

HTML

HTML code is a programming language used in website building and website tem-
plates. It is used to format the look and format of a web page, to set design features
such as basic layout, colors, and fonts. HTML: The Ultimate Guide provides a
crash course in HTML, its history, key features, different versions available, vari-
ous tags and elements, as well as the advantages and disadvantages.

This book also covers the fundamental concepts of CSS and JavaScript and guides
the reader through creating websites and games with it. As the reader progresses
through the lessons, they will learn how to insert JavaScript commands directly
into the HTML document, and how the script executes when viewed in browser.

This is a valuable resource for anyone who wants to create a website or any 2d and
3d game in HTML. After finishing this book, readers will be able to quickly build
their website or game with absolute ease.

This book is organized as follows:

• Discusses code optimization in HTML code, Web Scripting and Security
ideas in HTML.

• Introduces the HTML for Game Development, benefits and types of games
(2d and 3d).

• Includes a Cheat Sheet of HTML where you will get all key terms and useful
information that is easy to access.

http://taylorandfrancis.com

HTML
The Ultimate Guide

Sufyan bin Uzayr

First edition published 2024
by CRC Press
2385 Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bin Uzayr, Sufyan, author.
Title: HTML : the ultimate guide / Sufyan Bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Includes
bibliographical references.
Identifiers: LCCN 2023003120 (print) | LCCN 2023003121 (ebook) | ISBN
9781032413259 (paperback) | ISBN 9781032413266 (hardback) | ISBN
9781003357537 (ebook)
Subjects: LCSH: HTML (Document markup language)--Amateurs’ manuals.
Classification: LCC QA76.76.H94 B56 2023 (print) | LCC QA76.76.H94
(ebook) | DDC 005.7/2--dc23/eng/20230310
LC record available at https://lccn.loc.gov/2023003120
LC ebook record available at https://lccn.loc.gov/2023003121

ISBN: 9781032413266 (hbk)
ISBN: 9781032413259 (pbk)
ISBN: 9781003357537 (ebk)

DOI: 10.1201/9781003357537

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2023003120
https://lccn.loc.gov/2023003121
https://doi.org/10.1201/9781003357537

For Dad

http://taylorandfrancis.com

vii

Contents

About the Author, xix

Acknowledgments, xx

Chapter 1 ◾ Crash Course htML 1
FRONTEND VS. BACKEND 1

MOSTLY USED FRONTEND TECHNOLOGY 2

How Does HTML Work as Frontend? 3
Next Is CSS 3
How CSS Work as Frontend Technology? 3

DOM: THE STRUCTURE OF WEBSITES 4

How DOM Works 4
Where DOM Came From 4

JavaScript 5

How JavaScript Works 5
Library and Framework 5

JavaScript AS BACKEND 5

WHAT IS A MARKUP LANGUAGE? 6

HTML – HYPERTEXT MARKUP LANGUAGE 6

HTML INTRODUCTION 7

HISTORY 8

HTML FUTURE 10

HTML VERSIONS 10

DIFFERENT VERSIONS OF HTML 11

MARKUP IN HTML 13

viii ◾ Contents

BASIC HTML CONCEPTS 14

Structure of an HTML Document 14
HTML DOCUMENT TYPE 16

HTML TAGS 17

Paired Tag 18
Unpaired Tags 19
Heading Tags (H1 Tag to H6 Tag) 21
HTML p Tag – Paragraph Tag 22
HTML Tag – Anchor Tag 22
HTML img Tag – Image Tag 22
Self-Closing Tags 23
Utility-Based Tags 23
Structure Tags 24

The <header> tag 24
The <nav> tag 27
The <main> tag 30
<section> tag 33
<article> tag 35
<aside> tag 38
<footer> tag 41
<figure> tag 43
<figcaption> tag 46

Control Tags 48
HTML Tag List 48

WHAT IS AN HTML EDITOR? 51

HTML COMMENTS 52

TYPES OF HTML COMMENTS 53

HTML TAG VS. ELEMENT 55

Tag 55
Element 57
Key Points 58

TYPES OF ELEMENTS 58

Contents ◾ ix

TYPES OF HTML ELEMENTS 59

HTML ELEMENT SYNTAX 59

EMPTY HTML ELEMENTS 59

NESTING HTML ELEMENTS 60

CASE INSENSITIVITY IN TAGS 60

HTML ATTRIBUTES 61

Empty Attribute Syntax 61
Unquoted Value Syntax 62

GENERAL ATTRIBUTES 62

The id Attribute 62
The class Attribute 63
The title Attribute 63
The style Attribute 64

ANATOMY OF AN HTML ELEMENT 64

SEMANTICS OF EMBEDDED TEXT 67

TABLES 83

OTHER INTERACTIVE ELEMENTS 85

HTML CHARACTER ESCAPE 88

Lower Case Alphabets 88
TEXT FORMATTING TAGS 91

HTML PHRASE TAG 92

HTML FORMS 93

BASIC STRUCTURE OF FORMS 94

HTML – TEXT LINKS 94

HTML IMAGES 94

HTML iFRAMES 95

HTML – EMBED MULTIMEDIA 97

Embedded Multimedia 97
The <embed> Tag 98
The <bgsound> Tag 99
HTML <object> Tag 100

HTML MARQUEE 101

Usage 101

x ◾ Contents

ATTRIBUTES IN <marquee> TAG 103

HTML Properties 103
BENEFITS 104

CHAPTER SUMMARY 104

NOTES 104

Chapter 2 ◾ htML Basic Usage 107
INTRODUCTION 107

LEARNING WEB SCRIPTING BASICS 108

SCRIPTING LANGUAGES VS. PROGRAMMING
LANGUAGES 108

SCRIPTING LANGUAGES 108

WHY DO WE NEED SCRIPTING LANGUAGES? 109

SCRIPT 109

WEB SCRIPTS AND THEIR TYPES 109

TYPES OF SCRIPTS 110

Server-side Scripts 110
DYNAMIC ELEMENTS 110

Features in Dynamic HTML 111
AN OBJECT-ORIENTED VIEW 111

STYLESHEETS AND LAYERING 111

CORRELATION WITH CSS AND JS 112

How Does HTML Work? 113
CSS 114

Stylesheet 114
Adding Styles Using CSS 114

Inline Styles 114
Embedded Stylesheets 115
External Styles 116
Importing External Stylesheets 117

CSS COMMENTS 118

CSS SELECTORS 119

Contents ◾ xi

Universal Selector 119
Element Type Selectors 119
ID Selector 119
Class Selectors 120
Descendant Selectors 120
Child Selectors 120
Adjacent Sibling Selectors 121
Standard Sibling Selectors 121
Grouping Selectors 122

JAVASCRIPT 122

Adding JavaScript to HTML Documents 123
DOM 126

ACCESS TO DOM 127

BASIC DATA TYPES 127

DOM INTERFACES 128

CORE INTERFACES 128

CHAPTER SUMMARY 129

NOTES 129

Chapter 3 ◾ Code Optimization 131
INTRODUCTION 131

Clean Up the HTML Document 132
Combining Files 132
Correct CSS Placement 132
Correcting JavaScript Placement 132
Limiting External HTTP Requests 133
CDN Factor 133
File Compression 133
Code Minification 133
Image Enhancement 134
Division into Small Components 134
Analysis of the Frontend Code 134

xii ◾ Contents

HTTP2 to Help Frontend Developers 134
Enable Preloading 135

PRELOAD AND PREFETCH IN HTML 135

Understanding Renders Blocking 135
Preload Resources 137
Preload JavaScript 138
Compress Files (gzip Compression) 138

Highlight of Brotli 139
Optimize Your Images 139

LOSSY VS. LOSSLESS COMPRESSION 139

Lossy Compression 140
Lossless Compression 140
Use a Minimalist Framework 140
Create Picture Sprites 141
Apply Lazy Load 141
Insert JavaScript at the Bottom of the Page 141
Include Styles Dynamically 141
Use CSS Animations Instead of JavaScript 141
Minify CSS, JavaScript, and HTML 141

WRITING HTML IN CODE 142

Declare DOCTYPE 142
Use Meaningful Title Tags and Other Tags 143
Use the Right Document Structure 143

<header> 145
<main> 146
<nav> 146
<article> 146
<section> 146
<aside> 147
<address> 147
<footer> 147
DOCTYPE 147

Contents ◾ xiii

HTML Document Template 153
Use Lowercase Letters 156
Reduce the Number of Elements on the Page 156
Validate Frequently 156
Always Place the External Stylesheets in the <head> Tag 156
Use Div Elements to Divide Your Layout into Main
Sections 156
Minify, Unify, and Shift JavaScript 157
Use Heading Elements Wisely 157
Use the Right HTML Element in the Right Place 158
Don’t Use divs for Everything 158
Use an Unordered List () for Navigation 158
Use Alternate Attributes with Images 158
Avoid Excessive Comments 159
Choose a Great Code Editor 159
Start Using the New HTML5 Tags 159
One h1 Per Page 159
Stop Supporting IE 159
Always Specify the Button Type 159
Using Title Attributes with Links (If Needed) 160

BEST CODING PRACTICES 160

SECURITY AND HARDENING IDEAS (HTML SECURITY) 161

SECURITY 162

METHODS OF COMMUNICATION IN HTML 163

Common Communication Event Model (XHR) 163
Web Sockets 164
Server-Sent Events 165
Web Workers 165
Web Messaging 165

Web Messaging Events 166
Sending a Message across Documents 166

HTML5 Channel Messages 166

xiv ◾ Contents

Cross-Origin Resource Sharing (CORS) 166
Sandboxing Flags 168

CHAPTER SUMMARY 169

NOTES 169

Chapter 4 ◾ htML for Game Development 171
BUILDING BLOCKS 172

Tags 172
Elements 172
Attributes 173

HTML5 GAME FUNDAMENTALS 174

DEFINING GOALS FOR GAME DEVELOPMENT 174

User Interaction Processing 175
Server Side in an HTML5 Game 175

Graphics and Sprite Sheets 176
HTML5 Game Frameworks 176
Amazing Facts about HTML5 Game Development 177

Multi-Platform 177
Unique Distribution 177
Cleaner Code 177
Geolocation API 178
Makes Promotion Easier 178
Game Development Frameworks and Game Engines 178

Phasers 178
PlayCanvas WebGL Game Engine 179
New HTML5 Features 180
Principles of HTML5 Game Design 181
Common Patterns 181
HTML Canvas Graphics 182

Before the Start 182
Basic Use of Canvas 182
About the <canvas> Tag 185

Contents ◾ xv

Rendering Context 214
Drawing Shapes with Canvas 216
Canvas Coordinates 216
Draw a Circle 220
HTML Canvas Gradients 221
Benefits of Using Canvas 223
Drawing Text on Canvas 224

CHAPTER SUMMARY 225

NOTES 225

Chapter 5 ◾ Cheat Sheet 227
POPULARITY 228

HTML CHEAT SHEET 228

HTML DOCUMENT SUMMARY 229

<html> 229
<head> 229
<title> 230
<body> 230

HTML DOCUMENT INFORMATION 231

<base> 231
<meta> 231
<link> 232
<style> 232
<script> 233

HTML DOCUMENT STRUCTURE TAGS 234

<h1 to h6> 234
<div> 235
 236
<p> 237

 237
<hr> 238

TEXT FORMATTING AND INLINE TEXT SEMANTICS 238

 238

xvi ◾ Contents

 239
 239
<i> 240
<tt> 240
<strike> 240
<cite> 241
 … 241
<ins> … </ins> 241
<blockquote> … </blockquote> 241
<q> … </q> 241
<abbr> … </abbr> 242
<address> … </address> 242
<dfn> … </dfn> 242
<code> … </code> 242
<samp> ... </smap> 242
<kbd> ... </kbd> 242
<var> ... </var> 242
<pre> ... </pre> 242
_… 242
[…] 243
<small> … </small> 243

HTML LINKS 243

SETTING TARGETS FOR LINKS 243

 … 243
 … 243
 … 243
 … 244
 … 244
 … 244

HTML LISTS 244

 244
 244

Contents ◾ xvii

 245
<dl> 245
<dt> 245
<dd> 245

HTML FORMS 245

<form> … </form> 245
<input> 246
<label>… </label> 247
<textarea> 248
<fieldset> 250
<legend> 251
<select> 251
<option>… </option> 253
<optgroup> 254
<progress> … </progress> 255
<datalist>… </datalist> 255
<button>… </button> 255

FORM ATTRIBUTES EVENTS LIST 255

KEYBOARD ATTRIBUTES EVENTS LIST 256

MOUSE ATTRIBUTES EVENTS LIST 256

DRAG ATTRIBUTES EVENTS LIST 256

WINDOW ATTRIBUTES EVENTS LIST 257

MEDIA ATTRIBUTES EVENTS LIST 258

HTML TABLES 259

<table> … </table> 259
<caption> … </caption> 261
<thead> … </thead> 262
<tbody> … </tbody> 262
<tfoot> … </tfoot> 264
<tr> … </tr> 266
<th> … </th> 267
<td> … </td> 269

xviii ◾ Contents

<colgroup> … </colgroup> 271
<col> 273

HTML MULTIMEDIA 273

 273
<audio> 273
<video> 274
<figure> 274
<figcaption> 275
<embed> 276
<object> 276

HTML CHARACTERS AND SYMBOLS 277

HTML CHARACTER ENTITIES 277

COPYRIGHT, TRADEMARK, AND REGISTERED SYMBOL 277

PUNCTUATION SYMBOL 277

ARROWS SYMBOL 278

MATHEMATICAL SYMBOLS 279

OTHER SYMBOL 280

CURRENCY SYMBOLS 280

HTML ATTRIBUTES 280

NEW HTML TAGS 289

NOTES 292

APPRAISAL, 293

INDEX, 297

xix

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with more than a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students. Learn more at sufyanism.com

xx

Acknowledgments

There are many people who deserve being on this page because this book
would not have come into existence without their support. That said, some
names deserve a special mention, and I am genuinely grateful to:

• My parents, for everything they have done for me.

• My siblings, for helping with things back home.

• The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Vartika, for offering great amounts of help and assistance during the
book-writing process.

• The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

• Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback.

• Typesetters, cover designers, printers, and everyone else, for their
part in the development of this book.

• All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support.

• The programming community, in general, and the web development
community, in particular, for all their hard work and efforts.

Sufyan bin Uzayr

1DOI: 10.1201/9781003357537-1

C h a p t e r 1

Crash Course HTML

IN THIS CHAPTER

 ➢ Frontend vs. Backend

 ➢ HTML

 ➢ Tags and Elements

This HyperText Markup Language (HTML) book is for complete begin-
ners, so it’s written in a simple way so that beginners do not get confused.
We have also provided an example for each topic and concept with proper
details of correct code output and legitimate HTML code.

By the end of this HTML book, we are sure you will be good in HTML
and start creating your own website structures. However, you need to learn
some other languages like Cascading Style Sheet (CSS) and JavaScript to
create an attractive and beautiful website. All these languages are also
known as frontend languages.

Before getting deeper into HTML, first we will discuss what is frontend
technology and backend technology. We will also discuss under which cat-
egories the various technology fall off.

FRONTEND VS. BACKEND
The frontend of a website is everything that can be viewed and interacted
with through a browser.1 Therefore, creating this visual part is called fron-
tend development. The designer who creates the user interface and plans

https://doi.org/10.1201/9781003357537-1

2 ◾ HTML: The Ultimate Guide

the experience is also a frontend developer because they collaborate on the
same part of the project.

To create the frontend, the engineer used a combination of HTML (used
for basic page structure and content), CSS (used for visual editing), and
JavaScript (to make the website interactive). The same tools are used to cre-
ate Progressive Web Apps (mobile apps that look like native apps but are
built using frontend technologies). To be a good frontend developer, you
need to focus on the following list of technology:

• HTML

• CSS

• Bootstrap

• JavaScript

• React

• React Native

• Angular

• Flutter

• NPM

• Vue.js

• Ionic

The backend, on the other hand, is everything that goes on behind the
scenes. It contains the server that hosts your web pages and the underlying
logic that manages your website’s functionality and processes. There is a
detailed explanation of the inner workings of the web application if you
want to take a look. Backends are built using a variety of technologies such
as Java, PHP, Ruby, C#, Django, frameworks for various other languages,
and sometimes JavaScript.

MOSTLY USED FRONTEND TECHNOLOGY
The basic toolset of the frontend is well-defined: HTML, CSS, and
JavaScript. However, frontend development technologies can be extended
with package managers, CSS preprocessors, frameworks, etc. HTML is the
primary frontend technology here.

Crash Course HTML ◾ 3

HTML is a language for building websites. This language is commonly
used to structure web documents. You can define elements such as head-
ings and paragraphs and embed images, videos, and other media.

How Does HTML Work as Frontend?

HTML contains a set of shortcodes called tags that are normalized into
text files by website builders.2 The text is saved as an HTML (.html) file and
can be viewed in any browser.

Hypertext is a way of navigating the Internet by clicking hyperlinks (spe-
cific text that takes you to another page). Hyper means nonlinear, it has no
predefined order, so it can be moved elsewhere. Markup determines the
properties to apply to text containing HTML tags. A tag identifies it as a par-
ticular type of text. As a language, it contains syntax like any other language.

The top is the HTML5 document type declaration is to be done. If
not included, different browsers will render it in their own way. The text
between and specifies the web page, and the text between and determines
the displayed content.

Next Is CSS

CSS is a stylesheet language. Applied to define how HTML elements are
rendered on a web page in terms of design, layout, and variations for dif-
ferent devices with different screen sizes. CSS handles the layout of many
different websites simultaneously.

How CSS Work as Frontend Technology?

CSS interacts with HTML elements, which are the components of web
pages.3 CSS uses selectors to communicate with HTML. A selector is
a piece of CSS code that defines the portion of HTML that a CSS style
affects. Its declaration contains properties and values used by the selector.
The properties define font size, color, and margins. The values are the set-
tings for those properties.

CSS is written in plain text using any text editor or word processor.
If you want to explore how CSS code is implemented in HTML content,
you have three options: Instead of adding an extra instance of CSS code
to each HTML element that needs to be changed. To use an external
stylesheet, the .html file must contain a header section that links to the
external stylesheet. Internal stylesheets are CSS directives that are inserted
directly into the header of a given .html page. Inline styles are CSS snip-
pets included within the HTML code itself.

4 ◾ HTML: The Ultimate Guide

We also have CSS framework with us; you can use them to make your
workflow more flexible. A CSS framework is a set of standard CSS and
HTML files. CSS frameworks not only help create responsive designs, but
they also offer a variety of symmetrical layouts that save developers the
hassle of writing code from scratch for every occasion. These are consid-
ered good choices for different platforms and screen sizes. With the user
interface components, grid systems, layouts, also many other features, CSS
frameworks greatly speed up your development workflow. There are many
frameworks in CSS Universe such as Bootstrap, Foundation, Semantic UI,
Materialize, Material Design Lite, and Lightweight (Pure).

DOM: THE STRUCTURE OF WEBSITES
The Document Object Model (DOM) is defined as a programming inter-
face for HTML and XML documents.4 Interpret the page so that the pro-
gram can change the structure, style, and content of the document. The
DOM renders documents as nodes and objects and allows programming
languages to connect them to the page.

How DOM Works

A web page is a document that can be viewed in a browser window or in
HTML source code. The DOM represents the document in a modifiable
way. It is an object-oriented representation of web pages that can be modi-
fied using a scripting language such as JavaScript.

DOM must resemble with World Wide Web Consortium (W3C) and
WHATWG standards to work in the latest modern browsers. A modern
DOM is built using multiple APIs that work together. The DOM Core
specifies the objects that fully describe and contain the document.

The DOM currently consists of two parts such as DOM Core and DOM
HTML. The DOM Core represents the functionality used for XML docu-
ments and serves as the basis for DOM HTML. All DOM implementations
MUST support the interfaces listed as “basic” in the core specification.
In addition, XML implementations MUST support interfaces listed as
“extensions” in the core specification. The Level 1 DOM HTML specifica-
tion defines additional features required for HTML documents.

Where DOM Came From

The DOM was built as a specification to make JavaScript scripts and
Java programs portable across various Web browsers.5 The Dynamic
HTML is the ancestor of the DOM and was originally viewed primarily

Crash Course HTML ◾ 5

in browsers. The DOM was influenced by the SGML Groves and HyTime
standards.

JavaScript
JavaScript (JS) is the most popular scripting language.6 This language is
best known for providing both frontend and backend development. It is
applied to make web pages dynamic.

How JavaScript Works

JS enhances the overall interactivity of your website. You can model
animated UI components such as image sliders, popups, and rich web-
site navigation menus. JavaScript provides advanced functionality to
websites that HTML and CSS alone cannot achieve. JavaScript allows
web pages to dynamically update in response to user actions. As like
Bootstrap, JS also has various libraries and frameworks. Now let’s define
what constitutes a JS framework, what a JS library is, and what purpose
they serve.

Library and Framework

A framework is a template for building a website or web application. They
provide a structure on which the entire project can be placed. Once the
framework determines the page template, it builds a structure with spe-
cific areas allocated to embed the framework code.

Libraries are sets of pre-built code snippets that are used and reused to
implement core JavaScript functionality. Snippets can be easily integrated
into existing project code as needed. As such, a library is a specialized tool
for a particular coding need, not a general-purpose machine for maintain-
ing entire existing projects.

JavaScript AS BACKEND
JavaScript as an end-to-end development environment, we have to men-
tion its backend implementation. JavaScript is so popular that the world of
software engineering has adapted JS to the backend specification. Node.js
is the most popular tool for web server-side development using JavaScript.
However, it is neither a framework nor a library. Basically, it is a runtime
environment based on Chrome’s V8 JavaScript engine. Now come back on
this chapter which is totally based on HTML Crash course. We will cover
every topic of it so that beginners can understand each and every step of
theory as well as practical.

6 ◾ HTML: The Ultimate Guide

Now let’s see what a markup language is and why it is considered a
markup language. Next, explore other markup languages available to soft-
ware engineers today.

WHAT IS A MARKUP LANGUAGE?
A markup language is a language that text that computer can manipulate
it. Most markup languages are human-readable because annotations are
written in a way that distinguishes them from the text itself. For example,
in HTML, XML, and XHTML, the markup tags are < and >. Text con-
tained within any of these characters is considered part of the markup
language.

The latest version of HTML5 is now widely adopted by developers and is
used by about 90% of websites. Do not confuse the two terms. HTML and
HTML5 are one and the same, but HTML introduced new features to the
most popular markup language.

HTML – HYPERTEXT MARKUP LANGUAGE
HTML is used as a basic language of the web and the most common lan-
guage you use as a web designer or developer.7 In fact, it may be the markup
language you use at work.

All web pages are written in the HTML variant. HTML defines how
images, multimedia, and text are displayed in web browsers. This language
contains elements for connecting documents (hypertext) and making
web documents interactive (such as forms). Many people refer to HTML
as “website code”, but it’s really just a markup language. Neither term is
strictly wrong. I hear people, including web professionals, using the two
terms interchangeably.

HTML is a predefined standard markup language. It is based on
Standard Generalized Markup Language (SGML). It is a language that
only uses tags to define the simple structure of text. The elements and tags
are defined by the < and > characters.

HTML is the most famous markup language on the web today, but it’s
not the only option for web development. As HTML developed, it became
more and more complex, combining style and content tags into one lan-
guage. Finally, the W3C has decided that a Web page’s style and content
should be separated. Tags that only define content remain in HTML, while
tags that define style are deprecated in favor of CSS.

When you create an HTML page, the markup is never displayed to the
user. When you open the site, you will see related text, images, and videos.

Crash Course HTML ◾ 7

But HTML pulls the strings behind all this. This will let all browsers know
how to organize things. HTML allows you to group paragraphs, headings,
images, videos, and more. You can create complex forms to display infor-
mation exactly the way you want it.

Although HTML is not a markup language, 94% of websites use HTML
as their markup language, making it the most popular. Its ease of use has
made it the markup language of the web, but there are many different
markup languages, each with different uses.

HTML is generally much more forgiving than other markup languages
such as XML. It is case insensitive and will compile even if you omit the
end tag. For decades, HTML has been an easy-to-use starting point for
people learning web development. It also works well with frameworks
such as CSS and Bootstrap. As already mentioned, markup languages
define how electronic documents are interpreted.

HTML INTRODUCTION
HTML is the standard markup language for documents viewed in Web
browsers.8 It can help through technologies such as CSS and scripting lan-
guages such as JavaScript. The Web browser receives various HTML docu-
ments from a Web server or local storage and transforms the documents
into multimedia Web pages. HTML semantically defines the structure
of web pages and originally contained guidelines for the appearance of
documents.

HTML elements are the building blocks of HTML pages. You can use
HTML constructs to insert other objects such as images and interactive
forms into the rendered page. HTML provides a better way to create struc-
tured documents by marking up the structural semantics of text such as: text
formatting, tables, headings, paragraphs, lists, links, quotes, and other ele-
ments. HTML elements are delimited by tags written in curly braces. Tags
such as <body> places content directly on the web page. Other tags, such
<head>, provide information about the body of the document and can con-
tain other tags as sub elements. Browsers do not display HTML tags but use
them to interpret page content. The Hypertext is text displayed on a system
that contains links to other text that the user can immediately access, usu-
ally by clicking a mouse or pressing a key. In addition to text, hypertext can
include tables, lists, forms, images, and other presentation elements. It is an
easy-to-use and flexible format for exchanging information over the Internet.

The markup uses a series of markup tags to characterize text elements
in a document and tell the web browser what the document should look

8 ◾ HTML: The Ultimate Guide

like. HTML was first developed in 1990 by a physicist, Tim Berners-Lee.
He is considered the father of the Internet. However, in 1996, the W3C
became the body controlling the HTML specifications. HTML became an
international standard (ISO) in 2000. HTML5 is now the latest version of
HTML. It offers a faster and more robust approach to web development.

HTML can embed programs written in various scripting languages,
such as JavaScript, to affect the behavior and content of web pages. CSS
embedding defines the appearance and layout of content. The W3C, the
former maintainer of HTML and now the maintainer of CSS standards,
has supported the use of CSS in explicit presentation HTML since 1997. A
form of HTML, called version HTML5, is used to create video and audio
using the <canvas> element, together with JavaScript.

HISTORY
The first version was written by Tim Berners-Lee in 1993. Since then, there
have been various versions of HTML.9 The most widely used version in the
2000s was HTML 4, which became the official standard in December 1999.

Another version, XHTML, is HTML rewritten as XML. This is the stan-
dard markup language used to create other markup languages. Hundreds
of XML languages include GML, MathML, MusicML, and RSS. Each of
these languages is written in a common language (XML), so its content
can be easily shared between applications. XML has such powerful poten-
tial that it’s no surprise that the W3C created his XML version of HTML
called XHTML. It became an official standard in 2000 and was updated in
2002. It’s very similar to HTML, but with some stricter rules. Sometimes
you want strict rules for all XML languages. Without it, interoperability
between applications would be impossible.

Most pages on the web are built with 4.01 or XHTML 1.0. However,
in recent years, the W3C has been working on a new version of HTML,
HTML5.

HTML is a markup language that browsers use to assemble text, images,
and other material into visual or audio web pages.10 Default properties for
each HTML tag element are defined by the browser. These properties can
be modified or extended using more of her CSS from the website designer.

The 1988 Technical Report ISO TR 9537 Techniques for using SGML
contains many text elements. These formatting commands are derived
from commands used by typesetters to manually format documents.

Here below there are many types of content that can be added to web
pages using other versions of HTML. The early HTML was very simple,

Crash Course HTML ◾ 9

but new versions have been released with more features. However, if web
designers want to add content or functionality not supported by HTML,
they must do so using nonstandard proprietary technologies such as those
of Adobe. These technologies require users to install their browser plug-
ins, which in some cases may prevent some users from accessing content.
HTML5 adds support for many new features that allow you to get more
out of HTML without relying on nonstandard, proprietary technologies.

Type of HTML Content HTML 1.2 HTML 4.01 HTML5 Purpose

Heading Yes Yes Yes It is used to organize
page content by adding
headings and
subheadings to the top
of each section of the
page

Paragraph Yes Yes Yes It identifies the
paragraphs of text

Address that contains
contact information

Yes Yes Yes It identifies a block of
text

Anchor Yes Yes Yes It links to other web
content

List Yes Yes Yes It organizes items into a
list

Image Yes Yes Yes It is used to embed a
photograph or drawing
into a web page

Table No Yes Yes It organizes data into
rows and columns

Style No Yes Yes It adds CSS to control
how objects on a web
page are presented

Script No Yes Yes It adds JavaScript to
make pages respond to
user behaviors (more
interactive)

Audio No No Yes It adds audio to a web
page with a single tag

Video No No Yes It adds video to a web
page with a single tag

Canvas No No Yes It adds an invisible
drawing pad to a web
page, on which you can
add drawings using
JavaScript

10 ◾ HTML: The Ultimate Guide

HTML FUTURE
HTML has come a long way. It has gone from the simple idea of sharing
documents between different computers to being part of almost every-
thing we do on the Internet.

HTML has changed with the world with new requirements and tech-
nologies. It’s also constantly changing and adding new features. A recent
update to HTML5 added canvas. This was really great. You can use the
canvas to draw shapes, images, text, animations, and even entire games.

As technology becomes more complex to meet the growing demand for
more reliable devices, the future of HTML is its adaptability to change,
operability across devices, and developer and user interaction.

HTML VERSIONS
Let’s take a quick look to the list of different versions of HTML and a time-
line of their features:11

• 1991 – Tim Berners-Lee created HTML 1.0.

• 1993 – Its 1.0 version was first released in 1993. This version had only
basic features. This version also didn’t allow tags such as text tables
and fonts.

• Nov 24, 1995 – HTML 2.0 was released by the end of this year. All
features of HTML 1.0 have been carried over to HTML 2.0 and new
features have been added. Until HTML 3.0 is released, it will remain
the standard markup language for building websites.

• January 14, 1997:

• HTML 3.2 was published as W3C Recommendation.

• In 1997, the first version of HTML was developed by W3C.

• Form elements were properly supported in this version. One of the
most significant additions in this release is support to CSS in the pages.

• 1999:

• HTML 4.01 was published as a W3C Recommendation on
December 14, 1999. This version was the most successful of all the
previous HTML versions.

• This release adds features such as improved multimedia, script-
ing, and printing capabilities.

Crash Course HTML ◾ 11

DIFFERENT VERSIONS OF HTML
HTML has never been the way it is right now.12 HTML, like many lan-
guages, has evolved over time and is much better and more versatile today
than it was a long time ago. Different versions of HTML have different
properties. But today we use HTML5, which is the latest version of HTML.

• HTML 1.0 (released in 1991)

• HTML 2.0 (released in 1995)

• HTML 3.2 (released in 1997)

• HTML 4.01 (released in 1999)

• XHTML (released in 2000)

• HTML5 (released in 2014)

1. HTML 1.0: It was the basic version of HTML with less support for a
wide range of HTML elements. It does not have rich features such as
styling and other things related to how content will be rendered in a
browser. This initial version doesn’t provide support for tables, font
support, etc.

2. HTML 2: It was developed in 1995 to improve HTML version 1.0.
It was developed to maintain common rules and regulations across
different browsers. It improves a lot in terms of marker marks. In ver-
sion 2.0, the concept of form came into effect. Forms were developed
but still had basic markups like text boxes, buttons, etc.

Also, the table came as an HTML tag. Now, in version 2.0, brows-
ers also came up with the concept of creating custom markup lay-
ers that were specific to the browser itself. The main intention of the
W3C is to maintain standards across different web browsers so that
those browsers understand and render HTML tags in a similar way.

3. HTML 3.2: HTML 3.2 was published by W3C Recommendation. It
was the very first version developed exclusively by the W3C. With
HTML 3.2, HTML tags were further improved. It had many new fea-
tures like tables, superscript, subscript, etc. The two most important
features introduced in it were tables and text flow around images.

Now it has better support for the new form of elements. Another
important feature it implemented was CSS support. It is CSS that

12 ◾ HTML: The Ultimate Guide

provides functions that will make HTML tags look better when ren-
dered in browsers. CSS helps style HTML elements.

After browsers were upgraded to it, the browser also supported
frame tags, although the HTML specification still does not support
iframe tags. Tables were widely used and are still used by program-
mers, but it is no longer recommended. In HTML5, div tags and
other semantic elements are more often used instead of the table
element.

4. HTML 4.01: It is expanded support for CSS. In version 3.2, CSS was
embedded into the HTML page itself. So if a website has different
web pages to apply the style of each page, we need to put CSS on each
web page. So there was a repetition of the same CSS block.

To overcome this, the concept of an external stylesheet appeared
in version 4.01. Under this concept, an external CSS file could be
developed and this external style file could be included in the HTML
itself. HTML 4.01 provided support for additional new HTML tags.

HTML 4.01 was a revised version of HTML 4.0; it also included
features for people with disabilities to improve their interactivity
with the global world through the Internet.

5. XHTML: XHTML is called Extensible Hypertext Markup
Language.13 It can consider as a part of the XML markup language
because it has features of both XML and HTML. It is extended from
XML and HTML. It can be considered as a better version of HTML.

XHTML version:

• XHTML is a different language that began as a reformulation of
HTML 4.01 using XML 1.0. Now it is no longer being developed
as a stand-alone standard.

• XHTML version 1.0 was published as a W3C Recommendation
on January 26, 2000, later revised and republished on August 1,
2002.

• XHTML 1.1 was published on May 31, 2001, as W3C
Recommendation. It is based on the XHTML 1.0 Strict, but with
minor changes, it can be adapted.

• XHTML 2.0 was abandoned in 2009 in favor of work on HTML5
and XHTML5. XHTML 2.0 was now incompatible with XHTML
1.x.

Crash Course HTML ◾ 13

6. HTML5: HTML5 is the best version of HTML to date. HTML5 has
improved user interactivity so much and also reduced the load on
the device.

HTML5 fully supports all kinds of media applications out there.
HTML5 supports both audio and video media content. HTML5 also
provides full support for running JavaScript in the background.

MARKUP IN HTML
HTML markup consists of various key components, including those called
tags (their attributes), character-based data types, character references,
and entity references. HTML tags are most often found in pairs such as
<h1> and </h1>, although some represent empty elements and are there-
fore unpaired, such as . The first tag is a pair is the start tag and the
second is the end tag (also called opening tags and ending tags).

Another important part is the HTML document type declaration that
triggers standard mode rendering.

The following is an example of the program given below.

<!DOCTYPE html>
<html>
 <head>
 <title> Document Title </title>
 </head>
 <body>
 <div>
 <h1> Simple Example of Markup in HTML </h1>
 <p> You are learning HTML! </p>
 </div>
 </body>
</html>

The output of the code is given below.

HTML Markup.

The text between <html> and </html> describes the web page; the
text between <body> and </body> is the visible content of the page. The

14 ◾ HTML: The Ultimate Guide

<title> This is a title</title> tag defines the browser page title displayed on
browser tabs and window titles, and the <div> tag defines page divisions
used for easy styling. A <meta> element can be used between <head> and
</head> to define a web page’s metadata. The <!DOCTYPE html> docu-
ment type declaration is for HTML5. If the declaration is not included,
various browsers fall back into “quirks mode” for rendering.

Where HyperText is the method by which Internet users navigate the
web. By clicking on text called hyperlinks, then users are brought to new
pages. The use of hyper means it is not linear so users can go anywhere on
the Internet just by clicking on the available links. Markup is what HTML
tags do to the text inside them; then mark it as a specific type of text. For
example, markup text comes in the form of boldface or italicized type to
draw specific attention to a word or phrase.

BASIC HTML CONCEPTS
Structure of an HTML Document

The <!DOCTYPE html> declaration specifies the version of HTML used in
the document.14 Every HTML document must start with this declaration
so that browsers can render the page in accordance with HTML standards.

There are several <!DOCTYPE> types defined for each version of
HTML. <!DOCTYPE> – The doctype declaration indicates the type of
document and version of HTML used on the web page. Each version has
a different doctype declaration. This example uses the HTML5 Doctype.

<!DOCTYPE>

All contents on a web page are written between <html> and </html>
tags. The <html> element is used to tell browsers that this is an HTML
document. <html> – It is the root tag of the document that describes the
entire web page. It is also paired tag, i.e. it also has a closing </html> tag.
Everything will be written inside these tags.

<html>
//rest of the code
</html>

The <head> element contains metadata (that is data about the HTML
document), character set, document name, styles, etc. This data is not dis-
played to viewers. This tag contains information about the document, such

Crash Course HTML ◾ 15

as its title, author information, web page description, and so on. It has vari-
ous tags to perform these functions. It is also called a couple tag.

<head>
 . . rest of the code
 </head>

The <title> shows the title of the website in the browser tab when the
page is loaded. It is written between <title> and </title> tags.

<title>
 . . rest of the code
 </title>

The <body> tag contains the content of the web page (i.e. text, images,
videos, etc.). Content is written between <body> and </body>. The body
tag contains all information that will be displayed on the web page. If you
want anything to appear on the page, you must write it in these tags.

<body>
 . . rest of the code
</body>

Heading elements contain different types of headings. There are six
heading levels – <h1> – <h6>, where <h1> is the most important and <h6>
least important tags.

<h1> </h1>
<h2> </h2>
<h3> </h3>
<h4> </h4>
<h5> </h5>
<h6> </h6>

The <p> element contains paragraphs of the text. The content is written
between <p> and </p> tags.

<p> </p>

Example:

<!DOCTYPE HTML>
<html>
 <head>

16 ◾ HTML: The Ultimate Guide

 <meta HTTP-equiv="Content-Type" content="text/
HTML; charset=utf-8">
 <title>Title of the document</title>
 <style>
 body{
 width:500px;
 margin:0 auto,
 }
 </style>
 </head>

 <body>
 <h1>
 Structure of an HTML Document
 </h1>
 <h2> Aenean placerat commodo tortor at ornare.
Suspendisse et rutrum eros. In quis velit nunc.
Fusce auctor felis id tellus euismod aliquam.
Pellentesque habitant morbi senectus et netus et
malesuada fames ac turpis egestas.
 </h2>
 <p>Donec vitae pharetra nisl. Nulla consequat,
purus semper viverra congue, risus ex bibendum
urna, nec fringilla mi ipsum in mauris. Curabitur
id bibendum arcu, id efficitur risus. </p>
 <h2> Nulla consequat, purus semper viverra
congue, risus ex bibendum urna, nec </h2>
 </body>
</html>

HTML DOCUMENT TYPE
All HTML documents must begin with a <!DOCTYPE> declaration. A
declaration is not an HTML tag. It is “information” to the browser about
what type of document to expect.

In HTML5, the <!DOCTYPE> declaration is simple. The <!DOCTYPE>
declaration is NOT case-sensitive.

• <!DOCTYPE html>

• <!DocType html>

• <!Doctype html>

• <!doctype html>

Crash Course HTML ◾ 17

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta HTTP-equiv="X-UA-Compatible"
content="IE=edge">
 <meta name="viewport" content="width=device-
width, initial-scale=1.0">
 <title>Document</title>
</head>
<body>
 <h1> Doctype of HTML </h1>
 <code> <!DOCTYPE html> </code>

 <code> <!DocType html> </code>

 <code> <!Doctype html> </code>

 <code> <!doctype html> </code>

 </body>
</html>

The output of the code is given below.

HTML Doctype.

There are some basic HTML concepts such as elements, tags, and attri-
butes.15 Elements are a main structural unit of a web page. The tags are
used to define HTML elements, and attributes provide additional infor-
mation about these elements.

HTML TAGS
Basically, tags are used to structure website content (text, hyperlinks,
images, media, etc.).16 These are not displayed in browsers; they only
“instruct” browsers how to display the content of the web page.

18 ◾ HTML: The Ultimate Guide

There are over hundreds of tags and you can find them in any other
HTML lesson. These tags are written in curly brackets (e.g. <html>). Most
HTML tags come in pairs, such as <p> – </p> tags. The first tag in the
pair is called the start (opening) tag and the second tag is the end (clos-
ing) tag. The information is written between the opening and closing tags.
However, there are unpaired or empty tags that only have a start tag (e.g.
).

A document is created using different types of tags. HTML tags can be
defined and divided on a different basis. Let’s take a look at them in the
following sections of this chapter. We have divided these tags based on the
following classifications:

• Paired and Unpaired Tags

• Self-Closing Tags

• Utility-Based Tags

Let’s explain the following are the paired and unpaired tags in HTML
in detail with the help of examples.

Paired Tag

A tag is known as a paired tag if the tag consists of a start tag and an end
tag as a companion tag. An HTML paired tag begins with an opening tag:
the name of the tag enclosed in curly brackets; for example, the paragraph
opening tag is written as “<p>”. Content follows a start tag that ends with
an end tag: tag name starting with a slash; for example, a paragraph end
tag is written as “</p>”. The first label can be labeled “Opening tag” and the
second label can be called the “Closing tag”.

Here is the list of some paired tags in HTML:

Open Tag Close Tag

<div> </div>
<table> </table>
<form> </form>

<p> </p>

<html> </html>
<head> </head>

Crash Course HTML ◾ 19

Unpaired Tags

An HTML tag is called an odd tag if the tag has only an opening tag and
no closing tag or accompanying tag. The unpaired tag does not require a
closing tag; with this type, an opening label is sufficient. Unpaired tags
are also sometimes named single tags or singular tags because they do not
require an accompanying tag.

It is to close the unpaired/singular tags. But unfortunately, we do not
have the closing tag. So an unpaired tag is closed putting behind a slash
(/) before the greater than > sign. For example: <bru />. Below is the list of
some unpaired tags in HTML. The use of a slash (/) in the tags is to close
them. Here are some examples of unpaired tags.

• Open Tag

• <hr>

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Document</title>
</head>
<body>
 <h1> HTML Unpaired Tags</h1>
 <p> First Para </p>
 <hr>
 <p> Second Para </p>
 </body>
</html>

The output of the code is given below.

HTML Unpaired tags.

• <meta>

20 ◾ HTML: The Ultimate Guide

Example:

 <meta charset="UTF-8">
 <meta HTTP-equiv="X-UA-Compatible"
content="IE=edge">
<meta name="viewport" content="width=device-
width, initial-scale=1.0">

•

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Document</title>
</head>
<body>
 <h1> HTML Unpaired Tags</h1>
 <p> First Para </p>

 <p> Second Para </p>
 </body>
</html>

• The output of the code is given below.

HTML Unpaired tags.

• <input>

Example:

<!DOCTYPE html>
<html lang="en">
<head>

Crash Course HTML ◾ 21

 <title>Document</title>
</head>
<body>
 <h1> HTML Unpaired Tags</h1>
 <input type="text" placeholder="Enter the
text">
 <input type="file" >
 <input type="color">
 </body>
</html>

The output of the code is given below.

HTML Unpaired tags.

Heading Tags (H1 Tag to H6 Tag)

These tags are used to give headings of different sizes in a document. There
are six different heading tags, which give various heading sizes and are
defined by <h1> – <h6> tags. <h1> gives the biggest heading and <h6>
gives the smallest one. So <h1> can be used for important headings for
bold headings and <h6> can be used for the least important one.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title> HTML Heading Tag </title>
</head>
<body>
<h1> This is Heading 1 </h1>
 <h2> This is Heading 2 </h2>
<h3> This is Heading 3 </h3>
<h4> This is Heading 4 </h4>
<h5> This is Heading 5 </h5>
<h6> This is Heading 6 </h6>
</body>
</html>

22 ◾ HTML: The Ultimate Guide

HTML p Tag – Paragraph Tag

The <p> tag defines a paragraph in a document. An HTML paragraph or
HTML <p> tag provides the text inside the paragraph as completion. It is note-
worthy that the browser itself adds line breaks before and after the paragraph.

We’ll show you how it works with a simple example.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title> HTML Paragraph Tag </title>
</head>
<body>
<p> This is First Paragraph </p>
 <p> This is Second Paragraph </p>
<p> This is Third Paragraph </p>
</body>
</html>

HTML Tag – Anchor Tag

An HTML hyperlink is defined using the <a> tag (Anchor tag). It is used
to create a link to any file, web page, image, etc.

This tag is called an anchor tag, and anything between the opening <a>
tag and closing tag is a part of the link, and the user can click on that
part to go to the linked document.

<!DOCTYPE html>
<HTML lang="en">
<head>
 <meta charset="UTF-8">
 <title> Anchor Tag </title>
</head>
<body>
 This is
a link
</body>
</html>

HTML img Tag – Image Tag

The img tag is used to add images to HTML documents.17 The ‘src’ is used
to specify the source of the image. The height and width of the image can
control the – height=“px” and width=“px”.

Crash Course HTML ◾ 23

The alt is used as an alternative if the image is not displayed. Whatever
is written as the value of this attribute is displayed. It provides information
about the image.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title> Image Tag </title>
</head>
<body>

</body>
</html>

Self-Closing Tags

Self-closing tags are HTML tags that do not have a partner tag, where the
first tag is the only tag needed that is valid for formatting. The main and
important information is contained INSIDE the element as its attribute. A
“img”tag is a simple example of a self-closing tag. Let’s see it in action below.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title> HTML Image Tag </title>
</head>
<body>

</body>
</html>

Utility-Based Tags

The HTML tags can be widely differentiated on the basis of utility and on
the basis of the purpose they serve. We can divide them into three catego-
ries as given below:

• Formatting Tags

• Structure Tags

• Control Tags

24 ◾ HTML: The Ultimate Guide

The HTML tags that help us in the formatting of the texts like the size
of the text, font styles, making a text bold, etc. This is done only using tags
like , , <u>, etc. Tables, divisions, and span tags are those tags
that help format a web page or document that set the layout of the page.
Below is a simple program using divisions for formatting the page along
with some other text formatting tags.

<html>
<head>
<title> Title </title>
</head>
<body>
<div class="container">
<div class="row">
<div class="col-25">
<label for="email"> Name </label>
</div>
<div class="col-35">
<input type="text" placeholder="First Name"
name="fname" required>
</div>
<div class="col-35">
<input type="text" placeholder="Last Name"
name="lname" required>
</div>
</div>
</div>
</body>
</html>

Structure Tags

HTML tags that help structure an HTML document are called Structure
Tags.18 Description, title, HTML, heading, body, etc. form a group of page
structure tags. Structure tags only help in building or creating a basic HTML
page from the root; that is, they do not affect or participate in text format-
ting. The basic HTML program is therefore a basic group of structural tags.

Some of the most common HTML5 structural elements are described
below.

The <header> tag
This element is used as a container for the page header content. A tag typi-
cally contains heading tags (<h1> – <h6>), a logo image, or other content

Crash Course HTML ◾ 25

that represents the content. It is possible to have more than one <header>
tag per page. However, a <header> cannot be coded within a <footer> tag
or another <header> tag.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border:1px solid darkblue;
height:100px;
margin: 2px;
background-color: chocolate;
}
nav{
 border:1px solid darkblue;
height:120px;
margin: 2px;

}
main{
height:200px;
display:flex;
flex-direction: row;
}
.section1{
height:200px;
width:80%;
display:flex;
flex-direction: column;

}
section{

26 ◾ HTML: The Ultimate Guide

 border:1px solid darkblue;
 height:120px;
 flex-direction: row;
margin: 2px;
}

article{
 border:1px solid darkblue;
 height:140px;
 flex-direction: row;
 margin: 2px;
}
aside{
 border:1px solid darkblue;
 width:30%;
 margin: 2px;

}
footer{
 border:1px solid darkblue;
height:100px;
margin: 2px;

}

 </style>
 </head>
<body>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>
 <article>
 Article Tag Content

Crash Course HTML ◾ 27

 </article>
 </div>

 <aside>
 Aside Tag Content
 </aside>
 </main>

 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

The output of the code is given below.

Header tag (with background color).

The <nav> tag
This tag is a block-level element used to define the main blocks of naviga-
tion links or navigation menus.

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{

28 ◾ HTML: The Ultimate Guide

 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border:1px solid darkblue;
height:100px;
margin: 2px;
}
nav{
 border:1px solid darkblue;
height:120px;
margin: 2px;
background-color: chocolate;

}
main{
height:200px;
display:flex;
flex-direction: row;
}
.section1{
height:200px;
width:80%;
display:flex;
flex-direction: column;

}
section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;
}

article{
 border:1px solid darkblue;
 height: 140px;
 flex-direction: row;
 margin: 2px;
}

Crash Course HTML ◾ 29

aside{
 border:1px solid darkblue;
 width:30%;
 margin: 2px;

}
footer{
 border: 1px solid darkblue;
height: 100px;
margin: 2px;

}

 </style>
 </head>
<body>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>
 <article>
 Article Tag Content
 </article>
 </div>

 <aside>
 Aside Tag Content
 </aside>
 </main>
 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

30 ◾ HTML: The Ultimate Guide

The output of the code is given below.

Navbar tag (with background color).

The <main> tag
It is used to display a container for the main page content that is not
repeated in other parts of the page. A web page can contain only one
<main> element. Additionally, it cannot be included as a child element in
a <header>, <nav>, footer>, <article>, or <aside> tag.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin: 0;
 padding:10px;
 font-size: 20px;
 }
 header{
border: 1px solid darkblue;
height: 100px;
margin: 2px;
}
nav{
 border: 1px solid darkblue;
height: 120px;
margin: 2px;

}

Crash Course HTML ◾ 31

main{
height: 200px;
display: flex;
flex-direction: row;
background-color: chocolate;

}
.section1{
height:200px;
width:80%;
display: flex;
flex-direction: column;

}
section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;
}

article{
 border: 1px solid darkblue;
 height: 140px;
 flex-direction: row;
 margin: 2px;
}
aside{
 border: 1px solid darkblue;
 width:30%;
 margin: 2px;

}
footer{
 border: 1px solid darkblue;
height:100px;
margin: 2px;

}

 </style>
 </head>
<body>
 <header>

32 ◾ HTML: The Ultimate Guide

 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>
 <article>
 Article Tag Content
 </article>
 </div>

 <aside>
 Aside Tag Content
 </aside>
 </main>
 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

The output of the code is given below.

Main tag (with background color).

Crash Course HTML ◾ 33

<section> tag
The <section> tag defines general sections of a web page, such as headers,
footers, or any other parts of a document. In this context, a section is a
thematic grouping of content.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin: 0;
 padding:10px;
 font-size: 20px;
 }
 header{
border: 1px solid darkblue;
height: 100px;
margin: 2px;
}
nav{
 border: 1px solid darkblue;
height: 120px;
margin: 2px;

}
main{
height: 200px;
display: flex;
flex-direction: row;

}
.section1{
height: 200px;
width:80%;
display: flex;
flex-direction: column;

}

34 ◾ HTML: The Ultimate Guide

section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;
background-color: chocolate;

}

article{
 border: 1px solid darkblue;
 height :140px;
 flex-direction: row;
 margin: 2px;
}
aside{
 border: 1px solid darkblue;
 width:30%;
 margin: 2px;

}
footer{
 border: 1px solid darkblue;
height:100px;
margin: 2px;

}

 </style>
 </head>
<body>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>

Crash Course HTML ◾ 35

 <article>
 Article Tag Content
 </article>
 </div>

 <aside>
 Aside Tag Content
 </aside>
 </main>
 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

The output of the code is given below.

Section tag (with background color).

<article> tag
The <article> element represents a complete or self-contained composi-
tion in a document, page, application, or website that is essentially self-
distributable or reusable.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>

36 ◾ HTML: The Ultimate Guide

 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border: 1px solid darkblue;
height:100px;
margin: 2px;
}
nav{
 border:1px solid darkblue;
height:120px;
margin: 2px;

}
main{
height:200px;
display: flex;
flex-direction: row;

}
.section1{
height: 200px;
width: 80%;
display: flex;
flex-direction: column;

}
section{
 border:1px solid darkblue;
 height:120px;
 flex-direction: row;
margin: 2px;

}

article{
 border: 1px solid darkblue;
 height: 140px;
 flex-direction: row;

Crash Course HTML ◾ 37

 margin: 2px;
 background-color: chocolate;

}
aside{
 border: 1px solid darkblue;
 width:30%;
 margin: 2px;

}
footer{
 border: 1px solid darkblue;
height:100px;
margin: 2px;

}

 </style>
 </head>
<body>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>
 <article>
 Article Tag Content
 </article>
 </div>

 <aside>
 Aside Tag Content
 </aside>
 </main>

38 ◾ HTML: The Ultimate Guide

 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

The output of the code is given below.

Article tag (with background color).

<aside> tag
The <aside> tag is a block-level element that defines content apart from the
content it is placed within. The content on the page should be related to the
surrounding content.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border: 1px solid darkblue;
height: 100px;
margin: 2px;
}

Crash Course HTML ◾ 39

nav{
 border: 1px solid darkblue;
height: 120px;
margin: 2px;

}
main{
height: 200px;
display: flex;
flex-direction: row;

}
.section1{
height: 200px;
width: 80%;
display: flex;
flex-direction: column;

}
section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;

}

article{
 border: 1px solid darkblue;
 height: 140px;
 flex-direction: row;
 margin: 2px;

}
aside{
 border:1px solid darkblue;
 width:30%;
 margin: 2px;
 background-color: chocolate;
}
footer{
 border: 1px solid darkblue;
height: 100px;

40 ◾ HTML: The Ultimate Guide

margin: 2px;

}

 </style>
 </head>
<body>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>
 <article>
 Article Tag Content
 </article>
 </div>
 <aside>
 Aside Tag Content
 </aside>
 </main>
 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

The output of the code is given below.

Aside tag (with background color).

Crash Course HTML ◾ 41

<footer> tag
The <footer> tag is a block-level element that defines footer information
for an entire web page or document section. The <footer> content usually
consists of contact information, copyright, links, or logos. In some cases, a
web page may contain multiple <footer> tags.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border:1px solid darkblue;
height:100px;
margin: 2px;
}
nav{
 border:1px solid darkblue;
height:120px;
margin: 2px;

}
main{
height:200px;
display:flex;
flex-direction: row;

}
.section1{
height: 200px;
width:80%;
display: flex;
flex-direction: column;

}

42 ◾ HTML: The Ultimate Guide

section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;

}

article{
 border: 1px solid darkblue;
 height: 140px;
 flex-direction: row;
 margin: 2px;

}
aside{
 border: 1px solid darkblue;
 width: 30%;
 margin: 2px;
}
footer{
 border: 1px solid darkblue;
height:100px;
margin: 2px;
background-color: chocolate;

}

 </style>
 </head>
<body>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content

 </section>

Crash Course HTML ◾ 43

 <article>
 Article Tag Content
 </article>
 </div>
 <aside>
 Aside Tag Content
 </aside>
 </main>
 <footer>
 Footer Tag Content
 </footer>
 </body>
</html>

The output of the code is given below.

Footer side tag (with background color).

<figure> tag
The <figure> tag specifies standalone content, such as illustrations, dia-
grams, photos, or pieces of code. By default, this is a block-level element
with a right and left margin setting of 40 pixels.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{

44 ◾ HTML: The Ultimate Guide

 text-align: center;
 margin: 0;
 padding: 10px;
 font-size: 20px;
 }
 header{
border: 1px solid darkblue;
height: 100px;
margin: 2px;
}
nav{
 border: 1px solid darkblue;
height: 120px;
margin: 2px;

}
main{
height: 200px;
display: flex;
flex-direction: row;

}
.section1{
height: 200px;
width: 80%;
display: flex;
flex-direction: column;

}
section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;

}

article{
 border: 1px solid darkblue;
 height: 140px;
 flex-direction: row;
 margin: 2px;

}

Crash Course HTML ◾ 45

aside{
 border: 1px solid darkblue;
 width: 30%;
 margin: 2px;
}
footer{
 border: 1px solid darkblue;
height: 100px;
margin: 2px;
background-color: chocolate;

}

 </style>
 </head>
<body>
 <figure>
 <h2> Figure Tag with Figcaption </h2>
 <img src="https://images.pexels.com/
photos/56866/garden-rose-red-pink-56866.jpeg?auto=
compress&cs=tinysrgbw=600" alt="flamingo">
 <figcaption><i>fig. 1</i> A pink Flower.
</figcaption>
 </figure>
</body>
</html>

The output of the code is given below.

<figure> tag.

46 ◾ HTML: The Ultimate Guide

<figcaption> tag
<figcaption> is a block-level tag that defines a caption for the <figure> ele-
ment discussed in the previous section. The <figcaption> tag is normally
encoded as the first or last child element of the <figure> tag.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border: 1px solid darkblue;
height: 100px;
margin: 2px;
}
nav{
 border: 1px solid darkblue;
height: 120px;
margin: 2px;

}
main{
height: 200px;
display: flex;
flex-direction: row;

}
.section1{
height: 200px;
width:80%;
display: flex;
flex-direction: column;

}

Crash Course HTML ◾ 47

section{
 border: 1px solid darkblue;
 height: 120px;
 flex-direction: row;
margin: 2px;

}

article{
 border: 1px solid darkblue;
 height: 140px;
 flex-direction: row;
 margin: 2px;

}
aside{
 border: 1px solid darkblue;
 width: 30%;
 margin: 2px;
}
footer{
 border: 1px solid darkblue;
height: 100px;
margin: 2px;
background-color: chocolate;

}

 </style>
 </head>
<body>
 <figure>
 <h2> Figure Tag with Figcaption </h2>
 <img src="https://images.pexels.com/
photos/56866/garden-rose-red-pink-56866.jpeg?auto=
compress&cs=tinysrgb&w=600" alt="flamingo">
 <figcaption><i>fig. 1</i> A pink Flower.
</figcaption>
 </figure>
</body>
</html>

48 ◾ HTML: The Ultimate Guide

Control Tags

Another category of tags that can be created is ‘Control Tags’. Script tags,
radio buttons or checkboxes, Form tags, etc. are control tags. These are
tags that are used when managing content or managing scripts or libraries
that are external. All form tags, dropdowns, input text fields, etc. are used
when interacting with a visitor or user.

The HTML tags are based on the type of tags and their usefulness.
HTML tags can also be easily divided based on basic categories such as
basic root tags, text formatting tags, audio and video tags, form and input
tags, frames, links, lists, tables, styles, meta tags, etc.

HTML Tag List

There are various tags in HTML. You will get tags in alphabetical order below.19

Tags Description

<!--...-->
<!doctype>

It describes a comment text in the source code
It defines a document type

<a>

<abbr>
<acronym>
<address>
<applet>
<area>
<article>
<aside>
<audio>

It specifies an anchor (Hyperlink)
It is used for link in internal/external web documents
It describes an abbreviation (acronyms)
It describes an acronyms
It describes an address information
It describes embedding an applet in HTML document
It defines an area in an image map
It defines an article
It describes contain set
It specifies audio content

<base>

It specifies text weight in bold
It defines a URL base for all the links within a web page

<basefont>
<bb>
<bdo>
<big>
<blockquote>
<body>

<button>

It describes a default font color, size, and face in a document
It defines browser command that invokes as per client action
It specifies direction of text display
It defines a big text
It specifies a long quotation
It specifies a main section (body) part in HTML document
It specifies a single-line break
It specifies a press/push button

<canvas>
<caption>
<center>
<cite>
<code>
<col>
<colgroup>
<command>

It specifies the display of graphics on HTML web document
It specifies a table caption
It specifies a text is display in center align
It specifies a text citation
It specifies computer code text
It specifies a column within a <colgroup> element in table
It specifies a group of more than one column inside table
It specifies a command button that invokes as per user action

(Continued)

Crash Course HTML ◾ 49

<datagrid>
<datalist>

<dd>

<details>
<dfn>
<dialog>
<dir>
<div>
<dl>
<dt>

It specifies a represent data in Datagrid either list wise or tree wise
It specifies a list of predefined options for an <input> element that used
to provide an “autocomplete” feature for <input> elements. The
<datalist> id attribute should be equal to the <input> element’s list
attribute

It specifies a definition description in a definition list
It specifies text deleted in web document
It specifies an additional details hide or show as per user action
It specifies a definition team
It specifies a chat conversation between one or more persons
It specifies a directory list
It specifies a division part
It specifies a definition list
It specifies a definition team

<embed>
<eventsource>

It specifies a text is in emphasized format
It defines a embedding external application using a relative plug-in
It defines a source of event generated to remote server

<fieldset>
<figcaption>
<figure>

<footer>

It defines a grouping of related form elements
It defines a caption text corresponding with a figure element
It defines self-contained content corresponding with a <figcaption>
element

It defines a font size, font face, and font color for its text
It defines a footer section containing details about the author, copyright,
contact us, sitemap, or links to related documents

<frame>
<frameset>
<form>

It defines frame window
It is used to hold one or more <frame> elements
It defines a form section that has interactive input controls to submit
form information to a server

<h1> to <h6>
<head>

<header>
<hgroup>

<html>

It defines heading levels from 1 to 6 of different sizes
It defines header section of HTML document. It defines as a container
that holds introductory content or navigation links

It describes the heading of a section that holds the h1 to h6 tags
<hr /> It represents a thematic break between paragraph-level tags. It
typically draws a horizontal line

It defines a document as an HTML markup language
<i>
<iframe>

<input>
<ins>

<isindex>

It defines an italic format text
It defines an inline frame that embedded external content into the
current web document

It is used to insert image into a web document
It defines to get information in selected input
It is used to indicate text that is inserted into a page and indicates
changes to a document

It is used to create a single-line search prompt for querying the contents
of the document

<kbd>
<keygen>

It is used to identify text that represents keyboard input
It is used to generate a signed certificate, which is used to authenticate
services

(Continued)

Tags Description

50 ◾ HTML: The Ultimate Guide

<label>
<legend>

<link>

It is used to caption a text label with a form <input> element
It is used to add a caption (title) to a group of related form elements that
are grouped together into the <fieldset> tag

It defines a list item either as an ordered list or unordered list
It is used to load external stylesheets into HTML document

<map>
<mark>
<menu>
<meta>
<meter>

It defines a clickable image map
It is used to highlight (marked) specific text
It is used to display an unordered list of items/menu of commands
It is used to provide structured metadata about a web page
It is used to measure data within a given range

<nav>
<noframes>

<noscript>

It is used to define a group of navigation links
It used to provide a fallback content to the browser that does not
support the <frame> element

It is used to provide a fall-back content to the browser that does not
support the JavaScript

<object>

<optgroup>

It is used to embed objects such as images, audio, videos, Java applets,
and Flash animations

It defines an ordered list of items
It is used to create a grouping of options, the related options are
grouped under specific headings

<option>

<output>

It represents option items within a <select>, <optgroup>, or <datalist>
element

It is used for representing the result of a calculation
<p>
<param>
<pre>
<progress>

It is used to represent a paragraph text
It provides parameters for embedded object element
It is used to represent preformatted text
It represents the progress of a task

<q> It represents the short quotation
<rp>

<rt>
<ruby>

It is used to provide parentheses around fall-back content to the
browser that does not support the ruby annotations

It specifies the ruby text of ruby annotation
It is used to represent a ruby annotation

<s>
<samp>

<script>
<section>
<select>
<small>
<source>

<strike>

<style>
<sub>
<sup>

The text displays in a strikethrough style
It represents text that should be interpreted as sample output from a
computer program

It defines client-side JavaScript
It divides a document into a number of different generic sections
It is used to create a drop-down list
It is used to make the text one size smaller
It is used to specify multiple media resources
It is used to group and apply styles to inline elements
It represents strikethrough text
It represents strong emphasis greater important text
It is used to add CSS style to an HTML document
It represents inline subscript text
It defines inline superscript text

Tags Description

(Continued)

Crash Course HTML ◾ 51

<table>
<tbody>
<td>
<textarea>
<tfoot>

<th>
<thead>

<time>
<title>
<tr>
<track>
<tt>

It is used to define a table in an HTML document
It is used for grouping table rows
It is used to create standard data cell in an HTML table
It creates a multiline text input
It is used to add a footer to a table that contains a summary of the table
data

It is used to create header of a group of cell in an HTML table
It is used to add a header to a table that contains header information of
the table

It represents the date and/or time in an HTML document
It represents title of an HTML document
It represents a row of cells in a table
It defines text tracks for both the <audio> and <video> tags
It defines teletype text

<u>

It defines underlined text
It defines an unordered list of items

<var>

<video>

It defines a variable in a computer program or mathematical
equation

It is used to embed video content
<wbr> It defines a word break opportunity

WHAT IS AN HTML EDITOR?
An editor is software for creating and editing HTML code.20 It can be
standalone software designed for writing and editing code or part of an
Integrated Development Environment (IDE). The HTML editor provides
more advanced features and is specially designed for developers to create
websites more efficiently. It ensures that every line of code is clean and
working properly.

There are several professional editors that web developers use for cod-
ing. However, not every editor can satisfy all your needs. A good HTML
editor must therefore have the following features:

• syntax highlighting – display of text, especially source code, in dif-
ferent colors and fonts,

• tab display support – keep multiple web pages open in tabs at the
same time,

• checking for errors in the HTML document,

• code wrapping – hiding large code fragments leaving only a line.

Tags Description

52 ◾ HTML: The Ultimate Guide

Some HTML editors can also translate HTML into a programming
language such as CSS, XML, or JavaScript. This means that differ-
ent types of HTML editors can offer different sets of functions and
features.

The most popular HTML editors are listed below:

• WebStorm

• Visual Studio Code

• Atom

• Sublime text

• Notepad++

• HTML-Kit

• CoffeeCup

• Bluefish

• Sublime

HTML COMMENTS
The comments are usually added with the purpose of making the source
code easier to understand. It may help other developers to understand
what you were trying to do with the HTML. Comments are not displayed
in the browser.

Syntax:

<!-- Comments here -->

An HTML comment starts with <!-- and ends with --> as shown in the
example below:

<!-- This is an HTML comment -->
<!-- This is a multiline HTML comment
 !-- This is a multiline HTML commentmple
 omme<p>This is a normal text.</p>

Crash Course HTML ◾ 53

The comment tag is useful when debugging code.

• This is a simple piece of code that web browsers delete (ignore), i.e.
the browser does not display it.

• It helps the coder and the reader to understand the part of code used
especially in complex source code.

TYPES OF HTML COMMENTS
There are three types of comments in HTML:21

• Single line comment: A single line comment is given inside a tag
(<!– comment –>). Example,

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }

 </style>
 </head>
<body>
 <h2> HTML Comments </h2>

<!-- The following code is a paragraph-->
<p> Here you are learning multiline HTML Comments
</p>

<!-- The following code is a Heading-->
<p> Here you are learning single HTML Comments </
p>
</body>
</html>

54 ◾ HTML: The Ultimate Guide

Multiline comment: This comment can be given by the syntax
(<!– –>), basically it is the same as used in a single line comment, the
difference is half of the comment part (“ –> ”), is appended where to
intended the comment line ends. Example,

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }

 </style>
 </head>
<body>
 <h2> HTML Comments </h2>
<!--Comments can be used to
add multiple line
on to the HTML Document.-->
<p> Here you are learning multiline HTML Comments
</p>
</body>
</html>

• Using the <comment> tag: There used to be an HTML <com-
ment> tag, but it is currently not supported by any modern browser.
Example,

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;

Crash Course HTML ◾ 55

 font-size: 20px;
 }

 </style>
 </head>
<body>
 <h2> HTML Comments </h2>

 <p>
 Only HTML <comment>not</comment>
 CSS
 </p>
</body>
</html>

Importance:

• It improves code readability, especially when multiple developers
access a single HTML document.

• It ensures fast and efficient understanding of complex codes.

• It makes debugging the source code easier and makes it easier to
maintain.

HTML TAG VS. ELEMENT
Tag

HTML tags and elements are sometimes recognized as the same thing.22
But it’s not. HTML elements and tags have subtle differences that many
people are unaware of.

HTML tags are the common building blocks of HTML pages. It tells the
browser how to present content to the user. A tag begins with a < bracket
and ends with a > bracket. In HTML, most tags exist in pairs. A tag has
a beginning part and an ending part. They are similar, except there is a /
character after the opening parenthesis in the closing part.

Syntax:

Opening tag: <TagName>
Closing tag: </TagName>

56 ◾ HTML: The Ultimate Guide

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 margin:0;
 padding:50px;
 font-size: 20px;
 }
 table, tr, td, th{
 border:2px solid black;
 }

 </style>
 </head>
<body>
 <h1> Main Heading </h1>
 <p> Paragraph </p>
 <p>Lorem ipsum dolor oo sit amet, consectetur
adipiscing elit. Nam tellus exi, posuere at mauris
sed, ullamcorper aefficitur augue. Phasellus eros
magna, fringilla in maalesuada sed, palacerat id
sem. Duis sodales mi id quaam lobortis semper.
Integer tisncidunt neque arcu, et tincidunt magna
posuere pretiuam. Mauris nec pretium ipsum. Sed
bibendum, sem sed elemeantum tincidunt, arcu ipsum
pellentesque eanim, sed tempor nibh metus
pellentesque libero.</p>

 <table>
 <tr>
 <th> Serial No </th>
 <th> Name </th>
 </tr>
 <tr>
 <td> 1 </td>
 <td> A </td>
 </tr>
 <tr>

Crash Course HTML ◾ 57

 <td> 2 </td>
 <td> B </td>
 </tr>
 <tr>
 <td>3</td>
 <td> C </td>
 </tr>
 </table>
</body>
</html>

All the <tag> and </tag> used above are referred as tags.

Element

HTML elements include start tags, content, and end tags. HTML ele-
ments are part of a website. Let’s say you created a div block and entered
some text into it. A div filled with text then becomes a component of the
HTML page. A tag, along with the content within it, becomes a compo-
nent and an HTML element. This will be rendered and displayed to the
user.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 margin:0;
 padding:50px;
 font-size: 20px;
 }

 </style>
 </head>
<body>
 <h1> Main Heading </h1>
 <p> Paragraph </p>
</body>
</html>

58 ◾ HTML: The Ultimate Guide

Key Points

Tags Elements

It consists of an opening and closing
bracket

It consists of a starting, content, and an end
tag

It consists of reserved keywords that have
a unique meaning

It consists of a generalized component that
user wants to display on their HTML page

They cannot be nested They can be nested

TYPES OF ELEMENTS

• Block Level: These elements are intended to structure the main part
of the page by dividing the content into full-width blocks.23

• paragraphs <p>

• lists: , , and

• headings <h1> to <h6>

• articles <article>

• sections <section>

• long quotes <blockquote>

• Division <div>

• Form <form>

• Table <table>

• Inline Level: These elements are meant to differentiate part of some
text, to give it a particular meaning. Inline elements usually com-
prise a single or few words.

• links <a>

• image

• span

• button <button>

• input <input>

• label <label>

Crash Course HTML ◾ 59

• textarea <textarea>

• emphasised words

• important words

• short quotes <q>

• Strong

TYPES OF HTML ELEMENTS
Elements can be placed in two different groups such as block-level elements
and row-level elements.24 The former forms the structure of the document,
while the latter dresses the contents of the block.

The block element also takes up 100% of the available width and is ren-
dered with line breaks before and after. Whereas an inline element only
takes up as much space as it needs.

The most commonly used block-level elements are <div>, <p>, <h1>
to <h6>, <form>, , , , etc. The commonly used row-level
elements are , <a>, , , , , <i>, <code>,
<input>, <button>, etc.

HTML ELEMENT SYNTAX
An HTML element is a separate part of an HTML document. It represents
semantics or meaning. For example, the title element represents the title
of the document.

Most HTML elements start with a start tag (or opening tag) and an end
tag (or closing tag), with content in between. Elements can also contain
attributes that define their other properties.

HTML uses tags for its syntax. The tag consists of special characters:
<, >, and /. They are interpreted by software to create an HTML element.

<p class="text"> This is a paragraph </p>

EMPTY HTML ELEMENTS
Empty elements (also called self-closing, void elements) are not container
tags, you cannot write <hr>here is your some content</hr> or
some
content</br>.25 A common example is the
 element, which represents
a line break. Some other common empty elements are , <meta>,
<input>, <link>, <hr>, etc.

60 ◾ HTML: The Ultimate Guide

Example:

<p>This paragraph contains break tag
 that
break line. </p>

<input type="text" name="user_name">

NESTING HTML ELEMENTS
Most HTML elements can contain a number of further elements, which
are made up of tags, attributes, and content or other elements.

Example:

<!DOCTYPE HTML>
<html>
 <head>
 <meta content="text/HTML; HTTP-
equiv="Content-Type" charset=utf-8">
 <title>Title of the document</title>
 <style>
 Body {
 width:500px;
 margin:0 auto,
 }
 </style>
 </head>

 <body>
 <h1> Nesting HTML Elements </h1>
 p> This is a paragraph that contain bold
text.</p>
 <p>This is a paragraph that contain
emphasized text. </p>
 <p>This is a paragraph that contain <mark>
highlighted </mark> text. </p>

</html>

CASE INSENSITIVITY IN TAGS
There are some tag and attribute names that are not case-sensitive (but
most attribute values are case-sensitive). It means the tags <P> and <p>
define the same thing in HTML, which is a paragraph. But in XHTML,
they are case-sensitive and the tag <P> is different from the tag <p>.

Crash Course HTML ◾ 61

Example:

<!DOCTYPE HTML>
<html>
 <head>
 <meta HTTP-equiv="Content-Type" content="text/
HTML; charset=utf-8">
 <title>Title of the document</title>
 <style>
 body{
 width:500px;
 margin:0 auto,
 }
 </style>
 </head>

 <body>
 <h1> Case Insensitivity in Tags and Attributes
</h1>
 <p> This is a paragraph. </p>
<P> This is also paragraph. </P>
 </body>
</html>

HTML ATTRIBUTES
An element’s attributes are expressed within the element’s start tag.26
Attributes have a name and its value. There should be no more than one
attribute with the same case-insensitive name in the same start tag. HTML
elements have attributes.

The attributes can be specified in four different ways:

• empty attribute syntax

• unquoted value syntax

• single-quoted value syntax

• double-quoted value syntax

Empty Attribute Syntax

Certain attributes could be specified by providing just the attribute name,
with no value.

62 ◾ HTML: The Ultimate Guide

For example, the disabled attribute is given with the empty attribute
syntax such as,

<input disabled>

Unquoted Value Syntax

Actually there are many tags with attributes with no values such as <input
type=“text” name=“country” value=“Norway” readonly> this is valid
HTML syntax as attributes have no values.

<input type=text value= readonly>

These are additional values that configure the element or adjust the ele-
ment’s behavior in various ways to meet the user’s desired criteria.27

GENERAL ATTRIBUTES
There are some attributes, such as id, style, title, class, etc., that you can
use on the majority of HTML elements.28 The following section describes
their usages.

The id Attribute

It is used to give a unique name or identifier to an element within a docu-
ment. It makes it easier to select the element using CSS or JavaScript.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta HTTP-equiv="X-UA-Compatible"
content="IE=edge">
 <meta content="width=device-width, initial-
scale=1.0" name="viewport" >
 <title>Document</title>
</head>
<body>
 <input type="text" id="firstName">
 <div id="container">Some content</div>
 <p id="info text">This is a paragraph.</p>
</body>
</html>

Crash Course HTML ◾ 63

The class Attribute

Same as id attribute, the class attribute is also used to identify elements.
But unlike id, the class attribute doesn’t have to be unique in the HTML
document. It means you can apply the same class to multiple elements in a
document, as shown in the following example,

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta HTTP-equiv="X-UA-Compatible"
content="IE=edge">
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <title>Document</title>
</head>
<body>
 <input type="text" class="highlight">
 <div class="box highlight">Some content</div>
 <p class="highlight">This is a paragraph.</p>
</body>
</html>

The title Attribute

It is used to provide text about an element or its content. The following
example is to understand how it actually works.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta HTTP-equiv="X-UA-Compatible"
content="IE=edge">
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <title>Document</title>
</head>
<body>
 <abbr title="WorldWideWeb Consortium"> W3C </abbr>
 <a href="images-kites.jpg" title="Click to view a
larger image">

64 ◾ HTML: The Ultimate Guide

</body>
</html>

The style Attribute

It allows to specify CSS styling rules such as color, font, border, etc. within
the element. Let’s check an example to see how it works.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta HTTP-equiv="X-UA-Compatible"
content="IE=edge">
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <title>Document</title>
</head>
<body>
 <p style="color: blue;">This is a paragraph.</p>
 <img src="images/sky.jpg" style="width: 200px;"
alt="Cloudy Sky">
 <div style="border: 1px solid red;">Some content
</div>
</body>
</html>

ANATOMY OF AN HTML ELEMENT
Let’s explore these elements a little further. The main parts of the element
are as follows:29

• Opening tag: It consists of the name of the element (in this case p),
wrapped in opening and closing curly braces. It is where the element
begins or takes effect – in this case, the paragraph begins.

• Closing tag: It is similar to the opening tag, that it includes a slash
before the element name. It is used where the element ends – in this
case, where the paragraph ends.

Crash Course HTML ◾ 65

• Content: It is the data of the element, that is just text.

• Element: The opening tag, closing tag, and content together form an
element.

Example:

<!DOCTYPE HTML>
<html>
 <head>
 <meta content="text/HTML; HTTP-equiv="Content-
Type" charset=utf-8">
 <title>Title of the document</title>
 <style>
 body{
 width:500px;
 margin:0 auto;
 background-color: YellowGreen;
 }
 h1 { color: blue; }
img{
 width: 200px;
 height: 200px;
}

 </style>
 </head>

 <body>
 <h1> HTML Sample </h1>
 <!DOCTYPE html>
<html lang="en-US">
 <head>
 <meta charset="utf-8">
 <meta name="viewport"
content="width=device-width">
 <title>My test page</title>
 </head>
 <body>
 <p> This is a simple paragraph </p>
 <img src="https://images.pexels.com/
photos/11858609/pexels-photo-11858609.jpeg?auto=co

66 ◾ HTML: The Ultimate Guide

mpress&cs=tinysrgb&w=300&lazy=load" alt="My test
image">
 </body>
</html>

Here we have the following:

• <!DOCTYPE html> – document type. It is a mandatory preamble.
Back in the mists of time when HTML was still young (around
1991/1992), doctypes were supposed to act as references to a set of
rules that an HTML page follows to consider good HTML, which
mean automatic error checking and other things. However, these
days they do not do more and basically just needed to make your
document behave properly. That’s all need to know for now.

• <html> </html> – <html> element. This element wraps all content on
the entire page and is sometimes called the root element. It also con-
tains the lang attribute that sets the primary language of the document.

• <head> </head> – <head> element. This element acts as a container
for any content you want to include in your HTML page that isn’t the
content you’re displaying to your page viewers. This includes things
like keywords and page description to appear in search results, CSS
to style our content, character set declarations, and more.

• <meta charset=“utf-8”> – This element sets the character set your
document should use to UTF-8, which includes characters from the
vast majority of written languages. Basically, it can now handle any
textual content you place on it. It has no reason not to set this up and
it may help you avoid some problems later on.

• <meta name=“viewport” content=“width= ‘device-width’> – This
viewport element ensures that the page is rendered to the width of
the viewport, preventing mobile browsers from rendering pages
wider than the viewport and then scaling them down.

• <title> </title> – <title> element. It sets the title of the page, which
is the name that will appear in the browser tab in which the page is
loaded. It is used to describe the page when bookmark/favorite it.

• <body> </body> – <body> element. It contains all the content you
want to display to web users when they visit your page, whether it’s
text, images, videos, games, playable audio tracks, or anything else.

Crash Course HTML ◾ 67

Elements can have attributes that look like the ones below.

<p class="note"> This is an important note </p>

Attributes contain additional information about an element that you
don’t want to appear in the actual content. Class here is the name of the
attribute and editor note is the value of the attribute. The class attribute
allows you to give an element a nonunique identifier that can be used to
target it with style information and more.

The attribute should always have the following:

• The space between it and the element name (or the preceding attri-
bute if the element already has one or more attributes).

• Attribute name followed by an equal sign.

• Attribute value wrapped in opening and closing quotes.

SEMANTICS OF EMBEDDED TEXT
Use HTML inline text semantics to define the meaning, structure, or style
of a word, line, or any text.

<a> The <a> element (or anchor element) with href attribute creates a
hyperlink to pages, files, emails, locations on the particular page, or any-
thing else that a URL can address.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
nav {
 list-style-type: none;
 margin: 0;
 padding: 0px;
 overflow: hidden;
 background-color: lightgray;
}

li {
 float: left;
 border-right: 1px solid blue;
}

68 ◾ HTML: The Ultimate Guide

li a {
 display: block;
 color: blue;
 font-size:20px;
 text-align: center;
 padding: 10px 20px;
 text-decoration: none;
}
.active{
background-color: gray;
color: white;
}
li a:hover {
 background-color: orange;
 color: white;
}

</style>
</head>
<body>

<header>
 <h2> Nav Tag </h2>
 <nav>
 Home

 Java
 HTML
 CSS
 </nav>
 </header>

</body>
</html>

Tag <a>.

<abbr> The <abbr> element defines an abbreviation or acronym.

Crash Course HTML ◾ 69

Example:

<!DOCTYPE html>
<html>
<head>
<style>
nav {
 list-style-type: none;
 margin: 0;
 padding: 0px;
 overflow: hidden;
 background-color: lightgray;
}

li {
 float: left;
 border-right: 1px solid blue;
}

li a {
 display: block;
 color: blue;
 font-size:20px;
 text-align: center;
 padding: 10px 20px;
 text-decoration: none;
}
.active{
background-color: gray;
color: white;
}
li a:hover {
 background-color: orange;
 color: white;
}

</style>
</head>
<body>
<h2> Paragraph tag </h2>
 <p>You can use <abbr>CSS</abbr> (Cascading Style
Sheets) to style your <abbr>HTML</abbr> (HyperText
Markup Language).
 Using style sheets, you

70 ◾ HTML: The Ultimate Guide

can keep your <abbr>CSS</abbr> presentation layer
and <abbr>HTML</abbr> content layer separate. This
is called "separation of concerns."</p>

</body>
</html>

Tag <p>.

The element is used to draw the reader’s attention to the con-
tent of an element that is otherwise given no particular meaning. This was
known as the Boldface element, and the most browsers draw text in bold.
However, you cannot use to style text; instead, you should use the CSS
font-weight property to make the text bold, or the strong element to indi-
cate that the text has special importance.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
div {
 list-style-type: none;
 margin: 0;
 padding: 0px;
 overflow: hidden;
}

li {
 float: left;
 border-right: 1px solid black;
 color:black;
}

li a {
 display: block;

Crash Course HTML ◾ 71

 font-size:20px;
 text-align: center;
 padding: 10px 20px;
 text-decoration: none;
 color:black;

}

</style>
</head>
<body>

<header>
 <h2> Normal text </h2>
 <div>
 Home</
a>
 Java
 HTML
 CSS
 </div>

 <h2> Bold tag </h2>
 <div>

Home
 Java
 HTML
 CSS
 </div>
 </header>

</body>
</html>

Tag .

72 ◾ HTML: The Ultimate Guide

 The HTML element indicates text that is highlighted. The
 element can nest, with each level of nesting indicating a greater
degree of emphasis.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

</style>
</head>
<body>
 <h1> p tag </h1>
 <p>
 Curabitur lacinia lectus ut quam tincidunt,
Lorem sit amet commodo dolor pharetra.
Curabitur lacinia lectus ut quam tincidunt, sit
amet commodo dolor pharetra.
 </p>

</body>
</html>

Tag .

Crash Course HTML ◾ 73

The <i> <i> HTML element represents a range of text that differs from
normal text for some reason, such as text, technical terms, taxonomic
labels, among others. Historically, this data was shown in italics, which is
the original source of the <i> naming of this element.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

</style>
</head>
<body>
 <h1> i tag </h1>
 <i>
 Curabitur lacinia lectus ut quam tincidunt,
Lorem sit amet commodo dolor pharetra.Curabitur
lacinia lectus ut quam tincidunt, sit amet commodo
dolor pharetra.
</i>

</body>
</html>

Tag .

74 ◾ HTML: The Ultimate Guide

<q> The <q> element indicates that the attached text is a short-embedded
citation. Most modern browsers are implemented by surrounding the text
with quotation marks. This element is intended for short citations that do
not require paragraph breaks; use the blockquote element for long quotes.

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

</style>
</head>
<body>
 <h1> q tag </h1>
 <p>Inspirational Quotes : <q>Keep smiling, because
life is a beautiful thing and there's so much to smile
about. </q></p>
</body>
</html>

Tag <q>.

<kbd> The <kbd> HTML element represents a range of embedded text
indicating textual user input from a keyboard, voice note, or any other
text input device. By convention, the user agent renders the content of the
<kbd> element using its default monospaced font by default, although the
HTML standard does not mandate this.

Crash Course HTML ◾ 75

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

</style>
</head>
<body>
 <h1> kbd tag </h1>
 <p> Please press <kbd>Ctrl</kbd> + <kbd> C </
kbd> to copy any content. </p>
 <p> Please press <kbd>Ctrl</kbd> + <kbd> X </
kbd> to cut any content. </p>
 <p> Please press <kbd>Ctrl</kbd> + <kbd> V </
kbd> to paste any content. </p>
</body>
</html>

Tag <kbd>.

<mark> The HTML <mark> element represents text that is marked or
highlighted for reference or notation purposes because of the relevance or
importance of the marked passage in the accompanying context.

76 ◾ HTML: The Ultimate Guide

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

</style>
</head>
<body>
 <h1> mark tag </h1>
<p> <mark> Lorem </mark> ipsum dolor sit amet,
consectetur adipiscing elit. Cras id tincidunt
dui. Fusce congue metus leo, vitae condimentum
purus malesuada vel.</p>
<p><mark> Lorem </mark> ipsum dolor sit amet,
consectetur adipiscing elit. Cras id tincidunt
dui. Fusce congue metus leo, vitae condimentum
purus malesuada vel.</p>
</body>
</html>

Tag <mark>.

Crash Course HTML ◾ 77

<time> The <time> element used to represents a specific time period.
It can include a DateTime attribute to convert the data into a machine-
readable format, allowing for search engine results or also custom features
such as reminders.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}
.language{
 color:red;
 font-size:20px
}

</style>
</head>
<body>
 <h1> time tag </h1>
 <p>We will be celebrating our 40th anniversary
on <time datetime="2018-07-07">July 7</time> in
London's Hyde Park.</p>
 <p>The show starts at <time
datetime="20:00">20:00</time> and you will be able
to enjoy the function for at least <time
datetime="PT2H30M">2h 30m</time>.</p>
 </body>
</html>

78 ◾ HTML: The Ultimate Guide

Tag <time>.

 The element is an inline container for phrasing con-
tent that doesn’t actually represent anything. It can use to group elements
for styling elements (use the class or id attributes), or the attribute values
such as lang. It should be used when no other semantic element is suitable.
 is very similar to the div element, but the div element is a block-
level element, whereas the element is an inline element.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}
.language{
 color: red;
 font-size:20px
}

</style>
</head>
<body>
 <h1> span tag </h1>

Crash Course HTML ◾ 79

 <p> There are various programming languages such
as
 Python ,
 Java ,
 JavaScript ,
 Swift ,
 C etc.
 </p>
</body>
</html>

Tag .

 The element indicates that its content is of great
importance, severity, or urgency. Browsers usually render content in bold.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}
.language{
 color:red;
 font-size:20px
}

80 ◾ HTML: The Ultimate Guide

</style>
</head>
<body>
 <h1> strong tag </h1>
 <p>Normal Text - There are various programming
languages such as Python, Java, JavaScript, Swift,
C etc. </p>
 Strong Text - There are various
programming languages such as Python, Java,
JavaScript, Swift, C etc.
</body>
</html>

Tag .

<sub> The HTML <sub> element specifies embedded text that should
be displayed as a subscript for typographical reasons only. Subscripts are
usually rendered with a reduced outline using smaller text.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{

Crash Course HTML ◾ 81

 border-bottom: 1px solid green;
}
.language{
 color:red;
 font-size:20px
}

</style>
</head>
<body>
 <h1> sub tag </h1>
 <p> Sub Script : H ₂ O </p>
</body>
</html>

Tag <sub>.

<sup> The HTML <sup> element specifies embedded text to be dis-
played as a superscript for typographical reasons only. Superscripts are
usually rendered with a raised outline using smaller text.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

82 ◾ HTML: The Ultimate Guide

.language{
 color:red;
 font-size:20px
}

</style>
</head>
<body>
 <h1> sup tag </h1>
 <p> Super Script: (a+b) ² </p>
</body>
</html>

Tag <sup>.

<u> The <u> HTML element represents a range of inline text that
should be rendered in a way that indicates it contains non-textual anno-
tation. This is rendered as a simple solid underline by default but can be
changed with CSS.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
em{
 border-bottom: 1px solid green;
}

Crash Course HTML ◾ 83

 .language{
 color:red;
 font-size:20px
}

</style>
</head>
<body>
 <h1> u tag </h1>
 <p> Normal Text - There are various programming
languages such as Python, Java, JavaScript, Swift,
C etc. </p>
 <u> Underline Text - There are various
programming languages such as Python, Java,
JavaScript, Swift, C etc. </u>
 </body>
 </html>

Tag <u>.

TABLES
We use tables to display information that is presented in tabular form. The
common use of tables is to control the layout of a page.

Most of the tables are made up of the following elements:

• < table> – The element containing all information about the table

• < tr> – the ‘table row’ element that defines a row

• < th> – the ‘table heading’ element that defines a heading cell

• < td> – the ‘table data’ element that defines a cell

• The < table> element should appear within the document’s < body>
element.

84 ◾ HTML: The Ultimate Guide

Example:

<html>
<head>
<title> Title <title>
 </head>
<body>
<!-- Some elements could appear here -->
<table>
 <tr> <!-- Beginning of the 1st row -->
 <th> Row 1, column 1 </th> <!-- 1st
heading cell in this row -->
 <th> Row 1, column 2</th> <!-- 2nd
heading cell in this row -->
 </tr> <!-- End of the 1st row -->
 <tr>
 <td> Row 2, column 1 </td>
 <td> Row 2, column 2 </td>
 </tr>
 <tr> <!-- Beginning of the 3rd row -->
 <td> Row 3, column 1 </td> <!-- 1st data
cell in this row -->
 <td>Row 3, column 2</td> <!-- 2nd data
cell in this row -->
 </tr> <!-- End of the 3rd row -->
 <tr>
 <td> Row 4, column 1 </td>
 <td> Row 4, column 2 </td>
 </tr>
</table>
</body>
</html>

Tag <table>.

Crash Course HTML ◾ 85

OTHER INTERACTIVE ELEMENTS
HTML offers a selection of elements that help create interactive user inter-
face objects.

<details> The HTML <details> element creates an accessibility widget
in which information is only visible when the widget is switched to the
“open” state. A label must be provided using the details element.

Syntax:

<details>
 <summary> Text content </summary>
 <div> Content. . . >
</details>

Example:

<html>
<head>
<title> Title </title>
 </head>
<body>
 <h2> Details tag </h2>
 <details>
 <summary> Front end Technology: </summary>
 <div> 1. HTML (HyperText Markup Language)
</div>
 <div> 2. CSS (Cascading Style Sheets)
</div>
 <div> 3. JavaScript </div>
 <div> 4. React </div>
 <div> 5. Angular </div>
 <div> 6. Vue </div>
</details>
<details>
 <summary> Back end Technology: </summary>
 <div> 1. JavaScript </div>
 <div> 2. Python </div>
 <div> 3. Ruby </div>
 <div> 4. PHP </div>
 <div> 5. Java </div>
 <div> 6. Scala </div>
</details>
</body>
</html>

86 ◾ HTML: The Ultimate Guide

tag <details>.

<dialog> The <dialog> element represents a dialog box or other compo-
nent, such as a dismissable alert, inspector, or pane.

Example:

<html>
<head>
<title> Title </title>
 </head>
<body>
 <h2> dialog tag </h2>
 <div>
 <dialog id="DialogExample">
 <p>
 Here is some text for example.
 </p>
 <button id="hide">Close dialog text</button>
 </dialog>
 <button id="show">Show dialog text</button>
 </div>
 <script type="text/JavaScript">
 (function() { var dialog = document.getElement
ById('DialogExample'); document.

Crash Course HTML ◾ 87

getElementById('show').onclick = function() {
dialog.show(); }; document.getElementById('hide').
onclick = function() { dialog.close(); }; })();
 </script>
</body>
</html>

Tag <dialog>.

<summary> The HTML <summary> element specifies a summary,
title, or legend for the disclosure field of the detail element. Clicking on
the <summary> element toggles the open and closed state of the parent
<details> element.

<html>
<head>
<title> Title </title>
 </head>
<body>
 <h2> Details tag </h2>
 <details>
 <summary> Front end Technology: </summary>
 <div> 1. HTML (HyperText Markup Language)
</div>
 <div> 2. CSS (Cascading Style Sheets) </div>
 <div> 3. JavaScript </div>
 <div> 4. React </div>
 <div> 5. Angular </div>
 <div> 6. Vue </div>
</details>
<details>
 <summary> Back end Technology: </summary>
 <div> 1. JavaScript </div>
 <div> 2. Python </div>

88 ◾ HTML: The Ultimate Guide

 <div> 3. Ruby </div>
 <div> 4. PHP </div>
 <div> 5. Java </div>
 <div> 6. Scala </div>
</details>
</body>
</html>

HTML CHARACTER ESCAPE
In HTML, escape characters can be used to represent any Unicode charac-
ter using only ASCII characters. Character escapes used in markup include
numeric characters and named character references. You can use numeric
or named character references, and CSS escapes to represent characters in
HTML style attributes.

In the following you can find the complete list of the useful HTML
escape characters in order:30

• Lower Case Alphabets

• Upper Case Alphabets

• Numeric Value

• Other Various Symbols

Lower Case Alphabets

ASCII Number Sign Name Explanation

 97 a
 98 b
 99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n

a
b
c
d
e
f
g
h
i
j
k
l

m
n

a
b
c
d
e
f
g
h
i
j
k
l
m
n

Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase

(Continued)

Crash Course HTML ◾ 89

111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z

o
p
q
r
s
t
u
v
w
x
y
z

o
p
q
r
s
t
u
v
w
x
y
z

Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase
Lowercase

Upper Case Alphabets

65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase
Uppercase

ASCII Number Sign Name Explanation

90 ◾ HTML: The Ultimate Guide

Numeric Value

49
50
51
52
53
54
55
56
57

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Digit 1
Digit 2
Digit 3
Digit 4
Digit 5
Digit 6
Digit 7
Digit 8
Digit 9

Other Symbols

ASCII Number Sign Name Code

 9
10
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Tab
New Line
Space
!
“

$
%
&
‘
(
)
*
+
,
–
.
/

	

!
"
#
$
%
&
'
(
)
*
+
,
-
.
/

	

Exclamation mark
"
Number sign
Dollar sign
Percent sign
& Ampersand
Apostrophe
Opening/Left parenthesis
Closing/Right parenthesis
Asterisk
Plus sign
Comma
Hyphen
Period
Slash

58
59
60
61
62
63
64

:
;
<
=
>
?
@

:
;
< (<)
=
> (>)
?
@

Colon
Semicolon
Less-than
Equals sign
Greater than
Question mark
At sign

91
92
93
94
95
96

[
\
]
^
_
`

[
\
]
^
_
`

Opening/Left square bracket
Backslash
Closing/Right square bracket
Caret
Underscore
Grave accent

(Continued)

Crash Course HTML ◾ 91

123
124
125
126
128
130

{
|
}
~
€
‚

{
|
}
~
€
‚

Opening/Left curly brace
Vertical bar
Closing/Right curly brace
Tilde
Euro sign
Punctuation mark

177 ± ± (±) Plus or minus

TEXT FORMATTING TAGS
HTML formatting is a process that allows formatting Text to increase its
visual appeal.31 Various HTML tags can change the appearance of Text on
a web page and make the Text attractive. We can use text formatting tags
for bold, italics, underline, and more.

The following example shows the commonly used HTML formatting
tags. Now try to understand how these tags actually work.

• <small>

• <tt>

• <u>

•

•

• <i>

•

• <mark>

• <sup>

•

• <ins>

• <strie>

• <big>

• <sub>

• <small>

• <big>

ASCII Number Sign Name Code

92 ◾ HTML: The Ultimate Guide

The below table will tell the basic definition of the formatting tags.

HTML Text Formatting Tag Description

 It specifies bold text
 It works same as the tag but denotes important text
<i> It defines italics text
 It specifies the emphasized text
<mark> It defines highlighted text
<sup> It shows superscripted text
<sub> It shows subscripted text
<small> It is used to specify text with a smaller font size
<big> It is used to specify text with a larger font size
 It is used to define deleted text
<ins> It is used to define inserted text
<strike> It is used to draw a strikethrough on a section of text. But

it is not supported in HTML5
<big> It increases the font size by one conventional unit
<small> . It decreases the font size by one unit from the base font

size
<u> It is used to underline text written between it
<tt> It is used to appear as a text in teletype. But it is not

supported in HTML5

HTML PHRASE TAG
The HTML phrase tags are special tags, which define the structural mean-
ing of a block of text or semantics of text.32 The following is the list of
phrase tags, some of which we have already discussed in HTML format-
ting above.

• Abbreviation tag: <abbr>

• Acronym tag: <acronym>

• Definition tag: <dfn>

• Quoting tag: <blockquote>

• Short quote tag: <q>

• Code tag: <code>

• Keyboard tag: <kbd>

• Address tag: <address>

Crash Course HTML ◾ 93

HTML FORMS
Forms offer controls for almost every application use. Using form con-
trols and fields, we can request small and large amounts of information
such as user ID, password, billing details, job application, etc. You create
and modify the form and its elements by resetting styles using the appear-
ance property, setting consistent style for the form, adding placeholder
responses for text fields, and customizing radio buttons and checkboxes
using various pseudo-classes and pseudo-elements.

Now first setup the basic HTML and CSS code for forms then save the
file with index.html page. Begin by opening the index.html file in any cod-
ing editor. Then, add the following HTML code to provide a base structure
for the file.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <meta content="width=device-width,
name="viewport" initial-scale=1">
 <title>CSS Form</title>
 <link rel="stylesheet" href="styles.css" />
 </head>
 <body>
 <main>

Add your code here.

 </main>
 </body>
</html>

The elements contained in the <head> tag define the title of the page
with the <title> tag where to load the stylesheet using the <link> tag.
<meta> tags define the character encoding and guide the browser on how
to display the website on a small-screen device. The content of the form
will be placed inside the <body> and <main> tags.

Next, in the <main> tag, create a <form> element. Inside the <form> tag,
add various form elements and <div> elements to help with the layout. This
tutorial highlights the additions to the code from the previous steps. Add the
highlighted HTML from the following block of code to the index.html file.

94 ◾ HTML: The Ultimate Guide

BASIC STRUCTURE OF FORMS
In order to get information through a form, we must first learn how to
create it.33

Syntax:

<form action="URL" method="post">
 /* form inputs*/
 </form>

To add a form to a web page, we need to add a <form> tag. All input
fields and form controls should be wrapped in a <form> element. There are
many attributes available for a form element, but the most used or impor-
tant ones are action and method.

HTML – TEXT LINKS
The website may contain various links that take you directly to other pages
and even to specific parts of the page.34 These links are known as hyper-
links. It allows users to navigate between websites by clicking on words,
phrases, and images. It allows you to create hyperlinks using text or images
available on a web page.

The link is specified using the HTML <a> tag. This tag is called an
anchor tag, and anything between the opening <a> tag and the close.

HTML IMAGES
Images enhance the appearance of the web pages by creating them more
interesting and colorful. The elements are used to insert images in
the documents. It is an empty element that contains attributes only. The
syntax of the tag can be given below.

The following example adds three images on the web page:

<html>
<head>
<link rel="shortcut icon" href="favicon.ico"
type="image/x-icon">
</head>
<title> Example of favicon </title>
<body>

Crash Course HTML ◾ 95

 <img src="https://images.pexels.com/photos/13146110/
pexels-photo-13146110.jpeg?auto=compress&cs=tinysrgb&w
=300&lazy=load" alt=" Bird ">
</body>
</html>

Each image carries at least two attributes such as the src attribute
and an alt attribute. The attribute src tells the browser where to find
the image and its value is the URL of the image file. Whereas, the alt
attribute provides a text for the image if it cannot be displayed for some
reason because when the browser gets the path the image will show oth-
erwise the alt value will show. Its value must be a meaningful content for
the image.

Also, the tag has other various tags such as width and height of
an image. Both width and height attributes are used to specify the width
and height of an image.

<html>
<head>
<link rel="shortcut icon" href="favicon.ico"
type="image/x-icon">
</head>
<title> Example of favicon </title>
<body>
 <img src="https://images.pexels.com/photos/13146110/
pexels-photo-13146110.jpeg?auto=compress&cs=tinysrgbw=
300&lazy=load" alt=" Bird " width="300" height="300">
</body>
</html>

HTML iFRAMES
An iframe tag is used to display a nested web page (a web page within
a web page). The HTML <iframe> element defines an inline frame,
that’s why it’s also called an inline frame. An iframe works like a
mini web browser inside a web browser. Also, the content inside the
iframe element exists completely independently of the surrounding
elements.

96 ◾ HTML: The Ultimate Guide

An HTML iframe tag is defined with the <iframe> tag the syntax is
given below.

<iframe src="URL"> </iframe>

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}

#example-paragraphs {
 background-color: grey;
 overflow: hidden;
 resize: horizontal;
 width: 9rem;
}

</style>
</head>
<body>
 <h2> HTML Iframes </h2>
 <p> Not using the height and width attributes
</p>
 <iframe src="https://www.google.com/" >
</iframe>
 <p> Using the height and width attributes</p>
 <iframe src="https://www.google.com/"
height="300" width="400"> </iframe>
</body>
</html>

Crash Course HTML ◾ 97

Tag <iframe>.

You can set the width and height of the iframe by using “width” &
“height” attributes. The attribute values are specified in pixels by default,
but you can also set them in percentages like 50%, 60%, etc.

HTML – EMBED MULTIMEDIA
Embedding Multimedia in HTML is adding images, audio, video, and
other plugins to the web using special HTML tags, the web browser started
to support text and colors.35 Multimedia has interactive content. Let’s
understand HTML Embed Multimedia in detail.

Embedded Multimedia

Multimedia elements are embedded in the documents by various meth-
ods, which are also used to add media files to an HTML web page sup-
ported by various types and formats.

There are three ways to add multimedia to the web page.

98 ◾ HTML: The Ultimate Guide

The <embed> Tag
The <embed> tag is used to add multimedia files of external applications,
which are mainly audio and video, and other plugins to a web page.

• <embed> tag: Supported by most web browsers and new in HTML5.

• <embed> tag: It only has an opening tag and does not guarantee to
have a closing tag.

• <noembed> tag: Used when no web browser recognizes the HTML
<embed> tag.

Syntax:

<embed src="URL">

The source (src) attribute is used to embed media into a document with
the <embed> tag, and various media types are supported in <embed>
elements.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 width: 100%;
}

td, the {
 border: 1px solid black;
 text-align: left;

Crash Course HTML ◾ 99

 padding: 8px;
}

tr:nth-child(even) {
 background-color: #dddddd;
}
</style>

</head>
<body>
 <h2> HTML Embeded Multimedia (embed tag)</h2>
 <embed src="https://images.pexels.com/
photos/1781932/pexels-photo-1781932.jpeg?auto=comp
ress&cs=tinysrgb&w=400&lazy=load" height="400"
width="400"> </embed>
 </body>
</html>

Tag <embed>.

The <bgsound> Tag
You can use the <bgsound> HTML tag to play an audio track in the
background of your web page. Only Internet Explorer supports this tag,
and most other browsers ignore this tag. When a user first downloads

100 ◾ HTML: The Ultimate Guide

and displays a host document, it downloads and plays an audio file. The
background audio file will also play whenever the user refreshes the
browser.

Points to remember:

• The <bgsound> tag in an HTML document is used to add back-
ground sound media to a web page.

• <bgsound> tag: Mainly used in Internet Explorer and ignored by
most browsers. It is deprecated from the latest version of HTML.

• <bgsound> tag: Used when playing background sound repeatedly
whenever the browser refreshes the HTML document.

• <audio> tag: Used in the latest version of HTML instead of the
<bgsound> tag.

• <bgsound> tag: It does not display any content, only the accompany-
ing sound in the HTML document.

There are two main attributes used in the <bgsound> element to add
background sound.

• loop – Defines how many times the background sound will be played
in a loop with specified conditions.

• src – Defines the URL path to the embedded audio track.

HTML <object> Tag
HTML 4 introduces the <object> element, which offers a universal solu-
tion for embedding generic objects. The <object> element allows HTML
authors to specify everything an object requires to be presented by a user
agent. The <object> tag is used to add external object multimedia files,
which are mainly audio, images, pdf, flash, video, and other web pages to
the current web page.

• The <object> tag is supported by web browsers. It was introduced in
HTML 4.

• The <object> element is defined in the <body> tag of an HTML
document.

Crash Course HTML ◾ 101

• The <param> tag is used as plugin parameters that have been
included with the <object> tag.

• An HTML document object can be defined under the <object> tag of
the current HTML document.

Here is the syntax of the object

<object type=""> </object> or <object data="">
</object>

• Attributes of the <object> tag: Common attributes used in the
<object> element to add multimedia to HTML are as follows:

• height: It defines the height of the multimedia object in pixels.

• form: It defines the form ID of the object element.

• width: It defines the width of the multimedia object in pixels.

• type: It defines the media type of the embedded plug-in.

HTML MARQUEE
The Marquee Element in HTML is used to handle the effect of scrolling
text and images in different directions using attributes on a web page of an
HTML document to improve the appearance of the web.36

Usage

The HTML <marquee> tag is a container tag used to define the scrolling
effect of a text or image element vertically or horizontally, or more pre-
cisely, the scrolling of the element is either top to bottom or vice versa or
left to right or vice versa.

The <marquee> tag supports global and event attributes and is only
supported by a few browsers, e.g. firefox, Internet explorer, safari, chrome,
etc. A marquee tag starts with an opening tag and ends with a closing tag
with the attribute value and content in between.

Syntax:

<marquee attribute name = "marquee attribute
value…"> content </marquee>

102 ◾ HTML: The Ultimate Guide

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:680px;
 margin:0 auto;
}
h1{
 text-align: center;
}
p{
 font-size:20px
}
</style>

</head>
<embed>
 <h1> HTML Marquee tag </h1>
 <marquee> <p> Lorem ipsum dolor sit amet,
consectetur adipiscing elit. In viverra nunc non
diam faucibus, non cursus metus elementum.
Vestibulum vel sapien sapien. Ut a est viverra,
tempus metus sed, lacinia mi. Suspendisse potenti.
</p> </marquee>
</body>
</html>

The output of the above mentioned code is given below.

Tag <marquee>.

Crash Course HTML ◾ 103

ATTRIBUTES IN <marquee> TAG
There are various attributes of <marquee> tag in HTML as given below:

Attributes Description

behavior The attribute is used to define the type of scrolling in the frame with
values like slide, scroll, and alternative.

Direction This attribute is used to define the scrolling direction with a value of
up, down, right, and left.

width The attribute is used to define the width of the selection in pixels or
percentages.

height The attribute is used to define the height of the selection in pixels or
percentages.

scroll delay The attribute is used to define the delay between scrolls in milliseconds.
scroll amount The attribute is used to define an interval in the selection speed in

numbers.
Loop The attribute is used to define the number of times to scroll the frame

in number, the default number is infinite.
Vspace The attribute is used to define the vertical space around the frame with

a value in pixels.
Hspace The attribute is used to define the horizontal space around the frame

with a value in pixels.

HTML Properties

Before delving into this full HTML book, there are some basics that need
to be clarified. As a beginner, you should be aware of HTML properties
and features. Only then can you be interested in HTML programming.
Let’s discuss some important properties of HTML.

• Develop website structure. All blocks and elements on the web exist
because there is HTML.

• Simple, human-readable tags represent elements on web pages.
Therefore, they are easy to remember.

• Widely supported by all browsers. It is a markup language for web
development.

• HTML5 can help improve your gaming experience.

• Easy to learn and implement.

• It is platform-independent and works on all operating systems.

104 ◾ HTML: The Ultimate Guide

BENEFITS

• HTML is very easy to learn and understand. HTML is the first and
most important language for anyone learning web development.
Simple markup, HTML is not case-sensitive.

• There are only a few markings that serve the purpose. You don’t have
much to understand, so you can easily understand other people’s
code and modify it as needed. Moreover, if the developer forgets to
close the tag or makes some mistakes in the code, it will not cause
any errors or problems like in other programming languages.

• One of the biggest advantages of HTML is that it’s free and doesn’t
require you to buy any special software.

• HTML is supported by almost all browsers. HTML gives web devel-
opers an easy way to optimize website in HTML depending on the
browser.

• HTML is one of the most search engine-friendly languages com-
pared to all other programming languages available in the market.

CHAPTER SUMMARY
This chapter is all about brief explanations of HTML fundamentals such
as the tools and editor used to write code in HTML. Also, we write some
simple code using class, id, and internal and external CSS. We will also
explain the properties, features, and more in the following chapters.

NOTES
 1. Frontend and backend Technology – https://www.altexsoft.com/blog/front-

end-development-technologies-concepts/, accessed on August 31, 2022.
 2. How HTML Works – https://www.altexsoft.com/blog/front-end-development-

technologies-concepts/, accessed on August 31, 2022.
 3. CSS Works – https://www.altexsoft.com/blog/front-end-development-tech-

nologies-concepts/, accessed on August 31, 2022.
 4. HTML DOM – https://www.altexsoft.com/blog/front-end-development-

technologies-concepts/, accessed on August 31, 2022.
 5. DOM – https://www.w3.org/TR/WD-DOM/introduction.html, accessed

on August 31, 2022.
 6. JavaScript – https://www.altexsoft.com/blog/front-end-development-tech-

nologies-concepts/, accessed on August 31, 2022.
 7. HTML Markup Language – https://www.thoughtco.com/what-are-markup-

languages-3468655, accessed on August 31, 2022.

https://www.altexsoft.com
https://www.altexsoft.com
https://www.altexsoft.com
https://www.altexsoft.com
https://www.altexsoft.com
https://www.altexsoft.com
https://www.altexsoft.com
https://www.altexsoft.com
https://www.w3.org
https://www.altexsoft.com
https://www.altexsoft.com
https://www.thoughtco.com
https://www.thoughtco.com

Crash Course HTML ◾ 105

 8. HTML – https://en.wikipedia.org/wiki/HTML#History/, accessed on
August 31, 2022.

 9. HTML History – History – https://www.washington.edu/accesscomputing/
webd2/student/unit1/module3/html_history.html#:∼:text=The%20first%20
version%20of%20HTML,HTML%20as%20an%20XML%20language./,
accessed on August 31, 2022.

 10. HTML History – https://en.wikipedia.org/wiki/HTML#History/, accessed
on August 31, 2022.

 11. HTML Version – https://www.tutorialstonight.com/html/history-of-html,
accessed on September 9, 2022.

 12. HTML Version list – https://www.howtocodeschool.com/2019/01/html-
versions.html#HTML-2.0, accessed on September 1, 2022.

 13. XHTML – https://www.geeksforgeeks.org/difference-between-xhtml-and-
html5/#:∼:text=XHTML%20stands%20for%20Extensible%20Hypertext,
a%20better%20version%20of%20HTML, accessed on September 1, 2022.

 14. HTML Structure – https://www.w3docs.com/learn-html/html-introduction
.html/, accessed on September 3, 2022.

 15. HTML Basic Concepts – https://www.w3docs.com/learn-html/html-intro-
duction.html Accessed on, accessed on September 1, 2022.

 16. HTML Tags – https://www.coderepublics.com/HTML/html-tags.php/, accessed
on September 1, 2022.

 17. HTML image tag – https://www.coderepublics.com/HTML/html-tags.
php/, accessed on September 1, 2022.

 18. HTML Structure Tag – https://itwebtutorials.mga.edu/html/chp2/document-
structure.aspx, accessed on September 2, 2022.

 19. HTML Tags List – https://way2tutorial.com/html/tag/index.php, accessed on
September 1, 2022; HTML Structure – https://www.w3docs.com/learn-html/
html-introduction.html, accessed on September 1, 2022.

 20. HTML Editor and Tools – https://www.w3docs.com/learn-html/html-editors
.html accessed/, accessed on September 3, 2022.

 21. HTML Comments – https://data-flair.training/blogs/html-comments/, accessed
on September 3, 2022.

 22. Tags and Elements – https://www.scaler.com/topics/difference-between-
html-elements-and-tags/, accessed on September 3, 2022.

 23. HTML Elements – https://mundrisoft.com/tech-bytes/types-of-html-elements-
and-tags/, accessed on September 3, 2022.

 24. HTML Elements – https://www.javatpoint.com/html-elements, accessed on
September 3, 2022.

 25. HTML Elements – https://www.naukri.com/learning/articles/html-elements/,
accessed on September 3, 2022.

 26. HTML Attributes – https://www.w3.org/TR/2010/WD-html-markup-
20101019/syntax.html, accessed on September 3, 2022.

 27. Attributes List – https://developer.mozilla.org/en-US/docs/Web/HTML/
Attributes#attribute_list, accessed on September 3, 2022.

 28. HTML Common Attributes – https://www.tutorialrepublic.com/html-tutorial/
html-attributes.php, accessed on September 3, 2022.

https://en.wikipedia.org
https://www.washington.edu
https://www.washington.edu
https://www.washington.edu
https://en.wikipedia.org
https://www.tutorialstonight.com
https://www.howtocodeschool.com
https://www.howtocodeschool.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.w3docs.com
https://www.w3docs.com
https://www.w3docs.com
https://www.w3docs.com
https://www.coderepublics.com
https://www.coderepublics.com
https://www.coderepublics.com
https://itwebtutorials.mga.edu
https://itwebtutorials.mga.edu
https://way2tutorial.com
https://www.w3docs.com
https://www.w3docs.com
https://www.w3docs.com
https://www.w3docs.com
https://data-flair.training
https://www.scaler.com
https://www.scaler.com
https://mundrisoft.com
https://mundrisoft.com
https://www.javatpoint.com
https://www.naukri.com
https://www.w3.org
https://www.w3.org
https://developer.mozilla.org
https://developer.mozilla.org
https://www.tutorialrepublic.com
https://www.tutorialrepublic.com
https://www.geeksforgeeks.org

106 ◾ HTML: The Ultimate Guide

 29. HTML Structure – https://developer.mozilla.org/en-US/docs/Learn/Getting_
started_with_the_web/HTML_basics#anatomy_of_an_html_element, accessed
on September 4, 2022.

 30. HTML Entities – https://mateam.net/html-escape-characters/, accessed on
September 3, 2022.

 31. HTML Formatting Tags – https://www.javatpoint.com/html-formatting,
accessed on September 11, 2022.

 32. HTML Phrases – https://www.w3schools.in/html/phrase-tags, accessed on
September 16, 2022.

 33. HTML Forms – https://www.studytonight.com/cascading-style-sheet/css-forms,
accessed on September 17, 2022.

 34. HTML Links – https://www.tutorialspoint.com/html/html_text_links.htm#,
accessed on September 11, 2022.

 35. HTML Multimedia – https://www.tutorialspoint.com/html/html_embed_
multimedia.htm, accessed on September 16, 2022.

 36. HTML Marquee – https://codedec.com/tutorials/marquee-tag-in-html/, accessed
on September 16, 2022.

https://developer.mozilla.org
https://developer.mozilla.org
https://mateam.net
https://www.javatpoint.com
https://www.w3schools.in
https://www.studytonight.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://codedec.com

107DOI: 10.1201/9781003357537-2

C h a p t e r 2

HTML Basic Usage

IN THIS CHAPTER

 ➢ Introduction HTML basic

 ➢ Script and Dynamic element

 ➢ Correlation with Js and CSS

 ➢ DOM in HTML

In the previous chapter, we covered the fundamental of the HTML. Now,
here you will get all the basic information of HTML separately such as all
the tags and elements in separate sections so that you will get to know why
all these are used in HTML.

This section of the chapter introduces the concepts of web scripting
and the JavaScript language. As you progress through the lessons, you will
learn how to insert JavaScript commands directly into the HTML docu-
ment, and how the script executes when you view the page in your browser.
It works with a simple script, edits it, and tests it in browser while learning
the basic tasks involved in creating and using JavaScript scripts.

INTRODUCTION
The first browsers didn’t support images on web pages. The web has come
in a long way since its early days. In addition to useful content, the website
nowadays is rich in visual and interactive features such as graphics, sound,
animation, and video. Using a web scripting language like JavaScript is

https://doi.org/10.1201/9781003357537-2

108 ◾ HTML: The Ultimate Guide

one of the easiest ways to upgrade any web pages and interact with users
in new interactive ways.

LEARNING WEB SCRIPTING BASICS
You already know how to use two languages: HTML and Cascading Style
Sheet (CSS) in the previous chapter.1 You can use HTML tags to describe
how the document should be formatted. CSS is then used to describe how
the document should be displayed, and the browser will display the deco-
rated content to the user. However, HTML and CSS are simple text-based
languages and cannot respond to users, make decisions, or automate
repetitive tasks. Such interactive tasks require more sophisticated lan-
guages: programming or scripting languages.

Many programming languages are complex, but scripting languages are
generally simple. They have a simple syntax, perform tasks with minimal
commands, and are easy to learn. JavaScript is a web scripting language
that allows scripts to be combined with HTML and CSS to create interac-
tive web pages.

SCRIPTING LANGUAGES VS. PROGRAMMING LANGUAGES
Essentially all scripting languages are programming languages. The the-
oretical difference between scripting languages and programming lan-
guages is that scripting languages do not require a compilation process
but are instead interpreted. For example, C programs typically need to
be compiled before they can be run, whereas scripting languages such as
JavaScript and PHP typically don’t.

Compiled programs generally run faster than interpreted programs
because they are first converted to native machine code. Also, the compiler
reads and analyzes the code only once and reports the errors in the code
collectively, whereas the interpreter reads and analyzes the statements in
the code as they are encountered and returns the field and stop.

SCRIPTING LANGUAGES
Scripting languages are usually interpreted.2 The main purpose of script-
ing languages is not to build applications, but to provide behavior to exist-
ing applications. It is used to write code that can point to a software system.
You can automate processes in your software system. A written script is
essentially a set of instructions to a software system. The scripting lan-
guage has evolved into a powerful language. We are no longer limited to
writing small scripts to automate operations on software systems. You can

HTML Basic Usage ◾ 109

also create rich applications using scripting languages. You can manipu-
late, customize, and automate the installation of existing systems. Useful
functions are already available through the interface. Scripting languages
provide a way for exposing program control functions.

WHY DO WE NEED SCRIPTING LANGUAGES?
Scripting languages interpret scripts only while the program is running.3
Scripts are used to improve performance or perform common application
tasks. Scripting languages are:

• Perl

• PHP

• JavaScript

• Python etc.

Server-side scripts (such as PHP) are interpreted on the server and client-
side scripts (JavaScript) are executed by the client application.

SCRIPT
Web scripts provide the same type of instructions to web browsers.
JavaScript scripts can range from a single line to an entire application. (In
both cases, JavaScript scripts are typically run in a browser.)

Some programming languages must be compiled or converted to
machine code before they can be run. JavaScript, on the other side, is an
interpreted language. Any browser executes each line of script as it comes.

Interpreted languages have one big advantage. It is very easy to write
or modify scripts. Modifying a JavaScript script is as easy as modifying a
regular HTML document and changes take effect as soon as you reload the
document in your browser.

WEB SCRIPTS AND THEIR TYPES
The process of creating scripts and embedding them in web pages is called
web scripting.4 A script or computer script is a list of commands, usually
embedded in a web page, interpreted and executed by a specific program
or scripting engine.

• Scripts can be created for a variety of purposes. Automating pro-
cesses or generating web pages on your local computer.

110 ◾ HTML: The Ultimate Guide

• The programming languages in which scripts are written are called
scripting languages, and there are many scripting languages today.

• Common scripting languages include VBScript, JavaScript, ASP,
PHP, PERL, and JSP.

TYPES OF SCRIPTS
There are two main types of scripts. Client-side scripts are first down-
loaded on the client-side, then interpreted and executed by the browser
(the system’s default browser).

• Client-side scripts are browser dependent. In other words, the client-
side browser must be scriptable in order to execute scripts.

• Here are some popular client-side scripting languages such as
VBScript, JavaScript, and Hypertext Processor (PHP).

• When using client-side interactions, client-side scripts are used.
Some examples of client-side script usage include the following.

Server-side Scripts

• Server-side scripts complete or perform tasks on the server side and
send the results to the client side.

• With server-side scripting, the server does all the work, so it doesn’t
matter which browser you use on the client side.

• Server-side scripts are primarily used when information is sent to the
server and processed on the server side.

DYNAMIC ELEMENTS
A dynamic element is an HTML element created by JavaScript code after
the page loads.5 Dynamic elements can be clicked and selected like any
other element on the page. For example, the JavaScript code that displays
the modal box creates element to darken the background of the modal box.

Dynamic HTML is a collective term for a combination of HTML tags
and options that make web pages more animated and interactive than previ-
ous versions of HTML. Much of dynamic HTML is specified in HTML 4.0.

HTML Basic Usage ◾ 111

Simple examples of dynamic HTML features include text headings that
change color when the user mouse over them and the ability for users to
“drag and drop” images elsewhere on their web page. Dynamic HTML
allows web documents to look and function like desktop applications and
multimedia productions.

Features in Dynamic HTML

• An object-oriented view of a web page with its elements

• CSSs and the layering of content

• Dynamic fonts

AN OBJECT-ORIENTED VIEW
Each page element (such as division or section, heading, paragraph, image,
list, and so forth) is viewed as an “object”. For example, each heading on a
page can be named, given attributes of text style and color, and addressed
by name in a small program called “script” that is included on the page.
The heading or any other element on the page can be changed as the result
of a specified event such as a mouse passing over or being clicked or a time
elapsing or an image can move from one place to another by “dragging
and dropping” the image object with the mouse. Any change takes place
immediately. Thus, variations can be thought of as different properties of
the object.

Element variations can change the wording and color of the text, as well
as replace everything contained in the Heading object with new content
containing different or additional HTML code and text.

JavaScript controls have existed in previous layers of web pages, but
dynamic HTML makes programming on web pages easier because a single
program can handle more elements of the page.

A feature called dynamic fonts allows web page designers to include
font files with specific font styles, sizes, and colors as part of a web page,
and download the fonts with the page.

STYLESHEETS AND LAYERING
A stylesheet describes the standard style characteristics of a document
or part of a document, including page layout, font styles, and size of text
elements such as headings and bodies. For web pages, stylesheets also
describe the default background color or image, the color of hypertext

112 ◾ HTML: The Ultimate Guide

links, and sometimes the content of the page. Stylesheets help ensure con-
sistency across all pages or groups of pages within a document or website.

It includes the ability to specify stylesheets in a “cascading style sheet”
manner. As a result of user interaction, new stylesheets can be applied to
change the appearance of the web page. You can have multiple levels of
stylesheets on your page. A new stylesheet may differ from the stylesheet
above it in only one element.

Layering is the use of alternate stylesheets or other approaches to mod-
ify the content of a page by providing layers of content that can overlay
existing sections of content. Layers can be programmed to appear as part
of a timed presentation or as a result of user interaction.

CORRELATION WITH CSS AND JS
Here we will discuss the relationship between CSS, JavaScript, and HTML.6
All these files should be presented in the same folder because each of these
three languages serves a different purpose, web developers typically use
separate files for each. This idea is called “separation of concerns” and
each file should have a different function across the website. Technically
he could put all the code in one HTML file, but as the site scales it will
eventually lead to code repetition.

Let’s have a look at the code needed to create a complete house. All three
files must be in the same directory (folder on your computer). In our home
folder, we have files of each type. Name your main HTML file index, main
CSS file style, and main JavaScript file script.

Every HTML file has three separate sections:

• The <head> in <title>, where you can include metadata and links to
services like Google Fonts, Bootstrap files (.css).

• The <body>, where you include the actual HTML elements.

• The <script> tags under <body>, which can link to JavaScript files
(.js).

Example:

<html>
 <head>
 <link rel="stylesheet" type="stylesheet">
 </head>

HTML Basic Usage ◾ 113

 <body>
 <h1> Write you content here </h1>
 <script src="script.js"> </script>
 </body>
</html>

HTML is at the core part of every web page, regardless of the complexity
of the website or the number of technologies involved.7 This is a basic skill
for all web professionals. This is the starting point for anyone learning how
to create content for the web. Fortunately, learning is surprisingly easy.

How Does HTML Work?

All HTML files contain many nested elements along with tags.8 Most peo-
ple can create a .html file with a simple text editor, upload it to the inter-
net, and start creating their own web page. Additionally, Web data servers
need to know how to handle uploaded files and how to send files to client
computers for understanding. HTML code is used for this. It’s the glue
that holds everything together. HTML pages contain many elements that
are fortunately easy to understand because they have names that describe
what they are (i.e. header tags, paragraph tags, image tags).

All websites consist of these tags. Next, you neatly wrap the plain text
content of your website (what you want your users to see) with a series of
tags that tell the page what kind of content it is. This allows web brows-
ers to understand how each content type will look in the HTML file. The
Paragraph tag divides the content into neat little paragraphs, and the
Header tag arranges the words on the page like a proper heading. You
should start the tag, paste the plain text content in the center, and close the
tag so the computer knows you’re done using it.

HTML stands for HyperText Markup Language the "Markup Language"
means using a programming language to perform a function, HTML uses tags
to identify different types of content and the purpose each serves for a website.
All web pages consist of a series of HTML tags that identify each type of content
on the page. Each content type on the page is “wrapped” in HTML tags.

Once a tag is opened, all subsequent content is considered part of that
tag until the tag is “closed”. Add the paragraph closing tag when the para-
graph ends. Note that closing tags look the same as opening tags, except
that there is a slash after the left angle bracket. Here is an example you can
use HTML to add headings, format paragraphs, control line breaks, create
lists, highlight text, create special characters, insert images, create links,
create tables, control styles, and more can do.

114 ◾ HTML: The Ultimate Guide

To learn something more about coding in HTML, we recommend read-
ing the basic HTML guide and taking advantage of Udemy, Pluralsight,
Codeacdemy’s free courses, and other resources, but let’s move on to CSS
for now. This programming language determines how HTML elements of
the website are actually displayed on the front end of the page.

CSS
HTML provides the raw tools you need to structure your website’s content.
CSS, on the other hand, helps us style our content so that it appears to
the user as intended. These languages are always kept separate so that the
website is built correctly before being reformatted. Again, check out free
courses and resources to learn more about coding in CSS. But let’s talk a
little bit about JavaScript here.

Stylesheet

A stylesheet is a set of some CSS rules used to control the layout of a web
page or document. Internal stylesheets are placed inside a <style> element
inside the <head> of a web page document, the external stylesheets are
placed inside a separate .css file, which is applied to a document by ref-
erencing the file inside a <link> element in the document head. External
stylesheets are preferred because they allow to control the styling of mul-
tiple pages from one place, than having to repeat the CSS across each page.

Adding Styles Using CSS

It is the styling information can either be attached as a separate document
or embedded in the document itself. These are the three methods of imple-
menting styling in an HTML document:

• Inline styles – It is used in the style attribute in the HTML start tag.

• Embedded style – It is used in the <style> element in the head section
of the document.

• External stylesheet – It is used in the <link> element, pointing to an
external CSS file.

Inline Styles
Inline styles are used to apply unique style rules to an element by inserting
CSS rules directly into the start tag.9 It can attach to an element using the
style attribute.

HTML Basic Usage ◾ 115

The style attribute contains a number of CSS property-value pairs. Each
property: value pair is separated by a semicolon (;), just as you would write
in an inline or external style list. But everything must be on one line, i.e.
without a line break after a semicolon.

<!DOCTYPE HTML>
<html>
 <head>
 <meta content="text/HTML; HTTP-equiv="Content-
Type" charset=utf-8">
 <title>Title of the document</title>
 <style>
 body{
 width:500px;
 margin:0 auto,
 }
 </style>
 </head>

 <body>
 <h1> Nesting HTML Elements </h1>
 <h1 style="color:red; font-size:20px;">This is a
heading in red color with 30 font size</h1>
 <p style="color:green; font-size:28px;">This is a
paragraph in green with 18 font size </p>
 <div style="color:yellow; font-size:28px;">This is
div the text in the div will be of yellow with 28 font
</div>

</html>

Embedded Stylesheets
Embedded are also called as internal stylesheets that only affect the docu-
ment they are embedded into. Embedded stylesheets are defined in the
<head> tag of the document using the <style> tag. You can define various
number of <style> elements in the <head> section.

<!DOCTYPE HTML>
<html>
 <head>
 <meta content="text/HTML; HTTP-equiv="Content-
Type" charset=utf-8">

116 ◾ HTML: The Ultimate Guide

 <title>Title of the document</title>
 <style>
 body{
 width:500px;
 margin:0 auto;
 background-color: YellowGreen;
 }
 h1 { color: blue; }
 p { color: red; }

 </style>
 </head>

 <body>
 <h1> HTML Elements </h1>
 <h1 >This is a heading in red color with 30 font
size</h1>
 <p >This is a paragraph in green with 18 font size
</p>
 <div>This is div the text in the div will be of
yellow with 28 font </div>

</html>

External Styles
An external stylesheet is used when the style is applied to many pages.
An external stylesheet contains all of the style rules in a separate doc-
ument that you can link to from any HTML document on your web-
site. External stylesheets are the most flexible because with an external
stylesheet you can change the look of your entire site by updating just
one file. You can connect external stylesheets in two ways such as linking
and importing.

Index.html

<!DOCTYPE HTML>
<html>
 <head>
 <meta content="text/HTML; HTTP-equiv="Content-
Type"; charset=utf-8">
 <title>Title of the document</title>
 <link href="style.css" rel="stylesheet">

 </head>

HTML Basic Usage ◾ 117

 <body>
 <h1> Nesting HTML Elements </h1>
 <h1 >This is a heading in red color with 30 font
size</h1>
 <p >This is a paragraph in green with 18 font size
</p>
 <div>This is div the text in the div will be of
yellow with 28 font </div>

</html>

Style.css

<style>
 body{
 width:500px;
 margin:0 auto;
 background-color: YellowGreen;
 }
 h1 { color: blue; }
 p { color: red; }

 </style>

Importing External Stylesheets
The @import rule is another way to load an external stylesheet.10 The
@import directive instructs the browser to load an external stylesheet and
apply its styles.

You can use it in two ways. The easiest method is to use it in the <style>
element in the <head> section. Note that additional CSS rules can still be
included in the <style> element.

First example:

<style>
 @import URL("css/style.css");
 p {
 color: blue;
 font-size: 16px;
 }
</style>

118 ◾ HTML: The Ultimate Guide

Second example:

@import URL("css/layout.css");
@import URL("css/color.css");
body {
 color: blue;
 font-size: 14px;
}

CSS COMMENTS
CSS comments are not visible in the browser but may be helpful in writing
your source code.11 Comments are also used to explain the code and can be
helpful if you edit the source code later. Comments ignored by browsers.
CSS comments are embedded within the <style> element, and begin with
/ / and end with * /:

Example:

/* This is a one-line comment */
p {
 color: red;
}

You can add comments where you want to code.

Example:

p {

 color: red; /* * Set text color in red */
}

/* This
many lines
comment

*/

p {
 color: red;
}

HTML Basic Usage ◾ 119

CSS SELECTORS
CSS selector is for matching features on a web page.12 The style rules con-
nected with that selector will apply to items such as the pattern. Choices
are one of the most important CSS features as they allow you to direct
certain elements to your web page in a variety of ways to style them.

A few types of selectors are available in CSS, let’s take a closer look.

Universal Selector

It is indicated by a star (*) that corresponds to each part of the page. The
universal selector may be removed if other conditions are present in the
feature. This filter is often used to remove automatic genes and pads from
elements for quick testing.

Let’s try the following example to understand how it basically works.

* {
 margin: 0;
 padding: 0;
}

The style rules within the selector * will apply to everything in the
document.

Element Type Selectors

It is the same as every element in a document and the name of the cor-
responding element type. Let’s try an example to see how it really works.

p {
 color: blue;
}

ID Selector

The ID selector is used to describe style rules for one or more items. The
ID selector is defined by a hash (#) symbol that is immediately followed by
the ID value.

Example:

#text{
 color: red;
}

120 ◾ HTML: The Ultimate Guide

This style rule gives the text the object in red, its ID identifier being set as
default.

Class Selectors

It is used to select any HTML component with a class attribute. All fea-
tures with that class will be formatted according to a defined rule. The
class selector is defined by an intermediate symbol (.). That is immediately
followed by a class value.

Example:

.green {
 color: blue;
}

Descendant Selectors

You can use these options if you need to select an interest-bearing element
of another element, for example, if you want to define only those anchors
contained in the random list, rather than directing all anchor elements.
Let’s try an example to see how it works.

ul.menu li a {
 text-decoration: none;
}
h1 em {
 color: green;
}

The style rules within the selector ul.menu li a apply only to those ele-
ments <a> contained within the element that has a class .menu, and
that does not affect other links within the document. Similarly, style rules
within the h1 em selector will only apply to those elements of con-
tent contained within the element of <h1> and which do not affect other
elements of .

Child Selectors

The child selector is used to select only those specific child items for a
particular feature. The children’s selector is made up of two or more
selectors that are separated by a larger symbol (>). You can use this
selector, for example, to select the first level of list items within a nested

HTML Basic Usage ◾ 121

list with more than one level. Let’s look at an example to see how it
works.

ul > li {
 list-style: circle;
}
ul > li ol {
 list-style: none;
}

The style rule inside the selector, such as ul > li applied to only those
 elements that direct children of the elements, has no effect on
other list elements.

Adjacent Sibling Selectors

Adjacent sibling selectors are used to select its sibling elements (i.e. ele-
ments at the same level). This selector has a syntax such as: E1 + E2, where
E2 is the target selector.

The h1 + p selector in the following example will select <p> elements
only if the <h1> and <p> elements can share the same parent in the docu-
ment tree and <h1> precedes the <p> section immediately. This means
that only those sections that come immediately after each <h1> title will
have corresponding style rules. Let’s see how this option really works.

Example:

h1 + p {
 color: blue;
 font-size: 18px;
}
ul.text + p {
 color: black;
 font-size: 30px;
}

Standard Sibling Selectors

The standard sibling selector is similar to the nearest sibling selector (E1
+ E2), but less powerful. The standard sibling selector is made up of two
simple picks separated by a tilde (∼) character. It can be written as follows:
E1 ∼ E2, where E2 is the purpose of the selector.

122 ◾ HTML: The Ultimate Guide

The h1 ∼ p selector in the example below will select all the <p> features
preceded by the <h1> section, where all the features share the same parent
in the document tree.

h1 ˜ p {
 color: blue;
 font-size: 18px;
}
ul.task ˜ p {
 color: #f0f;
 text-indent: 30px;
}

Grouping Selectors

Usually, a few selectors on a stylesheet share declarations of the same style
rules. You can group them with a comma-separated list to narrow the code
to your stylesheet. It also prevents other users from repeating the same
style rules over and over again.

Let’s take a look:

h1 {
 font-size: 36px;
 font-weight: normal;
}
h2 {
 font-size: 28px;
 font-weight: normal;
}
h3 {
 font-size: 22px;
 font-weight: normal;
}

JAVASCRIPT
JavaScript is a more complex language than HTML and CSS and was
released in beta only in 1995.13 JavaScript is now used by almost every
website on the web, as it is supported by all modern web browsers and has
more powerful and complex capabilities.

It is a logic-based programming language that can be used to modify
the content of websites to behave differently depending on user actions.

HTML Basic Usage ◾ 123

Common uses of JavaScript include confirmation boxes, calls to action,
and adding new identities to existing information.

Adding JavaScript to HTML Documents

You can include JavaScript code in your HTML documents using a special
HTML or section of the HTML, depending on when the JavaScript should
be loaded.14 JavaScript code can generally be placed in the section of the
document and excluded from the body of the HTML document.

However, if the script needs to run at a specific point in the layout of the
page (such as when generating content using document.write), where you want
the script to be called (usually in the section) should be placed as given below.

<!DOCTYPE html>
<html lang="en-US">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
initial-scale=1">
 <title> JavaScript in HTML </title>
</head>

<body>

</body>
 <script>
 let d = new Date();
alert("Today's date is " + d);
</script>
</html>

JavaScript in HTML.

124 ◾ HTML: The Ultimate Guide

The above example pops up the alert dialog box when it loads. You can
press ok button to stop loading page.

<!DOCTYPE html>
<html lang="en-US">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
initial-scale=1">
 <title> JavaScript in HTML </title>
</head>

<body>
 <h2> Date is showing using document.body.
innerHTML</h2>
</body>
 <script>
 let d = new Date();
 document.body.innerHTML = "<h3>Today's date is
" + d + "</h3>"
</script>
</html>

The output for the above would look similar to the following.

Another example:

<!DOCTYPE html>
<html lang="en-US">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-
width, initial-scale=1">
 <title> JavaScript in HTML </title>
</head>

Date time.

HTML Basic Usage ◾ 125

<body>
 <h2> Date is showing using document
.getElementById.innerHTML</h2>
 <div id="show-date"></div>
</body>
 <script>
 let d = new Date();
 document.getElementById('show-date').innerHTML
= "<h4>Today's date is " + d + "</h4>"
</script>
</html>

The output for the above would look similar to the following.

Small scripts or scripts that only run on one page work well in HTML
files, but for large scripts or scripts that are used on many pages, this can
be hard to read when pasting, so not much but also it is not an effective
solution. The next we will describe how to handle different JavaScript files
within the HTML document.

Let’s know how to connect a JavaScript document to an HTML docu-
ment, by creating a small web page. It consists of script.js in the js/ directory,
style.css in the css/ directory, and the main file index.html in the root of the
project. The folder structure will look like this given below.

project/
├── css/
| └── style.css
├── js/
| └── script.js
└── index.html

In the above section, we have already discussed how to add .js and .css
files in HTML document. JavaScript may be a client-side scripting lan-
guage, suggesting that the client’s browser handles processing ASCII text
files rather than online servers. With the help of JavaScript, websites can
be loaded without connecting to the primary server.

Date time.

126 ◾ HTML: The Ultimate Guide

The pros of JavaScript are:15

• JavaScript is easy to understand. Both users and developers will find
the structure simple. Moreover, it is very easy to implement and saves
web developers a lot of money when creating dynamic content.

• It integrates seamlessly with other programming languages; many
developers prefer it to create a wide variety of applications.

• It is an “interpreted” language, reducing the time it takes to compile
in other programming languages such as Java.

The cons of JavaScript are:

• Although some editors allow for debugging, they are not as effective
as editors for C or C++.

• It does not support multiple inheritances; only one inheritance is
supported.

• The code needs to run on various platforms before publication.

Now let’s move deeper into the DOM in HTML for making your JavaScript
more clean and effective.

DOM
he Document Object Model (DOM) is a data representation of the
objects that make up the structure and content of documents on the
Web.16 This guide introduces the DOM, how it represents an in-memory
HTML document. The DOM is a programming interface for Web docu-
ments. It can render the page so that the program can change the struc-
ture, style, and content of the document. DOM represents documents
as nodes and objects. It allows programming languages to interact with
the page.

All properties, methods, and events that can be used to edit and cre-
ate web pages are grouped into objects. For example, the DOM that
represents the document itself, all table objects that implement the
HTML Table Element DOM interface for accessing HTML tables, etc.
are objects.

The DOM is using multiple APIs that work together. The Core DOM
defines entities that describe each document and the objects it contains. It

HTML Basic Usage ◾ 127

will be extended by other APIs as needed to add new features and function-
ality to the DOM. For example, the DOM API adds support for rendering
HTML documents to the core DOM, and the SVG API adds support for
rendering SVG documents.

It is not a programming language, but without the DOM the JavaScript
language would have no model or concept of web pages, HTML docu-
ments, SVG documents, and their parts. The entire document, headers,
tables within the document, table headings, text within table cells, and all
other elements within the document are part of the DOM for that docu-
ment. They can be accessed and manipulated using the DOM and script-
ing languages such as JavaScript.

ACCESS TO DOM
You do not need to have anything special to start using DOM. You can
use the API directly in JavaScript from what’s called a script, which is a
program run by the browser. When you create a script, either embedded
in a <script> element or included in a web page, you can immediately start
using the document API or window objects to manipulate the document
itself or any of the various elements on the web page (the following docu-
ment elements). Your DOM programming can be something as simple as
the following example, which displays a message to the console log using
the console.log() function.

BASIC DATA TYPES
This page attempts to explain various objects and types in simple terms.
However, you must be aware of the different types of data passed through
the API. The following table describes these data types.

• Data Types (Interfaces)

• Documents

• Nodes

• Elements

• Node Lists

• Attributes

• NamedNodeMap

128 ◾ HTML: The Ultimate Guide

DOM INTERFACES
It describes the objects and realities you can use to manipulate the DOM
hierarchy.17 There are various points where understanding how these work
can be confusing. For example, an object representing an HTML form ele-
ment gets its name property from the HTMLFormElement interface but
gets its className property from the HTMLElement interface. In either
case, the required properties are on that form object.

However, the relationship between objects and the interfaces they imple-
ment in the DOM can be confusing, so this section attempts to describe
the actual interfaces in the DOM specification and how they are exposed.

CORE INTERFACES
Here is the list of the commonly used interfaces in the DOM. The
Document and Window objects are the objects with the commonly used
interfaces in DOM programming. Simply put, the window object rep-
resents something like a browser; the document object is the root of the
document itself. Element inherits from the general Node interfaces and
combines these two interfaces to provide many methods and properties
for use on individual elements.

The following is a full list of common APIs using the DOM:

• document.querySelector(selector)

• document.querySelectorAll(name)

• document.createElement(name)

• parentNode.appendChild(node)

• element.innerHTML

• element.style.left

• element.setAttribute()

• element.getAttribute()

• element.addEventListener()

• window.content

• Window.onload

• window.scrollTo()

HTML Basic Usage ◾ 129

CHAPTER SUMMARY
In this chapter, we discussed various topics related to HTML such as web
scripting, the difference between scripting and programming, dynamic
elements, relation between css and js, comments, various selectors, and
JavaScript.

NOTES
 1. Web Scripting – https://www.informit.com/articles/article.aspx?p=2952622,

accessed on September 5, 2022.
 2. Scripts – https://www.informit.com/articles/article.aspx?p=2952622, accessed

on September 5, 2022.
 3. Scripts – https://qatestlab.com/resources/knowledge-center/scripting-lan-

guages-aim/, accessed on September 5, 2022.
 4. Web Scripting and its types – https://www.geeksforgeeks.org/web-script-

ing-and-its-types/, accessed on September 5, 2022.
 5. Dynamic HTML – https://www.techtarget.com/whatis/definition/dynamic-

HTML, accessed on September 5, 2022.
 6. Correlation with CSS, JavaScript – https://www.freecodecamp.org/news/

the-relationship-between-html-css-and-javascript-explained-by-building-
a-city-a73a69c6343/, accessed on September 5, 2022.

 7. HTML – https://blog.hubspot.com/marketing/web-design-html-css-javascript,
accessed on September 5, 2022.

 8. HTML Works – https://www.byjusfutureschool.com/blog/what-is-html-what-
are-the-benefits-uses-features-of-html-in-real-world/, accessed on September
5, 2022.

 9. Inline Style – https://www.w3schools.com/html/html_css.asp, accessed on
September 5, 2022.

 10. CSS Media – https://www.tutorialspoint.com/importing-external-style-sheets-
in-css, accessed on September 5, 2022.

 11. CSS Comments – https://www.w3schools.com/css/css_comments.asp, accessed
on September 6, 2022.

 12. CSS Selector – https://developer.mozilla.org/en-US/docs/Learn/CSS/
Building_blocks/Selectors/Type_Class_and_ID_Selectors, accessed on
September 6, 2022.

 13. JavaScript – https://blog.hubspot.com/marketing/web-design-html-css-
javascript, accessed on September 5, 2022.

 14. Adding JavaScript – https://www.digitalocean.com/community/tutorials/
how-to-add-javascript-to-html, accessed on September 6, 2022.

 15. Pros and Cons – https://www.tutorialspoint.com/advantages-and-disad-
vantages-of-javascript, accessed on September 6, 2022.

 16. HTML DOM – https://developer.mozilla.org/en-US/docs/Web/API/Document_
Object_Model/Introduction, accessed on September 6, 2022.

 17. DOM – https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_
Model/Introduction, accessed on September 6, 2022.

https://www.informit.com
https://www.informit.com
https://qatestlab.com
https://qatestlab.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.techtarget.com
https://www.techtarget.com
https://www.freecodecamp.org
https://www.freecodecamp.org
https://www.freecodecamp.org
https://blog.hubspot.com
https://www.byjusfutureschool.com
https://www.byjusfutureschool.com
https://www.w3schools.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.w3schools.com
https://developer.mozilla.org
https://developer.mozilla.org
https://blog.hubspot.com
https://blog.hubspot.com
https://www.digitalocean.com
https://www.digitalocean.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://developer.mozilla.org
https://developer.mozilla.org
https://developer.mozilla.org
https://developer.mozilla.org

https://taylorandfrancis.com

131DOI: 10.1201/9781003357537-3

C h a p t e r 3

Code Optimization

IN THIS CHAPTER

 ➢ Introduction

 ➢ Writing HTML in Code

 ➢ Security and Hardening Ideas

In the previous chapter, we have shared the relationship between the
HTML with CSS and JS. This chapter provides useful techniques for
improving frontend optimization. By focusing on well clean code, com-
pressing images, minimizing external requests, implementing a CDN, and
a few other methods, you can also improve your website’s speed and over-
all performance increase.

INTRODUCTION
Every day, millions of websites are visited for various reasons. Unfortunately,
many of these websites are difficult to use with poorly optimized web-
sites suffering from slow loading times, not mobile friendly and browser
incompatibilities.

The frontend is the first place you meet your users. However, if your
website takes too long to load, don’t wait. No one visits and rates your slow
websites. The page feel and overall performance of your website, such as
page speed, are important ranking factors for search engines. Better per-
formance means a better chance for your audience to find you. Optimizing
your website related to speed is very important to improve the customer

https://doi.org/10.1201/9781003357537-3

132 ◾ HTML: The Ultimate Guide

experience. Now we’re sharing how we actually improved the performance
of our own websites.

Clean Up the HTML Document

HTML is the backbone of almost every website.1 It allows you to format
web pages using headings, subheadings, lists, and other useful features for
organizing text. You can also create various attractive graphics with the
latest HTML5 updates.

HTML is easy for web crawlers (Google bot, Bing bot, Slurp bot) to read,
so search engines can be updated with your site’s content in a timely man-
ner. When working with HTML, you should try to write in a way that is
concise and effective. Extra, when it comes to referencing other resources
in an HTML document, there are some best practices you should follow.

Combining Files

You can commonly combine used CSS scripts into one file so that you only
had to reference one file instead of multiple files in your HTML.

Correct CSS Placement

Web designers tend to create CSS Stylesheet after the main HTML skel-
eton of a web page has been created.2 As a result, CSS components can
be placed at the bottom of the document. However, it is recommended to
place the CSS at the beginning of the header of the HTML document to
ensure progressive rendering.

<head>
 <link href='https://your_website.com/css/style.
css' rel='stylesheet' type='text/css'>
</head>

Best practice with CSS and JavaScript is to avoid inlining code. When
you embed the code, you put the CSS in the style tag and use the JavaScript
in the script tags. It increases the amount of code that must be loaded every
time your website is updated.

Correcting JavaScript Placement

Conversely, placing JavaScript attributes at the top of the head tag or HTML
document blocks HTML and CSS elements from loading. This error can
cause visitors to wait on a blank page and leave your site in a hurry. You can

https://your_website.com
https://your_website.com

Code Optimization ◾ 133

work around related to this issue by placing the JavaScript attribute at the
end of your HTML code. It is used with CSS and JavaScript attributes that
can slow down the website. CSS and JavaScript attributes can change website
for the better, but you should pay special attention and use them correctly.

Limiting External HTTP Requests

The majority of web page load time comes from external HTTP requests.3
The loading speed of external resources may vary depending on the hosting
provider’s server infrastructure, location, etc. To reducing external HTTP
requests is to explore site with a minimal view. You can go through all func-
tions of the website and remove any features that don’t improve your visitor’s
experience. You should various avoid these things in your code such as:

• Unnecessary images

• Unnecessary JavaScript

• Excessive CSS

• Unnecessary plugins

CDN Factor

CDNs can also improve server response times by pre-pooling connections
and keeping them open across sessions. A CDN by itself does not reduce
the number of requests, but pre-pooling improves performance by elimi-
nating the latency associated with closing and reopening TCP connections.

File Compression

Every page on a website consists of a collection of HTML, JavaScript, CSS,
and (possibly) other code files.4 The large complex the page, the larger the
code file and the longer it takes to load.

File compression can reduce these files to a fraction of their original
size, making your website more responsive. Preferred for its fast encode/
decode times and high compression ratio, gzip is the most popular choice
for file compression. Code files can be reduced by up to 60% or 80%.

Code Minification

Minification is a process that recognizes the difference between how devel-
opers write code and how machines read it. It is easy for reading, with
spaces, line breaks, and comments – machines can read it without any of
these elements, making them nonessential characters.

134 ◾ HTML: The Ultimate Guide

Image Enhancement

Caching and compression are the two common image enhancement meth-
ods, with caching being the more efficient of the two.5 This is because,
unlike code files, all image formats are already compressed.

Therefore, to further reduce the file size of an image, the data in that
image must be modified by removing some header information or reduc-
ing the quality of the original image. This is called lossy compression.

Division into Small Components

Now our frontend can split into many components.6 These small compo-
nents are the part of the page that has a specific functionality: image gallery
view, main menu view, main content view, and so on. Each component can
be simple (just a static template) or more complex, with interactions and
JavaScript, reacting to clicks, managing the state of the element (shown or
hidden), loading and preparing a new element (new image or gallery image).

Analysis of the Frontend Code

The thing need to do is to understand how the frontend code is built. The
technical pattern of the guide was as follows:

• All frontend components were compiled as one application (or one
big JS file).

• All CSS was compiled as one big CSS file.

• This pattern was previously used everywhere and is optimized for
HTTP1.

HTTP1 recommendations suggest minimizing the number of requests
to the server and loading a few large files instead of a few small files.
Because creating a new request (connecting to the server) can be time-
consuming (regardless of file size) and many simultaneous requests are
not allowed. This is why so many web designs encapsulate their JavaScript
and CSS in a single file.

HTTP2 to Help Frontend Developers

Modern servers today provide a new version of the HTTP protocol
(HTTP2), and web browsers increasingly take advantage of the multi-
threaded and multicore capabilities of modern computers and mobile
devices.7 This means we can process even more data at the same time.

Code Optimization ◾ 135

The HTTP2 protocol has been greatly improved.

• The protocol can accept multiple simultaneous requests by reusing
the actual connection.

• No need to negotiate and re-establish the connection on every
request. Lost time disappears.

• Many files (from many requests) can be sent in one response (multi-
plexing) also provides better compression (30% improvement).

Enable Preloading

Prefetching can improve visitors’ browsing experience by loading neces-
sary resources and related data before they are needed. There are three
main types of preloading:

• Prefetching the link

• DNS prefetching

• Pre-rendering

With prefetching, URLs, CSS, images, and JavaScript are collected for
each link before you even leave the current web page. This ensures that visi-
tors can use the links to navigate between pages with minimal loading time.

Fortunately, enabling prefetching is easy. Depending on the type of prefetch-
ing you want to enable, you can add the rel=“prefetch”, rel=“dns-prefetch”, or
rel=“prerender” tag to the link attributes in your site’s HTML code.

PRELOAD AND PREFETCH IN HTML
Loading materials on a page is an important part of achieving optimal
website performance and a smooth user experience. Real-world applica-
tions typically load multiple CSS files, fonts, JavaScript, and images. These
resources block rendering by default, which degrades loading performance.

You will get to explore a new feature called resource tips such as prefetch.
These resource tips will help you overcome render blocking.

Understanding Renders Blocking

When a resource request blocks rendering, it means that the window.
onload event will not fire until that request has finished.8 In modern sin-
gle-page applications, most assets such as CSS and JavaScript files along

136 ◾ HTML: The Ultimate Guide

with images rely on this event to start working. This means that parts of
the user interface will not start to render or appear on the screen until the
render-blocking requests have finished loading.

To see this in action, we create an HTML file with standard HTML.
This can be done in code editor of choice as shown in the following
example:

<!DOCTYPE html>
<html lang="en-US">

<head>
 <meta charset="UTF-8">
 <meta content="width=device-width, initial-
scale=1" name="viewport"
 <title> JavaScript in HTML </title>>
 <link rel="stylesheet" href='https://fonts.
googleapis.com/css?family=Roboto:400,600|Material&+
Icons'>
 <style>
 html {
 font-family: Roboto;
 }
 </style>
</head>

<body>
<p> You are leaning Preload and Prefetch in HTML </p>

<script>
 window.onload = function () {
 console.log('Your page is fully loaded');
 }
</script>
</body>
</html>

To see render blocking in action, add <script> tags to the <body>.
Create a JavaScript function using window.onload that will give console.
log message: “Your page is fully loaded” as given above in the code.

After the code is installed, open the HTML file in Chrome. Next, open
Developer Tools and go to the Network tab. Your loaded message is logged

Code Optimization ◾ 137

to the console immediately after the CSS file is loaded, as shown in the fol-
lowing image given below.

Preload and prefetch in HTML.

Preload Resources

To avoid default rendering blocking and to ensure that page resources such
as fonts and CSS start loading early in the page’s lifecycle, you’ll need to
implement preloading. The attribute rel=“preload” value is used to pre-
load assets. It can be used on several file formats, including CSS, JS, fonts,
images, and more. It is depending on the type of file you want to pre-
load, you may also need to include the appropriate as attribute along with
rel=“preload”. For the CSS, as = will need to be set to “style”. In the case
of JavaScript, as= will need to be set to “script”. Go back to the HTML file
and change the previous <link>. Set rel equal to “bias”. Add as an attribute
set equal to “style”.

<link rel="preload" "href='https://fonts.googleapis.
com/css?family=Roboto:400,600|Material&+Icons'
as="style" onload="this.rel = 'stylesheet' >

Setting the rel attribute to the stylesheet on load tells the browser to use
the resource. Since it has already been downloaded to memory, it does not
download again. Since the onload relies on JavaScript, add <noscript> tags
that contain the original <link> tags with rel set to “stylesheet”.

<link
 rel="
style
sheet"
 rel="preload"
 href='https://fonts.googleapis.com/css?family=Robo
to:400,600|Material&+Icons'

138 ◾ HTML: The Ultimate Guide

 as="style"
 onload="this.rel = 'stylesheet
'"
 >
<noscript>
 <link
 >
</noscript>

This ensures that the font is displayed if JavaScript is disabled or fails to
load. Now you know how to prefetch website assets. There are times when
you’ll want to preload resources instead.

CSS preloading and loading can help improve website performance.
You can also apply preloading to your JavaScript. Preloading JavaScript is
different from preloading CSS resources.

Preload JavaScript

Prefetching JavaScript resources is done differently. An example, taken
from the Google Developers on preloading, is given below.

<link rel="preload" href="user_later.js"
as="script">
<!-- ... -->
<script>
 var usedLaterScript = document.
createElement('script');
 usedLaterScript.src = 'used-later.js';
 document.body.appendChild(usedLaterScript);
</script>

The important step is to set the file’s src attribute and insert it into the
DOM.

Compress Files (gzip Compression)

While many CDN services compress your files for you, if you’re not using
a CDN, consider using a file compression method on origin server to
improve frontend optimization. File compression ensures that your web-
site content is lightweight and easy to work with. One of the most used file
compression ways is gzip. This is a good method for reducing the size of
documents, audio files, PNG images, and other large files that have not yet
been compressed.

Code Optimization ◾ 139

Brotli is file compression algorithm that is new but growing in popu-
larity. The open-source algorithm is updated by software engineers from
Google and other organizations. It has proven to compress files at a much
better ratio than other existing methods.

Highlight of Brotli
Compression has come in a long way in the past few years and Brotli is
now at the forefront of this category. Here are a few strengths that make
Brotli a leader in compression:

• Brotli is independent of CPU type, operating system, file system, and
character set and can produce a compression ratio is comparable to
the good compression methods available, and most importantly, it is
significantly better than gzip.

• It decompresses much faster than the current LZMA implementation.

The results of Google’s compression algorithm study shows that Brotli
achieved the best results in compression ratio, compression speed, and
decompression speed.

Optimize Your Images

For people who aren’t used to frontend optimization methods, images
can be a website killer. Massive photo albums and large high-resolution
images on website can disrupt the rendering process. High-resolution
images that are not optimized can weigh several megabytes. So, proper
optimization will allow you to improve the frontend performance of your
website.

Each image file contains a wealth of information unrelated to the actual
photo or image. For JPEG photos, the file contains data, location, cam-
era specifications, and other trivial information. You can streamline the
lengthy image-loading process by removing this redundant image data
using optimization tools like Optimus. Optimus uses intelligent compres-
sion in that it uses lossless optimization of PNG images.

LOSSY VS. LOSSLESS COMPRESSION
When it comes to reducing the size of images for the web, there are dif-
ferent types of compression to choose from. Here, we will look at lossy vs.
lossless compression and the pros and cons of both the methods.

140 ◾ HTML: The Ultimate Guide

Lossy Compression

Lossy compression refers to compression where some data from the origi-
nal file (JPEG) is lost. This process is irreversible, once you convert to a loss
you cannot go back. And the more compress it, the more it degrades. JPEG
and GIF are lossy image formats. By default, WordPress uses 90% lossy
compression to optimize JPEG images when creating preview images. One
of the biggest obvious benefits of using lossy compression is that it results
in a significantly reduced file size (smaller than a lossless compression
method), but it also means a loss of quality.

Lossless Compression

Lossless compression helps to reduce the file size without losing quality.
This method of reducing file sizes can be applied to both image and audio
files. While JPEG and MP3 use lossy compression, newer compression
algorithms such as JPEG 2000 and Apple Lossless compression can use to
create lossless compressed files.

Lossless compression essentially overwrites the original file data more
efficiently. However, because there is no quality loss, the resulting files are
usually much larger than lossy image and audio files. For example, a file
compressed using compression may be one-tenth the size of the original,
while lossless compression is to produce a file smaller than half the origi-
nal size.

Use a Minimalist Framework

Unless you’re building your website with only your own coding knowledge,
you can avoid many amateur frontend optimization mistakes by using a
good frontend interface. Although some of the larger and better-known
frameworks come with a number of additional features and options, web
project may not require them all.

That’s why it’s good to determine what features in your project require
and start with a framework that can provide features while remaining
lightweight. Some of the most recently designed frameworks used to con-
cise HTML, CSS, and JavaScript.

Here are some examples of minimalistic frameworks that provide fast
loading:

• Pure

• Foundation

Code Optimization ◾ 141

• Skeleton

• Milligram

Create Picture Sprites

Icons, button backgrounds, checkmarks, and arrows all take up little space
but require a lot of server requests. To give each icon separately, paste them
into sprites and reload them at once.

Apply Lazy Load

The term lazy loading applies to both scripts and styles, but images are
often referred to.9 The fad of huge landing pages with a dozen screens and
megabytes of images is not working. Loading tons of data is a problem; it
doesn’t matter how fast Internet we have. The idea behind lazy loading is
to load resources only when you actually need them. In the case of images,
those images that are currently visible are loaded.

Insert JavaScript at the Bottom of the Page

The browser must download the content before the JS. If you have one
Single Page Application, then there will be no profit from this advice.

Include Styles Dynamically

HTML can be so scary that without styles it will take users a quarter of a
second to escape the site.

Use CSS Animations Instead of JavaScript

Sometimes it’s very cool to create a tricky animation in JS. CSS3 has long
been held in huge esteem, feel free to use transitions and keyframes. Of
course, you should consider the support of these features by the required
browsers. Animations are often decorative and supplementary. If the use
of browser doesn’t support CSS transitions, they will be shown a static
image. However, if the implementation of the animation is necessary, then
it is worth duplicating it using JavaScript.

Minify CSS, JavaScript, and HTML

Minification techniques can help you remove unnecessary characters in a
file. When you write code in the editor, you probably use indentation and
notes. These methods keep the code clean and readable, but they also add
extra bytes to the document. CSS, JS, and HTML minification involves

142 ◾ HTML: The Ultimate Guide

removing all unnecessary characters from a file, which will help reduce its
size and thereby speed up loading. Examples of what is removed during
file minification include:

• Blank characters

• Comments

• End of lines

• Block separators

WRITING HTML IN CODE
Declare DOCTYPE

Declaring a DOCTYPE used to be a tough process. However, HTML5
made things much simpler. Now, just add the following line to the top
of your web page to let browsers know that it should be interpreted as
HTML5.

<!DOCTYPE html>

In some old websites that have not been updated for a while may still
use older standards to declare the DOCTYPE. Using the line above is the
correct way to do it in HTML5. Just remember that it must come before
everything, even before the <html> tag.

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible"
content="IE=edge">
 <meta content="width=device-width, initial-
scale=1.0" name="viewport" >
 <title>Document</title>
</head>
<body>
 <!—content -->
</body>
</html>

Code Optimization ◾ 143

The doctype declaration should be the thing in your HTML documents.
The doctype declaration informs the browser about the XHTML standards
you will be using and helps it correctly read and render your markup. You
can also write your doctype like this.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//
EN", "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.
dtd">

Use Meaningful Title Tags and Other Tags

The <title> tag helps to make a web page more meaningful and search
engine friendly. For example, the content inside the <title> tag will appear
on the Google search engine results page as well as in the web browser bar
and tabs.

<title> Best HTML Coding Practices </title>

This will display on the Google browser when your search is related
to this. Every part of your website should be created using the HTML5
markup that is most appropriate for the content. It’s best to avoid overus-
ing generic tags like <div> when a more descriptive tag like <section>,
<article>, and so on could exist for the task.

Use the Right Document Structure

HTML documents will still work without elements such as <html>,
<head>, and <body>.10 However, pages do not display correctly in
all browsers, so it is important that you use the correct document
structure.

If you’ve been using HTML for a while, you know that every piece of
HTML must be wrapped in HTML tags. The opening <html> tag should
appear first and the closing </html> tag should appear at the bottom of
the document. Every other piece of HTML should appear between these
two tags.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible"
content="IE=edge">

144 ◾ HTML: The Ultimate Guide

 <meta content="width=device-width, initial-
scale=1.0" name="viewport">
 <title>Document</title>
</head>
<body>
 <!—content -->
</body>
</html>

The head element is the first element that appears after the opening
HTML tag. We put all things like the page title and metadata in the docu-
ment head, add JavaScript to our page using the script tag, and [link] to
external stylesheets (CSS, CDN links) and other resources.

On most web pages, the head element is a very busy place. That’s why
we’ve created a tutorial that explains the tags that typically appear in the
head element and what those tags are used for.

All content that is visible on a web page is nestled between the opening
and closing body tags. The body is the primary container of content that
makes up a web page.

Until HTML5, that was pretty much it for the basic structure of an
HTML document. All of our code was wrapped between body tags and
styled with CSS. Now that HTML5 has widespread support among mod-
ern browsers, it’s time to implement new HTML5 tags that will give HTML
documents a much more meaningful structure.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible"
content="IE=edge">
 <meta content="width=device-width, initial-
scale=1.0" name="viewport" >
 <title> The title of the document</title>
 <link href="style.css" rel="stylesheet">
</head>
<body>
 <!—content -->
 <script src="script.js" rel="text/javascript">
</script>
</body>
</html>

Code Optimization ◾ 145

To define the structure and content of a web page. The elements we are
going to cover include:

• header

• main

• nav

• article

• section

• aside

• address

• footer

Using these elements is not as complicated as it might seem at first view.
We will quickly walk through each new element and then create an HTML
template that you can use these new tags to add rich semantic meaning to
your markup.

HTML full structure.

<header>
The header element is used to contain the content that appears at the top
of each page of your website: a logo, tagline, call to action, and possibly
a navigation menu. In most cases, the header element is best placed as a
direct child of the body element, but it’s also fine to place it inside the main
element if you want.

146 ◾ HTML: The Ultimate Guide

<main>
Use the main element between the header and footer elements to contain
the primary content of your web page. The main element cannot be a child
of an article, side element, header, footer, or navigation element. Instead, it
can be a direct descendant of the body element.

It’s also okay to use more than one main element on a web page for
making more partitions. For example, if your index page contains your
five most recent posts, it would be a better idea to wrap each post in its
own main element.

<nav>
Navigation menus are commonly located at the top of a web page, in a
sidebar, or in the footer of a page. Wherever you place your navigation
menu, wrap it in navigation tags. Note that you don’t need to use naviga-
tion tags for every link, only for blocks of links that allow site-wide naviga-
tion or site-specific navigation.

<article>
If your page contains blog, articles, or any other content that could just as
well appear on another site as content, wrap that content in an article. You
can use an article element almost anywhere other than nestled within an
address element, but an article element will be a direct child of a parent
element or a section element that is a direct child of a parent element.

<section>
The section element is used to identify the content that is a major subsec-
tion of a larger entity. For example, if you have a site that contains various
text in HTML format, it would make sense to wrap each in a section ele-
ment. Similarly, if you have a sidebar that contains four sections then it
would be fine to wrap each of those four sections in section tags because
written the sidebar content outline would include a line item for each of
the four sections.

There might be some confusion about when to use a section and when
to use a div. Here are some rules:

• The div element has no special meaning. It is often used as a block of
children’s elements.

• Introduced in the HTML5 standard, the section element is used to
group together related elements, such as a subsection of a long article.

Code Optimization ◾ 147

• In short, the section element provides a more semantic syntax than
the div element.

<aside>
If your website contains information that is not directly related to the
main content of the page, it would be a good idea to wrap this information
in tags such as aside tags.

<address>
The address tag gives contact information for the nearest parent article
or body element that contains it. You can use the address element inside
the article to enter contact information for the author of the article. Use it
outside of the article in main or footer elements, or as a direct child of the
body element also provide contact information for the site owner.

<footer>
The footer appears at the last of a section of a document. The footer tag is
a direct descendant of the body tag, but it can be used within a main tag,
a section tag, or an article. The use of the footer element is to place it at the
bottom of a document to contain things like a notice copyright, links to
related content, other information about the owner of the website.

DOCTYPE
The declaration of <!DOCTYPE html> is used to inform the web visi-
tor’s browser that the document being rendered is an HTML document.
Although not actually an HTML element per se, every HTML docu-
ment should come with a DOCTYPE declaration to conform to HTML
standards.

<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta http-equiv="X-UA-Compatible"
content="IE=edge" />
 <meta content="width=device-width, initial-
scale=1.0" name="viewport" />
 <title>Footer Using Html Css</title>
 <link
 href="https://cdn.jsdelivr.net/npm/
bootstrap@5.1.3/dist/css/bootstrap.min.css"

148 ◾ HTML: The Ultimate Guide

 rel="stylesheet"
 />
 <link
 rel="stylesheet"
 href="https://cdnjs.cloudflare.com/ajax/libs/font-
awesome/6.1.1/css/all.min.css"
 />
 <style>

* {
 margin: 0;
 padding: 0;
 box-sizing: border-box;
 color: #fff;

}
h1{
 text-align: center;
 padding:30px
}
a,
a:hover,
a.focus,
a.active {
 text-decoration: none;
 outline: none;
}

ul {
 margin: 0;
 padding: 0;
 list-style: none;
}

li a{
 text-decoration:none;
}

.footer {
 background: linear-gradient(105deg, rgb(154, 12,
72), #a129a5);
}

Code Optimization ◾ 149

.footer_section h4,

.social_media h4 {
 color: #fff;
 margin-top: 0;
 margin-bottom: 25px;
 font-weight: 700;
 text-transform: uppercase;
 font-size: 20px;
}

.footer_section h4::after,
.social_media h4::after {
 content: "";
 display: block;
 height: 2px;
 width: 40px;
 background: #fff;
 margin-top: 20px;
}

.footer_section ul {
 margin: 0;
 padding: 0;
 list-style: none;
}

.footer_section ul li a {
 color: #fff;
 transition: all .3s ease 0s;
 line-height: 36px;
 font-size: 15px;
 text-transform: capitalize;
}

.footer_section ul li a:hover {
 color: #f1f1f1;
}

.footer_section_contact ul li {
 color: #fff;
}

150 ◾ HTML: The Ultimate Guide

.search form {
 width: 100%;
 position: relative;
 display: flex;
 margin-bottom: 10px;
 box-shadow: rgba(149, 157, 165, 0.2) 0px 8px 24px;
}

.contact_input {
 width: 100%;
 border: none;
 padding: 0 0 0 15px;
 height: 60px;
 border-radius: 5px 0 0 5px;
 outline: none;
 color: #999;
 font-size: 16px;
}

.submit_button {
 width: 70px;
 height: 60px;
 font-size: 20px;
 border: none;
 background: #fff;
 text-align: center;
 color: #e1a0ee;
 border-radius: 0 5px 5px 0;
 cursor: pointer;
}

.social_media ul{
 display: flex;
 justify-content: space-between;
}

.social_media ul li {
 text-align: center;
 line-height: 50px;
 font-size: 16px;
 width: 50px;
 height: 50px;
 border-radius: 50%;

Code Optimization ◾ 151

 border: 1px solid #a129a5;
 background-color: #a129a5;
 transition: all .5s ease;
}

.social_media ul li:hover {
 border: 1px solid #a129a5;
 background-color: transparent;
}

.social_media ul li a {
 font-weight: 100;
 color: #fff;
}

@media screen and(max-width:400px) {
 .footer {
 padding: 0 10px;
 }
}
 </style>
 </head>
 <body>
 <div class="footer pt-5">
 <h1> Footer </h1>
 <div class="container">
 <div class="row">
 <div class="col-6 col-sm-6 col-md-4 col-lg-3
mb-5">
 <div class="footer_section">
 <h4>Links</h4>

 Link 1
 Link 2
 Link 3
 Link 4

 </div>
 </div>
 <div class="col-6 col-sm-6 col-md-4 col-lg-3
mb-5">
 <div class="footer_section">
 <h4>Guides</h4>

152 ◾ HTML: The Ultimate Guide

 Link 1
 Link 2
 Link 3
 Link 4

 </div>
 </div>
 <div class="col-6 col-sm-6 col-md-4 col-lg-3
mb-5">
 <div class="footer_section">
 <h4>Projects</h4>

 Link 1
 Link 2
 Link 3
 Link 4

 </div>
 </div>
 <div class="col-12 col-sm-6 col-md-12
col-lg-3 mb-5">
 <div class="row">
 <div
 class="col-sm-12 col-md-6 col-lg-12
footer_section footer_section_contact"
 >
 <h4>Contact Us</h4>
 <div class="search">
 <form action="#" class="subscribe">
 <input
 type="email"
 class="contact_input"
 placeholder="E-mail address"
 />
 <button type="submit"
class="submit_button">
 <i class="fa fa-paper-plane">
</i>
 </button>
 </form>
 </div>

Code Optimization ◾ 153

 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

Footer in HTML.

HTML Document Template

The below template shows how all these elements are properly nestled
within each other. You can use it as a standard template for all your HTML
documents.

<!DOCTYPE html>
<html lang="en">
<head>
 <title> HTML </title>
 <style>
 body{
 text-align: center;
 margin:0;
 padding:10px;
 font-size: 20px;
 }
 header{
border:1px solid darkblue;
height:100px;
margin: 2px;
}

154 ◾ HTML: The Ultimate Guide

nav{
 border:1px solid darkblue;
height:120px;
margin: 2px;

}
main{
height:200px;
display:flex;
flex-direction: row;

}
.section1{
height:200px;
width:80%;
display:flex;
flex-direction: column;

}
section{
 border:1px solid darkblue;
 height:120px;
 flex-direction: row;
margin: 2px;

}

article{
 border:1px solid darkblue;
 height:140px;
 flex-direction: row;
 margin: 2px;

}
aside{
 border:1px solid darkblue;
 width:30%;
 margin: 2px;
}
.section2{
 display:flex;
 flex-direction:row;

Code Optimization ◾ 155

 border:1px solid darkblue;
height:100px;
margin: 2px;

}
footer{
 width:50%;
 float: right;
}

address{
 width:50%;
 float: right;
}

 </style>
 </head>
<body>
 <h1> HTML Structure </h1>
 <header>
 Header Tag Content
 </header>
 <nav>
 Navbar Tag Content
 </nav>
 <main>
 <div class="section1">
 <section>
 Section Tag Content
 </section>
 <article>
 Article Tag Content
 </article>
 </div>
 <aside>
 Aside Tag Content
 </aside>
 </main>
 <div class="section2">
 <footer>
 Footer Tag Content
 </footer>

156 ◾ HTML: The Ultimate Guide

 <address>
 Address Tag Content
 </address>
 </div>
 </body>
</html>

Use Lowercase Letters
Your HTML markup can also be written in lowercase or uppercase on the
web page will render correctly.11 However, it is recommended to keep tag
names in lowercase letters as they are easier to read and maintain.

Reduce the Number of Elements on the Page
HTML documents can get complicated, especially for websites with a lot
of content. To reduce the size of your pages, look for opportunities to fur-
ther optimize your code once you’ve completed markup.

Validate Frequently
Instead of waiting until you’re done with your HTML document, check
your code multiple times as you work. This will help you save time at the
end by identifying errors early, especially if your document is long. One of
the popular HTML validators to use is the W3C Tag Validation Service.

Always Place the External Stylesheets in the <head> Tag
Although the external stylesheets can be placed anywhere in an HTML
document, the best practice is to place them inside the <head> tag. This
will make your page load faster.

Use Div Elements to Divide Your Layout into Main Sections
Consider dividing your website into main sections as the first step in cre-
ating a website design. It supports clean and well-indented code from the
start. It also helps to avoid confusion and overuse of divs, especially if you
write complex and long tags.

Example:

<div class="section1">
 <div class="content">
 Content
 </div>

Code Optimization ◾ 157

 <div class="content">
 Content
 </div>
 <div class="content">
 Content
 </div>
 <div class="content">
 Content
 </div>
 </div>

Minify, Unify, and Shift JavaScript
Like CSS, never use inline JavaScript, try to minify and unify JavaScript
libraries to reduce the HTTP requests that need to be made to generate
one of your web pages. But unlike CSS, there’s one really bad thing about
external JavaScript files: browsers don’t allow parallel downloads, which
means the browser can’t download anything while the JavaScript is down-
loading, resulting in the page feeling like it’s loading slowly. So the best
strategy is to load JavaScript last (i.e. after loading your CSS). To do this,
place the JavaScript at the end of the HTML document if possible. Best
practice recommends doing this just before the final <body> tag.

Example:

 </body>
 <link rel="stylesheet" href="http://ajax.
googleapis.com/ajax/libs/jqueryui/1.8.9/themes/
base/jquery-ui.css" type="text/css" media="all" />
<script src="http://ajax.aspnetcdn.com/ajax/
jQuery/jquery-1.5.min.js" type="text/
javascript"></script>
<script src="http://ajax.googleapis.com/ajax/libs/
jqueryui/1.8.9/jquery-ui.min.js" type="text/
javascript"></script>
</html>

Use Heading Elements Wisely
Learn how to use the <h1> to <h6> elements to mark the hierarchy of
HTML content. This will make content more meaningful to screen readers
and search engines, as well as other users.

158 ◾ HTML: The Ultimate Guide

Example:

 <h1>This is the top heading</h1>
 <h2>This is the subheading under the top
heading.</h2>
 <h3>This is the subheading under the h2
heading.</h3>

Use the Right HTML Element in the Right Place
Familiarize yourself with all present HTML elements and use them
correctly for semantic and meaningful content structure. It uses
 for emphasis and for strong emphasis instead of <i>
or .

Don’t Use divs for Everything
Sometimes developers end-up wrapping <div> tags around multiple
<div> tags that contain multiple <div> tags, creating a mountain of divs.
According to the latest draft of the W3C HTML specification, <div> is a
meaningless element that is used “as an element for last resort when no
other element is suitable”. But many also use it for menial things like dis-
playing inline elements as block elements (instead of the display:block;
CSS property). Avoid creating mountains of wonders by using them spar-
ingly and responsibly.

Use an Unordered List () for Navigation
Navigation is a very important aspect of website design, and the ele-
ment combined with CSS makes your navigation menus semantic. By con-
vention, an unordered list is also an accepted notation for your navigation
menu.

Use Alternate Attributes with Images
Using a meaningful alt attribute with elements is a must for writing
valid and semantic code.

Example:

<img src="https://images.pexels.com/
photos/8581948/pexels-photo-8581948.jpeg?auto=comp
ress&cs=tinysrgb&w=600&lazy=load" alt=" Beach " />

Code Optimization ◾ 159

Avoid Excessive Comments
The purpose of documenting code is to make it easier to understand, so
commenting out code logic is a good thing for programming languages
like PHP, Java, and C#. But markup is self-explanatory and commenting
every line of code doesn’t make sense in HTML/XHTML. If you find com-
menting your HTML a lot to explain what’s going on, you should check
your work for semantics and appropriate naming conventions.

Choose a Great Code Editor
Now there are tons of great code editors you can use, from something
basic and lightweight like Notepad++ to full-fledged IDEs. It’s free, built
on open source, and comes with tons of extensions to help you write bet-
ter code faster. There are also many code editors available, such as Atom,
Brackets, and Vim. Just choose the one you like the most and start coding.

Start Using the New HTML5 Tags
In the earlier days, different parts of a page were wrapped in div tags. That
is why there was no way to give page a more semantic structure. It comes
with a lot of various new tags that we can use to structure the content on
our website. This includes tags like navigation, section, article, aside, etc.

One h1 Per Page
Use only one h1 per page. Put the important text that describes the content
of the page. For example, your blog post or article title. Using multiple h1
tags per page is not necessarily a good idea and is not recommended as it
can harm your search engine results. It helps search engines to index site
in the right way. It is also defined in the W3C specifications and the con-
tent of your page should be described by a single tag in any case.

Stop Supporting IE
Whatever comments or tags you add to your HTML to support IE, just
stop! If you don’t have to strictly build for this browser, try recommending
other browsers to this user instead of adding some horrible thing to your
markup for IE.

Always Specify the Button Type
A simple rule! Always specify the button type. By default, the button is of
type “submit”, which is not always the desired behavior. As a general rule,
always be clear about the type of things you want, even if it’s the default.

160 ◾ HTML: The Ultimate Guide

Example:

<button type="button">My Button</button>
<input type="text"/>

Using Title Attributes with Links (If Needed)
Using the title attribute in anchor elements will improve accessibility
when used in the right way. It is good to understand that the title attribute
should be used to enhance the importance of the anchor tag.

BEST CODING PRACTICES

1. Start with DOCTYPE
DOCTYPE is required for activating mode.

<!DOCTYPE html>

<html>
 ...
</html>

2. Don’t use XML declaration.

<!DOCTYPE html>

3. Do not use character references as much as possible.
If you write an HTML document with UTF-8, almost all charac-

ters can be written directly such as:

<p> <small> Copyright © 2014 [®]
</small> </p>

4. Escape &, <, >, ", and ' with named character references.
These characters should escape always for a bug-free HTML

document.

<h1>The " & " character</h1>
Result = The "&" character

5. Put white spaces around comment contents.
Some characters cannot be used immediately after comment open

or before comment close.
<!-- This section is non-normative -->

Code Optimization ◾ 161

6. Don’t mix empty element format. It should be consistent.

<img alt="HTML Best Practices" src="/img/logo.
png">
 <hr>

7. Don’t omit closing tag.

<html>
 <body>
 ...
 </body>
</html>

8. Don’t mix character cases. It gives a consistency also.

General

SECURITY AND HARDENING IDEAS (HTML SECURITY)
It is commonly used for securing HTML Code and Content.12 HTML
security consists of three different security measures:

• HTML encryption to ensure that web content cannot be accessed by
unauthorized users.

• Using digital certificates to verify the domain and ensure that the
content comes from a trusted location (the URL in the browser’s
address bar).

• Encrypting content on its way from the server to the client and back
(SSL).

Security is a topic that comes up from time to time. It’s not a problem
from the start, but once something bad happens, it’s usually blamed. The
software is complex, the human programming of the machine is far from
perfect, and the user may not follow the best practices either. So this is how
we can create a secure system.

The web is one of the most dangerous places possible. Computers
with potential security risks are interconnected. Servers can receive any
data. Clients run code from unknown sources. While we cannot control
the security of servers, we must do something to protect clients. While

162 ◾ HTML: The Ultimate Guide

JavaScript might be considered a safe scripting language, the code for any
ActiveX, Flash, or Silverlight plugins certainly isn’t. Additionally, even if
JavaScript itself is sandboxed, it can be used in such a way that the user
triggers insecure actions.

SECURITY
One of the most necessary guidelines has nothing to do with HTML
directly: Use HTTPS!13 The relation to HTML is, of course, in the distribu-
tion of our hypertext documents. However, we must remember that using
HTTPS to transfer our documents and using HTTPS for our resources are
two different things. It is definitely necessary to check that all contained
resources are actually using the https:// scheme.

Another important guideline concerns user-defined content. Once we
allow users to enter data into a form, we need to be careful. Not only do
we need to make sure that the web server is protected against common
attacks like SQL injection, we also need to make sure that stored data is
not used in executable code without care. For example, we should not
have any HTML escape strings. The HTML itself is not malicious, but
it can cause a script to run or resources to be loaded. The only way to
allow users to write HTML that will be placed on the output page without
modification is to whitelist certain tags and attributes. Other elements
will be leaked.

Our JavaScripts should also minimize exposure and reliance on third-
party libraries. Of course, we use the immediately invoke function expres-
sion (IIFE) to avoid polluting the global context; however, another reason
is to avoid leaking (probably) crucial internal states that can then be inten-
tionally or accidentally changed by other scripts.

It is certainly good practice for ourselves to rely on “strict usage”;
and mediated benefits. However, limiting the running script does not
prevent us from using the API with potentially corrupted data. Cookies
and content in local storage may be changed or displayed by the user
or other programs depending on conditions beyond our control.
Therefore, we should always have some sanity checks in place to help
us detect integrity f laws as early as possible. We should make sure that
we only use trusted third-party sources. The use of scripts from other
servers within our website can change the page or violate the privacy
of our users.

Code Optimization ◾ 163

METHODS OF COMMUNICATION IN HTML
There is also a well-associated JavaScript API in HTML5. Also, new tech-
nologies open up the way we communicate between client and server and
across documents. Let’s look.

• XHR and XHR2 with CORS

• Web news

• Web sockets

• Events sent by the server

• Web Workers

Common Communication Event Model (XHR)

All event handlers receive an event object containing a date property. This
property includes the sent data as part of the message. The event model is
mostly based on onmessage and postMessage or send.

Example:

<script>
 // in the recipient code
recipient.onmessage = function (event) {
 console.log(' Message Received: ' + event.data);
};

// from the sender code
recipient.postMessage(' Hi there'); // or it can
be recipient.send('Hi there');
</script>

This is a common model and is not exactly the same between all these
technologies. The two similarities are that they use:

• sending method (postMessage or send) on the receiver object and

• an event handler listens for message events and receives an event
object containing the date property.

164 ◾ HTML: The Ultimate Guide

<Script>
 window.onmessage = function (event) {
 if (event.origin == 'mytrustedsite.com') {
 alert('my trusted site said: ' + event.data);
 }
};
</Script>

Support for postMessage:

• Chrome

• Safari

• Opera

• Firefox

• IE8

Web Sockets

Web sockets are also used to send messages to and from the server
– i.e. a two-way socket. Unlike other similar technologies, with Web
Sockets you can browse across domains and are not bound by same-
origin policies. This means you can host your normal “app” server
while another server is used for streaming contentYou can only send
messages when the socket is open (duh). The communication model
looks like this:

<Script>

var vas = new WebSocket('ws://somesite.com/updates');

vas.onmessage = function (event) {
 alert(event.data);
};

vas.onopen = function () {
 vas.send('yay! we connected!');
};
</Script>

https://mytrustedsite.com

Code Optimization ◾ 165

Support for Web Sockets

• Chrome

• Safari and MobileSafari

Server-Sent Events

The Server-Sent Events API is used to send events from the server to the
client. The client can’t send messages to the server via EventSource (SSE).
It can only listen to messages.

The API uses the onmessage model. It is created using an EventSource
object and is constrained by the same origin rules:

<script>
 var es = new EventSource('/sse');
 es.onopen = function () {
 console.log('opened stream');
 };

 es.onmessage = function (event) {
 console.log('new message: ' + event.data);
 };
 </script>

Web Workers

Web Workers are a way to create a new thread of execution inside the
browser. It includes communicating with web workers and the way you
communicate is similar to some of the techniques above. However, every-
one should be aware that this is not a method of communication from the
client (browser) to the server. It’s more like there’s another browser win-
dow that executes a specific block of JavaScript.

For Example, if you’re using a lot of JavaScript and the UI becomes
unresponsive. The browser UI gets stuck because it’s a “single-threaded
application” in a way. The JavaScript task can be outsourced to the web
worker so that the user interface can continue to function.

Web Messaging

Web Messaging is mainly used to share data by separating the browser
context without using the DOM and overcomes the problems in cross-
domain communication across different domains, protocols, or ports.14

166 ◾ HTML: The Ultimate Guide

Instead of sending data from the user’s page, you can just add content
that is present in a frame or vice versa, where the browser sends a security
alert instead of a message event.

Web Messaging Events
The web messaging events are used in action for cross-document mes-
saging, channel messaging, server-sent events, and web sockets. It has
described by Message Event interface.

• data: It is used to store the string data.

• origin: It is used to store the domain name and port.

• source: It is used to store an originating document window.

• ports: It is used to store the data that is sent by any message port.

• lastEventId: It is used to store the unique identifier of the current
message event.

Sending a Message across Documents
Before sending a message between documents, we need to create a new web
browsing context by creating either a new iframe or a new window. We can
send the data using postMessage() and it has two arguments such as:

• message – The message to send

• targetOrigin – Origin name

HTML5 Channel Messages

Channel Messaging is used for the browsing context, which is a two-way
communication commonly used for multiple resources. If you want to
create a message, it internally creates two separate ports that are used for
sending and forwarding to another browser context as shown below:

• postMessage() – It is used to post a message using a channel.

• start() – It is used to send data.

• close() – It is used to close ports.

Cross-Origin Resource Sharing (CORS)

The concept of CORS is simple. The browser does not allow embedding of
special resources from different sources unless the origins explicitly allow

Code Optimization ◾ 167

it. For example, special resources can be web fonts or anything requested
via XMLHttpRequest. AJAX requests from various sources are disabled by
default due to their ability to make advanced requests that introduce many
scripting security issues. The origin is basically defined by the combina-
tion of protocol, host, and port used.

Clients can allow to use resources by including some headers in the
response. The browser then determines whether or not the current web
page can use the resource. The origin is usually determined using the
domain of the current website.

Let’s look at an illustrative example. We further assume that our site is
located at foo.com. We request JSON data from a page hosted on bar.com.
For JSON request, we use XMLHttpRequest as shown below.

<script>
 var es = new EventSource('/sse');
 var xhr = new XMLHttpRequest();
xhr.open('GET', 'https://bar.com/users');
xhr.addEventListener('load', function (ev) {
 if (xhr.status === 200) {
 var result = JSON.parse(xhr.responseText);
 // ...
 }
}, false);
xhr.send();
 </script>

The browser already assumes a CORS-enabled response option by add-
ing an Origin header to the request such as:

Origin: http://foo.com

Now the server must deliver the correct response. Not only do we want
the correct JSON to be transported, but more importantly we require spe-
cific CORS headers. The following example will grant the right to use the
requested resource for any request.

Access-Control-Allow-Origin: *

CORS can also be used as an alternative to JSONP solutions. JSONP uses
scripts to make AJAX requests from various sources that result in JSON
responses. Before CORS, cross-domain calls were generally forbidden, but

https://foo.com
https://bar.com

168 ◾ HTML: The Ultimate Guide

including scripts from different domains was always acceptable. In most
APIs, a JSONP response was triggered by providing a special query param-
eter that named the callback function.

Suppose the call to “http://bar.com/api” results in the following JSON
response such as:

{ "name": "example", "factor": 5, "active": true }

The JSONP call to, e.g., http://bar.com/api?jsonp=setResult would give us:

setResult({ "name": "example", "factor": 5, "active":
true });

Since only the <script> element sees the JSONP result, the GET request
method is assumed. There is no option to use anything else. CORS gives
us much more freedom in this area, so we can specify other parameters as
well. All of this is made possible by allowing us to freely use the standard-
ized XMLHttpRequest object.

Sandboxing Flags

Each document has its own window. Access to this window is usually
through the proxy window of the current browsing context, which con-
trols the tab we see. A browsing context is created with several options
such as parent context, creator, and splash page. Security flags are set along
with these options. Flags set the options and constraints of the context. In
fact, it is possible to prevent certain behaviors such as running scripts or
opening new tabs.

There are a bunch of flags available. The most important ones are such as:

• allow-top-navigation (it allows changing the top context)

• allow-plugins (it enables embed, object, …)

• allow-same-origin (its content from the same origin may be accessed)

• allow-forms (its forms can be submitted)

• allow-popups (its popups/new contexts won’t be blocked)

• allow-pointer-lock (it enables the pointer-lock API)

• allow-scripts (it allows script execution)

Code Optimization ◾ 169

CHAPTER SUMMARY
In this chapter, we have discussed various points and by using them, you
can improve your code writing in HTML.

NOTES
 1. HTML Code – https://www.keycdn.com/blog/frontend-optimization, accessed

on September 6, 2022.
 2. HTML Code – https://www.keycdn.com/blog/frontend-optimization, accessed

on September 6, 2022.
 3. HTML Code – https://www.keycdn.com/blog/frontend-optimization, accessed

on September 6, 2022.
 4. Code Optimization – https://www.imperva.com/learn/performance/front-

end-optimization-feo/, accessed on September 6, 2022.
 5. Code Optimization – https://www.imperva.com/learn/performance/front-

end-optimization-feo/, accessed on September 6, 2022.
 6. Code Optimization – https://one-inside.com/optimize-front-end-performance/,

accessed on September 7, 2022.
 7. Code Optimization – https://one-inside.com/optimize-front-end-performance/,

accessed on August 7, 2022.
 8. Prefetch and Reload in HTML – https://www.digitalocean.com/community/

tutorials/html-preload-prefetch, accessed on September 7, 2022.
 9. Code Optimization – https://javascript.plainenglish.io/15-useful-

techniques-you-can-use-to-improve-your-frontend-optimization-
8317cb6e54e9, accessed on September 7, 2022.

 10. HTML Coding Tip – https://html.com/document/, accessed on September
8, 2022.

 11. HTML Coding Tips – https://blog.tbhcreative.com/2015/08/10-best-practices-
in-html.html, accessed on September 8, 2022.

 12. Security in HTML – https://www.locklizard.com/html-security/, accessed
on September 9, 2022.

 13. Security in HTML – https://code.tutsplus.com/tutorials/html5-mastery-
web-security--cms-24846, accessed on September 9, 2022.

 14. HTML Web Messaging – https://tutorials.freshersnow.com/html5/html5-
web-messaging/, accessed on September 9, 2022.

https://www.keycdn.com
https://www.keycdn.com
https://www.keycdn.com
https://www.imperva.com
https://www.imperva.com
https://www.imperva.com
https://www.imperva.com
https://one-inside.com
https://one-inside.com
https://www.digitalocean.com
https://www.digitalocean.com
https://javascript.plainenglish.io
https://javascript.plainenglish.io
https://javascript.plainenglish.io
https://html.com
https://blog.tbhcreative.com
https://blog.tbhcreative.com
https://www.locklizard.com
https://code.tutsplus.com
https://code.tutsplus.com
https://tutorials.freshersnow.com
https://tutorials.freshersnow.com

https://taylorandfrancis.com

171DOI: 10.1201/9781003357537-4

C h a p t e r 4

HTML for Game
Development

IN THIS CHAPTER

 ➢ Building block HTML

 ➢ HTML5 Game Development

The previous chapter was all about the code optimization. Here in this
chapter, we will start our new topic – Game development in HTML.

Let’s start from scratch.1 What is HTML? There is a good defini-
tion of HTML5, which simply means the latest revision of HTML (the
markup language used around the world to create web pages), and a
more hyped definition (what most people understand when they say
HTML5), which is the “new” features of web technologies that appeared
in the last few years (JavaScript APIs like Canvas or WebAudio, seman-
tic HTML tags, etc.).

For our purpose, we will use pieces of these two. HTML5 is the lat-
est version, which includes a whole host of great features that make web
technologies an open standard with endless possibilities for combining
HTML, CSS, and JavaScript.

HTML along with all these superpowers that go beyond a simple
web allows us to create games among other things. This is an HTML5
game.

https://doi.org/10.1201/9781003357537-4

172 ◾ HTML: The Ultimate Guide

BUILDING BLOCKS
Essentially, HTML code looks just like regular text.2 A great feature of
HTML code is the use of curly braces. These curly braces enclose markup
code that tells the browser how to display the document’s data.

Example:

<!DOCTYPE html>
<head>
 <title>Page Title</title>
</head>

<body>
 <h1> This is a heading. </h1>
 <p> This is a paragraph. </p>
</body>
</html>

Above are the basics of what a website consists of. If you’ve ever wanted
to know what the page you’re on looks like in HTML form, switch the page
to source mode. Switching a page to source mode can seem very scary with
a lot of coding involved. However, once you understand the fundamentals
of HTML, it’s easy to see how it all works. If you want to fully understand
the basics of coding, you need to know the three building blocks: tags,
elements, and attributes.

Tags

The pieces of text that can be found inside curly braces along with square
brackets are called “tags”. It is used to separate code from normal text.
They also help tell the browser how to display the web page between the
opening and closing tags. These two are: <html> and </html>. Some tags
come in pairs as one tag is used to open the tag and the other to close it, the
difference is shown in the HTML tags above. Finally, you should always
remember to open and close labels and remember to use angle brackets to
make them work.

Elements

Elements are a tag as a whole, so this includes the opening tag, the text
inside, and then the closing tag as well. Subsequently, the web page is

HTML for Game Development ◾ 173

made up of many HTML elements, all of which are put together like
a giant puzzle. The elements are very easy to understand once you
understand the tags. The only part of elements where it can be tricky is
when elements appear within elements, but if you practice this section
a lot you’ll find it’s not difficult as long as you know where to put the
element codes.

Attributes

These are used to define more specific information within an element.
They usually come in pairs name and value (name=“value”). Attributes
can also be used to facilitate resizing images, changing the font, size, and
color of text. This means that most element types will only appear/use
when we need them. The main two points you’ll need to remember about
attributes are to enclose the value in quotes to make it easier to identify.
Second, write it in lowercase letters.

The basic building blocks of an HTML5 game are those from the web,
such as:

• HTML

• CSS

• JavaScript

Similar to HTML5, when people talk about CSS3 they’re usually refer-
ring to the new stuff that comes with the latest CSS specs, but by analogy,
CSS3 is simply the latest CSS. Ignoring the semantics of these definitions
for a moment and thinking about the hyped versions of these terms, we
may also need to make HTML5 games:

• HTML5 (JavaScript API)

• CSS3

With the above, you can create amazing games that will run in modern
web browsers on mobile and desktop, but sometimes games may require
more features, so you can add more building blocks.

For example, you might want to create 3D games. If that’s the case,
there’s also WebGL, which is a JavaScript API for rendering 2D and 3D
graphics in the browser using the GPU for higher performance.

174 ◾ HTML: The Ultimate Guide

HTML5 GAME FUNDAMENTALS
Although browser games are often called “HTML5 games”, they require
more than just HTML5 to function properly.3 The HTML5 prefix refers
to the use of the canvas element for game development. Now, all major
browsers support canvas, which is why it is usually considered the best
choice.

Items in the canvas element can be generated programmatically or
loaded as graphics. Sometimes HTML5 games rely on sprites and tileable
patterns, very similar to old SNES and Game Boy titles. More advanced
graphics can be rendered using the WebGL/3D libraries, but most peo-
ple just starting to learn and practice game development prefer 2D for its
simplicity.

A web game breaks down into an HTML document with a canvas ele-
ment for interaction. The canvas contains assets/sprites for characters,
enemies, treasure chests, etc. Most of these graphics can be loaded using
CSS. Computer games rely on mouse clicks or keystrokes for user interac-
tion. The reliable way to handle this interaction is with JavaScript. Once
the canvas screen is set up, most developers work to implement the func-
tionality in JavaScript or a JS library.

HTML5 essentially replaced Flash game development with a broader
API and more public support. Older versions of IE do not support canvas,
so you’ll either have to resign yourself to that demographic or try using an
add-on library like ExploreCanvas.

DEFINING GOALS FOR GAME DEVELOPMENT
Before writing a line of code, it would be beneficial to plan the design of
your game.4 Write (or write) a general guide for the purpose of the game,
how users play, and what defines “winning” the game.

Whether you’re building a puzzle or a sidescroller, game mechanics
are important. Some events will need to be programmed in JavaScript to
respond when players reach something – or don’t reach something.

HTML5, CSS3, and JavaScript all work well together and they can be
used to create fun gaming experiences. But the mechanics are still new,
so it’s good to have your ideas planned well in advance. Think of a list of
necessary features and how those features would be coded. If you want to
build game like a player who lose their life and have to restart the game,
how do you show scores? Also, think about interacting with the user in
terms of how they would feel “most comfortable” while playing the game.

HTML for Game Development ◾ 175

User Interaction Processing

Interactive components are what that define games.5 A game without an
active player is just a pretty graphic on the screen. It is the way to handle
user actions, both from the mouse and from the keyboard.

JavaScript has built-in methods for capturing interactions known as
event listeners. It can be set to listen and record whenever an event occurs,
such as a mouse click or the “A” key being pressed. Once this happens, the
event listener can fire the function and do whatever you want.

More complex interactions can occur regardless of user input. For
example, suppose you play game of Mario and when Mario walks into a
turtle, what happens? He loses his life. If you were building a game clone
of Mario, you would have to listen to this event and fire a function if the
player hits the turtle.

However, not all games have to follow these templates. Take this word
search game that runs like a typical crossword puzzle. It drag to highlight
words and points are awarded based on the number of words solved.

The features and calculations for the word search game are significantly
different compared to Super Mario. However, both require user interac-
tion, which in the HTML5 gaming world relies heavily on JavaScript.

Server Side in an HTML5 Game

If you want your games to save data remotely, you will need a server side
for your game. You can develop your own backend using any server side
language, in this case you will need a server.

• PHP

• Java:

• JavaScript (NodeJS)

• Ruby

• Python

Or you can use a third-party backend as a Service provider like Firebase.
Some have free versions that you can use and will start charging you once
you exceed certain limits. Some of these providers focus mainly on games;
some are mostly designed for mobile applications, but can also be used for
games.

176 ◾ HTML: The Ultimate Guide

Graphics and Sprite Sheets
Game developers refer to music, graphics, and animation cycles as assets.
For canvas games, these assets should be created and stored locally on the
game server. Interactive elements and noninteractive elements must be
considered when organizing graphic items. For a small RPG, the interac-
tive elements would be the player character along with enemies and trea-
sure chests. Anything that can interact with other things on the screen
should be considered interactive.

Noninteractive graphics are like backgrounds and tiles. The Photoshop
and Illustrator are the perfect choices for creating these BG graphics and
exporting them for use on the web.

If you are interested in making 3D. WebGL is basically a JavaScript
library/API for rendering advanced graphics in the browser. You can try
to design your graphics using CSS3 transforms, but this is much more
restrictive.

When it comes to animation, you will want to put together a sprite
sheet of the characters at different stages. Since JavaScript can use to
move objects around the page, you don’t always have to create unique
animations from scratch. But if you like 2D graphics style, try prac-
ticing sprite animation tutorials to get basic concepts for 2D game
animation.

HTML5 Game Frameworks
Most games share some concepts like sprites (graphics that represent ene-
mies, players, and elements in your game), scenes or stages, animations,
sound, loading graphics, etc.6 Because most game developers want to focus
on their actual game rather than creating this whole abstract layer, we rec-
ommend using HTML5 game frameworks.

HTML5 game frameworks and libraries containing building com-
ponents that you can use to create your own games. These libraries are
Open-Source projects created as well as maintained by people who want
to contribute to the HTML5 gamedev environment. In many cases, they
have created frameworks for their own games, and after realizing that
other people would not only want to use them, but also contribute to them,
release them as Open-Source code, so everyone wins.

Choosing which game engine to use is an important decision, so do
your research properly before choosing. There is no matter what engine
you choose, you will need to familiarize yourself with its code and inner
workings to use it properly, so they shouldn’t be treated like dump.

HTML for Game Development ◾ 177

If you’re making HTML5 games, it makes a lot of sense to start with
some kind of game engine or framework. There are many free HTML5
game engines and frameworks out there, from the very minimal to the
very complex. Below we will discuss some of the most popular HTML5
game frameworks as well as particle systems, game coding with code
examples. For starters, we think it makes sense to take a step back and
look at these HTML5 game development slides.

Amazing Facts about HTML5 Game Development
There are several ways to create an HTML5 game, and quite a bit of mate-
rial on the technical side of each, so in this section we’ll provide an over-
view of the benefits of HTML5 game development.

Multi-Platform

One of the most obvious advantages of HTML5 for games is that games
will run on any modern device.7 Yes, you will need to pay special attention
to how your game will respond to different screen sizes and input types.
We see too many games that don’t work on mobiles and tablets, which is a
really big mistake when developing any game, always keep mobile in mind
when developing your HTML5 game.

You can create games that adapt to different requirements such as aspect
ratios, screen size, resolution, etc. HTML5 games run not only on different
platforms like iOS, Android, or Windows but also on browsers. HTML5
offers the ability to create games for different browsers and platforms. This
means you only need to code once and you can deploy the game anywhere.

Unique Distribution

Most HTML5 games developed so far are built in the same way as Flash
and native mobile games. This makes some sense, it overlooks the real ben-
efits that the web as a platform adds.

HTML5 game distribution is often seen as a weakness, but that’s only
because we’ve looked at it in the same sense as native games, where the market-
place is the only way to find games. With HTML5 games, you have a powerful
hyperlink. Links are thus easily distributed across the web and mobile devices.

Cleaner Code

Always keep your code clean.8 HTML5 now makes it easier for you because
any semantic and descriptive code can be written cleanly and separated in
style form without any complex effort.

178 ◾ HTML: The Ultimate Guide

Geolocation API

Everything we can do in app, game development is about satisfying user
needs. Using the HTML5 Geolocation API, you are able to automatically
find where your user is in the world and ensure content is served to them.
Of course, there are some issues with giving consent to track location, but
given the benefits of browsing the web with geolocation turned on.

Makes Promotion Easier

HTML5 game development targets a wider audience because browsers of
different operating systems support games developed using HTML5.9 So
whenever a developer creates a game, they can promote all the features once
and for all through a simple website. Even sharing HTML5 games is a breeze.
You can share any link to a website that players visit quite often and you’re
done. There are many websites dedicated specifically to HTML5 games.

Game Development Frameworks and Game Engines

A game engine is a framework or software development environment used
to create games.10 The game engines are one of the reasons game develop-
ers love developing HTML5 games.

HTML5 game engines take the tedious work out and make the game
development process quite easy. Thus, developers need to spend less time
creating a fully functional HTML5 game. They take care of game engines
and frameworks:

• Audio

• Video

• Physics

• Maps

• Animations

• And more

All the above is necessary for creating puzzles, emulators, shooting, or
poker games.

Phasers
Phaser is a game engine that you can use to create a game and compile it for
different platforms. It is a cross-platform game engine that supports a wide

HTML for Game Development ◾ 179

variety of plugins, making it easy to develop HTML5 games. Submarine
Dash, Elf Runner, Bayou Island are some of the popular games created
with Phaser.

PlayCanvas WebGL Game Engine
The PlayCanvas game engine uses WebGL and HTML5 to run 3D content,
including games, in desktop or mobile browsers. It’s an open-source game
engine, so anyone can add features to it.

If you want to develop or create 3D games using WebGL and HTML5
Canvas, PlayCanvas is the way to go. It is very powerful, optimized for
mobile, and helps in faster game development. The Robostorm, Master
Archer, Blast Arena, and Swoop are some of the games created with
PlayCanvas.

Here is the various engine used for 2D html animations and games
development:

• GDevelop

• Modd.io

• Construct 2

• ImpactJS Engine

• EaselJS

• Phaser

• pixi.js

• GameMaker

• Turbulenz

• lycheeJS

• CAAT

• melonJS

• Cocos2d-X

• WADE

• Quintus

180 ◾ HTML: The Ultimate Guide

• Crafty

• enchant.js

• LimeJS

• Isogenic Engine

• Panda.js

• Kiwi.js

• GC DevKit

Here is the various engine used for 3D html animations and games
development:

• Construct 2

• BabylonJS

• Three.js

• Turbulenz

• voxel.js

• PlayCanvas

New HTML5 Features
The most important feature that was added to HTML5 is that it recognizes
that the World Wide Web has a very definite structure.11 There are many
new tags and elements like navigation, aside, article, audio, video, canvas,
etc. have been added in HTML5 to create a more structured website. Some
of the new features are the semantic replacements and some provide new
features. The most important new features are:

• A <canvas> element is added for designing and working with 2D
graphics.

• Local storage, web storage, and multi-threading can also be done in
HTML5 using web workers.

• Web Sockets are now fully HTML5 compliant, allowing two-way
communication between parent and child pages on multiple domains.

HTML for Game Development ◾ 181

• <Video> and <audio> tags were introduced to add multimedia ele-
ments to the page.

Principles of HTML5 Game Design
Visual effects in games define overall look, feel, and playability. Gamers are
attracted by the high-visual quality that generates more traffic and reach.
It is the key to creating successful games and provides a lot of fun for play-
ers. Here we would like to present some ideas on how to implement various
visual effects in HTML5 games based on <canvas>. Before we get into it,
now let’s introduce the things we should learn before making game, such as:

• Basic game design that is used to create games and game effects such
as game loops, sprites, collisions, and particle systems.

• The basic implementation of visual effects we will explore the theory
and some code examples supporting these patterns.

Common Patterns
Let’s start with some common patterns and elements used in game
development:

• Sprites

• Sprite sheets

• Game loops

• Collision detection

• Particles and particle systems

• Euler integration

• Point

• Vector

Note that objects set in motion stay in motion. If you want to use some
kind of deceleration to stop a moving object, you can use:

• Weapon effects

• Plasma

182 ◾ HTML: The Ultimate Guide

• Blaster

• Ray

• Rockets

• Flak

• Electro

HTML Canvas Graphics
Here, this section describes how to use the <canvas> element to draw
2D graphics, starting with the basics.12 The examples provided should
provide you a clear idea of what you can do with the canvas and pro-
vide code snippets that can help you get started with creating your own
content.

A <canvas> is an HTML element that can be used to draw graph-
ics using scripting (usually JavaScript). This can be used for example for
drawing graphs, combining photos, or creating simple animations. The
first introduced in WebKit by Apple for the macOS dashboard, <canvas>
has since been implemented in browsers. Now, all major browsers sup-
port it.

Before the Start

Using the <canvas> element is not too difficult, but you need basic knowl-
edge of HTML and JavaScript. The <canvas> element is not supported in
older browsers but is supported in the latest versions of all major browsers.
The default canvas size is 300 pixels × 150 pixels (width × height). However,
custom sizes can be defined using the HTML height and width property.
To draw graphics to the canvas, we use a JavaScript context object that cre-
ates graphics on the fly.

Basic Use of Canvas
The <canvas> tag is used to draw graphics on a web page. It displays four
elements: a red rectangle, a gradient rectangle, a multi-colored rectangle,
and a multi-colored text. Canvas can draw colored text, with or without
animation. Canvas has great features for graphically presenting data with
images of graphs and tables. Canvas can respond to JavaScript events.
Canvas can respond to any user action (button click, mouse click, button
click, finger movement). Animation canvas methods offer many possibili-
ties for HTML game applications.

HTML for Game Development ◾ 183

The “canvas” HTML element is used to draw graphics using JavaScript.13
The “canvas” element is just a container for graphics. JavaScript should
be used to draw the graphics. Canvas has several methods for drawing
paths, frames, circles, text, and adding images. A canvas would be a rect-
angular area on an HTML page. By default, the canvas has no border or
content.

Syntax:

<canvas>
 Content...
</canvas>

The <canvas> element basically is a container for graphics, you need
a scripting language to draw graphics. The <canvas> element enables
dynamic and scriptable rendering of 2D shapes and bitmap images.

It is a low-level procedural model that updates a bitmap and has no
built-in scene. There are several methods in the canvas for drawing paths,
frames, circles, text, and adding images.

The Canvas Element is officially a canvas that is “a resolution-depen-
dent bitmap canvas that can be used for rendering charts, game graphics,
or other visual images at runtime”. Simply put, you can render 2D shapes
and bitmap images using JavaScript and the HTML5 canvas element. The
image below shows a canvas with a black border.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
<body>
 <h2> Canvas HTML </h2>
 <canvas id="can" width="500" height="500"
style="border: 1px solid">
 </canvas>
</body>
</html>

184 ◾ HTML: The Ultimate Guide

The output of the code is given below.

In the above example, <canvas> looks like an element the differ-
ence being that it doesn’t have the src and alt attributes. In fact, the <canvas>
element only has two attributes, width, and height. Both are optional and
can also be set using DOM properties.

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
<body>
 <h2> Canvas HTML </h2>
 <canvas id="can" style="border: 1px solid">
 </canvas>
</body>
</html>

Canvas border box.

HTML for Game Development ◾ 185

The output of the code is given below.

If no width and height attributes are specified, the canvas will initially
be 300 pixels wide and 150 pixels high.

A web page can contain multiple canvas elements. Each canvas can
have an ID that you can use to target a specific canvas via JavaScript.
Each canvas element has a 2D context. This again has objects, prop-
erties, and methods. To draw on the canvas, you must reference the
canvas context. The context gives you access to 2D properties and
methods.

The id attribute is not specific to the <canvas> element but is one of the
global HTML attributes that can be applied to any HTML element (such
as a class).14 It’s always a good idea to include an ID as it makes it easier to
identify in the script.

The <canvas> element can be styled like any normal image (border,
border, background…). However, these rules do not affect the actual draw-
ing on the canvas. We will see how it is done in the dedicated chapter of
this tutorial. When no style rules are applied to the canvas, it will initially
be fully transparent.

The <canvas> element requires a closing tag (</canvas>). If the tag is not
present, the rest of the document will not be displayed. If you don’t need
fallback content, a simple <canvas id=“foo” …> </canvas> is fully compat-
ible with all browsers that support canvas at all.

About the <canvas> Tag
It is a graphic element. Use the HTML <canvas> element with either the
canvas scripting API or the WebGL API to draw graphics and animations.

Canvas border box (no width and height given).

186 ◾ HTML: The Ultimate Guide

Using the class:15

• Classes (i.e. class names) are used to style the canvas element.

• Multiple class names are separated by a space.

• JavaScript uses classes to access elements by class name.

Syntax:

<canvas class="classname" >

A class attributes styling a <canvas> element. Every second, JavaScript
toggles a classname that changes the border color.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <style>
 .bordered {border:4px solid lightblue;}
 .border-red { border-color: orangered; }
</style>
 </head>
<body>
 <h2> Canvas HTML (Change border color using
class) </h2>
 <canvas class="bordered" id="canvas"
 width="200" height="200"></canvas>

<script>

(() => {

let canvas = document.getElementById("canvas");
let context = canvas.getContext("2d");

context.fillStyle = "paleturquoise";
context.fillRect(22, 22, 150, 150);

setInterval(() => {
 canvas.classList.toggle("border-red");

HTML for Game Development ◾ 187

}, 1000)

})();

</script>
</body>
</html>

The output of the code is given below.

Here is the description of the above code.
Two CSS classes are defined in the <style> element. A single class

name is assigned to the class attribute in <canvas>. The JavaScript
toggles another class and creates the impression of a flashing border.
JavaScript uses an anonymous, self-executing lambda expression to
start a process.

• The grid

• Drawing rectangles

• Drawing paths

• Drawing triangles

• Moving the pen

• Lines

• Arcs

Canvas HTML (change border color using class).

188 ◾ HTML: The Ultimate Guide

• Bezier and quadratic curves

• Quadratic Bezier curves

• Rectangles

• Making a combination of shapes

• Path2D objects

• Using SVG paths

There are various shapes as you can see above all these shapes also have
different methods such as to set any colors, styles, and shadows on the
canvas, you can use these methods given below:16

• fillStyle: It sets or returns the color, gradient, or pattern used to fill
the drawing.17 The context.fillStyle is a property and not a method. A
method is a function that we use to program the context to do some-
thing. For example, we program the context to draw a filled rectan-
gle using the context.fillRect() method. When assigning a new color
to the context.fillStyle property, we can manually assign the color
ourselves. The context defines colors using CSS color values that are
stored as text strings. There are several different ways to describe a
color in CSS such as:

1. Color names: Some specific colors have names that all web brows-
ers can identify. For example, the context knows that context.fill-
Style = ‘DarkSalmon’ actually means context.fillStyle = ‘#E9967A’.
Here is the complete list of color names. We will discuss only some
of them.

2. Hexadecimal triplets: The color ‘#9932CC’ is actually three sep-
arate numbers written in base 16. The first number (99) is the
amount of red; the second number (32) is the amount of green;
the third number (CC) is the amount of blue. The value for color
components (red, green, and blue) can range from 00 (none) to FF
(maximum).

3. RGB values: To describe a color using RGB values, we use a string
in the format: ‘rgb(red, green, blue)’. The numbers 99, 32, CC in
base-16 are equal to 153, 50, 204 in base-10, ‘#9931CC’ & ‘rgb(153,
50, 204)’ both describe the same color. RGB values must be inte-
gers and range from 0 to 255.

HTML for Game Development ◾ 189

4. RGBA format: A is Alpha values range from 0 to 1, where 0 is fully
transparent and 1 is fully opaque. To set the fillStyle of the con-
text to a dark orchid color that is 50% transparent, we use the text
string “rgba(153, 50, 204, 0.5)” where the first three numbers are
RGB values and the fourth number is alpha value.

Name HEX Code RGB Code

IndianRed #CD5C5C rgb(205, 92, 92)
LightCoral #F08080 rgb(240, 128, 128)
Salmon #FA8072 rgb(250, 128, 114)
DarkSalmon #E9967A rgb(233, 150, 122)
Pink #FFC0CB rgb(255, 192, 203)
LightPink #FFB6C1 rgb(255, 182, 193)
HotPink #FF69B4 rgb(255, 105, 180)
LightSalmon #FFA07A rgb(255, 160, 122)
Coral #FF7F50 rgb(255, 127, 80)
Tomato #FF6347 rgb(255, 99, 71)
Gold #FFD700 rgb(255, 215, 0)
Yellow #FFFF00 rgb(255, 255, 0)
LightYellow #FFFFE0 rgb(255, 255, 224)
Lavender #E6E6FA rgb(230, 230, 250)
Thistle #D8BFD8 rgb(216, 191, 216)
Plum #DDA0DD rgb(221, 160, 221)
Violet #EE82EE rgb(238, 130, 238)

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
 <p> method using - fillStyle() </p>
 <canvas id="myCanvas" width="500" height="500"
style="border:1px solid #d3d3d3;">
Your browser does not support the canvas element.
</canvas>

<script>
var canvas = document.getElementById('myCanvas');
var context = canvas.getContext('2d');

190 ◾ HTML: The Ultimate Guide

context.fillStyle = 'CornflowerBlue';
context.fillRect(20, 20, 100, 100); // First
rectangle

context.fillStyle = '#9932CC';
context.fillRect(80, 80, 100, 100); // Second
rectangle

context.fillStyle = 'rgb(255, 0, 0)';
context.fillRect(120, 140, 200, 100); // Third
rectangle

context.fillStyle = 'rgba(153, 50, 204, 0.5)';
context.fillRect(200, 100, 200, 100); // Fourth
rectangle

</script>
</body>
</html

Using method fillStyle().

HTML for Game Development ◾ 191

The output of the code is given below.

• strokeStyle: It sets or returns the color, gradient, or pattern used for
strokes.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
 <body>

 <canvas id="myCanvas" width="300" height="300"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
ctx.strokeStyle = "#FF0000";
ctx.strokeRect(20, 20, 150, 100);
</script>

</script>
</body>
</html

The output of the code is given below.

Using method strokeStyle().

192 ◾ HTML: The Ultimate Guide

• shadowColor: It sets or returns the color to use for shadows.

• shadowBlur: It sets or returns the blur level for shadows.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
<h1> ShadowColor and ShadowBlur</h1>
 <canvas id="myCanvas" width="280" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
ctx.shadowBlur = 20;
ctx.fillStyle = "lightgreen";

ctx.shadowColor = "black";
ctx.fillRect(20, 20, 100, 80);

ctx.shadowColor = "darkblue";
ctx.fillRect(140, 20, 100, 80);
</script>

</script>
</body>

</html

Using method ShadowColor() and ShadowBlur().

HTML for Game Development ◾ 193

• shadowOffsetX: It sets or returns the horizontal distance of the
shadow from the shape.

• shadowOffsetY: It sets or returns the vertical distance of the shadow
from the shape.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
<h1> shadowOffsetX and shadowOffsetY </h1>
 <canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");
ctx.shadowBlur = 20;
ctx.fillStyle = "pink";
ctx.shadowOffsetX = 20;
ctx.shadowOffsetY = 20;
ctx.shadowColor = "lightblue";
ctx.fillRect(20, 20, 100, 80);

ctx.shadowColor = "lightgreen";
ctx.fillRect(140, 20, 100, 80);
</script>

</script>
</body>
</html

Other methods:

• createLinearGradient(): It creates a linear gradient (for use on canvas
content).

Example:

<!DOCTYPE html>
 <head>

194 ◾ HTML: The Ultimate Guide

 <title>Page Title</title>
 </head>
 <body>
<h1> createLinearGradient with all axis </h1>

<p> The x-coordinate of the start point of the
gradient </p>
 <canvas id="myCanvas_1" width="300"
height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<p>The y-coordinate of the start point of the
gradient </p>
<canvas id="myCanvas_2" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<p> The x-coordinate of the end point of the
gradient </p>
<canvas id="myCanvas_3" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<p> The y-coordinate of the end point of the
gradient </p>
<canvas id="myCanvas_4" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<script>
var c = document.getElementById("myCanvas_1");
var ctx = c.getContext("2d");
var my_gradient = ctx.createLinearGradient(170,
0, 0, 0);

my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
ctx.fillStyle = my_gradient;
ctx.fillRect(20, 20, 150, 100);

HTML for Game Development ◾ 195

var c = document.getElementById("myCanvas_2");
var ctx = c.getContext("2d");
var my_gradient = ctx.createLinearGradient(0,
170, 0, 0);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
ctx.fillStyle = my_gradient;
ctx.fillRect(20, 20, 150, 100);

var c = document.getElementById("myCanvas_3");
var ctx = c.getContext("2d");
var my_gradient = ctx.createLinearGradient(0, 0,
170, 0);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
ctx.fillStyle = my_gradient;
ctx.fillRect(20, 20, 150, 100);

var c = document.getElementById("myCanvas_4");
var ctx = c.getContext("2d");
var my_gradient = ctx.createLinearGradient(0, 0,
0, 170);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
ctx.fillStyle = my_gradient;
ctx.fillRect(20, 20, 150, 100);

</script>

</script>
</body>
</html

• createRadialGradient(): It creates a radial/circular gradient (for use
on canvas content).

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>
 <body>
<h1> createRadialGradient </h1>

196 ◾ HTML: The Ultimate Guide

 <canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");

var grd = ctx.createRadialGradient(74, 50, 5,
90, 60, 100);
grd.addColorStop(0, "blue");
grd.addColorStop(1, "lightgreen");

// Fill with gradient
ctx.fillStyle = grd;
ctx.fillRect(10, 10, 150, 100);
</script>

</script>
</body>
</html

• createPattern(): It repeats the specified element in the specified direc-
tion. The element can be an image, a video, or any other canvas ele-
ment. Syntax is given below, context.createPattern(image, “repeat |
repeat-x | repeat-y | no-repeat”):

1. image: Specifies the image, canvas, or video element of the pattern
to use.

2. repeat: Repeats the pattern horizontally and vertically. It is the
default.

3. repeat-x: Repeats the pattern horizontally only.

4. repeat-y: Repeats the pattern vertically only.

5. no-repeat: Does not repeat the pattern.

Example:

<!DOCTYPE html>
<html>
<body>

HTML for Game Development ◾ 197

<p>Image to use:</p>
<img src="https://images.pexels.com/
photos/9138500/pexels-photo-9138500.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" id="lamp"
width="32" height="32">
<p>Canvas:</p>

<button onclick="draw('repeat')">Repeat</button>
<button onclick="draw('repeat-x')">Repeat-x</
button>
<button onclick="draw('repeat-y')">Repeat-y</
button>
<button onclick="draw('no-repeat')">No-repeat</
button>

<canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
function draw(direction) {
 var c = document.getElementById("myCanvas");
 var ctx = c.getContext("2d");
 ctx.clearRect(0, 0, c.width, c.height);
 var img = document.getElementById("lamp")
 var pat = ctx.createPattern(img, direction);
 ctx.rect(0, 0, 120, 130);
 ctx.fillStyle = pat;
 ctx.fill();
}
</script>

</body>
</html>

• addColorStop(): It specifies the stop colors and positions in the gra-
dient object.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 </head>

198 ◾ HTML: The Ultimate Guide

 <body>
<h1> addColorStop </h1>
 <canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the canvas element.
</canvas>

<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");

var grd = ctx.createLinearGradient(0, 0, 170,
0);
grd.addColorStop(0, "black");
grd.addColorStop(1, "white");

ctx.fillStyle = grd;
ctx.fillRect(20, 20, 150, 100);
</script>

</script>
</body>
</html

To style line, you can use the following methods:

• lineCap: It sets or returns the style of the end caps for a line. There are
three property values used to make a line:

1. butt: It is default line. A flat edge is added to each end of the line

2. round: A rounded end cap is added to each end of the line

3. square: A square end cap is added to each end of the line

Example:

<!DOCTYPE html>
<html>
<body>

<p>The three different line caps:</p>
<canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">

HTML for Game Development ◾ 199

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn = document.getElementById("myCanvas");
var ctx = cn.getContext("2d");

ctx.beginPath();
ctx.lineWidth = 10;
ctx.lineCap = "butt";
ctx.moveTo(20, 20);
ctx.lineTo(200, 20);
ctx.stroke();

ctx.beginPath();
ctx.lineCap = "round";
ctx.moveTo(20, 40);
ctx.lineTo(200, 40);
ctx.stroke();

ctx.beginPath();
ctx.lineCap = "square";
ctx.moveTo(20, 60);
ctx.lineTo(200, 60);
ctx.stroke();
</script>

</body>
</html>

• lineJoin: It sets or returns the type of corner created when two lines
meet. There are three property values used to make a line:

1. bevel: It creates a beveled corner

2. round: It creates a rounded corner

3. miter: It is default and creates a sharp corner

Example:

<!DOCTYPE html>
<html>
<body>

200 ◾ HTML: The Ultimate Guide

<p>The three different line caps:</p>
<canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn = document.getElementById("myCanvas");
var ctx = cn.getContext("2d");
ctx.beginPath();
ctx.lineJoin = "round";
ctx.moveTo(20, 40);
ctx.lineTo(100, 70);
ctx.lineTo(20, 70);
ctx.stroke();
</script>

</body>
</html>

• lineWidth: It sets or returns the current line width.

Example:

<!DOCTYPE html>
<html>
<body>

<p>The three different line caps:</p>
<canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn = document.getElementById("myCanvas");
var ctx = cn.getContext("2d");
ctx.beginPath();
ctx.lineJoin = "round";
ctx.moveTo(20, 40);
ctx.lineTo(100, 70);
ctx.lineWidth = 5;
ctx.lineTo(20, 70);

HTML for Game Development ◾ 201

ctx.stroke();
</script>
</body>
</html>

• miterLimit: It sets or returns the maximum miter length. It is of two
types such as miter and bevel.

1. Miter: If the miterLimit property is lineJoin attribute is “miter”.
The miterLimit property sets or returns the maximum miter
length. It is the distance between the inner corner and the outer
corner where two lines meet.

2. Bevel: If the miter length exceeds the miterLimit value, the corner
will be displayed as lineJoin type “bevel”.

Example:

<!DOCTYPE html>
<html>
<body>

<p>The three different line caps:</p>
<canvas id="myCanvas" width="300" height="150"
style="border:1px solid #d3d3d3;">
Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var nc = document.getElementById("myCanvas");
var ctx = cn.getContext("2d");
ctx.beginPath();
ctx.lineJoin = "round";
ctx.moveTo(20, 40);
ctx.lineTo(100, 70);
ctx.lineWidth = 5;
ctx.lineTo(20, 70);
ctx.stroke();
</script>

</body>
</html>

202 ◾ HTML: The Ultimate Guide

To style rectangle, you can use the following methods:

• rect(): It creates a rectangle.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Make rectangle using methods: rect() </p>
<canvas id="myCanvas_1" width="300" height="150"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var c = document.getElementById("myCanvas_1");
var ctx = c.getContext("2d");

// Red rectangle
ctx.beginPath();
ctx.lineWidth = "6";
ctx.strokeStyle = "yellow ";
ctx.rect(5, 5, 290, 140);
ctx.stroke();

ctx.beginPath();
ctx.lineWidth = "4";
ctx.strokeStyle = "green";
ctx.rect(30, 30, 50, 50);
ctx.stroke();

</script>

</body>
</html>

• fillRect(): It draws a “filled” rectangle.

Example:

<!DOCTYPE html>
<html>
<body>

HTML for Game Development ◾ 203

<p> Make rectangle using methods: fillrect()
</p>
<canvas id="myCanvas_1" width="300" height="150"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var c = document.getElementById("myCanvas_1");
var ctx = c.getContext("2d");

ctx.fillRect(20, 20, 450, 100);
</script>
</body>
</html>

• strokeRect(): It draws a rectangle (no fill). It allows you to draw
graphics on a web page using JavaScript. It has two elements that
describe the height and width of the canvas, i.e. height and width
respectively.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Make rectangle using methods: strokeRect()
</p>
<canvas id="myCanvas_1" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var c = document.getElementById("myCanvas_1");
var ctx = c.getContext("2d");
ctx.strokeRect(120, 120, 120, 120);
</script>
</body>
</html>

204 ◾ HTML: The Ultimate Guide

• clearRect(): It clears the specified pixels within a given rectangle.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Make rectangle using methods: clearRect()
</p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn=document.getElementById("myCanvas");
var ctx=cn.getContext("2d");
ctx.fillStyle="darkblue";
ctx.fillRect(0,0,300,150);
ctx.clearRect(20,20,100,50);
</script>
</body>
</html>

To style path, you can use the following methods:

• fill(): It fills the current drawing (path).

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: fill() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

HTML for Game Development ◾ 205

<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");

ctx.beginPath();
ctx.rect(20, 20, 150, 100);
ctx.fillStyle = "red";
ctx.fill();

ctx.beginPath();
ctx.rect(50, 40, 150, 100);
ctx.fillStyle = "blue";
ctx.fill();
</script>
</body>
</html>

• stroke(): It actually draws the path you have defined.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: stroke() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn = document.getElementById("myCanvas");
 var ctx = cn.getContext("2d");
 ctx.beginPath();
 ctx.moveTo(100, 200);
 ctx.lineTo(100, 100);
 ctx.strokeStyle = "blue";
 ctx.stroke();
 ctx.beginPath();
 ctx.moveTo(30, 30);

206 ◾ HTML: The Ultimate Guide

 ctx.lineTo(20, 100);
 ctx.lineTo(170, 100);
 ctx.strokeStyle = "orange";
 ctx.stroke();
 </script>
</body>
</html>

• beginPath(): It begins a path, or resets the current path.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: beginPath() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn = document.getElementById("myCanvas");
 var ctx = cn.getContext("2d");
 ctx.beginPath();
ctx.lineWidth = "5";
ctx.strokeStyle = "green"; // Green path
ctx.moveTo(10, 75);
ctx.lineTo(250, 75);
ctx.stroke(); // Draw it

ctx.beginPath();
ctx.strokeStyle = "purple"; // Purple path
ctx.moveTo(150, 0);
ctx.lineTo(150, 130);
ctx.stroke(); // Draw it
 </script>
</body>
</html>

HTML for Game Development ◾ 207

• moveTo(): It moves the path to the specified point in the canvas,
without creating a line.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: moveTo() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cn = document.getElementById("myCanvas");
 var ctx = cn.getContext("2d");
 ctx.beginPath();
ctx.lineWidth = "5";
ctx.strokeStyle = "green"; // Green path
ctx.moveTo(30, 75);
ctx.lineTo(250, 75);
ctx.stroke(); // Draw it

 </script>
</body>
</html>

• closePath(): It creates a path from the current point back to the start-
ing point.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: closePath() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

208 ◾ HTML: The Ultimate Guide

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cv = document.getElementById("myCanvas");
var ctx = cv.getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(20, 140);
ctx.lineTo(70, 140);
ctx.closePath();
ctx.stroke();

 </script>
</body>
</html>

• lineTo(): It adds a new point and creates a line to that point from the
last specified point in the canvas.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: lineTo() </p>
<canvas id="my_Canvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cnv = document.getElementById("my_Canvas");
var ctx = cnv.getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(20, 140);
ctx.lineTo(70, 140);
ctx.closePath();
ctx.stroke();

HTML for Game Development ◾ 209

 </script>
</body>
</html>

• clip(): It clips a region of any shape and size from the original canvas.

Example:

<!DOCTYPE html>
<html>
<body>

 Without clip():
 <canvas id="my_Canvas" width="300"
height="150" style="border:1px solid #d3d3d3;">
 Your browser doesn't support the HTML5 canvas
tag.</canvas>

 <script>
 var c = document.getElementById("my_Canvas");
 var ctx = c.getContext("2d");
 // Draw a rectangle
 ctx.rect(50, 20, 200, 120);
 ctx.stroke();
 // Draw red rectangle
 ctx.fillStyle = "grey";
 ctx.fillRect(0, 0, 150, 100);
 </script>

 With clip():
 <canvas id="my_Canvas2" width="300"
height="150" style="border:1px solid #d3d3d3;">
 Your browser doesn't support the HTML5 canvas
tag.</canvas>

 <script>
 var cnv = document.
getElementById("my_Canvas2");
 var ctx = cnv.getContext("2d");
 // Clip a rectangular area
 ctx.rect(50, 20, 200, 120);
 ctx.stroke();
 ctx.clip();

210 ◾ HTML: The Ultimate Guide

 // Draw red rectangle after clip()
 ctx.fillStyle = "grey";
 ctx.fillRect(0, 0, 150, 100);
 </script>

</body>
</html>

• quadraticCurveTo(): It creates a quadratic Bézier curve.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: quadraticCurveTo() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cnv = document.getElementById("my_Canvas");
var ctx = cnv.getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.quadraticCurveTo(20, 120, 200, 120);
ctx.stroke();

 </script>
</body>
</html>

• bezierCurveTo(): It creates a cubic Bézier curve.

Example:

<!DOCTYPE html>
<html>
<body>

HTML for Game Development ◾ 211

<p> Using methods: quadraticCurveTo() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cnv = document.getElementById("my_Canvas");
var ctx = cnv.getContext("2d");
ctx.beginPath();
ctx.moveTo(19, 19);
ctx.bezierCurveTo(10, 101, 201, 101, 201, 20);
ctx.stroke();
</script>
</body>
</html>

• arc(): It creates an arc/curve (used to create circles or parts of circles).

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: arc() </p>
<canvas id="myCanvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cnv = document.getElementById("my_Canvas");
var ctx = cnv.getContext("2d");
ctx.beginPath();
ctx.arc(100, 175, 80, 0, 2 * Math.PI);
ctx.stroke();
</script>
</body>
</html>

212 ◾ HTML: The Ultimate Guide

• arcTo(): It creates an arc/curve between two tangents.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: arcTo() </p>
<canvas id="my_Canvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cnv = document.getElementById("m_yCanvas");
var ctx = cnv.getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20); // Create a
starting point
ctx.lineTo(100, 20); // Create a
horizontal line
ctx.arcTo(150, 20, 150, 170, 50); // Create an
arc
ctx.lineTo(150, 120); // Continue
with vertical line
ctx.stroke();
</script>
</body>
</html>

• isPointInPath(): It returns true if the specified point is in the current
path, otherwise false.

Example:

<!DOCTYPE html>
<html>
<body>

<p> Using methods: isPointInPath() </p>
<canvas id="my_Canvas" width="300" height="350"
style="border:1px solid #d3d3d3;">

HTML for Game Development ◾ 213

Your browser doesn't support the HTML5 canvas
tag.</canvas>

<script>
var cnv = document.getElementById("my_Canvas");
var ctx = cnv.getContext("2d");
ctx.rect(20, 20, 150, 100);
if (ctx.isPointInPath(20, 50)) {
 ctx.stroke();
};
</script>
</body>
</html>

You can use the following methods to style transforms:

• scale(): It scales the current drawing larger or smaller.

• rotate(): It rotates the current drawing.

• translate(): It remaps the (0,0) position on the canvas.

• transform(): It replaces the current transformation matrix for the
drawing.

• setTransform(): It resets the current transform to the identity matrix.
It then runs transform().

You can use the following methods to style text:

• font: It sets or returns the current font properties for the text
content.

• textAlign: It sets or returns the current alignment of the text content.

• textBaseline: It sets or returns the current text baseline used when
drawing text.

• fillText(): It draws “filled” text on the canvas.

• strokeText(): It draws text on the canvas (no padding).

• measureText(): It returns an object that contains the width of the
specified text.

214 ◾ HTML: The Ultimate Guide

To stylize an image drawing, you can use the following methods:

• drawImage(): It draws an image, canvas, and video onto the canvas.

You can use the following methods to style a pixel:

• width: It returns the width of the ImageData object.

• height: It returns the height of the ImageData object.

• data: It returns an object that contains the image data of the specified
ImageData object.

• createImageData(): It creates a new empty ImageData object.

• getImageData(): It returns an ImageData object that copies the pixel
data for the specified rectangle to the canvas.

• putImageData(): It puts the image data (from the specified ImageData
object) back onto the canvas.

You can use the following methods for folding:

• globalAlpha sets or returns the current drawing alpha or transpar-
ency value.

• globalCompositeOperation sets or returns a method for rendering a
new image over an existing image.

• save() saves the state of the current context.

• restore() returns the previously saved path state and attributes.

• createEvent().

• getContext().

• toDataURL().

Rendering Context
The <canvas> element creates a fixed-size canvas that exposes one or more
rendering contexts that are used to create and manipulate displayed con-
tent.18 In this section, we will focus on the context of 2D rendering. Other
contexts might provide different types of rendering. For example, WebGL
uses a 3D context based on OpenGL ES.

HTML for Game Development ◾ 215

Initially, the canvas is blank. To display something, a script must
access and draw from the rendering context. The <canvas> element has
one method called getContext() that is used to get the rendering context
and its drawing functions. getContext() takes one parameter, the context
type.

 var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");

The line in the script retrieves the node in the DOM representing the
<canvas> element by calling the document.getElementById() method.
Once you have an element node, you can access the drawing context using
its getContext() method.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <script>
 function draw() {
 const canvas = document.
getElementById("tutorial");
 if (canvas.getContext) {
 const ctx = canvas.getContext("2d");
 }
 }
 </script>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body onload="draw();">
 <h1> Make a circle </h1>
 <canvas id="tutorial" width="150"
height="150"></canvas>

</body>
</html

216 ◾ HTML: The Ultimate Guide

The script contains a function called draw() that runs when the page
has finished loading. The listening to the load event on the document. The
function can also be called setTimeout(), setInterval(), or any other event
handler if the page was loaded first.

Drawing Shapes with Canvas
We can get into the detail of how to draw shapes on the canvas. You will
learn how to draw rectangles, triangles, lines, arcs, and curves and will
be introduced to some basic shapes. Working with paths is needed when
drawing objects on the canvas, and we’ll see how this can be done with the
help of some examples.

Using attributes on the canvas:

• height: The height of the coordinate space in CSS pixels. The default
value is 150.

• moz-opaque: If the canvas knows it’s not translucent, painting per-
formance can be optimized. Only Mozilla-based browsers support
this; use the standardized canvas.getContext(‘2d’, { alpha: false })
instead.

• width: Width of the coordinate space in CSS pixels. The default value
is 300.

Canvas Coordinates
The HTML canvas is a two-dimensional grid. The upper left corner of the
canvas has the coordinates (0,0).

Now mouse over the rectangle below to see its x and y coordinates:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <style>
body {
 margin: 0;
 padding: 30px;
 font-family: sans-serif;
 font-size: 14px;
}

HTML for Game Development ◾ 217

.holder {
 display: inline-block;
 position: relative;
 text-align: center;
}

h2 {
 position: absolute;
 width: 80%;
 top: 50%;
 left: 50%;
 transform: translate(-50%,-50%);
 color: #fff;
 pointer-events: none;
}

span {
 display: block;
}

canvas {
 display: block;
 width: 600px;
 height: 300px;
 background-color: #AB47BC;
}

ol, ul {
 line-height: 1.3;
 max-width: 500px;
}

li {
 padding-bottom:. 7em;
}

</style>
 </head>
<body>
 <div class="holder">
 <h2> x,y coordinates (as per canvas):<span
id="x">x: 0y: 0</h2>

218 ◾ HTML: The Ultimate Guide

 <canvas></canvas>
 </div>

<script>

var canvas = document.querySelector('canvas'),
 ctx = canvas.getContext('2d'),
 cw = ctx.canvas.width,
 ch = ctx.canvas.height,
 receiveX = document.getElementById('x'),
 receiveY = document.getElementById('y');

function normalizeCanvasCoords (x, y) {
 var boundingBox = canvas.getBoundingClientRect();
 return {
 x: (x - boundingBox.left) * (cw / boundingBox.
width),
 y: (y - boundingBox.top) * (ch / boundingBox.
height)
 }
}

function updateText (x, y) {
 var coordX = 'x: ' + Math.floor(x),
 coordY = 'y: ' + Math.floor(y);
 receiveX.innerHTML = coordX;
 receiveY.innerHTML = coordY;
}

canvas.onmousemove = function (e) {
 var mouseX = e.clientX,
 mouseY = e.clientY,
 location = normalizeCanvasCoords(mouseX, mouseY);
 updateText(location.x, location.y)
}

</script>
</body>
</html

HTML for Game Development ◾ 219

To draw a long, straight line on a canvas, you can use the following methods:

• moveTo(x,y) – It defines the starting point of the line.

• lineTo(x,y) – It defines the ending point of the line.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <style>
</style>
 </head>
<body>
 <div class="holder">
 <h1> Draw a Line </h1>
 <canvas id="myCanvas" width="150"
height="150"></canvas>
 </div>
<script>

var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
ctx.moveTo(0, 0);
ctx.lineTo(200, 100);
ctx.stroke();

</script>
</body>
</html

HTML Canvas x, y coordinates (as per canvas).

220 ◾ HTML: The Ultimate Guide

Draw a Circle
To draw a circle on the canvas, use the following methods:19

• beginPath() – Begins the path.

• arc(x,y,r,star-tangle,end-angle) – Creates an arc/curve. To create
a circle using arc(): Set the start angle to 0 and the end angle to
2*Math.PI. The x and y parameters define the x and y coordinates
of the center of the circle. The parameter r defines the radius of the
circle.

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <style>
</style>
 </head>
<body>
 <div class="holder">
 <h1> Draw a Circle </h1>
 <canvas id="myCanvas" width="150" height="150">
</canvas>
 </div>

 <script>
 var canvas = document.getElementById("myCanvas");
 var ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.arc(95,50,40,0,2*Math.PI);
 ctx.stroke();
 </script>

</body>
</html

Draw a line using HTML canvas.

HTML for Game Development ◾ 221

HTML Canvas Gradients
Gradients can use to fill rectangles, circles, lines, text, etc. The shapes on
the canvas are not limited to solid colors. There are two different types of
gradients:

• createLinearGradient(x,y,x1,y1) – It creates a linear gradient.

• createRadialGradient(x,y,r,x1,y1,r1It) – It creates a radial/circular
gradient.

The canvas_variable.createLinearGradient() method of the Canvas 2D
API creates a gradient along the line connecting the two given coordi-
nates. This method returns a linear CanvasGradient. If you want to apply
to a shape, the gradient must be assigned to the fillStyle or strokeStyle
properties.

Here is the syntax, createLinearGradient(x0, y0, x1, y1)
Parameters:

• x0 – The x-axis coordinates the starting point.

• y0 – The y-axis coordinates the starting point.

• x1 – The x-axis coordinate of the end point.

• y1 – The y-axis coordinate of the end point.

Example:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <style>
</style>
 </head>
<body>
 <div class="holder">
 <h1> Draw a Reactangle (with a method
addColorStop) </h1>
 <canvas id="myCanvas" width="150"
height="150"></canvas>
 </div>

222 ◾ HTML: The Ultimate Guide

 <script>
 var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");

// It creates gradient
var grd = ctx.createLinearGradient(0, 0, 201, 0);
grd.addColorStop(0, "blue");

// Fill with gradient
ctx.fillStyle = grd;
ctx.fillRect(10, 10, 150, 80);
 </script>

</body>
</html

Another example of gradient:

<!DOCTYPE html>
 <head>
 <title>Page Title</title>
 <style>
</style>
 </head>
<body>
 <div class="holder">
 <h1> Draw a Reactangle (with two method
addColorStop)
</h1>
 <canvas id="my_Canvas" width="150"
height="150">
</canvas>
 </div>

 <script>
 var cnv = document.getElementById("my_Canvas");
var ctx = cnv.getContext("2d");

// Create gradient
var grd = ctx.createLinearGradient(0, 0, 201, 0);
grd.addColorStop(0, "blue");
grd.addColorStop(1, "red");

HTML for Game Development ◾ 223

// Fill with gradient
ctx.fillStyle = grd;
ctx.fillRect(10, 10, 150, 80);
 </script>

</body>
</html

Benefits of Using Canvas20

• Animation – Every object can be created on the canvas and also the
object can be animated. It allows developers to create all levels of
animation.

• Flexible – It can help draw any shape, picture, or structure like poly-
gons, shaping, activities, and even games. It is also possible to add
video and audio.

• Interactivity – Canvas is fully interactive and can respond to user
actions by listening to keyboard, mouse, or touch. So the developer is
not limited to just static graphics and images.

• Popularity – Canvas has become popular very quickly and steadily
due to its widely useful features.

• Browser/Platform support – All major browsers are supported and
can be obtained on a wide range of devices including desktops, tab-
lets, and smartphones.

• Effectively run ads – Many web developers still use third-party tools
like Adobe Flash to run ads and banners on websites. These third-
party tools often increase load times. Developers can use the HTML5
canvas element to run ads and banners on a web page without using
any third-party tools or extensions. It allows developers to run ads
and banners on a web page without affecting loading speed and user
experience.

• Support latest browser – Currently, the HTML5 canvas element is
supported by the latest versions of widely used web browsers such
as Chrome, Firefox, Safari, and Opera. It allows users to access 2D
graphics developed using the canvas element on major web browsers.
The improved compatibility further helps web developers effectively

224 ◾ HTML: The Ultimate Guide

use the HTML5 element to dynamically draw various 2D graphics
on web pages.

• Simplify 2D drawing operations – Web developers often have to write
longer lines of code to dynamically render 2D graphics. Some devel-
opers even use specific libraries and plugins to speed up 2D drawing
operations. It also allows programmers to draw various 2D graphics
on web pages using JavaScript. Developers can use the HTML ele-
ment to draw 2D graphics without writing additional code, keeping
the web application source code clean and maintainable.

• Create simple and complex animations – In addition to simplifying
2D drawing operations, canvas elements allow programmers to ani-
mate various objects. Web developers can use the HTML5 element
to create both simple as well as complex animations on a web page.
They can use custom JavaScript code to display different levels of ani-
mations running on a web page.

Drawing Text on Canvas
If you want to draw text on the HTML canvas, we need to start by defin-
ing what this font should look like. For this, we use ctx.font, which has the
same syntax as the CSS font property. For example, if we wanted our font
to be Arial 88px bold, we could define our font as:

let canvas = document.getElementById('canvas');
let ctx = canvas.getContext('2d');
ctx.font = 'bold 88px Arial';

This string gives us the base style of our font, but if we want to change
the color, we can use the fillStyle property again (which works the same as
for shapes). Let’s make our font white:

ctx.fillStyle = 'white'

To draw text on a canvas, the important properties and methods are:

• font – it defines the font properties for the text.

• fillText(text,x,y) – it draws “filled” text on the canvas.

• strokeText(text,x,y) –it draws text on the canvas (no fill).

HTML for Game Development ◾ 225

CHAPTER SUMMARY
In this chapter, we studied HTML game development with some methods
of 2D and 3D animations. We also discussed canvas in HTML.

NOTES
 1. HTML Introduction for Gaming – https://gamedevacademy.org/how-to-

make-a-html5-game/#What_exactly_is_an_HTML5_game, accessed on
September 14, 2022.

 2. HTML Building Blocks – https://www.schudio.com/understanding-html-
and-the-building-blocks-that-come-with-it/#:̃ :text=To%20fully%20under-
stand%20the%20basics,%3B%20tags%2C%20elements%20and%20attri-
butes, accessed on September 14, 2022.

 3. HTML5 Game Fundamentals – https://www.envato.com/blog/building-
your-first-html5-game/, accessed on September 14, 2022.

 4. Goals – https://www.envato.com/blog/building-your-first-html5-game/, accessed
on September 14, 2022.

 5. User Interacting – https://www.envato.com/blog/building-your-first-html5-
game/, accessed on September 14, 2022.

 6. HTML5 Framework – http://techslides.com/html5-game-engines-and-
frameworks, accessed on September 14, 2022.

 7. HTML5 Game Development Benefits – https://hacks.mozilla.org/2013/09/
getting-started-with-html5-game-development/, accessed on September 14,
2022.

 8. Benefits – https://js13kgames.com/p/top10-advantages.html, accessed on
September 14, 2022.

 9. Facts – https://www.juegostudio.com/blog/things-you-didnt-know-about-
html5-game-development#:̃ :text=HTML5%20Game%20Development%20
Uses%20WebGL,the%20library%2C%20ready%20for%20use, accessed on
September 14, 2022.

 10. HTML Facts – https://www.juegostudio.com/blog/things-you-didnt-know-
about-ht m l5-ga me-development#:˜: tex t=HTML5%20Ga me%20
Development%20Uses%20WebGL,the%20library%2C%20ready%20
for%20use, accessed on September 14, 2022.

 11. Features – https://www.uniassignment.com/essay-samples/information-
technology/principles-for-game-development-in-html5-information-
technology-essay.php, accessed on September 14, 2022.

 12. Canvas Graphics in HTML – https://developer.mozilla.org/en-US/docs/
Web/API/Canvas_API/Tutorial, accessed on September 14, 2022.

 13. HTML Canvas – https://www.geeksforgeeks.org/html-canvas-basics/, accessed
on September 15, 2022.

 14. HTML Canvas – https://developer.mozilla.org/en-US/docs/Web/API/Canvas_
API/Tutorial/Basic_usage, accessed on September 15, 2022.

 15. Canvas Class – https://www.dofactory.com/html/canvas/class, accessed on
September 15, 2022.

https://gamedevacademy.org
https://gamedevacademy.org
https://www.schudio.com
https://www.schudio.com
https://www.schudio.com
https://www.schudio.com
https://www.envato.com
https://www.envato.com
https://www.envato.com
https://www.envato.com
https://www.envato.com
http://techslides.com
http://techslides.com
https://hacks.mozilla.org
https://hacks.mozilla.org
https://js13kgames.com
https://www.juegostudio.com
https://www.juegostudio.com
https://www.juegostudio.com
https://www.juegostudio.com
https://www.juegostudio.com
https://www.juegostudio.com
https://www.juegostudio.com
https://www.uniassignment.com
https://www.uniassignment.com
https://www.uniassignment.com
https://developer.mozilla.org
https://developer.mozilla.org
https://www.geeksforgeeks.org
https://developer.mozilla.org
https://developer.mozilla.org
https://www.dofactory.com

226 ◾ HTML: The Ultimate Guide

 16. Canvas Methods – https://www.w3schools.com/tags/ref_canvas.asp, accessed
on September 15, 2022.

 17. Canvas Property – http://drawingincode.com/lessons/reference/fill_style/
index.html, accessed on September 16, 2022.

 18. Canvas Benefits – https://www.tutorialscampus.com/html5/canvas.htm,
accessed on September 15, 2022.

 19. HTML Canvas Circle – https://www.w3schools.com/graphics/canvas_gra-
dients.asp, accessed on September 15, 2022.

 20. Canvas Benefits – http://www.allaboutweb.biz/html5-canvas/, accessed on
September 15, 2022.

https://www.w3schools.com
http://drawingincode.com
http://drawingincode.com
https://www.tutorialscampus.com
https://www.w3schools.com
https://www.w3schools.com
http://www.allaboutweb.biz

227DOI: 10.1201/9781003357537-5

C h a p t e r 5

Cheat Sheet

HTML is basically the building block of all web pages.1 It provides proper
structure to the content appearing on a web page, such as images, text, and
videos, by creating a basic skeleton. It is still so useful today, the reason
being that no matter what framework or language we use to develop a
website, the output will be rendered in HTML.

HTML elements are basically the building blocks of HTML pages. You
can use HTML constructs to insert other objects such as images and inter-
active forms into the rendered page. HTML provides a method to create
structured documents by marking up the structural semantics of text, such
as text formatting, headings, paragraphs, lists, links, quotes, and other ele-
ments. HTML elements are delimited by tags written in curly braces. Tags
such as and place content directly on the page. Other tags, such as, provide
information about the body of the document and can contain other tags as
subelements. Browsers do not display HTML tags themselves but use them
to interpret page content.

Hypertext is text displayed on a system or other electronic device that
contains links to other text that the user can get immediate access, usually by
clicking a mouse or pressing a key. In addition to text, hypertext can include
tables, lists, forms, images, and other presentation elements. It is an easy-to-
use and flexible format for exchanging information over the Internet. The
markup uses a series of markup tags to characterize text elements in a docu-
ment and tell the web browser what the document should look like.

HTML can embed programs written in various scripting languages,
such as JavaScript, to affect the behavior and content of web pages. CSS
embedding defines the appearance and layout of content. The W3C, the

https://doi.org/10.1201/9781003357537-5

228 ◾ HTML: The Ultimate Guide

former maintainer of HTML and now the maintainer of CSS standards,
has supported the use of CSS in explicit presentation of HTML since 1997.

POPULARITY
When Tim Berners-Lee came up with the design to allow easy document
sharing at CERN in 1980. The most current and widely used version of
HTML is HTML5. The W3C is the community responsible for developing
open standards to ensure the long-term growth of the Web. When browser
vendors adopt these standards they become standards and browsers such
as Chrome, Firefox, and Safari implement them.

HTML is widely used and accepted as it is easy to learn and write
because it is human readable. The ease of learning and developing HTML
websites makes it very popular.

HTML CHEAT SHEET
Beginning web developers sometimes need a simple and quick reference
list of basic HTML tags, codes, and attributes, and that’s when the HTML
Cheat Sheet comes in handy.2 The only purpose of this Cheat Sheet is to
provide you with some quick and accurate ready-made code snippets and
the necessary HTML tags and attributes to help you with your website.

The list of topics we will discuss is given below in categories in which
they use:

• Heading Tags

• Container Tags

• Document Section

• Sectioning Tags

• Text Formatting Tags

• List Tags

• Table Tags

• Form Tags

• Multimedia Tags

• Characters and Symbols

• Attributes

Cheat Sheet ◾ 229

HTML DOCUMENT SUMMARY
Main Root: The <html> represents the root (top-level element) of the HTML
document, which is also called the document element because it defines the
entire HTML document. It has a start <html> tag and an end </html> tag.

<html>
This tag specifies that the web page is written in HTML. It appears on the first
and last line website. It is mainly used to display that the site uses HTML5 –
the latest version of language. It is also known as the root element; tag can be
considered a parent tag for every other tag used on the page.

Syntax:

<html> … </html>

Example:

<!DOCTYPE html>
<html>
 <head>
 <title> HTML </title>
 </head>

 <body>
 </body>

</html>

<head>
This tag is used to define metadata about web page. It contains the name of
the website, its dependencies (JS and CSS scripts), font usage, etc.

Syntax:

<head> … </head>

Example:

<!DOCTYPE html>
<html>
 <head>
 <title> HTML </title>
 </head>

230 ◾ HTML: The Ultimate Guide

 <body>
 </body>

</html>

<title>
As the name suggests, the tag contains the website name and title. You
can see it in the header of your browser for every web page you open in
the browser. The search engines use this tag to extract the theme of the
website, which is quite convenient in evaluating relevant search results.

Syntax:

<title> … </title>

Example:

<!DOCTYPE html>
<html>
 <head>
 <title> HTML </title>
 </head>

 <body>
 </body>

</html>

<body>
Everything a user can see on a web page is written inside this tag. It is a
container for all contents website. There can be a single <body> element
in a document.

Syntax:

<body> … </body>

Example:

<!DOCTYPE html>
<html>
 <head>
 <title> HTML </title>
 </head>

Cheat Sheet ◾ 231

 <body>
 </body>

</html>

HTML DOCUMENT INFORMATION
<base>
It is used to determine the base URL of your website, this tag creates links
to internal links on your site cleaner.

Syntax:

<base/>

Example:

<!DOCTYPE html>
<html>
 <head>
 <base href="https://www.google.com/"
target="_blank">
 </head>

 <body>
 </body>

</html>

<meta>
This is the metadata tag for the web page. It may be useful to mention the
author of the page, keywords, original publication date, etc.

Syntax:

<meta/>

Example:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <meta name="description" content="Free Web
tutorials">

232 ◾ HTML: The Ultimate Guide

 <meta name="keywords" content="HTML, CSS,
JavaScript">
 <meta name="author" content="John Doe">
 <meta content="width=device-width, initial-
scale=1.0" name="viewport" >
 </head>

 <body>
 </body>

</html>

<link>
It is used to link to external scripts web page. Usually, it is used for inclusion
styles. The <link> tag is often used to link to external (outside) stylesheets
on your website.

Syntax:

<link>

Example:

<!DOCTYPE html>
<html>
 <head>
 <link rel="stylesheet" href="styles.css">
 </head>

 <body>
 </body>

</html>

<style>
A style tag can be used as an alternative to an external stylesheet or supple-
ment it. It contains information about the appearance of the website.

Syntax:

<style> … </style>

Cheat Sheet ◾ 233

Example:

<!DOCTYPE html>
<html>
 <head>
 <style>
 h1 {
 color: red;
}
 p {
 color: blue;
 }
 </style>
 </head>

 <body>
 </body>
 <h1>
 Lorem ipsum dolor oo sit amet, consectetur
adipiscing elit.</h1>
 <p> Aenean finibus lectus vel nibh porttitor
efficitur eu eget diam.</p>
</html>

<script>
It is used to add code snippets, usually in JavaScript, to make the web-
site dynamic. It can also be used for this; a link to an external script is
sufficient.

Syntax:

<script> … </script>

Example:

<!DOCTYPE html>
<html>
 <head>
 <style>

 p {
 color: blue;

234 ◾ HTML: The Ultimate Guide

 font-size: 20px;
 }
 </style>
 </head>

 <body>

 <p id="demo"> </p>

<script>
document.getElementById("demo").innerHTML = " You
are learning HTML !";
</script>
</body>
</html>

HTML DOCUMENT STRUCTURE TAGS
<h1 to h6>
There are six different variants of writing the headline. <h1> tag has the
largest font size, while <h6> has the smallest.

Syntax:

<h1 to h6> … </h1 to h6>

Example:

<!DOCTYPE html>
<html>
 <head>
 <style>
 h1 {color: light blue;}
 h2 {color: lightcoral;}
 h3 {color: light cyan;}
 h4 {color: lightgray;}
 h5 {color: light pink;}
 h6 {color: light salmon;}

 </style>
 </head>

 <body>
 </body>

Cheat Sheet ◾ 235

 <h1> Lorem ipsum dolor oo sit amet, consectetur
adipiscing elit.</h1>
 <h2> Aenean finibus lectus vel nibh porttitor
efficitur eu eget diam. </h2>
 <h3> Integer in leo quis turpis sollicitudin
accumsan. </h3>
 <h4> Ut viverra magna quis blandit porttitor.
</h4>
<h5> Morbi ornare odio sit amet quam mattis
auctor. </h5>
<h6> Nam ac orci eu tellus venenatis accumsan.
</h6>
</html>

<div>
The content of a website is usually divided into blocks, specified by the
div tag.

Syntax:

<div> … </div>

Example:

<!DOCTYPE html>
<html>
 <head>
 <style>
div {
border:1px solid black;
padding:10px
}

 </style>
 </head>
 <body>

 <div>
 Duis ultricies tempor ligula, eu tempus ligula
pellentesque sit amet.
 In nibh est, finibus scelerisque tortor
porttitor, consequat condimentum dolor.

236 ◾ HTML: The Ultimate Guide

 Aliquam eu nulla purus. Cras risus sem,
vestibulum in auctor eget, placerat in turpis. Ut
consequat, odio vel euismod sagittis, ex sem
convallis erat, non gravida massa turpis in elit.
Nullam nisl odio, semper quis turpis mollis,
 euismod interdum sapien. Nulla vulputate
ligula a mollis consectetur.
 </div>
 <div>
 Duis ultricies tempor ligula, eu tempus ligula
pellentesque sit amet.
 In nibh est, finibus scelerisque tortor
porttitor, consequat condimentum dolor.
 Aliquam eu nulla purus. Cras risus sem,
vestibulum in auctor eget, placerat in turpis. Ut
consequat, odio vel euismod sagittis, ex sem
convallis erat, non gravida massa turpis in elit.
Nullam nisl odio, semper quis turpis mollis,
 euismod interdum sapien. Nulla vulputate
ligula a mollis consectetur.
 </div>
 <div>
 Duis ultricies tempor ligula, eu tempus ligula
pellentesque sit amet.
 In nibh est, finibus scelerisque tortor
porttitor, consequat condimentum dolor.
 Aliquam eu nulla purus. Cras risus sem,
vestibulum in auctor eget, placerat in turpis. Ut
consequat, odio vel euismod sagittis, ex sem
convallis erat, non gravida massa turpis in elit.
Nullam nisl odio, semper quis turpis mollis,
 euismod interdum sapien. Nulla vulputate
ligula a mollis consectetur.
 </div>
</html>

This tag embeds inline elements such as an image, icon, or emoticon with-
out destroying formatting page styling.

Syntax:

 …

Cheat Sheet ◾ 237

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>
 <p> This book is about <span style="color:blue;
font-size: 50px; background-color: yellow;"> HTML
 and you are learning it.</p>
</body>
</html>

<p>
It is just a plain text that is placed inside this tag.

Syntax:

<p> … </p>

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>
 <p> This book is about HTML and you are learning
it.</p>
</body>
</html>

It is a line break for web pages. It is used when you want to write a new
line.

Syntax:

238 ◾ HTML: The Ultimate Guide

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>
 <p> This book is about HTML </p>

 <p> You are learning it. </p>
</body>
</html>

<hr>
It is similar to the above tag. But besides that switching to the next line also
draws that marker a horizontal bar indicating the end partition.

Syntax:

<hr/>

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>
 <p> This book is about HTML </p> <hr/>
 <p> You are learning it. </p>
</body>
</html>

TEXT FORMATTING AND INLINE TEXT SEMANTICS
Text formatting is used in HTML to make a document look more complex
and attractive. HTML inline text semantics are used to define the mean-
ing, structure, or style of a word, line, or arbitrary text.

It indicates text bold and is used to emphasize a point. Typically, browsers
render their content in bold.

Cheat Sheet ◾ 239

Syntax:

 …

Example:

<!DOCTYPE html>
<head>
<title> HTML </title>
</head>
<body>
 <p> Warning : Shake well
before use! </p>
</body>
</html>

Alternative to the above tag, it also creates bold text and makes the text
enclosed within these tags bold.

Syntax:

 …

Example:

<!DOCTYPE html>
<head>
<title> HTML </title>
</head>
<body>
 <p> Warning : Shake well before use!
</p>
</body>
</html>

Another emphasis tag, but this displays text in italics. It can be nested as
well, where each level of nesting indicates a greater degree of emphasis.

Syntax:

 …

240 ◾ HTML: The Ultimate Guide

Example:

<!DOCTYPE html>
<head>
<title> HTML </title>
</head>
<body>
 <p> Warning : Shake well before use!
</p>
</body>
</html>

<i>
Also used to display text in italics, but does not emphasize it like the above tag.

Syntax:

<i> … </i>

Example:

<!DOCTYPE html>
<head>
<title> HTML </title>
</head>
<body>
 <p> <i> Warning </i>: Shake well before use!
</p>
</body>
</html>

<tt>
It is used for formatting typewriter-like text. But it is no longer supported
in HTML5.

Syntax:

<tt> … </tt>

<strike>
Another old tag, it is used to draw a line at the center of the text, so as to
make it appear deleted or no longer useful. But it is no longer supported
in HTML5.

Cheat Sheet ◾ 241

Syntax:

<strike> … </strike>

<cite>
This tag is for describing the title of a creative work (e.g. book, paper, essay,
poem, song, painting, etc.).

Syntax:

<cite> … </cite>

Example:

<!DOCTYPE html>
<head>
<title> HTML </title>
</head>
<body>
 <img src="https://images.pexels.com/
photos/1591061/pexels-photo-1591061.jpeg?auto=comp
ress&cs=tinysrgb&w=400" width="220" height="277"
alt="The Scream">
 <p> <cite> HTML: </cite> Hyper Text Markup
Language </p> </body>
</html>

 …
It denotes text that has been deleted from a document. Usually strike a line
through deleted text.

<ins> … </ins>
It denotes text that has been inserted into the web page. It usually under-
lines inserted text.

<blockquote> … </blockquote>
The quotation often writes into this tag. It is used with the <cite> tag.

<q> … </q>
It is similar to the above tag but for shorter quotations.

https://images.pexels.com
https://images.pexels.com
https://images.pexels.com

242 ◾ HTML: The Ultimate Guide

<abbr> … </abbr>
It denotes abbreviations, along with the full forms. An abbreviation like
“HTML”, “CSS”, “Mr.”, “Dr.”.

<address> … </address>
It denotes the contact information for any user of a blog or site. The infor-
mation can be an email address, residential address, phone number, social
media account, etc. It usually renders in italics.

<dfn> … </dfn>
It specifies a term that is to be defined within the content. The <dfn> tag
must contain the definition/explanation for the term.

<code> … </code>

This is used to display a piece of computer code and code snippets within
a paragraph.

<samp> ... </smap>
Defines sample output from a computer program. The default font is
monospace.

<kbd> ... </kbd>
It is used to define keyboard input. The default font is monospace.

<var> ... </var>
It defines a variable in programming or in a mathematical expression. The
default font is italics.

<pre> ... </pre>
It is displayed in a fixed-width font and the text preserves both spaces and
line breaks. The text will be shown exactly as written in the HTML source
code.

_…
Used for writing a subscript. It appears half a character below the normal
line and is sometimes rendered in a smaller font.

Cheat Sheet ◾ 243

[…]
The <sup> tag defines superscript text. Its text appears half a character
above the normal line, sometimes rendered in a smaller font. It can be used
for footnotes in MS Word.

<small> … </small>
It reduces text size. It often refers to redundant or invalid information.

HTML LINKS
A link or hyperlink is a basically connection from one web resource to
another. Its links allow users to move from one page to another on any
server.

SETTING TARGETS FOR LINKS
The target attribute tells the web browser where to open the linked docu-
ment. There are four defined targets and each target name begins with an
underscore character (_):

• _blank – It opens the document in a new window or tab.

• _parent – It opens the document in the parent window.

• _self – It opens the document in the same window or tab as the
source document. This is the default value, so it is not necessary to
specify this value explicitly.

• _top – It opens the document in a full browser window.

 …
It is an anchor tag. Primarily used for including hyperlinks.

 …
This anchor tag attributes with value “mailto” dedicated to sending
emails.

 …
This anchor tag attributes with value “tel” mentioning contact numbers.
As the numbers are clickable, this can be beneficial for mobile users.

244 ◾ HTML: The Ultimate Guide

 …
This anchor tag attributes with value “tel” mentioning contact numbers.
As the numbers are clickable, this can be beneficial for phone users.

 …
This anchor tag attributes with value “name” can be used to quickly navi-
gate to a different part of the web page.

 …
A variation of the above tag, only meant to navigate to a div section of the
web page.

HTML LISTS
Lists can be either numeric, alphabetical, bulleted, or other symbols. For
a simple document, you can specify the list type and list items in HTML.
There are three types of lists in HTML:

• Unordered List: It is used to group a set of items in no particular
order.

• Sorted List: It is used to group a set of items in a specific order.

• Description List: It is used to display name/value pairs such as terms
and definitions.

Here are various tags used in list.

The tag for ordered or numbered list of items. It is rendered as a numbered list.

Syntax:

 …

It is contrary to the above tag and is used for the unordered list of items. It
is rendered as a bulleted list.

Syntax:

 …

Cheat Sheet ◾ 245

It represents individual item as part of a list.

Syntax:

 …

<dl>
Tag for a list of items with definitions and also for a description list. It
encloses a list of groups of terms (it is specified using the <dt> element)
and descriptions.

Syntax:

 …

<dt>
The definition of a term inline with body content and used in conjunction
with <dl> to specify a term in a description or definition list.

Syntax:

<dt> … </dt>

<dd>
The description for the defined term used in conjunction with <dl> to
describe a term/name in a description list.

Syntax:

<dd> … </dd>

HTML FORMS
<form> … </form>
The parent tag for a form action=“URL” the URL here is where the form
data will be submitted once the user fills it and represents a document sec-
tion containing interactive controls for submitting information.

Here are some attributes of the form tag:

• method=“”: It specifies that the HTTP method (POST or GET) would
be used to submit the form.

246 ◾ HTML: The Ultimate Guide

• enctype=””: The only for the POST method, this dictates the data
encoding scheme to be used when the form is submitted.

• Autocomplete: It determines if the form has autocomplete enabled.

• Novalidate: It determines whether the form should be validated
before submission.

• accept-charsets: It determines character encodings when form is
submitted.

• Target: After submission, the response is displayed wherever this refers
to, usually having the following values: _blank, _self, _parent, and _top.

<input>

The HTML <input> is used to create interactive controls for web-based
forms in order to take input from the user. Input type is determined by
alphabets, number, color, file, and so on of attributes.

Here are some attributes of the form tag:

• type=“”: It specifies what type of input (text, data, and password) is
required from the user.

• name=“”: It specifies the name of the input field.

• value=“”: It specifies the currently contained value input field.

• size = “”: It specifies the width of the input element (number of
characters).

• maxlength=“”: It specifies the maximum number of characters
allowed in the input field.

• Required: It enters mandatory filling of the input field user. If
required, the form cannot be submitted the field will remain blank.

• width = “”: It specifies the width of the input element, in pixel values.

• height = “”: It specifies the height of the input element, in pixel values.

• wildcard =“”: It can be used to give the user advice about the nature
of required data.

• pattern=“”: It specifies the regular expression that can be used to look
for patterns in the user’s text.

Cheat Sheet ◾ 247

• min=“”: The min value allowed for an <input> element.

• max=“”: The max value allowed for the <input> element.

• Autofocus: It forces to focus on an input element on a web page that
will load completely.

• Forbidden: It disables the input element. The user can no longer enter
the dates.

<label>…</label>
This tag is used to specify a label or title for the form’s <input> element.
The <label> element is useful for screen reader users because the screen
reader reads the label aloud when the user focuses on the input element.
It also helps users who have trouble clicking on small options (like radio
buttons or checkboxes). The “for attribute” of the <label> tag should match
with the “id attribute” of the <input> element to join them together.

Example:

<!DOCTYPE html>
<html>
<head>
<body>
 <form action="index.php">
 <input type="radio" id="HTML" name="language"
value="HTML">
 <label for="HTML"> HTML </label>

 <input type="radio" id="CSS" name="language"
value="CSS">
 <label for="CSS"> CSS </label>

 <input type="radio" id="javascript"
name="language" value="JavaScript">
 <label for="javascript"> JavaScript </label>

 <input type="submit" value="Submit">
 </form>
</body>
 </html>

It works with several elements such as:

• <input type=“checkbox”>

• <input type=“color”>

248 ◾ HTML: The Ultimate Guide

• <input type=“date”>

• <input type=“DateTime-local”>

• <input type=“email”>

• <input type=“file”>

• <input type=“month”>

• <input type=“number”>

• <input type=“password”>

• <input type=“radio”>

• <input type=“range”>

• <input type=“search”>

• <input type=“tel”>

• <input type=“text”>

• <input type=“time”>

• <input type=“URL”>

• <input type=“week”>

• <meter>

• <progress>

• <select>

• <textarea>

<textarea>
The <textarea> element is used to create a multi-line plain-text editing
control, often used in a form, to collect user inputs like comments or
reviews, and represents a control that provides a menu of options to select
from.

Syntax:

<textarea>…</textarea>

Cheat Sheet ◾ 249

Example:

<!DOCTYPE html>
<html>
<head>
 <style>
 body {background: #F0F0F0;}

h2 {margin-left: 55px;}

textarea {
 margin-top: 10px;
 margin-left: 50px;
 width: 600px;
 height: 200px;
 background: none repeat scroll 0 0 rgba(0, 0, 0,
0.07);
 border-image: none;
 border-radius: 6px 6px 6px 6px;
 border-style: none solid solid none;
 border-width: medium 1px 1px medium;
 box-shadow: 0 1px 2px rgba(0, 0, 0, 0.12) inset;
 color: #555555;
 font-family: "Helvetica
Neue",Helvetica,Arial,sans-serif;
 font-size: 1em;
 line-height: 1.4em;
 padding: 5px 8px;
 transition: background-color 0.2s ease 0s;
}

textarea:focus {
 background: none repeat scroll 0 0 #FFFFFF;
 outline-width: 0;
}
 </style>
<body>
 <h2> Textarea </h2>

<textarea placeholder="This is an awesome comment
box" rows="20" name="comment[text]" id="comment_
text" cols="40" class="ui-autocomplete-input"
autocomplete="off" role="textbox" aria-

250 ◾ HTML: The Ultimate Guide

autocomplete="list" aria-haspopup="true">
</textarea>
</body>
 </html>

<fieldset>
Used to create a group of related elements on a form and creates a box
over the elements. The <legend> tag is used to define the name of the child
content. Legend elements are the parent element and define a label for the
<fieldset> element.

Syntax:

<fieldset> … </fieldset>

Example:

<!DOCTYPE html>
<html>
<head>
 <style>
 fieldset{
 background-color: burlywood;
 }
 </style>
<body>
 <form>

 <fieldset>
 <legend>Details</legend>
 Name: <input type = "text" name = "Name">

 Subjects:<input type = "text" name =
"Subjects">

 Age :<input type = "number" name = "Age">
 </fieldset>

 </form>
</body>
 </html>

Cheat Sheet ◾ 251

<legend>
This acts as a caption for the <fieldset> element. The <label> element
defines a label for several form elements.

Syntax:

<legend> … </legend>

Example:

<!DOCTYPE html>
<html>
<head>
 <style>
 legend{
 background-color: burlywood;
 }
 </style>
<body>
 <form>

 <fieldset>
 <legend>Details</legend>
 Name: <input type = "text" name = "Name">

 Subjects:<input type = "text" name =
"Subjects">

 Age :<input type = "number" name = "Age">
 </fieldset>

 </form>
</body>
 </html>

<select>
The <select> element defines a control that provides a menu of options to
choose from.

Syntax:

<select>… </select>

252 ◾ HTML: The Ultimate Guide

Example:

<!DOCTYPE html>
<html>
<head>
 <style>
 :root {
 --gray: #34495e;
 --darkgray: #2c3e50;
}

select {
 /* Reset Select */
 appearance: none;
 outline: 0;
 border: 0;
 box-shadow: none;
 /* Personalize */
 flex: 1;
 padding: 0 1em;
 color: #fff;
 background-color: var(--darkgray);
 background-image: none;
 cursor: pointer;
}
/* Remove IE arrow */
select::-ms-expand {
 display: none;
}
/* Custom Select wrapper */
.select {
 position: relative;
 display: flex;
 width: 20em;
 height: 3em;
 border-radius: .25em;
 overflow: hidden;
}
/* Arrow */
.select::after {
 content: '\25BC';
 position: absolute;
 top: 0;
 right: 0;

Cheat Sheet ◾ 253

 padding: 1em;
 background-color: #34495e;
 transition:. 25s all ease;
 pointer-events: none;
}
/* Transition */
.select:hover::after {
 color: #f39c12;
}

/* Other styles*/
body {
 color: #fff;
 background: var(--background-gradient);
}
h1 {
 margin: 0 0 0.25em;
}
a {
 font-weight: bold;
 color: var(--gray);
 text-decoration: none;
 padding: .25em;
 border-radius: .25em;
 background: white;
}

 </style>
<body>
 <div class="select">
 <select>
 <option value="1">Select Option </option>
 <option value="2"> HTML </option>
 <option value="3"> CSS </option>
 </select>
 </div>

</body>
 </html>

<option>…</option>
The <option> tag is an option in a picklist. <option> elements are part of
<select>, <optgroup>, or <datalist> elements.

254 ◾ HTML: The Ultimate Guide

Here are some attributes of <option> tags:

• value=””: The text is visible to the user for given option.

• Selected: It determines which option is selected by default when the
form loads.

<optgroup>
The <optgroup> HTML element is used to create a grouping of options
within a <select> element.

Syntax:

<optgroup> ... </optgroup>

Example:

<!DOCTYPE html>
<html>
<head>
 <style>

 </style>
<body>
 <select>
 <option value="">-- Select Language --
</option>
 <optgroup label=" Front end Language ">
 <option value="html"> HTML </option>
 <option value="css"> CSS </option>
 <option value="javascript"> Javascript
</option>
 </optgroup>
 <optgroup label="Back end Language">
 <option value="django"> Django </option>
 <option value="php"> PHP </option>
 </optgroup>
 </select>
</body>
 </html>

Cheat Sheet ◾ 255

<progress> … </progress>
The <progress> element displays an indicator showing the progress of a
task, usually displayed in the form of a progress bar.

<datalist>…</datalist>
The <datalist> HTML element is used to provide predefined options for
the <input> element. It adds an auto-fill feature to it.

<button>…</button>
The <button> element represents a clickable button that can be used on
forms or anywhere standard button functionality is needed in an HTML
document.

FORM ATTRIBUTES EVENTS LIST
Events triggered by actions inside an HTML form (applies to almost all
HTML elements, but is mostly used in form elements):

• onblur: It fires the moment that the element loses focus.

• onchange: It fires the moment when the value of the element is
changed.

• oncontextmenu: It is a script to be run when a context menu is
triggered.

• onfocus: It fires the moment when the element gets focused.

• oninput: It is a script to be run when an element gets user input.

• oninvalid: It is a script to be run when an element is invalid.

• onreset: It fires when the Reset button in a form is clicked.

• onsearch: It fires when the user writes something in a search field
(for <input=“search”>).

• onselect: It fires after some text has been selected in an element.

• onsubmit: It fires when a form is submitted.

256 ◾ HTML: The Ultimate Guide

KEYBOARD ATTRIBUTES EVENTS LIST

• onkeydown: It fires when a user is pressing a key.

• onkeypress: It fires when a user presses a key.

• onkeyup: It fires when a user releases a key.

MOUSE ATTRIBUTES EVENTS LIST

• onclick: It fires on a mouse click on the element.

• ondblclick: It fires on a mouse double-click on the element.

• onmousedown: It fires when a mouse button is pressed down on an
element.

• onmousemove: It fires when the mouse pointer is moving while it is
over an element.

• onmouseout: It fires when the mouse pointer moves out of an element.

• onmouseover: It fires when the mouse pointer moves over an element.

• onmouseup: It fires when a mouse button is released over an element.

• onmousewheel: Now, it is deprecated but use the onwheel attribute
instead.

• onwheel: It fires when the mouse wheel rolls up or down over an
element.

DRAG ATTRIBUTES EVENTS LIST

• ondrag: It is a script to be run when an element is dragged.

• ondragend: It is a script to be run at the end of a drag operation.

• ondragenter: It is a script to be run when an element has been dragged
to a valid drop target.

• ondragleave: It is a script to be run when an element leaves a valid
drop target.

Cheat Sheet ◾ 257

• ondragover: It is a script to be run when an element is being dragged
over a valid drop target.

• ondragstart: It is a script to be run at the start of a drag operation.

• ondrop: It is a script to be run when dragged element is being
dropped.

• onscroll: It is a script to be run when an element’s scrollbar is being
scrolled.

WINDOW ATTRIBUTES EVENTS LIST
The events related to the window object:

• onafterprint: It fires after the associated document is printed.

• onbeforeprint: It fires before the associated document is printed.

• onbeforeunload: It fires before a document is unloaded.

• onerror: It fires when document errors occur.

• onhashchange: It fires when the fragment identifier part of the docu-
ment’s URL, i.e. the small portion of a URL follows the sign (#) changes.

• onload: It fires when the document has finished loading.

• onmessage: It fires when the message event occurs, i.e. when user
sends a cross-document message or a message is sent from a client
with postMessage() method.

• onoffline: It fires when the network connection fails and the browser
starts working offline.

• ononline: It fires when the network connections return and the
browser starts working online.

• onpagehide: It fires when the page is hidden, such as when a user is
moving to another web page.

• onpageshow: It fires when the page is shown, such as when a user
navigates to a web page.

• onpopstate: It fires when changes are made to the active history.

• onresize: It fires when the browser window is resized.

258 ◾ HTML: The Ultimate Guide

• onstorage: It fires when a Web Storage area is updated.

• onunload: It fires immediately before the document is unloaded or
the browser window is closed.

MEDIA ATTRIBUTES EVENTS LIST
Events that occur when handling media elements that are embedded inside
the documents, such as <audio> and <video> elements:

• onabort: It fires when playback is aborted, but not due to an error.

• oncanplay script: It fires when enough data is available to play the
media, but would require further buffering.

• oncanplaythrough: It fires when entire media can be played to the
end without requiring to stop for further buffering.

• oncuechange: It fires when the text track cue in a <track> element
changes.

• ondurationchange: It fires when the duration of the media changes.

• onemptied: It fires when the media element is reset to its initial state,
because of a fatal error during load, because the load() method is
called to reload it.

• onended: It fires when the end of playback is reached.

• onerror: It fires when an error occurs while fetching the media data.

• onloadeddata: It fires when media data is loaded at the current play-
back position.

• onloadedmetadata: It fires when metadata of the media (like dura-
tion and dimensions) has finished loading.

• onloadstart: It fires when loading of the media begins.

• onpause: It fires when playback is paused, either by the user or
programmatically.

• onplay: It fires when playback of the media starts after having been
paused, i.e. when the play() method is requested.

• Playing: It fires when the audio or video has started playing.

Cheat Sheet ◾ 259

• Progress: It fires periodically to indicate the progress while down-
loading the media data.

• onratechange: It fires when the playback rate or speed is increased or
decreased, like slow motion or fast forward mode.

• Onseeked: It fires when the seek operation ends.

• Seeking: It fires when the current playback position is moved.

• installed: It fires when the download has stopped unexpectedly.

• Unsuspend: It fires when the loading of the media is intentionally
stopped.

• ontimeupdate: It fires when the playback position changes, like when
the user fast-forwards to a different playback position.

• Onvolumechange: It fires when the volume is changed, or playback
is muted or unmuted.

• Onwaiting: It fires when playback stops because the next frame of a
video resource is not available.

HTML TABLES
HTML tables allow the developers to organize data into rows and columns.
HTML tables allow web authors to organize data such as text, images,
links, other tables, etc. into rows and columns of cells. HTML tables are
created by the <table> tag, where the <tr> tag is used to create table rows
and the <td> tag is used to create data cells. Elements below <td> are nor-
mal and left-aligned by default.

<table> … </table>
It marks a table in a web page and represents data in a two-dimensional
table comprised of rows and columns.

Example:

<!DOCTYPE html>
<html>
<head>
<style>
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;

260 ◾ HTML: The Ultimate Guide

 width: 100%;
}

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}

tr:nth-child(even) {
 background-color: #dddddd;
}
</style>
</head>
<body>

<h2>HTML Table</h2>

<table>
 <tr>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </tr>
 <tr>
 <td> Kiran </td>
 <td> 21 </td>
 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
</table>

</body>
</html>

Cheat Sheet ◾ 261

<caption> … </caption>
Description of the table is placed inside this tag and it specifies the title or
caption of a table.

<!DOCTYPE html>
<html>
<head>
<style>
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}

tr:nth-child(even) {
 background-color: #dddddd;
}
caption{
 font-size:28px;
 color: blue;
}
h2{
 text-align: center;
}
</style>
</head>
<body>

<h2>HTML Table</h2>

<table>
 <caption> User Information Table</caption>
 <tr>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </tr>

262 ◾ HTML: The Ultimate Guide

 <tr>
 <td> Kiran </td>
 <td> 21 </td>
 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
</table>

</body>
</html>

<thead> … </thead>
It specifies information pertaining to specific columns of the table. It is
used to group header content in an HTML table.

<tbody> … </tbody>
The body of a table, where the data is held. It is used to group the primary
content of an HTML table.

Example:

<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}

Cheat Sheet ◾ 263

h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}
tbody{
 background-color: lightslategray;
}
</style>

</head>
<body>
 <table>
 <caption> User Information Table</caption>
 <thead>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </thead>

 <tbody>
 <tr>
 <td> Kiran </td>
 <td> 21 </td>
 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>

264 ◾ HTML: The Ultimate Guide

 <td> 8th </td>
 </tr>
 </tbody>

 <tfoot>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
 </tfoot>
 </table>

 </body>
 </html>

<tfoot> … </tfoot>
It determines the footer of the table and defines a set of rows summarizing
the columns of the table as per requirement.

Example:

<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

Cheat Sheet ◾ 265

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}
tfoot{
 background-color: lightslategray;
}
</style>

</head>
<body>
 <table>
 <caption> User Information Table</caption>
 <thead>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </thead>

 <tbody>
 <tr>
 <td> Kiran </td>
 <td> 21 </td>
 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
 </tbody>

 <tfoot>
 <tr>
 <td> Jot </td>
 <td> 20 </td>

266 ◾ HTML: The Ultimate Guide

 <td> 8th </td>
 </tr>
 </tfoot>
 </table>

 </body>
 </html>

<tr> … </tr>
It denotes a single row in a table. It defines a row in an HTML table. A <tr>
element contains one or more <th> or <td> elements.

<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}

tr:nth-child(even) {
 background-color: yellow;
}

Cheat Sheet ◾ 267

tr:nth-child(odd) {
 background-color: greenyellow;
}
</style>

</head>
<body>
 <table>
 <caption> User Information Table</caption>
 <tr>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </tr>
 <tr>
 <td> Kiran </td>
 <td> 21 </td>
 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
 </table>
 </body>
 </html>

<th> … </th>
The value of a heading of a table’s column is used to define a cell as the
header of a group of cells of the HTML table.

Example:

<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>

268 ◾ HTML: The Ultimate Guide

<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}

th:nth-child(even) {
 background-color: yellow;
}
th:nth-child(odd) {
 background-color: greenyellow;
}
</style>

</head>
<body>
 <table>
 <caption> User Information Table</caption>
 <tr>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </tr>
 <tr>
 <td> Kiran </td>
 <td> 21 </td>

Cheat Sheet ◾ 269

 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
 </table>

 </body>
 </html>

<td> … </td>
A single cell of a table. It contains the actual value/data that defines a cell
of a table that contains the main data of the table.

Example:

<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

270 ◾ HTML: The Ultimate Guide

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}

td:nth-child(even) {
 background-color: yellow;
}
td:nth-child(odd) {
 background-color: greenyellow;
}
</style>

</head>
<body>
 <table>
 <caption> User Information Table</caption>
 <tr>
 <th> Name </th>
 <th> Age </th>
 <th> Class </th>
 </tr>
 <tr>
 <td> Kiran </td>
 <td> 21 </td>
 <td> 6th </td>
 </tr>
 <tr>
 <td> Soni </td>
 <td> 22 </td>
 <td> 7th </td>
 </tr>
 <tr>
 <td> Jot </td>
 <td> 20 </td>
 <td> 8th </td>
 </tr>
 </table>

 </body>
 </html>

Cheat Sheet ◾ 271

<colgroup> … </colgroup>
Used for grouping columns together. It represents a group of one or more
columns within a table in a document. It can be used to style across one or
more columns.

Example:

<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html>
<head>
<style>
body{
 padding:10px;
 width:400px;
 margin:0 auto;
}
h1{
 text-align: center;
}
table {
 font-family: Arial, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

Ltd, the {
 border: 1px solid #dddddd;
 text-align: left;
 padding: 8px;
}
colgroup{
 background-color: lightslategray;
}
.total {
 background-color: #eeeeee;
}

272 ◾ HTML: The Ultimate Guide

</style>
<table>
<colgroup>
 <col span="3">
 <col class="total">
</colgroup>
<tr>
<th> Item </th>
<th> Qty. </th>
<th> Price </th>
<th> Cost </th>
</tr>
<tr>
<tr>
<td> Bananas </td>
<td> 5 </td>
<td> 0.50 </td>
<td> 2.50 </td>
</tr>
<tr>
<td> Apples </td>
<td> 2 </td>
<td> 0.25 </td>
<td> 0.50 </td>
</tr>
<tr>
<td> Oranges </td>
<td> 3 </td>
<td> 0.75 </td>
<td> 2.25 </td>
</tr>
<tr>
<td colspan="3"> TOTAL </td>
<td> 5.25 </td>
</tr>
</table>

 </body>
 </html>

Cheat Sheet ◾ 273

<col>
It denotes a column inside a table. To apply different properties to
a column within a colgroup, you can use the <col> tag within the
<colgroup> tag.

HTML MULTIMEDIA
You can hear or see multimedia in the form of images. It comes in different
formats. HTML helps you add multimedia files to a website by providing
various multimedia tags.

The tag is used to link images to web pages.

Example:

<!DOCTYPE html>
<html>
<head>

</head>
<body>
<img src="https://images.pexels.com/
photos/13076228/pexels-photo-13076228.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" alt="wall
flower" height="200px" width="300px">
</body>
</html>

<audio>
The <audio> HTML element is used to include audio content in docu-
ments. It can contain one or more audio sources.

Syntax:

<audio>…</audio>

Example:

<!DOCTYPE html>

274 ◾ HTML: The Ultimate Guide

<html>
<head>
<title> HTML </title>
</head>
<body>
 <audio controls>
 <source src="song.mp3" type="audio/mp3">
 </audio>
</body>
</html>

<video>
The <video> element embeds a media player that supports video files
document.

Syntax:

<video>…</video>

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>
 <video width="320" height="240" controls>
 <source src="https://www.youtube.com/
watch?v=WVEcnIBh5kY" type="video/mp4">
 Your browser doesn't support the video tag.
 </video>
</body>
</html>

<figure>
The <figure> tag is used to group various diagrams, figures, illustrations,
and code snippets into a document.

Syntax:

<figure>…</figure>

Cheat Sheet ◾ 275

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>

 <figure>
 <img src="https://images.pexels.com/
photos/13554908/pexels-photo-13554908.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" alt="flower"
height="300px" width="200px">
 <figcaption>Fig.1 - Flower </figcaption>
 </figure>
</body>
</html>

<figcaption>
The HTML tag <figcaption> is used inside the <figure> tag to describe the
content.

Syntax:

<figcaption>…</figcaption>

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>

 <figure>
 <img src="https://images.pexels.com/
photos/13554908/pexels-photo-13554908.jpeg?auto=comp
ress&cs=tinysrgb&w=400&lazy=load" alt="flower"
height="300px" width="200px">
 <figcaption> Fig.1 - Flower </figcaption>
 </figure>
</body>
</html>

276 ◾ HTML: The Ultimate Guide

<embed>
The <embed> tag helps embed multimedia into a web page and plays it
when the page is opened. It uses three mandatory attributes namely src,
height, and width.

Syntax:

<embed>…</embed>

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>
<body>

 <embed type="image/jpg" src="https://images.
pexels.com/photos/13554908/pexels-photo-13554908.
jpeg?auto=compress&cs=tinysrgb&w=400&lazy=load"
width="300" height="200">

</body>
</html>

<object>
The <object> tag is used to add objects such as images, audio, video,
Applets, ActiveX, Portable Document Format (PDF), and Flash objects on
a web page.

Syntax:

<object>…</object>

Example:

<!DOCTYPE html>
<html>
<head>
<title> HTML </title>
</head>

Cheat Sheet ◾ 277

<body>
 <object data="https://images.pexels.com/
photos/13554908/pexels-photo-13554908.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" width="300"
height="200"></object>
</body>
</html>

HTML CHARACTERS AND SYMBOLS
Some characters are reserved in HTML and have special meanings when
used in HTML documents. HTML provides a wide variety of characters
and symbols, including arrows, currency, letters, math, punctuation, and
symbols. Some of the most commonly used are:

HTML CHARACTER ENTITIES
Here is the complete list of the character entity references. The following
table lists the essential entities in HTML.

Character Entity Name Entity Number Description

& & & Ampersand
" " " Double quote mark
< < < Less than symbol
> > > Greater than symbol
' ' ' Apostrophe (XHTML in only)

COPYRIGHT, TRADEMARK, AND REGISTERED SYMBOL
The following lists the entities for copyright, trademark, and registered
symbol.

Character Name Number Description

© © © Copyright
® ® ® Registered
™ ™ ™ Trademark

PUNCTUATION SYMBOL
The following lists the entities for general punctuation.

Character Name Number Description

     It is En space
    It is Em space

(Continued)

278 ◾ HTML: The Ultimate Guide

     It is Thin space
 It is Nonbreaking space

– – – It is En dash
— — — It is Em dash
‘ ‘ ‘ It is Left/Opening single-quote
’ ’ ’ It is Right/Closing single-quote and apostrophe
‚ ‚ ‚ It is Single low-9 quotation mark
“ “ “ It is Left/Opening double-quote
” ” ” It is Right/Closing double-quote
„ „ „ It is Double low-9 quotation mark
‘ ‹ ‹ Left-pointing single-angle quotation mark
’ › › Left-pointing single-angle quotation mark
« « « Left-pointing double-angle quotation mark
« « « Left-pointing double-angle quotation mark
» » » Right-pointing double-angle quotation mark
† † † Dagger
‡ ‡ † Double dagger
• • • Bullet
… &hellep; … Ellipses
‰ ‰ ‰ Per mille symbol (per thousand)
′ ′ ′ Prime, minutes, feet
″ ″ ″ Double prime, seconds, inches
‾ ‾ ‾ Overline
⁄ ⁄ ⁄ Fraction slash

ARROWS SYMBOL
The following lists the entities for arrows.

Character Name Entity Explanation

← ← ← It is Left arrow
↑ ↑ ↑ It is Up arrow
→ → → It is Right arrow
↓ ↓ ↓ It is Down arrow
↔ ↔ ↔ It is Left-right arrow
↵ ↵ ↵ It is Down arrow with corner leftward
⇐ ⇐ ⇐ It is Leftward double arrow
⇑ ⇑ ⇑ It is Upward double arrow
⇒ ⇒ ⇒ It is Rightward double arrow
⇓ ⇓ ⇓ It is Downward double arrow
⇔ ⇔ ⇔ It is Left-right double arrow

Character Name Number Description

Cheat Sheet ◾ 279

MATHEMATICAL SYMBOLS
The following lists the entities for mathematical symbols.

Character Name Number Description

∀ ∀ ∀ It is for all
∂ ∂ ∂ It is Partial differential
∃ ∃ ∃ It is there exists
∅ ∅ ∅ Empty set, null set, diameter
∇ ∇ ∇ Nabla, backward difference
∈ ∈ ∈ Element of
∉ ∉ ∉ Not an element of
∋ ∋ ∋ Contains as a member
∏ ∏ ∏ N-ary product, product sign
∑ ∑ ∑ N-ary summation
− − − Minus sign
∗ ∗ ∗ Asterisk operator
√ √ √ Square root, radical sign
∝ ∝ ∝ Proportional to
∞ ∞ ∞ Infinity
∠ ∠ ∠ Angle
∧ ∧ ∧ Logical and wedge
∨ ∨ ∨ Logical or, vee
∩ ∩ ∩ Intersection, cap
∪ ∪ ∪ Union, cup
∫ ∫ ∫ Integral

∴ ∴ ∴ Therefore
∼ ∼ ∼ Tilde operator, varies with, similar to
≅ ≅ ≅ Approximately equal to
≈ ≈ ≈ Almost equal to, asymptotic to
≠ ≠ ≠ Not equal to
≡ ≡ ≡ Equivalent to
≤ ≤ ≤ Less than or equal to
≥ ≥ ≥ Greater than or equal to
⊂ ⊂ ⊂ Subset of
⊃ ⊃ ⊃ Superset of
⊄ ⊄ ⊄ Not a subset of
⊆ ⊆ ⊆ Subset of or equal to
⊇ ⊇ ⊇ Superset of or equal to
⊕ ⊕ ⊕ Circled plus, direct sum
⊗ ⊗ ⊗ Circled times, vector product
⊥ ⊥ ⊥ It is Up tack, orthogonal to, perpendicular
⋅ ⋅ ⋅ It is Dot operator

280 ◾ HTML: The Ultimate Guide

OTHER SYMBOL
The following lists the other entities supported by HTML language.

Character Name Number Description

⌈ ⌈ ⌈ It is Left ceiling
⌉ ⌉ ⌉ It is Right ceiling
⌊ ⌊ ⌊ It is Left floor
⌋ ⌋ ⌋ It is Right floor
⟨ ⟨ ⟨ It is Left-pointing angle bracket
⟩ ⟩ ⟩ It is Right-pointing angle bracket
◊ ◊ ◊ It is Lozenge
ℑ ℑ ℑ It is Blackletter capital I, imaginary part
℘ ℘ ℘ It is Script capital P, power set
ℜ ℜ ℜ It is Blackletter capital R, real part
ℵ ℵ ℵ It is Alef symbol, or first transfinite cardinal
♠ ♠ ♠ It is Black spade suit
♣ ♣ ♣ It is Black club suit
♥ ♥ ♥ It is Blackheart suit
♦ ♦ ♦ It is Black diamond suit

CURRENCY SYMBOLS
The following lists the entities for currency symbols.

Character Name Number Description

¢ ¢ ¢ It is Cent
£ £ £ It is Pound
¤ ¤ ¤ It is General currency
¥ ¥ ¥ It is Yen
€ € € It is Euro

HTML ATTRIBUTES
HTML attributes are special words used to define the characteristics of
an HTML element. These are modifiers placed inside the opening tag of
an element. Attributes have two parts – a name and a value. The name
is the property you want to set and the value is the required value of the
attribute.

alt: The alt attribute is used with an image tag. It helps us specify alter-
native text in case the image cannot be displayed on the site so that users
can have an idea of what the image contains. < tag_name =”…” >

Cheat Sheet ◾ 281

Example:

<!DOCTYPE html>
<html>
 <head>
 <title> HTML </title>
 </head>
 <body>
 <img src="flower.jpg" alt=" A pink flower"
width="500" height="600">
</html>

href: We use the <a> tag to describe a hyperlink. The href attribute speci-
fies the destination URL. Without the href <a> attribute, the element will
not become a hyperlink. < tag_name =”…” >.

The href attribute can be used on the following elements:

• <a>

• <area>

• <base>

• <link>

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<base href="https://www.google.com/"
target="_blank">
<link rel="stylesheet" href="styles.css">
 </head>
 <body>
 Google

 <img src="an_image.jpg" alt="Workplace"
usemap="#workmap" width="400" height="379">

<map name="workmap">
 <area shape="name_of_shape"
coords="34,44,270,350" alt="name of shape"
href="name_of_shape.htm">

282 ◾ HTML: The Ultimate Guide

 <area shape="name_of_shape"
coords="290,172,333,250" alt="name of shape"
href="name_of_shape.htm">
 <area shape="name_of_shape" coords="337,300,44"
alt="name of shape" href="name_of_shape.htm">
</map>
 </body>
</html>

src: The src attribute is used to define the URL of the image to be used as
the submit button. It specifies the image path inside the double quotes.
< tag_name =”…” >

The attribute can be used on the following elements:

• <script>

• <src>

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<base href="https://www.google.com/"
target="_blank">
<link rel="stylesheet" href="styles.css">
 </head>
 <body>

 Google

 </body>
<script src="script.js" type=" text/javascript" >
</script>

</html>

width: The tag also contains a width attribute. As the name suggests, these
attributes determine the width of the image in pixels). < tag_name =”…” >.
The width attribute can be used with the following elements such as:

Cheat Sheet ◾ 283

• <canvas>

• <embed>

• <iframe>

•

• <input>

• <object>

• <video>

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<base href="https://www.google.com/"
target="_blank">
<link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200"
style="border:1px solid">
 Your browser does not support the HTML5
canvas tag.
 </canvas>
 <embed type="image/jpg" src="https://images.
pexels.com/photos/13234870/pexels-photo-13234870.
jpeg?auto=compress&cs=tinysrgb&w=400&lazy=load"
width="200" height="300">

 <iframe src="https://www.google.com/"
width="450" height="200"> </iframe>

 <img src="https://images.pexels.com/
photos/13234870/pexels-photo-13234870.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" alt="Smiley
face" height="250" width="250">

 <form action="/action_page.php">

284 ◾ HTML: The Ultimate Guide

 Image type: <input type="image"
src="https://images.pexels.com/photos/13234870/
pexels-photo-13234870.jpeg?auto=compress&cs=tinysr
gb&w=400&lazy=load" alt="Submit" width="250"
height="250">
 </form>

 <object data="https://images.pexels.com/
photos/13234870/pexels-photo-13234870.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" width="300"
height="200"></object>

 <video width="320" height="240" controls>
 <source src="https://www.youtube.com/
watch?v=WVEcnIBh5kY" type="video/mp4">
 Your browser doesn't support the video tag.
 </video>

 <script>
 var c = document.getElementById("myCanvas");
 var ctx = c.getContext("2d");
 ctx.fillStyle = "#92B";
 ctx.fillRect(40, 40, 90, 90);
 </script>
</body>
</html>

height: The tag also contains a height attribute. As the name suggests,
these attributes determine the height of the image in pixels). < tag_name
=”…” >. The width attribute can be used on the following elements such as:

• <canvas>

• <embed>

• <iframe>

•

• <input>

• <object>

• <video>

Cheat Sheet ◾ 285

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<base href="https://www.google.com/"
target="_blank">
<link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <canvas id="myCanvas" width="200" height="200"
style="border:1px solid">
 Your browser does not support the HTML5
canvas tag.
 </canvas>
 <embed type="image/jpg" src="https://images.
pexels.com/photos/13234870/pexels-photo-13234870.
jpeg?auto=compress&cs=tinysrgb&w=400&lazy=load"
width="200" height="300">

 <iframe src="https://www.google.com/"
width="450" height="200"> </iframe>

 <img src="https://images.pexels.com/
photos/13234870/pexels-photo-13234870.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" alt="Smiley
face" height="250" width="250">

 <form action="/action_page.php">
 Image type: <input type="image"
src="https://images.pexels.com/photos/13234870/
pexels-photo-13234870.jpeg?auto=compress&cs=tinysr
gb&w=400&lazy=load" alt="Submit" width="250"
height="250">
 </form>

 <object data="https://images.pexels.com/
photos/13234870/pexels-photo-13234870.jpeg?auto=co
mpress&cs=tinysrgb&w=400&lazy=load" width="300"
height="200"></object>

 <video width="320" height="240" controls>

286 ◾ HTML: The Ultimate Guide

 <source src="https://www.youtube.com/
watch?v=WVEcnIBh5kY" type="video/mp4">
 Your browser doesn't support the video tag.
 </video>

 <script>
 var c = document.getElementById("myCanvas");
 var ctx = c.getContext("2d");
 ctx.fillStyle = "#92B";
 ctx.fillRect(40, 40, 90, 90);
 </script>
</body>
</html>

style: The style attribute helps us to change the look and feel of a docu-
ment by setting the style like font, size, color, etc. of an HTML element.
< tag_name =”…” >

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<base href="https://www.google.com/"
target="_blank">
<link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <h1 style="color: blue; text-align:
center">This is a header</h1>
 <p style="color:green;font-size:28px">This is
a paragraph.</p>
</body>
</html>

id: This id attribute is a unique identifier used to identify an area of a web
page. It uses CSS and JavaScript to perform a specific task for a unique
element. The id attribute is using the # symbol followed by id. < tag_name
=”…” >

Cheat Sheet ◾ 287

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<base href="https://www.google.com/"
target="_blank">
<link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <p> You are learning </p><h1
id="myHeader"> </h1>
 <button onclick="result()">Change text</button>

 <script>
 function result() {
 document.getElementById("myHeader").
innerHTML = " HTML ";
 }
 </script>

</body>
</html>

class: The class attribute is used to define one or more class names
for an element and to assign different properties within a single block,
which in turn can be assigned to any element. Once assigned a spe-
cific class, elements will have all the properties of that specific class.
< tag_name =”…” >

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
<style>
 .myHeader{
 font-size: 20px;
 color:blue;
 }

288 ◾ HTML: The Ultimate Guide

</style>
 </head>
 <body>
 <p> You are learning </p><h1 class="myHeader">
HTML </h1>
</body>
</html>

title: The title attribute defines extra information about the element. In
most browsers, the text of the title attribute is most often displayed as a
hint when hovering over an element. < tag_name =”…” >

Example:

<!DOCTYPE html>
<html>
 <head>
<title> HTML </title>
 </head>
 <body>
 <p> <abbr title="Hyper Text Markup Language">
HTML </abbr> </p>
 <p title="Cascading Style Sheet"> CSS </p>
</body>
</html>

Placeholder: The placeholder attribute specifies a hint that describes the
expected value of the input field/text area. Short help is displayed in the
field before the user enters a value.

The placeholder attribute can be used on the following elements such as:

• <input>

• <textarea>

Example:

<!DOCTYPE html>
<html>
 <head>

Cheat Sheet ◾ 289

<title> HTML </title>
 </head>
 <body>
 <form action="#">
 <label for="fname">First name:</label>
 <input type="text" id="fname" name="fname"
placeholder="First Name">

 <label for="lname">Last name:</label>
 <input type="text" id="lname" name="lname"
placeholder="Last Name">

 <input type="submit" value="Submit">
 <label for="phone">Enter a phone number:
</label>

 <input type="tel" id="phone" name="phone"
placeholder="123-45-678">

 </form>
</body>
</html>

NEW HTML TAGS
In earlier articles, we saw the rise of HTML; they learned about the vari-
ous elements and tags that make HTML awesome. In this section, we will
understand the older problems solved by HTML5 and the new tags intro-
duced with HTML5.

The HTML5 specification introduced a collection of new HTML tags that
define semantic/structural elements, text formatting guidelines, form con-
trols, input types, audio, video, and many other interesting elements. The
section describes all of the new HTML5 tags along with updates to existing
tags that take the capabilities of an HTML document to the next level.

HTML5 is the upgrade version of the previous version of HTML
4, which consists of a different set of new features, advanced function-
ality, better page display, and many other extensive improvements to
meet the growing technological needs. It is based on the latest version of
HTML5, the most used and requested elements such as <mark>, <article>,
<header>, <figcaption>, <section>, <figure>, <main>, <footer>, < nav>,
and elements <summary>. All these new HTML5 tags or DOM elements
allow us to integrate a much better and more user-friendly interface along
with higher performance, efficient results, easy configuration, and overall
code implementation and finally, it allows us to have the best possible app
development experience.

290 ◾ HTML: The Ultimate Guide

In HTML 4, semantic parts of a document were distinguished by dif-
ferent <div> elements. HTML5 solves this problem by introducing various
new division elements such as <section>, <aside>, <article>, <header>,
<footer>, etc. It makes the HTML5 outline algorithm to read the docu-
ment more accurately and mark the path. Let’s start with a list of the new
HTML5 elements and their respective descriptions.

• <article>: It is a separate section that is used to include a blog, forum
post, magazine article, etc. And to be more specific, the content in
it is completely independent of the other child or the surrounding
content of the web application.

• <aside>: It is used to include some information related to the main
content. Essentially, this tag identifies content that is related to the
primary content of the web page but does not account for the pri-
mary goal of the primary page request. The new <aside> tag mainly
contains author information, links, related content, and other useful
content.

• <bdi>: It is used to isolate enclosed text that may be formatted differ-
ently than text outside this tag.

• <details>: It creates an interactive section that displays its informa-
tion when clicked.

• <dialog>: It is used to include a dialog box on a web page.

• <figcaption>: It is used to include a caption for a figure inside a
<figure> element.

• <figure> Basically used to represent a figure and its label. This ele-
ment is used to mark individual content like images, categorization,
maps, code articles, and many other elements.

• <footer>: It is used to include footer content on a web page, such as
license information, copyright information, etc.

• <header>: It is used to include header content on a web page, such as
page information, summary, etc.

• <main>: It is used to include the main centralized theme of the web
page.

Cheat Sheet ◾ 291

• <mark>: It is used to highlight a piece of content on a web page.

• <meter>: It is used to include a scalar/fractional value within a speci-
fied range, not to be confused with the <progress> element.

• <nav>: It is used to provide navigational links such as menus.

• <progress>: It is used to include a progress bar on a web page. The
progress bar value starts at 0 and goes to 100 as a number.

• <ruby>: It is used to include the ruby annotation. Example: Japanese
characters.

• <rp>: It is used to enclose parentheses in a ruby character.

• <rt>: It is used to include the ruby annotation pronunciation.

• <section>: It is used to represent a section on a web page.

• <summary>: It is used to include information in the <details> ele-
ment. Click on the <summary> element to display the information.

• <time>: It is used to include a Date/Time component in a web page.

• <wbr>: It is used to include a word break.

• <datalist>: Dropdown list, set of options.

• <output>: It is used to display the calculation result on a web page.

• <canvas>: It is used to draw animations and graphics on a web page.
And it acts as a container for other graphic elements to be placed.

• <audio>: It is used to include audio content on a web page, such as
playing songs or melodies.

• <embed>: It is used to include external plug-ins on a web page. In
other words, the embedded element is used to embed external appli-
cations or iframe elements into an existing layout, which are gener-
ally multimedia content such as audio or video content as playback
into an HTML document. Generally, the element is used as a wrap-
per or container to embed plug-ins such as flash animations and
third-party videos via script.

• <source>: It is used to specify multiple media sources for <video>,
<audio>, and <picture> elements.

292 ◾ HTML: The Ultimate Guide

• <track>: It is used within an <audio> or <video> element to handle
titles, captions, descriptions, etc. of video or audio on a web page, in
other words specifies tracks for audio and video elements.

• <video>: It is used to include video content on a web page.

NOTES
 1. HTML Cheat Sheet – A Basic Guide to HTML – GeeksforGeeks. https://

www.geeksforgeeks.org/html-cheat-sheet-a-basic-guide-to-html/, accessed
on September 12, 2022.

 2. The Complete HTML Cheat Sheet – https://www3.cs.stonybrook.edu/
∼pramod.ganapathi/doc/CSE102/CSE102-CheatSheetHTML.pdf, accessed
on September 12, 2022.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www3.cs.stonybrook.edu
https://www3.cs.stonybrook.edu

293DOI: 10.1201/9781003357537-6

Appraisal

This book represents the structure and content of HTML5. The
book might be same as the others but it is an all-new concept.
As compared to the other versions such as HTML 4, this edition
focuses more on HTML5, which represents both a return to the
markup past. However, we get some information from the previous
version because we also focus on previous elements and not only
on the future but also present all the elements supported in brows-
ers today. With the help of this book we want to provide the refer-
ence you need in learning their syntax. However, in the case of web
documents, the markup is in the form of traditional HTML and
XML. The XML-focused variant, XHTML, is a bit more obvious.
These are not very behind the scenes; markup languages are used
to inform web browsers about the structure of a page and some can
argue its presentation too.

Since its introduced in 1991, HTML (and later its XML-based cousin,
XHTML) has gone through many changes. The first versions of HTML
were used to compile the earliest websites that lacked a precise definition.
Then Internet Engineering Task Force (IETF) began to standardize the
language. In 1995, the first released HTML standard was in the form of
HTML 2.0.

HTML is a markup language for creating web pages. Elements that are
in the form of tags such as and are inserted into text docu-
ments to indicate to browsers how to render pages. Many of the elements
that HTML5 adds that can be used immediately are semantic in nature. In
this sense, HTML5 continues the appropriate goal of separating structure
from style.

You can use lowercase, quote all attributes, and self-close empty ele-
ments it works well in HTML5 as well. However, HTML5 is not only about
markup but also about metadata, media, Web applications, APIs, and more.

https://doi.org/10.1201/9781003357537-6

294 ◾ Appraisal

CAREER IN HTML
HTML developers or programmers should have a bachelor’s degree
in computer science. There are many platforms available for HTML
developers to help them improve their HTML skills. With the help of
HTML, anyone can create their own websites and websites for different
suppliers.

Since HTML is mainly used with other scripting languages, the scope
of HTML always remains in the top organization and will be used in any
web development such as web pages and web applications, although it is
useful for creating custom applications or web pages. HTML can be used
in multiple languages and employers offer a good salary to web develop-
ers or HTML developers. HTML gives you customized features with less
effort. A career in HTML is growing fast, and learns it for creating your
own websites as well.

Web development has two main parts namely Front end and Back end.
Front-end development is also called client-side web development. In this
book, we have discussed front-end development in detail. This is mainly
about creating websites or web applications for the client using HTML,
CSS, and JavaScript. Anything that appears on the client side is something
that users can interact with.

Front-end development is a constantly evolving field. Tools and tech-
niques are constantly changing. A developer must always be ready to learn
new skills because the market is very volatile. With every new library
or framework that comes out, the developer has to constantly improve.
Awareness of how the market is evolving is also important.

To become a front-end developer, one must learn how to architect and
develop websites and applications using web technologies. These technolo-
gies run on an open web platform. They can also act as compilation input
for non-web platforms such as React Native. Anyone entering the field of
web development must learn HTML, CSS, and JavaScript. These three
technologies are considered core.

HOW TO GET JOB AS FRONT-END WEB
DEVELOPER AS WELL AS GAME DEVELOPER?
HTML is mainly required for front-end developers, full-stack developers,
and UI/UX designers. It doesn’t take long to learn HTML. Most new pro-
grammers can learn the basics of HTML in two to three weeks. However,
daily practice is necessary to master the language and understand its full
potential.

Appraisal ◾ 295

If you want to master the HTML, you should learn some topics of
HTML such as:

• HTML structured

• HTML headings (<h1>, <h2>… <h6>)

• The <div> tag

• Presenting text using <p> and

• Styling text using <style> and CSS

• Ordered and unordered lists (and)

• Adding image files ()

• Table rows, columns, borders, head, body, and footer

• Form design and data collection

• Types of form questions like radio buttons, text boxes, and
checkboxes

• CSS style rule

GAME DEVELOPMENT IN HTML5
HTML5 introduces many cutting-edge features such as 2D and 3D graph-
ics, quality audio APIs, and offline asset storage that allow game develop-
ers to create immersive games. It enables the development of games that
adapt to different resolutions, screen sizes, aspect ratios, and guidelines.
HTML5 offers many JavaScript game engines and frameworks for devel-
oping 2D games, such as Contstruct2, Three.js, Play Canvas, Turbulenz,
Kick.js., Minko, and Unity5. These game engines make it easy to develop
2D games. HTML5 allows access to all these technologies, unlike Flash.

HTML FEATURES

• HTML is the commonly used language for writing web pages.

• It is an easy-to-understand and editable language.

• You can do effective presentations that can be created using all its
formatting tags.

296 ◾ Appraisal

• It provides a more flexible way to design web pages along with text.

• You can also add links to web pages so that readers can browse the
information that interests them.

• HTML documents run on all platforms such as Macintosh, Windows,
Linux, etc.

• More topics like graphics, videos, and sounds can also be added to
the website to give your website an extra attractive look.

297

Index

A

Address tag, 147
Adjacent sibling selectors, 121
a element, 67
Alt attribute, 280–281
Anchor tag, 22
Arrows symbol, 278
Article element, 146
Articles, 146
Article tag, 35–38
Aside tags, 38–40, 147
a tag, 94
Attributes, 61, 62, 173, 280–289

class attribute, 63
empty attribute syntax, 61–62
id attribute, 62
style attribute, 64
title attribute, 63–64
unquoted value syntax, 62

B

Backend, 1–2
JavaScript as, 5–6

b element, 70
Benefits of HTML, 104
Berners-Lee, Tim, 8, 228
bgsound tag, 99–100
Block Level, 58
Body tag, 15
Boldface element, 70
Brotli, highlight of, 139
Building blocks, 172

attributes, 173
elements, 172–173
tags, 172

C

Canvas, 185–214
basic use of, 182–185
benefits of using, 223–224
coordinates, 216–220
drawing a circle on, 220
drawing shapes with, 216
drawing text on, 224
HTML canvas gradients, 221–223

Canvas Element, 183–185
Career in HTML, 294–295
Cascading Style Sheet (CSS), 3, 108,

114
adding styles using, 114

embedded stylesheets, 115–116
external styles, 116–117
external stylesheets, importing,

117–118
inline styles, 114–115

comments, 118
correct placement, 132
correlation with JS, 112–114
in frontend, 3–4
minifying CSS, JavaScript, and HTML,

141–142
selectors, 119

adjacent sibling selectors, 121
child selectors, 120–121
class selectors, 120
descendant selectors, 120
element type selectors, 119
grouping selectors, 122
ID selector, 119–120
standard sibling selectors,

121–122
universal selector, 119

298 ◾ Index

stylesheet, 114
using CSS animations instead of

JavaScript, 141
Case insensitivity in tags, 60–61
CDN factor, 133
Channel Messaging, 166
Character entities, 277
Character escapes, 88–91
Characters and symbols in HTML, 277
Cheat sheet, 227, 228

arrows symbol, 278
attributes, 280–289
character entities, 277
characters and symbols in HTML, 277
copyright symbol, 277
currency symbols, 280
drag attributes events list, 256–257
form attributes events list, 255
forms, 245–255
HTML document, 229–231
HTML document information,

231–234
HTML document structure tags,

234–238
keyboard attributes events list, 256
links, 243

setting targets for, 243–244
lists, 244–245
mathematical symbols, 279
media attributes events list, 258–259
mouse attributes events list, 256
multimedia, 273–277
popularity, 228
punctuation symbol, 277–278
registered symbol, 277
tables, 259–273
tags, 289–292
text formatting and inline text

semantics, 238–243
trademark symbol, 277
window attributes events list, 257–258

Child selectors, 120–121
Class attribute, 63, 287–288
Class selectors, 120
Cleaning up HTML document, 132
Client-side scripts, 110
Client-side web development, 294
Closing tag, 18, 64

Code, writing HTML in, 142
DOCTYPE declaration, 142–143
document template, HTML, 153

button type, specifying, 159–160
div elements, 156–157
div tags, 158
excessive comments, avoiding, 159
great code editor, choosing, 159
heading elements, using, 157–158
head tag, placing external

stylesheets in, 156
IE, supporting, 159
images, using alternate attributes

with, 158
lowercase letters, using, 156
minifying, unifying, and shifting

JavaScript, 157
new HTML5 tags, using, 159
one h1 per page, 159
reducing the number of elements on

the page, 156
unordered list, 158
using the right HTML element in

the right place, 158
using title attributes with links, 160
validating frequently, 156

right document structure, using, 143
address tag, 147
articles, 146
aside tags, 147
DOCTYPE, 147–153
footer tag, 147
header element, 145
main element, 146
navigation menus, 146
section element, 146–147

using meaningful title tags and other
tags, 143

Code minification, 133
Code optimization, 131

best coding practices, 160–161
CDN factor, 133
cleaning up HTML document, 132
code, writing HTML in, 142

DOCTYPE declaration, 142–143
document template, HTML,

153–160
meaningful title tags, using, 143

Index ◾ 299

right document structure, using,
143–153

code minification, 133
combining files, 132
communication methods in HTML,

163
common communication event

model (XHR), 163–164
cross-origin resource sharing

(CORS), 166–168
HTML5 channel messages, 166
sandboxing flags, 168
Server-Sent Events, 165
Web Messaging, 165–166
web sockets, 164–165
Web Workers, 165

correct CSS placement, 132
external HTTP requests, limiting, 133
file compression, 133
frontend code, analysis of, 134
HTTP2 to help frontend developers,

134–135
image enhancement, 134
JavaScript placement, correcting,

132–133
lossless compression, 140
lossy compression, 140
lossy vs. lossless compression, 139

including styles dynamically, 141
inserting JavaScript at the bottom

of the page, 141
lazy load, applying, 141
minifying CSS, JavaScript, and

HTML, 141–142
minimalist framework, using,

140–141
picture sprites, creating, 141
using CSS animations instead of

JavaScript, 141
preload and prefetch in HTML, 135

compress files, 138–139
JavaScript, preloading, 138
optimizing images, 139
renders blocking, understanding,

135–137
resources, preloading, 137–138

preloading, enabling, 135
security, 162

security and hardening ideas, 161–162
small components, division into, 134

Coding practices, best, 160–161
Combining files, 132
Comments, 52–53

types of, 53–55
Comment tag, 54–55
Communication methods in HTML, 163

common communication event model,
163–164

cross-origin resource sharing (CORS),
166–168

HTML5 channel messages, 166
sandboxing flags, 168
Server-Sent Events, 165
Web Messaging, 165

events, 166
sending a message across

documents, 166
web sockets, 164–165
Web Workers, 165

Compiled programs, 108
Compression of files, 138–139

Brotli, highlight of, 139
Content, 65
Control Tags, 48
Copyright symbol, 277
Core interfaces, 128
CORS, see Cross-origin resource sharing
Cross-origin resource sharing (CORS),

166–168
CSS, see Cascading Style Sheet
Currency symbols, 280

D

Data types, 127
Descendant selectors, 120
Details element, 85–86
Dialog element, 86–87
Div elements, 156–157
Div tags, 158
DOCTYPE declaration, 142–143, 147–153
Document Object Model (DOM), 4,

126–127
access to, 127
core interfaces, 128
interfaces, 128

300 ◾ Index

origin of, 4–5
working of, 4

Document structure, using, 143
address tag, 147
articles, 146
aside tags, 147
DOCTYPE, 147–153
footer tag, 147
header element, 145
main element, 146
navigation menus, 146
section element, 146–147

Document template, HTML, 153
button type, specifying, 159–160
div elements, 156–157
div tags, 158
excessive comments, avoiding, 159
great code editor, choosing, 159
heading elements, using, 157–158
head tag, placing external stylesheets

in, 156
IE, supporting, 159
images, using alternate attributes with,

158
lowercase letters, using, 156
minifying, unifying, and shifting

JavaScript, 157
new HTML5 tags, using, 159
one h1 per page, 159
reducing the number of elements on

the page, 156
unordered list, 158
using right HTML element in right

place, 158
using title attributes with links, 160
validating frequently, 156

Document type, HTML, 16–17
DOM, see Document Object Model
Drag attributes events list, 256–257
Dynamic elements, 110–111
Dynamic HTML, 4

E

Editor, 51–52
Element, 57–58, 65, 172–173

anatomy of, 64–67
empty, 59–60
nesting, 60

syntax, 59
types of, 58–59

Element type selectors, 119
Embedded stylesheets, 115–116
Embedded text, semantics of, 67–83
Embedding Multimedia, 97

bgsound tag, 99–100
embed tag, 98–99
object tag, 100–101

Embed tag, 98–99
Em element, 72
Empty attribute syntax, 61–62
Empty HTML elements, 59–60
Ending tags, 13
Escape character, 88–91
External HTTP requests, limiting, 133
External styles, 116–117
External stylesheets, importing, 117–118

F

Features of HTML, 295–296
Figcaption tag, 46–47
Figure tag, 43–45
Files compression, 133, 138–139
fillStyle, 188
Footer appears, 147
Footer tag, 41–43, 147
Form attributes events list, 255
Forms, 93, 245–255

basic structure of, 94
Form tag, 93, 94
Frontend, 1–2, 131

CSS in, 3–4
HTML in, 3

Frontend code, analysis of, 134
Frontend developers, HTTP2 to help,

134–135
Front-end development, 294
Future of HTML, 10

G

Game development, 171
building blocks, 172

attributes, 173
elements, 172–173
tags, 172

Index ◾ 301

canvas, 185–214
basic use of, 182–185
benefits of using, 223–224
coordinates, 216–220
drawing a circle on, 220
drawing shapes with, 216
drawing text on, 224
HTML canvas gradients, 221–223

cleaner code, 177
geolocation API, 178
HTML5 game, 175, 295

development, 177
frameworks, 176–177
fundamentals, 174
graphics and sprite sheets, 176

making promotion easier, 178
multi-platform, 177
rendering context, 214–216
unique distribution, 177
user interaction processing, 175

Game development frameworks and game
engines, 178

common patterns, 181–182
HTML canvas graphics, 182
new HTML5 features, 180–181
phasers, 178–179
PlayCanvas WebGL game engine,

179–180
principles of HTML5 game design, 181

Geolocation API, 178
GIF, 140
Gradients, 221
Grouping selectors, 122
Gzip compression, 138–139

H

Head element, 14–15
Header element, 145
Header tag, 24–27
Heading elements, 157–158
Heading tags, 21, 156
Height attribute, 284–286
History of HTML, 8–9
Href attribute, 281–282
HTML 1.0, 11
HTML 2, 11
HTML 3.2, 11–12

HTML 4, 290, 293
HTML 4.01, 12
HTML5, 8, 13, 289, 293
HTML5 channel messages, 166
HTML5 game, 175

development, 177
frameworks, 176–177
fundamentals, 174
graphics and sprite sheets, 176

HTML5 game design, principles of, 181
HTTP2, 134–135
Hypertext, 7, 14, 227
Hypertext markup language, 6–7

I

id attribute, 62, 286–287
IDE, see Integrated Development

Environment
ID selector, 119–120
i element, 73
IETF, see Internet Engineering Task Force
iframes, 95–97
IIFE, see Immediately invoke function

expression
Image enhancement, 134
Images, 94–95

optimizing, 139
using alternate attributes with, 158

Image tag, 22–23
Immediately invoke function expression

(IIFE), 162
Inline Level, 58–59
Inline styles, 114–115
Inline text semantics, 238–243
Integrated Development Environment

(IDE), 51
Internet Engineering Task Force (IETF),

293

J

JavaScript (JS), 5, 122, 175
adding to HTML documents, 123–126
as backend, 5–6
cons of, 126
correcting placement of, 132–133
correlation with CSS, 112–114

302 ◾ Index

inserting JavaScript at the bottom of
the page, 141

library and framework, 5
minifying, unifying, and shifting, 157
minifying CSS, JavaScript, and HTML,

141–142
preloading, 138
pros of, 126
using CSS animations instead of, 141
working of, 5

JPEG images, 140
JS, see JavaScript

K

kbd element, 74–75
Keyboard attributes events list, 256

L

Layering, 112
Lazy load, applying, 141
lineCap, 198–199
lineJoin, 199–200
lineWidth, 200–201
Links, 243

setting targets for, 243–244
Link tag, 93
Lists, 244–245
Lossless compression, 140
Lossy compression, 140
Lossy vs. lossless compression, 139

including styles dynamically, 141
inserting JavaScript at the bottom of

the page, 141
lazy load, applying, 141
minifying CSS, JavaScript, and HTML,

141–142
minimalist framework, using, 140–141
picture sprites, creating, 141
using CSS animations instead of

JavaScript, 141
Lower case alphabets, 88–91
Lowercase letters, using, 156

M

Main element, 146
Main tag, 30–32, 93

Mark element, 75–76
Markup in HTML, 6, 13–14
Marquee Element, 101–102
Marquee tag, 101, 103
Mathematical symbols, 279
Media attributes events list, 258–259
Meta tag, 93
Minification, 133
Minimalist framework, using, 140–141
MiterLimit, 201
Mouse attributes events list, 256
Multiline comment, 54
Multimedia, 273–277

N

Navigation menus, 146
Nav tag, 27–30
Nesting HTML elements, 60
Noninteractive graphics, 176

O

Object-oriented view, 111
Object tag, 100–101
Odd tag, 19
Opening tag, 13, 18, 64

P

Paired tag, 18
Paragraph tag (p tag), 22
p element, 15
Phasers, 178–179
Phrase tag, 92
Picture sprites, creating, 141
Placeholder attribute, 288–289
PlayCanvas WebGL game engine,

179–180
Preload and prefetch in HTML, 135

compress files, 138–139
Brotli, highlight of, 139

images, optimizing, 139
JavaScript, preloading, 138
renders blocking, understanding,

135–137
resources, preloading, 137–138

Preloading, enabling, 135

Index ◾ 303

Programming languages vs. scripting
languages, 108

p tag, see Paragraph tag
Punctuation symbol, 277–278

Q

q element, 74

R

Registered symbol, 277
Renders blocking, understanding, 135–137

S

Sandboxing flags, 168
Scripting languages, 108–109

need for, 109
vs. programming languages, 108

Section element, 146–147
Section tag, 33–35
Security, 162
Security and hardening ideas, 161–162
Self-closing elements, see Empty HTML

elements
Self-closing tags, 23
Semantics of embedded text, 67–83
Server-Sent Events, 165
Server-side scripts, 110
SGML, see Standard Generalized Markup

Language
Single line comment, 53
Small components, division into, 134
Span element, 78–79
src attribute, 282
Standard Generalized Markup Language

(SGML), 6
Standard sibling selectors, 121–122
Start tag, 13
StrokeStyle, 191
Strong element, 79–80
Structure of HTML document, 14–16
Structure tags, 24

article tag, 35–38
aside tag, 38–40
figcaption tag, 46–47
figure tag, 43–45
footer tag, 41–43

header tag, 24–27
main tag, 30–32
nav tag, 27–30
section tag, 33–35

Style attribute, 64, 286
Stylesheets and layering, 111–112
Sub element, 80–81
Summary element, 87–88
Sup element, 81–82

T

Tables, 83–84, 259–273
Tag list, HTML, 48–51
Tags, 13, 17, 172, 289–292; see also

Structure tags
anchor, 22
case insensitivity in, 60–61
control, 48
vs. element, 55–58
heading, 21
image, 22–23
list, 48–51
paired, 18
paragraph, 22
phrase, 92
self-closing, 23
text formatting, 91–92
unpaired, 19–21
utility-based, 23–24

Text formatting, 238–243
Text formatting tags, 91–92
Text links, 94
Time element, 77–78
Title, 15
Title attribute, 63–64, 288
Title tag, 93
Trademark symbol, 277

U

U element, 82–83
Universal selector, 119
Unordered list, 158
Unpaired tags, 19–21
Unquoted value syntax, 62
User interaction processing, 175
Utility-based tags, 23–24

304 ◾ Index

V

Versions of HTML, 10, 11–13
Void elements, see Empty HTML elements

W

Web Messaging, 165
events, 166
sending a message across documents, 166

Web scripting, 108, 109–110

Web sockets, 164–165
Web Workers, 165
WHATWG standards, 4
Width attribute, 282–284
Window attributes events list, 257–258
World Wide Web Consortium (W3C), 4

X

XHTML, 8, 12, 293
XML languages, 8

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	About the Author
	Acknowledgments
	CHAPTER 1: Crash Course HTML
	FRONTEND VS. BACKEND
	MOSTLY USED FRONTEND TECHNOLOGY
	How Does HTML Work as Frontend?
	Next Is CSS
	How CSS Work as Frontend Technology?

	DOM: THE STRUCTURE OF WEBSITES
	How DOM Works
	Where DOM Came From

	JavaScript
	How JavaScript Works
	Library and Framework

	JavaScript AS BACKEND
	WHAT IS A MARKUP LANGUAGE?
	HTML – HYPERTEXT MARKUP LANGUAGE
	HTML INTRODUCTION
	HISTORY
	HTML FUTURE
	HTML VERSIONS
	DIFFERENT VERSIONS OF HTML
	MARKUP IN HTML
	BASIC HTML CONCEPTS
	Structure of an HTML Document

	HTML DOCUMENT TYPE
	HTML TAGS
	Paired Tag
	Unpaired Tags
	Heading Tags (H1 Tag to H6 Tag)
	HTML p Tag – Paragraph Tag
	HTML Tag – Anchor Tag
	HTML img Tag – Image Tag
	Self-Closing Tags
	Utility-Based Tags
	Structure Tags
	The <header> tag
	The <nav> tag
	The <main> tag
	<section> tag
	<article> tag
	<aside> tag
	<footer> tag
	<figure> tag
	<figcaption> tag

	Control Tags
	HTML Tag List

	WHAT IS AN HTML EDITOR?
	HTML COMMENTS
	TYPES OF HTML COMMENTS
	HTML TAG VS. ELEMENT
	Tag
	Element
	Key Points

	TYPES OF ELEMENTS
	TYPES OF HTML ELEMENTS
	HTML ELEMENT SYNTAX
	EMPTY HTML ELEMENTS
	NESTING HTML ELEMENTS
	CASE INSENSITIVITY IN TAGS
	HTML ATTRIBUTES
	Empty Attribute Syntax
	Unquoted Value Syntax

	GENERAL ATTRIBUTES
	The id Attribute
	The class Attribute
	The title Attribute
	The style Attribute

	ANATOMY OF AN HTML ELEMENT
	SEMANTICS OF EMBEDDED TEXT
	TABLES
	OTHER INTERACTIVE ELEMENTS
	HTML CHARACTER ESCAPE
	Lower Case Alphabets

	TEXT FORMATTING TAGS
	HTML PHRASE TAG
	HTML FORMS
	BASIC STRUCTURE OF FORMS
	HTML – TEXT LINKS
	HTML IMAGES
	HTML iFRAMES
	HTML – EMBED MULTIMEDIA
	Embedded Multimedia
	The <embed> Tag
	The <bgsound> Tag
	HTML <object> Tag

	HTML MARQUEE
	Usage

	ATTRIBUTES IN <marquee> TAG
	HTML Properties

	BENEFITS
	CHAPTER SUMMARY
	NOTES

	CHAPTER 2: HTML Basic Usage
	INTRODUCTION
	LEARNING WEB SCRIPTING BASICS
	SCRIPTING LANGUAGES VS. PROGRAMMING LANGUAGES
	SCRIPTING LANGUAGES
	WHY DO WE NEED SCRIPTING LANGUAGES?
	SCRIPT
	WEB SCRIPTS AND THEIR TYPES
	TYPES OF SCRIPTS
	Server-side Scripts

	DYNAMIC ELEMENTS
	Features in Dynamic HTML

	AN OBJECT-ORIENTED VIEW
	STYLESHEETS AND LAYERING
	CORRELATION WITH CSS AND JS
	How Does HTML Work?

	CSS
	Stylesheet
	Adding Styles Using CSS
	Inline Styles
	Embedded Stylesheets
	External Styles
	Importing External Stylesheets

	CSS COMMENTS
	CSS SELECTORS
	Universal Selector
	Element Type Selectors
	ID Selector
	Class Selectors
	Descendant Selectors
	Child Selectors
	Adjacent Sibling Selectors
	Standard Sibling Selectors
	Grouping Selectors

	JAVASCRIPT
	Adding JavaScript to HTML Documents

	DOM
	ACCESS TO DOM
	BASIC DATA TYPES
	DOM INTERFACES
	CORE INTERFACES
	CHAPTER SUMMARY
	NOTES

	CHAPTER 3: Code Optimization
	INTRODUCTION
	Clean Up the HTML Document
	Combining Files
	Correct CSS Placement
	Correcting JavaScript Placement
	Limiting External HTTP Requests
	CDN Factor
	File Compression
	Code Minification
	Image Enhancement
	Division into Small Components
	Analysis of the Frontend Code
	HTTP2 to Help Frontend Developers
	Enable Preloading

	PRELOAD AND PREFETCH IN HTML
	Understanding Renders Blocking
	Preload Resources
	Preload JavaScript
	Compress Files (gzip Compression)
	Highlight of Brotli

	Optimize Your Images

	LOSSY VS. LOSSLESS COMPRESSION
	Lossy Compression
	Lossless Compression
	Use a Minimalist Framework
	Create Picture Sprites
	Apply Lazy Load
	Insert JavaScript at the Bottom of the Page
	Include Styles Dynamically
	Use CSS Animations Instead of JavaScript
	Minify CSS, JavaScript, and HTML

	WRITING HTML IN CODE
	Declare DOCTYPE
	Use Meaningful Title Tags and Other Tags
	Use the Right Document Structure
	<header>
	<main>
	<nav>
	<article>
	<section>
	<aside>
	<address>
	<footer>
	DOCTYPE

	HTML Document Template
	Use Lowercase Letters
	Reduce the Number of Elements on the Page
	Validate Frequently
	Always Place the External Stylesheets in the <head> Tag
	Use Div Elements to Divide Your Layout into Main Sections
	Minify, Unify, and Shift JavaScript
	Use Heading Elements Wisely
	Use the Right HTML Element in the Right Place
	Don’t Use divs for Everything
	Use an Unordered List () for Navigation
	Use Alternate Attributes with Images
	Avoid Excessive Comments
	Choose a Great Code Editor
	Start Using the New HTML5 Tags
	One h1 Per Page
	Stop Supporting IE
	Always Specify the Button Type
	Using Title Attributes with Links (If Needed)

	BEST CODING PRACTICES
	SECURITY AND HARDENING IDEAS (HTML SECURITY)
	SECURITY
	METHODS OF COMMUNICATION IN HTML
	Communication Event Model (XHR)
	Web Sockets
	Server-Sent Events
	Web Workers
	Web Messaging
	Web Messaging Events
	Sending a Message across Documents

	HTML5 Channel Messages
	Cross-Origin Resource Sharing (CORS)
	Sandboxing Flags

	CHAPTER SUMMARY
	NOTES

	CHAPTER 4: HTML for Game Development
	BUILDING BLOCKSE
	Tags
	Elements
	Attributes

	HTML5 GAME FUNDAMENTALS
	DEFINING GOALS FOR GAME DEVELOPMENT
	User Interaction Processing
	Server Side in an HTML5 Game
	Graphics and Sprite Sheets
	HTML5 Game Frameworks
	Amazing Facts about HTML5 Game Development

	Multi-Platform
	Unique Distribution
	Cleaner Code
	Geolocation API
	Makes Promotion Easier
	Game Development Frameworks and Game Engines
	Phasers
	PlayCanvas WebGL Game Engine
	New HTML5 Features
	Principles of HTML5 Game Design
	Common Patterns
	HTML Canvas Graphics

	Before the Start
	Basic Use of Canvas
	About the <canvas> Tag
	Rendering Context
	Drawing Shapes with Canvas
	Canvas Coordinates
	Draw a Circle
	HTML Canvas Gradients
	Benefits of Using Canvas
	Drawing Text on Canvas

	CHAPTER SUMMARY
	NOTES

	CHAPTER 5: CHEAT SHEET
	POPULARITY
	HTML CHEAT SHEET
	HTML DOCUMENT SUMMARY
	<html>
	<head>
	<title>
	<body>

	HTML DOCUMENT INFORMATION
	<base>
	<meta>
	<link>
	<style>
	<script>

	HTML DOCUMENT STRUCTURE TAGS
	<h1 to h6>
	<div>
	
	<p>
	

	<hr>

	TEXT FORMATTING AND INLINE TEXT SEMANTICS
	
	
	
	<i>
	<tt>
	<strike>
	<cite>
	 …
	<ins> … </ins>
	<blockquote> ... </blockquote>
	<q> ... </q>
	<abbr> ... </abbr>
	<address> … </address>
	<dfn> … </dfn>
	<code> … </code>
	<smap> ... </smap>
	<kbd> ... </kbd>
	<var> ... </var>
	<pre> ... </pre>
	_…
	[…]
	<small> … </small>

	HTML LINKS
	SETTING TARGETS FOR LINKS
	 …
	 …
	 …
	 …
	 …
	 …

	HTML LISTS
	
	
	
	<dl>
	<dt>
	<dd>

	HTML FORMS
	<form> … </from>
	<input>
	<label>…</label>
	<textarea>
	<fieldset>
	<legend>
	<select>
	<option>…</option>
	<optgroup>
	<progress> … </progress>
	<datalist>…</datalist>
	<button>…</button>

	FORM ATTRIBUTES EVENTS LIST
	KEYBOARD ATTRIBUTES EVENTS LIST
	MOUSE ATTRIBUTES EVENTS LIST
	DRAG ATTRIBUTES EVENTS LIST
	WINDOW ATTRIBUTES EVENTS LIST
	MEDIA ATTRIBUTES EVENTS LIST
	HTML TABLES
	<table> … </table>
	<caption> … </caption>
	<thead> … </thead>
	<tbody> … </tbody>
	<tfoot> … </tfoot>
	<tr> … </tr>
	<th> … </th>
	<td> … </td>
	<colgroup> … </colgroup>
	<col>

	HTML MULTIMEDIA
	
	<audio>
	<video>
	<figure>
	<figcaption>
	<embed>
	<object>

	HTML CHARACTERS AND SYMBOLS
	HTML CHARACTER ENTITIES
	COPYRIGHT, TRADEMARK, AND REGISTERED SYMBOL
	PUNCTUATION SYMBOL
	ARROWS SYMBOL
	MATHEMATICAL SYMBOLS
	OTHER SYMBOL
	CURRENCY SYMBOLS
	HTML ATTRIBUTES
	NEW HTML TAGS
	NOTES

	APPRAISAL
	INDEX

