your cursor on the line, and running ci" says to Vim: change inside quotes. You’ll get:
✞ ☎

print ""
✝ ✆

with cursor placed between "", in Insert mode. This way, you can easily change content between

the quotes. You could also run delete instead of change, by running di".

Change inside tags

Let’s say you have an HTML file open, with a line:
✞ ☎

<h1>Welcome to my site</h1>
✝ ✆

45

THE “DOT” COMMAND CHAPTER 9. DO YOU SPEAK VIM?

You want to change the content of this tag. You could say to Vim: delete inside tag, or change

inside tag. In this case, you want to tell Vim: change inside tag.

You’ll do this by positioning your cursor on the specific line mentioned above (at any character

in the line). Then, in Normal mode run cit.

Result will look like this:
✞ ☎

<h1></h1>
✝ ✆

with cursor positioned in a between tags, in Insert mode.

If you take a look at the last two examples, you’ll see the pattern—both sentences have the

structure like: <verb><modifier><noun>.

More examples

Note: While you’re reading description, try to guess what the command would be, before

actually seeing it.

• Delete a line: dd

• Delete to the next word: dw

• Delete the whole current word: daw

• Delete up until the next comma (,) on the current line: dt,

• Delete to the end of the current word: de

• Delete to the end of next word: d2e

• Delete down a line (current and one below): dj

• Delete up until next closing parenthesis: dt)

• Delete up until the first search match for “rails”: d/rails

• Jump 3 words from cursor forward and delete next 2 words: 3wd2w

• Delete a word from cursor to beginning of a word, including the character under cursor:

dvb

For more commands take a look at :help motion.txt.

The “dot” command

I believe you have already heard of the principle Don’t Repeat Yourself. In software engineering,

this is a principle of software development where your focus is on reducing repetition of all

kinds. As you’ll see throughout the book, Vim has many ways and commands to automate

different kinds of tasks, so you don’t have to repeat your actions.

46

THE “DOT” COMMAND CHAPTER 9. DO YOU SPEAK VIM?

One of the most powerful Vim command when it comes to avoiding repetition is the . (“the dot”)

command.

Hitting . in Normal mode will repeat the last native Vim command you’ve executed.

Let’s say you want to delete 5 words from the cursor forward. As you already know, you could

press 5dw and it’s done. However, sometimes it’s not convenient to mentally count the number

of words. An alternative would be to use dw to delete one word. And then press to call the

dot command four times. In this case, you would repeat the latest, dw command, four more

times, and in this way achieve the same effect without counting the words.

If you used dd to delete a line, and you want to delete 4 more lines, you could also execute 4.,

instead of pressing That also works.

It’s very important to understand what is actually repeatable by the dot command.

For example, if you have a sample code like this:
✞ ☎

my $i

my $learn

my $quickly
✝ ✆

and your cursor is positioned on the first line. You want to append ; to all three lines.

You could run a command like:
✞ ☎

A;<Esc>j
✝ ✆

• A - would place your cursor at the end of the first line in Insert mode.

• ; - you press to actually insert it, and then you press Esc to get back to Normal mode.

• j - to move one line down

Now, your cursor is at the second line. If you then press . to repeat the change in next (second)

line, this won’t work. Here’s what you’d get:
✞ ☎

my $i;

my $learn;

my $quickly
✝ ✆

Your cursor will still be at the second line rather than on the third line, but ; will be appended.

This brings us to conclusion that only this part of our original command was repeated: A;Esc.

Now, why is this the case? It’s important to remember that with the dot command, you can

repeat the commands which change the contents of the buffer. A change is any command

which you can use to modify your text. In our example, we had the case that command j wasn’t

repeated, and our cursor wasn’t moved to the third line. Commands like j are called motions

(or nouns, as we called them previously in this chapter)—and they don’t affect the text itself.

Command j just moves the cursor, but doesn’t change text anyhow, so it can’t be repeated.

47

THE “DOT” COMMAND CHAPTER 9. DO YOU SPEAK VIM?

Think in terms of the grammar of your native language: Not nouns, but verbs are used to

express some sort of action. The same is true in Vim: nouns (or motions) can’t affect the text,

so they can’t be repeated with the dot command.

Of course, if you’d like to repeat multiple changes, or a combination of movements and changes,

you can easily record those into a macro. You’ll learn more on macros later. To see all the

commands which can affect the text in a buffer, take a look at :help change.txt

48

Chapter 10

Substitution

Ranges

For most Vim commands, the default range is the current line. This means that action performed

by a command will affect only the current line. However, you can control ranges, and in that

way execute commands over the custom ranges of lines or characters in the current buffer.

For example:

• :s/bad/good/g - changes all words bad to good in the current line.

• :6,11s/bad/good/g - makes the same change, but in lines 6 to 11, including 6 and 11.

• :%s/bad/good/g - makes the same change in entire file.

Let’s analyze these examples.

As you remember, s command stands for substitute. Since we’re doing search and replace

(substitution), that explains the s. If we remove the part of the string which is the same in every

example /bad/good/g, then remove s and we remove : (which we always use to run a command),

here’s what’s left:

• ‘ ‘ - First example: nothing is left, so range is not defined. This means that default range

is applied, which is usually the current line.

• 6,11 - Second example: It’s pretty obvious that this is how we defined a range of lines from

6 to 11.

• % - Third example: This is a special character to define the whole file.

49

SEARCH AND REPLACE CHAPTER 10. SUBSTITUTION

How to define ranges

If line range is not specified, the substitute command will operate on the current line only, by

default. As already mentioned, for most commands, the default range is . (the current line).

However, for :g (global) and :w (write) commands the default is % (all lines).

Range Description Example

28 line 28 :28s/bad/good/g

1 first line :1s/bad/good/g

$ last line :$s/bad/good/g

% all lines in a file (same as 1,$) :%s/bad/good/g

6,28 lines 6 to 28 inclusive :6,28s/bad/good/g

11,$ lines 11 to end of the file :11,$s/bad/good/g

.,$ current line to end of the file :.,$s/bad/good/g

.+1,$ line after current line to end :.+1,$s/bad/good/g

.,+4 current to current+5 line, inclusive) :.,.+4s/bad/good/g

?a?,/b between patterns a and b, inclusive) :?a?,/b/s/bad/good

Search and replace

The best way to understand powerful Vim features when it comes to search and replace is to

learn through examples.

As we already saw from the previous example, the command for text substitution in Vim can be

defined like:

:[range] s[ubstitute]/pattern/string/[flags] [count]

Everything enclosed between [] in this command is optional.

Substitution flags can be:

• c - to confirm each substitution

• g - to replace all occurrences in the line

• i - ignore case for the pattern

• I - don’t ignore case for the pattern

Before we go into the details, let’s cover some basics. Once you start the search and get the

first matched string, in order to jump to the next match, press n. To get back to previous match,

press N.

50

SEARCH AND REPLACE CHAPTER 10. SUBSTITUTION

Replacement in the whole file

Let’s say your task is to replace all occurrences of the string with new string in the whole file.

This is a very common use case. Here’s how you do it:
✞ ☎

%s/old_string/new_string/g
✝ ✆

• %s means that substitution will be performed for all the lines.

• g specifies that the action will be performed over all occurrences in the line.

So with this command we basically told Vim to replace old_string with new_string for every

occurrence in a line, for all lines in a file.

If the g flag were not used in the command above, only the first occurrence in the line would be

replaced.

Replacement within a single line

To achieve this, you need to run:
✞ ☎

:s/old/new/gi
✝ ✆

You could leave out i at the end, but in this case we get case insensitive search. If you’d like to

perform a case sensitive search, you should use the I flag instead of i.

Replacement within a range of lines

You can perform substitution over a range of lines you define. In this example, we will replace

old with new on lines 15 to 30:
✞ ☎

:15,30s/old/new/g
✝ ✆

Replacement inside visual selection

You can perform search and replace on your visual selection. While in Normal mode, use v to

visually select lines where you want to search and replace. Then, type :, which will automatically

change to :'<,'>. Now you can start typing the rest of substitution command, like:
✞ ☎

'<,'>s/helo/hello/g
✝ ✆

51

SEARCH AND REPLACE CHAPTER 10. SUBSTITUTION

Replace only the whole words

Sometimes you’ll want to replace the string which is only a whole word, and not when it’s a

part of some longer word.

For example, you want to substitute word is with was from the sentence below:
✞ ☎

This sentence is short.
✝ ✆

The usual substitution command would be:
✞ ☎

:s/is/was/g
✝ ✆

Simple, right? But look at what we would get:
✞ ☎

Thwas sentence was short.
✝ ✆

Something’s wrong, isn’t there? The string is in word This was also replaced by was.

In order to search and replace only the whole words, you need to use \< and \> to specify that

only whole word should be matched. Here’s how the correct command would look:
✞ ☎

:s/\<is\>/was/g
✝ ✆

Now the result will be correct:
✞ ☎

This sentence was short.
✝ ✆

Replace either string1 or string2 with a new word

Using regular expression, we will replace words pretty and good with awesome in this sentence:
✞ ☎

That pretty girl did good on test.
✝ ✆

Running the following command:
✞ ☎

:s/\(pretty\|good\)/awesome/g
✝ ✆

and you should get a result like:
✞ ☎

That awesome girl did awesome on test.
✝ ✆

One new character you will notice in this command is | which is “logical OR”. This way you

tell Vim to find the first word OR the second word and replace it. But in order to use it, you

have to add \ in front of it. So when you want to use logical OR, you should always use \| in the

substitute command. If you find this interesting, take a look at :help magic.

52

SEARCH THROUGH MULTIPLE FILES CHAPTER 10. SUBSTITUTION

Interactive search and replace

Using c flag, you can run interactive search and replace in Vim.

Let’s see an example:
✞ ☎

:%s/bad/good/gc

replace with good (y/n/a/q/l/^E/^Y)?
✝ ✆

This command is already familiar to you. It searches for string bad and replaces it with good in

entire file.

But, since we have added the c flag for confirmation, Vim will ask us what we want to do, for

each match it finds.

This means that for every match you have to type a letter and tell Vim what you want to do.

Here are the options:

• y - yes - will replace the current highlighted word. After replacement of this word, Vim

will highlight the next word that matched the search pattern.

• n - no - will not replace the current highlighted word. However, it will highlight the next

word that matched the search pattern.

• a - all - will replace all of the remaining matches without asking you what to do.

• q - quit - will simply quit the replacement process.

• l - last - will replace only the current highlighted word and terminate the replacement

process.

Here ^E is actually Ctrl -e, and enables you to scroll the screen up. Similarly, ^Y or Ctrl -y enables

you to scroll the screen down. However, these commands might not be available if your Vim

wasn’t compiled with insert_expand support.

Related tip: In order to check the details about your Vim version, you can run a command

:version. You’ll be able to see different details, including the information if insert_expand

option in enabled. If yes, there will be a + sign in front of it.

Search through multiple files

You can easily search through multiple files using the vimgrep command. This command will

search for the string warning in all markdown files (ending with .md) in the current directory:
✞ ☎

:vimgrep warning *.md
✝ ✆

53

MATCH THAT STRING CHAPTER 10. SUBSTITUTION

This command will jump to the first file that contains a match (by default).

Here are the commands you can use to navigate through search matches:

• :cn - jump to the next match.

• :cN - jump to the previous match.

• :clist - view all the files that contain the matched string

• :cc number - jump to specific match number, which you get from :clist output.

It’s also possible to search recursively. Let’s say you want to search for the string error in all

*.log files under the current directory and all subdirectories. Here’s what you need to do:
✞ ☎

:vimgrep error **/*.log
✝ ✆

Match that string

If you’d want to highlight all matches of a string in your current buffer, you can use the :match

command. Let’s assume you’re looking at some log file in Vim, and you want to highlight all the

occurrences of string Error in a red color (the color depends on your color scheme, and can be

different than red):
✞ ☎

:match ErrorMsg /Error/
✝ ✆

Let’s see what we have here: - :match - the command itself - ErrorMsg - predefined color in Vim

for error messages - /Error/ - search pattern we defined

Here’s the list of predefined colors you could use:

• ErrorMsg

• WarningMsg

• ModeMsg

• MoreMsg

You can even predefine your own color.

Related tip: You can always show your next matched string at the center of the screen

when you press n or N, so it is easier to identify your location in the file. To enable this,

put the following lines in your .vimrc:

nnoremap n nzz

nnoremap N Nzz

54

THE POWER OF THE GLOBAL COMMAND CHAPTER 10. SUBSTITUTION

The power of the global command

The global command :g[lobal] is very useful. The way to use it is presented below:
✞ ☎

:[range]g/pattern/cmd
✝ ✆

Let’s break it down:

• [range] - We have already covered it with the substitute command. It’s optional to provide

a range, but it’s important to notice that the default range is the whole file.

• pattern - is the pattern we’re looking to match in the file

• cmd - is the Ex command to be executed for each line matching the pattern (reminder: an

Ex command is the one starting with a colon such as :d for delete).

Let’s see some examples.

Delete all lines containing a pattern

We want to delete all lines in a current file which contain the string error:
✞ ☎

:g/error/d
✝ ✆

• g - the global command itself

• error - the pattern we want to match

• d - the Ex command delete

Delete all lines not containing a pattern

We want to delete all lines not containing the string important:
✞ ☎

:g!/important/d
✝ ✆

The only difference from the previous example is that we added ! after g. The ! tells Vim to

invert the matching.

Delete all blank lines

We want to delete all blank lines in the current file:
✞ ☎

:g/^\s*$/d
✝ ✆

Let’s break down this command:

• g - the global command

• ^ - the start of line

• \s* - zero or more space characters

• $ - the end of line

• d - the Ex command delete

55

THE POWER OF THE GLOBAL COMMAND CHAPTER 10. SUBSTITUTION

So we basically tell Vim something like: In the entire file, delete all lines which contain zero or

more space characters.

Delete huge number of lines

As we already saw, the command :g/pattern/d performs delete on all lines matching the pattern.

When a line is deleted, it is first copied to a register. Since no register is specified, the default

(unnamed) register is used.

Tip: You might want to check out the Registers chapter.

If you try to delete many thousands of lines, the copy process can take some time. So in order

to avoid that waste of time, you can use the blackhole register. The blackhole register _ can be

specified because any copy or cut into the blackhole register performs no operation.

Finally, to delete all of lines matching a pattern, very fast, this is the command:
✞ ☎

:g/pattern/d_
✝ ✆

Execute macros with the global command

Let’s say you have recorded a macro in register a, and you want to execute the macro on every

line that contains string vim. You can do this using :g, together with :normal command:
✞ ☎

:g/vim/normal @a
✝ ✆

• :g/vim/ - matches all lines with string vim.

• normal @a - tells Vim, execute macro stored in register a, in Normal mode.

Don’t worry if you don’t understand this now. You’re going to learn more about macros soon.

Copy and move lines using :g

You can even copy or move lines within your file using the :g command. Here’s how to copy

lines 3 through 9 after line 20. It doesn’t matter where your cursor is:
✞ ☎

:3,9t20
✝ ✆

You can remember it as: lines 3-9 to line 20. If in the command above you used $ instead of 20,

lines 3 to 9 would be copied to the end of the file.

So you’ll use t for copying the lines with g command. But if you want to move the lines, then you

need to use m. This means that, if you’d like to move lines 3 to 9 to line 20, you’d need to run:
✞ ☎

:3,9m20
✝ ✆

You can also work with the current line instead of ranges. Here’s how to move the current line

to the top of your file (to line 0):

1. Place the cursor on the line you want to move to the top of the file.

56

THE POWER OF THE GLOBAL COMMAND CHAPTER 10. SUBSTITUTION

2. Run this command: :m0

For every line containing “good” substitute all “bad” with “ugly”

The title says it all. Here’s how to do it:
✞ ☎

:g/good/s/bad/ugly/g
✝ ✆

Let’s break it down:

:g/good/ - this part is matching lines containing word good in the entire buffer.

s/bad/ugly/g - is a substitute command which replaces bad with ugly in all occurrences, on

previously matched lines (with the first part of the command).

Reverse all the lines

Let’s say you have a file like:
✞ ☎

first line

second line

third line
✝ ✆

and you would like to reverse the order of lines, so you get:
✞ ☎

third line

second line

first line
✝ ✆

You could achieve this by executing the following command:
✞ ☎

:g/^/m0
✝ ✆

For more info on this one see :help 12.4.

For more information on the global command in general, check :help 10.4.

57

Chapter 11

Registers

This entire chapter is like one big example, consisting of many smaller examples. Read this

chapter at least twice, and make sure that you go through examples in Vim.

Warning: This is a chapter where you might get stuck. It requires your full focus. So don’t

rush. Don’t go over it in a hurry. Give yourself time, and if possible, read it at the period of the

day when your concentration is good.

As a software developer you probably have to perform actions like copying different pieces of

your code from multiple files into different locations of your current Vim session. Using only

the system clipboard, this can be a cumbersome and time consuming task. Once you master

Vim registers, your text editing efficiency will greatly improve.

A register is a kind of clipboard. It is a place in memory that you can use for storing text. Vim

supports several kinds of registers and it fills some of them automatically when you perform

actions like yanking or deleting text. Others can be filled explicitly by the user.

It’s possible to be productive in Vim without knowing much about registers, but if you really

want to edit text efficiently, you have to understand how they work.

Think of registers as different buffers for text. Most operating systems and applications have

only a single clipboard that you can use for copy, cut and paste operations. Vim is different. In

Vim you have not one or two but nine different types of clipboards!

Yes, there are nine types of registers. Their names start with " like register "a. Here’s a list of

all register types:

58

USING VIM REGISTERS INTERNALLY CHAPTER 11. REGISTERS

• The unnamed register ""

• Ten numbered registers "0 to "9

• The small delete register "-

• Twenty-six named registers "a to "z or "A to "Z

• Four read-only registers ":, "., "% and "#

• The expression register "=

• The selection and drop registers "*, "+ and "~

• The black hole register "_

• Last search pattern register "/

Don’t try to remember all of them at the moment.

Using Vim Registers Internally

In order to understand registers better, we’ll go through a simple example.

Let’s imagine this scenario: you have installed the newest version of PostgreSQL server on your

machine, which comes with a default configuration file. You need to copy a few configuration

parameters from your old PostgreSQL configuration file to the new one.

The problem is that both configuration files are big, and we’ll have to go back and forth between

old and new files multiple times in order to copy everything we need. Fortunately, we can use

the power of registers to make this operation more efficient.

For simplicity, let’s say there are only three lines of configuration parameters we want to copy

from the old to a new configuration file, and they are separated only by one empty line. Here’s

the sample content of old configuration file:
✞ ☎

1 port = 5432

2

3 work_mem = 512MB

4

5 wal_level = hot_standby
✝ ✆

Our main point is to go through the old configuration file only once, and copy these three lines

of text into three different registers.

In Normal mode, you need to yank the first line to register "a. You can do this as usual, by

yanking an entire line with yy command, but with a small addition—you need to tell the yy

command where to yank it to. That’s why you need to run "ayy command. Similarly, yank the

third line to register "b using "byy command. Finally, yank the fifth line to register "c using "cyy

command.

At this stage, we have copies of three lines from the snippet above, stored into three different

named registers: "a, "b, and "c.

59

USING VIM REGISTERS INTERNALLY CHAPTER 11. REGISTERS

Now, in the new PostgreSQL configuration file, we want to paste these three lines to appropriate

locations:

In Normal mode, you’d find the appropriate location for line port = 5432 which is now stored

in register "a, and paste it using "ap (paste after cursor) or "aP (paste before cursor) command.

Then, to paste line work_mem = 512MB stored in register "b, you can similarly run "bp or "bP com-

mands. Finally, to paste the last yanked line wal_level = hot_standby which is stored in register

"c, run "cp or "cP command.

You have just used three different clipboards in Vim. It is as simple as that!

To be completely correct, you have just used "a, "b and "c named registers. They are just three

of 26 named registers: "a to "z or "A to "Z. Vim stores text in those registers only when you

explicitly tell it to. You might think that there must be actually 52 registers, but there’s an

important difference between registers starting with a lower-case letter and those starting with

an upper-case letter.

For example, "a and "A are pointing to the same register. If you yank some text to register "a

using "ay, the previous content of register "a gets replaced by the text that has been yanked. If

you yank text using "Ay, the previous content won’t be replaced. Instead the newly yanked text

will be appended to the register’s content.

That’s all you need to know about named registers. For your information: I have never used

more than four named registers at the same time. However, if you forgot which register you

used, simply run the :registers command and you’ll get the preview list of your registers.

Of course, instead of yanking text you can also delete text and put it into a certain register

using "ad. To cut the text and store its content in register a use "ax.

Whenever you yank (y), change (c), delete (d), substitute (s) or cut (x) some text in Vim, it’s

copied to the unnamed register. Vim uses the content of the unnamed register for any put

(paste) command (p or P) that doesn’t specify a register explicitly.

So if you, for example, use command "ad and then paste using the p command (without selecting

any register), you’ll paste the text stored in the unnamed register "".

The famous annoying problem finally solved

There’s a problem that annoys many Vim users, which can be solved easily using registers.

Here’s an example of it:

You delete some text with d (and not specifying a named register) which you want to paste to

other location. Before pasting your text to the new location, you have to delete some more text

in between.

As we already stated, modifications using the d command will go into default " register, so you’ll

lose your original text from step 1.

60

THE SYSTEM CLIPBOARD REGISTERS "+ AND "* CHAPTER 11. REGISTERS

To solve this problem you need to know that Vim saves your last yank in the 0 register

automatically. This means that you can yank text (without using a named register), then delete

some text in between, and eventually paste the previously yanked text with "0p.

Vim also gives you the possibility to easily enter the same piece of text multiple times, without

copy and paste operations. You can achieve this using “the dot” command. As mentioned before,

the dot command . is very useful. What we didn’t mention is that when using the dot command

you can access the ". register, which contains the last edit made in Insert mode. Here’s a simple

example:

You’re in Insert mode. You need to create a list of 10 local IP addresses. You type text:

192.168.1.10 on the first line, press Enter to move to next line and then press Esc. Now in

Normal mode, press .. This command will insert the same text 192.168.1.10. You can repeat this

command, and invoke . eight more times, and you’ll get a list of ten IP addresses (all the same,

but easy to modify). Alternatively, after the first step, you can press 9. and insert the text 9

more times.

So just by invoking . command, you are able to paste the content of ". register. This Vim

register is one of four read-only registers.

The System Clipboard Registers "+ and "*

All the registers mentioned so far are internal Vim registers. That is you can use them only

within Vim. However, when you want to copy some text from Vim to another application on your

system (or vice versa), you need to use the "+ or "* registers.

To copy some text from Vim to the system clipboard use the "+ register. Let’s say you want to

copy text from lines 1 to 3 of the following code to some other application such as Libre Office.
✞ ☎

1 my $ceph = get cmdb 'ceph';

2 my $hostname = run 'hostname';

3 my $config = $ceph->{$hostname};

4

5 file '/etc/ceph/ceph.client.admin.keyring',

6 source => 'files/etc/ceph/ceph.client.admin.keyring',

7 owner => 'ceph';
✝ ✆

As you’ve already learned, you can copy lines 1 to 3 by placing your cursor on line 1 and invoke

the 3yy command. In this case, we need to yank these three lines to the system register "+.

Here’s what you have to do:

1. Position your cursor on line 1, then use "+3yy to yank lines 1 to 3 to the system register "+.

2. Go to the application you’d like to copy the text to (for example Libre Office) and press

Ctrl -v to paste it. You do not have to necessarily use Ctrl -v. You can use any other way of

invoking a paste command.

61

THE SYSTEM CLIPBOARD REGISTERS "+ AND "* CHAPTER 11. REGISTERS

This works on Linux, Windows, and macOS. However, when you need to copy text from another

application to Vim things get a little more complicated. If you’re using Vim on Windows or

macOS both the "+ and the "* register refer to the same system clipboard, so it doesn’t matter

which one you’ll use.

In the example below, we’ll copy a URL from a web browser into our Vim session:

1. Select the URL in your browser and press Ctrl -c to copy it to the system clipboard. Also,

you could use any other way your browser supports to copy the URL.

2. In your Vim session enter Normal mode and press: "*p or "+p to paste the URL.

Note that it doesn’t matter if you use "* or "+ in step two.

When you’re running Vim on Linux, there’s something more you need to know in order to work

effectively with the system clipboard: X11 window system (present on your system) has three

different system clipboards. We care only about two of them here.

If you’re using any application other than Vim, and you copy text using Ctrl -c, Ctrl -x or any

similar action, this content is stored in a system clipboard called CLIPBOARD. This is generally

the main system clipboard. In this case, when you want to paste that content to Vim, you need

to use the "+ register.

For example:

1. Open a random web page in your browser and select a paragraph of text. Then press

Ctrl -c (or copy the text using a command your browser supports).

2. In Vim, while in Normal mode, use "+p command to paste that text.

However, when you only select a text in your terminal, web browser or any other application on

your system, this text is copied to the second X11 system clipboard called PRIMARY. So when

you want to paste this text in Vim, you need to use register "*.

For example:

1. Use your mouse, touchpad or keyboard to select only one sentence on a web page in your

web browser. Don’t do anything else.

2. In Vim, while in Normal mode, use "*p command to paste that sentence.

In all of the examples above the paste operations happen in Normal mode. Don’t forget that

you can always paste in Insert mode as well, using Ctrl -r +.

Note: If the two examples above don’t work in your Vim, it doesn’t support the X11 features

mentioned. You can check this by running the :version command. If there’s a + sign in front of

xterm_clipboard, Vim supports this feature. If your Vim doesn’t support it, you can recompile Vim

and enable it.

62

Chapter 12

Buffers

One of the most confusing features of Vim for beginners are buffers. A buffer is a piece of

memory that’s been loaded with contents of a file. So when you open an existing file called

mastering_vim.txt, the contents of this file is now loaded in one Vim buffer.

Very often, beginners don’t really understand the difference between buffers, windows and tabs.

That’s why it’s important to define it right away:

• A buffer is the in-memory text of a file.

• A window is a viewport on a buffer.

• A tab page is a collection of windows.

No matter how you edit this file in Vim (you’re actually editing the contents of a buffer), nothing

will be written to the original file on disk until you actually write to the buffer.

What’s confusing for users of other text editors is that buffers can be hidden. Those users got

used to using tabs. You close a tab, and the file is closed. Not in Vim. Vim gives you power to

have only one tab, but many buffers open.

Now, how do you use buffers? It’s very simple actually.

For example, run :ls command to list the buffers. Or you can use :buffers command for the

same result. In order to select the buffer you want to go to, you need to press the number under

the desired buffer shown in the list, followed by b. For example, to switch to buffer 5, you’d run

a command :5b.

If you already know the buffer number in the list, you can go directly to that buffer by running

:buffer N where N is the number of the buffer.

To open all of the buffers in windows, type :ball. Remember it as “buffers all”. There’s also

:bnext and :bprevious, or short form :bn and :bp so you can cycle through them. If you want to

close the current buffer, just run :bd. Remember it as “buffer delete”.

63

CHAPTER 12. BUFFERS

You get the idea that this is not so handy. In order to make buffer cycling much more effective,

you can add the following mapping to your configuration file:
✞ ☎

map <C-K> :bprev<CR>

map <C-J> :bnext<CR>
✝ ✆

With this configuration, you’ll be able to go to the previous buffer by using Ctrl -k and go to

next buffer with Ctrl -j. It feels much better!

If you want to switch back and forth between your current and previous buffer, you can press

Ctrl-6.

You’ll understand mapping better once you go through the Mapping chapter.

64

Chapter 13

Windows, Tabs and Sessions

Windows and Tabs

As we already said, a buffer is the in-memory text of a file. Official documentation says that a

window is a viewport on a buffer, while a tab page is a collection of windows.

You already know that a buffer is a file loaded into memory for editing. The original file remains

unchanged until you write the buffer to the file.

A buffer can be in one of three states:

• active - when the buffer is shown in a window.

• hidden - when the buffer is not shown in a visible window.

• inactive - when the buffer is not shown, and it doesn’t contain anything.

You can use multiple windows to display one buffer (one file content). Also, you can use several

windows to display a few different buffers.

By default, Vim starts with one window.

You can use -o and -O arguments to open a window for each file in the argument list. The -o

argument will split the windows horizontally, while the -O argument will split the windows

vertically.

For example, running this will open three windows, split vertically: vim -O file1 file2 file3. You

could also use -oN, where N is a decimal number, to open N windows split horizontally.

If there are more file names than windows, only N windows are opened and some files do not

get a window. Similarly, -ON opens N windows split vertically, with the same restrictions.

65

SPLIT WINDOWS CHAPTER 13. WINDOWS, TABS AND SESSIONS

Split Windows

A window can be split, vertically or horizontally. Let’s say you’ve opened one file in Vim.

Now you want to open the second_file.txt. Here’s what you can do:

• :sp[lit] second_file.txt - opens file as a horizontal split

• :vs[plit] second_file.txt - opens file as a vertical split

Both :sp and :vsp can take a numerical value, to define the split size.

For example, this will create a horizontal split to show 20 lines of third_file.txt:
✞ ☎

:20sp third_file.txt
✝ ✆

The numerical value for vertical splits represents the character width of the column, for

example:
✞ ☎

:25vsp third_file.txt
✝ ✆

Switching windows

Here are the default shortcuts for switching windows:

Shortcut Description

Ctrl -w h Switch to the window to the left

Ctrl -w j Switch to the window below

Ctrl -w k Switch to the window above

Ctrl -w l Switch to the window to the right

However, if you’ll use them often, you’ll notice they’re not very handy. Here’s a suggestion on

how to make these operations more smooth:
✞ ☎

nnoremap <C-H> <C-W><C-H>

nnoremap <C-J> <C-W><C-J>

nnoremap <C-K> <C-W><C-K>

nnoremap <C-L> <C-W><C-L>
✝ ✆

We can use different key mappings for easier navigation between splits. If you put this snippet

in your .vimrc, you could, instead of Ctrl -w then j, switch to window below just by Ctrl -j.

66

SESSIONS CHAPTER 13. WINDOWS, TABS AND SESSIONS

Moving windows

Very often you’d like to move your windows around. Here are some of the default shortcuts to

move your windows around:

Shortcut Description

Ctrl -w r Rotate the windows from left to right (only if they are split vertically)

Ctrl -w R Rotate the windows from right to left (only if they are split vertically)

Ctrl -w H Move current window to the far left and use the full height of the

screen

Ctrl -w J Move current window to the far bottom and use the full width of the

screen

Resizing windows

Very often you’d like to resize your windows. Here are some ways to do it:

Shortcut Description

Ctrl -w = Resize the windows equally

Ctrl -w > Incrementally increase the window to the right (takes a parameter:

Ctrl-w 10 >)

Ctrl -w < Incrementally increase the window to the left (or Ctrl-w 10 <)

Ctrl -w - Incrementally decrease the window’s height (or Ctrl-w 5 -)

Ctrl -w + Incrementally increase the window’s height (or Ctrl-w 5 +)

One more great tip you should know is about the :on[ly] command. If you have a few splits

open, but you only want one window in focus, you may find it tedious to navigate to those other

split windows to close them. Of course, there is an easier way. The Ex command :on[ly] will

close all other splits, excluding the window that is currently in focus. See :h :only for more

details.

For more information on splits, check :help splits.

Sessions

If you use split windows and tabs a lot in your workflow, you know that it can be painful (or at

least boring) to every single time create and position your windows and tabs, the way you want.

Vim offers a great solution—sessions! With sessions, you can save the position of your windows

and tabs once you’re done with work. When you come back to work and start up Vim, it’s very

67

SESSIONS CHAPTER 13. WINDOWS, TABS AND SESSIONS

fast and easy to restore the previous session.

So once you have the session you’d like to save, it’s enough to run a command like this:

:mksession ~/mysession.vim.

Of course, you can select a different path and filename for a session. Then, after you exit Vim,

and you want to restore your saved session, you can do either of the following:

• In terminal, you can run vim -S ~/mysession.vim and start Vim with your session already

loaded.

• Start Vim, and run command: :source ~/mysession.vim

68

Chapter 14

Macros

Macros represent a simple concept which can be described as “record the sequence of my

actions, save them, and anytime I need them again, execute them.” It can be a very powerful

automation tool.

This is probably the most underused feature which can improve your productivity dramatically.

I find macros especially useful when I need to make some formatting changes to multiple lines.

Basically, almost everything you’re doing in Vim in some text can be recorded, and then just

executed on the other text, without repeating all the actions.

Let’s see an example workflow:

1. From this moment, start recording my actions into register a: qa. Any register can be

used.

2. Press q during recording to stop it.

3. Execute the recording in register a you’ve just made by pressing @a.

4. To repeat the last executed macro, you can simply run @@.

Of course, you can insert any number before the @ to repeat the execution of macro that number

of times. For example, 10@a will execute macro recorded in register a 10 times.

Related tip: If you run a macro, even the simple one, over a few thousands of lines or more,

its execution can get pretty slow. This is the case because with each macro execution Vim

tries to redraw the screen, which is an expensive operation. That’s why, if you get into a

similar situation, you should enable the option lazyredraw.

69

EXECUTE MACRO IN MULTIPLE FILES CHAPTER 14. MACROS

Execute macro in multiple files

Sometimes you’ll need to run a macro in more than one file. Once you have recorded a macro,

you need to build an arguments list with the files.

For this example we will load all models from a Rails application:
✞ ☎

:args app/models/*.rb
✝ ✆

We assume that a previously recorded macro is in register a. We run the macro with:
✞ ☎

:argdo normal @a
✝ ✆

All you have to do now is to save all the buffers with the command:
✞ ☎

:argdo update
✝ ✆

Note: The command normal is used to emulate executing commands in Normal mode. More on

this command in chapter Effective multiple file editing.

Editing a macro

Sometimes you’ll make a mistake with a longer macro, and you would rather edit it than record

it again from scratch. Here’s how you can do this:

1. Insert the macro on an empty line by running a command: "<register>p. If your macro is

saved in register m, the command would be "mp.

2. Edit the macro the way you want.

3. Copy the macro into the correct register: move the cursor to the beginning of the line and

run "my$ (where m is the correct register). You can again use the original register, or use

another one. If you want to use register n, the command would be "ny$.

Recursive macros

Using macros can be even more effective with recursion. Recursive macros are especially

useful when you need to act on every line in the file. In order to record a recursive macro, you

need to start with an empty register.

Related tip: To empty a register, press q<register>q.

For example, to make empty register a press qaq.

70

RECURSIVE MACROS CHAPTER 14. MACROS

Start recording your macro, as shown before. Just after you recorded the last action of your

macro, invoke the macro itself as the last command. As we made sure that the register is empty,

calling a macro won’t do anything.

Let’s take a look at the sample text:
✞ ☎

mastering

vim

quickly

wtf

omg

.

in

.

no time
✝ ✆

1. Place the cursor on the first line. We assume that register a is empty, so we could record a

macro like this: qaI"EscA"Escj@aq

2. Step by step: you’d press q followed by a to start recording a macro in register a.

3. Then you’d press I which would put you in Insert mode (at the beginning of the line), and

then you’d type ".

4. Hitting Esc will get you back to Normal mode. Then you press A, which is the command

for appending the text. You end up in Insert mode again, and you append " to the end of

the word in the current line.

5. You hit Esc one more time to get back to Normal mode, then press j to move to the next

line.

6. And here we come to the key part: you finally execute the current macro itself—everything

you recorded so far—to be applied on the line you just moved to. So you press @a to call

the macro, and then q to stop recording it.

Then with a single invocation of @a, all the lines of the file would be now inside the double

quotes.

71

MORE MACRO EXAMPLES CHAPTER 14. MACROS

More macro examples

You can use norm[al] command in Ex mode to help you increase your efficiency with macros.

Here are a couple of examples of how to use it:

• Execute the macro stored in register v on lines 6 through 16: :6,16norm @v

• Execute the macro stored in register i on lines 10 through the end of the file: :10,$norm @i

• Execute the macro stored in register m on all lines: :%norm @m

• Execute the macro stored in register o on all lines matching pattern: :g/pattern/norm @o

• Execute the macro on visually selected lines: select lines in Visual mode. Then type

:norm @a and observe that the following input line is shown: :'<,'>norm @a. Hit Enter and

macro recorded in register a will be executed.

• Execute the macro in register a to the next 100 lines, if macro itself moves to the next

line: press 100@a.

• Execute the macro in register a to the next 100 lines, if macro itself doesn’t move to the

next line: press .,+99norm @a.

Note: For more details on :normal command, see the chapter Effective multiple file editing.

72

Chapter 15

The power of Visual modes

Vim allows you to visually select the content and manipulate the selection. The usage of Visual

mode can be described in three steps:

1. Start selecting your text with v, V or Ctrl -v. The character under the cursor is used as the

beginning of selection.

2. Move to the end of the text you want to select. The text you’ve selected is highlighted.

3. Type a command to execute over the highlighted text.

Running command gv in Normal mode will re-select the previous visual selection. This is

handy when you’re performing a search and replace on a visual selection and don’t match the

substitution quite right on the first try.

Selecting characters

You can select characters in a line using command:
✞ ☎

[count]v
✝ ✆

Pay attention here, this is tricky.

For example, if you’d like to select 3 characters, the one under your cursor, and two after it,

you could press: 3v. As you already know, [count] is optional, so you can simply use v to start

selection and then move your cursor (and expand selection) using navigation keys.

But let’s say you started new Vim session, and you used 3v. Now when you move somewhere

else, and type 1v, you would expect only 1 character to be selected. But, what will happen is that

3 characters will be selected (like in previous command). Also, if you’d now run 2v command, it

would select 6 (2 x 3) characters instead of 2. For more information, take a look at :help v.

73

SELECTING LINES CHAPTER 15. THE POWER OF VISUAL MODES

Selecting lines

We’ll cover two ways of selecting lines.

If you’d like to select the whole line, assuming your cursor is at the beginning of it, you could

press v$ to select all characters to the end of the line.

However, a better way is to use V. Just by hitting V, you are able to select the entire line, while

your cursor can be positioned anywhere on the line.

Although these two commands seem to do the same thing, there’s a difference. The best way to

understand it is to actually try it. For example, copy one line using v$y and paste it. Then do the

same using Vy and paste it.

You’ll notice that characters selection (v$y) is pasted differently than the line selection (Vy).

Visual block selection

Great Vim feature is Visual mode blockwise. Hitting Ctrl -v will enable you to make selection of

your content in a block. The best way to understand it is to try it. And you actually did, in the

example we covered in Your first Vim session chapter.

For example, there are many commands you can apply to a block selection. One of them is

change. I suggest you go through the example from Your first Vim session once more now.

Extend a current visual selection

For instance, you have made a selection from line 10 to line 20. But you realized that you want

to expand the selection from line 8 to line 22.

The visual selection can only be expanded with the cursor and the cursor is only on one side.

But you can move the cursor to the other side of the selection by pressing o.

I assume that you selected lines from line 10 to line 20. As your cursor is on line 20, you can go

down to line 22, and select additional lines. Now, press o, and your cursor will move to the top

of selection, at line 10. Now you can move your cursor up two lines, and select lines 9 and 8 as

well.

74

RUN COMMANDS ACROSS SELECTION CHAPTER 15. THE POWER OF VISUAL MODES

Run commands across selection

You can run commands across visual selection just like you’re running them in Normal mode.

Let’s say we have the following lines written in Perl and we forgot to append ; to each of them:
✞ ☎

my $a

my $b

my $c
✝ ✆

We can visually select all 3 lines using Shift -v, and then run command:
✞ ☎

:normal A;
✝ ✆

This will execute a command A; (append ; to the end of a line) for each line.

If you’d like to run the same command over the entire file content, you could run:
✞ ☎

:%normal A;
✝ ✆

The dot command in Visual mode

As we already experienced the power of the dot command, it’s also very handy to use it in Visual

mode.

In chapter Do You Speak Vim, we had an example where we wanted to append ; to three lines

of code:
✞ ☎

my $i

my $learn

my $quickly
✝ ✆

In order to append the ; to the first line, we can run the command:
✞ ☎

A;<Esc>
✝ ✆

Now, we can visually select second and third line (using Shift -v and arrow keys, or j and k), and

run:
✞ ☎

:normal .
✝ ✆

to run the dot command over visually selected lines.

Even better, to make this operation faster, you could add this to your .vimrc:
✞ ☎

" make . to work with visually selected lines

vnoremap . :normal.<CR>
✝ ✆

75

MOVE VISUAL SELECTION CHAPTER 15. THE POWER OF VISUAL MODES

With this mapping, you tell Vim: When I press . in Visual mode, execute it as I would run it in

Normal mode, over the selected lines.

You can learn more about :normal command in chapter Effective multiple file editing.

Move visual selection

You made a selection, and you want to move it by a couple of lines up or down, instead of

copy-paste dance. What do you do? Here’s a neat solution, add this to your .vimrc:
✞ ☎

" Move visual selection

vnoremap J :m '>+1<CR>gv=gv

vnoremap K :m '<-2<CR>gv=gv
✝ ✆

Next time you need this, after you select desired lines, hit J to move them one line down, or K to

move them one line up.

Visual mode possibilities

There are many possibilities offered by Visual mode which we didn’t cover. Depending on your

workflow, you might use it more or less often, and in different ways.

After understanding everything in this chapter, a good next step is to actually check which com-

mands, objects and operators you can use in Visual mode, by checking out :help visual-operators.

76

Chapter 16

Mappings

Sooner or later, you’ll get an idea to set up your new shortcuts, or replace the existing Vim

shortcuts. To do this, you need to know the basics of mapping. To create a shortcut in Vim

world is analogous to creating a mapping. To define our own mappings we’ll use different types

of :map command.

Example 1: Use nmap command to define mapping for Normal mode only

Task : Show Vim version info when v is pressed.

Info: Info about Vim version we can get with :version command.

1. Open new Vim session.

2. Execute this command :nmap v :version<cr>. (n in nmap stands for Normal mode).

3. Now, press v. You’ll see the info about Vim version, as the v mapping will execute :version

command.

4. Remove this mapping, by running this command: nunmap v.

Summary: This is a simple example for a mapping. By default, v command starts Visual mode.

Once we set our mapping, there is no way to enter Visual mode anymore. Be cautious when

changing the Vim default mappings. Of course, if there’s a Vim command you don’t use, it’s

usually a good choice for remapping it to your own choice.

In step #4 you can see how we removed a mapping. That’s the purpose of command nunmap. To

remove a mapping for v, we used command nunmap v. This way we removed the mapping where

pressing v shows Vim version info and restored the default behavior (entering Visual mode).

There’s just one more very important thing you need to know about the nmap command. It’s

recursive. This can be confusing for beginners, so let’s make it clear through another example.

77

CHAPTER 16. MAPPINGS

Example 2: Non-recursive mapping

Task : Create a mapping for w to echo Hello world!. Create another mapping for a to replace w

default behavior.

Info: Default behavior for w key is to move cursor one word forward.

1. Open new Vim session.

2. Execute this command :nmap w :echo "Hello world!"<cr> to create the first mapping.

3. Execute command: nmap a w to map default behavior of w key to a key.

4. Insert a couple of words in your current session, so you can test if a will take a default

behavior of w and move the cursor one word forward.

5. Now, in Normal mode, press w. You’ll see Hello world! in the status line. Good, that works.

6. Then, press a. You’ll notice that cursor doesn’t move, but Hello world! is echoed again in

the status line.

Summary: As we mapped w to another action already, and we know that nmap command is

recursive—it means that whichever new mapping we create for w, it will always execute the

existing mapping for w and not it’s default behavior.

The proper way to resolve this problem is to use a non-recursive mapping command instead.

So now, use the nunmap a command to remove the mapping created in step #3. Then, create

a new mapping using: nnoremap a w. Back to Normal mode, now when you hit a key, a default

behavior of w key will be applied and your cursor will move one word forward.

Here’s the table of both recursive and non-recursive commands you can use for mapping, as

well as for unmapping:

Recursive Non-recursive Unmap Modes

:map :noremap :unmap normal, visual, operator-pending

:nmap :nnoremap :nunmap normal

:xmap :xnoremap :xunmap visual

:imap :inoremap :iunmap insert

:cmap :cnoremap :cunmap command-line

:omap :onoremap :ounmap operator-pending

I recommend that you always use non-recursive mappings, except if you actually need recursion.

To make your mappings permanent, instead of typing and executing the mapping commands,

just put them in your .vimrc file.

If you want to preview your current mappings for Normal mode, just run :nmap command.

78

CHAPTER 16. MAPPINGS

For example, running a command like:
✞ ☎

:nmap <leader>
✝ ✆

will show you all normal mappings that start with the mapped leader key.

In order to disable a standard mapping, you need to map it to the special <nop> character like:

:noremap <left> <nop>. This command disables left arrow key.

For further information on this topic, you could check :h mapping and :h key-notation.

79

Chapter 17

Folding

Collapsing multiple lines of text into a single line is called folding. This feature can be very

handy, when you want to “hide” parts of your text or code which are not important for you. This

way you can get a better overview of the structure of your text.

When you make folds, the text is still there in the buffer, unchanged, but just not visible, until

you open your fold.

The hardest thing to remember when it comes to folds is that every related command starts

with z. But here’s a hint: z looks like a folded paper, looking from the side :)

You’ll agree, that’s not so hard to remember.

Before we get into all the details and options, first give it a try:

1. Open any existing file where you have at least one paragraph of text.

2. Place your cursor anywhere in that paragraph.

3. While in Normal mode, type: zfap.

You’ll see that the paragraph got replaced by a highlighted line. You have just created a fold!

What this command is exactly and how it works, we’ll cover in the following paragraphs.

Here are a couple of configuration lines to get you started, put them in your .vimrc:
✞ ☎

set foldenable "Enable folding

set foldlevelstart=10 "Open most of the folds by default. If set to 0, all folds will be closed.

set foldnestmax=10 "Folds can be nested. Setting a max value protects you from too many folds.

set foldmethod=manual "Defines the type of folding.
✝ ✆

80

MANUAL FOLDING CHAPTER 17. FOLDING

As you can see, the last line of configuration from above is the foldmethod option.

This option defines folding for the current window. Here are the possible values you can set:

Value Description

manual folds are defined manually using commands

indent groups of lines with the same indent level form a fold

syntax folds are defined by syntax highlighting

marker special characters can be added to text, to mark start/end of folds

expr folds are defined by a user-defined expression

diff used to fold unchanged text when viewing differences

We’re going to cover only the three most important options here.

Manual folding

Making folds manually is usually a good way to go, if you don’t need folds very often, and you

don’t want automatic folding.

If you set the option foldmethod to manual, then, in Normal mode, you can create a fold by typing:

zf{motion}, where {motion} represents the selection of lines you want to fold.

For example, a command:
✞ ☎

zf5j
✝ ✆

will create a fold of current line together with five following lines.

Or, if you have a code where curly braces { } are used to delimit code blocks, then you could

create fold of that code block by:

1. Placing your cursor on any line, anywhere inside the code block

2. Running command zfa{ or zfa} (both will work).

Let’s deconstruct this command:

• z - I assume you remember about why z is used.

• f - comes from fold.

• a - comes from around (see Modifiers in Do you speak Vim chapter)

• { or } - is the character which surrounds the text we want to fold.

As we already said, if you would like to make a fold of a paragraph, you would then run:
✞ ☎

zfap
✝ ✆

81

FOLDING BY INDENTATION CHAPTER 17. FOLDING

Now you understand that zf is an operator used to create folds, while a stands for around, and p

stands for paragraph. Using the command from above, we basically tell Vim to “create a fold

around paragraph”.

At this point you might wonder, but what if there’s a closed fold and you want to edit the folded

paragraph?

Vim is smart enough: you don’t need to manually open the fold to start with editing. You can

position your cursor on the fold where you want to make an edit, and enter Insert mode—the

fold will open automatically.

Here are the most important folding commands you can run in Normal mode:

Command Description

zo Open current fold under the cursor.

zc Close current fold under the cursor.

za Toggle current fold under the cursor.

zd Delete fold under the cursor. (only the fold, text is unchanged.)

zj Move the cursor to the next fold.

zk Move the cursor to the previous fold.

zR Open all folds in a current buffer. (Reduce all folds)

zM Close all open folds in a current buffer. (Close more and More folds)

zE Delete all folds the current buffer

:fold In Visual mode: fold selected lines.

Folding by indentation

If you need a lot of folds, then creating them manually can be a lot of work. And our goal is

efficiency. So, if that’s the case, you might need to use indent folding.

If your code is properly structured, and you use indentation, this is a great method for you. It

will create folds for every sequence of lines with the same indent. Lines with a bigger indent

will become nested folds. This works pretty good with many programming languages.

You would need to set the option foldmethod to indent, so lines with the same level of indentation

can be folded together.

For example, the following lines:
✞ ☎

This is line one

This is line two

This is line three

This is line four

This is line five
✝ ✆

would be folded as:

82

SYNTAX FOLDING CHAPTER 17. FOLDING

✞ ☎

Line one

+ Line two, three and four

Line five
✝ ✆

Sometimes it’s hard to see or remember where a fold is located. To make this easier, you can

enable this command:
✞ ☎

:set foldcolumn=2
✝ ✆

It will show a small column on the left side of the window, beside line numbers, to visually

indicate folds. A + is shown for a closed fold, while - is shown at the start of each open fold. All

lines of the fold will be marked with |. It’s a good idea to set foldcolumn to at least the level of

folds you want displayed. If you have four levels of folds, then set it to 4.

Syntax folding

Vim uses a different syntax file for each programming language, where it defines the colors for

various items in the file. So, based on your language, Vim will fold your code automatically. Of

course, you can configure some of the options.

To start with syntax folding, instead of the configuration from the beginning of this chapter, you

can add these lines to your .vimrc:
✞ ☎

set foldmethod=syntax

set foldlevelstart=1

let perl_fold=1 " Perl

let perl_fold_blocks = 1 " Fold blocks in if statements, etc. in Perl

let sh_fold_enabled=1 " sh - enable function folding

let vimsyn_folding='af' " Vim script

let r_syntax_folding=1 " R

let ruby_fold=1 " Ruby

let php_folding=1 " PHP

let javaScript_fold=1 " JavaScript

let xml_syntax_folding=1 " XML
✝ ✆

This is only an example. Remove or add the options for languages you actually use. For more

information on which languages and options you can use, check :h syn-file-remarks.

Persistent folds

Folds are not persistent by default. Once you close your Vim session, they will be gone. When

you reopen the file where you were making folds, they’ll be gone.

83

PERSISTENT FOLDS CHAPTER 17. FOLDING

If you’d like to keep your folds persistent through Vim sessions, once you create them, you

can run command: mkview. This will save your folds from the current buffer to your viewdir (see

:h viewdir).

Next time you open file with folds you saved, use the command :loadview to reload them.

You can go a step further, and automate this process. All you need to do is to add this to your

.vimrc file:
✞ ☎

augroup auto_save_folds

autocmd!

autocmd BufWinLeave * mkview

autocmd BufWinEnter * silent loadview
✝ ✆

This will load the existing folds (if any) when you open a file.

Related tip: Using the :mkview command, you can store up to ten views on one file. For

example, to save the current setup as the second view run :mkview 2. Or, if you want to

load the first view, you could run :loadview 1

For more info check help on viewoptions and viewdir options.

84

Chapter 18

Effective multiple file editing

This chapter will cover a couple of commands which are very useful when you’re editing multiple

files at once. For each type of list in Vim, there’s an appropriate command which gives us the

possibility to execute commands in bulk. Here they are:

• :argdo - for argument list

• :bufdo - for buffer list

• :windo - for window list

We will also cover two more commands which you’ll use often when editing multiple files:

• :norm[al] - for running commands in Normal mode

• :exe[cute] - for executing commands

Pay attention here, and make sure to understand the difference between :argdo and :bufdo,

because this is unclear even to some advanced Vim users.

The execute and normal commands

The execute command

The exe[cute] command is used to evaluate a string as if it’s a Vim command. You could run a

command like this:
✞ ☎

:execute "echom 'Hello world!'"
✝ ✆

to echo the string Hello world. In this example, we used internal Vim command for echoing

content echom.

85

ARGDO VS BUFDO CHAPTER 18. EFFECTIVE MULTIPLE FILE EDITING

This command is a very handy tool, because it lets you create commands out of an arbitrary

string.

The normal command

If you try running the command:
✞ ☎

:normal gg
✝ ✆

you’ll see that your cursor will jump to the first line in your current buffer. As you might guess

already, norm[al] command simply takes a sequence of keys you’ve typed and treats them as a

Vim command you would enter in Normal mode.

Of course, this command will pick up your personal mappings if they exist. That brings us to

the next question: what happens if a user has remapped gg command to delete one line, instead

of jumping to first line of the buffer?

In that case, the example from above will execute the command for deleting the line, or whatever

else was specified for the mapping.

But, even if there were a mapping for gg command, which is different than default action of

jumping to the first line, you can still use the default mapping of the command. Here’s how:
✞ ☎

:normal! gg
✝ ✆

This way, Vim will move your cursor to the first line of a buffer, even if there’s already a different

mapping for gg sequence of keys. So if you use !, mappings will not be used.

You can also use ranges to execute Normal mode commands for each line in the specified range.

For more details on this command, take a look at :help normal.

argdo vs bufdo

As you already learned, Vim has different types of lists for different purposes. Another very

important list is the so called “arguments list.” This list holds the files which you specify when

you start Vim. We’ll call it arglist from now on.

For example, if you start Vim like this:
✞ ☎

$ vim my_file1.txt my_file2.txt
✝ ✆

Vim will add to arglist two items (my_file1.txt, my_file2.txt). Once you’re in Vim, you could show

the contents of arglist by running :args command.

Now, when you open these two files, Vim creates two buffers, for each of the files. As we

mentioned before, you can show the buffers list by running :buffers command.

At this point, both lists, for arguments and buffers, contain items my_file1.txt and my_file2.txt.

86

BUFDO EXAMPLES CHAPTER 18. EFFECTIVE MULTIPLE FILE EDITING

If we additionally, from Vim, open another file like:
✞ ☎

:e my_file3.txt
✝ ✆

Vim will create one more buffer for this file. It will also add another item in buffers list. So now,

the buffers list will contain three items (for all three files we’ve opened), while arglist will still

contain two items (with my_file1.txt and my_file2.txt).

And here we finally come to the point:

• argdo command affects only the files present in arglist.

• bufdo command affects only the files present in buffers list.

In our example, editing files via argdo command would affect only my_file1.txt and my_file2.txt,

while bufdo command would affect these two, plus my_file3.txt.

Now let’s take a look as some useful examples of these commands.

bufdo examples

When you open a file in Vim, you’ve actually created a Vim buffer, as we already said. For each

new file you open, its buffer is added to the internal buffers list.

Let’s say you have opened multiple files, so you have multiple buffers. At one point, you want

to execute a command which will affect all the active buffers (in buffers list), you need to use

:bufdo command.

For example, it’s the end of your work day, you want to save your work and go home. You’ve

already edited multiple buffers, but you didn’t save your changes. Of course you shouldn’t

switch from buffer to buffer and run :wq. In order to save changes in all your active buffers and

exit Vim, simply run:
✞ ☎

:bufdo wq
✝ ✆

This way, we’ve just told Vim to execute :wq command in each active buffer. Alternatively, you

could also run the command:
✞ ☎

:wqa
✝ ✆

which will write changes in all buffers and quit Vim.

87

ARGDO EXAMPLES CHAPTER 18. EFFECTIVE MULTIPLE FILE EDITING

Paste to the end of each buffer
✞ ☎

:bufdo exe ":normal Gp" | update
✝ ✆

Let’s break it down:

• :bufdo - execute commands over all active buffers

• exe - the “execute” command, which will execute the command between double quotes.

• ":normal Gp" - this will be executed by exe command. We use :normal Gp to tell Vim: run G

(jump to the end of a file) and p (paste) in Normal mode.

• | update - when the previous commands are executed, we use | to execute another com-

mand (update), which actually writes the changes in the buffers. You could also use w

instead.

Related tip: Whenever you execute :w, Vim will actually write the buffer to the file, no

matter whether the buffer was changed from the last saved state. This means it will update

the timestamp of the file to the time when you run :w, even if the contents of the file did

not actually change.

On the other hand, when you execute :up[date], the Vim will update the file timestamp

ONLY if the file has been changed.

Executing macro over all active buffers
✞ ☎

:bufdo execute "normal! @a" | w
✝ ✆

As you can see, the structure of the command is the same as in the previous example. This time

we run @a command in Normal mode to execute the macro recorded in register a. Also, this time

we use w instead of update (for no specific reason).

We have already covered how to manage buffers in chapter Buffers, so we won’t repeat the

commands for adding and deleting buffers.

argdo examples

All of the examples for :bufdo command can be applied to files stored in arglist, by replacing

:bufdo with :argdo command.

Before we get to some examples, it’s important to mention that we can, just like with buffers

list, add and delete items in arglist.

88

ARGDO EXAMPLES CHAPTER 18. EFFECTIVE MULTIPLE FILE EDITING

Here are a few useful commands:

Command Description

:args Show files in your current arglist

:args /path/to/files/*/* Replace old arglist files with new ones

:arga[dd] /path/to/file.txt Add file.txt to your arglist

:argd[elete] /path/to/file.txt Remove files from your arglist

:argdo update Save changes to all arglist files

:argdo undo Undo last operation in each arglist file

Here’s an example: You’re working on a project, and have multiple files in your git branch. You

want to replace string Bad with string Good across the entire project.

We can do this in two steps, here’s the first one:
✞ ☎

:args `git grep -l Bad`
✝ ✆

This command runs a shell command git grep -l Bad, which will provide us the list of files

containing string Bad, and place those files in argslist.

Then, we can run:
✞ ☎

:argdo %s/Bad/Good/gc | update
✝ ✆

and perform the substitution across all files in arglist, and save the changes.

But, what if you add multiple files to the arglist, and you want to replace bad with good in all of

them where bad appears, without using external shell commands? If you would run a command

like this:
✞ ☎

:argdo %s/bad/good/g | update
✝ ✆

Vim will say there’s an error when the search operation fails for a file which doesn’t contain the

string bad. This will prevent completing the substitution over all files in the arglist. A better way

to run this command would be:
✞ ☎

:argdo %s/bad/good/ge | update
✝ ✆

We have included e flag, which tells Vim to not issue an error if the search for the pattern fails.

If you’d like to perform substitution selectively, and skip some of the matches, you could just

add the c[onfirm] flag.

One last example will show you how you can use shell commands from Vim.
✞ ☎

:argdo exe '%!sort' | w
✝ ✆

This command will sort the contents of all files in your arglist. It calls the shell command sort.

89

WINDO COMMAND CHAPTER 18. EFFECTIVE MULTIPLE FILE EDITING

windo command

Let’s keep it short.

The command :windo is similar to :argdo and :bufdo, with one important difference: it only affects

the visible buffers. As we already mentioned, Vim can have many buffers open, but if there’s

only one window, then only one buffer is shown at the time.

So, if you have a Vim session with multiple windows open, then the commands you run with

:windo will be applied only to those buffers which are currently visible in your windows.

Let’s summarize. There’s so much power in these commands. We’ve covered the most important

concepts and some real word examples. Take time to understand and learn how you can use

these commands, and very quickly you’ll become very effective at editing multiple files.

90

Chapter 19

Productivity tips

Here we’ll go through different tips which can give a boost to your productivity. If you find

some tip you don’t like or it doesn’t feel right in your workflow—just don’t use it. These tips will

improve your productivity and efficiency with text editing, but only if they’ll fit your mindset

and the way you work.

Read them all, give them all a try for a few days. And if they stick—great! If they don’t, just

forget about them for a while—and try them again in a few months.

Relative numbers

Most of the text editors use absolute line numbers. Vim doesn’t, by default. But, what if relative

numbers are better? For many advanced users, relative numbers are the correct way of using

Vim.

In Vim, many commands can be prefixed by a number. Move 5 lines below the current line, use

5j. Delete the next 5 lines, use the command d5j. Move 8 lines above the current line, use 8k.

Indent next five lines, use 5>>. You can also use + to refer to lines below your current line, and -

to refer to the lines above your current line.

You get the point. With relative numbers, you simply see how far the other lines are. If you

would use absolute numbers, you would have to mentally count the number of lines you want to

manipulate. Using relative numbers will save you from counting the number of lines above or

below your current line.

To start using relative numbers, put the following line to your .vimrc:
✞ ☎

set number

set relativenumber
✝ ✆

91

USING THE LEADER KEY CHAPTER 19. PRODUCTIVITY TIPS

This will work since Vim 7.4—you can enable both relative and absolute numbers. This way Vim

shows the absolute number for the current line, and relative numbers for other lines.

You might want to go a step further. An even better way might be to enable relative numbers

only in Normal mode, and absolute numbers only in Insert mode. Here’s what you’d need to put

in your .vimrc:
✞ ☎

augroup toggle_relative_number

autocmd InsertEnter * :setlocal norelativenumber

autocmd InsertLeave * :setlocal relativenumber
✝ ✆

That’s my preferred way of using line numbers. Give it a try for a day or two, and see what

works better for you.

Using the Leader Key

Leader key gives you a namespace for custom Vim mappings. There are no default mappings

which use leader key, so you can map your shortcuts without need to worry about shortcut

conflicts.

Defining a leader key is one of the best things you can do to boost your productivity in Vim. You

can define leader shortcuts for your most used commands.

The default leader key is a backslash \, but it’s a good practice to remap it to either Space or

, key. It mostly depends on your personal preferences. To activate a defined shortcut, you

basically need to press Leader key and then a specific mapping key.

For example, instead of executing :w to save file, you could map this command and execute it

like Leader w. In order to configure a mapping like this, you’ll first need to map your leader key.

In this example, let’s make Space your leader key. Just add this line to your .vimrc:
✞ ☎

let mapleader = "\<Space>"
✝ ✆

Then, to enable the shortcut from the example above, all you need is to add this simple mapping

to your .vimrc:
✞ ☎

nnoremap <Leader>w :w<CR>
✝ ✆

If you’re a beginner, I’d suggest that you use Space as your leader key, for two reasons:

• Space doesn’t have any big use in Normal mode by default

• It’s symmetrical and equally easily reachable for both hands

Now, depending on your workflow, and commands you use the most often, you should define

your shortcuts over time. This will drastically improve your efficiency.

Just to give you an idea, here are some shortcuts to make working with system clipboard easier:

92

AUTOMATIC COMPLETION CHAPTER 19. PRODUCTIVITY TIPS

✞ ☎

vmap <Leader>y "+y

vmap <Leader>d "+d

nmap <Leader>p "+p

nmap <Leader>P "+P

vmap <Leader>p "+p

vmap <Leader>P "+P
✝ ✆

If you want to know even more about the leader key, see :help mapleader and :help maplocalleader.

Automatic Completion

There are multiple ways (as usual) to auto-complete the words you’re typing in Vim. We’ll cover

three different ways of using the auto-complete feature:

• using known words

• using a dictionary file

• using a thesaurus

No matter what are you writing, even after a small amount of text, there will be need for using

some repeated words. Auto-completion using known words is the simplest to use—all you need

to do is to press Ctrl -n. You simply need to type a first few letters of a word (which is already

present somewhere in your earlier text) and press Ctrl -n.

Let’s see an example. First type a sentence:
✞ ☎

I love to learn new things.
✝ ✆

Then, write:
✞ ☎

Today I le
✝ ✆

press Ctrl -n and then type Vim.

Vim will auto-complete the word you’re typing because it already “knows” the word learn. So

you’ll get the sentence:
✞ ☎

Today I learn Vim.
✝ ✆

Pressing Ctrl -n tells Vim to search for a matching word forward through the file. If you have a

very big file, and you know that you’ve recently typed a word which you want to auto-complete,

then instead of Ctrl -n use Ctrl -p. Pressing Ctrl -p will also auto-complete your word, but it will

look for known words backwards from your position.

Also, repeated Ctrl -x Ctrl -n is very useful. It only works after previous completion, usually

Ctrl -n. You can use it for partial line completion when beginning is different or when you want

a different ending.

93

USING FILE TEMPLATES CHAPTER 19. PRODUCTIVITY TIPS

Another way to use auto-complete is using a dictionary. You need to find a dictionary with words

in your language or in the topic you’re writing about.

Once you have the dictionary file, all you need to do is: set dictionary+=/path/to/dictionary/file

After running this command, Vim suddenly knows a lot of words which can be auto-completed.

But, in this case, everytime you want to auto-complete the word, you need to press Ctrl -x

Ctrl -k.

Pressing Ctrl -x gets you into “Completion mode”, while pressing Ctrl -k tells Vim to auto-

complete a keyword in the dictionary.

Vim offers a couple of more auto-complete options. After you press Ctrl -x, beside Ctrl -k we’ve

already mentioned, you can also use:

• Ctrl -l to complete whole lines of text

• Ctrl -i to complete words from current and included files

• Ctrl -t to complete words from a thesaurus

• Ctrl -f to complete the name of files the current user has access to

The last auto-complete feature I want to mention is thesaurus auto-completing. This feature

enables you to define a list of synonyms, which can be later used for auto-complete.

1. First you need to define a thesaurus file. You need to write a list on synonyms separated

by commas or spaces in a single line.

2. Specify thesaurus file location in your .vimrc:
✞ ☎

set thesaurus+=/home/jole/my_thesaurus.txt
✝ ✆

3. Use thesaurus as you type, by pressing Ctrl -x Ctrl -t to replace the word with its synonym.

Of course, you can download ready thesaurus files from the Internet. This feature can be very

handy for software developers. For example, you could define all the existing keywords and

functions for your favorite programming language, and speed up your typing with auto-complete.

Using File Templates

Every time you start working on a new project or a new file, you’ll most probably add some

headers and different kinds of stuff, depending on the programming language.

In order to speed things up, you can set up template files, based on the file type. For example,

everytime I create a new Perl file, I preload from template something like:
✞ ☎

!/usr/bin/env perl

#===

FILE: filename.pl

USAGE: ./filename.pl

DESCRIPTION:

94

REPEAT THE LAST EX COMMAND CHAPTER 19. PRODUCTIVITY TIPS

OPTIONS: ---

REQUIREMENTS: ---

BUGS: ---

NOTES: ---

AUTHOR: YOUR NAME (),

ORGANIZATION:

VERSION: 1.0

CREATED: 04/18/2017 08:58:16 PM

REVISION: ---

#===

use strict;

use warnings;

use utf8;
✝ ✆

Here’s how to enable this feature:

1. Create a directory in your .vim directory, where you will store your files. For example:
✞ ☎

mkdir ~/.vim/templates
✝ ✆

2. Create the contents of the file which you want to be preloaded. In this example, let’s make

a simple template for .html files:
✞ ☎

<html>

<head>

<title></title>

<meta name="generator" content="Vim" />

<meta name="author" content="Jovica Ilic"/>

</head>

<body>

<p>Your content here.</p>

</body>

</html>
✝ ✆

name it html.tpl and save it in the templates directory you’ve just created.

3. Tell Vim to autoload this template every time you create a new .html file, by adding the

following line to your .vimrc:
✞ ☎

:autocmd BufNewFile *.html 0r ~/.vim/templates/html.tpl
✝ ✆

And that’s all. If you want to add another template for different file types, just repeat the last

two steps.

Repeat the last Ex command

As you already know, Ex commands are those which you execute in Command mode, like :sort.

Sometimes you’ll need to repeat the last Ex command multiple times. Instead of typing it again,

you can repeat the last Ex command by typing @: in Normal mode.

95

PASTE TEXT WHILE IN INSERT MODE CHAPTER 19. PRODUCTIVITY TIPS

This is possible because of the read-only register ":, known as the colon register. We’ve only

mentioned it in the Registers chapter, so we’ll cover it here.

Whenever you execute a command in Ex mode, such as :write, it populates the colon register.

Let’s say you’ve enabled relative line numbers with set relativenumber command in your current

Vim session. Now you want to make this change persistent and put it in your .vimrc file. Once

you open .vimrc file, you can just run ":p to paste the contents of the colon register.

Paste text while in Insert mode

You’re in Insert mode and you want to paste yanked text without moving to Normal mode. You

can do that with Ctrl -r 0. If yanked text contains new line characters, Ctrl -r Ctrl -p 0 will fix the

indentation issues.

Delete in Insert mode

Sometimes it comes in handy to delete some characters as we type. That’s why it’s good to

know that you can delete also while you’re in Insert mode. Here are the most useful mappings:

• Ctrl -h - delete back one character (just like Backspace)

• Ctrl -w - delete back one word

• Ctrl -u - delete back to the start of line or the start of current insert

Repeatable operations on search matches

Let’s say you’re searching for a string which you need to edit at multiple locations through the

file:
✞ ☎

/MyString
✝ ✆

To edit the string, you will usually use a repeatable operation, like cw or any other which helps

you achieve your change. Now, to repeat that change for the next match, you’ll first have to

jump to the next search result using n then press the . (the dot command) to repeat the change.

But in this case, there’s a better way: Instead of cw use cgn. Then just press the . and Vim will

jump to the next match and change it for you. While c stands for change, gn searches forward

for the last used search pattern and starts Visual mode to select the match.

This also works if you (instead of searching with /) use *, which searches for the word currently

under the cursor. For more info, check :help gn.

96

COPY LINES WITHOUT CURSOR MOVEMENT CHAPTER 19. PRODUCTIVITY TIPS

Copy lines without cursor movement

Your cursor is on line 10. You want to paste line 20 to one line below your current cursor

position.

Here’s how to do that using co[py] command:
✞ ☎

:20co.
✝ ✆

You can also use ranges. Let’s say your cursor is on line 10. You want to paste text from line 20

to 25 under line 10. Here’s how:
✞ ☎

:20,25co10
✝ ✆

It gets even better: :t is an alias of the co[py] command, so you could save some keystrokes.

You could run the commands from above and achieve the same result if you’d replace co with t

in them.

This command works with relative line numbers as well. For example, to paste the line, which

is 10 lines above your current line, to a line below your current position:
✞ ☎

:-10t.
✝ ✆

One last example: if you’re at line 45, :35,t. will make a duplicate of lines 35 to your cursor

(that is, from 35 to 45 inclusive) and put it after your current cursor.

So, imagine this case: you have a function and your cursor is one line below it. You also have

relative line numbers enabled. You see that the function starts 15 lines above your current line.

To make a copy of the entire function and place it after your current line, you could run
✞ ☎

:-15,t.
✝ ✆

Move lines without cursor movement

The usage of command m[ove] is similar to co[py] command. For example, to move a line 6 to

line 28, you’d run:
✞ ☎

:6m28
✝ ✆

It also supports ranges and relative lines. Here’s an example using both:
✞ ☎

:-10,-5m+7
✝ ✆

This command would take five lines which are located between lines 10 and 5 above your

current position, and move them to 7th line under your current position. After this command,

the position of your cursor will change. In order to come back to the original location where

your cursor was before running this command, simply press ''.

97

DELETE LINES WITHOUT CURSOR MOVEMENT CHAPTER 19. PRODUCTIVITY TIPS

Delete lines without cursor movement

Wouldn’t it be cool to be able to delete lines without moving your cursor?

Similar to :copy and :move commands, you can also run :delete command to delete lines without

jumping to those lines.

For example, to delete lines 5 to 10, run:
✞ ☎

5,10d
✝ ✆

However, this command would leave the cursor at the deleted line location, so you’d need to

use '' to jump back to the previous position.

Vim write through

Vim lets you write through existing text, so you don’t have to delete it first. All you need to do is

to press R while in Normal mode, and start typing. This will actually put you in Replace mode.

Once you’re done, just press Esc.

Run the same command on multiple lines

Using the norm command, you can run the same command on multiple lines at once. Let’s say

you want to delete all strings inside the single quotes ' on all the lines. Here’s what you’d need

to do:
✞ ☎

:%norm di'
✝ ✆

• % - defines range: all lines.

• norm[al] - command which tells Vim to repeat the following command in Normal mode

• di' - delete inside single quotes '

Generating numbered lists

This tip is one of those which you probably won’t use often, but you might need it from time to

time. That’s why it’s important you’re aware that Vim can do even something like this. We’ll

see different methods showing how to insert a list of increasing numbers.

For example, to insert a list of ascending numbers, you can run a command like this:
✞ ☎

:put =range(1,10)
✝ ✆

98

INCREASING OR DECREASING NUMBERS CHAPTER 19. PRODUCTIVITY TIPS

You can also insert numbers after a particular line number, for example command:
✞ ☎

:28put =range(6,87)
✝ ✆

inserts list of numbers from 6 to 87 after line number 28.

Generating IP address list

You could also use loop to generate different kinds of lists. In this example, we want to generate

a list of IP addresses, starting from 192.168.0.1 to 192.168.0.100:
✞ ☎

:for i in range(1,100) | put ='192.168.0.'.i | endfor
✝ ✆

The result will be list of IP addresses in the mentioned range, with one IP address per line.

Increasing or decreasing numbers

It’s one of those features you’ll use regularly. In Normal mode, hitting Ctrl -a will increment

the next number. Hitting Ctrl -x will decrement the next number. In order for this to work, the

cursor can be at the number, or to the left of the number, on the same line.

These keys work with a count. For example, pressing 4 then Ctrl -a will increment the following

number four times (add 4).

Why Vim 8 is great

Vim 8 has introduced many new features, which are out of the scope of this book. But this one

feature I find very useful.

Let’s say you have something like this in your code:
✞ ☎

array[0] = 0;

array[0] = 0;

array[0] = 0;

array[0] = 0;

array[0] = 0;
✝ ✆

and you want to get something like this:
✞ ☎

array[1] = 0;

array[2] = 0;

array[3] = 0;

array[4] = 0;

array[5] = 0;
✝ ✆

99

FASTER DELETE/CHANGE TO THE END OF THE LINE CHAPTER 19. PRODUCTIVITY TIPS

Best way to do it:

1. Place your cursor at the first line, at 0 for which you want to become 1.

2. Press Ctrl -v to enter Visual block mode, move the cursors down to select the rest of the

zeroes, to the last line.

3. Now, press g and then press Ctrl -a (the shortcut for increasing numbers).

Faster delete/change to the end of the line

You could delete the entire line from your cursor position by running command d$. That takes

three keystrokes: d, Shift, $. A faster way do to it with two keystrokes: D. Same goes for change

command. You can change (delete text and enter Insert mode) from cursor position to the end

of the line by hitting c$. Faster way: C.

Repeating characters

You want to add 8 new lines under the current line? Don’t even think of hitting Enter 8 times.

Instead, run:
✞ ☎

8i<Enter><Esc>
✝ ✆

You need to insert 20 “-” (dash) characters? Please, don’t hit - twenty times. Run:
✞ ☎

20i-<Esc>
✝ ✆

These examples just showed you the possibilities. Next time you need to insert more than a few

identical characters, remember these.

Clear highlighted searches

After you’ve found what you’ve searched for, you’d soon want to remove the highlighting on the

previously searched word. The easiest way to do it is to search for a string which doesn’t exists,

like:
✞ ☎

/adasdada
✝ ✆

This string won’t be found and highlighted, and previously highlighted string will not be

highlighted anymore. Although this is the easiest, it’s not really a cool way of doing it. A much

100

EXECUTE MULTIPLE COMMANDS AT ONCE CHAPTER 19. PRODUCTIVITY TIPS

nicer solution could be that you create your own shortcut (in Vim world we call this mapping)

to run a command which will clear previously highlighted strings.

For example, you could add this to your .vimrc:
✞ ☎

nmap <silent> ,/ :nohlsearch<CR>
✝ ✆

Next time, you can quickly type ,/ to clear the highlights. Calling nohlsearch command like

this doesn’t change the option value, so as soon as you use a search command again, the

highlighting comes back.

Execute multiple commands at once

You have a possibility to execute more than just one command. All you need to do is to use

| between the commands. For example, let’s say you have a sentence like “Atom is bad and

slow.” and you want to run three different substitution commands.
✞ ☎

%s/Atom/Vim/c | %s/bad/good/c | %s/slow/fast/c
✝ ✆

This example substitutes Atom with Vim, then moves on to replacing bad with good, and finally it

goes to replacing slow with fast. Notice that the second command (and subsequent commands)

are only executed if the prior command succeeds.

This won’t work for commands like :argdo or :bufdo, as they use | to execute a series of

commands.

However, you can use :execute command:
✞ ☎

:exe "argdo %s/bad/good/e" | exe "bufdo %s/old/new/e" | echo "done"
✝ ✆

to perform multiple commands at once, even using :argdo, :bufdo and similar commands.

External program integration

Vim has a great integration with system CLI (command-line interface) programs, which you can

use to modify the current buffer. Here’s how to do it:
✞ ☎

:%!<command>
✝ ✆

Here are few examples to give you an idea on how powerful this feature can be:

• :%!sort -k3 - sort the buffer based on column 3

• :%!column -t - format the text in columns (useful when working with tabular data)

• :%!ls|grep .txt - insert the list of txt files from the current directory

With a bit of creativity, you can do wonders!

101

AUTO REMOVE TRAILING WHITESPACE CHAPTER 19. PRODUCTIVITY TIPS

Auto remove trailing whitespace

No programmers like to have trailing whitespaces in their code. You can set Vim to highlight

trailing spaces, and also to remove them when you perform a save. All you need is to add two

lines to your .vimrc:
✞ ☎

" highlight trailing whitespace

match ErrorMsg '\s\+$'

" remove trailing whitespaces automatically

autocmd BufWritePre * :%s/\s\+$//e
✝ ✆

Okay, those are actually four lines, but comments are always good to have.

Open and edit archives

You need to edit a file inside an archive? Without Vim, you’d have to extract the archive, edit

the file and save changes, then create a new archive with the updated file. Not anymore!

With Vim, you can open and edit files inside archive files without previously extracting them.

Multiple archive types are supported, like .zip, .tar, .tar.gz, .jar, etc. For example, you could run:
✞ ☎

$ vim my_archive.tar.gz
✝ ✆

and you’d see all the files and directories inside my_archive.tar.gz. You’d be able to browse

through them, open, edit and save them.

Open the last edited file

What if you’d like to open the last edited file with Vim, and jump to the latest location in that

file? Well, Vim has neat shortcut for exactly this!

Simply start Vim, and press Ctrl -o-o.

Navigation through cursor history

As we already stated, Vim has different types of lists for different purposes. Two more lists

worth mentioning are Jumplist and Changelist.

Briefly, Jumplist stores each position to which your cursor jumped, while Changelist stores

every change (actually its position) which can be reverted (with undo).

102

INVERT SELECTION CHAPTER 19. PRODUCTIVITY TIPS

You’ll often get in a situation when you’d like to get back to some of your previous cursor

positions. For example, you search for something, find your match in another part of the file.

After you’re done, you want to jump back to where you were before the search. How to perform

actions like this effectively?

Easy. Learn to navigate through these two mentioned lists.

You want to move through Jumplist? Here’s how:

• Ctrl -o - to move backwards

• Ctrl -i - to move forwards

To move through Changelist, use:

• g; - to move backwards

• g, - to move forwards

If you find this feature useful, take a look at :help jumps and :help changes. There are several

unexpected and interesting things to discover.

Invert selection

You can easily execute the Ex commands [cmd] on the lines within [range] where {pattern} does

NOT match using :v command. Here’s the structure:
✞ ☎

:[range]v[global]/{pattern}/[cmd]
✝ ✆

For example, to delete all the lines in a file that doesn’t contains the string 127.0.0.1, you could

execute the following command:
✞ ☎

:v/127.0.0.1/d
✝ ✆

Quickly switching buffers

It depends on your work style, but more or less often you’ll be in situation to jump between two

files. That’s why having a shortcut to switch between the last edited buffer and your current

one would be very handy.

Vim actually has the shortcut for this: Ctrl -ˆ. But it’s not very comfortable to use it, especially

if you need to use it often.

A good idea would be to create a mapping of your preference. Here’s an example:
✞ ☎

"Jump back to last edited buffer

nnoremap <C-b> <C-^>

inoremap <C-b> <esc><C-^>
✝ ✆

103

FIX INDENTATION IN ENTIRE FILE CHAPTER 19. PRODUCTIVITY TIPS

With this, you could jump between two files just by using Ctrl -b shortcut.

Fix indentation in entire file

To indent the current line you’d run ==, while for indenting 4 lines below the current line you’d

run 4==. To indent a block of code, you can place your cursor at one of the braces and use

command =%.

To fix indentation in entire file, run gg=G. Command gg will take you to the top of the file,

command = is the indentation command, and G at the end tells Vim to run indentation command

to the end of the file.

104

Chapter 20

Plugins

The world of Vim plugins is enormous. And it keeps growing. There are so many very useful

plugins out there, that it’s even hard to keep track of the best ones.

The first step to installing a plugin in Vim, is actually installing a plugin manager. Plugin

manager is a name for the type of Vim plugins which help you install, update, and uninstall

other plugins easier.

Although Vim 8 came with a native way to load third-party packages, my personal preference is

to still use a plugin manager.

In this chapter we’re not going to cover any Vim plugins, except one, which we’ll use as an

example to learn how to install a typical plugin manager for Vim.

There are many plugin managers, and few of them are really good. One of those few is called

Vundle. You can get more info about Vundle at: https://github.com/VundleVim/Vundle.vim

How to install plugin manager Vundle

We assume that your main Vim directory is at ~/.vim. First step is to run the following command

in your terminal:
✞ ☎

$ git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim
✝ ✆

Then, put the following code at the beginning of your .vimrc file:
✞ ☎

set nocompatible " be iMproved, required

filetype off " required

" set the runtime path to include Vundle and initialize

set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

105

https://github.com/VundleVim/Vundle.vim

HOW TO INSTALL A NEW PLUGIN CHAPTER 20. PLUGINS

" alternatively, pass a path where Vundle should install plugins

"call vundle#begin('~/some/path/here')

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" All of your Plugins must be added before the following line

call vundle#end() " required

filetype plugin indent on " required

" To ignore plugin indent changes, instead use:

"filetype plugin on
✝ ✆

This is the minimal example, but it shows you the most important parts. So, after you put this

code in your .vimrc, save it and close your Vim session. Start Vim again, and run the command

:PluginInstall. This will open a new split window and run through the installation of your new

plugins, in this case only Vundle. That’s all that is needed when it comes to Vundle installation.

How to install a new plugin

Most of the best plugins are hosted on github.com. One of the great plugins for advanced Vim

users is called targets.vim and it’s available at: https://github.com/wellle/targets.vim.

In order to install this plugin, all you’d need to do is to add a line Plugin wellle/targets.vim to

your .vimrc at the right location, like:
✞ ☎

call vundle#begin()

Plugin 'VundleVim/Vundle.vim'

Plugin 'wellle/targets.vim'

call vundle#end()
✝ ✆

It’s very important that you add all of your plugins between lines call vundle#begin() and

call vundle#end(), like in the example above. Then, all you need to do is to run :PluginInstall

command.

The most important Vundle commands are:

• :PluginList - List installed plugins

• :PluginInstall - Install plugins (append ! to update or just :PluginUpdate)

• :PluginClean - Remove unused plugins (append ! to auto-approve removal)

The smaller number of plugins you use, the better. That’s what I think at least. Before installing

a plugin to get some feature, always try to search for an existing solution in Vim. It’s very

often the case that you won’t need a new plugin. If you want to see which plugins are the most

popular among Vim users, check out https://vimawesome.com.

106

https://github.com/wellle/targets.vim
https://vimawesome.com

Chapter 21

What now

First of all, congratulations for reaching the end of this book! :) I hope you find it useful.

What you need to know is that this book didn’t cover many Vim features and commands. My

goal was to create a short book with the most important concepts and commands, so a busy

person can learn Vim quickly.

There’s so much more to learn on Vim! For most people, learning and improving Vim skills is a

long-term process. There’s always some new command or new tip to improve the way we do

things in Vim. I don’t say this to scare you, but instead to invite you to this fun journey. Yes,

improving your Vim skills over years is actually fun!

As the first next step, I would suggest you subscribe to my free newsletter on Vim. It’s available

at http://masteringvim.com. This way you’ll get new Vim tips and the best related blog posts

which I collect from the Vim community around the world, usually once a week.

If you’ve got the package with the bonus ebooks included, now it’s the right time to go ahead

and read them. Also, going through interactive Vim tutorial vimtutor is recommended, so you can

refresh your knowledge and take some practice. Start it by running vimtutor in your terminal.

Another good step is to try to integrate Vim into your workflow as best as possible. Search for

the articles on Vim + technology/language you use, and you’ll find some good inspiration.

Then, you can also slowly try out some plugins which you might find useful. But take your

time, and don’t install too many plugins at once. Before installing any, always check if there’s a

feature like that already present in Vim.

Good luck my friend, and have fun! :smile

107

http://masteringvim.com

Chapter 22

References

I’ve read many different books, articles, blog posts, etc. on Vim over the last several years.

However, when I would pick up new knowledge or tips, I would not write down the original

source. Simply because I didn’t plan to write a book on Vim.

That’s how I ended up with lots of notes of random Vim tips and tricks without references.

Some of them I’ve just picked from others, some of them I’ve modified to fit my workflow, while

some of them I wrote by myself.

And then, at one point in time, while looking for a book which would help me improve my Vim

skills, I’ve decided to write my own. Simply, because I couldn’t find a book from which I would

like to learn. I didn’t want to read a 300+ page book, neither I had time for that. But I knew

that there’s lot more crucial stuff to learn.

So I’ve spent a lot of time reading Vim documentation, and experimenting on my own. The

result is this book.

And now, instead of trying to list any of the references I could remember of, I prefer to say a big

THANK YOU to the entire Vim community around the world, and to everyone who’s sharing

the knowledge on the topic!

I hope you enjoyed this book. Even more I hope that you’ve actually improved your Vim skills.

108

Chapter 23

About the author

I’m Jovica Ilic, currently working as a sysadmin.

I believe that everything will be OK in the end. I know that nothing is lost until everything is

lost.

If you’d like to contact me, feel free to write at contact@jovicailic.org. You can also find me on

Twitter as @jovica and @MasteringVim.

Cheers :smile

Jovica.

Berlin, April, 2018 (7537)

109

	eBook-Mockups green final cover
	copyright
	book (1)
	Instead of Preface
	What this book covers
	What you need for this book
	Who this book is for
	Vim versions
	Conventions
	Key presses
	Normal mode commands
	Command line commands
	Fonts
	Other formatting

	Piracy
	Mastering Vim Quickly Newsletter
	Why this name
	Questions

	Introduction
	The art of learning
	Pareto principle
	Mini habits
	1% improvement per day

	No Experience Necessary

	Mastering Vim - Basics
	Installing Vim 8
	Vim philosophy
	Modal editing
	Operators

	Starting Vim

	Your first Vim session
	Vim Concepts
	Modes
	Commands

	Working with files
	Opening files
	Closing files
	Saving files
	Navigation
	Basic movement
	Navigate through words
	Scrolling pages
	Jumping around the file
	Navigating inside the window
	Navigating in Insert mode

	Basic search
	Searching for the current word
	Search history

	File Manager (netrw) in Vim
	Changing how files are opened
	Set netrw split width

	Editing files via SSH

	Personalizing Vim
	Vim configuration explained
	Make Vim look beautiful
	Usability improvements
	Status line
	Swap and backup files dilemma
	Project specific .vimrc
	Basic recommended configuration

	Undo and Redo
	Undo branches
	Persistent Undo

	Do you speak Vim?
	Vim Language Elements
	Verbs
	Modifiers
	Nouns
	Learn to talk to Vim

	The dot command

	Substitution
	Ranges
	Search and replace
	Replacement in the whole file
	Replacement within a single line
	Replacement within a range of lines
	Replacement inside visual selection
	Replace only the whole words
	Replace either string1 or string2 with a new word
	Interactive search and replace

	Search through multiple files
	Match that string
	The power of the global command

	Registers
	Using Vim Registers Internally
	The famous annoying problem finally solved

	The System Clipboard Registers "+ and "*

	Buffers
	Windows, Tabs and Sessions
	Windows and Tabs
	Split Windows
	Switching windows
	Moving windows
	Resizing windows

	Sessions

	Macros
	Execute macro in multiple files
	Editing a macro
	Recursive macros
	More macro examples

	The power of Visual modes
	Selecting characters
	Selecting lines
	Visual block selection
	Extend a current visual selection
	Run commands across selection
	The dot command in Visual mode
	Move visual selection
	Visual mode possibilities

	Mappings
	Folding
	Manual folding
	Folding by indentation
	Syntax folding
	Persistent folds

	Effective multiple file editing
	The execute and normal commands
	argdo vs bufdo
	bufdo examples
	argdo examples
	windo command

	Productivity tips
	Relative numbers
	Using the Leader Key
	Automatic Completion
	Using File Templates
	Repeat the last Ex command
	Paste text while in Insert mode
	Delete in Insert mode
	Repeatable operations on search matches
	Copy lines without cursor movement
	Move lines without cursor movement
	Delete lines without cursor movement
	Vim write through
	Run the same command on multiple lines
	Generating numbered lists
	Increasing or decreasing numbers
	Why Vim 8 is great
	Faster delete/change to the end of the line
	Repeating characters
	Clear highlighted searches
	Execute multiple commands at once
	External program integration
	Auto remove trailing whitespace
	Open and edit archives
	Open the last edited file
	Navigation through cursor history
	Invert selection
	Quickly switching buffers
	Fix indentation in entire file

	Plugins
	How to install plugin manager Vundle
	How to install a new plugin

	What now
	References
	About the author

