

Clean Code in JavaScript

Develop reliable, maintainable, and robust JavaScript

James Padolsey

BIRMINGHAM - MUMBAI

Clean Code in JavaScript
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Ashitosh Gupta
Content Development Editor: Akhil Nair
Senior Editor: Martin Whittemore
Technical Editor: Suwarna Patil
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Deepika Naik

First published: January 2020

Production reference: 1170120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-764-8

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
James Padolsey is a passionate JavaScript and UI engineer with over 12 years' experience.
James began his journey into JavaScript as a teenager, teaching himself how to build
websites for school and small freelance projects. In the early years, he was a prolific
blogger, sharing his unique solutions to common problems in the domains of jQuery,
JavaScript, and the DOM. He later contributed to the jQuery library itself and authored a
chapter within the jQuery Cookbook published by O'Reilly Media. Over subsequent years,
James has been exposed to many unique software projects in his employment at Stripe,
Twitter, and Facebook, informing his philosophy on what clean coding truly means in the
ever-changing ecosystem of JavaScript.

I'd like to thank the following individuals for their technical insight in the domain of
JavaScript: Paul Irish, Alex Sexton, Axel Rauschmayer, John Resig, John Hann, Mathias
Bynens, Ana Tudor, Steven Levithan, Juriy Zaytsev, Peter van der Zee, Addy Osmani,
Jake Archibald, Dave Methvin, and Lea Verou. I would like to especially thank my family,
including Victoria, Henry, George, Alice, and Lucy, and my friends Erik Lundin, Owen
Barnes, and Anna Stark.

About the reviewers
Derrek Landauer teaches middle school math and mentors students in an Air Force
Research Lab rocketry science program. He earned a bachelor of science in electrical
engineering from the University of Texas at El Paso in 2011. His work history spans
industry and academia. While attending school, he was involved in defense research
projects and was also a lab instructor. He later spent a couple of years managing the
network and server infrastructure across four facilities for a subsidiary of a Fortune 100
company. His software development background ranges from programming
microprocessors and operating systems to full stack web development.

Dobrin Ganev is a software developer with years of experience working in various
development environments, ranging from finance to business process management. In
recent years, he has focused on geospatial development and data analytics using JavaScript,
Python, Scala, and R. He has extensive knowledge of open source geospatial software and
the ESRI platform. He is also skilled in Node.js, React.js, and GraphQL. Dobrin recently
authored a video course entitled Hands-On Full Stack Web Development with GraphQL and
React, published by Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: What is Clean Code Anyway?
Chapter 1: Setting the Scene 9

Why we write code 10
Code as intent 10
Who is the user? 11
What is the problem? 13

Truly understanding the problem domain 15
Writing code for humans 16

Communicating intent 16
Readability 17
Meaningful abstractions 19

The tower of abstraction 20
The layers of clean code 21

Summary 21

Chapter 2: The Tenets of Clean Code 22
Reliability 22

Correctness 23
Stability 25
Resilience 26

Efficiency 29
Time 29
Space 31
Efficiency's effects 31

Maintainability 32
Adaptability 33
Familiarity 34

Usability 36
User stories 38
Intuitive design 38
Accessibility 39

Summary 40

Chapter 3: The Enemies of Clean Code 41
Enemy #1 – JavaScript 41
Enemy #2 – management 42

Pressure to ship 43
Bad metrics 46

Table of Contents

[ii]

Lack of ownership 47
Enemy #3 – Self 49

Showing off with syntax 49
Stubborn opinions 51
Imposter syndrome 52

Enemy #4 – The cargo cult 53
Cargo culting code 54
Cargo culting tools and libraries 57

Summary 57

Chapter 4: SOLID and Other Principles 58
The Law of Demeter 59
SOLID 62

Single responsibility principle 63
Open–closed principle 65
Liskov substitution principle 67
Interface segregation principle 69
Dependency inversion principle 72

The abstraction principle 75
Over-abstraction 76
Under-abstraction 78
Balanced abstraction 80

Functional programming principles 81
Functional purity 83
Immutability 85

Summary 86

Chapter 5: Naming Things Is Hard 87
What's in a name? 88

Purpose 88
Concept 90
Contract 92

Naming anti-patterns 93
Needlessly short names 94
Needlessly exotic names 95
Needlessly long names 96

Consistency and hierarchy 97
Techniques and considerations 100

Hungarian notation 101
Naming and abstracting functions 103
Three bad names 105

Summary 105

Section 2: Section 2: JavaScript and Its Bits
Chapter 6: Primitive and Built-In Types 107

Table of Contents

[iii]

Primitive types 108
Immutability of primitives 108
Primitive wrappers 109
The falsy primitives 110
Number 112
String 115
Boolean 120
BigInt 121
Symbol 122
null 123
undefined 125

Objects 127
Property names 128
Property descriptors 129
Map and WeakMap 132
The prototype 133
When and how to use objects 138

Functions 138
Syntactic context 140
Function bindings and this 141

Execution context 142
super 143
new.target 144
arguments 145

Function names 146
Function declarations 148
Function expressions 149
Arrow functions 150
Immediately Invoked Function Expressions 152
Method definitions 154
Async functions 156
Generator functions 158

Arrays and iterables 160
Array-like objects 161
Set and WeakSet 163
Iterable protocol 163

RegExp 166
Regular expression 101 166
RegExp flags 168
Methods accepting RegExp 169
RegExp methods and lastIndex 171
Stickiness 172

Summary 173

Chapter 7: Dynamic Typing 174
Detection 175

Table of Contents

[iv]

The typeof operator 179
Type-detecting techniques 181

Detecting Booleans 181
Detecting numbers 182
Detecting strings 184
Detecting undefined 185
Detecting null 187
Detecting null or undefined 187
Detecting arrays 188
Detecting instances 190
Detecting plain objects 190

Conversion, coercion, and casting 191
Converting into a Boolean 194
Converting into a String 196
Converting into a Number 197
Converting into a primitive 199

Summary 202

Chapter 8: Operators 203
What is an operator? 204

Operator arity 204
Operator function 205
Operator precedence and associativity 206

Arithmetic and numeric operators 209
The addition operator 210

Both operands are numbers 210
Both operands are strings 211
One operand is a string 211
One operand is a non-primitive 211
Conclusion – know your operands! 211

The subtraction operator 212
The division operator 212
The multiplication operator 213
The remainder operator 214
The exponentiation operator 215
The unary plus operator 216
The unary minus operator 217

Logical operators 218
The logical NOT operator 218
The logical AND operator 220
The logical OR operator 222

Comparative operators 223
Abstract equality and inequality 223
Strict equality and inequality 225
Greater than and less than 227

Lexicographic comparison 227
Numeric comparison 229

Table of Contents

[v]

The instanceof operator 230
The in operator 230

Assignment operators 232
Increment and decrement (prefix and postfix) operators 235

Prefix increment/decrement 235
Postfix increment/decrement 236

Destructuring assignment 237
Property access operators 239

Direct property access 239
Computed property access 240

Other operators and syntax 241
The delete operator 241
The void operator 242
The new operator 242
The spread syntax 245
The comma operator 247
Grouping 248

Bitwise operators 250
Summary 251

Chapter 9: Parts of Syntax and Scope 252
Expressions, statements, and blocks 252

Expressions 254
Statements 255

Forming statements with semicolons 255
Blocks 257

Scopes and declarations 258
Variable declarations 260
Let declarations 262
Const declarations 263
Function declarations 264
Closures 265

Summary 267

Chapter 10: Control Flow 268
What is control flow? 268
Imperative versus declarative programming 270
The movement of control 275

Invocation 275
Returning 277
Yielding 277

Yielding to a yield 279
Complexity of yielding 279

Breaking 280
Continuing 282
Throwing 283

Table of Contents

[vi]

Statements of control flow 285
The if statement 285
The for statement 287

Conventional for 288
for...in 290
for...of 292

The while statement 293
The do...while statement 295
The switch statement 296

Breaking and fallthrough 297
Returning from a switch directly 298
Case blocks 298
Multivariant conditions 299

Handling cyclomatic complexity 300
Simplifying conditional spaghetti 302

Asynchronous control flow 306
The Event Loop 306
Native asynchronous APIs 307

Callbacks 308
Event subscribing/emitting 311
Promises 314
async and await 318

Summary 320

Section 3: Section 3: Crafting Abstractions
Chapter 11: Design Patterns 322

The perspective of a designer 322
Architectural design patterns 327

MVC 327
A working example of MVC 328

MVVM 332
MV* and the nature of software 333

JavaScript modules 334
Modular design patterns 336

Constructor patterns 337
When to use the Constructor pattern 338
Inheritance with the Constructor pattern 338

The Class pattern 340
When to use the Class pattern 341
Static methods 342
Public and private fields 342
Extending classes 344
Mixing-in classes 344
Accessing a super-class 347

The Prototype pattern 347
When to use the Prototype pattern 349

Table of Contents

[vii]

The Revealing Module pattern 351
The Conventional Module pattern 352

When to use the Conventional Module pattern 353
The Singleton Class pattern 354

When to use the Singleton Class pattern 354
Planning and harmony 355
Summary 356

Chapter 12: Real-World Challenges 357
The DOM and single-page applications 357

DOM binding and reconciliation 360
DOM reconciliation 361
React's approach 362

Messaging and data propagation 366
Frontend routing 369

Dependency management 374
Module definition – then and now 375
npm and package.json 377
Bundling and serving 381

Security 384
Cross-Site Scripting 384

Content Security Policy 388
Subresource Integrity 390

Cross-Site Request Forgery 390
Other security vulnerabilities 393

Summary 394

Section 4: Section 4: Testing and Tooling
Chapter 13: The Landscape of Testing 396

What is a test? 396
The simple assertion 398
Many moving parts 400

Types of testing 401
Unit testing 402
Integration testing 404
E2E and functional testing 406

Test-Driven Development 407
Summary 409

Chapter 14: Writing Clean Tests 410
Testing the right thing 411
Writing intuitive assertions 414
Creating clear hierarchies 416
Providing final clarity 418
Creating clean directory structures 421

Table of Contents

[viii]

Summary 423

Chapter 15: Tools for Cleaner Code 424
Linters and formatters 426
Static typing 429
E2E testing tools 430
Automated builds and CI 433
Summary 434

Section 5: Section 5: Collaboration and Making Changes
Chapter 16: Documenting Your Code 436

Aspects of clean documentation 437
Concept 437
Specification 439
Instruction 441
Usability 443

Documentation is everywhere 445
Writing for non-technical audiences 446
Summary 447

Chapter 17: Other Peoples' Code 448
Inheriting code 448

Exploring and understanding 449
Making a flowchart 450
Finding structure and observing history 451
Stepping through the code 453
Asserting your assumptions 454

Making changes 456
Minimally invasive surgery 456
Encoding changes as tests 458

Dealing with third-party code 460
Selection and understanding 460
Encapsulating and adapting third-party code 462

Summary 464

Chapter 18: Communication and Advocacy 465
Planning and setting requirements 466

Understanding user needs 466
Quick prototypes and PoCs 468

Communication strategies 469
Listen and respond 470
Explain from the user's perspective 470
Have small and focused communications 472
Ask stupid questions and have wild ideas 472
Pair programming and 1:1s 473

Identifying issues and driving change 474

Table of Contents

[ix]

Raising bugs 474
Driving systemic change 476

Summary 478

Chapter 19: Case Study 479
The problem 480
The design 481
The implementation 482

The Plant Selection application 483
Creating the REST API 483
Creating the client-side build process 490
Creating the component 493

Summary 500

Other Books You May Enjoy 501

Index 504

Preface
JavaScript is a scrappy yet graceful language that has found itself at the center of one of the
greatest software shifts in history. It is now the primary programming language used to
deliver user experiences on the most ubiquitous platform that exists: the web.

This huge responsibility has meant that the JavaScript language has had to grow up very
quickly in a period of shifting demands. For the up-and-coming JavaScript programmer or
web developer, these changes have meant that the language and its ecosystem have been
increasingly complex to grasp. Nowadays, the sheer number of frameworks and libraries
available is overwhelming, even to those who've been in the industry for many years.

The task of this book is to peel back the confusing layers and concepts that the world has
placed atop the language to reveal its underlying nature and consider how we can use it to
craft reliable and maintainable code with a focus on usability. We will begin by zooming
out and considering, in a very fundamental way, why we even write code. We will discover
that the code we write does not exist in a vacuum. We will explore the large and small ways
in which our code drastically affects our users and fellow programmers, and discuss ways
that we can accommodate their various needs.

Beyond a fundamental exploration of clean coding principles, we will deeply delve into
JavaScript itself, guiding you through the language, from its most atomic syntax to its more
abstract design patterns and conventions. We will also explore how we can go about
documenting and testing our code in the cleanest way possible. You should come away
with a solid grasp of the JavaScript language and an attuned sense of what clean code is.

Who this book is for
This book is for anyone who has an interest in improving their JavaScript skills. Whether
you are an amateur or a professional, there are aspects of this book that you will find
valuable. In terms of technical knowledge, the book assumes some previous exposure to
programming and at least a small amount of experience of JavaScript itself. The reader who
will get the most value from this book is someone who has programmed for a number of
months or years in JavaScript but has always felt weighed down by the complexity of it and
is unsure of how to craft clean and bug-free JavaScript.

Preface

[2]

What this book covers
Chapter 1, Setting the Scene, asks you to consider why we write code and explores the many
ways in which we communicate our intent via code. This chapter provides a firm
foundation upon which you can build and adapt your understanding of clean code.

Chapter 2, The Tenets of Clean Code, uses real-world JavaScript examples to explore the four
tenets of clean code: reliability, efficiency, maintainability, and usability. Each of these vital
tenets serves as a foundation for the rest of the book.

Chapter 3, The Enemies of Clean Code, uncovers some of the more notorious enemies of clean
code. These are the forces and dynamics that lead to the proliferation of unclean code, such
as egotistic programming, bad metrics, and cargo cults.

Chapter 4, SOLID and Other Principles, explores the famous SOLID principles and uncovers
their deeper meaning by tying them together with functional programming principles, the
Law of Demeter, and the abstraction principle.

Chapter 5, Naming Things Is Hard, discusses one of the most challenging aspects of
programming: naming things. It poses some of the specific challenges of naming and ties
together a foundational naming theory with real-world naming problems and solutions.

Chapter 6, Primitive and Built-In Types, begins a deep exploration into JavaScript. This
chapter details the primitive and built-in types available to the JavaScript programmer,
warning against common pitfalls and sharing best practices.

Chapter 7, Dynamic Typing, discusses JavaScript's dynamic nature, and goes over some of
the challenges related to this. It explains how we can both cleanly detect and convert to
various types (via explicit casting or implicit coercion).

Chapter 8, Operators, thoroughly details the operators available within JavaScript,
discussing their behaviors and challenges. This includes a detailed account of every
operator alongside examples, pitfalls, and best practices.

Chapter 9, Parts of Syntax and Scope, provides a more macro view of the language,
highlighting the broader syntaxes and constructs available, such as statements, expressions,
blocks, and scope.

Chapter 10, Control Flow, broadly covers the concept of control flow, highlighting the
crucial difference between imperative and declarative forms of programming. It then
explores how we can cleanly control flow within JavaScript by utilizing control-moving
mechanisms such as invoking, returning, yielding, throwing, and more.

Preface

[3]

Chapter 11, Design Patterns, broadly explores some of the more popular design patterns
used in JavaScript. It describes the major architectural design patterns of MVC and MVVM,
and the more modular design patterns such as the Constructor pattern, the Class pattern,
the Prototype pattern, and the Revealing Module pattern.

Chapter 12, Real-World Challenges, looks at some of the more realistic problem domains
within the JavaScript ecosystem and considers how they can be handled cleanly. Topics
covered include the DOM and single-page applications, dependency management, and
security (XSS, CSRF, and more).

Chapter 13, The Landscape of Testing, describes the broad concepts of testing software, and
how these can be applied to JavaScript. It specifically explores unit testing, integration
testing, E2E testing, and TDD.

Chapter 14, Writing Clean Tests, delves further into the domain of testing by advising you
to author assertions and test suites in a way that is utterly clear, intuitive, representative of
the problem domain, and conceptually hierarchical.

Chapter 15, Tools for Cleaner Code, briefly considers several available tools and
development flows that can greatly aid us in writing and maintaining clean code. Included
are topics such as linting, formatting, source control, and continuous integration.

Chapter 16, Documenting Your Code, uncovers the unique challenges of documentation.
This chapter challenges you to consider all the mediums of documentation that are
available and asks you to consider how we can understand and accommodate the needs
and questions of individuals who may wish to utilize or maintain our code.

Chapter 17, Other Peoples' Code, looks into the challenges of selecting, understanding, and
making use of third-party code within our JavaScript projects (such as third-party libraries,
frameworks, and utilities). It also discusses methods of encapsulation that allow us to
interface with third-party code in a clean and minimally invasive way.

Chapter 18, Communication and Advocacy, explores the wider project-based and
interpersonal challenges inherent in the crafting and delivery of clean software. This
includes a detailed inquiry into the following: planning and setting requirements,
communication strategies, and identifying issues and driving change.

Chapter 19, Case Study, concludes the book with a walk-through of the development of a
JavaScript project, including both client-side and server-side pieces. This chapter draws
together the principles espoused within the book and affirms them by exposing you to a
real-world problem domain and the development of a usable solution.

Preface

[4]

To get the most out of this book
In order to get the most out of this book, it is useful to have a basic understanding of the
JavaScript language and to have some experience of atleast one platform in which
JavaScript is utilized. This may include the browser or Node.js, for example.

In order for you to execute the pieces of code shared within the book, you have a few
options available:

Create an HTML file with <script> in which you can place any JavaScript code
you wish to test. In order to observe an output visually, you can either use
alert() or console.log(). In order to view values outputted via
console.log(), you can open the development tools of the browser.
Directly open the development tools of any modern browser and directly type
JavaScript expressions and statements into the JavaScript console. A guide to
doing this within the Chrome browser can be found here: https:/ /developers.
google.com/ web/ tools/ chrome- devtools/ console/ javascript.
Create a test.js file and run it via Node.js or use the Node.js REPL to
interactively test distinct JavaScript statements and expressions via the command
line. A comprehensive guide to getting started with Node.js can be found
here: https:/ / nodejs. org/ en/ docs/ guides/ getting- started- guide/ .

Browser development tools are accessible within all modern browsers. The shortcuts are as
follows:

In Chrome: Ctrl + Shift + J on Windows or CMD + Shift + J on macOS
In Firefox: Ctrl + Shift + I or F12 on Windows and Linux, or CMD + OPTION + I
on macOS
In IE: F12 on Windows

You are advised to move through the book at your own pace and conduct additional
research and exploration online if you are finding a topic hard to grasp. Some especially
helpful resources include the following:

Mozilla Developer Network: https:/ / developer. mozilla. org/ en- US/docs/
Web/JavaScript

ECMAScript Language Specification: https:/ /www. ecma- international. org/
publications/ standards/ Ecma- 262. htm

https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://developers.google.com/web/tools/chrome-devtools/console/javascript
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm

Preface

[5]

The book gets progressively more detailed as you advance through it, so it is natural to take
a slower pace in later chapters. This may be especially true for Chapters 6-12, which cover,
in great detail, the characteristics of the JavaScript language itself.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Clean-Code-in-JavaScript. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789957648_ColorImages. pdf.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789957648_ColorImages.pdf

Preface

[6]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We find a publicly available package
called shipping_address_validator and decide to use it."

A block of code is set as follows:

function validatePostalCode(code) {
 return /^[0-9]{5}(?:-[0-9]{4})?$/.test(code);
}

Any command-line input or output is written as follows:

npm install --save react react-dom

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For the purposes of our case study, the plant names only exist as their full Latin names,
which includes a family (for example, Acanthaceae)."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[7]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: What is Clean Code

Anyway?
In this section, we'll discuss the purpose of code and the tenets of it, such as clarity and
maintainability. We'll also cover the very broad challenge of naming things, as well as some
of the valuable questions and hazards to watch out for.

This section contains the following chapters:

Chapter 1, Setting the Scene
Chapter 2, The Tenets of Clean Code
Chapter 3, The Enemies of Clean Code
Chapter 4, SOLID and Other Principles
Chapter 5, Naming Things Is Hard

1
Setting the Scene

JavaScript was created by Brendan Eich in 1995, with the goal of being a glue language. It
was intended to help web designers and amateurs easily manipulate and derive behavior
from their HTML. JavaScript was able to do this via the DOM API, a set of interfaces
provided by the browser that would give access to the parsed representation of HTML.
Soon after this, DHTML became the popular term, referring to the more dynamic user
interfaces that JavaScript enabled: everything from animated rollover button states to
client-side form validation. Eventually came the rise of Ajax, which enabled communication
between the client and the server. This opened up a considerable fountain of potential
applications. The web, previously purely the domain of documents, was now on the way to
becoming a powerhouse of processor- and memory-intensive applications:

In 1995, nobody could have predicted that JavaScript would one day be used to build
complex web applications, program robots, query databases, write plugins for photo
manipulation software, and be behind one of the most popular server runtimes in existence,
Node.js.

In 1997, not long after its creation, JavaScript was standardized by Ecma International
under the name ECMAScript, and it is still undergoing frequent changes under the TC39
committee. Most recent versions of the language have been named according to the year of
their release, such as ECMAScript 2020 (ES2020).

Setting the Scene Chapter 1

[10]

Due to its burgeoning capabilities, JavaScript has attracted a passionate community that
drives its growth and ubiquity. And due to its considerable popularity, there are now
countless different ways to do the same thing in JavaScript. There are thousands of popular
frameworks, libraries, and utilities. The language too is changing on a near-constant basis
in reaction to the increasing demands of its applications. This creates a great challenge:
among all of this change, while being pushed and pulled in different directions, how can
we know how to write the best possible code? Which frameworks should we use? What
conventions should we employ? How should we test our code? How should we craft
sensible abstractions?

To answer these questions, we need to briefly go back to basics. And that is the purpose of
this chapter. We'll be discussing the following:

What the true purpose of the code is
Who our users are and what problems they have
What it means to write code for humans

Why we write code
At its simplest, we know that programming is about instructing computers, but what are
we instructing them to do? And to what end? And what other purposes does code serve?

We can broadly say that code is a way of solving problems. By writing code, we
are expressing a complex task or series of actions, distilling them into a singular process
that can be easily utilized by a user. So we can say that the code is an expression of a
problem domain. We can even say it is a form of communication, a way to relay
information and intent. Understanding that code is a complex thing with many
complementary purposes, such as problem-solving and communication, will enable us to
use it to its fullest potential. Let's delve further into this complexity by exploring what we
mean when we speak of code as a method of relaying intent.

Code as intent
We often think of code as simply a series of instructions that are executed by a computer.
But in many ways, this misses the true magic of what we're doing when we write code.
When we convey instructions, we are expressing our intent to the world; we are
saying These are the things that I want to occur.

Setting the Scene Chapter 1

[11]

Humans have been conveying instructions for as long as they've been around. One example
of this is a simple cooking recipe:

Cut about three hundred grams of butter (small cubes!)
Take 185 grams dark chocolate
Melt it with butter over a saucepan
Break half dozen eggs, ideally large ones
Mix them together with a few cups of sugar

Instructions like these are quite easy to understand for a human, but you'll notice they
follow no strict specification. The measuring units are inconsistent, as is the punctuation
and the wording. And some of the instructions are quite ambiguous and therefore open to
misinterpretation by someone who hasn't cooked before:

What constitutes a large egg?
When should I consider the butter fully melted?
How dark should the dark chocolate be?
How small is a small cube of butter?
What does over a saucepan mean?

Humans can usually muddle through such ambiguities with their initiative and experience,
but machines aren't so adept. A machine must be instructed with enough specificity to
carry out every step. What we wish to communicate to a machine is our intent, that is, please
do this thing, but due to the nature of machines, we must be utterly specific. Thankfully,
how we choose to write these instructions is up to us; there are many programming
languages and approaches, and almost all of them were created with the goal of making it
easier for humans to communicate their intent in a less burdensome way.

The distance between human capability and computing capability is quickly narrowing.
The advent of machine learning, natural language processing, and highly specialized
programs means that machines are far more flexible in the types of instructions they can
carry out. However, code will continue to be useful for some time, as it allows us to
communicate in a highly specific and standardized way. With this high level of specificity
and consistency, we can have more faith that our instructions will be executed as intended,
every time.

Who is the user?
No meaningful conversation about programming can occur without considering the user.
The user, whether they are a fellow programmer or the end user of a UI, is at the core of
what we do.

Setting the Scene Chapter 1

[12]

Let's imagine that we are tasked with validating user-inputted shipping addresses on a
website. This particular website sells medication to hospitals around the world. We're in a
bit of a rush and would prefer to use something that someone else has implemented.
We find a publicly available package called shipping_address_validator and decide to
use it.

If we had taken the time to check the code within the package, in its postal code validation
file, we would have seen this:

function validatePostalCode(code) {
 return /^[0-9]{5}(?:-[0-9]{4})?$/.test(code);
}

This validatePostalCode function happens to be using regular
expressions (also known as RegExp and regex), delimited by forward
slashes, to define a pattern of characters to match a string against. You can
read more about these constructs in Chapter 6, Primitive and Built-In
Types.

Unfortunately, due to our haste, we didn't question the functionality of
the shipping_address_validator package. We assumed it did what it says on the tin.
One week after releasing our code to production we get a bug report saying that some users
are unable to enter their address information. We look at the code and realize, to our
horror, that it only validates US ZIP codes, not all countries' postal codes (for example, it
doesn't work on UK postcodes, such as GR82 5JY).

Through this unfortunate series of events, this piece of code is now responsible for blocking
the shipment of vital medication to customers all over the world, numbering in the
thousands. Fortunately, fixing it doesn't take too long.

Forgetting for a moment who is responsible for this mishap, I'd like to pose the following
question: who are the users of this code?

We, the programmers, who decided to use the shipping_address_validator
package?
The unwitting customers who are attempting to enter their addresses?
The patients in the hospitals who are left waiting for their medication?

There isn't a clear-cut answer to this question. When bugs appear in the code, we can see
how there can be massive unfortunate downstream effects. Should the original
programmer of the package be concerned with all these downstream dependencies? When
a plumber is hired to fix a tap on a sink, should they only consider the function of the tap
itself, or the sink into which it pours?

Setting the Scene Chapter 1

[13]

When we write code, we are defining an implicit specification. This specification is
communicated by its name, its configuration options, its inputs, and its outputs. Anyone
who uses our code has the right to expect it to work according to its specifications, so the
more explicit we can be, the better. If we're writing code that only validates US ZIP codes,
then we should name it accordingly. When people create software atop our code, we can't
have any control over how they use it. But we can communicate explicitly about it,
ensuring that its functionality is clear and expected.

It's important to consider all use cases of our code, to imagine how it might be used and
what expectations humans will have about it, programmers and end users alike. What we
are responsible or accountable for is up for debate, and is as much a legal question as a
technical one. But the question of who our users are is entirely up to us. In my experience,
the better programmers consider the full gamut of users, aware that the software they write
does not exist in a vacuum.

What is the problem?
We've spoken about the importance of the user in programming, and how we must first
understand what it is they wish to do if we are to have any hope of helping them.

Only by understanding the problem can we begin to assemble requirements that our code
will have to fulfill. In the exploration of the problem, it's useful to ask yourself the
following questions:

What problem is the user encountering?
How do they currently carry out this task?
What existing solutions are there and how do they work?

When we have assembled a complete understanding of the problem, we can then begin
ideating, planning, and writing code to solve it. At each step, often without realizing it, we
will be modeling the problem in a way that makes sense to us. The way we think about the
problem will have a drastic effect on the solution we end up creating. The model of the
problem we create will dictate the code we end up writing.

What is the model of a problem?
A model or conceptual model is a schematic or representation that describes
how something works. We create and adapt models all the time without
realizing it. Over time, as you gain more information about a problem
domain, your model will improve to better match reality.

Setting the Scene Chapter 1

[14]

Let's imagine for a moment that we are responsible for a note-taking application for
students and are tasked with creating a solution to the following problem that a user has
expressed:

"I have many notes for my studies and so am finding it hard to organize them.
Specifically, when trying to find a note on a given topic, I'll try to use the Search feature
but I rarely find what I'm looking for since I can't always recall the specific text I wrote."

We've decided that this warrants changes to the software because we've heard similar
things from other users. So, we sit down and try to come up with various ideas for how we
could improve the organization of notes. There are a few options we could explore:

Categories: There would be a hierarchical folder structure for categories. A note
on Giraffes might exist under studies/zoology. Categories can be easily navigated
manually or via search.
Tags: There would be the ability to tag a note with one or more words or phrases.
A note on Giraffes might be tagged with mammal and long neck. Tags can then be
easily navigated manually or via search.
Links: Introduce a linking feature so notes can link to other notes that are related.
A note on Giraffes might be linked to from another note, such as the one on
Animals with long necks.

Each solution has its pros and cons, and there is also the possibility of implementing a
combination of them. One thing that becomes immediately obvious is that each of these will
quite drastically affect how users end up using the application. We can imagine how users
exposed to these respective solutions would hold the model of note-taking in their minds:

Categories: Notes I write have their place in my categorical hierarchy
Tags: Notes I write are about many different things
Links: Notes I write are related to other notes I write

In this example, we're developing a UI, so we are sitting very close to the end user of the
application. However, the modeling of problems is applicable to all of the work we do. If
we were creating a pure REST API for note-keeping, exactly the same considerations would
need to be made. Web programmers play a key part in deciding what models other people
end up employing. We should not take this responsibility lightly.

Setting the Scene Chapter 1

[15]

Truly understanding the problem domain
The first point of failure is typically misunderstanding the problem. If we don't understand
what users are truly trying to accomplish, and we have not received all requirements, then
we will inevitably retain a bad model of the problem and thus end up implementing the
wrong solutions.

Imagine that this scenario occurs at some point before the invention of the kettle:

Susanne (engineer): Matt, we've been asked to design a vessel that users can boil
water with
Matthew (engineer): Understood; I will create a vessel that does exactly that

Matthew asks no questions and immediately gets to work, excited at the prospect of putting
his creativity to use. One day later he comes up with the following contraption:

We can see, quite obviously, that Matthew has forgotten one key component. In his haste,
he did not stop to ask Susanne for more information about the user, or about their problem,
and so did not consider the eventuality that a user would need to pick up the boiling-hot
vessel somehow. After receiving feedback, naturally, he designed and introduced a handle
to the kettle:

Setting the Scene Chapter 1

[16]

This needn't have occurred at all, though. Imagine this kettle scenario extrapolated to the
complexity and length of a large software project spanning multiple months. Imagine the
headaches and needless pain involved in such a misunderstanding. The key to designing a
good solution to a problem requires, first and foremost, a correct and complete model of the
problem. Without this, we'll fail before we even begin. This matters in the design of massive
projects but also in the implementation of the smallest JavaScript utilities and components.
In every line of code we write, in fact, we are utterly liable to failure if we do not first
understand the problem domain.

The problem domain encapsulates not only the problem being encountered by the user but
also the problem of meeting their needs via the technologies we have available. And so, the
problem domain of writing JavaScript in the browser, for example, includes the complexity
of HTTP, the browser object model, the DOM, CSS, and a litany of other details. A good
JavaScript programmer has to be adept not only in these technologies but also in
understanding new domains of problems encountered by their users.

Writing code for humans
This entire book is concerned with teaching you how to write clean code in JavaScript. In
the following chapters, we'll go into a lot of detail, with discussions of almost every
construct within the language. Firstly, we need to establish a few key perspectives that'll be
important when we think about what it means to write clean code for humans.

Communicating intent
We can say that writing code for humans is broadly about the clarity of intent. And writing
code for machines is broadly about functionality. These needs do cross over, of course, but
it's vital to discern the difference. We can see the difference if we were writing code only for
the machine, focusing purely on function, and forgetting the human audience. Here's an
example:

function chb(d,m,y) {
 return new Date(y,m-1,d)-new Date / 6e4 * 70;
}

Setting the Scene Chapter 1

[17]

Do you understand what this code is doing? You may be able to decipher what's going on
in this code, but it is intent—its true meaning—will be almost impossible to discern.

If we clearly express our intent then the preceding code would look something like this:

const AVG_HEART_RATE_PER_MILLISECOND = 70 / 60000;

function calculateHeartBeatsSinceBirth(birthDay, birthMonth, birthYear) {

 const birthMonthIndex = birthMonth - 1;
 const birthDate = new Date(birthYear, birthMonthIndex, birthDay);
 const currentDate = new Date();

 return (currentDate - birthDate) / AVG_HEART_RATE_PER_MILLISECOND;

}

From the preceding code, we can discern that this function is intended to calculate the
number of times a heart has beaten since birth. There is no functional difference between
these two pieces of code. However, the latter code better communicates the programmer's
intentions, and thus is easier to understand and to maintain.

The code we write is primarily for people. You may be building a brochure website,
programming a web application, or crafting a complex utility function for a framework. All
of these things are for people: people who are the end users of GUIs driven by our code or
people who are the programmers making use of our abstractions and interfaces.
Programmers are in the business of helping these people.

Even if you're writing code only for yourself, with no possibility of it being used in any way
by anyone else, your future self will thank you if you write clear code.

Readability
When we write code, it's essential to consider how human brains will consume it. Fellow
programmers will scan over your code, reading the pertinent parts, attempting to gain a
running comprehension of its inner workings. Readability is the first hurdle that they must
overcome. If they are unable to read and cognitively navigate the code you've written then
they'll be less able to use it. This will drastically limit the utility and value of your code.

Setting the Scene Chapter 1

[18]

Programmers, in my experience, don't tend to like thinking of code in terms of aesthetic
design, but the best programmers will appreciate that these concepts are intrinsically
intertwined. The design of our code in a presentational or visual sense is as vital to its
comprehensibility as its architectural design. Design, in the end, is about creating
something in a way that optimally delivers a purpose for its users. For our fellow
programmers, that purpose is comprehension. And so we must design our code to deliver
that purpose.

Machines care purely about specifications and will parse valid code into its parts with little
effort. Humans, however, are more complex. We are less capable in areas where machines
excel, hence their existence, but we are also skillful in areas where machines may falter. Our
highly evolved brains, among their many talents, have become incredibly skilled at
spotting patterns and inconsistencies. We rely on difference, or contrast, to focus our
attention. If a pattern is not being followed then it creates more work for our brains. For an
example of such inconsistency, have a look at this code:

var TheName='James' ;
 var City = 'London'
var hobby = 'Photography',job='Programming'

You probably don't enjoy looking at this code. Its messiness is distracting and it appears to
follow no particular pattern. The naming and spacing are inconsistent. Our brains struggle
with this, and so reading the code, and building a full understanding of it, becomes more
cognitively expensive.

We might refactor the preceding code to be more consistent, like so:

var name = 'James';
var city = 'London';
var hobby = 'Photography';
var job = 'Programming';

Here, we've used a single naming pattern and have employed consistent syntax and
spacing in every statement.

Alternatively, perhaps we would like to declare all variables within a single var declaration
and align the assignment (=) operators so that all values start along the same vertical axis:

var name = 'James',
 city = 'London',
 hobby = 'Photography',
 job = 'Programming';

Setting the Scene Chapter 1

[19]

You'll notice that these different styles are very subjective. Some people prefer one way.
Other people prefer another way. And that's okay. I am not stating which approach is
superior. Instead, I am pointing out that if we care about writing code for humans, then we
should care, first and foremost, about its readability and presentation, and consistency is a
key part of that.

Meaningful abstractions
As we write code, we use and create abstractions constantly. Abstraction is what occurs
when we take a piece of complexity and then present access to that complexity in a simpler
way. By doing this, we enable people to have leverage over that complexity without having
to wield a full understanding of it. This idea underpins most modern technology:

JavaScript, like many other high-level languages, presents an abstraction that enables us not
to have to worry about the details of how a computer operates. We can, for example, ignore
the problem of memory allocation. Even though we must be sensitive to the constraints of
hardware, especially on mobile devices, we'll rarely ever think about it. The language
doesn't require us to.

The browser, too, is a famous abstraction. It provides a GUI that abstracts away, among
many other things, the details of HTTP communication and HTML rendering. Users can
easily browse the internet without ever having to worry about these mechanisms.

In the following chapters of this book, we'll learn more about what it takes to craft a good
abstraction. For now, it's enough to say this: in every line of code you write, you are using,
creating, and communicating abstractions.

Setting the Scene Chapter 1

[20]

The tower of abstraction
The tower of abstraction is a way of looking at the complexity of technology. At the base
layer, we have the hardware mechanisms depended upon in computation, such as
transistors in the CPU and memory cells in RAM. Above that, we have integrated circuits.
Above that, you have machine code, assembly, and the operating system. And above that,
several layers up, you have the browser, and its JavaScript runtime. Each layer abstracts
away complexity so that the layer above can leverage that complexity without too much
effort:

When we write JavaScript for the browser, we are already operating on a very tall tower of
abstraction. The higher this tower gets, the more precariously it operates. We are dependent
on every individual part working as expected. It's a fragile system.

The tower of abstraction is a useful analogy when thinking about our users as well. When
we write code, we are adding to this tower, building upon it layer by layer. Our users will
always be situated above us on this tower, using the machinery we've crafted to drive their
own ends. These users may be other programmers that utilize our code, building yet more
layers of abstraction into the system. Alternatively, our users may be the end users of the
software, typically sitting atop the tower and leveraging its vast complexity by a simplified
GUI.

Setting the Scene Chapter 1

[21]

The layers of clean code
In the next part of the book, we will take the foundational concepts we've talked about in
this chapter and build atop them with our own abstractions; these abstractions are the ones
we, in the software industry, use to talk about what it means to write clean code.

If we say that our software is reliable or usable, then we are employing abstract concepts.
And these concepts must be delved into. We will also be unpicking the innards of
JavaScript in later chapters, seeing what it means to deal with the individual pieces of
syntax that power our programs. By the end of the book, we should be able to say that we
have complete knowledge of multiple layers of clean code, from individually readable lines
of code to well-designed and reliable architectures.

Summary
In this chapter, we have built ourselves a great foundation, exploring the very
fundamentals that underpin all of the code we write. We have discussed how our code is an
expression of intent, and how, in order to build that intent, we must have a sound
understanding of what the user requires and the problem domain we are engaging in. We
have also explored how we can write code that is clear and readable to humans, and how
we can create clear abstractions that provide users with the ability to leverage complexity.

In the next chapter, we will build on this foundation with the specific tenets of clean code:
reliability, efficiency, maintainability, and usability. These tenets will be lending us a vital
perspective as we go on to study the many facets of JavaScript and how we can wield it in
the service of clean code.

2
The Tenets of Clean Code

In the last chapter, we discussed the purpose that sits at the very beginning of a piece of
code: solving a problem for a user. We discussed the difficulties of catering to both the
machine and the human. We reminded ourselves that, at its core, writing code is about
communicating intent.

In this chapter, we will derive four core tenets from those foundations that are necessary to
think about when creating software. These tenets are reliability, efficiency, maintainability,
and usability. A good piece of software can be said to have all of these qualities. A bad
piece of software can be said to have none of them. Crucially, however, these tenets are not
rules. Instead, it is useful to see them as lenses through which you can look at your code.
For each tenet, we will discover why it is important through a mix of analogies and
JavaScript examples. You should come away from this chapter with an ability to apply
these tenets to your code.

Specifically, we will be covering the following tenets:

Reliability
Efficiency
Maintainability
Usability

Reliability
Reliability is the core underpinning of a good software system. Without reliability, the
usefulness of technology quickly dissipates, leaving us in a position where we may have
been better going without it. Technology's entire purpose can be undermined by
unreliability.

The Tenets of Clean Code Chapter 2

[23]

Reliability, however, is not only a characteristic of large and complex software systems.
Each and every line of code can be constructed to be either unreliable or reliable. But what
do we mean by this? Reliability, the word, refers to the quality of being reliable. What does
it mean to write code that people can rely on? It helps by defining reliability in terms of
three distinct qualities: Reliability is the quality of being correct, stable, and resilient.

Correctness
Code that is correct is code which conforms to a set of expectations and requirements. If I
write a function to validate email addresses, then the expectation is that the function can be
called with all types of email addresses and correctly establish their validity or invalidity as
follows:

isValidEmail('someone@example.org'); // => true
isValidEmail('foo+bar_baz@example.org'); // => true
isValidEmail('john@thecompany.$$$'); // => false
isValidEmail('this is not an email'); // => false

To write correct code, we must first have an idea of what the requirements are.
Requirements are our formalized expectations for how the code will behave. For the
previous case of an email validation function, we might have the following requirements:

The function will return true when a valid email address is passed as the first
argument
The function will otherwise return false

The first requirement is ambiguous though. We need to discern what it means for an email
address to even be valid. Email addresses are a seemingly simple format; however, there
are in fact many edge cases and oddly valid manifestations. For example, the following
email addresses are technically valid according to the RFC 5322 specification:

admin@mailserver1

example@s.example

john..doe@example.org

The Tenets of Clean Code Chapter 2

[24]

To know whether our function should align fully with the RFC specification, we first need
to understand its true use case. Is it a utility for email client software, or is it perhaps
utilized in user registration for a social media website? In the latter case, we may want to
establish the more exotic email addresses as invalid, similar to those listed previously. We
may even want to ping the mail server at the domain to confirm its existence. The point is
to discern what exact requirements will provide for us the meaning of correct.

Incidentally, composing your own email validation function is very ill-
advised, as there are many edge cases that need to be taken into account.
This highlights an important consideration in our quest for reliability;
often, we can achieve the highest level of reliability by using existing tried-
and-tested open source libraries and utilities. In Chapter 17, Other Peoples'
Code, we discuss the process of selecting third-party code in detail, and
what to look out for.

The requirements we are coding should always derive directly from how our code will be
used. It is vital to start with the user and their problem; from that, we can establish a set of
clear requirements that can be independently tested. Testing our code is necessary so that
we can confirm, to ourselves and our stakeholders, that our code fulfills all of the distinct
requirements.

With the previous example of email address validation, a good set of tests would
encompass many variations of email addresses, ensuring that all edge cases are fully
accounted for. In Chapter 13, The Landscape of Testing, we discuss testing in far more detail.
For now, however, it's sufficient to simply reflect on the importance of correctness and the
ways in which we can establish and confirm it:

Understand the problem being solved and what users want
Refine your requirements until it's explicitly clear what's required
Test your code to verify its correctness

The Tenets of Clean Code Chapter 2

[25]

Stability
Stability is a characteristic that we desire in all technology. Without stability, things get
precarious; we become unsure of whether things will break at any moment. Stability is best
exemplified by a common piece of real-world technology. Compare these two bridges:

[Photos from Unsplash / by Zach Lezniewicz / by Jacalyn Beales]

They both technically operate correctly as bridges. However, one has previously suffered
damage and has been fixed with a simple plank of wood. Which bridge would you trust to
safely convey a hundred people across? Probably the one on the right. It is firmly in place
with guard rails, and, crucially, no gaps through which you can fall.

In code, we can say that stability is about the continued correct behavior given different valid
inputs and situations. JavaScript in the browser is especially liable to failures in this way. It
has to run in a multitude of conditions, on different hardware, operating systems, screen
sizes, and often in browsers that have varying capabilities.

The Tenets of Clean Code Chapter 2

[26]

If we write code that is strongly dependent on certain conditions, then it may be unwieldy
and undependable when those conditions do not exist. If, for example, we were designing
and implementing a layout for a web application, we may forget to consider and cater for
screen sizes less than 1,024 pixels wide, resulting in the following mess:

This is an example of instability. The web application cannot be depended upon to deliver
its correct behavior when a certain environmental factor is different. A situation in which
screen size is less than 1,024 pixels is entirely possible and reasonable in a world of
increasing mobile device usage; it's an absolutely valid use case of our web application and
failure to accommodate it has a negative effect on our user's ability to rely on it.

Stability is gained through having a full understanding of all the different valid inputs and
situations that your code may be exposed to. Similar to correctness, stability is best
confirmed with a set of tests that expose your code to the full gamut of inputs and
situations.

Resilience
Resilience is about avoiding failure. Where stability mostly concerns itself with expected
inputs, resilience concerns itself with what happens when your code is exposed to
unexpected or nonroutine inputs. Resilience in software systems is also known as fault
tolerance and is sometimes spoken about in terms of redundancies or contingencies.
Fundamentally, these are all in service of the same goal—to minimize the effects of failure.

The Tenets of Clean Code Chapter 2

[27]

For critical systems, where lives depend on ongoing functionality, various contingencies are
often built into the system. If a failure or fault arises, the system can isolate and tolerate that
failure by utilizing its contingencies.

NASA, when building flight control systems for the Space Shuttle, built resilience into the
system by having a set of synchronized redundant machines. If one failed, due to an
unforeseen circumstance or a bug, then another would take over. Back on earth, we build
contingency into our hospitals, with backup power generators that'll activate immediately
if the electricity grid is down. Similarly, some urban transport networks benefit from
contingencies in the form of replacement bus services in the case of trains not operating.

These large and complex systems may seem light years away from the world of JavaScript.
But often, without realizing it, we are also routinely thinking about and implementing
resilience into our code bases. One way we do this is via graceful degradation. When we
write JavaScript for a browser environment, we have some key expectations:

That the JavaScript will be correctly delivered via HTTP
That the version of JavaScript is supported by the browser
That JavaScript is not blocked by an ad-blocker or another add-on
That the browser has not generally disabled JavaScript

If any of these conditions do not hold up, then the user might be faced with an entirely
unusable website or web application. The way to alleviate these concerns is to build with
graceful degradation in mind. Graceful degradation involves aspects of your application
degrading to a state in which they can still be used, remaining useful to the user even in the
face of unexpected failures.

Graceful degradation is often illustrated with a simple escalator:

[Photo via Unsplash, taken by Teemu Laukkarinen]

The Tenets of Clean Code Chapter 2

[28]

An escalator, when functioning correctly, will convey people via a set of moving metallic
steps driven by a powerful gear system and motor. If the system fails for whatever reason,
then the escalator remains static, acting as a regular flight of stairs. So, the escalators can be
said to be resilient because, even when unexpected failures occur, they remain usable.
Users can still convey themselves up and down the escalators, though, perhaps the journey
will take longer.

When writing JavaScript, we can build resilience into our code by detecting features we are
relying upon and only employing them if they are available. For example, I might wish to
play MP3 audio to a user. To accomplish this, I will make use of the HTML5 Audio
element. Before doing this, however, I will detect whether the browser supports MP3 audio.
If it doesn't, I can notify the user and point them toward a transcript of the audio instead:

function detectAudioMP3Support() {
 const audio = document.createElement('audio');
 const canPlayMP3 = audio.canPlayType &&
 audio.canPlayType('audio/mpeg; codecs="mp3"')
 return canPlayMP3 === 'probably';
}

function playAudio() {
 if (detectAudioMP3Support()) {
 // Code to play the audio
 // ...
 } else {
 // Code to display link to transcript
 // ...
 }
}

The preceding code uses the HTMLMediaElement's canPlayType method to discern
support. We've abstracted this into a detectAudioMP3Support function, which we then
call to decide whether we'll go ahead and play the audio, or alternatively, display the
transcript of the audio. Displaying the transcript of the audio is a form of graceful
degradation as it still allows users to gain some utility from the audio without being able to
play it.

It's important to note that feature detection by itself is not graceful degradation. If I
detected MP3 support but then silently failed if it wasn't available, then that would not
achieve much. However, the activation of an alternative pathway for our users—in this
case, enabling the reading of the transcript—is a perfect example of graceful degradation
and resilience to failure.

The Tenets of Clean Code Chapter 2

[29]

There's something curious about building resilience into the software. By
thinking about and accommodating potential unexpected failure states,
we are, in effect, making those failure states expected. This makes our
software more stable and more usable. Over time, what we once had to be
resilient towards will now be an everyday part of our software's stability.

Resilience is a vital part of writing clean, reliable code. Fundamentally, we write code to
solve problems for users. If our code can tolerate and accommodate edge-cases, unforeseen
circumstances, and unexpected inputs, then it will fulfill this purpose more effectively.

Efficiency
We live in a world of scarcity. Resources are finite. In order to write the best possible code,
we need to take this scarcity into account. So, when designing and implementing our ideas,
we should be doing so with an eye toward efficiency.

In this section, we'll explore the different facets of efficiency and tie them into the world of
JavaScript through examples. Hopefully, you will come away with an appreciation for how
efficiency is not only about going fast but that it encompasses many indirect
effects, spanning the gamut from economy to ecology.

Time
One key scarcity that we are always aware of is time. Time is a vital resource that we
should seek to only spend with due consideration. In the world of programming, we
should seek to optimize the amount of time, or CPU cycles, spent on any given task. This is
to be accommodating to our end users, as they themselves have limited time, but also to be
prudent with limited and expensive hardware.

Given almost any function in JavaScript, there are ways for it to be written more efficiently
and less efficiently. Take, for example, this function, which removes duplicate strings
within an array:

function removeDuplicateStrings(array) {

 const outputArray = [];

 array.forEach((arrayItem, index) => {

 // Check if the same item exists ahead of where we are.
 // If it does, then don't add it to the output.

The Tenets of Clean Code Chapter 2

[30]

 if (array.indexOf(arrayItem, index + 1) === -1) {
 outputArray.push(arrayItem);
 }

 });

 return outputArray;
}

This code is reliable, fulfills the requirements, and, for most intents and purposes, is
perfectly fine. But it is doing needless work. On every iteration of the array, it is reiterating
the entire array, from the current index to discover whether duplicate values exist ahead of
where it is currently. This may seem a somewhat intuitive approach, but it is wasteful.

Instead of checking ahead of the entire input array, we can instead just check the existing
output array for the specific value. If the output array already contains the value, then we
know we don't need to add it again. Here is our slightly optimized if condition:

// Check if the same item exists already in the output array.
// If it doesn't, then we can add it:
if (outputArray.indexOf(arrayItem) === -1) {
 outputArray.push(arrayItem);
}

There are other ways to optimize this, depending on how many unique values there are,
and how large the input array is. We could, for example, store found values as keys in an
object (a HashMap approach), which would, in some scenarios, decrease the lookup time.

Be wary of making micro-optimizations to your code. They may not
always be worth the cost. Instead, first measure your code's performance,
then work on the real performance bottlenecks that exist.

Spending too long on a task can end up having a significant effect on the user's ability to
perform their tasks. Later in the chapter, we will discuss the tenet of usability, but, for now,
it's just important to note that efficiency with time is not only important on principle; it's
important because, at scale, these often tiny efforts of efficiency can have massively positive
effects on usability.

The Tenets of Clean Code Chapter 2

[31]

Space
Space is a type of scarcity and is concerned with the size of things. Data shuttles across
networks and into machines where it is stored ephemerally in RAM and possibly saved to
permanent storage in the form of hard or solid-state-drives (HDDs, SSDs). As proponents
of efficiency, we are interested in only using the space necessary to do a given task, and
part of this is using the available space in the most efficient manner, and only moving data
when it is prudent to do so.

Due to the high-level nature of the JavaScript language and the applications it usually
builds, we rarely have to think about ephemeral RAM usage or permanent storage.
However, JavaScript has gained significant ground as a legitimate language in
performance-sensitive environments, such as database infrastructure and HTTP
middleware, so these concerns are far more relevant nowadays.

Furthermore, the demands of client-side applications, both in the browser and within
native environments, has drastically increased. The complexity of these applications means
that we must always be on our toes, thinking about how to optimize memory and
bandwidth usage on servers, user devices, and across increasingly layered networks. The
bandwidth we absorb in a web application will have a direct effect on the time the user has
to wait for the application to become usable.

Time to first render is a common metric that we are interested in when
developing frontend of web applications. This can be optimized by being
prudent with large resources and not blocking the initial load time with
unnecessary resources.

Time and space efficiency are inextricably linked with both directly affecting the other. The
overarching theme of efficiency is about only doing what's necessary, avoiding waste, and
being thrifty with the resources you have available.

Efficiency's effects
Efficiency in terms of space and time is responsible for many other effects, both in the
software itself and in the wider world. No optimization exists in isolation. The savings
made in one area will always have knock-on effects in other areas. And likewise, any
needless costs will often create bottlenecks and issues further down the line.

The Tenets of Clean Code Chapter 2

[32]

There are too many of these effects to list, but some of the most obvious ones in the world
of software would include the following:

The ecological effects of power consumption (for example, climate change)
Cognitive burden of having to use slow software (for example, distraction and
annoyance)
The battery life of the user's devices and therefore what tasks they choose to
prioritize

It's essential to always consider the knock-on effects of the choices we make, whether those
are made in the service of efficiency or some other requirement. None of what we create
exists in a vacuum.

Maintainability
Maintainability is the ease with which appropriate changes can be made to your code.
Unlike a motor vehicle, code does not typically need routine maintenance to avoid things
such as rust, but it does, nonetheless, need to be fixed from time to time. Changes to its
functionality are also often required, especially when under active development. Much of
the code we work on is also being actively worked on by others. This shared ownership
relies heavily on the tenet of maintainability.

Making code maintainable should not be a sidelined priority. It is as vital as any other
requirement that the code is fulfilling. In the first chapter, we spoke a lot about the
importance of considering who your users are. It would be disingenuous not to see that
those who maintain and make changes to our code are also our users. They wish to wield
what we have created to fulfill a purpose; therefore, they are our users. And, as such, we
need to think about how we can best cater to their needs.

In this next section, we'll explore two aspects of maintainability: adaptability and
familiarity.

The Tenets of Clean Code Chapter 2

[33]

Adaptability
Arguably, the best type of maintenance is that which does not need to occur. Adaptability
refers to the ability of your code to cater to and adapt to different needs and environments.
The code cannot be infinitely adaptive. The very nature of code is that it is made for a
specific purpose; to solve a specific problem for the user. We can and should provide a level
of configuration in our code, allowing for varying needs, but we cannot foresee all
possibilities. Eventually, someone with new requirements may need to come along and
make changes to the underlying code.

If we were to create a JavaScript component that displays a carousel of images (a
slideshow), it's obvious to imagine that users will want to configure the specific images
displayed. We may, for example, also have a configuration option for enabling or disabling
the fade-in or fade-out behavior of the carousel. Our complete set of configuration options
may look like this:

(Array) images: The image URLs you wish to display in the carousel
(Boolean) fadeEffectEnabled: Whether to fade between images
(Number) imageTimeout: The number of milliseconds a single image will
display for
(Boolean) cycleEnabled: Whether to keep repeating the slideshow

These configuration options define the extent to which our component is adaptable. It can
be used in a variety of different ways by wielding these options. If a user wants it to behave
in a way that is not made possible by these options, then they may wish to change its
behavior by modifying the underlying code.

When changes need to be made to the underlying code, it is important that they can be
made with as little trouble as possible. Two harmful characteristics that might cause trouble
are fragility and rigidity:

Fragility is the characteristic of being brittle whenever changes are attempted. If
one area of code is changed to make a bug fix or add a feature, and it affects
several seemingly unrelated things in a different part of the code base, then we
can say the code is fragile.
Rigidity is the characteristic of failing to accommodate change easily. If one
behavior needs to be changed, ideally, we should only have to make that change
in one place. But if we have to rewrite code all over the place just to accomplish
that one change, then we can say the code is rigid.

The Tenets of Clean Code Chapter 2

[34]

Fragility and rigidity are usually symptoms of larger code bases, where there are many
interdependencies between modules. This is why we say that modularity is so important.
Modularity refers to the separation of concerns into distinct areas of code in a way that
reduces intertwining code paths.

There are various principles and design patterns we can use to accomplish
modularity. These are discussed in Chapter 4, SOLID and Other
Principles, and, with more code examples, in Chapter 11, Design Patterns.
Even at this early stage, it is useful to ask yourself: in what ways can I
accomplish modularity?

Working to avoid fragility and rigidity is a good goal and will make our code more
accommodating to changes, but the most crucial aspect of a code base for a maintainer is its
comprehensibility. That is, the extent to which it can be understood. Without
understanding what, the maintainer cannot even begin to make changes. In fact, in obscure
and confusing code bases, it is sometimes impossible to discern whether changes are even
required. This is why we will now be exploring familiarity as an aspect of maintainability.
By utilising familiar conventions and intuitive patterns, we can help to ensure a high level
of understanding among our maintainers.

Familiarity
Familiarity is a lovely feeling. It's a feeling of comfort where you know what's happening
because you've seen it before. This is the feeling we should hope to instill in all maintainers
that may come across our code.

Imagine for a moment that you are a skilled mechanic. You open the hood of an old car.
You expect all of the various components to be visible in their respective places. You are
adept at recognizing specific components, and, even without having to move things about,
you can see how components are linked together.

The Tenets of Clean Code Chapter 2

[35]

Some minor modifications have been made; maybe the owner has previously installed a
turbocharged engine or modified the gear ratios, but overall, you see that everything is
more or less where it should be. For you, the mechanic, making changes is going to be nice
and simple:

[Unsplash image (Public Domain) by Hosea Georgeson]

In this example, everything under the hood is in its expected and designated location. Even
though cars vary in many ways, their underlying functionality is the same, and so it makes
sense that the layout and design are familiar to the mechanic.

When we think about it, software is not so dissimilar. Most software we end up creating is
similar to other software in many ways. Most web applications, for example, will have a
way for users to register, to login, and change their name. Most software, regardless of the
problem domain, will have the concept of creation, read, update, and delete (CRUD).
These make up the famous verbs of persistent storage. Most software can be thought of as
fancy middleware sitting atop persistent storage. So, even though we may consider all
software applications to be quite different, their fundamentals are usually very similar. It
should, therefore, not be so difficult for us to write code that caters to the mechanic who
opens the hood.

The Tenets of Clean Code Chapter 2

[36]

To make the mechanic's work as simple as possible, we need to focus foremost on the
familiarity of our code. It's not simple to do this because different things are familiar to
different people, but, on the whole, we can take heed from the following guides:

Don't stray too far from common design patterns
Be consistent with syntax and presentation
Lend clarity to unfamiliar problem domains

The last point alludes to unfamiliar problem domains. This is something that you, as the
programmer, will have to think about when it comes to each code base you work on. To
discern if something can be considered unfamiliar, you can ask yourself: Would another
programmer working within another industry be able to understand this with little introduction?

Usability
While maintainability is predominantly about catering to other programmers, usability is
about catering to all users, whoever they may be. We can say that there are two broad
groups of users that are engaged in our service:

People wishing to wield the power of our code via interfaces (GUIs, APIs, and so
on)
People wishing to make changes to our code to accomplish new tasks or fix bugs

Usability is about making our code, and the functions and interactions it enables, as useful
and easy to use as possible for the full gamut of users. All code is written with at least one
use case in mind, and so it is fair to judge code based on the extent to which it fulfills that
purpose. Usability, however, goes further than this. Usability is not only about fulfillment
of user requirements; it's about creating experiences that enable a user to achieve their goals
with minimal hassle, time, and cognitive effort.

Usability is vital whether we are creating user interfaces on the web or deeply embedded
server infrastructure that'll rarely see the light of day. In both cases, there are users we are
providing for, and so we must care about usability.

The Tenets of Clean Code Chapter 2

[37]

Have a look at this function's signature and try to discern how you would go about using it:

function checkIsNewYear(
 configuration,
 filter,
 formatter,
 MDY,
 SMH
) {...}

This function is a real function signature from a code base I once worked on. It had no
documentation and the code within it was spaghetti. It was used to calculate whether a
given time could be considered a new year and would decide when a Happy New
Year message would be shown to a user. It's incredibly unclear how to use it though, or
how it works. Some open questions I would have upon discovering this function might be
as follows:

What is configuration and what is available to configure in such a simple
function?
Presumably, SMH is seconds, minutes, and hours, but what kind of value is it
expected to be? An object?
Presumably, MDY is months, days, and years, but what kind of value is it expected
to be? An object?
What year does the function compare the passed date for when discerning
whether it is a new year?
Would any date in the ostensible new year work or only, for example, January 1?
Why are there filter and formatter arguments and what do they do? Are they
optional?
What does the function return? A Boolean? The formatter argument would
suggest not.
Why can't I just pass a date object instead of individual date components?

The function may do as required, but, as you can see, it's not very usable. It takes significant
time and cognitive effort to figure out how it works. To figure it out fully, we'd have to
study its usages in other parts of the code and try to decipher the spaghetti within. As a
user of this function, I would personally find the entire process utterly painful.

Usability is, if anything, about avoiding this pain and burden. As programmers, we engage
in the creation of abstractions to simplify complex tasks, but all the preceding code achieves
is further complication of a simple problem.

The Tenets of Clean Code Chapter 2

[38]

User stories
Usability is the degree to which something is easy to use for a given purpose. Its purpose is
defined by a well-understood model of a problem and a set of clear requirements. A useful
technique for articulating these purposes is via user stories, made famous by Scrum and
Agile methodologies. User stories typically take the following form:

As a {persona}, I want to {want}, so that {purpose}...

Here are some examples of the types of user stories you'd expect if we were designing a
Contacts application:

As a user, I want to add a new contact so that I can later recall that contact from
my contacts list.
As a user, I want to delete a contact so that I will no longer see that contact in
my contacts list.
As a user, I want to easily find a contact by their surname so that I can contact
them.

User stories help to define the purposes that you are catering towards and help to focus the
mind on the perspective of the user. Whether you're creating a five-line function or a ten-
thousand-line system, it's always worth planning out your user stories.

Intuitive design
To design something intuitively is to design it so that users don't have to dedicate cognitive
effort to figure out how something works. The idea at the core of intuitive design is that it
just works.

When we write code, we are partaking in its design, its grand architecture, its functionality,
and its line-by-line syntax. All of these are vital parts of that design. Using intuitive
patterns of design is vital to crafting usable code. All users are attuned to a set of patterns
that are employed on their level of abstraction. Here are some examples:

In a GUI: Using an X button to indicate exiting a program or process
In code: A function or method starting with is indicates a Boolean return value
In a GUI: Using green for affirmative actions and red for negative actions
In code: Upper-casing constants, for example, VARIABLE_NAME
In a GUI: Using a floppy disk icon to indicate the concept of saving

The Tenets of Clean Code Chapter 2

[39]

These are the assumptions and expectations that many users carry around with them as
they navigate software. Tapping into these assumptions means that your code and the
interactions it facilitates can be monumentally easier to use.

Accessibility
Accessibility is a key principle within usability that states the importance of catering to all
users, regardless of their abilities and circumstances. Usability tends to concern itself with
the user as if they are a single entity. We usually make specific assumptions about the user,
bestowing them with a set of characteristics and capabilities that may not be reflected in
reality. Accessibility, however, is about the real users who will end up having to use
whatever you've created. These real users are a diverse set of individuals and may have all
manner of differences. When we talk about accessibility in software, we are usually
concerned with types of differences that directly affect a person's ability to make use of that
software. These may include the follows:

Learning disorders or differences such as dyslexia.
Physical disabilities. For example, limited mobility of the hands or blindness.
Developmental disorders such as Autism and ADHD.
Less access to technology due to mobility, economy, or infrastructure.

In addition to these, there are many other differences that span the gamut of human
existence, so we should always be ready to learn and adapt according to new needs and
differences that we encounter among our users.

We are engaged in the creation of web applications, both on the server and in the browser.
As JavaScript programmers, we sit very close to the interfaces that are served to end users.
Therefore, it's vital that we have an excellent grasp of accessibility on the web. This includes
an awareness of the Web Content Accessibility Guidelines (WCAG 2.0) published by the
W3C, which include the following provisions:

Provide text alternatives for any non-text content (guideline 1.1)
Make all functionality available from a keyboard (guideline 2.1)
Make text content readable and understandable (guideline 3.1)

The Tenets of Clean Code Chapter 2

[40]

Accessibility is not only about the non-programmer end user. As mentioned, we should
consider other programmers to also be our users in the same sense as the end users of GUIs
or other web interfaces. It is vital that we cater to other programmers. Some programmers
are blind or partially sighted. Some programmers have learning or cognitive difficulties.
Not all programmers work on the latest and fastest hardware. Neither do all programmers
understand all the things you may take for granted. It's important to take all of these things
into consideration in the code we write.

Having now finished this chapter, you may have a sense of feeling overwhelmed by the
number of tenets, principles, and guidelines. Things may seem complex, but they aren't if
we follow one simple rule—always focus on the user. Also, remember that other
programmers who may work on your code are your users as well.

As programmers, we sit in a position where we wield unprecedented power in helping to
define the behaviors that people conduct in the execution of all manner of tasks. The
original programmers who worked at Twitter, Google, or Microsoft likely did not foresee
the number of times their code would run. They probably couldn't have originally
imagined how many humans their code would end up affecting. We should always remain
humble to this power and try in earnest to be accountable to all of the users we serve, and
all the myriad tasks they seek to carry out. If you were to come away with one thing from
this chapter, I hope it would be simply this: a humble and continued consideration of the
user, in every line of code you write.

Summary
In this chapter, we've explored the vital tenets of reliability, efficiency, maintainability, and
usability. Using these tenets as lenses through which we can look at our code bases ensures
that we will be far more likely to write cleaner code. One of the most important things
we've learned in this chapter is always to consider the human in the code we write. The
user may be a human sitting on the other side of a GUI or a fellow programmer making use
of our APIs. Either way, being constantly aware of this human is vital.

In the next chapter, we'll continue the theme of studying the underlying characteristics of
clean code by looking at the enemies to be aware of, such as cargo-cult programming and
ego.

3
The Enemies of Clean Code

By now, we should have a pretty clear picture of what we mean when we say clean code. In
the previous chapter, we explored the tenets of reliability, efficiency, maintainability, and
usability. Together, these guide us toward cleaner code, but if we aren't careful, we can still
get caught out. In this chapter, we'll explore the enemies of clean code: things that may
prevent us from writing code that is reliable, efficient, maintainable, or usable.

None of these enemies should be considered your enemies; instead, they should be thought
of as agitators of clean code. We need to take a holistic view of these potentially harmful
factors and keep an eye out for them in our code bases, teams, and workplaces.

Specifically, the enemies we'll be covering in this chapter include the following:

Enemy #1 – JavaScript
Enemy #2 – Management
Enemy #3 – Self
Enemy #4 – The cargo cult

Enemy #1 – JavaScript
The worst JavaScript feature is also arguably its best. It is a remarkably ubiquitous
language that has had to grow and adapt at a very fast rate. The language itself and its
position within browser have precipitated this ubiquity.

The Enemies of Clean Code Chapter 3

[42]

JavaScript is an incredibly expressive and diverse language, with functional inspiration
from Lisp and Scheme, prototypical inheritance from Self, and a C-like syntax that mirrors
Java. It is a language of many paradigms. Whether you want to program in a classically
object-oriented way, a prototypical way, or an entirely functional way, JavaScript has you
covered. JavaScript's flexibility and its position in the broader web stack also make it
incredibly accommodating to beginners. You can be immediately productive with it, and
this was very much Brendan Eich's original intention. It was intended to be easy to pick up
by designers and programmers alike, providing them with the power to script what was
once a single-purpose platform: the browser. The once humble browser, however, has since
grown into an incredibly broad and complex set of complementary abstractions.

The growth of JavaScript itself and its broad set of applications on both the client and
server-side (and beyond!) has meant that the language has been pushed and pulled in a
thousand different directions. An overwhelming number of frameworks, libraries, spin-off
languages (for example, CoffeeScript), language extensions (for example, JSX), compilers,
build tools, and other abstractions have erupted and have sought to leverage JavaScript in
new and unique ways. Together, these tools form the JavaScript landscape, and it is an
incredibly rich and diverse one. There are countless ways to do the same thing and, as a
result, we can barely hope to do anything correctly. That is why I say that JavaScript's
ubiquity is both its own worst enemy and its own greatest asset.

In this book, we'll explore foundational concepts that'll teach us to think critically about the
nature of clean code and will allow us to write clean code within a language and landscape
that don't always cater well code cleanness. JavaScript, if wielded well, will surprise you
with its efficacy and expressiveness, and given time and effort, it can be the equal of any
other language in terms of its reliability and maintainability.

Enemy #2 – management
Clean code is as much about the processes and principles that foster it as it is about
syntax. No matter how perfect and beautiful our code is in isolation, it is usually written as
part of a project, alongside a team, and managed by fallible people and fallible processes.
And only by seeing and understanding these fallibilities can we hope to prevent or avoid
them.

The Enemies of Clean Code Chapter 3

[43]

We are all taking on more challenging work nowadays. The days of JavaScript being
limited to humble brochure websites with snazzy navigation rollovers are long gone. The
creators of the web have been tasked with building ever more ambitious projects. As the
technological tower of abstraction grows to new heights, the complexity of these projects
will only increase. Due to this, if we are to truly write clean code, we must think broadly
about this complexity. We must go beyond our code bases and consider the context of the
team and the organization that we work in.

Casting management as an enemy may appear to suggest that managers themselves are
blameworthy, but this is not the case. What we'll discover in this section is that it is
individual cultural practices that make it challenging to ship clean code. Among these is the
pressure to ship, bad metrics, and a lack of ownership.

Pressure to ship
The pressure to ship code, usually because of a deadline or other managerial dictates, is an
ever-present and nasty force in the world of software. To the outside stakeholder or
manager, a deadline is a great thing; it seems to provide certainty and accountability, but to
the people working on the project, it might only be seen as enforcing unwelcome
compromises. Sometimes, the first compromise that's made is that of code quality. This
does not happen intentionally but is just a natural result of prioritizing completion over
quality.

A stakeholder, in this context, is any individual or organization that relies
on the output of your work. Usual stakeholders include project managers,
other teams within the same organization, outside clients, and users.

When there are pressures to ship, there are a few ways in which code quality can slowly
atrophy. These include the following:

Documentation: Developers, when rushed, will not be able to take the necessary
time to ensure their code and its APIs are correctly documented. Existing
documentation will atrophy.
Architecture: Developers will begin to focus on the most necessary changes they
need to make, ignoring the larger architectural structure of the code and how it
all inter-relates. Dependencies will become confused and architectures will
splinter over time, eventually creating spaghetti code.

The Enemies of Clean Code Chapter 3

[44]

Consistency: Both architecturally and in terms of syntax, consistency will begin
to suffer. Multiple different developers, possibly siloed away from each other, are
rushed to build things in the fastest possible way. Without intending to, they
may neglect communication and the establishment of standards, leading to less
consistency.
Testing: Writing tests often takes time, as does refactoring tests to suit new
requirements. Existing tests are liable to be disabled or deleted. New tests won't
be written because there simply isn't time.
Best practices: When their time is stretched, developers will begin to take
shortcuts in their code, not taking the care and attention that's required to make
sure their software is suited for its purpose. They'll skirt best practices and
instead opt for speedy and hacked-together solutions. On the web, this can often
result in a less accessible and usable UI.

The preceding items are the first to go when deadlines begin to loom. If we're not careful,
we can end up with the following second-order effects:

Bugginess: With testing and documentation absent, and the code's architectural
foundations under threat, flaky and buggy code will begin to become the norm.
Many of these bugs may be caught in the Q&A process, but many others will
surface to users. The fragility of the code and its APIs and UIs will increase,
putting an increased burden on users.
Unhappy users: Due to the increase in the number of bugs that surface to users
and the software's decreased level of usability, their level of productivity and
happiness will decrease. They may begin to avoid or abandon the platform in
search of a higher-quality alternative.
Burned-out developers: Tired developers, having had to forgo their best
principles continually, will begin to become burned out. They may become
depressed at the prospect of continuing their work on the team. With their
mental health and general fulfillment under threat, they will start to leave.

The Enemies of Clean Code Chapter 3

[45]

All of these effects, when they last long enough, can coalesce and result in the failure of a
project. Therefore, it is of vital importance to address the underlying pressure that is forcing
such recklessly high speed. The pressure to ship code quickly is a pressure that's usually
instigated by forces that do not have a strong working knowledge of the slow degeneration
that can occur in software projects. This lack of knowledge may, in part, be due to them
being insulated from the long-term effects of their decisions. They may assume that, when
something is shipped and meets the stakeholders' approval, that's the end of it. But as we
know, just because quickly shipped code meets immediate demands doesn't mean it abides
by good levels of quality. Bad-quality code can have many adverse knock-on effects that are
only realized in full many weeks or months after implementation. Months later,
stakeholders may find themselves annoyed at the slowdown and degradation in quality,
not realizing that it was the pressure they originally applied that led to it.

The solution to this mess lies in a crucial compromise between time to ship and technical debt.
Technical debt accrues over time. It describes deficits that need to be addressed to keep the
code base healthy and in good working order. This may include fixing bugs, writing tests,
refactoring old modules, or integrating tools to improve code quality. Fundamentally,
technical debt is all work that, ideally, would be part of the natural development cycle but,
because of time constraints, it is pushed aside until later. There are other factors that dictate
the proliferation of technical debt, but time is the biggest one. Not paying off our technical
debt is a sure way to ensure code atrophy and eventual failure of the project.

There are countless pieces of advice and processes that you can utilize when it comes to
project management. I won't be going into them here, but I will share some heuristics that
you can use to ensure a healthy code base:

Do not ship a feature or fix without tests. Without tests, a regression could
occur at any time. Tests are a defensive technique to ensure the correctness of our
code on a continued basis.
Pay off technical debt frequently. Possibly once a week, or twice a month, try to
have everyone work on technical debt, that is, any work that's believed to
increase the health of the code base.
Communicate regularly with stakeholders to express constraints and costs
related to code and project health. Do not over-promise shipment or under-sell
problems.

We, as developers, are not always in control of the way that projects are managed.
Nonetheless, we should always feel comfortable broaching concerns and advocating for
processes that foster clean code. Chapter 18, Communication and Advocacy, goes into more
detail on how we can go about this.

The Enemies of Clean Code Chapter 3

[46]

Bad metrics
There are seemingly no industries in the world that can escape metrics. The crazed
obsession with measuring things is as much a cult-like obsession as it is a genuine need that
produces necessary introspection and change. In the world of software engineering, we are
not strangers to this need. As programmers, we are very interested in metrics that provide
us with insights into our code:

How many bugs are there?
How long does this code take to run?
How much test coverage do I have?

Managers and other stakeholders, however, will usually harbor their own interests and
metrics. The more infamous among these are the metrics that attempt to measure a
developer's output or productivity:

How many lines of code or commits are there?
How many features did we ship?
How many lines of documentation did we write?

These are good questions if they're asked for the right reasons. For example, lines of code
can be a useful metric if we're using them as a proxy for complexity when discussing
whether to refactor specific classes/utilities. But many metrics are entirely divorced from
the thing they are attempting to measure.

A non-technical manager or stakeholder may assume that writing a certain amount of code
should always take the same amount of time. They may be confused when a developer who
once wrote 200 lines of code in a single day has recently taken 10 days to commit only 10
lines of code. Their confusion, of course, demonstrates a gross misunderstanding of the
programming process and its chaotic complexity. But these misunderstandings are rife, so
we need to be wary of them.

The clear solution to bad metrics is to push for and create better metrics. And to create good
metrics, it is essential to know what underlying question we're trying to answer and then
brainstorm ways of answering that question. Let's take a look at an example:

The question The bad
metric Example of why it's bad A better metric or approach

Are we being
productive?

Lines of
code/commits

A programmer could reasonably take
many days to solve a crucial bug that
only requires a one-line change.

Ask developers and explore what is dragging their productivity down;
have team retrospectives to discover areas of improvement.

Are we
delivering
value to users?

Number of
features
shipped

Users may receive more benefit from
fewer features that are of high
quality.

Build metrics or A/B experiments to judge which features are being
used and enjoyed. Focus on the quality of each feature.

The Enemies of Clean Code Chapter 3

[47]

Are we writing
useful
documentation?

Lines of
documentation

Developers may only end up
documenting the things they know
well, not the areas of the code base
that are most in need of
documentation.

Create a metric that tracks the usage of documentation. Discern what
areas of code are under-documented by asking developers.

Do we have a
well-tested
code base?

Test coverage

If it only measures whether certain
lines of code are called, then it could
be fooled with only a handful of very
broad integration tests.

Use traditional test coverage in combination with other metrics. Keep
track of areas of regression where bugs often occur.

Do we have a
buggy code
base?

Number of
bugs

A code base may have many bugs in
an area of the app that is virtually
unused. Bugs in certain areas may be
unreported.

Don't count bugs; instead, focus on and measure user happiness and
developer happiness. Prioritize bugs based on how they are affecting
your users.

Fixation on bad metrics within an organization or team can lead to the wrong things being
optimized. Developers who are more concerned with writing more lines of code will be less
interested in the underlying quality of their code. Developers who are pushed to release
more features will compromise on best practices and clean code, optimizing for speed and
shipment.

It's important to ensure that any metrics we track are tempered by reality and that we do
not judge success based purely on those metrics. Be especially wary when you see metrics
running in opposition to our principles of clean code. Over time, as well, if a metric is
chased too ambitiously, it may end up corrupting the very thing it was trying to measure.
This is done via an effect known as Goodhart's law:

"When a measure becomes a target, it ceases to be a good measure."
 – Marilyn Strathern

Lack of ownership
Ownership is a key tenet of a healthy code base and relies on individuals having a stake in
the health of their code. Ownership here doesn't mean that a piece of code belongs to an
individual and nobody else can work on it. Instead, it means that a piece of code is fostered
by an individual or a group of people, with its ongoing health and reliability a key priority.

A lack of ownership can lead to the key tenets of clean code suffering in the following
ways:

Reliability: The code's correctness and stability can atrophy over time as new
changes are made that unknowingly create fragility. The code's ongoing stability
is not monitored or cared for.
Efficiency: The code is not measured or observed directly by anyone, with an
underlying assumption that it just works. Over time, its efficiency may wane.

The Enemies of Clean Code Chapter 3

[48]

Maintainability: Having many non-owners making swift and ill-considered
changes can result in a non-cohesive architecture that makes ongoing
maintenance more difficult in the long run.
Usability: The documentation and general usability of the code will not be
thought about or monitored by anyone, leading to its atrophy and, eventually, a
piece of software that is complicated and burdensome to use.

Properly applied ownership can fundamentally change the otherwise burgeoning atrophy
of the preceding tenets:

Reliability: The code's correctness and ongoing stability will be cared for and
monitored
Efficiency: The code will be measured and assessed for efficiency on an ongoing
basis
Maintainability: The code will retain a singular vision for its architecture and
syntax
Usability: Documentation will be constantly updated and the code's usability
will be an ongoing concern

Fundamentally, ownership is about an individual or a team that has a level of ongoing
concern for the code. For this to occur, a level of ego or pride is necessary. An individual or
team must have some kind of stake in the ongoing health of the code. It is often the
organizational or managerial culture that leads to a healthy or unhealthy level of
ownership, and so, again, it is vital to properly communicate and advocate processes and
dynamics that will allow us, the programmers, to ensure our code's cleanliness and health.

There are also more severe and unimagined results of a lack of ownership. Due to the lack
of pride and feeling of guardianship over our work, burnout becomes more likely as
programmers aren't able to actualize their need to feel a sense of pride and self-worth
regarding their work. Due to no ownership, team members may not be able to foster a high
level of understanding in any one area, meaning that the general knowledge of the team or
organization suffers, with everyone only understanding the code base in a very shallow or
cursory way.

Beware of too much ego in ownership! Ego is a delicate trait. There is
always the risk of too much ownership, which can result in a stubborn and
defensive culture where insiders don't let outsiders make changes, and
where strong and self-centered opinions run rife. Beware of this.
Remember the key tenets of usability and maintainability. These will
guide you toward kindness and openness toward those who would wish
to use your code or make changes to it.

The Enemies of Clean Code Chapter 3

[49]

Enemy #3 – Self
Programmers, as creators, are forever impressing their version of how something should be
upon the world, so it's almost impossible to not, at times, feel a sense of pride over our
work. If not kept in check, this can easily spiral into a place where we are writing code to
impress people, and to boost feelings of our own superiority, without considering whether
the code we're writing is maintainable or usable. But if our natural ego is not allowed to
flourish, then we will have no pride in our work and no inclination to foster excellence in
what we do. As such, in programming, as in other areas of life, the key is a balance of ego
where we retain its good parts without letting its bad parts affect things too much.

Ego, in this context, is our selfhood; the ways in which we identify with
ourselves and how we express ourselves in the world. All programmers
have an ego and its effects on the code they write are numerous.

Showing off with syntax
As a younger programmer, I found my ego getting the better of me quite often. I don't
presume to say this is a general truth. This is only my experience. Whenever I discovered a
new JavaScript idiosyncrasy, I would try to exploit and make use of it in my next piece of
code.

One example of this is the use of bitwise operators for their flooring effects. Traditionally, to
floor numbers—to round a number down to its nearest whole number—you'd use the
native method provided by the language:

Math.floor(65.7); // => 65

However, at the time, I preferred using bitwise operators to achieve the same result:

~~65.7; // => 65
0|65.7; // => 65

The Enemies of Clean Code Chapter 3

[50]

What is happening here? Bitwise operators (including ~, &, |, and so on) are used to mutate
bits on operands, but as a side-effect, they will first convert their operands into 32-bit
integers. This means they'll throw away the decimal fraction. To harness this implicit
conversion into an integer without changing the value of the integer, we can perform, for
example, a double bitwise inversion using the double tilde (~~). This essentially inverts all
the bits of the operand and then inverts them again. We could also perform a bitwise OR
with a zero (0|...), which will always return the bits of the non-zero operand, thus
producing the same effect by harnessing the side-effect (the integer conversion) without
changing the underlying value.

Crucially, it's important to note that this side-effect does not functionally match the flooring
behavior of Math.floor for negative numbers. Note how the following two expressions
differ:

Math.floor(-25.6); // => 26
~~(-25.6); // => 25

It's easy to see what's alluring about these cryptic techniques. Their usage seems to suggest
a high level of language understanding, and that very much appeals to the ego. It's similar
to using needlessly long or complex words to convey simple ideas: fun to say but alienating
to the listener.

Techniques like this usually result in code that is less maintainable. The maintainers of our
code should not be expected to understand the inner workings of rarely used operators and
should be able to trust that we would not be recklessly employing side-effects of language
internals to achieve results that can clearly be achieved via more familiar and obvious
approaches.

Complex or rare syntax is often a vehicle for egotistic code. Another example of this lies in
the misuse of logical operators to specify control flow:

function showNotification(message) {
 hasUserEnabledNotifications() && (
 new Notification(message).show() &&
 logNotificationShown(message)
);
}

The Enemies of Clean Code Chapter 3

[51]

The preceding code can be more conventionally, and clearly, expressed as an IF statement:

function showNotification(message) {
 if (hasUserEnabledNotifications()) {
 new Notification(message).show();
 logNotificationShown(message);
 }
}

This is far clearer, more familiar, and more readable to a larger group of people.

Some people argue that we should be able to freely use the entire language to its full
capability, harnessing all its idiosyncrasies and side-effects to write code that is terser and
more efficient. This is a fine attitude to take if our only goal is to write code that works. But
writing clean code is about taking a considered approach, using techniques that allow us to
provide more readability and avoiding techniques that do the opposite.

It also helps to remember that, fundamentally, code is about communicating intent.
Communication is as much about the listener as it is about the speaker. Egotistic code tends
to fall short in this way; it limits the familiarity of your code to an elite few who have been
blessed with the same knowledge that you have. This is not ideal. We should always try to
take into account the diverse knowledge and capabilities of the people who will have to
read, use, and maintain our code. This concern should take precedence over our ego.

Stubborn opinions
Code is rarely written in isolation; we often work with people to bring projects to life. Clean
code, therefore, depends on both your approach and the approach of the entire team. A
team that owns a code base continuously decides the tools, conventions, and abstractions
that they'll use to achieve their goals. As such, members of the team must be able to
communicate well and share perspectives, molding these perspectives into a clear outcome.
Sometimes, compromise is necessary. And compromise can often hit the ego.

JavaScript and its tools are susceptible to strong opinions. Over time, we each gain
experience in working with different approaches and, often through toil and pain, end up
having a set of beliefs about which approaches we think are best. These beliefs may not
always match those of our colleagues, though. When there is disagreement, the path to
resolution is unclear. Without resolution, the team and the code base can splinter, causing
more damage.

The Enemies of Clean Code Chapter 3

[52]

Imagine the following scenario between Adam and Susan:

Adam: We should use the Foo testing framework; it's more reliable and simply better.
Susan: No, we should definitely use Baz; it's far superior and has a proven track record.

There are likely many different ways this disagreement could be resolved. We could
suggest, for example, that both individuals build their case and continue to debate the
various merits of each testing framework. That may resolve the issue. But equally, it may
not. The argument may persist, drawing a wedge between the individuals and leaving the
code base in a state of flux without a firmly chosen testing framework. The paths to
resolution are not always clear in cases like this, but what is clear is that resolution is less
likely if uncompromising egos are involved. If both Adam and Susan can start to see each
other's perspectives, broadening their view and un-entrenching themselves from their own
opinions, then the path to resolution becomes much clearer.

Imposter syndrome
Ego, as a delicate trait, is also responsible for our level of faith and belief in our own
capabilities and opinions. It is no wonder that having a level of belief in ourselves is vital to
the act of creation and problem-solving in programming. In the technology industry
especially, imposter syndrome seems to be a widespread occurrence. Imposter syndrome is
characterized by a feeling of being an imposter—that you are somehow not suitable or
sufficiently capable for the role you have, while you feel as though others around you are
far more capable.

It can be argued that its prevalence in the software industry is due to the inherent
complexity and wealth of specialties. We can, at best, hope for a high level of proficiency in
a relatively narrow area but will never be expertly knowledgeable in all areas. We are, as
we move about in our day-to-day work, ever aware of all the things we don't know, and
this can understandably create a level of anxiety and lack of confidence in our own humble
abilities. Such a feeling can sometimes cause stress, alienation, and a lack of confidence in
our own abilities.

The Enemies of Clean Code Chapter 3

[53]

This may yield the following negative outcomes:

Lack of decisiveness: A lack of belief in our own capabilities can result in low
levels of confidence when making a decision about our code's architecture; not
knowing which route to take can often mean the default route is taken, which is
especially liable to the cargo cults.
Lack of boldness: A lack of assertiveness may result in less risk-taking and fewer
bold decisions being made, but sometimes such decisions need to be made to
move a project or code base forward. For example, picking a more reliable UI or
testing framework can be a large and bold risk given the cost of refactoring, but
can lead to overall improvements in code health.
Lack of communication: Lacking confidence in our own opinions and skills can
result in less vital communication occurring, for example, between a programmer
and the stakeholders of a project. Communication here does not mean being
outgoing or talkative, but rather identifying key concerns and being sufficiently
confident in them to advocate change.

The act of programming is an act of communicating our intent, that is, of impressing upon
the world, maybe in a small way, the way we believe a thing should work. It is itself a bold
action and a skill that we should not take for granted. If you are reading this and are
concerned that you may lack specific traits or capabilities, I offer the following advice:
nobody on the planet is fully capable. Everyone has their strengths and weaknesses. It is the
diversity of everyone and their varying capabilities that will define the success of a project
and code base. Even if you feel a sense of imposter syndrome, acknowledge that it is
natural to feel this way and that, in spite of it, you offer more than you might think.

Enemy #4 – The cargo cult
In the early 20th century, it was observed that some Melanesian cultures would carry out
rituals that would emulate Western technologies and behaviors, such as building runways
and control towers out of wood and clay. They were doing this in the hope that material
wealth, such as food, would be delivered to them. These odd rituals arose because they had
previously observed cargo being delivered via Western planes and falsely concluded that it
was the runway itself that summoned the cargo.

The Enemies of Clean Code Chapter 3

[54]

Nowadays, within programming, we use the terms cargo cult or cargo culting to broadly
describe copying patterns and behaviors without fully understanding their true purpose
and functionality. When programmers search for a solution online and copy and paste the
first piece of code they find without consideration as to its reliability or safety, they are
partaking in act of cargo culting, seeking to accomplish some task by utilizing code that
appears to be responsible for it in some other context.

Cargo culting typically entails the following process:

The person is embedded in a slightly unfamiliar technical context1.
The person sees the effect they wish to emulate2.
The person copies code that appears to produce the desired effect3.

This act can occur both organizationally and technically. Programmers, sometimes tasked
with tying together disparate technical dependencies that they have little expertise in, will
often be left with no other option than to cargo cult. And organizations, often without time
to consider all the fundamentals, will often end up cargo culting popular behaviors and
processes from other organizations.

Cargo culting code
To illustrate the act of cargo culting, let's imagine that a programmer is tasked with adding
a new HTTP GET route to their Node.js server. They need to add the /about_us route.
They open up the routes.js file and, among its many lines, find the following code:

app.use('/admin', (req, res, next) => {
 const admin = await attemptLoadAdminSection(req, res);
 if (admin) {
 next();
 } else {
 res.status(403).end('You are not authorized');
 }
});

This code happens to be using a Node.js framework: Express. Unfortunately, however, the
programmer is not well versed in the Express API. They see the preceding code and seek to
emulate it for their own ends:

app.use('/about_us', (req, res, next) => {
 attemptLoadAboutSection(req, res);
 next();
});

The Enemies of Clean Code Chapter 3

[55]

Unfortunately, as you may be able to tell, this programmer has committed the act of cargo
culting. They've copied code that's used to route traffic toward the admin section and have
assumed that they should use similar code to route traffic toward the about page.

There are a couple of things they've missed in doing so:

The admin route is, in fact, middleware, which is used to block unauthorized
users from accessing /admin
The app.use() method should only be used for middleware, not for a direct
GET route
Calling next() is something only middleware should be interested in doing

If the programmer had taken the time to read the Express documentation, they would have
discovered that the correct way is more akin to the following:

app.get('/about_us', (req, res) => {
 loadAboutSection(res);
});

This is a very brief example. Often, the act of cargo culting is more complex. It may not
involve the direct copying of code, but maybe only the subtle copying of patterns or syntax.
We may shake our head at the preceding example, sure of the knowledge that we would
never do such a thing, but we likely already do, in less obvious ways.

Programmers that are engaged in a project will often rightfully inherit the naming, syntax,
and whitespace conventions from the existing code base. They may do this without
thought, naturally reflecting and conforming to the existing paradigms without applying
their critical skills at every step. This isn't necessarily negative: it is the sensible upholding
of conventions and presentational consistency. These are important qualities. But equally,
the mindless copying of such things can often result in the pointless proliferation of
redundant code, or worse, negative effects due to misunderstood code.

Imagine you're a first-time programmer and you wanted to add a hobby field to the
following slightly bizarre object:

const person = {
 "name": ("James"),
 "location": ("London")
};

The Enemies of Clean Code Chapter 3

[56]

It's easy to imagine that you might be inclined to copy the existing syntax when you add
your new field:

const person = {
 "name": ("James"),
 "location": ("London"),
 "hobby": ("kayaking")
};

This is an entirely reasonable thing for a first-timer to have done. They were embedded in
an unfamiliar context, saw an effect they wished to emulate, and so they adopted the
pattern that produced the effect. It is even an understandable act by someone experienced,
who wants to make the minimal necessary changes to the code surgically and without
disturbing its surroundings.

There is nothing egregiously wrong in this code. It's functional. However, if we are to write
code that is maximally maintainable and efficient, then we should adopt conventions and
syntax that are more widely accepted and conventional. So, in this light, there are two
specific problems with the preceding code:

Wrapping every key name in double quotes (unnecessary!)
Wrapping every value in parentheses (unnecessary!)

The non-cargo culted version of the file might look like this:

const person = {
 name: "James",
 location: "London",
 hobby: "kayaking"
};

However, this file and object will likely live on for months and maybe years to come.
Nobody will ever question or challenge its syntax as they'll assume it must be like that for a
reason. There is comfort and ease in conforming to an established way of doing something.
It is often easier not to challenge it. This form of cargo culting is the more insidious type
and introduces a lot of inertia to projects and teams. We mindlessly adopt practices without
questioning their continuing validity and suitability.

The Enemies of Clean Code Chapter 3

[57]

Cargo culting tools and libraries
Just as code can be mindlessly copied, so can tools. As JavaScript programmers, we are
exposed to a quickly shifting landscape of tools and libraries. Every month, a new utility or
tool seems to be released. The excitement and hyperbole that surrounds some of these tools
creates fertile ground for cargo cults to erupt. Programmers may start to use these new
tools, convinced of their merit, without building a full understanding of them or properly
considering their suitability for the project at hand. Tools may be prescribed by companies
or managers, with non-programmers and programmers alike weighing in based purely on
a tool's popularity or novelty, without considering how it actually works or how it differs
from the current approach.

The cult in cargo cults tends to be a very persuasive force, telling us that if we just use this
approach or tool, all our problems will be solved. Naturally, this rarely comes to pass. We
may only end up exchanging our current set of problems for a new set of problems. So,
when deciding upon a tool, whether it is a framework, library, or any third-party
abstraction or service, we should always use a considered approach where we ask
ourselves the following key questions:

Suitability: Is it the most suitable tool for the problem at hand?
Reliability: Does it work reliably and will it continue to do so?
Usability: Is it simple to use and is it well documented?
Compatibility: Does it integrate well with the existing codebase?
Adaptability: Is it adaptable to our changing needs?

To avoid cargo culting, we should try to abstain from anecdotes and hearsay, instead
preferring detailed comparative analyses in which we compare and contrast various
possibilities to find the most suitable.

Summary
In this chapter, we gained an appreciation of some of the most prevalent enemies of clean
code. We discussed how JavaScript itself is a language that, when wielded incorrectly, can
invite unclean code. We also explored the pitfalls of both teams and the individual. We
learned that clean code is not merely a characteristic of code but a culture that must be
fostered both throughout an organization and within our own minds.

In the next chapter, we will explore some well-known and some less well-known principles
of clean code and integrate what we've learned so far into some concrete JavaScript
abstractions.

4
SOLID and Other Principles

 The world of software is riddled with principles and acronyms. There are many firm and
entrenched ideas about how we should go about writing code. The sheer quantity of all of
them can be overwhelming, making it especially hard to know which path to take when
designing an abstraction. JavaScript's ability to accommodate many different paradigms is
one of its strengths as a programming language, but it can also make our job harder. It's up
to JavaScript programmers to implement their own paradigms.

This chapter, in the hope of making things less complicated, will take various well-known
principles and break them down so we can see their underlying intent. We will explore
how these principles relate to the tenets of clean code that we have already discussed,
enabling us to make our own informed decisions as to what approaches to use in pursuit of
clean code.

We'll be covering both object-oriented and functional programming principles. By
exploring this range of principles, we'll be able to craft, for ourselves, a map of guiding
ideas that will enable us to think critically about how to write clean code in whatever
paradigm we're engaged in.

In this chapter, we will be covering the following topics:

The Law of Demeter (LoD)
SOLID
The abstraction principle
Functional programming principles

SOLID and Other Principles Chapter 4

[59]

The Law of Demeter
Before we delve into the SOLID arena, it's useful to explore a less well-known principle,
known as LoD, or the principle of least knowledge. This so-called law has three core ideas:

A unit should have only limited knowledge about other units
A unit should only talk to its immediate friends
A unit should not talk to strangers

You may rightfully wonder what it means for a unit to talk to a stranger. A unit, in this
context, is a specific coded abstraction: possibly a function, a module, or a class. And
talking here means interfacing with, such as calling the code of another module or having
that other module call your code.

This is a very useful and simple law to learn and then apply to all our programming,
whether we're writing an individual line of code or designing an entire architecture. It is,
however, often forgotten or ignored.

Let's take the example of the simple act of making a purchase in a shop. We can express this
interaction with Customer and Shopkeeper abstractions:

class Customer {}
class Shopkeeper {}

Let's also say that the Customer class has a wallet where they store their money:

class Customer {
 constructor() {
 this.wallet = new CustomerWallet();
 }
}

class CustomerWallet {
 constructor() {
 this.amount = 0;
 }
 addMoney(deposit) {
 this.amount += deposit;
 }
 takeMoney(debit) {
 this.amount -= debit;
 }
}

SOLID and Other Principles Chapter 4

[60]

A simplified version of an interaction between the Shopkeeper and the Customer may go
something like the following globally:

class Shopkeeper {
 processPurchase(product, customer) {
 const price = product.price();
 customer.wallet.takeMoney(price);
 // ...
 }
}

This may look okay, but let's consider a real-life analogy of this interaction. The shopkeeper
takes the wallet from the customer's pocket and then proceeds to open the wallet and take
the desired amount without in any way interacting with the customer directly.

It's immediately obvious that this would never be a socially appropriate interaction in real
life, of course, but crucially, the shopkeeper is making assumptions outside of their remit.
The customer may wish to pay using a different mechanism, or may not even have a wallet.
The nature of the customer's payment is their own business. This is what we mean
when we say only talk to friends: you should only interface with abstractions that you should
have knowledge of. The shopkeeper here should not (and would not) have knowledge of
the customer's wallet and so should not be talking to it.

Taking this learnings on board, we can program a cleaner abstraction as follows:

class Shopkeeper {
 processPurchase(product, customer) {
 const price = product.price();
 customer.requestPayment(price);
 // ...
 }
}

This now seems more reasonable. The Shopkeeper is talking to the Customer directly. The
customer, in turn, will talk to their CustomerWallet instance, retrieving the desired
amount and then handing it to the shopkeeper.

We have all likely written code that somewhat violates the LoD. Of course, the code we
write is not always as contrived or neatly exemplified by real-life as the interaction between
a shopkeeper and a customer, but nonetheless, the LoD still applies. We can illustrate this
further with a typical piece of JavaScript that is responsible for displaying a message to the
user via the document object model (DOM):

function displayHappyBirthday(name) {
 const container = document.createElement('div');
 container.className = 'message birthday-message';

SOLID and Other Principles Chapter 4

[61]

 container.appendChild(
 document.createTextNode(`Happy Birthday ${name}!`)
);
 document.body.appendChild(container);
}

This is quite typical and idiomatic frontend JavaScript. To display the Birthday message
within a document, we first construct the string ourselves and place it in a text node, which
itself is appended to a <div> element with message and birthday-message classes. We
then take this DOM tree and append it to the document so it can be viewed by the user.

The DOM is a set of APIs that enables us to interface with a parsed HTML
document, usually within the browser. The DOM, as a term, is also used
to describe the tree of nodes generated by this parsing process. So, a DOM
tree can be derived from a given HTML document, but we can also
construct our own DOM trees and manipulate them freely.

Does the preceding code abide by the LoD? Our abstraction here, the
displayHappyBirthday function, is concerned with the concept of a happy birthday
message and is talking directly to the DOM. The DOM, however, is not its friend. The DOM
is an implementation detail—a stranger—in the concept of a Happy Birthday message.
The Happy Birthday message mechanism should not be required to have knowledge
about the DOM. It would, therefore, be appropriate to build another abstraction that
bridges these two strangers:

function displayMessage(message, className) {
 const container = document.createElement('div');
 container.className = `message ${className}`;
 container.appendChild(
 document.createTextNode(message)
);
 document.body.appendChild(container);
}

Here, we have a more generic displayMessage function that is interfacing directly with
the DOM—a friend. Our displayHappyBirthday function could then be changed so that
it purely interacts with this displayMessage abstraction:

function displayHappyBirthday(name) {
 return displayMessage(
 `Happy Birthday ${name}!`,
 'birthday-message'
);
}

SOLID and Other Principles Chapter 4

[62]

This code can now be said to be more loosely coupled to the implementation of
displayMessage. We could later decide to change the exact mechanism that we use to
display messages without altering the displayHappyBirthday function at all. We've
therefore bolstered the maintainability of code. By generalizing a common piece of
functionality—displaying a message—we also make future features much more
seamless—for example, displaying a Happy New Year message:

function displayHappyNewYear(name) {
 return displayMessage(
 `Happy New Year! ${name}`,
 'happy-new-year-message'
);
}

The LoD, at its core, is concerned with which abstractions we feel should interface with
other abstractions. It does not provide guidance as to what a friend or a stranger is or what it
means for a unit to only have limited knowledge of other units. The law challenges us to
define these terms for ourselves, alongside the abstractions we're building. It's our
responsibility to stop and consider how our abstractions are interfacing, and whether
perhaps we should design them differently.

I chose to write about this principle first as I feel it is the most memorable and most
generally useful tool for writing clean code with clean abstractions.

Next, we'll be discussing SOLID and other principles that all, in their own ways,
complements the LoD.

SOLID
SOLID is a commonly packaged set of principles that are useful when constructing both
individual modules or larger architectures. Specifically, it is an acronym that stands for five
specific object-oriented programming (OOP) design principles:

Single responsibility principle(SRP)
Open-closed principle
Liskov substitution principle
Interface segregation principle
Dependency inversion principle

SOLID and Other Principles Chapter 4

[63]

It is not vital to remember these names or even the acronym itself, but the ideas behind
each of these principles are useful. In this section, we're going to explore each principle
alongside JavaScript examples. It's important to note that, while SOLID relates mostly to
OOP, there are deeper truths underlying it that are useful regardless of your programming
paradigm.

Single responsibility principle
When we write code, we are constantly building abstractions; when doing this, we are
interested in building the right ones, delineated in the right way. The SRP helps us to figure
out how to delineate these abstractions by looking at their responsibilities.

Responsibility, in this context, refers to the purpose and area of concern that your
abstraction encompasses. A function that validates phone numbers can be said to have a
singular responsibility. A function that both validates and normalizes those numbers with
their country codes, however, can be said to have two responsibilities. The SRP would tell
us that we need to split that abstraction into two separate ones.

The aims of the SRP are to arrive at code that is highly cohesive. Cohesiveness is when an
abstraction's parts are all functionally united in some way, where they can all be said to
work together to fulfill the abstraction's purpose. A useful question about discerning
singular responsibility is: how many reasons does your abstraction's design have to change?

We can explore this question using an example. Say that we are tasked with building a
small calendar application. We might imagine, initially, that there are two distinct
abstractions here:

class Calendar {}
class Event {}

The Event class can be said to contain time and metainformation about an event, and
the Calendar class can be said to contain events. The basic starting premise is that you can
both add and remove one or more Event instances to and from a Calendar instance. Here,
we express the methods used to add and remove events from Calendar:

class Calendar {
 addEvent(event) {...}
 removeEvent(event) {...}
}

SOLID and Other Principles Chapter 4

[64]

Over time, we have to add various other pieces of functionality to our Calendar, such as
methods for retrieving events within specific dates, and methods to export events in
various formats:

class Calendar {

 addEvent(event) {...}
 removeEvent(event) {...}
 getEventsBetween(stateDate, endDate) {...}

 setTimeOfEvent(event, startTime, endTime) {...}
 setTitleOfEvent(event, title) {...}

 exportFilteredEventsToXML(filter) {...}
 exportFilteredEventsToJSON(filter) {...}

}

Even without implementations, you can see how the addition of all of these methods has
created a far more complex class. Technically, all of these methods are related to the
functionality of a calendar, so there is an argument for them to remain within one
abstraction, but if we go back to the question we posed—How many reasons does our
abstraction's design have to change?—we can see that the Calendar class now has many
possible reasons:

The way time is defined on events may need to change
The way titles are defined on events may need to change
The way events are searched for may need to change
The XML schema may need to change
The JSON schema may need to change

Given the number of different reasons for potential change, it makes sense to split the
change into more appropriate abstractions. The methods for setting the time and title of a
particular event (setTimeOfEvent, setTitleOfEvent), for example, definitely make
sense within the Event class itself, as they're highly related to the purpose of the Event
class: to contain details regarding a specific event. And the methods that export to both
JSON and XML should also be moved, perhaps into their own class that is solely
responsible for the export logic. The following code shows the changes that we've made:

class Event {
 setTime(startTime, endTime) {...}
 setTitle(title) {...}
}

SOLID and Other Principles Chapter 4

[65]

class Calendar {
 addEvent(event) {...}
 removeEvent(event) {...}
 getEventsBetween(stateDate, endDate) {...}
}

class CalendarExporter {
 exportFilteredEventsToXML(filter) {...}
 exportFilteredEventsToJSON(filter) {...}
}

As you can hopefully see, each of our abstractions seems inwardly cohesive, and each one
encapsulates its responsibilities far more cohesively than would be the case if all of that
functionality resided solely within the Calendar class.

The SRP is not only about creating abstractions that are simple to use and maintain, it also
allows us to write code that is more focused on its key purpose. Being more focused in this
way gives us a clearer path to optimize and test our units of code, which benefits the
reliability and efficiency of our codebase. The correct delineation of cohesive abstractions,
guided by the SRP, is probably one of the most significant ways you can improve the
cleanness of your code.

Open–closed principle
The open–closed principle (OCP) states the following:

Software entities (classes, modules, functions, and so on) should be open for extension, but
closed for modification

 -Meyer, Bertrand (1988)

When crafting abstractions, we should enable them to be open to extension so that other
developers can come along and build upon their behavior, adapting the abstraction to suit
their needs. Extension, in this context, is best thought of as a broad term that encompasses
all types of adaptation. If a module or function does not behave as we require it to, it would
be ideal for us to be able to adapt it to our needs without having to modify it or create our
own alternative.

SOLID and Other Principles Chapter 4

[66]

Consider the following Event class and renderNotification method from our
Calendar application:

class Event {

 renderNotification() {
 return `
 You have an event occurring in
 ${this.calcMinutesUntil()} minutes!
 `;
 }

 // ...

}

We may wish to have a separate type of event that renders a notification prefixed with the
word Urgent! to ensure that the user pays more attention to it. The simplest way to
achieve this adaptation is via inheritance of the Event class, as follows:

class ImportantEvent extends Event {
 renderNotification() {
 return `Urgent! ${super.renderNotification()}`;
 }
}

We are prefixing our urgent message by overriding the renderNotification method and
calling the super class's renderNotification to fill in the remainder of the notification
string. Here, via inheritance, we have achieved extension, adapting the Event class to our
needs.

Inheritance is only one way that extension can be achieved. There are various other
approaches that we could take. One possibility is that, in the original implementation of
Event, we foresee the need for custom notification strings and implement a way to
configure a renderCustomNotifcation function:

class Event {

 renderNotification() {
 const defaultNotification = `
 You have an event occurring in
 ${this.calcMinutesUntil()} minutes!
 `;
 return (
 this.config.renderCustomNotification
 ? this.config.renderCustomNotification(defaultNotification)

SOLID and Other Principles Chapter 4

[67]

 : defaultNotification
);
 }

 // ...

}

This code presumes that there is a config object available. We are optionally calling the
renderCustomNotification and passing the default notification string. If it hasn't been
configured, then the default notification string is used anyway. This is crucially different
from the inheritance approach in that the Event class itself is prescribing the itself is
prescribing the possibilities possibilities extension that exist.

Providing adaptability via configuration means that users don't need to worry about the
internal implementation knowledge required when extending classes. The path to
adaptation is simplified:

new Event({
 title: 'Doctor Appointment',
 config: {
 renderCustomNotification: defaultNotification => {
 return `Urgent! ${defaultNotifcation}`;
 }
 }
});

This approach requires that your implementation can foresee its most likely adaptations
and that those adaptations are predictably internalized into the abstraction itself. However,
it is impossible to foresee all needs, and even if we tried to, we would likely end up creating
such a complicated and large configuration that users and maintainers would suffer. So
there is a balance to strike here: adaptability is a good thing, but we also must balance it
with a focused and cohesive abstraction that has a constrained purpose.

Liskov substitution principle
The Liskov substitution principle states that types should be able to be replaced by their
subtypes without altering the reliability of the program. This is, on the surface, an obscure
principle, so it's worth explaining it in terms of a real-world analogy.

SOLID and Other Principles Chapter 4

[68]

Many real-world technological innovations share this characteristic of substitution. A Volvo
XC90 is a type of car, as is a Ford Focus. Both provide the common interfaces that we have
come to expect from cars. For us, as human users of these vehicles, we can assume that their
respective means of operation inherit from a common schema of vehicle operation, such as
having a steering wheel, doors, a brake pedal, and so on.

The human assumption is that these two models of car are subtypes of the supertype car,
and so I as a human can rely on the aspects that they each inherit from their supertype (the
car). Another way of phrasing the Liskov substitution principle is: A consumer of a type
should only be concerned with the least specific type necessary to operate it reliably. To build on the
analogy, if we were to program a Driver abstraction in code, we would want it to interface
generally with all Car abstractions rather than writing specific code that relies on specific
models of car (such as the Volvo XC90).

To make the Liskov substitution principle a little more concrete, let's dive back into our
Calendar application example. In the preceding section on the open-closed principle, we
explored how to extend the Event class via inheritance with a new ImportantEvent class:

class ImportantEvent extends Event {
 renderNotification() {
 return `Urgent! ${super.renderNotification()}`;
 }
}

The assumption implicit in our doing this is that our Calendar class and its
implementation will not be concerned with whether events are Events or subclasses of
Events. We expect that it will treat them the same. The Calendar class may have a
notifyUpcomingEvents method, for example, that iterates through all upcoming events
and calls renderNotification on each event:

class Calendar {

 getEventsWithinMinutes(minutes) {
 return this.events.filter(event => {
 return event.startsWithinMinutes(minutes);
 });
 }

 notifiyUpcomingEvents() {
 this.getEventsWithinMinutes(10).forEach(event => {
 this.sendNotification(
 event.renderNotification()
);
 });
 }

SOLID and Other Principles Chapter 4

[69]

 // ...
}

What's crucial here is that the Calendar implementation makes no deliberations as to the
type of Event instance that it is dealing with. In fact, the preceding code (which doesn't
account for the entire implementation) only prescribes that event objects have
a startsWithinMinutes method and a renderNotification method.

Related to the Liskov substitution principle is an idea that we've already discussed: the
principle of least information (LoD), which drives us to ask: what is the least information
that this abstraction requires in order to fulfill its purpose? In the case of Calendar, it only
needs to prescribe that events have the methods and properties that it will use. There is no
good reason for it to make deliberations beyond that. Not only can the Calendar
implementation now deal with subclasses of events, but it can deal with any objects that
supply the desired properties and methods.

Interface segregation principle
The interface segregation principle is concerned with keeping interfaces highly cohesive,
engaged in only one task or a set of tasks that are highly related. It states that no client
should be forced to depend on methods that it does not use.

This principle is similar in spirit to the principle of single responsibility: its goal is to ensure
that you create focused and highly-cohesive abstractions that are only concerned with a
single area of responsibility. But instead of making you consider the concept of
responsibility itself, it makes you look at the interfaces that you're creating and consider
whether they're appropriately segregated.

Consider a local government office. They have a paper form (let's call it Form 1A) that it
uses to change a person's details. It is a form that's existed for over 50 years. Via this form, a
local citizen can change a number of their details, including, but not limited to, the
following:

A change of name
A change of marital status
A change of address
A change of council tax discount status (student/elderly)
A change of disability status

SOLID and Other Principles Chapter 4

[70]

As you can imagine, it's a very complex and dense form, with many independent sections
that a citizen must ensure they fill out correctly. We've all likely been exposed to the
bureaucratic complexity of government paperwork, as shown in the following:

Form 1A provides a set of interfaces to the various change functions that are provided by
the local government office. The interface segregation principle asks us to consider whether
this form is forcing its clients to depend on methods that they don't use. In this context, the
clients are the users of the form, the citizens, and the methods are all of the available
functions that the form provides: the ability to register a name change, an address change,
and so on.

SOLID and Other Principles Chapter 4

[71]

As is hopefully obvious by now, Form 1A does not follow the interface segregation
principle very well. If we were to redesign it, we would likely separate out the individual
functions it serves into their own independent forms. The way we'd do this is by employing
something we learned at the beginning of the chapter: the principle of least information
(LoD), which asks us a very simple question: What's the least amount of information each
abstraction (for example, changing one's address) requires? We can then choose to only
include in each form what is needed to fulfill its function:

To separate out and then only include the necessary fields in paper forms such as these may
seem quite obvious, but it's something programmers continually neglect to do effectively
within their coded abstractions. The interface segregation principle reminds us of the
importance of properly separating out our abstractions into interfaces that are distinct and
internally cohesive. Doing so has the following benefits:

Increased reliability: Having properly isolated interfaces that are truly
decoupled makes code easier to test and verify, thereby aiding its general
reliability and stability over time.
Increased maintainability: Having segregated interfaces means that changes to
one needn't affect the others. As we saw in the layout of Form 1A, the positioning
and space available are heavily dependent on each part of the form. Once we
have decouple these dependencies, however, we are free to maintain and change
each one as we see fit, without worrying about the others.
Increased usability: Having interfaces that are separated according to their
purpose and function means that users are able to understand and navigate the
interfaces with far less time and cognitive effort. The users are the consumers of
our interfaces, and so are the most dependent on the interfaces being clearly
delineated.

SOLID and Other Principles Chapter 4

[72]

Dependency inversion principle
The dependency inversion principle states the following:

High-level modules should not depend on low-level modules. Both should
depend on abstractions (that is, interfaces)
Abstractions should not depend on details. Details (such as concrete
implementations) should depend on abstractions

The first point may remind you of the LoD. It is largely talking about the same concept: the
separation of high-level from low-level.

Our abstractions should be separated (decoupled) in such a way that we can easily change
low-level implementation details at a later date without having to refactor all of our code.
The dependency inversion principle, in its second point, suggests that we do this via
intermediary abstractions through which the high-level modules can interface with the low-
level details. These intermediary abstractions are sometimes known as adapters, as they
adapt a low-level abstraction for consumption by a high-level abstraction.

Why is it called dependency inversion? A high-level module may initially
depend on a low-level module. In languages that provide OOP concepts
such as abstract classes and interfaces (a type of schematic for classes),
such as Java, it can be said that a low-level module may end up
depending upon the interface, as it is the interface that provides the
scaffolding on which the low-level module is implemented. The high-level
module also depends on this interface, so that it may utilize the low-level
module. We can see here how the dependencies are inverted so that both
high- and low-level modules depend on the same interface.

Considering our Calendar application once again, let's say that we wanted to implement a
way to retrieve events happening within a specific radius of a fixed location. We may
choose to implement a method like so:

class Calendar {
 getEventsAtLocation(targetLocation, kilometerRadius) {

 const geocoder = new GeoCoder();
 const distanceCalc = new DistanceCalculator();

 return this.events.filter(event => {

 const eventLocation = event.location.address
 ? geocoder.geocode(event.location.address)
 : event.location.coords;

SOLID and Other Principles Chapter 4

[73]

 return distanceCalc.haversineFormulaDistance(
 eventLocation,
 targetLocation
) <= kilometerRadius / 1000;

 });

 }

 // ...

}

The getEventsAtLocation method here is responsible for retrieving events that are
within a certain radius (measured in kilometers) from a given location. As you can see, it
uses both a GeoCoder class and a DistanceCalculator class to achieve its purpose.

The Calendar class is a high-level abstraction, concerned with the broad concepts of a
calendar and its events. The getEventsAtLocation method, however, contains a lot of
location-related details that are more of a low-level concern. The Calendar class here is
concerns itself with which formula to utilize on the DistanceCalculator and the units of
measurement used in the calculation. You can see how, for example, the
kilometerRadius argument must be divided by 1000 to get the distance in meters, which
is then compared to the distance returned from the haversineFormulaDistance method.

All of these details should not be the business of a high-level abstraction, such as
Calendar. The dependency inversion principle asks us to consider how we can abstract
away these concerns to an intermediary abstraction that acts as a bridge between high-level
and low-level. One way in which we may accomplish this is via a new
class, EventLocationCalculator:

const distanceCalculator = new DistanceCalculator();
const geocoder = new GeoCoder();
const METRES_IN_KM = 1000;

class EventLocationCalculator {
 constructor(event) {
 this.event = event;
 }

 getCoords() {
 return this.event.location.address
 ? geocoder.geocode(this.event.location.address)
 : this.event.location.coords
 }

SOLID and Other Principles Chapter 4

[74]

 calculateDistanceInKilometers(targetLocation) {
 return distanceCalculator.haversineFormulaDistance(
 this.getCoords(),
 targetLocation
) / METRES_IN_KM;
 }
}

This class could then be utilized by the Event class in its own isEventWithinRadiusOf
method. An example of this is shown in the following code:

class Event {

 constructor() {
 // ...
 this.locationCalculator = new EventLocationCalculator();
 }
 isEventWithinRadiusOf(targetLocation, kilometerRadius) {
 return locationCalculator.calculateDistanceInKilometers(
 targetLocation
) <= kilometerRadius;
 }

 // ...

}

Therefore, all the Calendar class needs to concern itself with is the fact that Event
instances have isEventWithinRadiusOf methods. It needs no information and makes no
prescriptions as to the specific implementation that determines distances; the details of that
are left to our lower-level EventLocationCalculator class:

class Calendar {
 getEventsAtLocation(targetLocation, kilometerRadius) {
 return this.events.filter(event => {
 return event.isEventWithinRadiusOf(
 targetLocation,
 kilometerRadius
);
 });
 }

 // ...

}

SOLID and Other Principles Chapter 4

[75]

The dependency inversion principle is similar to other principles that are related to the
delineation of abstractions, such as the interface segregation principle, but is specifically
concerned with dependencies and how these dependencies are directed. As we design and
build abstractions, we are, implicitly, setting up a dependency graph. For example, if we
were to map out the dependencies for the implementation that we arrived at, then it would
look something like this:

It's incredibly useful to draw dependency graphs such as these. They are a useful way to
explore the true complexity of your code, and can often highlight areas of possible
improvement. Most importantly, they let us observe where, if anywhere, our low-level
implementations (details) impact our high-level abstractions. Only when we see such
situations can we remedy them. So, as you advance through this book and beyond, always
have in your mind's eye a graph of the dependencies; it'll help to steer you toward more
decoupled, and thus more reliable, code.

The dependency inversion principle is the very last of the SOLID acronym, and SOLID, as
we've seen, is chiefly concerned with how we go about building abstractions. The next
principle we'll cover binds together a lot of the content we've covered so far, as it is the
principle of abstraction itself. If we remember nothing else from this chapter, then we
should, at least, remember the abstraction principle.

The abstraction principle
In the first chapter, we introduced the concept of a tower of abstractions, and the idea that
every abstraction is a simplified lever to hidden complexity. The principle of abstraction
within programming states the following:

Implementation should be separate from interface.

SOLID and Other Principles Chapter 4

[76]

An implementation is the complex underside of an abstraction: the part that it's hiding. The
interface is the simplified topside. That is why we say that abstraction is a simplified lever
to hidden complexity. The craft of creating abstractions that separate implementation from
interface to just the right degree is not as simple as it may seem. As such, the programming
world provides two warnings for us:

Don't repeat yourself (DRY): A warning that tells us to avoid writing code that
duplicates other code we have written. If you find yourself having to repeat
yourself, then this indicates that you've failed to abstract something, or have
under-abstracted something.
You aren't gonna need it (YAGNI): Also known as keep it simple,
stupid! (KISS), this warning tells us to be wary of over-abstracting code that
does not need to be abstracted. It's the polar opposite of DRY, and serves to
remind us that we should not attempt abstraction unless it's warranted (if we
start to repeat ourselves, perhaps).

Between these two warnings, somewhere in the middle, lies the perfect abstraction.
Designing abstractions so that they are maximally simple and maximally useful is a
balancing act. On the one hand, we can say we have under-abstraction (DRY warns us
about this) and, on the other hand, we have over-abstraction (YAGNI warns us about this).

Over-abstraction
Over-abstraction is when too much complexity has been removed or replaced, so that the
underlying complexity becomes difficult to leverage. The risk with over-abstraction is that
we either remove too much complexity in favor of simplicity or we add new unnecessary
complexity that confuses the user of our abstraction.

For example, say that we are in need of a gallery abstraction that we want to use to display
a gallery on both our website and various mobile applications. Depending on the platform,
the gallery will use the interfaces available to produce the layout. On the web, it would
produce HTML and DOM, but on a mobile application, it would use the various native UI
SDKs available. The abstraction provides a lever to all that cross-platform complexity.

Our initial requirements for the gallery are quite simple:

The ability to display one or more images
The ability to display captions alongside images
The ability to control the dimensions of individual images

SOLID and Other Principles Chapter 4

[77]

An external team has created a Gallery component for us to use. We open the
documentation and see that it has the following example code, showing us how to create a
gallery with two images:

const gallery = new GalleryComponent(
 [
 new GalleryComponentImage(
 new GalleryComponentImage.PathOfImage('JPEG',
'/foo/images/Picture1.jpg'),
 new GalleryComponentImage.Options({
 imageDimensionWidth: { unit: 'px', amount: 200 },
 imageDimensionHeight: { unit: 'px', amount: 150 },
 customStyleStrings: ['border::yellow::1px']
 }),
 [
 new GalleryComponentImage.SubBorderCaptionElementWithText({
 content: { e: 'paragraph', t: 'The caption for this employee' }
 })
]
 }),
 new GalleryComponentImage(
 new GalleryComponentImage.PathOfImage('JPEG',
'/foo/images/Picture2.jpg'),
 new GalleryComponentImage.Options({
 imageDimensionWidth: { unit: 'px', amount: 200 },
 imageDimensionHeight: { unit: 'px', amount: 150 },
 customStyleStrings: ['border::yellow::1px']
 }),
 [
 new GalleryComponentImage.SubBorderCaptionElementWithText({
 content: { e: 'paragraph', t: 'The caption for this employee' }
 })
]
 })
]
);

This interface seems very complex for the basic purpose of only displaying a couple of
images. Considering our simple requirements, we can say that the preceding interface is
evidence of over-abstraction: instead of simplifying the underlying complexity, it has
introduced a whole new realm of complexity and various features that we don't even need.
It does technically fulfill our requirements, but we must navigate its realm of complexity to
achieve what we want.

SOLID and Other Principles Chapter 4

[78]

An abstraction like this, which encodes new complexities and prescribes its own features
and naming conventions, is at risk of not only failing to reduce complexity, but also of
increasing it! An abstraction has no business in increasing complexity; that is antithetical to
the entire point of abstraction.

Keep in mind that the appropriate level of abstraction is context-
dependent. What may be over-abstracted for your use case may be under-
abstracted for another. The driver of an F1 racing car would require
different levels of abstraction over their engine than a Ford Focus driver.
Abstraction, like many clean-code concepts, is audience- and user-
dependent.

Over-abstraction can, curiously, also take the form of over-simplification, where levers to
the underlying complexity are not made available to us. An oversimplified version of our
GalleryComponent interface may look like the following:

const gallery = new GalleryComponent(
 '/foo/images/PictureOne.jpg',
 '/foo/images/PictureTwo.jpg'
);

This minimal interface may seem like the polar opposite of the previous code, and in some
ways it is, but curiously, it is also an example of over-abstraction. Remember, abstraction is
when we provide a lever to underlying complexity via an interface. In this case, the lever is
just too simple, only providing very limited leverage for the complexity that we wish to
harness. It does not allow us to add captions or control image dimensions; it only allows us
to list a set of images, nothing more.

Having gone through the two previous examples, you've seen how over-abstraction can
come in two distinct flavors: one that over-complicates and one that over-simplifies. These
are both undesirable.

Under-abstraction
If over-abstraction is when too much complexity has been removed or replaced, then under-
abstraction is when too little complexity has been removed or replaced. This results in a
situation where the user of the abstraction then needs to concern themselves with the
underlying complexity. Imagine that you have a car that you must drive without a steering
wheel or dashboard. You must control it directly via the engine by pulling levers and
cranking oily cogs with your bare hands while keeping an eye on the road. We can say that
this car has an under-abstracted method of control.

SOLID and Other Principles Chapter 4

[79]

We explored the over-abstracted versions of our gallery component, so let's see what an
under-abstracted version might look like:

const gallery = new GalleryComponent({
 web: [
 () => {
 const el = document.createElement('div');
 el.className = 'gallery-container';
 return el;
 },
 {
 data: [
 `
 The caption`,
 `
 The caption`
]
 }
],
 android: [
 (view, galleryPrepData) => {
 view.setHasFixedSize(true);
 view.setLayoutManager(new
GridLayoutManager(getApplicationContext(),2));
 return new MyAdapter(getApplicationContext(), galleryPrepData());
 },
 {
 data: [
 ['/foo/images/PictureOne.jpg', 200, 150, 'The Caption']
 ['/foo/images/PictureTwo.jpg', 200, 150, 'The Caption']
]
 }
]
});

This version of GalleryComponent seems to be forcing us to define web-specific HTML
and Android-specific code. We were, ideally, depending on the abstraction to hide this
complexity from us, giving us a simplified interface with which to harness—it hasn't done
this. The complexity of writing platform-specific code has not been sufficiently abstracted
here, and so we can therefore say that this is an example of under-abstraction.

From the previous code, you can also see that we are being made to repeat the source URL
of our image and the caption text. This should remind us of one of the warnings we
explored earlier: DRY, which indicates that we have not sufficiently abstracted something.

SOLID and Other Principles Chapter 4

[80]

If we keep an eye out for areas in which we are forced to repeat ourselves, then we can
hope to build better abstractions. But be aware that under-abstraction is not always
obvious.

Various abstractions can be said to be leaky abstractions because they leak parts of their
complexity upwards, through their interfaces. The previous code is an example of this: we
can say that it is leaking the implementation details of its cross-platform complexities
upward.

Balanced abstraction
Given what we've learned about under- and over-abstraction, we can say that a balanced
abstraction is one that sits neatly in between these two undesirable opposites. The skill of
creating a balanced abstraction is both an art and a science, and requires that we have a
very good understanding of both the problem domain and the user's capabilities and
intents. By employing many of the principles and warnings in this chapter, we can hope to
remain balanced in our code building. For the previous example of a GalleryComponent,
we should, once again, explore the requirements of the abstraction:

The ability to display one or more images
The ability to display captions alongside images
The ability to control the dimensions of individual images

These, we can say, are the levers that we must provide to the underlying cross-platform
complexity. Our abstraction should solely aim to expose these levers and no other
unnecessary complexity. The following is an example of such an abstraction:

const gallery = new GalleryComponent([
 {
 src: '/foo/images/PictureOne.jpg',
 caption: 'The Caption',
 width: 200,
 height: 150
 },
 {
 src: '/foo/images/PictureTwo.jpg',
 caption: 'The Caption',
 width: 200,
 height: 150
 },
]);

SOLID and Other Principles Chapter 4

[81]

Via this interface, we can define one or more images, set their dimensions, and define
captions for each image. It fulfills all of the requirements without inviting new complexities
or leaking complexities from the underlying implementation. This is, therefore, a balanced
abstraction.

Functional programming principles
JavaScript allows us to program in a variety of different ways. Many of the examples we've
shared so far in this book have been more inclined towards OOP, which primarily uses
objects to express problem domains. Functional programming is different in that it uses
mostly pure functions and immutable data to express problem domains.

All programming paradigms are broadly interested in the same thing:
making it easier to express problem domains, to communicate our intent
as programmers, and to accommodate the creation of useful and usable
abstractions. The best principles we adopt from one paradigm may still
apply to another, so adopt an open-minded approach!

It's easiest to observe and discuss the difference between OOP and functional
programming by exploring an example. Let's imagine that we wish to build a mechanism
so that we can fetch paginated data from a server. To achieve this in an object-oriented way,
we might create a PaginatedDataFetcher class:

// An OOP approach

class PaginatedDataFetcher {

 constructor(endpoint, startingPage) {
 this.endpoint = endpoint;
 this.nextPage = startingPage || 1;
 }

 getNextPage() {
 const response = fetch(
 `/api/${this.endpoint}/${this.nextPage}`
);
 this.nextPage++;
 return fetched;
 }

}

SOLID and Other Principles Chapter 4

[82]

The following is an example of how you would use the PaginatedDataFetcher class:

const pageFetcher = new PaginatedDataFetcher('account_data', 30);

await pageFetcher.getNextPage(); // => Fetches /api/account_data/30
await pageFetcher.getNextPage(); // => Fetches /api/account_data/31
await pageFetcher.getNextPage(); // => Fetches /api/account_data/32

As you can see, with each call to getNextPage, we retrieve the next page of data.
The getNextPage method relies on the remembered state of its objects, endpoint and
nextPage, in order to know which URL to request next.

A state can be thought of as the underlying remembered data of any
program or piece of code that its results or effects are derived from. The
state of a car may mean its current upkeep, its fuel and oil levels, and so
on. Likewise, the state of a running program is the underlying data that it
derives its functionality from.

Functional programming, as distinct from OOP, is purely interested in the usage of
functions and immutable state to achieve its goals. The first mental blocker that people
usually encounter when exploring functional programming is related to states, raising
questions such as Where should I store my state? and How do I make things change without being
able to mutate that state? We can explore this question by looking at the functionally
programmed equivalent of the paginated data fetcher.

 We have created a function, getPage, to which we will pass an endpoint and a
pageNumber, as follows:

// A more functional approach

const getPage = async (endpoint, pageNumber = 1) => ({
 endpoint,
 pageNumber,
 response: await fetch(`/api/${endpoint}/${pageNumber}`)
 next: () => getPage(endpoint, pageNumber + 1)
});

When called, the getPage function will return an object containing the response from the
server, as well as the endpoint and pageNumber used. In addition to these properties, the
object will also contain a function named next, which itself, if called, will fire off another
request via a subsequent call to getPage. It can be used in the following way:

const page1 = await getPage('account_data');
const page2 = await page1.next();
const page3 = await page2.next();

SOLID and Other Principles Chapter 4

[83]

const page4 = await page3.next();

// Etc.

You'll notice that, when using this pattern, we only need a reference to the last retrieved
page in order to make the next request. Page 3 is retrieved via page 2's returned next()
function. Page 4 is retrieved via page 3's returned next() function.

Our getPage function does not mutate any data: it only uses the passed data to derive new
data, and therefore, it can be said that it employs immutability. It can also be said that it is a
pure function as well, in that, with a given set of input parameters (an endpoint and a
pageNumber), it will always return the same thing. The next function returned by
getPage is also pure, as it will always return the same thing: if I call page2.next() a
million times, it'll always fetch page 3.

Functional purity and immutability are among the most vital functional concepts to
understand, and, usefully, are principles that are applicable to all paradigms of
programming. We're not looking to thoroughly explore functional programming here, but
just to cover its most applicable principles in order to bolster our abstraction-crafting
abilities.

Functional purity
Functions can be said to be pure when their return value is only derived from their input
values (also called idempotence), and when there are no side-effects. These characteristics
give us the following benefits:

Predictability: A function that does not have any side-effects on other areas of
the program is a function that can be easily reasoned about. If a function mutates
a state that it does not own, potentially creating cascades of changes in other
areas of the code, it can be incredibly complicated to disentangle, creating
maintenance and reliability issues.
Testability: A pure function, thanks to the characteristic of always returning the
same result when given the same inputs, is very easy to verify. Pure functions
can become complex but, if kept pure, they will always be easily testable.

SOLID and Other Principles Chapter 4

[84]

Idempotence is the characteristic of always deriving the same result when
provided with a certain input. An idempotent function is therefore highly
deterministic. An idempotent function may still have side-effects, so it
may not always be a pure function, but from the perspective of an
abstraction user, idempotence is highly desirable, as it means that we
always know what to expect.

Often in OOP, methods on objects cannot be said to be pure since they mutate the state (on
the object) or return different results with the same input parameters. Consider, for
example, the following Adder class:

class Adder {
 constructor() {
 this.total = 0;
 }
 add(n) {
 return this.total += n;
 }
}

const adder = new Adder();
adder.add(10); // => 10
adder.add(10); // => 20
adder.add(5); // => 25

The add method here is not pure. It returns different results even when given the same
arguments, and it has a side-effect: mutating a state that it does not own (that is the total
property of the object). We could instead create a functionally pure addition abstraction
very simply:

const add = (a, b) => a + b;

add(10, 10); // => 20
add(10, 20); // => 30

This may seem contrived, but the concept behind functional purity is to, from complex
needs, derive the truly pure primitives and functions that are needed to construct it.
Functional purity teaches us a general lesson here: to break down functionality to its most
primal parts until you have a truly testable standalone unit. We can then compose these
smaller units into larger units that do more complex work.

SOLID and Other Principles Chapter 4

[85]

Immutability
This chapter has largely been about how we structure and separate our abstractions, but it
is equally important to consider the expectations of the data that passes between these
abstractions.

Immutability refers to the simple idea that data should not mutate. This means that, when
we initialize an object, for example, we should not add new properties to it or change
existing properties over time. Instead, we should derive a brand new object and only make
changes to our own copy. Immutability is a characteristic of data, but is also a general tenet
of functional programming. A language can also enforce immutability by disallowing the
mutation of already declared variables or objects. JavaScript's const is an example of this
type of enforcement:

const name = 'James';
name = 'Samuel L. Jackson';
// => Uncaught TypeError: Assignment to constant variable.

Knowing that something is immutable means that we can rest assured that it will not
change; we can rely on its characteristics without worrying that some other part of the
program may change it without us knowing. This is especially pertinent in the
asynchronous world of JavaScript, where data is shuttled between scopes and interfaces in
complex ways.

Like many of the principles we've covered in this chapter, immutability does not have to be
followed religiously to gain benefits from it. Immutability in some areas, and mutability in
others, can be a viable approach. Imagine an official document being shuttled around a
government building. Each department has the implicit assumption that the document has
not been arbitrarily modified by unexpected people; a specific department may choose to
make a copy of the document and then make various mutations to its own copy for its own
unique purposes. A codebase is not so different from this. By crafting abstractions and
letting them interdepend on each other, we are intentionally enabling them to manipulate
each other's data and functionality.

SOLID and Other Principles Chapter 4

[86]

Summary
In this chapter, we covered a vast amount of theory and practical skills. We covered the
LoD (or principle of least information), all SOLID principles, the principle of abstraction,
and a couple of key principles from the paradigm of functional programming. Even if you
don't remember all of the names, you will hopefully remember the underlying knowledge
and key lessons that each principle encapsulates.

Programming is as much an art as it is a science. It involves balancing all of these principles
in the pursuit of crafting truly balanced abstractions. None of these principles should be
considered hard-and-fast rules. They are merely guidelines that will help us on our journey.

In the next chapter, we continue this journey by exploring one of the most challenging
aspects of programming, both in JavaScript and outside it: the problem of naming things.

5
Naming Things Is Hard

Names are everywhere. They are our mind's way of abstracting the complexity of the
universe. In the world of software, we are always engaged in crafting new abstractions to
describe our everyday realities. A common quip in the programming world is naming things
is hard. Coming up with a name isn't always hard, but coming up with a good name usually
is.

In the previous chapters, we have explored the principles and theory underlying
abstractions. In this chapter, we'll provide the final key to the puzzle. An abstraction cannot
be a good abstraction without good naming. In the names we use, we are distilling a
concept, and that distillation will define how people end up understanding the concept. So,
naming things isn't just the provision of arbitrary labels; it is the provision of
understanding. Only via a good name can a user or other programmer be able to internalize
our abstraction fully and navigate it with a full understanding.

In this chapter, we will use some examples to explore the key characteristics that make a
good name. We'll also discuss the challenges of naming things in a dynamically typed
language such as JavaScript. We should come away from this chapter with a clear
understanding of what is involved in coming up with clean and descriptive names.

Specifically, we'll be covering the following topics:

What's in a name?
Naming anti-patterns
Consistency and hierarchy
Techniques and considerations

Naming Things Is Hard Chapter 5

[88]

What's in a name?
Breaking down the key elements of a good name is difficult. It seems to be more of an art
than a science. The boundary between quite a good name and a very good name is fuzzy
and liable to subjective opinions.

Consider a function that is responsible for applying multiple CSS styles to a button.
Imagine a scenario in which this is a standalone function. Which of the following names
would you consider to be the most suitable?

styleButton

setStyleOfButton

setButtonCSS

stylizeButton

setButtonStyles

applyButtonCSS

You've likely picked your favorite. And there is, among those of you reading this book,
bound to be disagreements. Many of these disagreements will be founded in our own
biases. And many of our biases will have been conditioned by factors such as what
language we speak, what programming languages we've been previously exposed to, and
what types of programs we spend our time creating. There are many variances that exist
between all of us and yet, somehow, we have to come up with a non-fuzzy concept for
what a good or clean name is. At the very least, we can say that a good name might have
the following characteristics:

Purpose: What something is for and how it behaves
Concept: Its core idea and how to think about it
Contract: Expectations about how it works

This doesn't completely cover the complexity of naming, but with these three
characteristics, we have a starting point. In the remainder of this section, we will learn how
each of these characteristics is vital to the process of naming things.

Purpose
A good name indicates purpose. Purpose is what something does, or what something is. In
the case of a function, its purpose is its behavior. This is why functions are typically named
in the verbal form, such as getUser or createAccount, whereas things that store values
are usually nouns, such as account or button.

Naming Things Is Hard Chapter 5

[89]

A name that encapsulates a clear purpose will never need further explanation. It should be
self-evident. If a name requires a comment to explain its purpose, then that is usually an
indicator that it has not done its job as a name.

The purpose of something is highly contextual and so will, therefore, be informed by the
surrounding code and the area of the codebase in which that name resides. This is why it's
often okay to use a generic name as long as it is surrounded by context that helps to inform
its purpose. For example, compare these three method signatures within the
TenancyAgreement class:

class TenancyAgreement {

 // Option #1:
 saveSignedDocument(
 id,
 timestamp
) {}

 // Option #2:
 saveSignedDocument(
 documentId,
 documentTimestamp
) {}

 // Option #3:
 saveSignedDocument(
 tenancyAgreementSignedDocumentID,
 tenancyAgreementSignedDocumentTimestamp
) {}

}

There are subjectivities to this, of course, but most people would agree that, when we have
a surrounding context that communicates its purpose well, we shouldn't need to
granularize the naming of every variable within that context. With this in mind, we can say
that Option #1 in the preceding code is too limited and may invite ambiguity and
that Option #3 is needlessly verbose as parts of its argument names are already provided
by its context. Option #2, however, with documentId and documentTimestamp, is just
right: it sufficiently communicates the purpose of the arguments. And this is all we need.

Purpose is absolutely central to any name. Without a description or an indication of
purpose, a name is merely decoration, and can often mean that users of our code are left
rummaging around between documentation and other pieces of code just to figure
something out. Therefore, we must remember to always consider whether our names
communicate purpose well.

Naming Things Is Hard Chapter 5

[90]

Concept
A good name indicates concept. A name's concept refers to the idea behind it, the intent in
its creation, and how we should think about it. For example, a function
named relocateDeviceAccurately not only tells us what it will do (its purpose) but
informs us about the concept surrounding its behavior. From this name, we can see that
devices are things that can be located and that locating such devices can be done at
different levels of accuracy. A relatively simple name can arouse a rich concept within the
minds of those who read it. This is part of the vital power of naming things: names are
avenues to understanding.

A name's concept, like its purpose, is strongly tied to the context in which it exists. Context
is the shared space that our names exist within. The other names that surround the name
we're interested in are absolutely instrumental in helping us understand its concept.
Imagine the following names together:

rejectedDeal

acceptedDeal

pendingDeal

stalledDeal

By these names, we immediately understand that a deal is something that can have at least
four different states. It is implied that these states are mutually exclusive and cannot apply
to a deal at the same time, although that is unclear at this time. We are likely to assume that
there are specific conditions related to whether a deal is pending or stalled, although we're
not sure what those conditions are. So, even though there is ambiguity here, we are already
starting to build up a rich understanding of the problem domain. That's just by looking at
names—without even reading the implementation.

We have spoken about context as a kind of shared space for names. In programming
vernacular, we usually say that things named together in one area occupy a single
namespace. A namespace can be thought of as a place where things share a conceptual area
with each other. Some languages have formalized the concept of a namespace into its own
language construct (often called a package, or simply a namespace). Even without such
formal language constructs, JavaScript still makes it possible to construct namespaces via
hierarchical constructs such as objects like so:

const app = {};
app.transactions = {};
app.transactions.dealMaking = {};
app.transactions.dealMaking.states = [
 'REJECTED_DEAL',
 'ACCEPTED_DEAL',

Naming Things Is Hard Chapter 5

[91]

 'PENDING_DEAL',
 'STALLED_DEAL'
];

Most programmers tend to think of namespaces as a very formal construct, but this isn't
often the case. Often, without knowing it, we are composing implied namespaces when we
write functions with functions within them. Instead of being delineated by a level of an
object hierarchy, the namespaces, in this case, are delineated by the scopes of our functions,
as follows:

function makeFilteredRequest(endpoint, filterFn) {
 return fetch(`/${endpoint}/`)
 .then(response => response.json())
 .then(data => data.filter(filterFn);
}

Here, we are making a request to an endpoint, via fetch, and before we return, we are
gathering the required data via tapping into the promise returned by fetch. To do this, we
use two then(...) handlers.

A promise is a natively provided class that provides a useful abstraction
for handling asynchronous actions. You can usually identify a promise by
its then method, like what we used in the preceding code. It's common
practice to either use promises or callbacks when tapping into
asynchronous actions. You can read more about this in Chapter 10,
Control Flow, in the Asynchronous control flow section.

Our first then(...) handler names its argument response, while the second one names its
argument data. Outside the context of makeFilteredRequest, these terms would be very
ambiguous. However, because we are within the implied namespace of a function related
to making a filtered request, the terms response and data are sufficient to communicate their
concepts.

The concepts communicated by our names, much like their purposes, are heavily
intertwined with the contexts in which they are specified, so it's important to consider not
only the name itself but everything that surrounds it: the complex mesh of logic and
behavior in which it resides. All code deals with some level of complexity, and a conceptual
understanding of that complexity is crucial in being able to harness it. So, when naming
something, it helps to ask yourself: How do I want them to understand this complexity? This is
relevant if you're crafting a simple interface to be consumed by other programmers, writing
a deeply embedded hardware driver, or creating a GUI for non-programmers to consume.

Naming Things Is Hard Chapter 5

[92]

Contract
A good name indicates a contract with other parts of the surrounding abstraction. A
variable, by its name, may indicate how it will be used or what type of value it contains and
what general expectations we should have about its behavior. It's not usually thought
about, but when we name something, we are, in fact, setting up a series of implicit
expectations or contracts that will define how people understand and use that thing. Here
are some examples of the hidden contracts that exist in JavaScript:

A variable prefixed with is, for example, isUser, is expected to be a Boolean type
(either true or false).
A variable in all-caps is expected to be a constant (only set once and immutable),
for example, DEFAULT_USER_EXPIRY.
Variables named plurally (for example, elements) are expected to contain one or
more items in a set-like object (for example, an array), whereas singularly named
variables (for example, element) are only expected to contain one item (not in a
set).
Functions with names beginning with get, find, or select are usually expected
to return something to you. Functions beginning
with process, build, or run are more ambiguous and may not do so.
Property or method names beginning with an underscore, such
as _processConfig, are usually intended to be internal to an implementation or
pseudo-private. They are not intended to be called publicly.

Whether we like it or not, all names carry with them the baggage of unavoidable
expectations regarding their values and behaviors. It's important to be aware of these
conventions so that we do not accidentally break the contracts that other programmers rely
on. Every convention will have an exception where it doesn't apply, of course, but
nonetheless, we should try to abide by them where possible.

Unfortunately, there isn't a canonical list where all of these contracts have been defined.
They are usually quite subjective and will depend on the code base. Nonetheless, where we
do encounter such conventions, we should follow them. As we mentioned in Chapter 2,
The Tenets of Clean Code, ensuring familiarity is a great way to increase the maintainability
of our code. And there is no better way to ensure familiarity than to adopt conventions that
other programmers have come to adopt.

Naming Things Is Hard Chapter 5

[93]

Many of these implied contracts are related to types, and JavaScript, as you may be aware,
is dynamically typed. This means the types of values will be determined at runtime, and
the type contained by any variable may be liable to change:

var something;
something = 1; // a number
something = true; // a boolean
something = []; // an array
something = {}; // an object

The fact that a variable can refer to many different types means that the contracts and
conventions implied by the names we adopt are even more important. There is no static
type checker to help us. We are left alone at the chaotic whim of ourselves and other
programmers.

Later in this chapter, we'll discuss Hungarian notation, a type of naming
that is useful in dynamically typed languages. Also, it's useful to know
that there are various static type checking and type annotating tools
available for JavaScript if you find dealing with its dynamism painful.
These will be covered in Chapter 15, Tools for Cleaner Code.

Contracts are not only important because of JavaScript's dynamically typed nature. They
are fundamentally useful in giving us confidence in how certain values behave and what
we can expect from them throughout the runtime of our program. Imagine if there was an
API with a method called getCurrentValue() that didn't always return the current value.
That would break its implied contract. Seeing names through the lens of contracts is quite a
mind-warper. Soon, you will begin to see contracts everywhere – contracts between
variables, between interfaces, and at the integration level between entire architectures and
systems.

Now that we've discussed the three characteristics of a good name (purpose, concept,
contract), we can begin to explore some anti-patterns, that is, ways of naming things that
we should try to avoid.

Naming anti-patterns
Much like the abstraction-building warnings of DRY and YAGNI, naming has its own
warnings and anti-patterns. There are many ways to compose a bad name, and nearly all of
them can be split into three broad naming anti-patterns: needlessly short names,
needlessly exotic names, and needlessly long names.

Naming Things Is Hard Chapter 5

[94]

Names are the initial lenses via which we and others will view the abstractions we build.
Therefore, it is vital to know how to avoid creating lenses that only end up obscuring
understanding and complicating things for other programmers. Let's begin by exploring
needlessly short names and how they can end up drastically limiting our ability to
understand what something does.

Needlessly short names
Names that are too short are usually employing either program-specific knowledge or
domain-specific knowledge that may not generalize well to the audience of the code. A lone
programmer may think it reasonable to write the following code:

function incId(id, f) {
 for (let x = 0; x < ids.length; ++x) {
 if (ids[x].id === id && f(ids[x])) {
 ids[x].n++;
 }
 }
}

We are able to discern the fact that it is related to IDs and its purpose is to conditionally
increment a specific object's n property within the ids array. Therefore, it is possible to
discern what it is doing on a functional level, but its meaning and intent are difficult to
grasp. The programmer has used single-letter names (f, x, n) and has also employed an
abbreviated function name (incId). Most of these names fail to fulfill the basic
characteristics that we desire from a name: to indicate purpose, concept, and contract. We
can only guess at these names' purposes and concepts by how they are being used. It would
vastly help to refactor this with more meaningful names:

function incrementJobInstancesByIdIfFilter(id, filter) {
 for (let i = 0; i < jobs.length; i++) {
 let job = jobs[i];
 if (job.id === id && filter(job)) {
 job.nInstances++;
 }
 }
}

Naming Things Is Hard Chapter 5

[95]

We now have a far clearer idea of what's going on. The arrays being iterated over contains
jobs. The function's purpose is to find jobs with a specified ID and conditional on that job
satisfying a specified filter. It increments the job's nInstances property by 1. Via these
new names, we already have a far richer conceptual understanding of this abstraction. We
now understand that jobs are items that can have any number of instances and that the
number of current instances is tracked via the nInstances property. Via the
lenses provided by the names, we have been able to understand the underlying problem
domain more clearly. Now, we can see that names are not just decoration or needless
verboseness; names are the very essence of your abstractions.

A needlessly short name is, in many ways, just an insufficiently meaningful name.
However, a name being short does not necessarily indicate a problem. The iterator
variable, i, which we used in the preceding code, is perfectly fine as it is a convention that
has established itself over decades. Programmers all over the world understand the
conceptual and contractual implications of it: it is used only to iterate through an array and
to access array elements at each stage of the iteration.

On the whole, and outside of rare exceptions such as our iteration variable, it is incredibly
important to avoid the deficit in meaning that is invited by short names. They are often
composed initially with haste or laziness and may even give the programmer attuned to
their meaning a sense of accomplishment. After all, being able to wield obscure logic is a
gift for the ego. But as we've covered, the ego is not a friend to clean code. Whenever you
feel the urge to use a short name, push back on the impulse and take the time to pick a
name that is richer in meaning.

Needlessly exotic names
Another avenue for the ego is in the proliferation of exotic names. Exotic names are those
that draw unnecessary attention to themselves and are often obscure or elusive in meaning,
like so:

function deStylizeParameters(params) {
 disEntangleParams(params, p => !!p.style).obliterate();
}

This is an ostensibly simple piece of behavior obscured by needlessly exotic names. We can,
with minimal effort, make a world of difference to the comprehensibility of these
abstractions with only a couple of tweaks:

function removeStylingFromParams(params) {
 filterParams(params, param => !!param.style).remove();
}

Naming Things Is Hard Chapter 5

[96]

Names, on the whole, should be boring. They should not draw attention to themselves.
They should sit there with only their plain meaning on display and nothing that makes
fellow programmers go, oh that's what it means! or hehe clever! Our egos may have their own
ideas about naming, but we should remember to limit the ego and think purely of the
people who must endure the task of trying to understand our code and the interfaces we've
created. On the whole, the following advice will keep us on the right track:

Avoid fancy or longer synonyms of regular words: For example, using kill
or obliterate instead of delete
Avoid words that don't exist: For example, deletify, elementize,
or dedupify
Avoid puns or clever insinuations: For example, using chemical element names
to refer to DOM elements

Being overly exotic risks alienating our audience. You may be able to easily understand the
names you've adopted, but that does not mean they are easily understood by others. The
wider programming community is incredibly diverse and has many different cultural and
linguistic backgrounds. It's best to stick to names that are descriptive and boring so that
your code is understandable to as many people as possible.

Needlessly long names
As we've already discovered, the needlessly short name is, in fact, a name without
sufficient meaning. The needlessly long name is, therefore, a name with too much meaning.
You may wonder how a name could have too much meaning. Meaning is a good thing, but
too much meaning crushed into a single name can only serve to confuse; for example:

documentManager.refreshAndSaveSignedAndNonPendingDocuments();

This name is hard to understand: is it refreshing and saving documents that are signed and
documents that are non-pending, or is it refreshing and saving documents that are both
signed and non-pending? It's unclear.

This long name gives us a clue that the underlying abstraction is needlessly complex. We
can split the name into its constituent parts to get a full grasp of its interface:

refresh (verb): The refreshing action that occurs on a document
save (verb): The saving action that occurs on a document
signed (adjective): The signed state of a document
non-pending (adjective): The non-pending state of a document
document (noun): The document itself

Naming Things Is Hard Chapter 5

[97]

We have a few different things happening here. With names this long, a good guideline is
to refactor the underlying abstraction so that we only need a name with, at most, one verb,
one adjective, and one noun. For example, we could take our long name and split its
function into four distinct functions:

documentManager.refreshSignedDocuments();
documentManager.refreshNonPendingDocuments();
documentManager.saveSignedDocuments();
documentManager.saveNonPendingDocuments();

Alternatively, if the intent is to perform actions on documents that carry multiple states
(SIGNED and NON_PENDING), then we could implement a method like this for refreshing
(and a similar one for the saving action):

documentManager.refreshDocumentsWithStates([
 documentManager.STATE_SIGNED,
 documentManager.STATE_NON_PENDING
]);

The point is that long names are a clue to a broken or confused abstraction. Making a name
more understandable usually goes hand in hand with making an abstraction more
understandable.

As with short names, the problem is not the length of the name itself: it is what the length
usually indicates. With long names, what is indicated is crushing too much meaning into a
single name, indicating a confused abstraction.

Consistency and hierarchy
So far, we've talked about the three most important characteristics of a name: purpose,
concept, and contract. One of the easiest ways to bestow these characteristics upon your
names is to use consistency and hierarchy to your benefit. Consistency here refers to using
the same pattern of naming across many different names within a given area of code.
Hierarchy, on the other hand, refers to the way we structure and put together different
areas of code to form a holistic architecture. Together, they allow us to give a name a rich
context that can be used to make strong inferences about its purpose, concept, and contract.

This is best explained by looking at the JavaScript directory of a fictional app. We have a
directory full of files, like so:

app/
|-- deepClone.js
|-- deepEquality.js

Naming Things Is Hard Chapter 5

[98]

|-- getParamsFromURL.js
|-- getURL.js
|-- openModal.js
|-- openModalWithTemplate.js
|-- setupAppWithCustomConfig.js
|-- setupAppWithDefaultConfig.js
|-- setURL.js
|-- ...

There is no hierarchy, so we can only discern context from the names themselves and what
they appear to relate to. For example, there is a getURL and a setURL file, which both
presumably relate to URLs and could be considered utilities. It would, therefore, be helpful
to have these occupy the same part of the hierarchy or a shared namespace, such as
app/utils/url. We can also refactor other parts of our directory structure into a more
contextually rich hierarchy:

app/
|-- setup/
| |-- defaultConfig.js
| |-- setup.js
|-- modal/
| |-- open.js
| |-- openWithTemplate.js
|-- utils/
 |-- url/
 | |-- getParams.js
 | |-- get.js
 | |-- set.js
 |-- obj/
 |-- deepEquality.js
 |-- deepClone.js

Immediately, things are clearer. The cognitive strain of understanding all of those files and
what they do is now lessened by each file having its own rich context. You'll also notice that
we've been able to simplify the names at various parts of the hierarchy; for example, we
have renamed openModal.js to modal/open.js. This is an additional benefit of
employing hierarchies of names: at each level of naming, we can simplify and shorten the
names, lessening comprehension time.

Names within a hierarchy naturally receive a portion of their meaning
from the context that they reside in. This means that the name itself does
not need to contain all the meaning. Always look for opportunities to
provide a common context to similar abstractions so that the burden of
comprehension is eased.

Naming Things Is Hard Chapter 5

[99]

Just like we have provided meaning via the hierarchy of a directory structure, we can also
provide meaning within the code itself. Within a function, for example, the names within
will naturally receive a lot of their context from the function's name itself and its situation
within a larger module. Consider how it would be quite unusual to write code like this:

function displayModalWithMessage(
 modalDisplayer_Message,
 modalDisplayer_Options
) {
 const modalDisplayer_ModalInstance = new Modal();
 modalDisplayer_ModalInstance.setMessage(modalDisplayerMessage);
 modalDisplayer_ModalInstance.setOptions(modalDisplayerOptions);
 modalDisplayer_ModalInstance.show();
 return modalDisplayer_ModalInstance;
}

The names within the function are needlessly prefixed with contextual information (such
as modalDisplayer_...) that the reader of the code can already get from the function
itself. Typically, we write code that takes advantage of where a variable sits and the
meaning that it gets from its context. It would be far more normal for the preceding code to
appear like so:

function showModalWithMessage(message, options) {
 const modalInstance = new Modal();
 modalInstance.setMessage(message);
 modalInstance.setOptions(options);
 modalInstance.show();
 return modalInstance;
}

In an previous chapter, we discussed the principle of abstraction and how the
implementation of a module should be independent of its interface. We can see that this
principle is expressed in this function. The scope of a function (its implementation) should
be entirely independent (and even ignorant!) of its interface. So, arguably, it's not the
business of the modalInstance variable to know which function it resides in and so the
former naming technique, which prefixed it with modalDisplayer_..., would be in
violation of the principle of abstraction.

Thinking about hierarchies in terms of abstraction is key. Hierarchies aren't just useful from
an organizational perspective. They should, ideally, be a reflection of the layers of
abstraction that reside within our code. Higher-level abstractions are at the top of the
hierarchy, and the deeper we go into the hierarchy, the more low-level we will get. This is a
good general rule to adopt: make your hierarchy reflect your abstractions.

Naming Things Is Hard Chapter 5

[100]

Naming things with consistency complements this rule. Within a single layer of our
abstraction, that is, within a single level of the hierarchy, we should adopt common naming
patterns so that the reader of our code can easily navigate and understand its concepts. For
example, if we are creating an interface that will be used to add and remove items from a
data structure, then we should avoid naming similar actions in an inconsistent manner.
Consider the following class schematic:

class MyDataStructure {
 addItem() {}
 pushItems() {}
 setItemIfNotExists() {}
 // ...
}

Very confusingly, this abstraction is offering up three different variations of the concept of
adding to the data structure: adding, pushing, and setting. These names are all, in fact,
referring to the same concept, so we should adopt a common naming pattern, such as the
following:

class MyDataStructure {
 addItem() {}
 addItems() {}
 addItemIfNotExists() {}
 // ...
}

This interface is now far easier to understand. There is less ambiguity and less cognitive
burden in using it. As a user of this abstraction, I would no longer need to remember
whether I should be using add, set, or push. Consistency is a characteristic that results from
the avoidance of needless differences. Inconsistencies are jarring and so they should only be
used to demarcate genuine functional or conceptual differences.

Techniques and considerations
JavaScript, due to its ever-changing nature, has gathered a huge variety of conflicting
conventions. Many of these conventions garner strong opinions either in support or in
disapproval. We have, however, settled on some basic conventions around naming that are
more or less globally accepted:

Constants should be named with underscore-separated capitals; for
example, DEFAULT_COMPONENT_COLOR
Constructors or classes should be camel-cased with an initial uppercase letter; for
example, MyComponent

Naming Things Is Hard Chapter 5

[101]

Everything else should be camel-cased with an initial lower case letter; for
example, myComponentInstance

Apart from these foundational conventions, the decision of naming is left largely up to the
creativity and skill of the programmer. The names you end up employing will be largely
defined by what problems you're solving. Most code will inherit naming conventions from
the APIs it interfaces with. Using the DOM API, for example, will usually mean that you
adopt names such as element, attribute, and node. Many of the popular frameworks available
will tend to dictate the names we adopt as well. It is absolutely useful and necessary to
adopt such conventional paradigms from the ecosystem that you're working in, but it's also
useful to have some foundational techniques and concepts under your belt so that you can
craft beautifully named abstractions, even in new and alien problem domains.

Hungarian notation
JavaScript is a dynamically typed language, meaning that the type of a value will be
determined at runtime and that the type contained by any variable may be liable to change
during runtime. This is in contrast to statically-typed languages, which have compile-time
warnings related to your usage of types. The implication of this is that, as JavaScript
programmers, we need to be much more careful in the way we employ types and how we
name our variables.

As we know, when we name things, we are implying a contract. This contract will define
how other programmers make use of that thing. This is part of the reason why, in various
languages, something called Hungarian notation has been very popular. It involves
including type annotations in a name itself, like so:

Instead of button, we may use elButton or buttonElement
Instead of age, we may use nAge or ageNumber
Instead of details, we may use objDetails or detailsObject

Hungarian notation is useful for the following reasons:

Certainty: It provides more certainty of a name's purpose and contract to the
readers of your code
Consistency: It leads to a more consistent naming approach
Enforcement: It may lead to better-enforced typing conventions within your code

Naming Things Is Hard Chapter 5

[102]

However, it also has the following disadvantages:

Runtime changes: If the underlying types are changed by bad code at runtime
(for example, if a function mutates nAge into a string), then the name ceases to be
useful and may only mislead us.
Codebase rigidity: It may lead to a rigid code base where it's hard to make
appropriate changes to types. Refactoring old code may become more
burdensome.
Lack of meaning: Knowing only a variable's type does not inform us as to its
purpose, concept, or contract as much as a truly descriptive non-typed variable
name would.

In the landscape of JavaScript, we see Hungarian notation used in a few places: the most
common is when naming a variable that may refer to a DOM element. The notations for
these names will usually be in the form elHeader, headerEl, headingElement, or even
$header. The latter, with a dollar prefix, is most famously used in the jQuery library. Its
fame there led to it being a standard in various other places. Chromium DevTools, for
example, employs a dollar prefix for element references and methods related to querying
the DOM (for example, $$(...) is aliased to document.querySelectorAll(...)).

Hungarian notation is something that can be utilized partially, where you're concerned
there may be ambiguity. For example, you can use it where you have both a complex type
and a primitive type referring to the same concept within a single scope:

function renderArticle(name) {
 const article = Article.getByName(name);
 const title = article.getTitle();
 const strArticle = article.toString();
 // ...
}

Here, we have an article variable that refers to an instance of the Article class. In
addition to this, we also want to use a string representation of our article. To get around a
potential naming conflict, we have used an str prefix to indicate that the variable refers to
a string value. In isolated cases like these, Hungarian notation can be useful. You don't
need to use it exhaustively, but it's a useful tool to have up your sleeve.

Naming Things Is Hard Chapter 5

[103]

Naming and abstracting functions
Most abstractions you end up crafting in JavaScript will be manifested within functions.
Even within grand architectures, it is individual functions and methods that do the work,
and it is in their conception that a good abstraction begins to reveal itself. It is, therefore,
worth thinking quite deeply about how we should name our functions and what factors we
should take into consideration when doing so.

A function's name should typically use what, in grammar, is called the imperative form.
The imperative form is what we employ when we are giving instructions, such as walk to the
shop, buy bread, stop there!.

Although we usually use the imperative form when naming functions,
there are exceptions. For example, it is also conventional to prefix
functions that return Boolean values with is or has; for
example, isValid(...). When creating constructors (which are
functions), we name them according to the instance they'll produce; for
example, Route or SpecialComponent.

The direct nature of the imperative form is the most understandable and readable in the
context of programming. To find the correct imperative form for your specific problem, it's
best to imagine the act of giving a military order, that is, don't mince your words and say
exactly what it is that you want to occur:

If you want a prompt to be displayed, use displayPrompt()
If you want elements to be removed, use removeElements()
If you want a random number between x and y,
use generateRandomNumber(x, y)

Often, we wish to qualify our instructions. If you were to issue an instruction to a person,
such as find my bicycle, you would likely further qualify that instruction with information
such as it's blue and it's missing its front wheel. It is important, however, not to let a
function's name get bogged down with these qualifications. The following function would
be an example of this:

findBlueBicycleWithAMissingFrontWheel();

As we mentioned earlier, a needlessly long name is a sign of a bad abstraction. When we
see this type of over-qualification, we should take a step back and reconsider. Here, it's
important to draw a line between what is sensible in spoken language and what is sensible
when programming. In programming, functions are ways of abstracting common behavior
that can be adjusted or configured, as needed, via arguments.

Naming Things Is Hard Chapter 5

[104]

So, it is via arguments that we should be expressing the qualifications of blue and missing
front wheel. And we could, for example, express these as a single object argument like so:

findBicycle({
 color: 'blue',
 frontWheel: 'missing'
});

By moving the qualifying parts of a function's name into its arguments, we are producing a
cleaner and more comprehensible abstraction. This has the added benefit of increasing the
configurability of the abstraction, thereby providing the user with more possibilities.

In our case, we may wish to give users the ability to find objects other than bicycles. To
cater to this, we would make the name of the function more generic (for
example, findObject) and shift the qualifier to the arguments by adding a new option
property (for example, type), like so:

findObject({
 type: 'bicycle',
 color: 'blue',
 frontWheel: 'missing'
});

Something curious happens at this stage of the process. We have, correctly, moved our
various qualifiers to the arguments of our function, expanding the usefulness and
configuration of our abstraction. But now what we have is an abstraction that is doing
many things, so at some point, it may be prudent to take a step back and build higher-level
abstractions to encapsulate these different behaviors. In our case, we could achieve this via
functional composition, like so:

const findBicycle = config => findObject({ ...config, type: 'bicycle'
});
const findSkateboard = config => findObject({ ...config, type: 'skateboard'
});
const findScooter = config => findObject({ ...config, type: 'scooter'
});

Above all, a function is a unit of behavior. As the SRP tells us, it's important to ensure that
they are only doing one discernible thing. When considering these things or units of
behavior, it's important to think about what a function does from the perspective of those
who'll use it. Technically, it's highly likely that our composed findScooter function does
all manner of things beneath the surface. It may be incredibly complex. But at the layer of
abstraction where it will be used, it can be said to only do one thing, and that is what's
important.

Naming Things Is Hard Chapter 5

[105]

Three bad names
If you're ever stuck for a name, there's a clever approach you can use to unstick yourself.
When you have an abstraction or variable that needs a name, look carefully at what it does
or what it contains and then come up with at least three bad names that describe it. Don't
worry about the abstraction or interface you wish to provide for now; just imagine you
were describing the functionality to someone who doesn't know anything about the
codebase. Be direct and descriptive.

For example, let's say we're embedded in the part of the code base that deals with setting
up new user-names. We need to check that the username does not match a set of
specifically forbidden words, such as admin, root, or user. We want to write a function to
do this but we're not sure what name to pick. So, we decide to try the three bad
names approach. This is what we come up with:

matchUsernameAgainstForbiddenWords

checkForForbiddenWordConflicts

isUsernameReservedWord

Coming up with three less-than-perfect names is a lot easier than spending many minutes
trying but failing to come up with the perfect name. It doesn't matter how bad these three
names are. What's important is that we can come up with at least three. Now, having
seeded the set of possibilities, we're free to compare and contrast the names we've found
and mix and match them to find the most descriptive and direct way of describing the
purpose of our function. In this case, we may have eventually decided on a name adapted
from those three possibilities: isUsernameForbiddenWord. We wouldn't have got there if
it wasn't for the three bad names approach.

Summary
In this chapter, we have wrestled with the difficult art of naming things. We've discussed
the characteristics of a good name, that is, purpose, concept, and contract. We've walked
through examples of how to weave these characteristics into our names and what anti-
patterns to steer clear of. We've also discussed the importance of hierarchy and consistency
in our pursuit of clean abstractions. Finally, we have covered several helpful techniques
and conventions that we can utilize when we're having a difficult time naming things.

In the next chapter, we will, at last, begin to delve into the innards of the JavaScript
language itself and learn how to wield its constructs and syntax in a way that yields truly
clean code.

2
Section 2: JavaScript and Its

Bits
In this section, we'll do a deep dive into JavaScript's internals and language constructs. This
will give us a really solid foundational understanding of how to use JavaScript's best parts
to craft clean code.

This section contains the following chapters:

Chapter 6, Primitives and Built-In Types
Chapter 7, Dynamic Typing
Chapter 8, Operators
Chapter 9, Parts of Syntax and Scope
Chapter 10, Control Flow

6
Primitive and Built-In Types

So far, we have explored the meaning of clean code from several different perspectives.
We've explored how the code we write allows our users to wield remarkable complexity by
leveraging abstractions. We've gone on to discuss the tenets of clean code, such as reliability
and usability, and the various traps and challenges to watch out for when pursuing these
goals.

In this chapter, we'll be exploring the JavaScript language itself, in great detail, including
both the more common language constructs and the more obscure and confusing aspects.
We'll be applying our accrued wealth of knowledge about clean code to all these parts of
the language and will build an understanding of JavaScript that's tailored purely to the
creation of clean code.

We'll begin by looking at the most atomic part of JavaScript: the primitive values that serve
as the building blocks for any program. Then, we'll move on to non-primitive values,
known as objects. In our exploration of these types, we will, through examples, be
exposing the semantics that make each type unique and the pitfalls to avoid in their usage.
The crucial knowledge that we'll gain in this chapter will be applied in later chapters as we
build up a truly complete knowledge of what it means to write clean code in JavaScript.

By the end of this chapter, you should feel comfortable in the following topic areas:

Primitive types
Objects
Functions
Arrays and iterables
Regular expressions

Primitive and Built-In Types Chapter 6

[108]

Primitive types
A primitive type in JavaScript is any value that is not an object and thus does not have any
methods or properties. There are seven primitive types in JavaScript:

Number
String
Boolean
Undefined
Null
BigInt
Symbol

In this section, we'll explore the common characteristics among these primitives and delve
into each individual type to explore how it works and what potential hazards exist in its
usage. We'll gain an appreciation for how the JavaScript language itself is just a set of
distinct abstractions that, when wielded masterfully, can make easy work of any problem
domain.

Immutability of primitives
All primitive values are immutable, meaning that you cannot mutate their values. This is a
core part of their primitiveness. You cannot, for example, change the number value of 3.14
to 42, or change the value of a string to its uppercased variation.

But I can change the value of a string to its uppercased variation! You
may be confused right now if you recall being able to do this. But there is
a crucial distinction to be made here between the reassignment of
variables to new primitive values, which is fully possible (and likely what
you're remembering), and the mutation of primitive values, which is not
possible.

When we reassign a variable, giving it a new value, we are not changing the value itself; we
are only changing which value the variable refers to, as shown here:

let name = 'simon';
let copy = name;

// Assign a new value to `name`:
name = name.toUpperCase();

Primitive and Built-In Types Chapter 6

[109]

// New value referred to by name:
name; // => "SIMON"

// Old value remains un-mutated:
copy; // => "simon"

Note how copy has remained lowercase. The primitive value simon has not been mutated;
instead, a new primitive value has been derived from it, via the toUpperCase method, and
then assigned to the variable that previously held the lowercase variant.

Primitive wrappers
You'll remember that we mentioned that primitive values don't have methods as they are
not objects. So, how exactly are we able to call toUpperCase on the preceding string? Is
that not a method? Yes, it is. And to allow us to access this method, JavaScript wraps
primitive values in their respective wrapper objects at the time of property access. This
occurs for all primitive values, apart from null and undefined.

Primitive values, in these moments of being wrapped, remain immutable but, via their
wrapped instance, provide access to properties and methods. A string value would be
wrapped in a String instance, while a number value would be wrapped in a Number
instance. The same would occur for all other non-null and non-undefined primitives. You
are free to instantiate these wrapper objects yourself: you will observe that they no longer
behave like primitives, though; they are objects, and, as such, you can add and mutate
properties on them:

const name = new String('James');

// We can add arbitrary properties, since it is an object:
// (Warning: this is an anti-pattern)
name.surname = 'Padolsey';
name.surname; // => "Padolsey"

If you require an object to add custom properties to, it is best to use a
plain object. Using wrapper objects for anything other than wrapping
their primitive values is an anti-pattern as it would not be expected by
other programmers. Nonetheless, it is useful to observe and remember the
differences between primitives and their respective wrapper objects.

Primitive and Built-In Types Chapter 6

[110]

Invoking a wrapper constructor (for example, Number, String, and so on) as a regular
function has a unique behavior. Instead of returning a new wrapper instance, it will cast the
value to a particular type and return a regular primitive. This is quite useful when you're
casting one type to another:

// Cast a number to a string:
String(123); // => "123"

// Cast a string to a number
Number("2"); // => 2

// Cast a number to a boolean
Boolean(0); // => false
Boolean(1); // => true

Invoking wrapper constructors as functions, as we have done here, is a useful casting
technique, though it's not the only one. We'll cover typecasting and coercion in a lot more
detail in Chapter 7, Dynamic Typing.

The falsy primitives
In JavaScript, all the values in Boolean contexts will evaluate to either true or false. To
describe this behavior, we usually refer to values as either truthy or falsy. To determine the
truthiness of a value, we can simply pass it to the Boolean function:

Boolean('hi'); // => true
Boolean(0); // => false
Boolean(42); // => true
Boolean(0.1); // => true
Boolean(''); // => false
Boolean(true); // => true
Boolean(null); // => false

There are only eight falsy values in JavaScript, and all of them are primitive types:

null

undefined

+0 or -0 (zero, a number)
false (a Boolean)
"" (an empty string)
0n (zero, a BigInt)
NaN (not a number)

Primitive and Built-In Types Chapter 6

[111]

All values that are not falsy are, therefore, truthy. Throughout this and the next chapter, we
will be exploring the implications of these truthy and falsy values. For now, it's only
important to know that the preceding falsy values will, when used in conditional or logical
contexts, behave as if they were false. A falsy value, when used in an if statement, for
example, would act the same as if it were false:

if (0) {
 // This will not run. 0 is falsy.
}
if (1) {
 // This will run. 1 is truthy.
}

The existence of these falsy values means that we must be wary of how we check for certain
conditions. It's easy to fall into the trap of testing for the existence of a certain value state by
using only its truthiness to determine existence. For example, let's say that we need to be
able to check for the age of a person:

if (person.age) {
 processIdentity(person);
}

This is a contrived example, but we can imagine a system in which the identities of
individuals need to be processed somehow, perhaps through a medical application.
Checking for the existence of the age property is not going to do what's intended if the age
happens to be 0. Perhaps the system needs to cater to the eventuality of a newborn baby
being entered into the system, but suddenly it breaks because the age is 0. In such
scenarios, it's best to be preemptively explicit, even if you don't expect odd falsy values. In
this context, we likely want to check for either null or undefined, so we should explicitly
do that:

if (person.age === null || person.age === undefined) {
 processIdentity(person);
}

This code is far more resilient to the possible variabilities of the age property. We could
also, perhaps, be more in line with our requirements and check only for the specific
characteristics that we are interested in, such as that the age property is a number within
specific bounds. The point is that it's better to be explicit in Boolean contexts such as if
statements so that you don't run into an unexpected falsy value.

Primitive and Built-In Types Chapter 6

[112]

Number
The number primitive type is used to express numerical data. It stores this data in
the double-precision 64-bit floating-point format (IEEE 754). 64 bits here refers to there
being 64 binary digits available to store information. The entire 64-bit format that's used in
the IEEE 754 standards can be broken down into three chunks:

1 bit for the sign of the number being represented: Whether the number is
positive or negative
11 bits for the exponent of the number: This tells us where the radix or decimal
dot resides
52 bits for what's termed the fraction or significand: This tells us the integer
value

A side effect of this floating-point formation means that there are
technically two zeros: positive zero (+0) and negative zero (-0).
Thankfully, in JavaScript, you don't have to be explicit when checking for
these values. Both will return true when compared with the strict equality
operator (+0 === -0) and both are considered falsy.

Technically, there are 53 bits available (not 52) for the expression of an integer value as the
leading bit of the significand field resides within the exponent field. This is an important
clarification as it has a direct effect on how much precision we can get from JavaScript
numbers. Having 53 bits available to express an integer value means that any numbers
greater than 253-1 are considered unsafe. These safety limits are available as constants on the
Number object:

Integers larger than 253 or 9007199254740991 (Number.MAX_SAFE_INTEGER)
Integers smaller than -253 or -9007199254740991
(Number.MIN_SAFE_INTEGER)

The loss of precision beyond these bounds can be observed if we try to perform addition on
the upper limit:

const max = Number.MAX_SAFE_INTEGER;
max + 1; // => 9007199254740992 (correct)
max + 2; // => 9007199254740992 (incorrect)
max + 3; // => 9007199254740994 (correct)
max + 4; // => 9007199254740996 (incorrect)
// ... etc.

Here, we can see that the evaluated additions are incorrect. Beyond MAX_SAFE_INTEGER,
all mathematical operations will be similarly imprecise.

Primitive and Built-In Types Chapter 6

[113]

It is still possible to express values larger than MAX_SAFE_INTEGER within
JavaScript. Many values up to 21024 (Number.MAX_VALUE) can be
expressed, but many cannot. Therefore, it is considered very unwise to
attempt to express numbers beyond Number.MAX_SAFE_INTEGER.

To sum this up, any values between Number.MIN_SAFE_INTEGER and
Number.MAX_SAFE_INTEGER are safe to use and will provide integer precision, while
values beyond these bounds should be considered unsafe. If we feel ourselves needing an
integer outside of these bounds, then we can use JavaScript's BigInt primitive:

const max = BigInt(Number.MAX_SAFE_INTEGER)
max + 1n; // => 9007199254740992n (correct)
max + 2n; // => 9007199254740993n (correct)
max + 3n; // => 9007199254740994n (correct)
max + 4n; // => 9007199254740995n (correct)
// ... etc.

We'll explore the BigInt primitive further in a later part of this section. For now, just
remember to always consider the largeness of your numbers and whether they can be fully
accommodated by JavaScript's Number type. It's also important to consider the precision of
decimal values (such as in fractions) as well. When expressing decimals in JavaScript, you'll
likely encounter issues like this:

0.1 + 0.2; // => 0.30000000000000004

This is due to inherent mechanism by which fractions are expressed in the floating-point
standard. You can imagine that if we were interested in querying whether a decimal is
equal to, greater than, or less than another value, it would be as simple as using the
following code:

const someValue = 0.1 + 0.2;
if (someValue === 0.3) {
 yay();
}

But yay() will never run. To get around this problem, there are two options. The first
involves something called the epsilon. The epsilon is the margin of error inherent to
floating-point math, and JavaScript makes this available to use as Number.EPSILON:

Number.EPSILON; // => 0.0000000000000002220446049250313

Primitive and Built-In Types Chapter 6

[114]

This is a very tiny number, but it must be taken into account if we are to have a hope of
doing basic mathematical operations on decimals. If we wish to compare two numbers, we
can simply subtract them from each other and check that the margin is less than the
EPSILON:

const someValue = 0.1 + 0.2;
if (Math.abs(someValue - 0.3) < Number.EPSILON) {
 // someValue is (effectively) equal to 0.3
}

The other approach we can take is to convert any decimals we're dealing with into integers
expressed by either Number or BigInt types. So, if we have a need to represent values from
0 to 1 with a precision of eight decimal places, for example, then we can simply multiply
these values by 100,000,000 (or 108):

const unwieldyDecimalValue = 0.12345678;

// We can use 1e8 to express Math.pow(10, 8)
unwieldyDecimalValue * 1e8; // => 12345678

Now, we are free to conduct integer math on these values and divide them back down into
their fractions when done. It's crucial to note that any decimal value longer than 15 digits
cannot be expressed in JavaScript's Number type, so you'll need to explore other options.
JavaScript currently doesn't have a native BigDecimal type, but there are many third-party
libraries available that fulfill a similar purpose (you can easily find these online).

If you ever find yourself needing to operate on large or very precise
numbers in JavaScript, or if your code concerns sensitive matters such as
finance, medicine, or science, it's absolutely crucial to take the time to fully
understand what levels of precision you require and whether JavaScript
can natively support those needs.

There's one more topic to discuss under the Number type, and that is NaN. NaN is a primitive
that technically belongs to the Number type. It represents a failure to parse something as a
number; for example, Number('wow') evaluates to NaN. Since typeof NaN is a number,
we should check for a valid number in the following way:

if (typeof myNumber === 'number' && !isNaN(myNumber)) {
 // Do something with your number
}

The value NaN can create a headache when its existence is not foreseen. It'll usually crop up
in areas where you're attempting to cast strings to numbers or where this happens
implicitly (coercion).

Primitive and Built-In Types Chapter 6

[115]

We'll be covering the topic of coercion, casting, and detection more in the
next chapter. This will include a section where we get into the complexity
of NaN and compare isNaN(), the global function, to the slightly different
Number.isNaN(). For now, it's only important to appreciate that NaN is
its own distinct value and is itself, oddly, considered a number within
JavaScript.

There is another value encapsulated by the Number type that is not a normal
number: Infinity. You will receive Infinity when you attempt to do mathematical
operations such as dividing by 0:

100/0; // => Infinity

Infinity, like NaN, is a globally available primitive value that you can reference and check
for:

100/0 === Infinity; // => true

There is also -Infinity, which is technically a distinct value:

100/-0; // => -Infinity
-Infinity === Infinity; // => false

Infinity, like NaN, is of the Number type, so when passed to the typeof operator, it will
evaluate to "number":

typeof Infinity; // => "number"

Outside of Infinity, -Infinity, and NaN, all values that are of the Number type can be
considered regular everyday numbers. Overall, and for most use cases, the Number type is
very simple to use and operate on. It is, however, vital to know about its limitations, many
of which we've covered here so that you can make an informed decision about when it may
not be appropriate to use.

String
The String type in JavaScript allows us to express sequences of characters. It is usually
used to encapsulate words, sentences, lists, HTML, and many other forms of text-like
content.

Primitive and Built-In Types Chapter 6

[116]

Strings are expressed by delimiting sequences of characters with either single quotes,
double quotes, or backticks:

// Single quotes:
const name = 'Titanic';

// Double quotes:
const type = "Ship";

// Template literals (back-ticks):
const report = `
 RMS Titanic was a British passenger liner that sank
 in the North Atlantic Ocean in 1912 after the ship
 struck an iceberg during her maiden voyage.
`;

Only backtick-delimited strings, known as template literals (or template strings), can
occupy multiple lines. Single quote- or double quote-delimited strings can technically be
spread along multiple lines as well, but this is only achieved by escaping their invisible
newline characters (with a \ character), which effectively removes the newlines:

const a = "example of a \
string with escaped newline \
characters";

const b = "example of a string with escaped newline characters";

a === b; // => true

Nowadays, template literals are preferred as they retain newlines and allow us to
interpolate arbitrary expressions, like so:

const nBreadLoaves = 4;
const breadLoafCost = 2.40;

`
 I went to the market and bought ${nBreadLoaves} loaves of
 bread and it cost me ${nBreadLoaves * breadLoafCost} euros.
`

Strings come with a number of curious challenges once your usage exceeds the most simple
use cases. Under the surface, the humble string is masking a miraculous scale of complexity
in the form of Unicode.

Primitive and Built-In Types Chapter 6

[117]

Unicode is an industry standard for the encoding, representation, and
handling of text that's used in writing systems around the world. The
Unicode standard contains over 130,000 characters, including all of your
favorite emojis.

To step beneath the veneer of the String abstraction slightly, we can say that Strings in
JavaScript are really just an ordered sequence of 16-bit unsigned integers. Each of these
integers is interpreted as a UTF-16 code unit. UTF-16 is a type of encoding for the Unicode
character set. Using it, we are able to express hundreds of thousands of valid Unicode code
points. This means that we can express emojis, many languages, and a myriad of Unicode
oddities via our strings:

A Unicode code point is a character (such as the letter B, a question mark, or a smiling
emoji). We can express a code point by using one or more UTF-16 code units. Most code
points that we use from day to day only need a single code unit. These are known as
scalars. There are, however, quite a few Unicode code points that require a pair of code
units (known as a surrogate pair). The panda emoji is an example of such a surrogate pair:

Since UTF-16 only has 16 bits to work with, it has to use pairs of 16-bit integers to express
some characters. Naturally, if we're using UTF-32 encoding (with 32 bits to play with), then
we'd be able to express the panda emoji in a single 32-bit integer.

Here, we've used charCodeAt() to determine the individual UTF-16 code units of the
Panda emoji and we've found that these are the 55,357th and 56,380th decimal code units
within Unicode. Since there are so many code units, it is simpler and more convenient to
use hexadecimal digits to express them, so we can say that the panda emoji is expressed by
code units U+D83D and U+DC3C (Unicode hexadecimal values are conventionally prefixed
with U+).

Primitive and Built-In Types Chapter 6

[118]

In addition to surrogate pairs, there is another type of combination that's useful to know
about. The Combining Code Point enables certain traditional non-combining code points to be
augmented into new characters. Examples of this include traditional Latin characters that
can be augmented with accents or other augmentations, such as the combining tilde:

We've chosen to express this particular combining character via a Unicode escape sequence
(\u0303). The format of \uXXXX allows us to express Unicode code units between U+0000
and U+FFFF within JavaScript strings.

The range of Unicode between U+0000 and U+FFFF is known as the Basic
Multilingual Plane (BMP) and includes the most commonly used
everyday characters.

Our panda emoji, as we've already seen, is quite an obscure symbol. It does not exist on the
BMP and is thus expressed by a surrogate pair of two UTF-16 code units. We can express
these individually in JavaScript strings via two Unicode escape sequences:

More obscure and ancient symbols are found in the supplementary (or astral) planes
between U+010000 and U+10FFFF. The escaping format of \uXXXX does not have enough
slots for us to express these. Symbols within the astral planes require at least five
hexadecimal digits to express, so we must use the more recently introduced escape
sequence format of \u{X}. This provides up to six hexadecimal slots (\u{XXXXXX}) and can
thus express over 1 million different code points. Using this type of escape sequence, we
can express our Panda emoji directly via its 32-bit representation (U+1F43C):

The newer \u{X} escape sequence is really convenient and goes some way in making
Unicode less burdensome to use than JavaScript. But there is still a little more complexity to
explore. Surrogate pairs and combining characters are examples where UTF-16 code units
are combined to produce individual symbols. On top of this, there are longer sequences
called grapheme clusters. These are used to express combinations of code points that can
be combined to create an aggregate symbol:

Primitive and Built-In Types Chapter 6

[119]

Wow! Unicode is a pretty incredible feat of engineering, but it can make things complicated
for us. The ability to combine Unicode in all of these ways (combining characters, surrogate
pairs, and grapheme clusters) creates a challenge for us. JavaScript strings, as you may
know, have a length property. This property returns the number of code units in a given
string (that is, the number of 16-bit integers in the entire sequence). For most strings, this is
straightforward:

'fox'.length; // => 3
'12345'.length; // => 5

However, as we know, we are able to combine code units to create code points and we are
also able to combine code points to create grapheme clusters. This means the length
property, which is only concerned with the 16-bit code units, can give us unexpected
results:

The smiling-face emoji is composed of two code units, so JavaScript correctly tells us this
string has a length of 2. But this may not be what we expect or desire. It's even more
challenging when we're dealing with grapheme clusters that may use a dozen different
code units to express a single symbol.

Watch out when attempting to truncate or establish the width of a piece of
text within a UI using only its length property. Due to the fact that many
Unicode symbols may be expressed by multiple code units, using length
alone is not reliable.

Primitive and Built-In Types Chapter 6

[120]

Throughout this section, we've explored the tricky domain of Unicode. Va our new
understanding of it, we're now far more empowered to cleanly work with strings in
JavaScript. Excluding the complexity of Unicode, the behavior of strings in JavaScript is
rather intuitive and shouldn't cause many headaches as long as we use them in a way that
clearly communicates our intent.

Boolean
The Boolean primitive type in JavaScript is used to represent either true or false. These
polar opposites are its only values:

const isTrue = true;
const isFalse = false;

Semantically, Booleans are used to represent real-life or problem domain values that can be
considered on or off (0 or 1), for example, whether a feature is enabled, or whether the user
is over a certain age. These are Boolean characteristics and so are appropriate to express via
Boolean values. We can use such values to dictate control flow within a program:

const age = 100;
const hasLivedTo100 = age >= 100;

if (hasLivedTo100) {
 console.log('Congratulations on living to 100!');
}

The Boolean primitive, just like String and Number, can be manually wrapped in a
wrapper instance like so:

const isTrueObj = new Boolean(true);

Note that, once you do this, Boolean will behave just like any other object in conditional
statements. So, the following conditional statement will succeed, even though the wrapped
primitive value is false:

const isFalseObj = new Boolean(false);

if (isFalseObj) {
 // This will run
}

Primitive and Built-In Types Chapter 6

[121]

The Boolean instance here is not equivalent to its primitive value; it merely contains its
primitive value. isFalseObj will behave just like any other Object in a Boolean context,
resolving to true. Manually wrapping a Boolean like this is not especially useful and
should be avoided as an anti-pattern in most programs as it doesn't behave according to
Boolean semantics and may produce unexpected results.

Boolean primitives are returned by JavaScript's logical operators such as
greater than or equal to (>=) or strict equality (===). We'll cover these in
more detail in Chapter 8, Operators.

BigInt
The BigInt primitive type in JavaScript is used to represent an integer of arbitrary
precision. This means that it can be used to represent integers that are not able to be
precisely represented by JavaScript's Number type (anything larger than ~253). Literal
BigInts are declared by suffixing any sequence of digits with the n character, like so:

100007199254740991n

BigInt is capable of representing integers of arbitrary precision, meaning that you can
store integers of unlimited length. This is especially useful in financial applications or any
case where high-accuracy integers need to be expressed and operated on.

A BigInt can only operate on itself, and is therefore not compatible with many of
JavaScript's native Math methods:

Math.abs(1n); // !! TypeError: Cannot convert a BigInt value to a number

All native mathematics operators work with BigInt as long as both operands are of the
same type:

(1n + (2n * 3n)) + 4n; // => 11n

However, if one operand is a BigInt and the other is a Number, then you'll receive a
TypeError:

1n + 1; // !! TypeError: Cannot mix BigInt and other types, use explicit
conversions

Primitive and Built-In Types Chapter 6

[122]

The semantics of a BigInt is similar to Number: any value that is intuitively numerical and
can be expressed as an integer can be stored in either BigInt or Number, depending on the
extent of precision that it requires.

Symbol
A Symbol primitive is used to represent an entirely unique value. Symbols are created via
invoking the Symbol function, like so:

const totallyUniqueKey = Symbol();

You can optionally pass an initial argument to this function to annotate your symbol for
your own debugging purposes, but this is not necessary:

const totallyUniqueKey = Symbol('My Special Key');

Symbols are used to act as property keys where uniqueness is required or where you want
to store metadata on objects. When you add a property to an object with a Symbol key, it
will not be iterated over by normal object iteration approaches (such as for...in). Symbol
keys of an object can only be retrieved via Object.getOwnPropertySymbols:

const thing = {};
thing.name = 'James';
thing.hobby = 'Kayaking';
thing[Symbol(999)] = 'Something else entirely';

for (let key in thing) console.log(key);
// => "name"
// => "hobby"

const symbols =
 Object.getOwnPropertySymbols(thing); // => [Symbol(999)]

thing[symbols[0]]; // => "Something else entirely"

Since Symbol keys exist in an explicit but hidden manner, they are useful for storing
programmatic information semantically that's unrelated to the core data of the object but
useful in fulfilling some programmatic need. For example, you may have a logging library
and wish to annotate specific objects with custom-rendering functions that log in a specific
way. Such a need could be easily fulfilled with symbols:

const log = thing => {
 console.log(
 thing[log.CUSTOM_RENDER] ?

Primitive and Built-In Types Chapter 6

[123]

 thing[log.CUSTOM_RENDER](thing) :
 thing
);
};
log.CUSTOM_RENDER = Symbol();

class Person {
 constructor(name) {
 this.name = name;
 this[log.CUSTOM_RENDER] = () => {
 return `Person (name = ${this.name})`;
 };
 }
}

log(123); // => Logs "123"
log(new Person('Sarah')); // => Logs: "Person (name = Sarah)"
log(new Person('Wally')); // => Logs: "Person (name = Wally)"
log(new Person('Julie')); // => Logs: "Person (name = Julie)"

There are not many everyday situations that would necessitate the creation and usage of
new symbols, but there are many instances of prescribing native behavior by such symbols.
For example, you can define a custom iterator for your object by using the
Symbol.iterator property. We will cover this in greater detail in the Arrays and iterables
section, later in this chapter.

null
The null primitive type is used to express the intentional absence of a value. It is a type
with only one value: the only null value is null.

The semantics of null are crucially different from undefined. The undefined value is
used to indicate something that is not declared or defined, while null is an explicitly
declared absent value. We usually use the null value to indicate that a value is either
explicitly not yet set or, for whatever reason, unavailable.

For example, let's consider an API where we specify various properties related to a
restaurant review:

setRestaurantFeatures({
 hasWifi: false,
 hasDisabledAccess: true,
 hasParking: null
});

Primitive and Built-In Types Chapter 6

[124]

The null value, in this context, means that we do not know the value of hasParking yet.
When we have the necessary information, we can specify hasParking as either true
or false (Boolean), but to express our ignorance of its true value, we're setting it to null.
We could also completely leave the value out, meaning that it would effectively be
undefined. The key difference is that using null is always proactively done, while
undefined is the result of wh something isn't done.

A null value, as we mentioned previously, is always falsy, meaning that it will always
evaluate to false in a Boolean context. So, if we attempt to use null in a conditional
statement, then it would not succeed:

function setRestaurantFeatures(features) {
 if (features.hasParking) {
 // This will not run as hasParking is null
 }
}

It is important to check for the exact values we want so that we can avoid bugs and
communicate effectively to the people reading our code. In this case, we may wish to
explicitly check for undefined and null as we want to execute distinct code for that case
versus the case of false. We could accomplish this like so:

if (features.hasParking !== null && features.hasParking !== undefined) {
 // hasParking is available...
} else {
 // hasParking is not set (undefined) or unavailable (null)
}

We can also use the abstract equality operator (==) to compare to null, which will
helpfully evaluate to true if the operand is either null or undefined:

if (features.hasParking != null) {
 // hasParking is available...
} else {
 // hasParking is not set (undefined) or unavailable (null)
}

This is, in fact, doing the same as the more explicit comparison, but is far more succinct.
Unfortunately, it's not very clear that its intention is to check for both null and undefined.
We should usually prefer being explicit as this allows us to communicate our intent to other
programmers in a more efficient way.

A final trap to avoid with null is the typeof operator. Due to some legacies of the
JavaScript language, typeof null will, rather confusingly, return "object" and is
therefore entirely unreliable.

Primitive and Built-In Types Chapter 6

[125]

More information about typeof and detection of the null type can be
found in Chapter 7, Dynamic Typing, in the Detection section.

So, there you have it. Null is a simple enough value and, insofar as clean code is concerned,
you won't go wrong if you remember two key points: that it should only be used to express
the intentional absence of a value and that it should, ideally, be checked explicitly (prefer
value === null).

undefined
The undefined primitive type expresses that something hasn't been defined yet or remains
undefined. Like null, it is a type with only one value (undefined). Unlike null, an
undefined value should not be explicitly set, but may be returned by the language when
something does not have a value:

const coffee = {
 type: 'Flat White',
 shots: 2
};

coffee.name; // => undefined
coffee.type; // => "Flat White"

Undefined is best thought of as the absence of something. If you ever find yourself wishing
to explicitly set something to undefined, you should probably reach for null instead.

It's important to distinguish between the concepts of undefined and not even declared. In
JavaScript, if you try to evaluate an identifier that does not exist within your scope, you will
get a ReferenceError:

thisDoesNotExist; // !! ReferenceError: thisDoesNotExist is not defined

However, as you've already seen, if you try to evaluate a property of an object and the
property does not exist, you will get no such error. Instead, it will evaluate to undefined:

const obj = {};
obj.foo; // => undefined

Primitive and Built-In Types Chapter 6

[126]

However, if you try to access a property under the non-existent foo property, you'll receive
a TypeError complaining that it cannot read a property that has an undefined value:

obj.foo.baz; // !! TypeError: Cannot read property 'baz' of undefined

This behavior is an extension of the fact that seeking to access any property on an
undefined or null value will always throw such a TypeError:

(undefined).foo; // !! TypeError: Cannot read property 'foo' of undefined

Curiously, the undefined value, unlike null, is not a literal, but is a globally available
value provided by the language. Overwriting this global value is not possible in
ECMAScript 2015 onward, but it is still possible to define your own value for the undefined
identifier in local (non-global) scopes:

undefined; // => undefined

function weird() {
 let undefined = 1;
 undefined; // => 1
}

This is an anti-pattern as it can create very awkward and unexpected results. The accidental
setting of undefined in a scope higher than your scope can mean that, if you were to rely
on the value directly, you may end up referring to a value other than undefined. This lack
of trust in the undefined value has historically meant that people have found other ways
to forcefully make undefined available in their scope. For example, declaring a variable
but not assigning it will always result in its value being undefined:

function scopeWithReliableUndefined() {
 let undefined;
 undefined; // => undefined
}

You can also use JavaScript's void operator on any value that will always return the
real undefined value:

void 0; // => undefined
void null; // => undefined
void undefined; // => undefined

Primitive and Built-In Types Chapter 6

[127]

Explicitly setting undefined within your scope means that you can safely refer to
your undefined value without worrying that it has been compromised. Fortunately,
however, you can avoid the pain of having to worry about this risk by using the typeof
operator:

if (typeof myValue === 'undefined') { ... }

This will not throw a ReferenceError even if myValue does not exist. The
typeof operator, as we've discovered with null, is a bit of a fair-weather friend as we can't
always rely on it, but it is nonetheless very useful when explicitly checking for undefined.

Another way to avoid the risk of undefined is to enforce its correct usage
within your code base by using a linting tool. We'll cover linting tools in
Chapter 15, Tools for Cleaner Code.

In summary, undefined can be used cleanly if you remember the following two points:

Avoid directly assigning undefined to a variable; you should use null instead
Always check for undefined explicitly, preferring the typeof operator

This concludes our exploration of primitive types in JavaScript. Now, we'll move on to non-
primitives, that is, objects.

Objects
Everything that is not a primitive value in JavaScript can be considered an object. Even
functions are, in fact, specialized objects; their only difference is that they can be invoked.
Usually, however, when we use the term Object, we are referring to a plain object that is
normally declared as an object literal delimited by curly braces, with a set of key-value
pairs within:

const animal = {
 name: 'Duck',
 hobby: 'Paddling'
};

You can also instantiate an object via the Object constructor and then add properties
directly:

const animal = new Object();
animal.name = 'Duck';
animal.hobby = 'Paddling';

Primitive and Built-In Types Chapter 6

[128]

Even though they are equivalent, it's preferable to use an object literal in most situations as
it is simpler to declare and to read, especially if there are many properties. It also has the
added benefit of allowing you to create and pass an object as an expression without having
to prepare it beforehand.

Property names
The keys that are used to add properties to objects (the property names) are internally
stored as strings. However, when using the object literal syntax, you can declare the keys as
regular identifiers (that is, anything you could use as a variable name), number literals, or
string literals:

const object = {
 foo: 123, // Using an identifier as the key
 "baz": 123, // Using a String literal as the key
 123: 123 // Using a Number literal as the key
};

It's preferable to use identifiers where possible as this helpfully restricts you to using key
names that can easily be accessed as properties. If you use a string literal that is not also a
valid identifier, then you'll have to use square-bracket notation to access it, which can be
burdensome:

const data = {
 hobbies: ['tennis', 'kayaking'],
 'my hobbies': ['tennis', 'kayaking']
};

data.hobbies; // Easy
data['my hobbies']; // Burdensome

You can also use computed property names (delimited by square brackets) to add
dynamically named items to an object literal:

const data = {
 ['item' + (1 + 2)]: 'foo'
};

data; // => { item3: "foo" }
data.item3; // => "foo"

Primitive and Built-In Types Chapter 6

[129]

As we mentioned previously, all non-primitives in JavaScript are technically objects. What
else makes something an object, though? Objects allow us to assign arbitrary values to them
as properties, which is something primitives are not capable of. Beyond this characteristic,
the definition of an object in JavaScript is left invitingly generic. We can wield objects in
many different ways to suit the code we're writing. Many languages will provide language
constructs for dictionaries or hashmaps. In JavaScript, we can use objects to fulfill most of
these needs. When we need to use store a key-value pair where the key is something other
than a string, it's common to provide a string representation of that value via the object's
toString method:

const me = {
 name: 'James',
 location: 'England',
 toString() {
 return [this.name, this.location].join(', ')
 }
};

me.toString(); // => "James, England"
String(me); // => "James, England"

This will be called internally when the object is put in a context where it is coerced to a
string, such as when accessing or assigning via square-bracket notation:

const peopleInEurope = {};

peopleInEurope[me] = true;
Object.keys(peopleInEurope); // => ["James, England"]
peopleInEurope[me]; // => true

This has historically been used to allow the implementation of data structures where the
key is effectively non-primitive (even though objects technically store property names as
strings). Nowadays, however, using Map or WeakMap is preferred.

Property descriptors
When adding properties to objects in the conventional fashion, either via property access or
via an object literal, the properties will be given the following implicit traits:

configurable: This means the property can be deleted from the object (and if
its property descriptor can be changed)

Primitive and Built-In Types Chapter 6

[130]

enumerable: This means the property will be visible to enumerations such
as for...in and Object.keys()
writable: This means the property's value can be changed via an assignment
operator (such as obj.prop = ...)

JavaScript gives you the power to turn off these traits individually, but be wary that
changes to these traits can obscure the behavior of your code. For example, if a property is
described as not being writeable but a write is attempted via assignment (for
example, obj.prop = 123), then the programmer will receive no warning that the write
has not occurred. This can create unexpected and hard-to-find bugs. As ever, it's vital to
keep in mind the expectations of the programmers who will be consuming your interfaces.
So you keep the property descriptors with care and consideration.

You can define your own traits for a given property via the natively
provided Object.defineProperty(). When setting up a new property descriptor, the
default of each trait will be false, so if you wish to give the property a trait of either
configurable, enumerable, or writable, then you will need to specify these as true
explicitly:

const myObject = {};

Object.defineProperty(myObject, 'name', {
 writeable: false,
 configurable: false,
 enumerable: true,
 value: 'The Unchangeable Name'
});

myObject.name; // => "The Unchangeable Name"
myObject.name = 'something else'; // => (Ineffective)
myObject.name; // => "The Unchangeable Name"

delete myObject.name; // => false (Ineffective)
myObject.name; // => "The Unchangeable Name"

You can also use Object.defineProperties() to describe many properties at once:

const chocolate = Object.defineProperties({
 // Empty object where our described properties
 // will be placed
}, {
 name: { value: 'Chocolate', enumerable: false },
 tastes: { value: ['Bitter', 'Sweet'], enumerable: true }
});

Primitive and Built-In Types Chapter 6

[131]

chocolate.name; // => "Chocolate"
chocolate.tastes; // => ["Bitter", "Sweet"]

Object.keys(chocolate); // => ["tastes"]

If you attempt to change the traits of a property that has configurable set to false, then
you will receive a TypeError:

const obj = {};

Object.defineProperty(
 obj,
 'timestamp',
 { configurable: false, value: Date.now() }
);

Object.defineProperty(
 obj,
 'timestamp',
 { configurable: true }
);
// ! TypeError: Cannot redefine property: timestamp

It is also possible to set custom setters and getters. A getter defines what value will be
returned when a property is accessed, while a setter will define what occurs when an
assignment is attempted on that property (that is, via the assignment operator). Using these
can be useful in situations where you wish to have an internal implementation that holds
the value in a unique way or somehow filters or processes the value upon assignment, for
example:

const data = Object.defineProperties({}, {
 name: {
 set(name) { this.normalizedName = name.toLowerCase(); },
 get() { return this.normalizedName; }
 }
});

data.name = 'MoLLy BroWn';
data.name; // => "molly brown"

As the name property here has been described via defineProperties, it will have all of
the default traits disabled, which means it is not enumerable, writeable, or configurable. If
we try to enumerate it, we'll discover that our internally used normalizedName is found:

Object.keys(data); // => ["normalizedName"]

Primitive and Built-In Types Chapter 6

[132]

This is something to keep in mind when working with property descriptors. Make sure
you're aware of what traits every property has and watch out for leakage of your internal
implementation!

It's worth noting that it is also possible (and often preferable) to define getters and setters
for properties directly within an object literal or class definition. For example, we could
create a subclass of Array with the addition of a last property, which acts as a getter for
the last element in the array:

class SpecialArray extends Array {
 get last() { return this[this.length - 1]; }
}

const myArray = new SpecialArray('a', 'b', 'c', 'd');
myArray.last; // => "d"
myArray.push('e');
myArray.last; // => "e"

There are many such creative uses of getters and setters. But, as with the traits of
configurable, enumerable, and writable, it's important to be cautious of how your
custom behaviors will affect the expectations of your fellow programmers. If the abstraction
or data structures you create are not familiar or predictable in their behavior, then you're
paving the way for misunderstandings and bugs. The best approach is to align with the
natural semantics of the language itself. So, whenever you are about to create a custom
setter or describe a property as unwritable, ask yourself whether it would be reasonable for
a programmer to expect it to work that way. Follow a helpful rule dubbed as the Principle
of Least Astonishment (POLA)!

The POLA (or least surprise) applies to software design and UX design. It
broadly means that a given function or component of a system should act
as most users would expect it to and should seek not to surprise or
astonish too much.

Map and WeakMap
The Map and WeakMap abstractions are capable of storing key-value pairs where, unlike
regular objects, the key can be anything, including non-primitive values:

const populationBySpecies = new Map();
const reindeer = { name: 'Reindeer', formalName: 'Rangifer tarandus' };

populationBySpecies.set(reindeer, 2000000);
populationBySpecies.get(reindeer); // => 2,000,000

Primitive and Built-In Types Chapter 6

[133]

WeakMap is similar to Map, but it only holds a weak reference to the object that's used as a
key, meaning that, if the object becomes unavailable due to being garbage-collected
elsewhere in your program, then WeakMap will cease to keep a hold of it.

Most of the time, a plain object is all you will need. You should only reach for Map or
WeakMap if you need your keys to be non-primitive or if you want to weakly hold your
values.

The prototype
JavaScript is a prototypical language where inheritance is achieved via prototypes. This can
be a daunting concept, but it is, in fact, beautifully simple. JavaScript's prototypal behavior
can be described like this: every time a property is accessed on an object, if it is not available
on the object itself, JavaScript will attempt to access it on an internally available property
called [[Prototype]]. It will then repeat this process until it either finds the property or
gets to the top of the prototype chain and returns undefined.

Understanding what this [[Prototype]] property is capable of will give
you great power over the language and will immediately make JavaScript
less daunting. It can be difficult to grasp but is worth it in the end.

A [[Prototype]] object, which could feasibly be attached to any other object, is just a
regular object itself. We could create one called engineerPrototype and have it contain
data and methods related to the role of an engineer, for example:

const engineerPrototype = {
 type: 'Engineer',
 sayHello() {
 return `Hello, I'm ${this.name} and I'm an ${this.type}`;
 }
};

Then, we could attach this prototype to another object, thus making its properties available
there as well. To do this, we use Object.create(), which creates a new object with a
hardcoded [[Prototype]]:

const pandaTheEngineer = Object.create(engineerPrototype);

Primitive and Built-In Types Chapter 6

[134]

The internal [[Prototype]] property cannot be directly set, so we must
use mechanisms such as Object.create and Object.setPrototypeOf.
Note that you may have seen code that uses the non-
standard __proto__ property to set [[Prototype]], but this is a legacy
feature and should not be relied on.

With this newly created pandaTheEngineer object, we are able to access any properties
available on its [[Prototype]], such as engineerPrototype:

pandaTheEngineer.name = 'Panda';
pandaTheEngineer.sayHello(); // => "Hello, I'm Panda and I'm an Engineer"

We can illustrate that the objects are now linked by adding a new property
to engineerPrototype and observe how it is made available on pandaTheEngineer:

pandaTheEngineer.sayGoodbye; // => TypeError: sayGoodbye is not a function
engineerPrototype.sayGoodbye = () => 'Goodbye!';
pandaTheEngineer.sayGoodbye(); // => 'Goodbye!'

As we mentioned previously, the [[Prototype]] of an object will only be used to resolve
a property if it is not already available on the object itself. The following code shows how
we can set our own sayHello method on our pandaTheEngineer object, and that by
doing so we no longer have access to the sayHello method defined on [[Prototype]]:

pandaTheEngineer.sayHello = () => 'Yo!';
pandaTheEngineer.sayHello(); // => "Yo!"

However, deleting this newly added sayHello method would mean we once again have
access to the [[Prototype]] sayHello method:

delete pandaTheEngineer.sayHello;
pandaTheEngineer.sayHello(); // => // => "Hello, I'm Panda and I'm an
Engineer"

To understand what's happening and which properties are coming from which object, we
are always able to inspect the [[Prototype]] of an object using
Object.getPrototypeOf:

// We can inspect its prototype:
Object.getPrototypeOf(pandaTheEngineer) === engineerPrototype; // => true

Now, we can inspect its properties via Object.getOwnPropertyNames:

Object.getOwnPropertyNames(
 Object.getPrototypeOf(pandaTheEngineer)
); // => ["type", "sayHello", "sayGoodbye"]

Primitive and Built-In Types Chapter 6

[135]

Here, we can see that the [[Prototype]] object (that is, engineerPrototype) is
providing the type, sayHello, and sayGoodbye properties. If we inspect the
pandaTheEngineer object itself, we can see that it only has a name property:

Object.getOwnPropertyNames(pandaTheEngineer); // => ["name"]

As we observed with our earlier addition of the sayGoodbye method, we can modify that
prototype at any time and have our changes accessible to any objects that use that
prototype. Here's another example of doing this:

// Modify the prototype object:
engineerPrototype.type = "Awesome Engineer";

// Call a method on our object (that uses the prototype):
pandaTheEngineer.sayHello(); // => "Hello, I'm Panda and I'm an Awesome
Engineer"

Here, you can see how our inherited sayHello method is producing a string that includes
our mutated type property (that is, "Awesome Engineer").

Hopefully, you are beginning to see how we could construct a hierarchy
of inheritance using prototypes. The very simple mechanism of
[[Prototype]] allows us to express complex hierarchical relations
between problem domains expressed as objects. This is how OOP is
achieved in JavaScript.

We could feasibly create another prototype that itself uses engineerPrototype, possibly
fullStackEngineerPrototype, and it would work as expected, with each prototype
defining another layer of property resolution.

Below the surface, JavaScript's newer Class Definition Syntax, which you may have grown
accustomed to, relies on this underlying mechanism of prototypes as well. This can be
observed here:

class Engineer {
 type = 'Engineer'
 constructor(name) {
 this.name = name;
 }
 sayHello() {
 return `Hello, I'm ${this.name} and I'm an ${this.type}`;
 }
}

const pandaTheEngineer = new Engineer();

Primitive and Built-In Types Chapter 6

[136]

Object.getOwnPropertyNames(pandaTheEngineer); // => ["type", "name"]

Object.getOwnPropertyNames(
 Object.getPrototypeOf(pandaTheEngineer)
); // => ["constructor", "sayHello"]

You'll notice that there are some subtle differences here. The most crucial one is that, when
declaring classes, there is currently no way to define non-method properties on the
prototype object. When we declare the type property, we are populating the instance itself
so that when we inspect the properties of the instance, we get "type" and "name".
However, the methods (such as sayHello) will exist on the [[Prototype]]. Another
difference is that, of course, when using classes, we are able to declare a constructor,
which itself is a method/property on the [[Prototype]].

Fundamentally, the Class Definition Syntax (introduced in ECMAScript
2015), does not make anything possible that was not already possible in
the language. It's just utilizing the existing prototypical mechanism.
However, the newer syntax does make some things simpler, such as
referring to a superclass with the super keyword.

Before class definitions existed, we typically wrote class-like abstractions by assigning our
intended [[Prototype]] object to the prototype property of a function, as shown here:

function Engineer(name) {
 this.name = name;
}

Engineer.prototype = {
 type: 'Engineer',
 sayHello() {
 return `Hello, I'm ${this.name} and I'm an ${this.type}`;
 }
};

When a function is instantiated via the new operator, JavaScript will implicitly create a new
object with its [[Prototype]] set to the function's prototype property, if it has one. Let's
try instantiating the Engineer function:

const pandaTheEngineer = new Engineer();

Inspecting this yields the same characteristics that we saw in our original Object.create
approach:

Object.getOwnPropertyNames(pandaTheEngineer); // => ["name"]

Object.getOwnPropertyNames(

Primitive and Built-In Types Chapter 6

[137]

 Object.getPrototypeOf(pandaTheEngineer)
); // => ["type", "sayHello"]

Broadly, all of these approaches are the same but have some subtle differences around
where certain properties reside (that is, whether its properties are on the instance itself or
on its [[Prototype]]). The newer Class Definition Syntax is useful and succinct and so is
preferable nowadays, but it is nonetheless useful to have an underlying knowledge about
how prototypes work as it drives the entirety of the language, including all of its native
types. We can inspect these native types in the same manner as in the preceding code:

const array = ['wow', 'an', 'array'];

Object.getOwnPropertyNames(array); // => ["0", "1", "2", "length"]

Object.getOwnPropertyNames(
 Object.getPrototypeOf(array)
); // => ["constructor", "concat", "find", "findIndex", "lastIndexOf",
"pop", "push", ...]

Mutating native prototypes is an anti-pattern and should be avoided at all
costs as it can create unexpected conflicts with other code in your code
base. Since a runtime will only have a single set of native types available,
when you modify them, you are modifying the capabilities of every single
instance of that type that currently exists. Therefore, it is best to abide by a
simple rule: only modify your own prototypes.

If you ever catch yourself trying to modify a native prototype, it may be better if you
created your own subclass of that type and added your functionality there:

class HeartArray extends Array {
 join() {
 return super.join(' ❤ ');
 }
}

const yay = new HeartArray('this', 'is', 'lovely');

yay.join(); // => "this ❤ is ❤ lovely"

Here, we're creating our own Array subclass called HeartArray so that we can add our
own specialized join method.

Primitive and Built-In Types Chapter 6

[138]

When and how to use objects
An object of any type, much like our primitive values, should only be used inline with the
semantic concept it represents. The preceding case of subclassing Array to HeartArray
makes sense as the data we wish to express via it is indeed array-like, that is, it is a
sequential set of words.

When we go about molding objects into abstractions that suit our needs, we should always
consider the expectations that other programmers will have about objects and the
ramifications of those expectations. We'll go into the subtleties of designing good
abstractions in Chapter 11, Design Patterns, where we will be utilizing objects to craft
abstractions in a multitude of ways.

This section has introduced you to the concept of objects in JavaScript—how they are
everywhere—and how they operate beneath the surface via prototypes. This fundamental
knowledge will make working with JavaScript much easier and will help you write cleaner
code.

Functions
Functions in JavaScript are like any other type; they can be passed around just like objects
and primitive types. When we talk about most other values, however, we see that there is
usually only one way to literally declare them. Object literals are declared using braces.
Array literals are delimited square brackets. Functions, however, come in a variety of literal
forms.

When outside of an object literal or class definition, you can declare a function in three
different ways: as a function declaration, as a function expression, or as a fat-arrow function
expression:

// Function Declaration
function myFunction() {}

// Function Expression
const myFunction = function () {};

// Named Function Expression
const myFunction = function myFunction() {};

// "Fat"-Arrow Function Expression
const myFunction = () => {};

Primitive and Built-In Types Chapter 6

[139]

When declaring functions inside object literals, however, there is a more succinct syntax,
called a method definition:

const things = {
 myMethod() {},
 anotherMethod() {}
};

We need to separate these method definitions with a comma (just as we'd have to do with
any other properties defined in an object literal). Class definitions also allow us to use
method definitions, although they don't require separating commas:

class Thing {
 myMethod() {}
 anotherMethod() {}
}

Methods are just functions that are bound to an object when invoked. This
includes functions defined within class definitions and functions that are
in any way assigned to a property of an object. When discussing code
with other programmers, it's useful to know what people mean when they
say method versus function. Fundamentally, however, the language of
JavaScript does not distinguish between these—they are all technically
just functions.

All the various ways of defining functions have subtle differences that are worth knowing
about because the typical JavaScript code base will use most, if not all, of these styles. The
types of differences you'll encounter in how functions are declared include the following:

Whether the definition style is hoisted to the top of its scope; for example,
with function declarations
Whether the definition style creates a function that has its own bindings (for
example, this); for example, with function expressions
Whether the definition style creates a function with its own name property; for
example, with function declarations
Whether the definition style is contextual to specific areas of code; for example,
with method definitions

Now, we can go into more detail about the syntax of the various definition styles.

Primitive and Built-In Types Chapter 6

[140]

Syntactic context
There are three syntactic contexts in which a function can exist:

As a statement
As an expression
As a method definition

Statements can be thought of as the scaffolding. For example, const X =
123 is a Statement that contains a const declaration and
assignment. Expressions can be thought of as the values that you place
into the scaffolding; for example, 123 in the latter statement is an
expression. In Chapter 9, Parts of Syntax and Scope, we'll talk about this
topic in more detail.

The difference between functions as statements and functions as expressions is exemplified
by the function expression and the function declaration. The function declaration is quite
unique in that it is the only way to declare a function that is technically a statement. To be
considered a function declaration, the syntax of function name() {} must reside on its
own without being used in the context of an expression. This can be incredibly confusing
because you cannot always tell whether a function is a function declaration or function
expression based purely on its own syntax; instead, you must look at the context in which it
exists:

// This is a statement, and a function declaration:
// And will therefore be hoisted:
function wow() {}

// This is a statement containing a function expression:
const wow = function wow() {};

As we mentioned previously, a function expression is allowed to have a name, just like a
function declaration, but that name may not match the name of the variable that the
function is assigned to.

Primitive and Built-In Types Chapter 6

[141]

It's easiest to think of expressions as anything that can legally exist to the right-hand side of
the assignment operator. All of the following right-hand sides are legal expressions:

foo = 123;
foo = [1,2,3];
foo = {1:2,3:4};
foo = 1 | 2 | 3;
foo = function() {};
foo = (function(){})();
foo = [function(){}, ()=>{}, function baz(){}];

Function expressions are as flexible as all the other values in JavaScript in terms of where
they can be placed syntactically. Function declarations, as we will discover, are limited.
Method definitions are also limited to exist within the confines of either an object literal or a
class definition.

Function bindings and this
A function's bindings refer to a set of additional and implicit values that JavaScript makes
available for referencing within the body of the function. These bindings include the
following:

this: The this keyword refers to the execution context of a function's
invocation
super: The super keyword in a method or constructor refers to its super-class
new.target: This binding informs you as to whether the function was invoked
as a constructor (via the new operator)
arguments: This binding provides access to the arguments that are passed to a
function when it is invoked

These bindings are available to all functions except those defined with the arrow syntax (fn
= () => {}). Functions defined in this way will effectively absorb the bindings from the
parent scope (if one is available). Each of these bindings has unique behaviors and
constraints. We will explore these in the following subsections.

Primitive and Built-In Types Chapter 6

[142]

Execution context
The this keyword is usually determined at the calltime of the function and will normally
resolve to the object that the function is being invoked on. It is sometimes referred to as the
execution context of a function or its thisArg. This can be unintuitive since it means that
the this value can technically change between calls. For example, we could assign a
method from one object to another, call it on the second, and observe that its this is always
the object it's been called on:

const london = { name: 'London' };
const tokyo = { name: 'Tokyo' };

function sayMyName() {
 console.log(`My name is ${this.name}`);
}

sayMyName(); // => Logs: "My name is undefined"

london.sayMyName = sayMyName;
london.sayMyName(); // => Logs "My name is London"

tokyo.sayMyName = sayMyName;
tokyo.sayMyName(); // => Logs "My name is Tokyo"

When called without an object of invocation, as is the case when we directly call
sayMyName, its presumed execution context is the global environment in which the code
resides. On the browser, this global environment is equal to the window object (which
provides access to the browser-and-document object models), while in Node.js, this refers
to an environment that's unique to each specific module/file, which includes, among other
things, that module's exports.

In addition to the case of calling a function globally, there are two cases where the this
keyword will be something other than the apparent object of invocation:

If the function being called was defined as an arrow-function, then it will absorb
the this value from the scope in which it is situated
If the function being called is a constructor, its this value that will be a new
object that has its [[Prototype]] preset to the prototype property of the
function

There are also ways to force the value of this when calling or declaring a function. You can
use bind(X) to create a new function that will have its this value set to X:

const sayHelloToTokyo = sayMyName.bind(tokyo);
sayHelloToTokyo(); // => Logs "My name is Tokyo"

Primitive and Built-In Types Chapter 6

[143]

You can also use a function's call and apply methods to force the this value for any
given invocation, but note that this will not work if the function is being called as a
constructor (that is, with a new keyword) or if it has been defined with the arrow-function
syntax:

// Forcing the value of `this` via `.call()`:
tokyo.sayMyName.call(london); // => Logs "My name is London"

In your everyday function calls, it's best to avoid awkward techniques of invocation like
this. Such techniques can make it difficult for the readers of your code to discern what's
happening. There are many valid applications of invoking via call, apply, or bind, but
these are usually limited to lower-level libraries or utility code. Higher-level logic should
avoid them. If you find yourself having to rely on these methods in higher-level
abstractions, then you're likely making something more complicated than it needs to be.

super
The super keyword comes in three distinct flavors:

super() as a direct function invocation will call the superclass's constructor (that
is, its object's [[Prototype]] constructor) and is only valid to call within a
constructor. It also must be called before trying to access this as it is
super() itself that'll initiate the execution context.
super.property will access a property on the superclass (that is, the
[[Prototype]]), and is only valid to reference within a constructor or method
defined using the method definition syntax.
super.method() will invoke a method on the superclass (that is, the
[[Prototype]]), and is only valid to call within a constructor or method
defined using the method definition syntax.

The super keyword was introduced to the language at the same time as the class definition
and method definition syntax, so it is tied up in those constructs. You are free to use super
in class constructors, methods, and also in method definitions within object literals:

const Utils {
 constructor() {
 super(); // <= I can use super here
 }
 method() {
 super.method(); // <= And here...
 }
}

Primitive and Built-In Types Chapter 6

[144]

const utils = {
 method() {
 return super.property; // <= And even here...
 }
};

The super keyword, as its name suggests, is semantically suited to referencing a
superclass, so 99% of its valid use cases will be within class definitions, where you're
seeking to reference the class being extended, like so:

const Banana extends Fruit {
 constructor() {
 super(); // Call the Fruit constructor
 }
}

Using super in this manner is entirely intuitive, especially to programmers who are used
to other OOP languages. For individuals adept with JavaScript's prototype mechanism,
however, the implementation of super can seem confusing. Unlike the this value, super
is bound at definition time, instead of call time. We've seen how we can manipulate the
value of this by calling a method in a specific manner (for example, using fn.call()). You
cannot similarly manipulate super. Hopefully, this will not affect you in any way, but it is
useful to remember nonetheless.

new.target
The new.target binding will be equal to the current function being called if the function
has been called via a new operator. We typically use the new operator to instantiate classes,
and in this case, we will correctly expect new.target to be that class:

class Foo {
 constructor() {
 console.log(new.target === Foo);
 }
}
new Foo(); // => Logs: true

This is useful when we may wish to carry out a certain behavior if a constructor is called
directly versus when called via new. A common defensive strategy is to make your
constructor behave in the same way, regardless of whether it's called with or without new.
This can be achieved by checking for new.target:

function Foo() {
 if (new.target !== Foo) {

Primitive and Built-In Types Chapter 6

[145]

 return new Foo();
 }
}

new Foo() instanceof Foo; // => true
Foo() instanceof Foo; // => true

Alternatively, you may wish to throw an error to check that a constructor has been invoked
incorrectly:

function Foo() {
 if (new.target !== Foo) {
 throw new Error('Foo is a constructor: please instantiate via new
Foo()');
 }
}

Foo() instanceof Foo; // !! Error: Foo is a constructor: please instantiate
via new Foo()

Both of these examples would be considered intuitive use cases of new.target. There is, of
course, the possibility to use it to deliver entirely different functionality depending on the
calling pattern, but in the interest of catering to the reasonable expectations of
programmers, it's best to avoid such behavior. Remember the POLA.

arguments
The arguments binding is made available as an array-like object and will contain the
arguments that a given function was called with.

When we say that arguments is array-like, we are referring to the fact
that it has a length property and properties indexed from zero (just like a
regular Array), but it still just a regular Object and therefore does not
have any of array's built-in methods available, such as forEach, reduce,
and map.

Primitive and Built-In Types Chapter 6

[146]

Here, we can observe that the arguments are provided within the scope of a given function:

function sum() {
 arguments; // => [1, 2, 3, 4, 5] (Array-like object)
 let total = 0;
 for (let n of arguments) total += n;
 return total;
}

sum(1, 2, 3, 4, 5);

The arguments binding was popularly used to gain access to an arbitrary (that is, non-
fixed) amount of arguments, though its usefulness quickly disappeared after the language
introduced the rest parameter syntax (...arg). This newer syntax can be used when
defining a function to instruct JavaScript to place remaining arguments into a singular
array. This meant that you could achieve all of the utility of the older arguments binding,
plus you'd have a value that was not merely array-like but actually a genuine array. Here's
an example:

function sum(...numbers) {
 // We can call reduce() on our array:
 return numbers.reduce((total, n) => total + n, 0);
}

sum(1, 2, 3, 4, 5);

Even though the arguments object has fallen out of favor, it is still within the language
spec and works in older environments, so you may still see it in the wild. Most of the time,
its usage can be avoided.

Function names
Confusingly, functions have names, and these names are not the same as the variables or
properties that we assign to functions. The name of a function is within its syntax, prior to
its parentheses:

function nameOfTheFunction() {}

You can access a function's name via its name property:

nameOfTheFunction.name; // => "nameOfTheFunction"

Primitive and Built-In Types Chapter 6

[147]

When you define a function via the function declaration syntax, it'll assign that function to
a local variable of the same name, meaning that we can reference the function as we would
expect:

function nameOfTheFunction() {}
nameOfTheFunction; // => the function
nameOfTheFunction.name; // => "nameOfTheFunction"

Method definitions will also assign the method to a property name that is equal to the
function name:

function nameOfTheFunction() {}
nameOfTheFunction; // => the function
nameOfTheFunction.name; // => "nameOfTheFunction"

You may be thinking this all seems incredibly intuitive. And it is. It makes perfect sense
that the names we give our functions and methods are themselves used to dictate what
variable or property those things will be assigned to. Oddly, though, it is also possible to
have named function expressions, and these names do not cause such an assignment. The
following is an example of this:

const myFunction = function hullaballoo() {}

The const name here, myFunction, dictates what we will use in subsequent lines to
reference the function. However, the function technically has a name of "hullaballoo":

myFunction; // => the function
myFunction.name; // => "hullaballoo"

If we try to reference the function via its formal name, we will get an error:

hullaballoo; // !! ReferenceError: hullaballoo is not defined

This can seem odd. Why is it possible to give a function a name if that name itself is not
used to refer to the function? This is a mixture of legacy and convenience. One hidden
feature of the named function expression is that the name is actually available to you to
reference the function, but only inside the scope of the function itself:

const myFunction = function hullaballoo() {
 hullaballoo; // => the function
};

Primitive and Built-In Types Chapter 6

[148]

This can be useful in situations where you want to supply an anonymous callback to some
other function but still be able to reference your own callback for any repeated or recursive
calls, like so:

[
 ['chris', 'smith'],
 ['sarah', ['talob', 'peters']],
 ['pam', 'taylor']
].map(function capitalizeNames(item) {
 return Array.isArray(item) ?
 item.map(capitalizeNames) :
 item.slice(0, 1).toUpperCase() + item.slice(1);
});

// => [["Chris","Smith"],["Sarah",["Talob", "Peters"]],["Pam","Taylor"]]

So, even though the named function expression is an odd thing, it does have its merits. In
usage, however, it's best to take into consideration the clarity of your code for people who
might not know of these idiosyncratic behaviors. This does not mean avoiding it altogether,
but just being ever more mindful of the readability of your code when using it.

Function declarations
Function declarations are a type of hoisted declaration. A hoisted declaration is one that will,
at runtime, be effectively hoisted up the top of its execution context, meaning that it will be
immediately accessible to preceding lines of code (seemingly before it's declared):

hoistedDeclaration(); // => Does not throw an error...

function hoistedDeclaration() {}

This, of course, is not possible with a function expression that's been assigned to a variable:

regularFunctionExpression();
 // => Uncaught ReferenceError:
 // => Cannot access 'regularFunctionExpression' before initialization

const regularFunctionExpression = function() {};

The hoisted behavior of function declarations can create unexpected results, so it is
typically considered an anti-pattern to rely on the hoist. In general, it's fine to use function
declarations, as long as they're used in a way that respects the assumptions that
programmers will intuitively make. Hoisting, as a practice, is not very intuitive to most
people, and so it's usually best to avoid it.

Primitive and Built-In Types Chapter 6

[149]

For more information on scopes and how hoisting occurs in the case of
function declarations, please take a look at Chapter 9, Parts of Syntax and
Scope, and go to the Scopes and Declarations section.

Function expressions
Function expressions are the easiest and most predictable to use as they are syntactically
similar to all the other values within JavaScript. You can use them to literally define
functions anywhere you would define any other value as they are a type of expression.
Observe here, for example, how we're defining an array of functions:

const arrayOfFunctions = [
 function(){},
 function(){}
];

A common application of the function expression is in passing callbacks to other functions
so that they can be called at some later point. Many native Array methods, such as
forEach, accept functions in this manner:

[1, 2, 3].forEach(function(value) {
 // do something with each value
});

Here, we are passing a function expression to the forEach method. We haven't named this
function by assigning it to a variable, so it is considered an anonymous function.
Anonymous functions are useful as they mean that we don't need to preassign a function to
a variable in order to make use of it; we can simply write our function into our code at the
exact location of usage.

The function expression is most similar in its expressive manner to the arrow function. The
key difference, as we will discover, is that the arrow function does not have access to its
own bindings (for example, to this or arguments). A function expression, however, does
have access to these values, and so in some contexts will be more useful to you. It's very
common to need a binding to this in order to operate successfully with the DOM API, for
example, where many native DOM methods will invoke callbacks and event handlers with
the relevant element as execution context. Additionally, you'll want to use function
expressions when defining methods on objects or prototypes that will need to access the
current instance. As illustrated here, using an arrow function would not be appropriate:

class FooBear {
 name = 'Foo Bear';

Primitive and Built-In Types Chapter 6

[150]

}

FooBear.prototype.sayHello = () => `Hello I am ${this.name}`;
new FooBear().sayHello(); // => "Hello I am ";

FooBear.prototype.sayHello = function() {
 return `Hello I am ${this.name}`;
};
new FooBear().sayHello(); // => "Hello I am Foo Bear";

As you can see, using the arrow function syntax prevents us from accessing the instance via
this, while the function expression syntax allows us to do this. Therefore, the function
expression, although somewhat superseded by the more succinct arrow function, is still a
very useful tool.

Arrow functions
The arrow function is, in many ways, just a slightly more succinct version of the function
expression, although it does have some practical differences. It comes in two flavors:

// Regular Arrow Function
const arrow = (arg1, arg2) => { return 123; };

// Concise Arrow Function
const arrow = (arg1, arg2) => 123;

As you can see, the concise variant includes an implicit return, while the regular variant,
much like other function definition styles, requires you to define a regular function body
delimited by curly braces in which you must explicitly return a value with a return
statement.

Additionally, arrow functions allow you to avoid using parentheses when declaring a
function with only one argument. In these cases, you can just place the identifier of the
argument by itself prior to the arrow, like so:

const addOne = n => n + 1;

Primitive and Built-In Types Chapter 6

[151]

The succinctness of the arrow function can be very useful in situations where you need to
pass functions around quite a lot. This is common, for example, when operating on arrays
via native methods such as map:

[1, 2, 3]
 .map(n => n*2)
 .map(n => `Number ${n}`);

// => ["Number 2", "Number 4", "Number 6"]

Despite its superhero status as the succinct variant of otherwise verbose function
definitions, the arrow function comes with its own challenges. The fact that the language
must accommodate both concise and regular variants of syntax means that there is some
ambiguity when attempting to return an object literal from the concise arrow function:

const giveMeAnObjectPlease = () => { name: 'Gandalf', age: 2019 };
// !! Uncaught SyntaxError: Unexpected token `:`

This syntax will confuse the JavaScript parser as the opening curly brace implies that a
regular function body resides within. Due to this, the parser gives us an error about an
unexpected token as it is not expecting the body of an object literal. If we want to return an
object literal from the concise form of the arrow function, then we must awkwardly wrap it
in parentheses to disambiguate the syntax:

const giveMeAnObjectPlease = () => ({ name: 'Gandalf', age: 2019 });

Functionally, the arrow function differs from the function expression in two ways:

It does not provide access to bindings such as this or arguments
It does not have a prototype property, so it cannot be used as a constructor

These differences mean that, on the whole, arrow functions are typically unsuitable to use
as methods or constructors. They are best used in contexts where you wish to pass a
callback or handler to another function, and especially in cases where you wish to retain
your this binding. For example, if we were to bind event handlers within the context of a
UIComponent abstraction, we may wish to retain the this value in order to carry out
certain instance-specific functionality:

class MyUIComponent extends UIComponent {
 constructor() {
 this.bindEvents({
 onClick: () => {
 this; // <= usefully refers to the MyUIComponent instance
 }
 });

Primitive and Built-In Types Chapter 6

[152]

 }
}

The arrow function feels most at home in scenarios like this. Its succinctness, however,
means that there can be a risk of confusion when reading overly dense lines of code, such as
the following:

process(
 n=>n.filter((nCallback, compute)=>compute(()=>nCallback())
)

For this reason, it is best to employ the arrow function with the same consideration and
practicality with which you would employ any other construct: ensure that you always put
the usability and readability of your code first, above the very enticing niftiness of cool or
succinct syntax.

Immediately Invoked Function Expressions
Function expressions and arrow functions are the only function definition styles that are,
technically, expressions. As we have seen, this quality makes them useful when we need to
pass them as values to other functions without having to go through the process of
assignment.

As we mentioned previously, a function without an assignment, and thus without a
reference to its value, is typically called an anonymous function and will look like this:

(function() {
 // I am an anonymous function
})

The idea of an anonymous function is extended further by the concept of an Immediately
Invoked Function Expression (IIFE). An IIFE is just a regular anonymous function that is
invoked immediately, like so:

(function() {
 // I am immediately invoked
}());

Note the invocation parentheses (that is, ...()) after the closing curly brace. This will call
the function and thus makes the preceding syntactic construct an IIEE.

Primitive and Built-In Types Chapter 6

[153]

An IIFE is not a distinct concept within the language itself. It is just a useful term that the
community has come up with to describe the common pattern of immediately invoking a
function. It's a useful pattern because it allows us to create an ad hoc scope, meaning that
any variables defined within it are constrained to that scope and will not leak outside, just
as we'd expect from any function. This immediate scope is useful to quickly do self-
contained work without affecting the parent scope.

IIFEs were popularized in the browser era when it was preferable to avoid
polluting the global namespace. Nowadays, with pre-compilation being
so popular, the IIFE is less useful.

The exact syntax of an IIFE can vary. For example, if we use an arrow function, then the
calling parenthesis must be placed after the wrapped function expression:

(() => {
 // I am immediately invoked
})(); // <- () actually calls the function

The mechanism remains essentially the same, regardless of whether we use a function
expression or an arrow function.

If the concept of an IIFE is confusing, it's simpler to understand what's going on if we
replace the actual function with an identifier, fn, and imagine that we have previously
assigned a function to this identifier. Here, we can call fn like so:

fn();

Now, we could choose to wrap the fn reference in parentheses. This would make no
difference to the invocation, although it may look bizarre:

(fn)();

It's useful to remember that parentheses are just syntactic vessels that are sometimes
needed to avoid syntactic ambiguity. So, all of these are technically equivalent:

fn();
(fn)();
((fn))();

Primitive and Built-In Types Chapter 6

[154]

If we replace the fn reference here with an inline anonymous function, nothing
groundbreaking occurs. Instead of referencing an existing function, we are just expressing
an inline function, on the spot, and then invoking it:

(function() {
 // Called immediately...
})();

We call the pattern of an inline function expression an IIFE, but it really
isn't anything special. Consider that the invocation parentheses, that
is, ...(), don't really care what they're attached to, as long as it's a
function. The expression prior to the invocation could be literally anything
as long as it evaluates to a function.

IIFEs are useful because they provide scope isolation without the burden of having to
define a function with a name and then later reference and invoke it, as we're doing here:

const initializeApp = () => {
 // Initializing...
};

initializeApp();

Within the browser, prior to complex builds involving compilation and bundling, IIFEs
were useful because they provided scope isolation while not leaking any names into the
global scope. Nowadays, however, the IIFE is rarely necessary.

Interestingly, the initializeApp function in the preceding code is, arguably, more
readable and understandable with an explicit name. This is why, even if necessary, IIFEs
are sometimes considered needlessly confusing and fancy. A named function usefully
provides a clue as to its purpose and the intent of the author. Without a name, the reader of
our code is left with the cognitive burden of having to read through the function itself to
discover its broad purpose. For this reason, it is usually preferable to avoid IIFEs and
similar anonymous constructs unless you have a very specific need.

Method definitions
Method definitions were added to the language at the same time as class definitions to
allow you to easily declare methods bound to a specific object. They are not limited to class
definitions, though. You can use them freely in object literals as well:

const things = {
 myFunction() {
 // ...

Primitive and Built-In Types Chapter 6

[155]

 }
};

In classes, you can also declare methods in this manner:

class Things {
 myFunction() {
 // ...
 }
}

You can also use traditional styles of function definition to declare your methods, such as a
function expression assigned to an identifier:

class Things {
 myFunction = function() {
 // ...
 };
}

There is, however, a crucial difference between method definitions and other styles of
function definition. A method definition will always be bound to the object in which it was
first defined. This is known internally as its [[HomeObject]]. This home object will
determine what super binding is available to the method when it is called. Only method
definitions are allowed to make reference to super, and the super they reference will
always be the [[Prototype]] of their [[HomeObject]]. This means that if you try to
borrow methods from other objects, you may be surprised to discover that super is not
what you intended:

class Dog {
 greet() { return 'Bark!'; }
}

class Cat {
 greet() { return 'Meow!'; }
}

class JessieTheDog extends Dog {
 greet() { return `${super.greet()} I am Jessie!`; }
}

class JessieTheCat extends Cat {
 greet() { return `${super.greet()} I am Jessie!`; }
}

Primitive and Built-In Types Chapter 6

[156]

Here, we can observe that both JessieTheCat and JessieTheDog have greet methods:

new JessieTheDog().greet(); // => "Bark! I am Jessie!"
new JessieTheCat().greet(); // => "Meow! I am Jessie!"

We can also observe that their greet methods are implemented in identical ways. They both
return the interpolated string `${super.greet()} I am Jessie!`. Due to this, it might
seem logical to be able to let JessieTheCat borrow the method from JessieTheDog.
After all, they're exactly the same:

class JessieTheCat extends Cat {
 greet = JessieTheDog.prototype.greet
}

We might intuitively expect super in the greet method to refer to the superclass of the
current instance, which in the case of JessieTheCat will be Cat. But curiously, when we
call this borrowed method, we experience something different:

new JessieTheCat().greet(); // => "Bark! I am Jessie!"

It barks! The borrowed method has annoyingly retained its binding to its original
[[HomeObject]].

In summary, method definitions are simpler and more succinct variants of their more
verbose cousins, the function declaration and function expression. However, they come
with an implicit mechanic that sets them apart and can create confusion. 99% of the time,
method definitions won't bite you; they'll behave as expected. The other 1% of the time, it's
useful at the very least to know why your code is misbehaving so that you can explore
other options. As always, knowledge about the idiosyncrasies of JavaScript can only help
us in our pursuit of a cleaner and more reliable code base.

Async functions
Asynchronous (async) functions are specified with an async keyword preceding the
function keyword. All function definition styles can be prefixed with it:

// Async Function Declaration:
async function foo() {}

// Async Function Expression:
const foo = async function() {};

// Async Arrow-Function:
const foo = async () => {};

Primitive and Built-In Types Chapter 6

[157]

// Async Method Definition:
const obj = {
 async foo() {}
};

An async function allows you to easily conduct asynchronous operations by providing you
with two key features:

You can use await within your async function to await the completion of
Promises
Your function will always return a Promise, which can, itself, be awaited

The Promise is a natively supplied abstraction for dealing with asynchronous operations. It
can seem complicated, but it's best to think of a Promise as an object that will either resolve
or reject at a time later than now (that is, asynchronously).

Traditionally, in JavaScript, we'd have to pass around callbacks to ensure that we're able to
respond to such asynchronous activity:

getUserDetails('user1', function(userDetails) {
 // This callback is called asynchronously
});

However, with an async function and await, we can achieve this more succinctly:

const userDetails = await getUserDetails('user1');

The await clause here will halt current execution until getUserDetails completes and
resolves to a value. Note that we can only use await within functions that are themselves
async.

Asynchronous execution is a complex topic, so there is a whole chapter
dedicated to it, that is, Chapter 10, Control Flow. For now, it's useful to
know that async functions are a distinct type of a function that will always
return a Promise.

Other than allowing await clauses and returning Promises, async functions carry the same
features and characteristics as the respective function definition style that's used. An async
arrow function, just like a regular arrow function, does not have its own bindings to this or
arguments. An async function declaration is hoisted just like its non-async cousin.
Essentially, async should be thought of as a layer atop all of the learnings you've already
picked up concerning the different function definition styles.

Primitive and Built-In Types Chapter 6

[158]

Generator functions
The very last type of function definition style we will cover is the very powerful generator
function. Broadly, generators are used to supply and control the iteration behavior for a
sequence of one or more, or even infinite, items.

Generator functions in JavaScript are specified with an asterisk following the function
keyword:

function* myGenerator() {...}

When called, they will return a generator object, which uniquely conforms to both the
iterable protocol and the iterator protocol, meaning that they can be iterated over
themselves or can serve as an object's iteration logic.

Feel free to skip ahead to the section on the iterable protocol. The
generator function makes far more sense when you think of it as a
convenient way to create an iterator or iterable.

A generator function will halt and return a value at the point of a yield statement, and this
can occur multiple times. After a yield, the function is effectively stalled while it waits for
a consumer to need its next value. This is best illustrated with an example:

function* threeLittlePiggies() {
 yield 'This little piggy went to market.';
 yield 'This little piggy stayed home.';
 yield 'This little piggy had roast beef.';
}

const piggies = threeLittlePiggies();

piggies.next().value; // => 'This little piggy went to market.'
piggies.next().value; // => 'This little piggy stayed home.'
piggies.next().value; // => 'This little piggy had roast beef.'

piggies.next(); // => {value: undefined, done: true}

As you can see, the generator object that's returned from the function has a next method,
which, when called, will return an object with a value (indicating the current value of the
iteration) and a done property (indicating whether the iteration/generation is complete).
This is the iterator protocol and is the contract you can expect all generators to fulfill.

Primitive and Built-In Types Chapter 6

[159]

A generator fulfills not only the iterator protocol but also the iterable protocol, which
means it can be iterated over by language constructs that accept iterables (such as
for...of or the ...spread operator):

for (let piggy of threeLittlePiggies()) console.log(piggy);
// => Logs: "This little piggy went to market."
// => Logs: This little piggy stayed home."
// => Logs: This little piggy had roast beef."

[...threeLittlePiggies()];
// => ["This little piggy went to market", "This little piggy stayed...",
"..."]

Async generator functions can also be specified. They usefully combine the async and
generator formats into a hybrid that allows for custom asynchronous generation logic, like
so:

async function* pages(n) {
 for (let i = 1; i <= n; i++) {
 yield fetch(`/page/${i}`);
 }
};

// Fetch five pages (/page/1, /page/2, /page/3)
for await (let page of pages(3)) {
 page; // => Each of the 3 pages
};

You'll notice how we're using the for await iteration construct to iterate through our
asynchronous generator. This will ensure that each iteration will await its result before
continuing.

Generator functions are very powerful, but it's important to be aware of the underlying
mechanics at play. They are not regular functions and are not guaranteed to run to
completion. Their implementation should take into account the context in which they will
be run. If your generator is intended to be used as an iterator, then it should respect the
implied expectations of iteration: that it is a read-only operation of an underlying piece of
data or generation logic. While it is possible to mutate underlying data within a generator,
this should be avoided.

Primitive and Built-In Types Chapter 6

[160]

Arrays and iterables
An array in JavaScript is a type of object that is specialized in that it contains a set of
ordered elements.

You can express an array using its literal syntax, which is a comma-separated list of
expressions delimited by square brackets:

const friends = ['Rachel', 'Monica', 'Ross', 'Joe', 'Phoebe', 'Chandler'];

These comma-separated expressions can be as complex or simple as we desire:

[
 [1, 2, 3],
 function() {},
 Symbol(),
 {
 title: 'wow',
 foo: function() {}
 }
]

An array is capable of containing all manner of values. There are very few constraints on
how we can use arrays. Technically, an array's limited to a length of around 4 billion, due
to its length being stored as a 32-bit integer. For most purposes, of course, this should be
absolutely fine.

Arrays have a numeric property for every indexed element within them and a length
property to describe how many elements there are. They also have a set of useful methods
for reading from and operating on the data within them:

friends[0]; // => "Rachel"
friends[5]; // => "Chandler"
friends.length; // => 6

friends.map(name => name.toUpperCase());
// => ["RACHEL", "MONICA", "ROSS", "JOE", "PHOEBE", "CHANDLER"]

friends.join(' and ');
// => "Rachel and Monica and Ross and Joe and Phoebe and Chandler"

Primitive and Built-In Types Chapter 6

[161]

Historically, arrays were iterated over using conventional for(...) and while(...)
loops that increment a counter toward the length so that, upon each iteration, the current
element could be accessed via array[counter], like so:

for (let i = 0; i < friends.length; i++) {
 // Do something with `friends[i]`
}

Nowadays, however, it's preferable to use other methods of iteration, such as forEach or
for...of:

for (let friend of friends) {
 // Do something with `friend`
}

friends.forEach((friend, index) => {
 // Do something with `friend`
});

for...of has the benefit of being breakable, meaning you can use break and continue
statements within them and easily escape from the iteration. It will also work on any object
that is iterable, whereas forEach is only an Array method. The forEach style, however, is
useful in that it provides you with the current index of the iteration via the second
argument to your callback.

Which style of iteration you use should be determined by the value you
are iterating over and what you wish to do on each iteration. Nowadays, it
is quite rare to need to use traditional styles of array iteration such
as for(...) and while(...).

Array-like objects
Most native Array methods are generic, meaning that they can be used on any object that
looks like an array. All we need to achieve the appearance of an array is use a length
property and individual properties for each index (indexed from zero):

const arrayLikeThing = {
 length: 3,
 0: 'Suspiciously',
 1: 'similar to',
 2: 'an array...'
};

// We can "borrow" an array's join method by assigning

Primitive and Built-In Types Chapter 6

[162]

// it to our object:
arrayLikeThing.join = [].join;

arrayLikeThing.join(' ');
// => "Suspiciously similar to an array..."

Here, we've constructed an array-like object and then provided it with a join method of its
own by borrowing the join method of an array (that is, from Array.prototype). The
native array join method is so generically implemented that it doesn't mind operating on
an object as long as that object fulfills the contract of an array by providing a length
property and corresponding indexes (0, 1, 2, and so on). Most native array methods are
similarly generic.

One example of an array-like object within the language itself is the arguments binding
that we explored earlier in this chapter. Another example is NodeList, which is a type of
object that is returned from various DOM selection methods. If necessary, we can derive
proper arrays from these objects by borrowing and calling the array slice method, like so:

const arrayLikeObject = { length: 2, 0: 'foo', 1: 'bar' };

// "Borrowing" a method from an array and forcing its
// execution context via call():
[].slice.call(arrayLikeObject);

// "Borrowing" a method explicitly from the Array.prototype
// and forcing its execution context via call():
Array.prototype.slice.call(arrayLikeObject);

However, in the case of arguments or the NodeList object, we can also rely on them being
iterable, meaning that we can use the spread syntax to derive a true array:

// "spread" a NodeList into an Array:
[...document.querySelectorAll('div span a')];

// "spread" an arguments object into an Array:
[...arguments];

If you find yourself needing to create an array-like object, consider having it implement the
iterable protocol (which we're about to explore) so that the spread syntax can be used in
this way.

Primitive and Built-In Types Chapter 6

[163]

Set and WeakSet
Set and WeakSet are native abstractions that allow us to store sequences of unique objects.
This is in contrast to arrays, which give you no assurances as to the uniqueness of your
values. Here's an illustration:

const foundNumbersArray = [1, 2, 3, 4, 3, 2, 1];
const foundNumbersSet = new Set([1, 2, 3, 4, 3, 2, 1]);

foundNumbersArray; // => [1, 2, 3, 4, 3, 2, 1]
foundNumbersSet; // => Set{ 1, 2, 3, 4 }

As you can see, values given to a Set will always be ignored if they already exist in the
Set.

Sets can be initialized by passing an iterable value to the constructor; for example, a string:

new Set('wooooow'); // => Set{ 'w', 'o' }

If you need to convert a Set into an array, you can most simply do this with the spread
syntax (as sets are, themselves, iterable):

[...foundNumbersSet]; // => [1, 2, 3, 4]

WeakSets are similar to the previously covered WeakMaps. They are for weakly holding
values in a way that allows that value to be garbage-collected in another part of the
program. The semantics and best practices around using sets are similar to those
concerning arrays. It's advisable to only use sets if you need to store unique sequences of
values; otherwise, just use a simple array.

Iterable protocol
The iterable protocol allows values containing sequences to share a common set of
characteristics, allowing them to all be iterated over or treated in a similar way.

We can say that an object that implements the iterable protocol is iterable.
Iterable objects within JavaScript include Array, Map, Set, and String.

Any object can define its own iterable protocol by simply supplying an iterator function
under the property name's Symbol.iterator (which maps to the internal @@iterator
property).

Primitive and Built-In Types Chapter 6

[164]

This iterator function must fulfill the iterator protocol by returning an object with a next
function. This next function, when called, must return an object with done and value keys
indicating what the current value of the iteration is and whether the iteration is completed:

const validIteratorFunction = () => {
 return {
 next: () => {
 return {
 value: null, // Current value of the iteration
 done: true // Whether the iteration is completed
 };
 }
 }
};

So, to be utterly clear about this, there are two distinct protocols:

The iterable protocol: Any object that implements an @@iterator via
[Symbol.iterator] fulfills this protocol. Native examples include Array,
String, Set, and Map.
The iterator protocol: Any function that returns an object of the form {...
next: Function} and whose next method, when called, returns an object in
the following form: {value: Boolean, done: ...}.

For an object to fulfill the iterable protocol, it must implement [Symbol.iterator], like
so:

const zeroToTen = {};
zeroToTen[Symbol.iterator] = function() {
 let current = 0;
 return {
 next: function() {
 if (current > 10) return { done: true };
 return {
 done: false,
 value: current++
 };
 }
 }
};

// We can see the effect of the iterable via the spread operator:
[...zeroToTen]; // => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Primitive and Built-In Types Chapter 6

[165]

Providing custom methods of iteration via the iterable protocol can be useful when you
want to control the order of iteration or if you want to somehow process, filter, or generate
values during iteration. Here, for example, we are specifying an iterator function as a
generator function, which, as you may recall, returns a generator that fulfills both the
iterator and iterable protocols. This generator function will yield two variants for every
word stored – one uppercase and one lowercase:

const words = {
 values: ['CoFfee', 'ApPLE', 'Tea'],
 [Symbol.iterator]: function*() {
 for (let word of this.values) {
 yield word.toUpperCase();
 yield word.toLowerCase();
 }
 }
};

[...words]
// => ["COFFEE", "coffee", "APPLE", "apple", "TEA", "tea"]

Specifying iterator functions as generator functions like this is far simpler than having to
manually implement the iterator protocol. Generators naturally fulfill this contract, so they
can be used far more seamlessly. Generators also tend to be more readable and succinct and
have the dual benefit of implementing both the iterator and iterable protocols, meaning that
they can be used to decorate an object with iteration capabilities:

const someObject = {
 [Symbol.iterator]: function*() { yield 123; }
};

[...someObject]; // => [123]

They can, themselves, also provide that iteration capability:

function* someGenerator() {
 yield 123;
}

[...someGenerator()]; // => [123]

It's important to keep in mind that any work that's done within a custom iterable should be
in line with the expectations of consumers. Iteration is usually considered a read-only
operation, so you should steer clear of mutations of the underlying value-set during
iteration. Implementing your own iterables can be incredibly powerful, but can also lead to
unexpected behavior by the consumers of your code who aren't aware of your custom
iteration logic.

Primitive and Built-In Types Chapter 6

[166]

It's vital to balance the convenience of custom iteration for those people who are in the
know with those people who might only be experiencing your interface or abstraction for
the first time.

RegExp
JavaScript natively supports regular expressions via the object type RegExp, allowing them
to be expressed via the literal syntax /foo/ or directly via the constructor
(RegExp('foo')). Regular expressions are used to define patterns of characters that can
be matched or executed against strings.

Here is an example in which we extract only the long words (>=10 characters) from a
corpus of text:

const string = 'Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Etiam sit amet odio ultrices nunc efficitur venenatis laoreet nec leo.';

string.match(/\w{10,}/g); // => ["consectetur", "adipiscing"]

The grammar and syntax of regular expressions can be complex. It is
technically an entire language unto itself, requiring many days of study.
We won't be able to explore all of its complexity here. We will, however,
be covering the ways in which we typically operate on regular expressions
within JavaScript and explore some of the challenges in doing so. It is
suggested that you conduct further study into regular expressions
yourself.

Regular expression 101
Regular expressions allow us to describe a pattern of characters. They are used for
matching and extracting values from strings. For example, if we had a string that contained
digits (1,2,3) at various positions, a regular expression would allow us to easily retrieve
them:

const string = 'some 1 content 2 with 3 digits';
string.match(/1|2|3/g); // => ["1", "2", "3"]

Primitive and Built-In Types Chapter 6

[167]

A regular expression is written as a pattern delimited by forward slashes, with optional
flags following the final forward slash:

/[PATTERN]/[FLAGS]

The pattern you write can contain both literal and special characters that together inform
the regular expression engine of what to look for. The regular expression we're using in our
example contains literal characters (that is, 1, 2, 3) and the pipe (that is, |) special character:

/1|2|3/g

 The pipe special character tells the regular expression engine that the characters on the left
or the right of the pipe may match. The g, following the final forward slash, is a global flag
that directs the engine to search globally within the string and not to give up after the first
match is found. For us, this means that our regular expression will match either "1", "2",
or "3", wherever they appear within a subject string.

There are specific special characters we can use within regular expressions that act as
shortcuts. The notation [0-9] is an example of this. It is a character class that will match all
the digits from 0 to 9 so that we don't have to list all of these digits individually. There is
also a shorthand character class, \d, that allows us to express this even more succinctly. Thus,
we can shorten our regular expression to the following:

/\d/g

For a more realistic application, we may imagine a scenario in which we wish to match
sequences of digits, such as phone numbers. Perhaps we wish to match only those phone
numbers beginning with 0800 and containing a further 4 to 6 digits. We could do this with
the following regular expression:

/0800\d{4,6}/g

Here, we are using the {n, n} syntax, which allows us to express a quantity for the
preceding special character, \d. We can confirm that our pattern works by passing it to a
test string's match method:

`
 This is a test in which exist some phone
 numbers like 0800182372 and 08009991.
`.match(
 /0800\d{4,6}/g
);
// => ["0800182372", "08009991"]

Primitive and Built-In Types Chapter 6

[168]

This brief introduction only touches on the very surface of what regular expressions can do.
The syntax of regular expressions allows us to express significant complexity, allowing us
to validate that specific text exists within a string or to extract specific text for use within
our programs.

RegExp flags
The literal syntax of regular expressions allows for specific flags, such as i (ignore-case), to
be specified after the final delimiting forward slash. These flags will affect the way the
regular expression is executed:

/hello/.test('hELlO'); // => false
/hello/i.test('hELlO'); // => true

When using the RegExp constructor, you can pass your flags as the second argument:

RegExp('hello').test('hELlO'); // => false
RegExp('hello', 'i').test('hELlO'); // => true

There are six available flags in JavaScript's flavor of regular expression:

i: The ignore-case flag will ignore the case of the string when matching letters
(that is, /a/i would match both 'a' andor 'A' in a string).
g: The global-match flag will make the regular expression find all matches instead
of stopping after the first match.
m: The multiline flag will make beginning and end anchors (that is, ^ and $) mark
the beginnings and ends of individual lines instead of entire strings.
s: The dotAll flag will cause the dot character in your regular expression (which
usually only matches non-newline characters) to match newline characters.
u: The Unicode flag will treat the sequence of characters in your regular
expression as individual Unicode code points instead of code units. This broadly
means you can painlessly match and test for rare or exotic symbols such as
emojis (see the section within this chapter on the String type to get a more
thorough understanding of Unicode).
y: The sticky flag will cause all RegExp operations to attempt a match at the exact
index detailed by the lastIndex property and then mutate lastIndex upon
matches.

As we've seen, regular expressions can also be constructed via the RegExp constructor. This
can usefully be invoked as both a constructor or a regular function: either way, you'll
receive a RegExp object equivalent to what was derived from the literal syntax:

Primitive and Built-In Types Chapter 6

[169]

new RegExp('[a-z]', 'i'); // => /[a-z]/i
RegExp('[a-z]', 'i'); // => /[a-z]/i

This is quite a unique behavior. In fact, the RegExp constructor is the only natively
provided constructor that can be invoked as both a constructor and a regular function and,
in both cases, returns a new instance. You'll recall that the primitive constructors (such
as String and Number) can be invoked as regular functions but will behave differently
when invoked as constructors.

Methods accepting RegExp
There are seven methods provided by JavaScript that are capable of utilizing regular
expressions:

RegExp.prototype.test(String): Runs the regular expression against the
passed string and return true if it finds at least one match. It will return false if no
matches are found.
RegExp.prototype.exec(String): If the regular expression has a global (g),
flag then exec() will return the next match from the current lastIndex (and
will update the regular expression's lastIndex after doing so); otherwise, it will
return the first match of the regular expression (similar to
String.prototype.match).
String.prototype.match(RegExp): This String method will return a match
(or if the global flag is set, all matches) of the passed regular expression made
against the string.
String.prototype.replace(RegExp, Function): This String method will
execute the passed function on every single match and will, for each match,
replace the matched text with whatever the function returns.
String.prototype.matchAll(RegExp): This String method will return an
iterator of all results and their individual groups. This is useful when you have a
global regular expression with individual matching groups.
String.prototype.search(RegExp): This String method will return the
index of the first match or -1 if there are no matches found.
String.prototype.split(RegExp): This String method will return an array
containing parts of the string split by the provided separator (which can be a
regular expression).

Primitive and Built-In Types Chapter 6

[170]

There are many methods to choose from, but for most situations, you'll likely find that the
RegExp method, test(), and the String methods, match() and replace(), are the most
useful.

Here's a rundown of some examples of these methods. This should give you an idea of the
situations in which each method may be used:

// RegExp.prototype.test
/@/.test('a@b.com'); // => true
/@/.test('aaa.com'); // => false

// RegExp.prototype.exec
const regexp = /\d+/g;
const string = '123 456 789';
regex.exec(string); // => ["123"]
regex.exec(string); // => ["456"]
regex.exec(string); // => ["789"]
regex.exec(string); // => null

// String.prototype.match
'Orders: #92838 #02812 #92833'.match(/\d+/); // => ["92838"]
'Orders: #92838 #02812 #92833'.match(/wo+w/g); // => ["92838", "02812",
"92833"]

// String.prototype.matchAll
const string = 'Orders: #92333 <fulfilled> #92835 <pending>';
const matches = [
 ...string.matchAll(/#(\d+) <(\w+)>/g)
];
matches[0][1]; // => 92333
matches[0][2]; // => fulfilled

// String.prototype.replace
'1 2 3 4'.replace(/\d/, n => `<${n}>`); // => "<1> 2 3 4'
'1 2 3 4'.replace(/\d/g, n => `<${n}>`); // => "<1> <2> <3> <4>'

// String.prototype.search
'abcdefghhijklmnop'.search(/k/); // => 11

// String.prototype.split
'time_in____a__tree'.split(/_+/); // ["time", "in", "a", "tree"]

Most of these methods, as you can see, behave intuitively. However, there is some
complexity surrounding stickiness and the lastIndex property, which we will now go
over.

Primitive and Built-In Types Chapter 6

[171]

RegExp methods and lastIndex
By default, if your RegExp is global (that is, uses the g flag), the RegExp methods (that
is, test() and exec()) will mutate the lastIndex property of the RegExp object upon
each execution. These methods will attempt to match the subject string from the index
specified by the current lastIndex property, which is 0 by default, and will then update
the lastIndex upon every subsequent call.

This can lead to unexpected behavior if you expect exec() or test() to always return the
same result for a given global regular expression and string:

const alphaRegex = /[a-z]+/g;

alphaRegex.exec('aaa bbb ccc'); // => ["aaa"]
alphaRegex.exec('aaa bbb ccc'); // => ["bbb"]
alphaRegex.exec('aaa bbb ccc'); // => ["ccc"]
alphaRegex.exec('aaa bbb ccc'); // => null

It will also lead to confusion if you attempt to execute a global regular expression on more
than one string without resetting the lastIndex yourself:

const alphaRegex = /[a-z]+/g;

alphaRegex.exec('monkeys laughing'); // => ["monkeys"]
alphaRegex.lastIndex; // => 7
alphaRegex.exec('birds flying'); // => ["lying"]

As you can see, following the match with the "monkeys" substring, the lastIndex is
updated to the next index (7), which means, when executed on a different string, the
regular expression will continue where it left off and attempt to match everything beyond
that index, which in the case of the second string, "birds flying", is the substring
"lying".

As a rule, to avoid these confusions, it's important to always have ownership over your
regular expressions. Don't accept regular expressions from elsewhere in a program if you're
using RegExp methods. Also, don't attempt to use exec() or test() on different strings
without resetting the lastIndex before each execution:

const petRegex = /\b(?:dog|cat|hamster)\b/g;

// Testing multiple strings without resetting lastIndex:
petRegex.exec('lion tiger cat'); // => ["cat"]
petRegex.exec('lion tiger dog'); // => null

// Testing multiple strings with resetting lastIndex:

Primitive and Built-In Types Chapter 6

[172]

petRegex.exec('lion tiger cat'); // => ["cat"]
petRegex.lastIndex = 0;
petRegex.exec('lion tiger dog'); // => ["dog"]

Here, you can see that, if we don't reset the lastIndex, our regular expression fails to
match on subsequent strings that are passed to the exec() method. If, however, we reset
the lastIndex prior to each subsequent exec() call, we'll observe a match.

Stickiness
Stickiness means that a regular expression will try to match at the exact lastIndex and
that, if a match is not available at that exact index, it will fail (that is, return null or false,
depending on the method used). The sticky flag (y) will force RegExp to read and
mutate lastIndex with each match. Traditionally sticky methods such as exec() and
test(), as we mentioned previously, will always do this, but the y flag will force stickiness
even when using non-sticky methods, such as match():

const regexp = /cat|hat/y; // match 'cat' or 'hat'
const string = 'cat in a hat';

// lastIndex is always zero by default, so will
// match from the start of the string:
regexp.lastIndex; // => 0
regexp.test(string); // => ["cat"]

// lastIndex has been modified following the last
// match but will not match anything as there is
// no cat or hat at index 3:
regexp.lastIndex; // => 3
string.match(regexp); // => null

// Set lastIndex to 9 (index of "hat"):
regexp.lastIndex = 9;
string.match(regexp); // => ["hat"]

Stickiness can be useful if you're looking for a match at a specific index in a string or series
of strings. However, its behavior can be unexpected if you're not in full control of
lastIndex. As we mentioned previously, a good general rule is to always have ownership
over your own RegExp objects so that any mutations to lastIndex are only made by your
code.

Primitive and Built-In Types Chapter 6

[173]

Summary
In this chapter, we have begun to delve into JavaScript by looking at the built-in types that
the language provides. The point of our exploration has been to look at these language
constructs through the lens of clean code. By doing so, we've highlighted the importance of
caution when dealing with some of the more obscure areas of the language.
We've discovered many of the nasty edge cases and challenges involved in using JavaScript
types, such as the lack of precision in the floating-point Number type and the complexity of
Unicode in the String type. Exploring these more difficult parts of the language allows us
not only to avoid specific traps but instills a fluency within us that will hugely boost our
ability to wield JavaScript in the service of clean code.

In the next chapter, we will continue to enhance this fluency. We will learn more about
JavaScript's type system and begin to operate on and manipulate these types to suit our
needs.

7
Dynamic Typing

In the previous chapter, we explored JavaScript's built-in values and types and covered
some of the challenges involved when using them. The next natural step is for us to explore
how JavaScript's dynamic system plays out in the real world. Since JavaScript is a
dynamically typed language, the variables in your code are not constrained in terms of the
type of values they refer to. This introduces a huge challenge for the clean coder. Without
certainty regarding our types, our code can break in unexpected ways and can become
incredibly fragile. This fragility can be explained quite simply by imagining a numeric
value embedded within a string:

const possiblyNumeric = '203.45';

Here, we can see that the value is numeric but that it has been wrapped in a string literal
and so, as far as JavaScript is concerned, is just a regular string. But because JavaScript is
dynamic, we can freely pass this value around to any function—even a function that is
expecting a number:

setWidth('203.45');

function setWidth(width) {
 width += 20; // Add margins
 applyWidth(width); // Apply the width
}

The function adds a margin value to the number via the += operator. This operator, as we
will learn later in this chapter, is an alias for the operation a = a + b, and the + operator
here will, in the case of either operand being a String type, simply concatenate the two
strings together. What's funny is that this simple and innocent-looking implementation
detail is the crux of millions of exhausting debugging sessions that have occurred around
the world at various times. Thankfully, knowing about this operator and its exact behavior
will save you countless hours of pain and exhaustion, and will cement in your mind the
importance of writing code that avoids the very trap we've fallen into with our
possiblyNumeric value.

Dynamic Typing Chapter 7

[175]

In this chapter, we will cover the following topics:

Detection
Conversion, coercion, and casting

The first crucial step in being able to wrangle our types with more ease is to learn about
detection, which is the skill of being able to discern what type or types you're dealing with
in the least complex way.

Detection
Detection refers to the practice of determining a value's type. Usually, this will be done
with the intention of using that determined type to carry out specific behavior such as
falling back to a default value or throwing an error in the case of misuse.

Due to JavaScript's dynamic nature, detecting types is an important practice that can often
be a great aid to other programmers. If you can usefully throw errors or warnings when
someone is using an interface incorrectly, it can mean a much more fluid and speedy flow
of development for them. And if you can helpfully populate undefined, null, or empty
values with smart defaults, then it'll allow you to provide a more seamless and intuitive
interface.

Unfortunately, due to legacies within JavaScript, and some choices made in its design,
detecting types can be challenging. A number of different approaches are used, some of
which are not considered best practice. We will be going over all of these practices within
this section. First, however, it's worth discussing one fundamental question regarding
detection: what exactly are you trying to detect?

We often think we require a specific type in order to carry out certain actions, but due to
JavaScript's dynamic nature, we may not need to do so. In fact, doing so can lead us to
create needlessly restrictive or rigid code.

Consider a function that accepts an array of people objects, like so:

registerPeopleForMarathon([
 new Person({ id: 1, name: 'Marcus Wu' }),
 new Person({ id: 2, name: 'Susan Smith' }),
 new Person({ id: 3, name: 'Sofia Polat' })
]);

Dynamic Typing Chapter 7

[176]

In our registerPeopleForMarathon, we may be tempted to implement some kind of
check to ensure that the passed argument is of the expected type and structure:

function registerPeopleForMarathon(people) {
 if (Array.isArray(people)) {
 throw new Error('People is not an array');
 }
 for (let person in people) {
 if (!(person instanceof Person)) {
 throw new Error('Each person should be an instance of Person');
 }
 registerForMarathon(person.id, person.name);
 }
}

Are these checks necessary? You may be inclined to say yes as they're ensuring our code is
resilient (or defensive) toward potential error cases and is thus more reliable. But if we
think about it, none of these checks are necessary to ensure the kind of reliability we're
seeking. The intention of our checks, presumably, is to prevent downstream errors in the
case that the wrong types or structures are passed to our function, but if we look closely at
the preceding code, there are no risks of downstream errors of the types we're worried
about.

The first check we conduct is Array.isArray(people) to determine whether the people
value is indeed an array. We are doing this, ostensibly, so that we can safely loop through
the array. But, as we discovered in the previous chapter, the for...of iteration style is not
dependent on its of {...} value being an array. All it cares about is that the value is
iterable. An example of this is as follows:

function* marathonPeopleGenerator() {
 yield new Person({ id: 1, name: 'Marcus Wu' });
 yield new Person({ id: 2, name: 'Susan Smith' });
 yield new Person({ id: 3, name: 'Sofia Polat' });
}

for (let person of marathonPeopleGenerator()) {
 console.log(person.name);
}

// Logged => "Marcus Wu"
// Logged => "Susan Smith"
// Logged => "Sofia Polat"

Dynamic Typing Chapter 7

[177]

Here, we've used a generator as our iterable. This will work just an array would when
being iterated over in for...of, so, technically, we could argue that our
registerPeopleForMarathon function should accept such values:

// Should we allow this?
registerPeopleForMarathon(
 marathonPeopleGenerator()
);

The checks we've made thus far would reject this value as it is not an array. Is there any
sense in that? Do you remember the principle of abstraction and how we should be
concerned with interface, not implementation? Seen this way, arguably, our
registerPeopleForMarathon function does not need to know about the implementation
detail of the passed value's type. It only cares that the value performs according to its
needs. In this case, it needs to loop through the value via for...of, so any iterable is
suitable. To check for an iterable, we might employ a helper such as this:

function isIterable(obj) {
 return obj != null &&
 typeof obj[Symbol.iterator] === 'function';
}

isIterable([1, 2, 3]); // => true
isIterable(marathonPeopleGenerator()); // => true

Also, consider that we are currently checking that all of our person values are instances of
the Person constructor:

// ...
if (!(person instanceof Person)) {
 throw new Error('Each person should be an instance of Person');
}

Is it necessary for us to explicitly check the instance in this way? Could we, instead, simply
check for the properties that we wish to access? Perhaps all we need to assert is that the
properties are non-falsy (empty strings, null, undefined, zero, and so on):

// ...
if (!person || !person.name || !person.id) {
 throw new Error('Each person should have a name and id');
}

Dynamic Typing Chapter 7

[178]

This check is arguably more specific to our true needs. Checks like these are often called
duck-typing, that is, If it walks like a duck and it quacks like a duck, then it must be a duck. We
don't always need to check for specific types; we can check for the properties, methods, and
characteristics that we're truly dependent on. By doing so, we are creating code that is more
flexible.

Our new checks, when integrated into our function, would look something like this:

function registerPeopleForMarathon(people) {
 if (isIterable(people)) {
 throw new Error('People is not iterable');
 }
 for (let person in people) {
 if (!person || !person.name || !person.id) {
 throw new Error('Each person should have a name and id');
 }
 registerForMarathon(person.id, person.name);
 }
}

By using a more flexible isIterable check and employing duck-typing on our person
objects, our registerPeopleForMarathon function can now be passed; for example, here,
we have a generator that yields plain objects:

function* marathonPeopleGenerator() {
 yield { id: 1, name: 'Marcus Wu' };
 yield { id: 2, name: 'Susan Smith' };
 yield { id: 3, name: 'Sofia Polat' };
}

registerPeopleForMarathon(
 marathonPeopleGenerator()
);

This level of flexibility wouldn't have been possible if we had kept our strict type-checking
in place. Stricter checks usually create more rigid code and needlessly limit flexibility. There
is a balance to strike here, however. We cannot be endlessly flexible. It may even be the case
that the rigidity and certainty provided by stricter type-checks enable us to ensure cleaner
code in the long run. But the opposite may also be true. The balancing act of flexibility
versus rigidity is one you should be constantly considering.

Generally, an interface's expectations should attempt to be as close as possible to the
demands of the implementation. That is, we should not be performing detection or other
checks unless the checks genuinely prevent errors within our implementation. Over-
zealous checking may seem safer but may only mean that future requirements and use
cases are more awkward to accommodate.

Dynamic Typing Chapter 7

[179]

Now that we've covered the question of why we detect things and exposed some use cases,
we can begin to cover the techniques of detection that JavaScript provides us with. We'll
begin with the typeof operator.

The typeof operator
The first thing you'll often be exposed to when you first try to detect a type in JavaScript is
the typeof operator:

typeof 1; // => number

The typeof operator accepts a single operand, to its right-hand-side, and will evaluate to
one of eight possible string values, depending on the value that's passed:

typeof 1; // => "number"
typeof ''; // => "string"
typeof {}; // => "object"
typeof function(){}; // => "function"
typeof undefined; // => "undefined"
typeof Symbol(); // => "symbol"
typeof 0n; // => "bigint"
typeof true; // => boolean

If your operand is an identifier without a binding, that is, an undeclared variable, then
typeof will usefully return "undefined" instead of throwing a ReferenceError like any
other reference to that variable would do:

typeof somethingNotYetDeclared; // => "undefined"

typeof is the only operator in the JavaScript language that does this. Every other operator
and every other way of referencing a value will throw an error if that value is not yet
declared.

Outside of detecting undeclared variables, typeof is really only useful when determining
primitive types—and even that's too generous since not all primitive types are detectable. A
null value, for example, when passed to typeof, will evaluate to a rather useless
"object":

typeof null; // => "object"

Dynamic Typing Chapter 7

[180]

This is an unfortunate and unfixable legacy of the JavaScript language. It will likely never
be fixed. To check for null, it is preferred to explicitly check for the value itself:

let someValue = null;
someValue === null; // => true

The typeof operator does not differentiate between different types of objects, except for
functions. All non-function objects in JavaScript will return, plainly, "object":

typeof []; // => "object"
typeof RegExp(''); // => "object"
typeof {}; // => "object"

All functions, whether declared via class definitions, method definitions, or plain function
expressions, will evaluate to "function":

typeof () => {}; // => "function"
typeof function() {}; // => "function"
typeof class {}; // => "function"
typeof ({ foo(){} }).foo; // => "function"

If typeof class {} evaluating to "function" is confusing, consider that, as we've
learned, all classes are just constructor functions with a prepared prototype (which will
later determine the [[Prototype]] of any produced instances). There's nothing special
about them. Classes are not a unique type or entity within JavaScript.

When it comes to comparing the result of typeof to a given string, we can use either the
strict equality (===) or abstract equality (==) operator. Since typeof always returns a
string, we don't have to worry about any discrepancies here, so whether you adopt a strict
versus abstract equality check is up to you. These would both be fine, technically:

if (typeof 123 == 'number') {...}
if (typeof 123 === 'number') {...}

The strict and abstract equality operators (double-equals and triple-
equals) behave slightly differently, although when the values on both
sides of the operator are of the same type, they act identically. Skip ahead
to the Operator section to get the lowdown on how they differ. In general,
it's best to prefer === over ==.

In conclusion, the typeof operator is only a fair-weather friend. We cannot rely on it in all
circumstances. Sometimes, we'll need to use other type detection techniques.

Dynamic Typing Chapter 7

[181]

Type-detecting techniques
Given the unsuitability of the typeof operator for detecting a number of types, especially
objects, we have to rely on a number of different approaches, depending on the exact thing
we want to check. Sometimes, we may want to detect a characteristic instead of a type, for
example, whether an object is an instance of a constructor or whether it's just a plain object.
In this section, we'll be exploring a number of common detection needs and their solutions.

Detecting Booleans
Booleans are thankfully very simple to check. The typeof operator correctly evaluates to
"boolean" for values of true and false:

typeof true; // => "boolean"
typeof false; // => "boolean"

It's rare that we'll want to do this, though. Usually, when you are receiving a Boolean
value, you are most interested in checking its truthiness rather than its type.

When placing a Boolean value in a Boolean context, such as a conditional statement, we are
implicitly relying on its truthiness or falsiness. For example, take the following check:

function process(isEnabled) {
 if (isEnabled) {
 // ... do things
 }
}

This check does not determine whether the isEnabled value is truly Boolean. It just checks
that it evaluates to something truthy. What are all the possible values that isEnabled
could be? Is there a list of all these truthy values? These values are virtually infinite, so
there is no list. All we can say about truthy values is that they are not falsy. And as we
know, there are only seven falsy values. If we wish to observe the truthiness or falsiness of
specific values, we can always cast to a Boolean via the Boolean constructor invoked as a
function:

Boolean(true); // => true
Boolean(1); // => true
Boolean(42); // => true
Boolean([]); // => true
Boolean('False'); // => true
Boolean(0.0001); // => true

Dynamic Typing Chapter 7

[182]

In most situations, the implicit coercion to a Boolean is sufficient and won't end up biting
us, but if we ever wish to absolutely determine that a value is both Boolean and
specifically true or false, we can use the strict equality operator to compare them, like so:

if (isEnabled === true) {...}
if (isEnabled === false) {...}

Due to the dynamic nature of JavaScript, some people prefer this level of certainty but
usually, it isn't necessary. If the value we are checking is obviously intended as a Boolean
value, then we can use it as so. Checking for its type via typeof or strict equality is usually
unnecessary unless there is a possibility that the value may be non-Boolean.

Detecting numbers
In the case of a Number, we can rely on the typeof operator to correctly evaluate to
"number":

typeof 555; // => "number"

However, it will also evaluate to "number" in the case of NaN, Infinity, and -Infinity:

typeof Infinity; // => "number"
typeof -Infinity; // => "number"
typeof NaN; // => "number"

Because of this, we may wish to carry out additional checks to determine whether a number
is not any of those values. Thankfully, JavaScript provides native helpers for just this
scenario:

isFinite(n): Returns true if Number(n) is not Infinity, -Infinity, or NaN
isNaN(n): Returns true if Number(n) is not NaN
Number.isNaN(n): Returns true if n is not NaN
Number.isFinite(n): Returns true if n is not Infinity, -Infinity, or NaN

Both of the global variants are older parts of the language and, as you can see, are slightly
different than their Number.* equivalents. Global isFinite and isNaN cast their values to
a number via Number(n), while the equivalent Number.* methods do not do this. The
reason for this difference is mostly one of legacy.

Dynamic Typing Chapter 7

[183]

The more recently added Number.isNaN and Number.isFinite were introduced to
enable more explicit checks without relying on casting:

isNaN(NaN) // => true
isNaN('foo') // => true

Number.isNaN(NaN); // => true
Number.isNaN('foo'); // => false

As you can see, Number.isNaN is more restrictive as it won't cast the value to a Number
before checking for NaN. With the 'foo' string, we would need to cast it to Number (and
thus evaluate to NaN) before we passed it:

const string = 'foo';
const nan = Number(string);
Number.isNaN(nan); // => true

The global isFinite function works in the same way, that is, it casts its value to a number
before checking for finiteness, while the Number.isFinite method will do no casting
whatsoever:

isFinite(42) // => true
isFinite('42') // => true

Number.isFinite(42); // => true
Number.isFinite('42'); // => false

If you are confident that your value is already a number, then you may as well use the
more succinct isNaN and isFinite as their implicit casting will have no effect on you.
And if you'd like for JavaScript to attempt to cast your non-Number value to Number, then
you should, once again, use isNaN and isFinite. If, however, you require an explicit
check for whatever reason, then you should use Number.isNaN and Number.isFinite.

Combining all of these discussed checks, we are able to confidently detect a number that is
neither NaN nor Infinity by using typeof in combination with the global isFinite. As
we mentioned previously, isFinite will check for NaN itself, so we needn't bother with an
additional isNaN check:

function isNormalNumber(n) {
 return typeof n === 'number' && isFinite(n);
}

Dynamic Typing Chapter 7

[184]

When it comes to detection, your needs should be driven by the context of your code. For
example, it may not be necessary to check for finite numbers if you're embedded in a piece
of code where you can safely assume the number is finite. But if you're building a more
public API, then you may want to conduct such checks before sending those values down
into your internal interfaces, both to reduce the possibilities of bugs and to provide your
users with helpful and sensible errors or warnings.

Detecting strings
Detecting strings is pleasantly simple. The typeof operator is all we need:

typeof 'hello'; // => "string"

In order to check for the length of a given String, we can simply use the length property:

'hello'.length; // => 5

If we need to check whether a String has a length greater than 0, we can either explicitly
do so via length or rely on the falsiness of a 0 length, or even rely on the falsiness of the
empty string itself:

const string = '';

Boolean(string); // => false
Boolean(string.length); // => false
Boolean(string.length > 0); // => false

// Since an empty String is falsy we can just check `string` directly:
if (string) { }

// Or we can be more explicit:
if (string.length) { }

// Or we can be maximally explicit:
if (string.length > 0) { }

If we're only checking for the truthiness of a value, then we are also potentially detecting all
potential truthy values, including non-zero numbers and objects. To be completely sure
that you have a String and that it is not empty, the most succinct technique is as follows:

if (typeof myString === 'string' && myString) {
 // ...
}

Dynamic Typing Chapter 7

[185]

Emptiness by itself, however, may not be all we're interested in. We may wish to detect
whether a string has actual content in it. In most cases, actual content starts at the beginning
of the String and ends at the end of the String, but in some cases, it may be embedded
within whitespace on either side. To account for this, we can trim the String and then
confirm its emptiness:

function isNonEmptyString(string) {
 return typeof string === 'string' && string.trim().length > 0;
}

isNonEmptyString('hi'); // => true
isNonEmptyString(''); // => false
isNonEmptyString(' '); // => false
isNonEmptyString(' \n'); // => false

Notice that our function, isNonEmptyString, is using a length > 0 check on the
trimmed string instead of just relying on its falsiness as an empty string. This is so that we
can safely and confidently know that our isNonEmptyString function will always return a
Boolean value. Even though, 99% of the time, it will be used in a Boolean context such as if
(isNonEmptyString(...)), we should still ensure that our function has an intuitive and
consistent contract.

The logical AND operator (a && b) will, if its left-hand side is truthy,
return its right-hand side. Therefore, expressions such as typeof str
=== "string" && str are not always guaranteed to return a Boolean.
Go to the Operator – Logical Operators – Logical AND Operator section of
Chapter 8, Operators for more information.

Strings are simple to detect, but as we mentioned in the previous chapter, working with
them can be a challenge due to Unicode. Therefore, it's vital to remember that while the
detection of a string may provide us some certainty, it does not tell us what is inside the
string and whether it is the value we're expecting. If your detections have the intention of
providing a guide or warning to those who are using your interface, you might be better
served by explicitly checking the contents of the value.

Detecting undefined
The undefined type can be checked directly by referring to its globally available value via
the strict equality operator:

if (value === undefined) {
 // ...
}

Dynamic Typing Chapter 7

[186]

Unfortunately, however, since undefined can be overridden within non-global scopes
(depending on your precise setup and environment), this approach can be troublesome.
Historically, undefined could be overridden globally. This meant that things like this were
possible:

let value = void 0; // <- actually undefined
let undefined = 123; // <- cheeky override

if (value === undefined) {
 // Does not occur
}

The void operator, as we will explore later, takes one operand to its right-hand side (void
foo) and will always evaluate to undefined. As such, void 0 has become a synonym for
undefined and is useful as a substitute. So, if you have low confidence in the undefined
value, then you can simply check for void 0 like so:

if (value === void 0) {
 // value is undefined
}

Various other approaches emerged to ensure a reliable undefined value. One, for example,
would simply declare an unassigned variable (which will always default to undefined)
and then use that within the scope:

function myModule() {
 // My local `undefined`:
 const undef;

 void 0 === undef; // => true

 if (someValue === undef) {
 // Instead of `VALUE === undefined` I can
 // use `VALUE === undef` within this scope
 }
}

Over time, the mutability of the undefined value has been locked down. ECMAScript 2015
forbade global modification, but curiously still allowed local modification.

Thankfully, it has always remained possible to check for undefined via the simple typeof
operator:

typeof undefined; // => "undefined"

Dynamic Typing Chapter 7

[187]

Using typeof in this way is far less risky than relying on undefined as a literal value,
though with the advent of linting tools, it is generally safe to directly check for undefined.

We'll explore ESLint, a popular JavaScript linting tool, in Chapter 15,
Tools For Cleaner Code. In the case of overwriting undefined in a local
scope, which is unquestionably a bad thing to do, it'll helpfully give us a
warning. Such warnings can provide us with a level of confidence,
allowing us to safely use previously risky aspects of the language.

Detecting null
As we've seen, typeof null evaluates to "object". This is an odd legacy of the language.
Unfortunately, it means that we cannot rely on typeof for the detection of null. Instead,
we must compare to the literal null value directly using a strict quality operator, as shown
here:

if (someValue === null) {
 // someValue is null...
}

Unlike undefined, null cannot be overwritten in any version of the language, nor in any
environment, and so it doesn't come with any headaches around its usage.

Detecting null or undefined
So far, we've covered how to independently check for both undefined and null, but we
may want to check for both at the same time. It's quite common, for example, to have a
function signature that has an optional argument. And if that argument is not passed or is
explicitly set to null, it's normal to fall back to some default value. This can be achieved by
explicitly checking for both null and undefined, like so:

function printHello(name, message) {
 if (message === null || message === undefined) {
 // Default to a hello message:
 message = 'Hello!';
 }
 console.log(`${name} says: ${message}`);
}

Dynamic Typing Chapter 7

[188]

Often, since both null and undefined are falsy values, it is quite normal to imply their
presence by checking the falsiness of a given value:

if (!value) {
 // Value is definitely not null and definitely not undefined
}

This, however, will also check whether the value is any of the other falsy values (including,
false, NaN, 0, and so on). So, if we want to confirm that a value is specifically null or
undefined, and no other falsy value, then we should stick to the explicit variation:

if (value === null || value === undefined) //...

Even more succinctly, however, we can adopt the abstract (non-strict) equality operator to
check for either null or undefined since it considers these values to be equal:

if (value == null) {
 // value is either null or undefined
}

Although this utilizes the generally frowned-upon abstract equality operator (which we'll
explore later in this chapter), it is still a popular way to check for both undefined and
null. This is due to its succinct nature. However, adopting this more succinct check makes
the code less obvious. It may even leave the impression that the author meant to check
solely for null. This ambiguity of intent should leave us doubting its cleanliness.
Therefore, in most situations, we should opt for the more explicit and strict check.

Detecting arrays
Detecting arrays in JavaScript is thankfully very straightforward due to the
Array.isArray method:

if (Array.isArray(value)) {
 // ...
}

What this method tells us is that the passed value was constructed via the array constructor
or an array literal. However, it does not check the [[Prototype]] of the value, so it is
entirely possible (although unlikely) that the value, although appearing like an array, may
not have the characteristics you desire.

Dynamic Typing Chapter 7

[189]

When we believe that we need to check whether a value is an array, it's important to ask
ourselves what we're really trying to detect. It may be the case that we can check for the
characteristics we desire instead of the type itself. It's crucial to consider what we will be
doing with the value. If we are intending to loop over it via for...of, then it may be more
suitable for us to check for its iterable-ness instead of its array-ness. As we mentioned
earlier, we can employ a helper like this to do so:

function isIterable(obj) {
 return obj != null &&
 typeof obj[Symbol.iterator] === 'function';
}

const foo = [1,2,3];
if (isIterable(foo)) {
 for (let f in foo) {
 console.log(f);
 }
}

// Logs: 1, 2, 3

If, alternatively, we are looking to use specific array methods such as forEach or map, then
it's best to check via isArray as this will give us as a reasonable level of confidence that
these methods exist:

if (Array.isArray(someValue)) {
 // Using Array methods
 someValue.forEach(v => {/*...*/});
 someValue.sort((a, b) => {/*...*/});
}

If we were inclined to be really thorough, we could also individually check for specific
methods, or we could even force the value into an array of our own so that we could
operate on it freely while knowing that the value is truly an array:

const myArrayCopy = [...myArray];

Note that copying an array-like value via the spread syntax ([...value]) will only work if
the value is iterable. An example of when using [...value] is appropriate is when
operating on NodeLists that have been returned from the DOM API:

const arrayOfParagraphElements = [...document.querySelectorAll('p')];

A NodeList is not a true Array, so it does not give us access to native array methods. Due
to this, it is useful to create and use a copy of it that is a true Array.

Dynamic Typing Chapter 7

[190]

On the whole, it is safe to adopt and rely on Array.isArray, but it's important to consider
whether you even need to check for Array, whether it's more appropriate to check for
whether the value is iterable, or even whether it has a specific method or property. As with
all other checks, we should seek to make it obvious what our intent is. If we're employing
checks that are more obscure than Array.isArray, then it may be prudent to add a
comment or abstract the operation away with a descriptively named function.

Detecting instances
To detect whether an object is an instance of a constructor, we can simply use the
instanceof operator:

const component = new Component();
component instanceof Component;

The instanceof operator will be covered in more detail in Chapter 8,
Operators.

Detecting plain objects
When we say plain objects, we are typically referring to those that are constructed as either
Object literals or via the Object constructor:

const plainObject = {
 name: 'Pikachu',
 species: 'Pokémon'
};

const anotherPlainObject = new Object();
anotherPlainObject.name = 'Pikachu';
anotherPlainObject.species = 'Pokémon';

This is in contrast to other objects, such as those provided natively by the language (for
example, arrays) and those that we construct ourselves via instantiating constructors (for
example, new Pokemon()):

function Pokemon() {}
new Pokemon(); // => A non-plain object

Dynamic Typing Chapter 7

[191]

The simplest way to detect a plain object is to inquire as to its [[Prototype]]. If it has a
[[Prototype]] equal to Object.prototype, then we can say it is plain:

function isPlainObject(object) {
 return Object.getPrototypeOf(object) === Object.prototype;
}

isPlainObject([]); // => false
isPlainObject(123); // => false
isPlainObject(new String); // => false
isPlainObject(new Pokemon()); // => false

isPlainObject(new Object()); // => true
isPlainObject({}); // => true

Why would we need to know whether a value is a plain object? It may, for example, be
useful to discern plain from non-plain objects when creating an interface or function that
accepts configuration objects in addition to more complex object types.

In most situations, we will need to detect a plain object explicitly. Instead,
we should rely only on the interface or data that it provides us. If a user of
our abstraction wishes to pass us a non-plain object but it still has the
properties that we require, then who are we to complain?

Conversion, coercion, and casting
So far, we have learned how to tell the difference between various types and characteristics
within JavaScript using detection. As we have seen, detection is useful when needing to
provide alternative values or warnings in the case of unexpected or incompatible values.
There is an additional mechanism for dealing with such values, however: we can convert
them from the values we don't desire into the values we do desire.

In order to convert a value, we use a mechanism known as casting. Casting is the
intentional and explicit derivation of one type from another type. In contrast to casting,
there is also coercion. Coercion is the implicit and internal process of conversion employed
by JavaScript when we use operators or language constructs that require specific types. An
example of this would be when passing String values to a multiplication operator. The
operator will naturally coerce its String operands to numbers so that it can attempt to
multiply them:

'5' * '2'; // => 10 (Number)

Dynamic Typing Chapter 7

[192]

The underlying mechanisms in both casting and coercion are identical. They are both
mechanisms of conversion. But how we access these low-level behaviors is key. If we do so
explicitly, clearly communicating our intent, then the readers of our code will have a far
nicer time.

Consider the following code, which contains two different mechanisms for converting a
String into a Number:

Number('123'); // => 123
+'123'; // => 123

Here, we are using two different techniques to force the conversion of a value from a
String into a Number. The Number() constructor, when called as a function, will internally
convert the passed value into a Number primitive. The unary + operator will do the same,
although it is arguably less clear. Coercion is even less clear as it often appears to occur as a
side effect of some other operation. Here are some examples of this:

1 + '123'; // => "1234"
[2] * [3]; // => 6
'22' / 2; // => 11

The + operator, when either operand is a string, will coerce the opposite operand to a string
and then concatenate them both together. The * operator, when given arrays, will call
toString() on them and then coerce the resulting String into Number, effectively
meaning that [2] * [3] is equal to 2 * 3. Also, the division operator will coerce its
operands to numbers before operating on them. All of these coercive behaviors are
happening implicitly.

The line between coercion and casting is not set in stone. It is possible, for
example, to explicitly and intentionally convert a type via a coercive side
effect. Consider the expression someString * 1, which could be used to
cast a string to a number, using coercion to do so. In our conversions,
what's crucial is that we clearly communicate our intent.

Coercion, since it happens implicitly, can be the cause of many bugs and unexpected
behaviors. To avoid this trap, we should always have a strong level of confidence in the
types of our operands. Casting, however, is entirely intentional and can help create a more
reliable code base. It's common, on the more public or exposed sides of your interfaces, to
preemptively cast to the types you desire, just in case the types you've received are not
correct.

Dynamic Typing Chapter 7

[193]

Observe here how we are explicitly casting both haystack and needle values to the
String type:

function countOccurrences(haystack, needle) {

 haystack = String(haystack);
 needle = String(needle);

 let count = 0;

 for (let i = 0; i < haystack.length; count++, i += needle.length) {
 i = haystack.indexOf(needle, i);
 if (i === -1) break;
 }

 return count;
}

countOccurrences('What apple is the best type of apple?', 'apple'); // => 2
countOccurrences('ABC ABC ABC', 'A'); // => 3

Since we're relying on the indexOf() method on the haystack string, it makes sense,
depending on our desired level of defensiveness, to cast the haystack to a string so that we
can ensure it has the method available. Casting needle to a string also encodes a higher
level of certainty so that we, and fellow programmers, can feel at ease.

The defensive approach of preemptively casting values to protect against
undesirable types is best when we're crafting reusable utilities, public-
facing APIs, or any interfaces that'll be consumed in a way that reduces
your confidence in the types you'll be receiving.

Dynamically typed languages such as JavaScript are seen by many as an invitation to chaos.
Such people may be used to the comfort and certainty provided by strictly typed
languages. In truth, if wielded fully and carefully, a dynamic language can allow our code
to be more thoughtfully composed and more resilient to the changing needs of users. In the
remainder of this section, we'll be discussing the conversion to individual types, including
the explicit casting mechanisms we can utilize and the various coercive behaviors the
language adopts internally. We'll begin by looking at Boolean conversion.

Dynamic Typing Chapter 7

[194]

Converting into a Boolean
All values in JavaScript when converted into a Boolean will return true unless they are one
of the seven falsy primitives (false, null, undefined, 0n, 0, "", and NaN), in which case
they will return false.

To cast a value to a Boolean, we can simply pass the value to the Boolean constructor,
invoking it as a function:

Boolean(0); // => false
Boolean(1); // => true

The language will coerce values to Booleans when the values exist in a Boolean context.
Here are some examples of such contexts (each marked with HERE):

if (HERE) {...}

do {...} while (HERE)

while (HERE) {...}

for (...; HERE; ...) {...}

[...].filter(function() { return HERE })

[...].some(function() { return HERE })

This list is not exhaustive. There are quite a few other situations in which our values will be
coerced to Booleans. It's usually quite easy to tell. If a language construct or natively-
provided function or method allows you to specify one of two possible pathways (that is, if
X then do THIS otherwise do THAT), then you can bet that it will be internally coercing
whatever value you've expressed to a Boolean.

A common idiom for casting to a Boolean, in addition to the more explicit call to
Boolean(), is the double-bang, that is, the unary logical NOT operator (!) repeated twice:

!!1; // => true
!![]; // => true
!!0; // => false
!!""; // => false

Repeating the logical NOT operator twice will invert the Boolean representation of the value
twice. It's easier to understand the semantics of the double-bang by seeing it parenthesized:

!(!(value))

Dynamic Typing Chapter 7

[195]

This is effectively doing four things:

Casting the value to a Boolean (Boolean(value)).
If the value is true, then make it false. If the value is false, then return true.
Cast the resulting value to a Boolean (Boolean(value)).
If the value is true, then make it false. If the value is false, then return true.

In other words: this does one logical NOT, followed by another, resulting in the Boolean
representation of the original value itself.

Explicitly casting values to Booleans is especially useful when you're creating a function or
method that must return a Boolean value but deals with values that are not Boolean. For
example, I may wish to create an isNamePopulated function that returns false if the
name variable is not a populated string or is null or undefined:

function isNamePopulated(name) {
 return !!name;
}

This will helpfully return false if name is an empty String, null, or undefined:

isNamePopulated(''); // => false
isNamePopulated(null); // => false
isNamePopulated(undefined); // => false

isNamePopulated('Sandra'); // => true

It will incidentally also return false if name were any other falsy value (such as 0) and it
would return true if name were any truthy value:

isNamePopulated(0); // => false
isNamePopulated(1); // => true

This may seem entirely undesirable but, in this context, it may be okay since we're already
operating under the assumption that name is a String, null, or undefined, and so we
only care about the function's fulfillment of its contract in regards to those values. How
comfortable you are with this would depend entirely on your specific implementation and
the interface it provides.

Dynamic Typing Chapter 7

[196]

Converting into a String
Casting a value to a String can be achieved by invoking the String constructor as a
regular function (that is, not as a constructor):

String(456); // => "456"
String(true); // => "true"
String(null); // => "null"
String(NaN); // => NaN
String([1, 2, 3]); // => "1,2,3"
String({ foo: 1 }); // => "[object Object]"
String(function(){ return 'wow' }); // => "function(){ return 'wow' }"

Calling String() with your value is the most explicit and clear way of casting to a String,
although there are more succinct patterns that are sometimes used:

'' + 1234; // => "1234"
`${1234}`; // => "1234"

These two expressions may appear equivalent, and for many values, they are. But,
internally, they work differently. As we'll see later, the + operator will discern whether a
given operand is a String by calling its internal ToPrimitive mechanism in such a way
that the operand's valueOf (if it has one) will be queried before its toString
implementation. However, when using template literals (such as `${value}`), any
interpolated values will be converted directly to strings (without going via ToPrimitive).
There is always the possibility that a value's valueOf and toString methods will provide
different values. Take a look at the following example, which shows how we can
manipulate the return values of the two seemingly equivalent expressions by defining our
own toString and valueOf implementations:

const myFavoriteNumber = {
 name: 'Forty Two',
 number: 42,
 valueOf() { return number; },
 toString() { return name; }
};

`${myFavoriteNumber}`; // => "Forty Two"
'' + myFavoriteNumber; // => 42

This would be a rare situation to encounter but is still worth thinking about. Often, we
presume that we can reliably cast any value to a string quite easily, but that may not always
be the case.

Dynamic Typing Chapter 7

[197]

Traditionally, it's quite common to rely on a value's toString() method and call it
directly:

(123).toString(); // => 123

However, if the value is null or undefined, then you'll receive a TypeError:

null.toString(); // ! TypeError: Cannot read property 'toString' of
null
undefined.toString(); // ! TypeError: Cannot read property 'toString' of
undefined

Additionally, the toString method is not guaranteed to return string. Observe here how
we can implement our own toString method that returns Array:

({
 toString() { return ['not', 'a', 'string'] }
}).toString(); // => ["not", "a", "string"]

Therefore, it is always advisable to cast to a string via the very explicit and clear
String(...). Using indirect forms of coercion, side effects, or blindly relying on
toString can create unexpected results. Remember that even if you have a good
knowledge of these mechanisms and feel comfortable using them, it doesn't mean other
programmers will.

Converting into a Number
Casting a value to a Number can be achieved by invoking the Number constructor as a
regular function:

Number('10e3'); // => 10000
Number(' 4.6'); // => 4.6
Number('Infinity'); // => Infinity
Number('wat'); // => NaN
Number(false); // => 0
Number(''); // => 0

Additionally, there is the unary plus + operator, which does essentially the same thing:

+'Infinity'; // => Infinity
+'55.66'; // => 55.66
+'foo'; // => NaN

Dynamic Typing Chapter 7

[198]

These are the only two approaches available for casting a non-Number to a Number type,
but JavaScript also provides other techniques for extracting numerical values from strings.
One such technique is parseInt, a globally available native function that accepts both a
String and an optional radix argument (which defaults to base 10, that is, decimal). It
will, naturally, coerce its first argument to a String if it is not already a String and then
attempt to extract the first integer of the specified radix from the String. By doing this,
you can achieve the following outcomes:

parseInt('1000'); // => 1000
parseInt('100', 8); // => 64 (i.e. octal to decimal)
parseInt('AA', 12); // => 130 (i.e. hexadecimal to decimal)

If the string has a prefix of 0x or 0X, then parseInt will assume the radix to be 16
(hexadecimal):

parseInt('0x10'); // => 16

Some browsers and other environments may also treat a prefix of 0 as an indicator of an
octal radix:

// (In *some* environments)
parseInt('023'); // => 19 (assumed octal -> decimal)

parseInt() will also effectively trim the String, ignoring any initial whitespace, and will
ignore all the content of the String beyond the first found integer:

parseInt(' 111 222 333'); // => 111
parseInt('\t\n0xFF'); // => 255

parseInt is usually frowned upon due to its obscure mechanism of
extracting an integer from String and the fact that it may dynamically
pick its own radix if none is provided. If you must use parseInt, use it
with caution and full awareness of how it operates. And always provide a
radix argument.

In a similar spirit to parseInt there is also a native parseFloat function, which will
attempt to extract a float (that is, a floating-point number) from a given String:

parseFloat('42.01'); // => 42.01
parseFloat('\n1e-3'); // => 0.001

Dynamic Typing Chapter 7

[199]

parseFloat will trim the string and then look for the longest set of characters from the 0th

character that can be naturally parsed by the language in the same way a numeric literal
may be parsed. As such, it works fine with Strings that include non-numeric characters
beyond a parseable numeric sequence:

parseFloat(' 123 ... rubbish here...'); // => 123

Such a string would cause NaN to be evaluated if we passed it to Number(...). So, in some
rare cases, parseFloat may be more useful to you.

Both parseFloat and parseInt will convert their initial argument into a String before
attempting extraction. As such, if your first argument is an object, you should be wary of
how it may naturally coerce to a string. If your object implements distinct toString and
valueOf methods, then you should expect parseInt and parseFloat to only use
toString (unless [Symbol.toPrimitive]() is also implemented). This is in contrast to
Number(...), which will attempt to convert its argument into a Number directly (without
first converting it into a String) and will thus prioritize valueOf over toString:

const rareSituation = {
 valueOf() { return "111"; },
 toString() { return "999"; }
};

Number(rareSituation); // => 111
parseFloat(rareSituation); // => 999
parseFloat(rareSituation); // => 999

In most situations, converting any value into a Number should be attempted via Number or
the unary plus + operator. You should only use parseFloat or parseInt if you have a
specific need for their numerical extraction algorithms.

Converting into a primitive
Converting a value into its primitive representation is not something we can do directly,
but is done implicitly (that is, coercively) by the language in a number of different situations,
such as when you try to use the abstract equality operator, ==, to compare a String,
Number, or Symbol to a value that is an Object. The Object, in that scenario, will be
converted into its primitive representation via an internal procedure called ToPrimitive,
which in summary does the following:

If object[Symbol.toPrimitive] exists, and when called it returns a primitive1.
value, use that

Dynamic Typing Chapter 7

[200]

If object.valueOf exists, and it returns a primitive (non-Object), use its return2.
value
If object.toString exists, use its return value3.

We can see ToPrimitive in action if we attempt a comparison with ==:

function toPrimitive() { return 1; }
function valueOf() { return 2; }
function toString() { return 3; }

const one = { [Symbol.toPrimitive]: toPrimitive, valueOf, toString };
const two = { valueOf, toString };
const three = { toString };

1 == one; // => true
2 == two; // => true
3 == three; // => true

As you can see, if an object has all three methods ([Symbol.toPrimitive], valueOf, and
toString), then [Symbol.toPrimitive] will be used. If it has just valueOf and
toString, then valueOf will be used. And, of course, if there is only toString, then it
will be used.

There is the possibility that 2 and 3 in that procedure will swap if ToPrimitive is called
with a hint of String (meaning that it has been instructed to attempt to coerce to a String
instead of any primitive). An example of such a case would be when you use a computed
member access operator (object[something]), where if something is an object, it would
be converted into a String via ToPrimitive with a hint of String, meaning toString()
will be attempted before valueOf(). We can see this in action here:

const object = { foo: 123 };
const something = {
 valueOf() { return 'baz'; },
 toString() { return 'foo'; }
};

object[something]; // => 123

Dynamic Typing Chapter 7

[201]

We have both toString and valueOf defined on something, but only toString is used
to determine which property to access on object.

If we do not define our own methods, such as valueOf and toString, then the default
methods available on the [[Prototype]] of whatever object we're using will be used
instead. The primitive representation of an array, for example, is defined by
Array.prototype.toString, which will simply join its elements together with a comma
as a separator:

[1, 2, 3].toString(); // => "1,2,3"

All types have their own natively provided valueOf and toString methods, so if we wish
to force the ToPrimitive internal procedure to use our own methods, then we'll need to
override the native ones by supplying our object with its own methods directly or by
inheriting from the [[Prototype]]. For example, if you wished to provide a custom array
abstraction that had its own primitive conversion behavior, then you could implement it by
extending the Array constructor:

class CustomArray extends Array {
 toString() {
 return this.join('|');
 }
}

Then, you'd be able to rely on your CustomArray instances being handled in their own
unique way by the ToPrimitive procedure:

String(new CustomArray(1, 2, 3)); // => 1|2|3
new CustomArray(1, 2, 3) == '1|2|3'; // => true

The coercive behaviors of all operators and native language constructs will vary. Any time
you pass a value to a language construct or operator that is expecting a primitive (typically
either a string or a number), it will likely be passed through ToPrimitive. As such, it's
useful to know about this internal procedure. We'll refer to this section as well as we start to
explore all of JavaScript's operators in detail.

Dynamic Typing Chapter 7

[202]

Summary
In this chapter, we have continued to explore the innards of JavaScript, covering the
dynamic nature of the language. We've seen how we can go about detecting various types
and the nuanced intricacies of coercion and casting. These topics are difficult to pick up, but
they will be useful. Many anti-patterns that appear in JavaScript code come down to
fundamental misunderstandings of language constructs and mechanisms, so having a deep
understanding of these topics will aid our ambition of writing clean code tremendously.

In the next chapter, we will continue our exploration of types by exploring JavaScript's
operators. It's likely that you will already have a very good knowledge of many of these,
but thanks to JavaScript's dynamic nature, their usage can sometimes yield unexpected
results. For this reason, the next chapter dedicates itself fully to the careful exploration of
the language's operators.

8
Operators

In the previous chapter on dynamic typing, we explored topics such as type-coercion and
detection; we also covered several operators. In this chapter, we'll continue this exploration
by delving into every single operator that the JavaScript language makes available. Having
a rich understanding of JavaScript's operators will make us feel utterly empowered in a
language that can, at times, appear confusing. There is, unfortunately, no shortcut to
understanding JavaScript, but as you begin to explore its operators, you will see patterns
emerge. For example, many of the multiplicative operators work in a similar manner, as do
the logical operators. Once you are comfortable with the main operators, you will begin to
see that there is a grace underlying the complexity.

It may be useful to treat this chapter as more of a reference if you're
pressed for time. Do not feel like you need to exhaustively retain every
detail of every operator's behavior.

In this chapter, we will cover the following topics:

What is an operator?
Arithmetic and numeric operators
Logical operators
Comparative operators
Assignment operators
Property access operators
Other operators and syntax
Bitwise operators

Now that we're ready to dive in, the very first question we need to ask ourselves is: what
even is an operator?

Operators Chapter 8

[204]

What is an operator?
An operator in JavaScript is a standalone piece of syntax that forms an expression and is
typically used to derive something or compute a logical or mathematical output from a set
of inputs (called operands).

Here, we can see an expression containing an operator (+) with two operands (3 and 5):

3 + 5

Any operator can be said to have four characteristics:

Its arity: how many operands the operator accepts
Its function: what the operator does with its operands and what it evaluates to
Its precedence: how the operator will be grouped when used in combination
with other operators
Its associativity: how the operator will behave when neighbored with operators
of the same precedence

It's important to understand these foundational characteristics as it will vastly aid your
usage of operators in JavaScript.

Operator arity
Arity refers to how many operands (or inputs) an operator can receive. An operand is a
formal term for the value(s) that you can give or pass to an operator.

If we consider the greater-than operator (>), it receives two operands:

a > b

In this example, a is its first operand (or left-side operand). And b is its second (or right-
side operand). Since it receives two operands, the greater-than operator is considered
a binary operator. In JavaScript, we have unary, binary, and ternary operators:

// Unary operator examples (one operand)
-a
!a

// Binary operator examples (two operands)
a == b
a >= b

Operators Chapter 8

[205]

// Ternary operator examples (three operands)
a ? b : c

There is only one ternary operator in JavaScript, the conditional
operator (a ? b : c). Since it is the only ternary operator, it is sometimes
simply referred to as the ternary operator instead of its formal name.

Knowing about the arity of a given operator is vital—just as it would be vital to know how
many arguments to pass a function. It's also important to consider how we are
communicating our intent when we compose operations. Since operations can appear in
series, it can sometimes be unclear which operator refers to which operand. Consider this
confusing expression:

foo + + baz - - bar

To avoid confusion in understanding operations like this, it is conventional to move unary
operators closer to their operands and even to employ parentheses to make it absolutely
crystal clear what the intent is:

foo + (+baz) - (-bar)

As with all of the parts of code, operators must be wielded with care and concern for the
individual or individuals (including your future self) who'll have to encounter, understand,
and maintain the code going forward.

Operator function
An operator's function is simply what it does and what it evaluates to. We'll be going over
each operator individually, so there's not a lot to say here beyond a few basic assumptions
you can carry with you when working with operators.

In JavaScript, every operator is its own entity and is not tied to the type of operands it is
operated on. This is in contrast to some other languages where operators are mapped to
overridable functions or are somehow attached to the operands themselves. In JavaScript,
operators are their own syntactic entity and have non-overridable functionality. Their
functionality is, however, extensible in certain situations.

When using any of the following types of operators, the language will internally attempt
coercion:

Arithmetic operators (namely, +, *, /, -, and so on)
Increment operators (namely, ++ and --)

Operators Chapter 8

[206]

Bitwise operators (namely,~, <<, |, and so on)
Computed member access operator (that is, ...[...])
Non-strict comparative operators (namely, >, <, >=, <=, and ==)

And to specifically override these mechanisms of coercion, you can
supply valueOf(), toString(), or [Symbol.toPrimitive]() methods to any objects
you intend to use as operands:

const a = { valueOf() { return 3; } };
const b = { valueOf() { return 5; } };

a + b; // => 8
a * b; // => 15

As we covered in the previous chapter's Conversion to a primitive section, these methods will
be called in a specific order depending on the exact operator or language construct used. In
the case of all arithmetic operators, for example, valueOf will be attempted
before toString.

Operator precedence and associativity
The order of operation when multiple operators are used in combination is defined by two
mechanisms: precedence and associativity. An operator's precedence is a number
from 1 to 20, and defines the order in which a series of operators will run. Some operators
share the same precedence. Associativity defines the order in which operators of the same
precedence will be operated on (either left-to-right or right-to-left).

Consider the following operation:

1 + 2 * 3 / 4 - 5;

In JavaScript, these specific mathematic operators have the following precedences:

The addition operator (+) has a precedence of 13
The multiplication operator (*) has a precedence of 14
The division operator (/) has a precedence of 14
The subtraction operator (-) has a precedence of 13

Operators Chapter 8

[207]

And all of them have left-to-right associativity. Since operators of higher precedence occur
first and operators of the same precedence will occur according to their associativity, we
can say that our example operation occurs in the following order:

Multiplication (left most amongst operators with a precedence of 14)1.
Division (next on the left amongst operators with a precedence of 14)2.
Addition (left most amongst operators with a precedence of 13)3.
Subtraction (next on the left amongst operators with a precedence of 13)4.

If we were to group our operation explicitly using parentheses, it would, therefore, look
like this:

(
 1 +
 (
 (2 * 3)
 / 4
)
) - 5;

Every operator, even non-mathematical ones, have specific precedences and associativities.
The typeof operator, for example, has a precedence of 16. This can cause a headache if you
use it in combination with a lower-precedence operator:

typeof 1 + 2; // => "number2"

Due to the + operator having a lower precedence than typeof, JavaScript would internally
run this operation like so:

(typeof 1) + 2;

This, therefore, results in typeof 1 (that is, "number") being concatenated
with 2 (producing "number2"). To avoid this, we must force the order using our own
parentheses:

typeof (1 + 2); // => "number"

Incidentally, this is why you may often see typeof with parentheses (typeof(...)),
which can make it look like a function being invoked. It is, however, an operator, and the
parentheses are only there to force a specific order of operation.

Operators Chapter 8

[208]

You can discover the exact precedences of every operator by reading the
ECMAScript specification or searching online for JavaScript operator
precedences. Note that the numbers used to indicate precedence
between 1 and 20 are not from the ECMAScript specification itself but are
rather just a useful way of understanding precedence.

Knowing the precedences and associativities of every operator is not something we should
expect of our colleagues. It may be reasonable to assume that they know the precedences of
some basic mathematical operators, but knowledge beyond that should not be considered
guaranteed. Therefore, it is often necessary to provide clarity by employing parentheses
even in situations where they may not be strictly necessary. This is especially crucial in
complex operations where there are a large number of consecutive operators, as in this
example:

function calculateRenderedWidth(width, horizontalPadding, scale) {
 return (width + (2 * horizontalPadding)) * scale;
}

Here, the parentheses wrapping (2 * horizontalPadding) is technically unnecessary as
the multiplication operator naturally has a higher precedence than the addition operator.
However, it is useful to provide extra clarity. Programmers reading this code will be
grateful to spend less cognitive energy discerning the exact order of operations. As with
many well-intended things, however, this can be taken too far. Parentheses that provide
neither clarity nor a different forced order of operation should not be included. An example
of such redundancy might be wrapping the entire return expression in additional
parentheses:

function calculateRenderedWidth(width, horizontalPadding, scale) {
 return ((width + (2 * horizontalPadding)) * scale);
}

This should ideally be avoided, as if it's taken too far, it can introduce additional cognitive
load for the reader of the code. A good guide for such situations is if you're inclined to add
additional parentheses for clarity, you should probably split the operation into multiple
lines:

function calculateRenderedWidth(width, horizontalPadding, scale) {
 const leftAndRightPadding = 2 * horizontalPadding;
 const widthWithPadding = width + leftAndRightPadding;
 const scaledWidth = widthWithPadding * scale;
 return scaledWidth;
}

Operators Chapter 8

[209]

These added lines provide not only clarity around the order of operations but also the
purpose of each individual operation by usefully assigning each operation to a descriptive
variable.

Knowing every single operator's precedence and associativity is not necessarily vital, but
knowing how these mechanisms underly every operation is very useful. Most of the time,
as you've seen, it's preferable to split operations into self-contained lines or groups for
clarity, even when the internal precedence or associativity of our operators does not
demand it. Above all, we must always consider whether we are clearly communicating our
intent to the readers of our code.

The average JavaScript programmer will not have an encyclopedic
knowledge of the ECMAScript specification, and as such, we should not
demand such knowledge to comprehend the code we have written.

Knowledge of the mechanisms underlying operators paves the way for us to now explore
individual operators within JavaScript. We'll begin by exploring arithmetic and numeric
operators.

Arithmetic and numeric operators
There are eight arithmetic or numeric operators in JavaScript:

Addition: a + b
Subtraction: a - b
Division: a / b
Multiplication: a * b
Remainder: a % b
Exponentiation: a ** b
Unary plus: +a
Unary minus: -a

Arithmetic and numeric operators will typically coerce their operands to
numbers. The only exception is the + addition operator, which will, if
passed a non-numerical operand, assume the function of string
concatenation instead of addition.

Operators Chapter 8

[210]

There is one guaranteed outcome of all of these operations that is worth knowing about
beforehand. An input of NaN guarantees an output of NaN:

1 + NaN; // => NaN
1 / NaN; // => NaN
1 * NaN; // => NaN
-NaN; // => NaN
+NaN; // => NaN
// etc.

Beyond that basic assumption, each of these operators behaves in a slightly different way,
so it's worth going over each of them individually.

The addition operator
The addition operator is a dual-purpose operator:

If either operand is String, then it'll concatenate both operands together
If neither operand is String, then it'll add both operands as numbers

To accomplish its dual purpose, the + operator first needs to discern whether the operands
you've passed can be considered strings. Obviously, a primitive String value is clearly a
string, but for non-primitives, the + operator will attempt to convert your operands into
their primitive representations by relying on the internal ToPrimitive procedure that we
detailed in the last chapter, in the Conversion to a primitive section. If the output
of ToPrimitive for either of our + operands is a string, then it will concatenate both
operands as strings. Otherwise, it'll add them as numbers.

The fact that the + operator caters to both numeric addition and concatenation can make it
quite complicated to understand, so it's helpful for us to walk through a few examples.

Both operands are numbers
Explanation: When both operands are primitive numbers, the + operator very simply adds
them together:

1 + 2; // => 3

Operators Chapter 8

[211]

Both operands are strings
Explanation: When both operands are primitive strings, the + operator very simply
concatenates them together:

'a' + 'b'; // => "ab"

One operand is a string
Explanation: When only one operand is a primitive string, the + operator will coerce the
other into String and will then concatenate both resulting strings together:

123 + 'abc'; => "123abc"
'abc' + 123; => "abc123"

One operand is a non-primitive
Explanation: When either operand is a non-primitive, the + operator will convert it into a
primitive, and then act as it usually would with that new primitive representation. Here's
an example:

[123] + 123; // => "123123"

In this case, JavaScript will convert [123] into its primitive value by using the return value
of [123].toString() (that is, "123"). Since the primitive representation of an array is its
String representation, the + operator will operate as if we were simply doing "123" +
123, which, as we know, evaluates to "123123".

Conclusion – know your operands!
When using the + operator, it's especially vital to know what operands you're dealing with.
If you don't, then the outcome of your operation may be unexpected. The + operator is
probably one of the more complex operators since it has a dual purpose. Most operators
aren't as complex. The subtraction operator, which we'll explore next, is thankfully far
simpler.

Operators Chapter 8

[212]

The subtraction operator
The subtraction operator (-) does what it says on the tin. It takes two operands, subtracting
the right-side operand from the left-side operand:

555 - 100; // => 455

If either operand is not a number, it will be coerced into one:

'5' - '3'; // => 2
'5' - 3; // => 2
5 - '3'; // => 2

This includes non-primitive types too:

[5] - [3]; // => 2

Here, we're seeing two arrays, each with a single element, being subtracted from each
other. This seemingly makes no sense until we recall that the primitive representation of an
array is its joined elements as a string, that is, "5" and "3" respectively:

String([5]); // => "5"
String([3]); // => "3"

These will then be converted into their numerical representations, 5 and 3, via an operation
that is equivalent to the following:

Number("5"); // => 5
Number("3"); // => 3

Therefore, we are left with the intuitive operation of 5 minus 3, which we know is 2.

The division operator
The division operator, much like the subtraction operator, accepts two operands that it will
coerce to numbers. It will divide its left-side operand by its right-side operand:

10 / 2; // => 5

The two operands are formally called the dividend and the divisor (DIVIDEND /
DIVISOR) and will always evaluate according to floating-point math. Integer division does
not exist in JavaScript, which means, effectively, that the results of your divisions may
always include decimal points, and may hence be liable to the error margin
of Number.EPSILON.

Operators Chapter 8

[213]

Watch out when dividing by zero, as you may end up with either NaN (when dividing zero
by zero) or Infinity (when dividing a non-zero number by zero):

10 / 0; // => Infinity
10 / -0; // => -Infinity
0 / 0; // => NaN

If your divisor is Infinity, your division will always evaluate to zero (0 or -0), unless
your dividend is also Infinity, in which case, you'll receive NaN:

1000 / Infinity; // => 0
-1000 / Infinity; // => -0
Infinity / Infinity; // => NaN

In circumstances where you expect a divisor or dividend of zero, NaN or Infinity, it is
best to be defensive and either check for those values explicitly beforehand or following the
operation, like so:

function safeDivision(a, b) {
 const result = a / b;
 if (!isFinite(result)) {
 throw Error(`Division of ${a} by ${b} is unsafe`);
 }
 return result;
}

safeDivision(1, 0); // ! Throws "Division of 1 by 0 is unsafe"
safeDivision(6, 2); // => 3

The edge cases of division may seem scary but they're not frequently encountered in
everyday applications. If we were, however, authoring a medical or financial program, then
it'd be absolutely vital to carefully consider our operations' potential error states.

The multiplication operator
The multiplication operator behaves similarly to the division operator, apart from the
obvious fact that it performs multiplication:

5 * 25; // => 125

Operators Chapter 8

[214]

It is necessary to watch out for effects of coercion and situations where either operand
is NaN or Infinity. Rather intuitively, multiplying any non-zero finite value
by Infinity will always result in Infinity (with the appropriate sign):

100 * Infinity; // => Infinity
-100 * Infinity; // => -Infinity

However, multiplying zero by Infinity will always result in NaN:

0 * Infinity; // => NaN
-Infinity * -0; // => NaN

Outside of these cases, most usages of the multiplication operator are fairly intuitive.

The remainder operator
The remainder operator (%), also known as the modulo operator, is similar to the division
operator. It accepts two operands: a dividend, on the left side, and a divisor on the right
side. It will return the remainder following an implied division operation:

10 % 5; // => 0
10 % 4; // => 2
10 % 3; // => 1
10 % 2; // => 0

If the divisor is zero, the dividend is Infinity, or either operand is NaN, then the operation
will evaluate to NaN:

Infinity % Infinity; // => NaN
Infinity % 2; // => NaN
NaN % 1; // => NaN
1000 % 0; // => NaN

And if the divisor is Infinity, then the result will be equal to the dividend:

1000 % Infinity; // => 1000
0.03 % Infinity; // => 0.03

The modulo operator is useful in situations where you wish to know whether a number
goes into another number squarely, such as when wishing to establish
the evenness or oddness of an integer:

function isEvenNumber(number) {
 return number % 2 === 0;
}

Operators Chapter 8

[215]

isEvenNumber(0); // => true
isEvenNumber(1); // => false
isEvenNumber(2); // => true
isEvenNumber(3); // => false

As with all other arithmetic operators, it's useful to be aware of how your operands will be
coerced. Most usages of the remainder operator are straightforward, so outside of its
coercive behaviors and its treatment of NaN and Infinity, you should find its behavior
intuitive.

The exponentiation operator
The exponentiation operator (**) takes two operands, a base on the left side and
an exponent on the right side. It will evaluate to the base raised to the power of
the exponent:

10 ** 2; // => 100
10 ** 3; // => 1,000
10 ** 4; // => 10,000

It is functionally identical to using the Math.pow(a, b) operation, although is more
succinct. As with other arithmetic operations, it will internally coerce its operands to the
Number type, and passing in any operands of NaN, Infinity, or zero will result in possibly
unexpected outcomes, so you should try to avoid such cases.

One curious case worth mentioning is that, if the exponent is zero, then the result will
always be 1, regardless of what the base is. So, the base could even be Infinity, NaN, or
anything else, and the result would still be 1:

1000 ** 0; // => 1
0 ** 0; // => 1
Infinity ** 0; // => 1
NaN ** 0; // => 1

All other arithmetic operators will evaluate to NaN if one of their operands is NaN, so the
behavior of ** here is quite unique. Another unique behavior is that it will throw
SyntaxError if your first operand is itself a unary operation:

+2 ** 2;
// SyntaxError: Unary operator used immediately
// before exponentiation expression. Parenthesis
// must be used to disambiguate operator precedence

Operators Chapter 8

[216]

This is to prevent ambiguity for the programmer. Depending on their previous exposure to
other languages (or strict mathematical notation), they may expect cases such as -2 **
2 to be either 4 or -4. As such, JavaScript will throw in such cases, hence forcing you to be
more explicit with either (-2) ** 2 or -(2 ** 2).

Apart from these unique characteristics, the exponentiation operator can be considered
similar to other binary (two-operand) arithmetic operators. As always: be aware of your
operands' types and how they may be coerced!

The unary plus operator
The unary plus operator (+...) will convert its operand into Number as if it were passed
to Number(...):

+'42'; // => 42
+({ valueOf() { return 42; } });

To do this, our cherished internal ToPrimitive procedure will be utilized, as discussed in
the last chapter, in the Conversion to a primitive section. Its result will then be re-coerced
into Number if it is not already Number. So, if ToPrimitive were to return String,
that String would be converted into Number, meaning that non-numeric strings will result
in NaN:

+({ toString() { return 'not a number'; } }); // => NaN

And naturally, if String from ToPrimitive can be converted into Number, then that is
what the unary + operator will evaluate to:

+({ toString() { return '12345'; } }); // => 12345

This is more realistically observed when coercing an array via +:

+['5e3']; // => 5000

// Equivalent to:
Number(String(['5e3'])); // => 5000

The unary + operator is usually used in places where a programmer wishes to cast a
number-like object to Number so that they can then use it with other numeric operations.
Usually, however, it is preferable to explicitly use Number(...) as it is much clearer what
the intention is.

Operators Chapter 8

[217]

The unary + operator can sometimes be confused with other operations. Consider this
scenario:

number + +someObject

To someone unfamiliar with the unary plus or someone not attuned to seeing it regularly,
this code may look like it contains a typo. We could potentially wrap the entire unary
operation in its own parentheses to make it clearer:

number + (+someObject)

Or we could instead use the much clearer Number(...) function:

number + Number(someObject)

In summary, the unary + operator is a convenient shortcut to Number(...). It's useful and
quick, though in most cases, we should prefer to communicate our intent more clearly.

The unary minus operator
The unary minus operator (-...) will first convert its operand into Number in the same
way as the unary + operator, detailed in the last section, and will then negate it:

-55; // => -55
-(-55); // => 55
-'55'; // => -55

Its usage is fairly straightforward and intuitive, although, as with unary +, it's useful to
disambiguate cases where you have a unary operator next to its binary operator
counterpart. Cases like these can be confusing:

number - -otherNumber

It is best, in these situations, to lend clarity with parentheses:

number - (-otherNumber)

The unary minus operator is usually only used directly with a literal number operand to
specify a negative value. As with all other arithmetic operators, we should ensure that our
intent is clear and that we are not confusing people with long or confusing expressions.

Now that we've explored arithmetic operators, we can begin to look into logical operators.

Operators Chapter 8

[218]

Logical operators
Logical operators are typically used to build logical expressions where the result of the
expression informs some action or inaction. There are three logical operators in JavaScript:

The NOT operator (!a)
The AND operator (a && b)
The OR operator (a || b)

As with most other operators, they can accept a variety of types and will coerce as
necessary. The AND and OR operators, unusually, do not always evaluate to
a Boolean value, and both utilize a mechanism called short-circuit evaluation to only
execute both operands if some condition is met. We'll learn more about this as we explore
each individual logical operator.

The logical NOT operator
The NOT operator is a unary operator. It accepts only a single operand and converts that
operand into its Boolean representation, then inverts it, so that truthy items
become false and falsy items become true:

!1; // => false
!true; // => false
!'hi; // => false

!0; // => true
!''; // => true
!true; // => false

Internally, the NOT operator will perform the following:

Cast the operand to a Boolean (Boolean(operand))1.
If the resulting value is true, then return false; otherwise, return true2.

As discussed in the Conversion to a Boolean section in the last chapter, a typical idiom for
converting a value to its Boolean representation is the double NOT (that is, !!value) as
this effectively reverses the truthiness or falsiness of the value twice and evaluates to
a Boolean. The more explicit and slightly more preferred idiom is to
use Boolean(value), as the intention is far clearer than with !!.

Operators Chapter 8

[219]

As a result of there being only seven falsy values in JavaScript, the NOT operator can only
evaluate to true in these seven scenarios:

!false; // => true
!''; // => true
!null; // => true
!undefined; // => true
!NaN; // => true
!0n; // => true
!0; // => true

JavaScript's rigid definition of falsiness and truthiness is reassuring. It means that even if
someone constructs an object with all manner of primitive representations (imagine an
object with valueOf() that returns a falsy value), all internal Boolean coercions will still
only ever return false for the seven falsy values and nothing else. That means we only
need to worry about those seven (it could be much worse...).

On the whole, usage of the logical NOT operator is very straightforward. It's a well-
understood syntax across programming languages with clear semantics. As such, there is
not a lot in the way of best practices concerning it. At the very least, it's best to avoid too
many double negatives in your code. A double negative is when an already negatively-
named variable is applied to the NOT operator, like so:

if (!isNotEnabled) {
 // ...
}

This is cognitively expensive for those who read your code and is therefore liable to
misunderstanding. It's best to use positively-named Boolean variable names so that any
logical operations using them are straightforward to comprehend. In this situation, we
would simply rename our variable and reverse the operation, like so:

if (isEnabled) {
 // ...
}

The logical NOT operator, in summary, is most useful in Boolean contexts such as if()
and while(), though is also idiomatically found in the double-NOT !! operation. And it is
technically the only operator in JavaScript that is guaranteed to return a Boolean value
regardless of its operand's type. Next, we'll explore the AND operator.

Operators Chapter 8

[220]

The logical AND operator
The logical AND operator (&&) in JavaScript accepts two operands. If its left-side operand is
truthy, then it will evaluate and return the right-side operand; otherwise, it will return the
left-side operand:

0 && 1; // => 0
1 && 2; // => 2

It can be a confusing operator for many people because they wrongfully assume that it is
equivalent to the question Are both A and B true? when, in fact, it is more akin to If A is
truthy then give me B; otherwise, I'll settle for A. People may have an assumption that
JavaScript will evaluate both operands, but it in fact will only evaluate the right-side
operand if the left-side operand is truthy. This is known as short-circuit evaluation. And
JavaScript will not cast the resulting value of the operation to Boolean: instead, it'll just
give us that value back, unchanged. If we were to implement the operation ourselves, it
might look something like this:

function and(a, b) {
 if (a) return b;
 return a;
}

Given a simple operation, such as making an if(...) statement conditional upon two
values being truthy, the && operator will behave in an entirely unsurprising and expected
way:

if (true && 1) {
 // Both `true` and `1` are truthy!
}

However, the && operator can be used in more interesting ways too, such as when needing
to return a value but only if some prior condition is met:

function getFavoriteDrink(user) {
 return user && user.favoriteDrink;
}

Operators Chapter 8

[221]

Here, the && operator is being used in a non-Boolean context, where there is no coercion of
its result occurring. In this case, if its left-side operand is falsy (that is, if user is falsy), then
it will return that; otherwise, it will return the right-side operand (that
is, user.favoriteDrink):

getFavoriteDrink({ favoriteDrink: 'Coffee' }); // => 'Coffee'
getFavoriteDrink({ favoriteDrink: null }); // => null
getFavoriteDrink(null); // => null

The getFavoriteDrink function behaves in a way that fulfills a basic contract, returning
favoriteDrink if the user object is available and if the favoriteDrink property appears
on that object, although its actual functionality is a little more chaotic:

getFavoriteDrink({ favoriteDrink: 0 }); // => 0
getFavoriteDrink(0); // => 0
getFavoriteDrink(NaN); // => NaN

Our getFavoriteDrink function is not making any deliberations about the specific nature
of the user or favoriteDrink values; it is just blindly yielding to the && operator,
returning either its left-side or its right-side operand. If we are confident in the potential
values of our operands, then this approach may be fine.

It's important to take the time to consider the possible ways that && will
evaluate the operands you provide it with. Take into consideration the
fact that it is not guaranteed to return Boolean and is not guaranteed to
even evaluate the right-side operand.

The && operator, thanks to its short-circuiting nature, can also be used to express control
flow. Let's consider a scenario in which we wish to call renderFeature() if the
isFeatureEnabled Boolean is truthy. Conventionally, we may employ an if statement to
do this:

if (isFeatureEnabled) {
 renderFeature();
}

But we could also employ &&:

isFeatureEnabled && renderFeature();

Operators Chapter 8

[222]

This and other unconventional usages of && are typically frowned upon because they can
obscure the intention of the programmer and create confusion for readers of your code who
may not have such a thorough understanding of how && operates in JavaScript.
Nonetheless, the && operator is truly powerful and should be used when well-suited to the
task at hand. You should feel empowered to use it as you wish but always be aware of how
the typical reader of your code may see the operation and always consider the prospective
values that the operation may produce.

The logical OR operator
The logical OR operator (||) in JavaScript accepts two operands. If its left-side operand is
truthy, then it will return that immediately; otherwise, it will evaluate and return the right-
side operand:

0 || 1; // => 1
2 || 0; // => 2
3 || 4; // => 3

Much like the && operator, the || operator is flexible in that it does not cast what it returns
to Boolean, and it evaluates in a short-circuited manner, meaning that it only evaluates the
right-hand side operand if the left-side operand meets a condition—in this case, if the right-
side operand is falsy:

true || thisWillNotExecute();
false || thisWillExecute();

Conventionally, a programmer may assume that the logical OR operator is akin to the
question Are either A or B true? but in JavaScript, it is more akin to: If A is falsy, then give me
B; otherwise, I'll settle for A. If we were to implement this operation ourselves, it might look
something like this:

function or(a, b) {
 if (a) return a;
 return b;
}

Just as with &&, this means that || can be used flexibly to provide control flow or to
evaluate specific expressions conditionally:

const nameOfUser = user.getName() || user.getSurname() || "Unknown";

Operators Chapter 8

[223]

As such, it should be used cautiously in a way that considers what readers of the code are
familiar with, and in a way that considers all prospective operands and the resulting values
from the operation.

Comparative operators
Comparative operators are a collection of binary operators that always
return Boolean derived from a comparison between the two operands:

Abstract equality (a == b)
Abstract inequality (a != b)
Strict equality (a === b)
Strict inequality (a !== b)
Greater than (a > b)
Greater than or equal to (a >= b)
Less than (a < b)
Less than or equal to (a <= b)
Instance of (a instanceof b)
In (a in b)

Each of these operators has slightly different functions and coercive behavior so it's useful
to go through each of them individually.

Abstract equality and inequality
The abstract equality (==) and inequality (!=) operators rely on the same algorithm
internally, which is responsible for determining whether two values can be considered
equal. In this section, our examples will only explore ==, but rest assured that != will
always simply be the opposite of whatever == is.

In the vast majority of cases, it is not advisable to rely on abstract equality
because its mechanism can create unexpected results. Most of the time,
you'll want to opt for strict equality (that is, === or !==).

Operators Chapter 8

[224]

Where both operands, the left-side and the right-side, are of the same type, then the
mechanism is quite simple—the operator will check whether the two operands are identical
values:

100 == 100; // => true
null == null; // => true
'abc' == 'abc'; // => true
123n == 123n; // => true

When both operands are of the same type, abstract equality (==) is exactly
identical to strict equality (===).

Since all non-primitives in JavaScript are of the same type (Object), abstract equality
(==) will always return false if you try to compare two non-primitives (two objects) that
don't refer to the exact same object:

[123] == [123]; // => false
/123/ == /123/; // => false
({}) == ({}); // => false

However, where both operands are of different types, for example, where you are
comparing a Number type to a String type or an Object type to a Boolean type, the exact
behavior of abstract equality will depend on the operands themselves.

If either operand is Number, and the other is String, then the a == b operation is
equivalent to the following:

Number(a) === Number(b)

Here are some examples of this in action:

123 == '123'; // => true
'123' == 123; // => true
'1e3' == 1000; // => true

Note how, as discussed in the Conversion to a number section in the last
chapter, the "1e3" string will be internally converted to the number 1000.

Operators Chapter 8

[225]

Continuing down the rabbit hole—if only one operand to the == operator is Boolean, then
the operation is, once again, equivalent to Number(a) === Number(b):

false == ''; // => true
// Explanation: Number(false) is `0` and Number('') is `0`

true == '1'; // => true
// Explanation: Number(true) is `1` and Number('1') is `1`

true == 'hello'; // => false
// Explanation: Number(true) is `1` and Number('hello') is `NaN`

false == 'hello'; // => false
// Explanation: Number(false) is `0` and Number('hello') is `NaN`

Finally, if previous conditions are not met, and if either operand is Object (not a
primitive), then it will compare the primitive representation of that object to the other
operand. As discussed in the last chapter, in the Conversion to a primitive section, this will
attempt to call the [Symbol.toPrimitive](), valueOf(), and
then toString() methods to establish the primitive. We can see this in action here:

new Number(1) == 1; // => true
new Number().valueOf(); // => 1
({ valueOf() { return 555; }) == 555; // => true

Due to their complicated coercive behaviors, the abstract equality and inequality operators are
best avoided. Anyone reading code littered with these operators won't be able to have a
good level of confidence in the conditions and control flow of the program because there
are simply too many odd edge cases where abstract equality can bite.

If you find yourself wanting to use abstract equality, for example, when
one operand is a number and another is a string, consider whether it
might be clearer and less error-prone to use a combination of stricter
checks or to explicitly cast your values for clarity; for example, instead
of aNumber == aNumericString, you could do aNumber ===
Number(aNumericString).

Strict equality and inequality
The strict equality (===) and strict inequality (!==) operators in JavaScript are a staple of
clean code. Unlike their abstract equality cousins, they provide certainty and simplicity in
how they treat their operands.

Operators Chapter 8

[226]

The === operator will only ever return true if both of its operands are identical:

1 === 1; // => true
null === null; // => true
'hi' === 'hi'; // => true

The only exception to this rule is when either operand is NaN, in which case, it'll
return false:

NaN === NaN; // => false

No internal coercion will ever occur with strict equality, so even if you have two primitives
that could be coerced to the same number, for example, they will still be considered
inequal:

'123' === 123; // => false

In the case of non-primitives, both operands must refer to the exact same object:

const me = { name: 'James' };
me === me; // => true
me !== me; // => false

Even if the object is of the equivalent structure or shares other characteristics, if it is not a
reference to the same exact object, it'll return false. We can illustrate this by attempting to
compare a wrapped Number instance with a value of 3 to the numeric literal, 3:

new Number(3) === 3; // => false

The abstract equality operator (==) would evaluate to true in such a case. You may consider
the coercion of new Number(3) to 3 to be preferable, but it's far better to explicitly set up
your operands so that they are of the desired types before comparison. So, in the example
of String that contains a numerical value that we wish to compare to Number, it would be
best to first explicitly cast it via Number():

Number('123') === 123; // => true

It is always advisable to use strict equality instead of abstract equality. It provides far more
certainty and reliability in the outcome of every operation and allows you to free your mind
from the myriad coercive behaviors that abstract equality entails.

Operators Chapter 8

[227]

Greater than and less than
The greater-than (>), less-than (<), greater-than-or-equal-to (>=), and less-than-or-equal-to (<=)
operators all operate in a similar manner. They follow an algorithm similar to abstract
equality, although how values are coerced is slightly different.

The first thing to note is that all operands to these operators will first be coerced to their
primitive representation. Following that, if their primitive representations are both strings,
then they'll be compared lexicographically. If their primitive representations are not both
strings, then they'll be coerced from whatever they are to numbers and then compared. This
means that even if only one of your operands is a string, they'll both be compared
numerically.

Lexicographic comparison
Lexicographic comparison occurs when both operands are strings, and involves the
character-by-character comparison of each string. Broadly, strings that are greater are those
that would appear later in a dictionary. Therefore, banana would be
lexicographically greater than apple.

As we discovered in Chapter 6, Primitive and Built-In Types, JavaScript uses UTF-16 to
encode strings and therefore each codeunit is a 16-bit integer. The UTF-16 codeunits
from 65 (U+0041) to 122 (U+007A) are as follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz

Those characters appearing later are represented by larger UTF-16 integers. To compare
any two given codeunits, JavaScript will simply compare their integer values. For the case
of comparing B to A, this might look something like this:

const intA = 'A'.charCodeAt(0); // => 65
const intB = 'B'.charCodeAt(0); // => 66
intB > intA; // => true

Every character in each operand string must be compared. To do this, JavaScript will go
codeunit-by-codeunit. At each index of each string, if codeunits differ, the larger codeunit
will be considered greater, and that string will, therefore, be considered greater than the
other:

"AAA" > "AAB"
"AAB" > "AAC"

Operators Chapter 8

[228]

And if one operand is equal to the prefix of the other, then it will always be considered less
than, as shown here:

'coff' < 'coffee'; // => true

As you may have spotted, the lowercase English letters occupy higher UTF-16 integers than
uppercase letters. This has the effect of meaning that uppercase is considered less than
lowercase and would, therefore, appear before it in a lexicographic ordering:

'A' < 'a'; // => true
'Z' < 'z'; // => true
'Adam' < 'adam'; // => true

You'll also notice that the codeunits from 91 to 96 include the punctuation
characters, [\]^_`. This will also affect our lexicographic comparisons:

'[' < ']'; // => true
'_' < 'a'; // => true

Unicode tends to be arranged in a way that any given language's characters will be
naturally sorted lexicographically so that the first symbols in a language's alphabet are
expressed by lower 16-bit integers than the later symbols. Here, we see, for example, the
word for chicken ("ไก"่) in Thai is lexicographically less than the word for egg ("ไข"่) since
the ก character appears before ข in the Thai alphabet:

'ไก'่ < 'ไข'่; // => true ("chicken" comes before "egg")
'ก'.charCodeAt(0); // => 3585
'ข'.charCodeAt(0); // => 3586

The natural order of Unicode may not always yield a sensible lexicographic order. As we
learned in the previous chapter, complex symbols can be expressed by combining together
multiple codeunits into combining character pairs, surrogate pairs (creating code points), or
even grapheme clusters. This can create various difficulties. One example would be the
following case where a given symbol, in this case, LATIN CAPITAL LETTER A WITH
CIRCUMFLEX, can be expressed either via the lone Unicode code-point U+00C2 or via
combining the capital letter "A" (U+0041) with the COMBINING CHARACTER ACCENT
(U+0302). Symbolically and semantically, these are identical:

'Â'; // => Â
'A\u0302'; // => A ̂

Operators Chapter 8

[229]

However, since U+00C2 (decimal: 194) is technically larger than U+0041 (decimal: 65), it
will be considered greater than in a lexicographic comparison, even though they are
symbolically and semantically identical:

'Â' > 'A\u0302'; // => true

There are thousands of these potential discrepancies to watch out for, so if you ever find
yourself needing to compare lexicographically, be mindful that JavaScript's greater-
than and less-than operators will be limited by Unicode's inherent ordering.

Numeric comparison
Numeric comparison using JavaScript's greater-than and less-than operators is fairly
intuitive. As mentioned, your operands will be coerced first to their primitive
representations, and then coerced a second time, explicitly, to a number. For cases where
both operands are numbers, the result is entirely intuitive:

123 < 456; // => true

And for NaN and Infinity, the following assertions can be made:

Infinity > 123; // => true
Infinity >= Infinity; // => true
Infinity > Infinity; // => false

NaN >= NaN; // => false
NaN > 3; // => false
NaN < 3; // => false

If one operand has a primitive representation that is not Number, then it will be coerced
to Number before comparison. If you were to accidentally pass Array as an operand
to >, then it would first coerce it to its primitive representation, which for arrays, is
String with all individual coerced elements joined with a comma, and then attempt to
coerce that to Number:

// Therefore this:
[123] < 456;

// Is equivalent to this:
Number(String([123])) < 456

Due to the potentially complicated coercions that may occur, it is always best to pass
operands of the same type to >, <, >=, and <=.

Operators Chapter 8

[230]

The instanceof operator
The instanceof operator in JavaScript allows you to detect whether an object is an
instance of a constructor:

const component = new Component();
component instanceof Component;

This operation will climb the [[Prototype]] chain of its left-side operand looking for a
specific constructor function. It will then check whether this constructor is equal to the
right-side operand.

Since it climbs the [[Prototype]] chain, it can work safely with multiple inheritances:

class Super {}
class Child extends Super {}

new Super() instanceof Super; // => true
new Child() instanceof Child; // => true
new Child() instanceof Super; // => true

If the right-side operand is not a function (that is, is not callable as a constructor),
then TypeError will be thrown:

1 instanceof {}; // => TypeError: Right-hand side of 'instanceof' is not
callable

The instanceof operator is sometimes useful in discerning native types such as whether
an object is an array:

[1, 2, 3] instanceof Array; // => true

This usage, however, has been largely replaced by Array.isArray(), which is generally
more trustworthy as it will work correctly in rare cases where Array has been passed to
you from another native context such as a frame (within the browser).

The in operator
The in operator will return true if a property can be found in an object:

'foo' in { foo: 123 }; // => true

Operators Chapter 8

[231]

The left-side operand will be coerced to its primitive representation, which, if not Symbol,
will be coerced to String. Here, we can see how a left-side operand that is Array will be
coerced into a comma-separated serialization of its contents (the native and default way
that arrays are coerced to primitives, thanks to Array.prototype.toString):

const object = {
 'Array,coerced,into,String': 123
};

['Array', 'coerced', 'into', 'String'] in object; // => true

All seemingly numeric property names in JavaScript are stored as strings, so
accessing someArray[0] is equal to someArray["0"], and therefore enquiring as to
whether an object has a numeric property with in will also consider
both 0 and "0" equally:

'0' in [1]; // => true
0 in { '0': 'foo' }; // => true

When establishing whether a property is in a given object, the in operator will traverse the
entire [[Prototype]] chain, hence returning true for all accessible methods and
properties at all levels of the chain:

'map' in []; // => true
'forEach' in []; // => true
'concat' in []; // => true

This means that if you're looking to distinguish between the concepts of having a
property and having a property on itself, you should instead use hasOwnProperty, a method
inherited from Object.prototype that will only check the object itself:

['wow'].hasOwnProperty('map'); // => false
['wow'].hasOwnProperty(0); // => true
['wow'].hasOwnProperty('0'); // => true

On the whole, it is best to only use in if you're confident that there are no collisions with
the property names you expect to use and properties provided by the
object's [[Prototype]] chain. Even if you're just using plain objects, you still need to
worry about the native prototype. If it's been modified in any way (by a utility library, for
example), then you can no longer have a high level of trust in the results of your in
operations and should hence use hasOwnProperty.

Operators Chapter 8

[232]

In older library code, you may even find code that chooses not to rely
on hasOwnProperty on the object of inquiry, fearing that it may have been overridden.
Instead, it'll opt for using the Object.prototype.hasOwnProperty method directly and
calls it with that object as its execution context:

function cautiousHasOwnProperty(object, property) {
 return Object.prototype.hasOwnProperty.call(object, property);
}

This is likely overly-cautious though. It's safe enough in most code bases and environments
to trust and use the inherited hasOwnProperty. The in operator as well, if you've
considered the risks, is usually safe enough to use.

Assignment operators
An assignment operator will assign the value of its right-side operand to its left-side
operand and will return the newly assigned value. The left-side operand of an assignment
operation must always be an assignable and valid identifier or property. Examples of this
would include the following:

value = 1;
value.property = 1;
value['property'] = 1;

You can additionally use destructuring assignment, which enables you to declare your left-
side operand as either an object-literal-like or array-like structure that designates the
identifiers you wish to assign and the values you wish to be assigned:

[name, hobby] = ['Pikachu', 'Eating Ketchup'];
name; // => "Pikachu"
hobby: // => "Eating Ketchup"

We will explore destructuring assignment further in a little bit. For now, it's only important to
know that it, along with regular identifiers (foo=...) and property accessors (foo.baz =
..., foo[baz] = ...), can be used as the left-side operand to an assignment operator.

Operators Chapter 8

[233]

There are technically a large number of assignment operators because JavaScript combines
regular operators with the basic assignment operator to create more succinct assignment
operations in the common case of needing to mutate the value referred to by an existing
variable or property. The assignment operators in JavaScript are as follows:

Direct assignment: =
Additive assignment: +=
Subtractive assignment: -=
Multiplicative assignment: *=
Divisive assignment: /=
Remainder assignment: %=
Bitwise left-shift assignment: <<=
Bitwise right-shift assignment: >>=
Bitwise unsigned right-shift assignment: >>>=
Bitwise AND assignment: &=
Bitwise XOR assignment: ^=
Bitwise OR assignment: |=

All assignment operators, apart from the direct assignment = operator, will conduct the
operation that is indicated by the operator preceding =. So, in the case of +=, the + operator
will be applied to the left-and right-side operands, the result of which will then be assigned
to the left-side operand. So, consider the following statement:

value += 5

It would be equivalent to:

value = value + 5

The same follows for all other assignment operators that are of the combined type. The
addition operator, as we know, will concatenate its operands if either is a string. And the
exponentiation operator (**) will always evaluate to 1 if the exponent operand is zero (2
** 0 === 1). We can rely on this and other existing knowledge to know how such
operators will work when combined with assignment. We, therefore, don't need to
individually explore all of these assignment operator variants.

Assignment conventionally occurs in the context of a singular line. It's typical to see an
assignment statement on its own terminated by a semicolon:

someValue = someOtherValue;

Operators Chapter 8

[234]

But there's nothing implicit in the assignment operator that requires this. In fact, you can
embed an assignment anywhere where you would be able to embed any expression within
the language. The following syntax would be entirely legal, for example:

processStep(nextValue += currentValue);

This is carrying out an addition combined with an assignment, and then passing the
resulting value to the processStep function. It is exactly equivalent to the following code:

nextValue += currentValue;
processStep(nextValue);

Note here how it is nextValue that is passed to processStep. The result of an assignment
operation expression is always the value being assigned:

let a;
(a = 1); // => 1
(a += 2); // => 3
(a *= 2); // => 6

It is common to see assignment in contexts of for and while loops:

for (let i = 0, l = arr.length; i < l; i += 1) { }
// ___/ ____________/ ____/
// | | |
// Assignment Assignment Additive Assignment

This and other patterns of assignment are totally fine as they are so widely used they have
become idiomatic of JavaScript. But in most other situations, it is preferable not to embed
assignment within other language constructs. Code such as fn(a += b) is potentially
unintuitive to some, as it may not be clear what value is actually passed to fn().

In regard to clean code, the only question we need to ask ourselves when
assigning values is whether the reader of our code (including us!) will find
it obvious that assignment is occurring and whether they'll understand
what is being assigned.

Operators Chapter 8

[235]

Increment and decrement (prefix and postfix)
operators
These four operators technically fall under the umbrella of assignment but they are unique
enough to warrant their own section:

The postfix increment operator (value++)
The postfix decrement operator (value--)
The prefix increment operator (++value)
The prefix decrement operator (--value)

These will simply increment or decrement the value by 1. They're usually found in iteration
contexts such as for or while loops. They are best thought of as succinct alternatives to
additive and subtractive assignment (that is, value += 1 or value -= 1). However, they
have a couple of unique characteristics that are worth covering.

Prefix increment/decrement
The prefix increment and decrement operators allow you to increment or decrement any
given value and will evaluate to the newly incremented value:

let n = 0;

++n; // => 1 (the newly incremented value)
n; // => 1 (the newly incremented value)

--n; // => 0 (the newly decremented value)
n; // => 0 (the newly decremented value)

++n would technically be equivalent to the following additive assignment:

n += Number(n);

Note how the current value of n is first converted into Number. This is the nature of both
the increment and decrement operators: they operate strictly on numbers. So,
if n were String, that could not be coerced successfully, then the
new incremented or decremented value of n would be NaN:

let n = 'foo';
++n; // => NaN
n; // => NaN

Operators Chapter 8

[236]

Here, we can observe how, since the coercion of foo to a Number fails, the attempted
incrementation of it also fails, returning NaN.

Postfix increment/decrement
The postfix variants of the increment and decrement operators are identical to the prefix
variants, except for one fact: the postfix variants will evaluate to the old value, not the
newly incremented/decremented value:

let n = 0;

n++; // => 0 (the old value)
n; // => 1 (the newly incremented value)

n--; // => 1 (the old value)
n; // => 0 (the newly decremented value)

This is crucial and can, if not used intentionally, lead to undesirable bugs. Increment and
decrement operators are usually used in contexts where this difference is irrelevant. For
example, when used in the last expression of a for (_;_;_) statement, the return value is
not used anywhere, so we'd see no difference between the two following approaches:

for (let i = 0; i < array.length; i++) { ...}
for (let i = 0; i < array.length; ++i) { ...}

However, in other circumstances, the evaluated value is absolutely key. In the following
while loop, for example, the ++i < array.length expression is evaluated on every
iteration, meaning that the newly incremented value is compared to array.length. If we
swapped this for i++ < array.length, then you'd be comparing the value before
incrementing, meaning that it'd be one less and hence we'd get an additional (unwanted!)
iteration. You can observe the difference here:

const array = ['a', 'b', 'c'];

let i = -1;
while (++i < array.length) { console.log(i); } Logs: 0, 1, 2

let x = -1;
while (x++ < array.length) { console.log(x); } // Logs: 0, 1, 2, 3

This is quite a rare occurrence, especially with more modern iteration techniques available
in the language. But the increment and decrement operators are still very popular in other
contexts, so it's useful to appreciate the difference between their prefix and postfix variants.

Operators Chapter 8

[237]

Destructuring assignment
As briefly mentioned, the left-side operand of an assignment operator (... =) can be
specified as a destructuring object or array pattern, like so:

let position = { x: 123, y: 456 };
let { x, y } = position;
x; // => 123
y; // => 456

These patterns typically look like Object or Array literals as they start and end
with {} and [] respectively. They are, however, slightly different.

With the destructuring object pattern, where you want to declare the identifier or property
you wish to assign to, you must place it as if it were a value in an object literal. That is,
where { foo: bar } usually means assign bar to foo, in a destructuring pattern, it means
assign the value of foo to the identifier, bar. It is reversed. Where the name of the property of
the value you wish to access matches the name that you wish to be assigned in the local
scope, you can use a shorter syntax of simply { foo }, as shown here:

let message = { body: 'Dear Customer...' };

// Accessing `body` and assigning to a different name (`theBody`):
const { body: theBody } = message;
theBody; // => "Dear Customer..."

// Accessing `body` and assigning to the same name (`body`):
const { body } = message;
body; // => "Dear Customer..."

For arrays, the slots of syntax where you would usually designate the values (that
is, [here, here, and here]) are used to designate the identifiers to which you wish to
assign your values, so each identifier in a sequence relates to the same index elements in the
array:

let [a, b, c] = [1, 2, 3];
a; // => 1
b; // => 2
c; // => 3

Operators Chapter 8

[238]

You can also use the rest operator (...foo) to instruct JavaScript to assign the rest of the
properties to a given identifier. Here's an example of using it within the destructuring array
pattern:

let [a, b, c, ...others] = [1, 2, 3, 4, 5, 6, 7];
others; // => [4, 5, 6, 7];

And here's an example of using it within the destructuring object pattern:

let { name, ...otherThings } = {
 name: 'James', hobby: 'JS', location: 'Europe'
};
name; // => "James"
otherThings; // => { hobby: "JS", location: "Europe" }

Only destructure your assignments when it provides genuine increased
readability and simplicity.

Destructuring can also occur for object structures that involve multiple levels of hierarchy:

let city = {
 suburb: {
 inhabitants: ['alice', 'steve', 'claire']
 }
};

If we wish to extract the inhabitants array and assign it to a variable of the same name,
then we can do the following:

let { suburb: { inhabitants } } = city;
inhabitants; // => ["alice", ...]

And a destructuring array pattern can be embedded in a destructuring object pattern and vice
versa:

let {
 suburb: {
 inhabitants: [firstInhabitant, ...otherInhabitants]
 }
} = city;

firstInhabitant; // => "alice"
otherInhabitants: // => ["steve", "claire"]

Operators Chapter 8

[239]

Destructuring assignment is very useful in avoiding otherwise length, assignments like this:

let firstInhabitant = city.suburb.inhabitants[0];

However, it should be used with reservation as it can sometimes overcomplicate things for
those who have to read your code. While it may appear intuitive when writing it for the
first time, destructuring assignments are notoriously difficult to untangle. Consider the
following statement:

const [{someProperty:{someOtherProperty:[{foo:baz}]}}] = X;

This is cognitively expensive to untangle. It would, perhaps, be more intuitive to express
this logic traditionally:

const baz = X[0].someProperty.someOtherProperty[0].foo;

On the whole, destructuring assignment is an exciting and useful feature of the JavaScript
language, but it should be used in a guarded way with consideration of the possibility of
the confusion it can cause.

Property access operators
Accessing properties in JavaScript is achieved by using one of two operators:

Direct property access: obj.property
Computed property access: obj[property]

Direct property access
The syntax for directly accessing a property is a single period character, with a left-side
operand that is the object you wish to access, and with a right-side operand that is the
property name you wish to access:

const street = {
 name: 'Marshal St.'
};

street.name; // => "Marshal St."

Operators Chapter 8

[240]

The right-side operand must be a valid JavaScript identifier, and as such, cannot start with a
number, cannot contain whitespace, and in general, cannot contain any punctuation
characters that exist elsewhere within the JavaScript specification. You can, however, have
properties that are named with so-termed exotic Unicode characters such as π (PI):

const myMathConstants = { π: Math.PI };
myMathConstants.π; // => 3.14...

This is an unconventional practice and is usually only used in novelty settings. It may,
however, be genuinely useful in code that is embedded in problem domains where there
are legitimate exotic symbols with existing meanings (mathematics, physics, and so on).

Computed property access
In cases where you cannot directly access a property via direct property access, it is possible
to compute the property name you wish to access, delimiting it with square brackets:

someObject["somePropertyName"]

It's a right-side operand of any expression, meaning that you can freely compute some value
that'll then be coerced to a string (if it is not already a string) and used as the property name
to access the object:

someObject[computeSomethingHere()]

Typically this is used to access property names that contain characters that make them
invalid identifiers, and hence illegal to use with the direct property access operator. This
would include numeric property names (such as those found in an array), names with
whitespace, or names with punctuation or keywords that exist elsewhere in the language:

object[1];
object['a property name with whitespace'];
object['{[property.name.with.odd.punctuation]}'];

It is best to only rely on computed property access in scenarios when you have no other
choice. If there is the possibility of just accessing the property directly (that
is, object.property), then you should prefer that. Likewise, if you're deciding what
properties an object might contain, it's best to use names that are valid identifiers within the
language so they can be directly accessed with ease.

Operators Chapter 8

[241]

Other operators and syntax
There are a few remaining operators and pieces of syntax that we have yet to explore and
that don't fall into any other operator category:

The delete operator: delete VALUE
The void operator: void VALUE
The new operator: new VALUE
Spread syntax: ... VALUE
Grouping: (VALUE)
The comma operator: VALUE, VALUE, ...

The delete operator
The delete operator can be used to remove properties from objects, as such its only
operand usually takes the form of a property accessor, like so:

delete object.property;
delete object[property];

Only properties that are deemed configurable can be deleted in this manner. All properties
added conventionally are, by default, configurable and can, therefore, be deleted:

const foo = { baz: 123; };

foo.baz; // => 123
delete foo.baz; // => true
foo.baz; // => undefined
'baz' in foo; // => undefined

However, if the property has been added via defineProperty with configurable set
to false, then it'll not be deletable:

const foo = {};
Object.defineProperty(foo, 'baz', {
 value: 123,
 configurable: false
});

foo.baz; // => 123
delete foo.baz; // => false
foo.baz; // => 123
'baz' in foo; // => true

Operators Chapter 8

[242]

As you can see, the delete operator evaluates to true or false depending on whether the
property has been successfully deleted. Following successful deletion, the property is not
merely set to undefined or null but is entirely removed from the object so that checking
its existence via in will return false.

The delete operator can technically be used to delete any variable (or so-termed
environment record binding internally), but attempting to do so is considered a deprecated
behavior and will produce SyntaxError in strict mode:

'use strict';
let foo = 1;
delete foo; // ! SyntaxError

The delete operator has historically been the subject of many inconsistencies between
JavaScript implementations, most especially between different browsers. Because of this,
only its conventional usage of deleting properties on objects is advisable.

The void operator
The void operator will evaluate to undefined regardless of its operand. Its operand can be
any valid reference or expression:

void 1; // => undefined
void null; // => undefined
void [1, 2, 3]; // => undefined

It doesn't have many uses nowadays, although void 0 is sometimes used as an idiom
for undefined either for succinctness or to avoid issues in legacy environments
where undefined was an untrusted mutable value.

The new operator
The new operator is used to form an instance from a constructor. Its right-side operand must
be a valid constructor, either provided by the language (for example, new String()) or by
ourselves:

function Thing() {}
new Thing(); // => Instance of Thing

Operators Chapter 8

[243]

By instance, what we truly mean is an object that has a [[Prototype]] equal to the
constructor's prototype property, and that has been passed to the constructor as
its this binding so that the constructor can fully prepare it for its purpose. Observe here
how, whether we define our constructor via a class definition or conventional syntax, we
can make the same assertions about the produced instances:

// Conventional Constructor Definition:
function Example1() {
 this.value = 123;
}

Example1.prototype.constructor === Example1; // => true
Object.getPrototypeOf(new Example1()) === Example1.prototype; // => true
new Example1().value === 123; // => true

// Class Definition:
class Example2 {
 constructor() { this.value = 123; }
}

Example2.prototype.constructor === Example2; // => true
Object.getPrototypeOf(new Example2()) === Example2.prototype; // => true
new Example2().value === 123; // => true

The new operator only cares that its right-side operand is constructible. This means it cannot
be a function formed by an arrow function, as in this example:

const Thing = () => {};
new Thing(); // ! TypeError: Thing is not a constructor

As long as you've defined your constructor using a function expression or declaration, it'll
work fine. You can even instantiate an anonymous inline constructor if you want:

const thing = new (function() {
 this.name = 'Anonymous';
});

thing.name; // => "Anonymous"

The new operator does not formally require the calling parentheses. They only need to be
included if you are passing arguments to the constructor:

// Both equivalent:
new Thing;
new Thing();

Operators Chapter 8

[244]

When you wish to instantiate something and then immediately access a property or
method, however, you'd need to disambiguate by providing the calling parentheses
and then accessing the property following that; otherwise, you'd receive TypeError:

function Component() {
 this.width = 200;
 this.height = 200;
}

new Component().width; // => 200
new Component.width; // => ! TypeError: Component.width is not a
constructor
(new Component).width; // => 200

The usage of the new operator is usually very straightforward. Semantically, it is
understood to relate to the construction of an instance and should therefore ideally only be
used to do that. It's also, therefore, assumed that anything being referenced by the right-side
operand of new is identified with a name beginning with a capital letter and is a noun.
These naming conventions indicate that it is a constructor, providing a useful hint to any
programmers who may wish to use it. Here are some examples of both good and bad
constructor names:

// Bad (non-idiomatic) names for Constructors:
new dropdownComponent;
new the_dropdown_component;
new componentDropdown;
new CreateDropdownComponent;

// Good (idiomatic) names for Constructors:
new Dropdown;
new DropdownComponent;

The correct naming of a constructor is crucial. It makes our fellow programmers
immediately aware of what contract a specific abstraction fulfills. If we name a constructor
so that it appears like a regular function, then our colleagues may try to invoke it
incorrectly and suffer possible errors as a result. It, therefore, makes perfect sense to take
advantage of a name's ability to communicate contract, as discussed in the earlier chapter on
naming (Chapter 5, Naming Things is Hard).

Operators Chapter 8

[245]

The spread syntax
The spread syntax (also known as rest syntax) is composed of three dots followed by an
operand expression (...expression). It allows the expression to be expanded in places
where either multiple arguments or multiple array elements are expected. It technically
exists in five distinct areas of the language:

In array literals, of the form array = [a, b, c, ...otherArray]
In object literals, of the form object = {a, b, c, ...otherObject}
In function parameter lists, in the form function(a, b, c,
...otherArguments) {}

In destructuring array patterns, in the form [a, b, c, ...others] = array
In destructuring object patterns, in the form {a, b, c, ,,,otherProps} =
object

In the context of a function parameter list, the spread syntax must be the very last parameter
and would indicate that you wish for all arguments passed to the function from that point
onward to be collected into a singular array by the name indicated:

function addPersonWithHobbies(name, ...hobbies) {
 name; // => "Kirk"
 hobbies; // => ["Collecting Antiques", "Playing Chess", "Drinking"]
}

addPersonWithHobbies(
 'Kirk',
 'Collecting Antiques',
 'Playing Chess',
 'Drinking'
);

If you attempt to use it amid other parameters, then you will receive SyntaxError:

function doThings(a, ...things, c, d, e) {}
// ! SyntaxError: Rest parameter must be last formal parameter

Operators Chapter 8

[246]

In the context of an array literal or a destructuring array pattern, the spread syntax is similarly
used to indicate that the values referred to should be spread out. It's best to see these as two
opposites, deconstruction and reconstruction:

// Deconstruction:
let [a, b, c, ...otherLetters] = ['a', 'b', 'c', 'd', 'e', 'f'];
a; // => "a"
b; // => "b"
c; // => "c"
otherLetters; // => ["d", "e", "f"]

// Reconstruction:
let reconstructedArray = [a, b, c, ...otherLetters];
reconstructedArray; // => ["a", "b", "c", "d", "e", "f"]

When used in the context of an array literal or a destructuring array pattern, the spread syntax
must refer to an iterable value. This doesn't necessarily have to be an array. Strings, as an
example, are iterable, so the following also works:

let [...characters] = 'Hello';
characters; // => ["H", "e", "l", "l", "o"]

In the context of an object literal or a destructuring object pattern, the spread syntax is similarly
used to spread out all properties of any given object into the receiving object. Once again,
we can see this as processes of deconstruction and reconstruction:

// Deconstruction:
const {name, ...attributes} = {
 name: 'Nissan Skyline',
 engineSize: '2500cc',
 year: 2009
};
name; // => "Nissan Skyline"
attributes; // => { engineSize: "2500cc", year: 2009 }

// Reconstruction:
const skyline = {name, ...attributes};
skyline; // => { name: "Nissan Skyline", engineSize: "2500cc", year: 2009 }

When used in this context, the value of the right side of the spread syntax must be either an
object or a primitive that can be wrapped as an object (for example, Number or String).
This means that all values in JavaScript are permissible except null and undefined, both
of which, as we know, cannot be wrapped as objects:

let {...stuff} = null; // => TypeError

Operators Chapter 8

[247]

It's, therefore, best to only use the spread syntax in an object context when you're confident
that the value is an object.

In conclusion, the spread syntax, as we've seen, is remarkably useful in a variety of different
situations. Its main advantage is that it reduces the amount of syntax required to extract
and designate values.

The comma operator
The comma operator (a, b) accepts a left-side and right-side operand and will always
evaluate to its right-side operand. It is sometimes not considered an operator since it does
not technically operate on its operands. It's also quite rare.

The comma operator should not be confused with the comma we use to separate arguments
when declaring or invoking a function (for example fn(a,b,c)), the comma used when
creating array literals and object literals (for example [a, b, c]), or the comma used
when declaring variables (for example let a, b, c;). The comma operator is distinct
from all of these.

It's most commonly seen in the iteration statement portion of a for(;;) loop:

for (let i = 0; i < length; i++, x++, y++) {
 // ...
}

Note how three increment operations are occurring in the third statement (which occurs at
the end of each iteration in a conventional for(;;) statement), and that they are each
separated by a comma. In this context, the comma is used merely to ensure that all of these
individual operations will occur, regardless of each other, within the context of a singular
statement. In regular code outside a for(;;) statement, you would likely just have these
each dedicated to their own line and statement, like so:

i++;
x++;
y++;

However, due to the constraints of the for(;;) syntax, they must all exist within a
singular statement and so the comma operator becomes necessary.

The fact that the comma operator evaluates to its right-side operand is not important in this
context, but in other contexts, it may be important:

const processThings = () => (firstThing(), secondThing());

Operators Chapter 8

[248]

Here, processThings, when invoked, will first call firstThing and
then secondThing and will return whatever secondThing returns. It is therefore
equivalent to the following:

const processThings = () => {
 firstThing();
 return secondThing();
};

It is rare to see the comma operator used, even in scenarios like this, as it tends to
unnecessarily obscure code that could be more clearly expressed. It's useful to know that it
exists and how it behaves, but we shouldn't expect it to be an everyday operator.

Grouping
Grouping, or parenthesizing, is achieved by using regular brackets ((...)). This should
not be mistaken for other pieces of syntax that use parentheses, such as function invocation
(fn(...)).

The grouping parentheses can be considered an operator just like all of the others we've
learned about. They accept one operand—an expression of any form—and will evaluate to
whatever resides within them:

(1); // => 1
([1, 2, 3]); // => [1, 2, 3]
(false && true); // => false
((1 + 2) * 3); // => 9
(()=>{}); // => (A function)

As it simply evaluates its contents, you may wonder what the purpose of a group is.
Earlier, we covered the concepts of operator precedence and associativity. Sometimes, if
you're using a series of operators and wish to force a specific order of operations, then the
only way to do that is by wrapping them in a group, which, when used in combination
with other operators, has the highest precedence of all:

// The order of operations is dictated
// by each operator's precedence:
1 + 2 * 3 - 5;

// Here, we are forcing the order:
(1 + 2) * (3 - 5);

Operators Chapter 8

[249]

It's wise to use a group when the order of operations is either not what you desire or has
the potential to be unclear to readers of the code. For example, it is sometimes common to
wrap items being returned from a function in a group to provide aesthetic containment and
clarity:

function getComponentWidth(component) {
 return (
 component.getInnerWidth() +
 component.getLeftPadding() +
 component.getRightPadding()
);
}

Another obvious solution to this may be to merely indent the items you wish to contain, but
the issue with this is that the JavaScript return statement will not know to look beyond its
own line for the start of the expression or value it must return:

// WARNING: this won't work
return
 component.getInnerWidth() +
 component.getLeftPadding() +
 component.getRightPadding();

The return statement in the preceding code effectively terminates itself with a semicolon
when the parser observes that there is no value or expression on the same line. This is
known as Automatic Semicolon Insertion (ASI) and its existence means we often have to
use groups to make it obvious to the parser what our intentions are:

// Clear to humans; clear to the parser:
return (
 component.getInnerWidth() +
 component.getLeftPadding() +
 component.getRightPadding()
);

In summary, grouping is a useful tool for containment and re-ordering operations, and it is a
cheap and easy way to increase the clarity and readability of an expression.

Operators Chapter 8

[250]

Bitwise operators
JavaScript has seven bitwise operators. The term bitwise here means to operate on binary
numbers. These operators are rarely utilized but are useful to know about nonetheless:

Bitwise unsigned right-shift operator: >>>
Bitwise left-shift operator: <<
Bitwise right-shift operator: >>
Bitwise OR: |
Bitwise AND: &
Bitwise XOR: ^
Bitwise NOT: ~ (a unary operator)

Bitwise operations are incredibly rare in JavaScript since you're usually
dealing with higher-level sequences of bits like strings or numbers.
However, it's worth having at least a cursory understanding of bitwise
operations so that if you encounter the need, you can cope.

All bitwise operators in JavaScript will first coerce their operands (or a singular operand, in
the case of bitwise NOT ~) to a 32-bit integer representation. This means that, internally, a
number such as 250 would be manifested as follows:

00000000 00000000 00000000 11111010

The last eight bits, in this case of 250, contain all of the information regarding the number:

1 1 1 1 1 0 1 0
+ + + + + + + +
| | | | | | | +---> 0 * 001 = 000
| | | | | | +-----> 1 * 002 = 002
| | | | | +-------> 0 * 004 = 000
| | | | +---------> 1 * 008 = 008
| | | +-----------> 1 * 016 = 016
| | +-------------> 1 * 032 = 032
| +---------------> 1 * 064 = 064
+-----------------> 1 * 128 = 128
=================================
 SUM = 250

Operators Chapter 8

[251]

Adding together all of the bits will get us a decimal integer value of 250.

Every bitwise operator available will operate on these bits and derive a new value. A
bitwise AND operation, for example, will yield a bit value of 1 for every pair of bits that are
both on:

const a = 250; // 11111010
const b = 20; // 00010100
a & b; // => 16 // 00010000

We can see that only the fifth bit from the right (that is, 16) is on in both 250 and 20,
therefore the AND operation will result in only that bit being left on.

Bitwise operators should only be utilized when you are carrying out binary mathematics.
Outside of that, any usage of bitwise operators (for example, for side-effects) should be
avoided because it drastically limits the clarity and comprehensibility of our code.

It was not uncommon, for a time, to see bitwise operators such as ~ and | being used in
JavaScript because they were popular for succinctly deriving the integer floor of a number
(for example, ~34.6789 === 34). It goes without saying that this approach, while clever
and ego-boosting, created unreadable and unfamiliar code. It remains preferable to use
more explicit techniques. In the case of flooring, using Math.floor() is ideal.

Summary
In this chapter, we have exhaustively covered the operators available in JavaScript.
Collectively, the last past three chapters have given us an incredibly strong foundational
understanding of JavaScript syntax, enabling us to feel utterly comfortable when
constructing expressions.

In the next chapter, we'll continue to explore the language by applying our existing
knowledge of types and operators to the landscapes of declaration and control flow. We'll
be exploring how to use larger language constructs to craft clean code and will be
discussing many of the traps and idiosyncrasies present in those constructs.

9
Parts of Syntax and Scope

In this chapter, we will continue to explore JavaScript's syntax and constructs. We'll be
delving into the fundamentals of expressions, statements, blocks, scopes, and closures.
These are the less visible parts of the language. Most programmers assume that they
already have a good grasp of how things such as expressions and scopes work, but, as
we've seen, our intuitions of how things should work may not always align with how they
truly do work. The constructs we'll be learning about in this chapter are the crucial larger
building blocks of our programs, so it is of vital importance to understand them fully before
we explore more abstract concepts such as control flow and design patterns.

Why are we learning this now? We've now got a solid grasp of what types
are available in JavaScript and how to manipulate them via operators. The
next logical step is to study syntactic scaffolding components, where we can
place these types and operations, and how these scaffolding components
behave. The end goal here is a high level of fluency in JavaScript so that
we are better able to write clean code.

In this chapter we're going to cover the following topics:

Expressions, statements, and blocks
Scopes and declarations

Expressions, statements, and blocks
There are broadly three types of syntactic container that exist within JavaScript:
expressions, statements, and blocks. They are all containers in that they all hold other pieces
of syntax and all have distinct behaviors that are worth distinguishing.

Parts of Syntax and Scope Chapter 9

[253]

There are additional constructs that you can call containers, such as
functions or modules, but for now we're only interested in the types of
syntax that you would find within these. As we continue to explore the
language, we are slowly zooming out all the way from granular operators
and expressions to the much larger and more complex functions and
programs in which they reside.

It's best to visualize the individual syntactic parts of a program as a hierarchy:

Here, we can see that individual expressions (with a lower border) are wrapped in
statements, either of the regular or block variety. It's useful to always have this hierarchical
view of the language in our mind as this is how our code will be parsed and understood by
the machine. We don't need to see our code as a parser would, of course, but it's
indisputably useful to know how our code will be parsed.

This hierarchical view of the language will also help us write programs that communicate
their intent well to our fellow programmers. Hierarchy is not only a syntactic concern but a
human one. When we write a program, we will typically model problems at different layers
of abstraction: each part of a program goes within another part, and from all these
individual parts, we can build a program that contains many different layers of complexity.

As we explore the syntactic parts of JavaScript, it's worth remembering how individual
elements of a program's syntax, its expressions and statements, will have a natural
symmetry with the individual elements and layers of the problem domain.

Parts of Syntax and Scope Chapter 9

[254]

Expressions
An expression is the most granular type of syntactic container. We've already been working
a lot with expressions. Even expressing a literal value, like the number 1, will produce an
expression:

1 // <= An expression containing the literal value 1

Using an operator also forms an expression:

'hi ' + 'there'

In fact, we can consider an operator as something that is itself applied to expressions. So the
addition operator's syntax can be understood like so:

EXPRESSION + EXPRESSION

An expression can be as simple as a literal value or a variable reference, but may also be
complex. The following expression encompasses a series of operations and is spread over a
few lines:

(
 'this is part of' +
 ' ' +
 ['a', 'very', 'long', 'expression'].join(' ')
)

Expressions are not limited to primitive types or simple literal values.
Class definitions, function expressions, array literals, and object literals are all things that
can appear in the context of an expression. The easy way to know whether something is an
expression is the question of whether or not it can go within a group operator (that is,
parentheses) without causing a SyntaxError:

(class Foo {}); // Legal Expression
(function() {}); // Legal Expression
([1, 2, 3]); // Legal Expression
({ a: 1, b: 2 }); // Legal Expression

(if (a) {}); // ! SyntaxError (Not an Expression!)
(while (x) {}); // ! SyntaxError (Not an Expression!)

The syntactic building blocks of any program involve various different layers of syntactic
structures. We have individual values and references: if we zoom out a little bit, we have
expressions, and if we zoom out even further we have statements, which we will now
explore.

Parts of Syntax and Scope Chapter 9

[255]

Statements
A statement contains an expression, and is, therefore, another type of syntactic container.
Knowing how JavaScript sees expressions as distinct from statements is hugely helpful in
avoiding the various traps and idiosyncrasies of the language.

A statement is formed in a variety of situations. These include the following:

When you terminate an expression with a semicolon (1 + 2;)
When you use any of the for, while, switch, do..while, or if constructs
When you create a function via a function declaration (function Something()
{})
They are automatically formed by the language's natural automatic semicolon
insertion (ASI)

The syntax of a function declaration (function name() {}) will always
form a statement unless it appears in the context of an expression, in
which case it'll naturally be a named function expression. For the nuanced
differences between these, please revisit Chapter 6, Primitive and Built-In
Types.

Forming statements with semicolons
When we place one expression after another, we tend to terminate each individual one with
a semicolon. By doing this, we are forming a statement. Explicitly terminating a statement
ensures that the JavaScript parser will not have to do so automatically. If you don't use
semicolons, then the parser will guess where to insert them via a process called ASI. This
process relies on our placement of new lines (that is, \n).

As ASI is automatic, it won't always provide the outcomes you desire. For example,
consider the following case where there is a function expression followed by a syntax that is
intended as a group (that is, an expression delimited by parentheses):

(function() {})
(
 [1, 2, 3]
).join(' ')

Parts of Syntax and Scope Chapter 9

[256]

This will cause a mysterious TypeError that says: Cannot read property join of
undefined. This is because, from the parser's point of view, the following is what we're
doing:

(function() {})([1, 2, 3]).join(' ')

Here, we're creating an inline anonymous function and then immediately calling it, passing
the [1, 2, 3] array as our sole argument, and then we're attempting to invoke
the join method on whatever's returned. But as our function returns undefined, there is
no join method there, and so we receive an error. This is a rare situation, but variations of
this issue do crop up from time to time. The best way to avoid them is to consistently use
semicolons to terminate lines that are intended as statements, as shown in the following
code:

(function() {});
(
 [1, 2, 3]
).join(' ');

ASI can bite you in other ways as well. A common example is when you attempt to use
a return statement within a function, with its intended return value on the next line. In
such cases, you'll get a nasty surprise:

function sum(a, b) {
 return
 a + b;
}
sum(a, b); // => undefined (odd!)

JavaScript's ASI mechanism will presume that the return statement is terminated if there
is nothing else present on the same line, and so the following is closer to what the
JavaScript engine will see when running the code:

function sum(a, b) {
 return;
 a + b;
}

To fix this, we can either place a + b on the same line as our return statement or we can
use a group operator to contain our indented expression:

function sum(a, b) {
 return (
 a + b
);
}

Parts of Syntax and Scope Chapter 9

[257]

It's not necessary to know every ASI rule, but it is very useful to know that it exists. The
best way of working with ASI is to avoid it wherever possible. If you're explicit about the
termination of your statements, then you won't need to rely on obscure ASI rules, and you
won't be relying on your fellow programmers knowing these rules either.

Blocks
If we consider statements as containers of expressions, then we can consider blocks as
containers of statements. In other languages, they are sometimes called compound
statements as they allow several statements to exist together.

Strictly speaking, blocks are statements. From a language-design
perspective, this is a useful thing because it allows statements that form
part of other constructs to be expressed as either single-line statements or
entire blocks containing several statements—for example,
following if(...) or for(...) constructs.

Blocks are formed by delimiting zero or more statements with curly braces:

{
 // I am inside a block
 let foo = 123;
}

Blocks are very rarely used as completely isolated units of code (there's very limited benefit
from doing so). You'll usually find them within if, while, for and switch statements, as
follows:

while (somethingIsTrue()) {
 // This is a block
 doSomething();
}

The {...} part of the while loop here is a block. It is not an inherent part of the while
syntax. If we wish to, we can entirely exclude the block and in its place just have a regular
single-line statement:

while (somethingIsTrue()) doSomething();

That would be identical to the version in which we use a block, but obviously this would be
limiting if we intend to add more iteration logic. As a result, it's usually preferable to
preemptively use a block in such scenarios. Doing so has the added benefit of legitimizing
indentation and the containment of the iteration logic.

Parts of Syntax and Scope Chapter 9

[258]

Blocks are not only syntactic containers. They affect the runtime of our code as well by
providing their own scope, which means that we can declare variables within
via const and let statements. Observe here how we declare a variable within an if block
and how it is not available outside that block:

if (true) {
 let me = 'here';
 me; // => "here"
}

me; // ! ReferenceError

Scoping is a topic that we should not take lightly. It can be quite difficult to understand,
and so what follows is an entire section in which we explore its nature and nuances.

Scopes and declarations
The scope of a given variable can be thought of as the areas within the program where that
variable can be accessed.

When we declare a variable at the beginning of a module (outside all functions), we think
that it's only natural that this variable should then be accessible to all functions within the
module:

var hello = 'hi';

function a() {
 hello; // a() can "see" the hello variable
}

function b() {
 hello; // b() can "see" the hello variable
}

And if we define a variable within a function, then we expect all inner functions to have
access to it:

var value = 'I exist';

function doSomething() {
 value; // => "I exist"
}

Parts of Syntax and Scope Chapter 9

[259]

The fact that we can access value in the doSomething function here is thanks to its scope.
The scope of a given variable will depend on how it is declared. When you declare a
variable via a var declaration, it will have a different potential scope to a variable created
via a let declaration. We will cover these differences soon, but first, it's useful to have a
clearer idea of how scopes operate internally.

Internally, when you declare variables, JavaScript will create and store that variable within
a lexical environment, which contains the mappings of identifiers to values. A typical
JavaScript program can be thought of as having four types of lexical environments, as
shown in the following list:

The global environment: There is only one of these, and it is considered the
outer scope of all other scopes. It is the global context in which all other
environments (that is, scopes) exist. The global environment mirrors a global
object that can be referred to by window or self in the browser and global in
Node.js.
A module environment: This environment will be created for each distinct
JavaScript module that is run as part of a singular Node.js process or for
each <script type="module"> in the browser.
A function environment: This environment will be in effect for every running
function, however it is declared or invoked.
A block environment: This environment will be in effect for every block ({...})
in your program, whether following another language construct, such
as if(...) or while(...), or situated independently.

As you know, both functions and blocks can exist within other functions and blocks.
Consider the following piece of code that expresses various environments (scopes):

function setupApp(config) {
 return {
 setupUserProfileMenu() {

 if (config.isUserProfileEnabled) {

 const onDoneRendering = () => {
 console.log('Done Rendering!');
 };

 // (Do some rendering here...)
 onDoneRendering();

 }

 }

Parts of Syntax and Scope Chapter 9

[260]

 };

}

setupApp({ isUserProfileEnabled: true }).setupUserProfileMenu();

At the point where Done Rendering! is logged, we may expect the hierarchy of
environments to look something like this:

Browser Global Environment
\--> Function Environment (setupApp)
 \--> Block Environment (if block)
 \--> Function Environment (onDoneRendering)

This hierarchy of environments will change throughout the runtime of a given program. If
a function is run to completion and its internal scope is no longer used in any exposed
internal functions (known as closures), then the lexical environment will be destroyed.
Essentially, when a scope is guaranteed to no longer be needed, then JavaScript is free to
get rid of it.

Variable declarations
A variable declaration occurs via a var keyword followed by a valid identifier or an
assignment of the form a = b:

var foo;
var baz = 123;

We call things declared via var keyword variable declarations, but it's
important to note that, in popular terminology, declarations made by
both let and const are also considered variables.

Variables declared via var are scoped to the
nearest function, module, or global environment—that is, they are not block-scoped. At
parse time, variable declarations within a given scope will be collected and then, at the
point of execution, those declared variables will be hoisted to the top of their execution
context and initialized with the undefined value. This means that, within a given scope,
technically you can access a variable prior to its assignment, but it'll be undefined:

foo; // => undefined
var foo = 123;
foo; // => 123

Parts of Syntax and Scope Chapter 9

[261]

The execution context is a name given to the top of the call stack, meaning
the currently running function, script, or module. It is a concept that is
only seen when code is run, and will change as the program progresses.
You can usually think of it as simply the currently-running function (or
outer module or <script>). var declarations are always hoisted to the
top of their execution context and initialized to undefined.

The hoisting behavior of var is in contrast to variables declared via let and const, which
will produce an ReferenceError if you attempt to access them prior to their declaration:

thing; // ! ReferenceError: Cannot access 'thing' before initialization
let thing = 123;

If you're not careful, the hoisting behavior of var can lead to some unexpected results. For
example, there may be a situation where you're attempting to refer to a variable that exists
within the outer scope but you are unable to do so because of a variable declaration in your
current scope being hoisted:

var config = {};

function setupUI() {
 config; // => undefined
 var config;
}

setupUI();

Here, the inner scope's variable declaration of config will be hoisted to the top of its scope,
meaning that, from the very first line of setupUI, config is undefined.

Since variable declarations are hoisted to the very top of their execution context, even those
within a block will be hoisted as if they were first initialized outside of it:

// This:
// (VariableDeclaration inside a Block)
if (true) {
 var value = 123;
}

// ... Is equivalent to:
// (VariableDeclaration preceding a Block)
var value;
if (true) {
 value = 123
};

Parts of Syntax and Scope Chapter 9

[262]

In summary, variable declarations create a variable that is scoped to the nearest function,
module, or global environment. In the browser, there are no module environments, so it'll
either be scoped to its function or the global scope. A variable declaration will be hoisted,
before execution, to the top of its respective execution context. This may be the function, the
module (in Node.js), or the <script> (in the browser). Variable declarations have fallen
out of favor because of the more recently introduced const and let declarations, which
are both block-scoped and do not have any odd hoisting behavior.

Let declarations
Let declarations are thankfully far simpler than var declarations. They will be scoped to
their nearest environment (whether it is a block, a function, a module, or the global
environment) and have no complicated hoisting behaviors.

Their ability to be scoped to a block means that a let declaration inside a block will not have
an effect on the outer function scope. In the following code, we can see three different
environments (scopes) with a respective place variable in each:

let place = 'outer';

function foo() {
 let place = 'function';

 {
 let place = 'block';
 place; // => "block"
 }

 place; // => "function"
}

foo();
place; // => "outer"

This demonstrates two things to us:

Declaring via let will not overwrite or mutate a variable by the same name in an
outer scope
Declaring via let will allow each scope to have its own variable, invisible to
outer scopes

Parts of Syntax and Scope Chapter 9

[263]

When you use let in either for(;;), for...in, or for...of constructs, even outside of
the following block, then that let declaration will be scoped as if it were inside the block.
This makes sense intuitively: when we initialize a for loop with let declarations, we
naturally expect those to be scoped to the for loop itself and not outside of it:

for (let i = 0; i < 5; i++) {
 console.log(i); // Logs: 0, 1, 2, 3, 4
}
console.log(i); // ! ReferenceError: i is not defined

We should only use let if we expect the variable to be reassigned at some later point. If no
new assignment will occur, then we should prefer const, as it gives us a little bit of extra
peace of mind.

Const declarations
A const declaration has the same characteristics as let, except for one crucial difference:
variables declared via const are immutable, meaning that the variable cannot be
reassigned to a different value:

const pluto = 'a planet';
pluto = 'a dwarf planet'; // ! TypeError: Assignment to constant variable.

It's important to note that this does not affect the mutability of the value itself. So if the
value is any type of object, then all of its properties will retain their mutability:

const pluto = { designation: 'a planet' };

// Assignment to a property:
pluto.designation = 'a dwarf planet';

// It worked! (I.e. the object is mutable)
pluto.designation; // => "a dwarf planet"

Even though const does not protect values from all mutability, it does protect us from
some common mistakes and bad practices, such as reusing a variable to refer to several
different concepts, or accidentally reassigning a variable because of a typo. The const code
phrase is generally safer to use than let, and is now considered the best practice for the
declaration of all variables, unless you have an explicit need to reassign a variable after its
declaration.

Parts of Syntax and Scope Chapter 9

[264]

You should also feel free to use const when declaring variables
in for...of and for...in iteration constructs, such as in the following case:

for (const n of [4, 5, 6]) console.log(n);
// Logs 4, 5, 6

People often mistakenly opt for using let here because they believe that the looping
construct will effectively reassign the variable, making const unsuitable. But in fact, the
declaration within for(...) will be tied to a new block scope on each iteration, and thus
the const variable will be newly initialized on each iteration within this fresh scope.

Function declarations
In terms of scoping, function declarations behave similarly to variable declarations (that
is, var). They will be scoped to their closest function, module, or global environment, and
will be hoisted to the top of their respective execution context.

Unlike variable declarations, however, a function declaration will cause the actual
assignment of the Function to its identifier to be hoisted as well, meaning that
the Function is effectively available before it is declared:

myFunction(); // => "This works!"
function myFunction() { return 'This works!' }

This behavior is quite obscure and as such is inadvisable unless it is very obvious where the
definition for myFunction comes from upon invocation. A programmer will typically
expect a definition for a function to exist above the place where it is called (or imported as a
dependency at some prior point in time), so it can be confusing.

There is further complexity if we consider the possibility of a function declaration residing
within a block that is conditionally activated (warning: don't do this!):

giveMeTheBestNumber; // => (Varies depending on implementation!)
if (something) {
 function giveMeTheBestNumber() { return 76; }
} else {
 function giveMeTheBestNumber() { return 42; }
}

Parts of Syntax and Scope Chapter 9

[265]

Unfortunately, previous versions of ECMAScript did not prescribe the behavior of function
declarations within blocks. This led to various browser implementations choosing their
own unique way of handling such situations. Over time, implementations have begun to
align. The ECMAScript 2015 specification sensibly forbids either of
the giveMeTheBestNumber functions from having their values hoisted. The declaration
itself can, however, still be hoisted, meaning that giveMeTheBestNumber would
be undefined on lines prior to its declarations (similar to var), as mentioned. This is, at the
time of writing, the prevalent behavior of most (but not all) implementations.

Because of the obscurity and the remaining inconsistencies across implementations, it is
strongly suggested that you don't use function declarations within blocks. And ideally, it's best
not to rely on their hoisting behavior (by referencing function declarations) unless you're
confident that doing so would not be misunderstood by those who must read your code.

For more information on how functions produced by function
declarations differ from other ways of creating functions (for example,
function expressions or arrow functions), please revisit the
Functions section in Chapter 6, Primitive and Built-In Types.

Closures
Inner scopes, as we've seen, have access to the variables of outer scopes:

function outer() {
 let thing = 123;
 function inner() {
 // I can access `thing` within here!
 thing; // => 123
 }
 inner();
}
outer();

What naturally follows from this is the concept of a closure. A closure is how JavaScript
enables you to continue to access the scope of an inner function regardless of where or
when it is called.

It's simplest to think of a closure as simply a retained scope. A closure is a
wrapped-up or enclosed scope that is passed around alongside the
function, invisibly. When you call the function, it has implicit access to its
scope provided by this closure.

Parts of Syntax and Scope Chapter 9

[266]

Consider the following function (fn), which returns another function. It has its own scope,
in which we declare the coolNumber variable:

function fn() {
 let coolNumber = 1;
 return function() {
 console.log(`
 I have access to ${coolNumber}
 wherever and whenever I am called
 `);
 };
}

The inner function, which we return, has access to the coolNumber variable, as we would
expect. When we call fn(), its scope is effectively kept alive so that, when we eventually
call the inner function, it is still able to access coolNumber.

The following is another example, where we're making use of the continued access to the
retained scope (that is, the closure) by reassigning and returning the local variable
whenever our inner function is called:

function valueIncrementer() {
 let currentValue = 0;
 return function() {
 return currentValue++;
 };
}

const increment = valueIncrementer();
increment(); // => 0
increment(); // => 1
increment(); // => 2

The concept of closures is often over-complicated, so at the risk of doing that, I'll state
things quite simply. A closure is not an odd thing, really: it is a natural extension of how we
should expect a scope to work. All functions have access to a given scope, so it shouldn't
matter how we then pass around these functions after their initial definition. They will
continue to have access to that same scope, and are free to access or mutate variables within
that scope as they see fit. A function is always anchored to the place it was originally
defined and so whether it is called immediately or in a thousand minutes' time, it will have
access to the same scope (that is, the same set of lexical environments).

Parts of Syntax and Scope Chapter 9

[267]

Summary
In this chapter, we continued to explore the JavaScript language, zooming out from
previous chapters to consider larger pieces of syntax, such as expressions, statements, and
blocks. These are programmatic scaffolding components in which we can place the types
and operations we've previously learned about. We also covered the complicated
mechanisms of scopes, hoisting, and closures. Understanding how these concepts all work
together is vital to understanding other people's JavaScript programs and constructing your
own.

In the next chapter, we explore how to control flow within JavaScript. This'll allow us to
weave together expressions and statements into larger bodies of logic in a clean way. We
will then explore the art of abstraction design by learning about design patterns. Though
the process of learning these topics individually may appear arduous, by the end of the
book you'll have a thorough and powerful understanding of JavaScript that'll enable you to
pay less attention to the oddities of the language and more attention to the cleanliness of
your code.

10
Control Flow

This is the final chapter of our exploration into the syntax of JavaScript. We have so far
covered its more atomic components its many types, operators, declarations, and
statements. Gaining fluency in these is crucial to working effectively with the language at a
foundational level and allows us now to take a step back and consider a larger concern:
controlling a program's flow. We'll combine all of the syntax we've picked up into clean
and understandable programs.

In this chapter, we will cover the following topics:

What is control flow?
Imperative versus declarative programming
The movement of control
Statements of control flow
Handling cyclomatic complexity
Asynchronous control flow

What is control flow?
Control flow refers to the order in which expressions and statements (and entire blocks of
code) will run. Programming is, in part, the art of controlling flow. By writing code, we are
specifying where control resides at any single moment.

At a granular level, the order of execution is dictated by the individual operators we use in
our expressions. We explored the precedence and associativity of operators in the last
chapter, discovering that, even if you have a series of operators, one after another, the exact
order of their execution is defined by the individual operators' precedence and
associativities so that, in the expression, 1 + 2 * 3, the 2 * 3 operation will occur before
the addition.

Control Flow Chapter 10

[269]

Outside expressions, on the statement level, we control flow in the following ways:

We can do so by ordering our statements in the order we wish them to occur.
We can do so by using conditional or iterative language constructs, including the
following:

switch() statements
if() statements
for() statements
while() statements
do{...} while() statements

We can do so by invoking and then returning or yielding from functions or
generators (yielding and returning are both ways of giving back control to the
caller).

It's easiest to imagine the control flow globally as a type of cursor or finger that is always
pointing to a specific expression or statement of code. When a program is executing, the
control flow will go down, line by line, until it encounters a piece of syntax that will
redirect control to another piece of code. If it encounters an invocation of a function, then
that function will be executed in the same manner; the control will be with each consecutive
line within the function until it is returned to the caller of the function via
a return statement. As control traverses down through a program, each language construct
it encounters will be given control over the execution until they each complete. Consider
the following simple piece of code:

let basket = [];
for (let i = 0; i < 3; i++) {
 basket.push(
 makeEgg()
);
}

The flow of control that is taken in the preceding code is as follows:

We start with let basket = [];1.
The for loop begins: let i = 02.
Check i < 3 (true!):3.

Run makeEgg()1.
Push result via basket.push(...)2.
i++ (i is now 1)3.

Control Flow Chapter 10

[270]

Check i < 3 (true!):1.
Run makeEgg()1.
Push the result via basket.push(...)2.
i++ (i is now 2)3.

Check i < 3 (true!):2.
Run makeEgg()1.
Push result via basket.push(...)2.
i++ (i is now 3)3.

Check i < 3 (false!).3.
End of Program4.

Even for quite a simple program such as this, the flow can be quite complicated and
lengthy. For the benefit of our fellow programmers, it makes sense to try to reduce this
complexity whenever possible. The way to accomplish this is via abstraction. Abstracting
something won't eliminate that complexity, but it will hide it so that programmers don't
need to concern themselves with it. Therefore, before delving into the specific language
constructs of control flow in JavaScript, we'll be exploring how these concepts of control
flow and abstraction interrelate via the two opposing approaches
of imperative and declarative programming.

Imperative versus declarative programming
Imperative programming concerns itself with how something is accomplished, while
declarative programming concerns itself with what we want accomplished. It's difficult to
see the difference between these so it's best to illustrate them with a simple program:

function getUnpaidInvoices(invoiceProvider) {
 const unpaidInvoices = [];
 const invoices = invoiceProvider.getInvoices();
 for (var i = 0; i < invoices.length; i++) {
 if (!invoices[i].isPaid) {
 unpaidInvoices.push(invoices[i]);
 }
 }
 return unpaidInvoices;
}

Control Flow Chapter 10

[271]

This function's problem domain would be: getting unpaid invoices. That is the task the
function has and it is what we want to achieve within the function. This particular function,
however, concerns itself a lot with how to achieve its task:

It initializes an empty array
It initializes a counter
It checks that counter (multiple times)
It increments that counter (multiple times)

These and other elements of our function are not at all related to the problem domain of
getting unpaid invoices. Instead, they are the rather annoying implementation details that we
must go through to get our desired output. Functions like this are
called imperative because they are mostly concerned with how.

While the imperative form of programming busies itself with procedural low-level steps
involved in a task, the declarative form of programming uses abstractions to avoid the use of
direct control flow, preferring to express things only in terms of the problem domain itself.
The following is a more declarative version of our getUnpaidInvoices function:

function getUnpaidInvoices(invoiceProvider) {
 return invoiceProvider.getInvoices().filter(invoice => {
 return !invoice.isPaid;
 });
}

Here, we are delegating to Array#filter so it handles the specifics of initializing a new
array, iteration, and conditional checking. We have freed ourselves from the complexity of
conventional control flow by using an abstraction.

Declarative patterns such as this have become the staple of modern JavaScript. They allow
you to express the logic you desire at the level of your problem domain, instead of having
to worry about lower layers of abstraction such as how to iterate. It's important to see that
both declarative and imperative approaches are not completely distinct. They are at either
end of a spectrum. On the declarative side of the spectrum, you are operating at a higher
level of abstraction, and are hence not exposed to the implementation details that you
would be without such abstraction. On the imperative side of the spectrum, you are
operating at a lower level of abstraction, utilizing lower-level imperative constructs to tell
the machine what you want to accomplish:

Control Flow Chapter 10

[272]

Both of these approaches have implications for our control flow. The more imperative
approach directly states that it will iterate once through the array and then conditionally
push to the output array. The more declarative approach does not make any demands
about how the array is iterated through. Naturally, of course, we know that the native
Array#filter and Array#map methods will independently iterate through their input
arrays, but that is not something we are specifying. All we are specifying is the condition on
which our data should be filtered and mapped. How the data is iterated through is
completely the concern of the Array#filter and Array#map abstractions.

The benefit of a more declarative approach is that it can increase clarity for
the human reader and enable you to more efficiently model complex
problem domains. Since you're not having to worry about how things are
occurring, your mind is left free to purely concern itself with what you
wish to achieve.

Imagine we're given of task of conditionally executing a specific piece of code but only if a
certain feature is enabled. In our mind, this is how it should work:

if (feature.isEnabled) {
 // Do the task.
}

This is the code we want to write, but we later find out that things are not so simple. For
starters, there is no isEnabled property for us to use on the feature object. There is,
however, a flags array property, which when fully disabled will
include Feature.DISABLED_FLAG:

// A feature that is disabled:
feature.flags; // => [Feature.DISABLED_FLAG]

Control Flow Chapter 10

[273]

That seems simple enough. But then we discover that, even if the feature does not have this
flag and so seems enabled, we also need to check that the time right now aligns with a set of
times stored in feature.enabledTimeSlots. If the current time is not in one of the
enabled time slots, then we must conclude that the feature is disabled, regardless of
whether it has the flag.

This is starting to become quite complicated. In addition to checking for the disabled flag,
we'll need to go through these time slots to discover whether the feature is currently
enabled based on the current time. So, our simple if statement has very quickly become an
unwieldy mess, with several layers of control flow:

let featureIsEnabled = true;

for (let i = 0; i < feature.flags.length; i++) {
 if (feature.flags[i] === Feature.DISABLED_FLAG) {
 featureIsEnabled = false;
 break;
 }
}

if (!featureIsEnabled) {
 for (let i = 0; i < feature.enabledTimeSlots.length; i++) {
 if (feature.enabledTimeSlots[i].isNow()) {
 featureIsEnabled = true;
 break;
 }
 }
}

if (featureIsEnabled) {
 // Do the task.
}

This is undesirably complex code. It's very far away from the original declarative code we
wanted to write. To understand this code, a fellow programmer will have to maintain the
state of featureIsEnabled in their head while scanning through each of the individual
constructs. This is a mentally burdensome piece of code to navigate through and is,
therefore, more liable to misunderstandings, bugs, and general unreliability.

The key question we must now ask ourselves is the following: what would it take for us to
abstract away all of these nested layers of control flow away so that we can have our
simple if statement back?

Control Flow Chapter 10

[274]

We eventually decide to place all of this logic in a newly created isEnabled method within
the Feature class—but not only that! We decide to abstract the logic further, by delegating
to two internal methods, _hasDisabledFlag and _isEnabledTimeSlotNow. And these
methods themselves delegate their iteration logic to array
methods, includes(...) and filter(...):

class Feature {
 // (Other methods of the Feature class here,..)

 _hasDisabledFlag() {
 return this.flags.includes(Feature.DISABLED_FLAG);
 }

 _isEnabledTimeSlotNow() {
 return this.enabledTimeSlots.filter(ts => ts.isNow()).length;
 }

 isEnabled() {
 return !this._isDisabledFlag() && this._isEnabledTimeSlotNow();
 }
}

These very small declarative additions to the Feature class enable us to write the
declarative code we were originally aiming for:

if (feature.isEnabled()) {
 // Do the task.
}

This has not only been an exercise in simple abstraction. This has been an exercise in
reducing the layers of control flow. We've avoided the need to use nested layers of
for if and for blocks, reducing the cognitive burden faced by ourselves and our fellow
programmers, and fulfilling the task we originally set out to accomplish in the cleanest way
possible.

By carefully refactoring and abstracting our original mess of control flow we have, quite
oddly, ended up with a set of code that includes very few traditional control flow
statements (if, for, switch, and so on). This doesn't mean our code is without control
flow; rather, it means that the control flow is either minimized or hidden away under layers
of abstractions. When using the native control flow constructs of the JavaScript language, it
is important to remember that they are not your only tool with which to express the flow of
a program; you can redirect and split complicated logic into abstractions that each handle a
very specific part of your program's flow.

Control Flow Chapter 10

[275]

Now that we've got a solid foundational understanding of what control flow is and how it
melds with what we know about abstractions, we can go through each of JavaScript's
individual control flow mechanisms, highlighting challenges and potential gotchas.

The movement of control
In JavaScript, there are several ways that control can be moved from one piece of code to
another. Generally, code will be evaluated from left-to-right and top-to-bottom until it reaches
any of the following situations:

Invoking (invocation of a function by fn(), fn`` or new fn())
Returning (returning from a function via either implicit or explicit return)
Yielding (yielding from a generator via yield)
Breaking (breaking from a loop or switch via break)
Continuing (continuing an iteration via continue)
Throwing (throwing an exception via throw)

Invocation
Invocation occurs, in its most simple form, by explicitly calling a function. We do this by
attaching calling parentheses ((...)) to a value we know to be a function. This value on
the left side of (...) can be a direct reference to a variable or property that holds a
function or any expression that evaluates to a function:

someFunction();
(function(){})();
someObject.someMethod();
[function(){}][0]();

To construct instances, as we've explored, you can use the new operator. This is also a type
of invocation although, in the case of zero arguments, it doesn't technically require calling
parentheses:

function MyConstructor() {}

// Both equivalent:
new MyConstructor();
new MyConstructor;

Control Flow Chapter 10

[276]

The exact syntax of evaluation before the calling parentheses (on the left side of (...)) is
not important as long as it evaluates to a function. If it does not, then you will receive
TypeError:

1(); // ! TypeError: 1 is not a function
[](); // ! TypeError: [] is not a function
'wat'(); // ! TypeError: "wat" is not a function

When a function is called, JavaScript will create a new Lexical Environment (a scope) in
which that function will be evaluated, and the function will become the current execution
context, shifting control from the current area of code to the function's code. This should not
be too unintuitive. It makes sense that, in the code, foo();, baz();, and foo() will be
given control and will run to completion before baz() is then given control.

A function will return control to you in the following ways:

By returning (implicitly or via an explicit return statement)
By throwing (implicitly due to SyntaxError, TypeError, and so on or via an
explicit throw statement)
By yielding (in the case of a generator)

Invocation can also occur indirectly, via JavaScript's internal mechanisms. For example, in
the case of coercion, as explored in the last chapter, methods such
as valueOf, toString, or Symbol.toPrimitive may be called in various scenarios.
Additionally, JavaScript enables you to define setters and getters so that your custom
functionality is activated whenever a given property is accessed or assigned to:

const person = {
 set name(name) {
 console.log('You are trying to set the name to', name);
 }
};

person.name = 'Leo';
// Logs: "You are trying to set the name to Leo"

By assigning to the name property here, we are effectively invoking a function, which itself
may then do all manner of things, potentially invoking other functions itself. You can
imagine how the control flow of a given program can become potentially incomprehensible
when there are many implicit means of invocation such as this. Such implicit mechanisms
do have their advantages, but if too much of our problem domain's logic is embedded
within such places, then it's less plainly visible to our fellow programmers and hence more
likely to cause confusion.

Control Flow Chapter 10

[277]

Returning
Returning is a shift of control from a function to its caller. It is achieved either via an
explicit return statement within the function itself or implicitly when the function runs to
completion:

function sayHiToMe(name) {

 if (name) {
 return `Hi ${name}`;
 }

 // In the case of a truthy `name` this code is never arrived at
 // because `return` exists on a previous line:
 throw 'You do not have a name! :(';

}

sayHiToMe('James'); // => "Hi James"

Here, you'll notice that we don't bother placing the implied else condition of a falsy name
in its own else block (else {...}) as this would be unnecessary. Because we return when
the name is truthy, any code following that return statement will therefore only run in the
implied else condition. It's quite common to see such patterns in functions that carry out
preemptive input checks:

function findHighestMountain(mountains) {

 if (!mountains || !mountains.length) {
 return null;
 }

 if (mountains.length === 1) {
 return mountains[0];
 }

 // Do the actual work of finding the
 // highest mountain here...
}

As we see here, returning is not only used to return control to the caller but also for its side-
effect: avoiding work that exists on lines below itself in its function. This is often termed
returning early and can significantly help to reduce the overall complexity of a function.

Control Flow Chapter 10

[278]

Yielding
Yielding is a shift of control between a generator and its caller. It is achieved by
the yield expression, which can optionally designate a value to its right side (the yielded
value). It is only valid to use a yield statement within a generator function:

function* makeSomeNumbers() {
 yield 645;
 yield 422;
 yield 789;
}

const iterable = makeSomeNumbers();
iterable.next(); // => {value: 645, done: false}
iterable.next(); // => {value: 422, done: false}
iterable.next(); // => {value: 789, done: false}

If you yield without a value (yield;) then the result will be the same as
yielding undefined.

Yielding will force any subsequent calls to the generator function to continue evaluation
from the point of yield (as if the yield hadn't occurred). Yielding can be thought of
as pausing a function with the prospect of coming back to it later. We can see this in action if
we log which part of our generator runs during consecutive calls:

function* myGenerator() {
 console.log('Chunk A');
 yield;
 console.log('Chunk B');
 yield;
}

const iterable = myGenerator();

console.log('Calling first time');
iterable.next();
console.log('Done calling first time');

console.log('Calling second time');
iterable.next();
console.log('Done calling second time');

This will log the following:

"Calling first time"

"Chunk A"

Control Flow Chapter 10

[279]

"Done calling first time"

"Calling second time"

"Chunk B"

"Done calling second time"

It is also possible to return from a generator function with a regular return; statement.
This is the same as yielding for the final time. That is, no further code will ever be run
within that generator.

Yielding to a yield
Yielding is not necessarily a shift of control in just one direction. You can use a generator as
a data consumer or observer. In such scenarios, when a caller requests the next yielded value
by calling iterable.next(), it can optionally pass an argument to this next() method.
Whatever value is passed will then cause the yield expression within the generator to
evaluate to that value.

This is more easily explained with an example. Here, we have created a generator that
consumes numbers and yields the sum of all numbers previously consumed:

function* createAdder() {
 let n = 0;
 while (true) n += yield n;
}

const adder = createAdder();
adder.next(); // Initialize (kick things off!)

adder.next(100).value; // => 100
adder.next(100).value; // => 200
adder.next(150).value; // => 350

Here, we are using the return value of our yield expression (yield n) and then adding it
to the existing value of n on each run of the generator. We need to call next() once initially
to kick things off as, before this, the n += yield n expression has not been run and is
hence is not waiting for a next() call yet.

Using generators as consumers does not have many use cases and can be quite an awkward
pattern to employ since we must use the designated next() method to pass in data. It is,
however, useful to know about the flexibility of the yield expression since you may
encounter it in the wild.

Control Flow Chapter 10

[280]

Complexity of yielding
For fellow programmers, comprehending the flow of control within generators can be
complicated and counter-intuitive since it involves a lot of back-and-forth between the caller
and the generator. Knowing what exact code is running at any specific point may be
difficult to determine and so it is advisable to keep your generators short and ensure that
they yield consistently—in other words, don't have too many different pathways of
yielding within your generators and generally attempt to keep cyclomatic complexity quite
low (you can read more about this if you skip ahead to the Handling cyclomatic
complexity section).

Breaking
Breaking is a shift of control from within the current for, while, switch, or labeled
statement to the code following the statement. It effectively terminates the statement,
preventing any following code from being executed.

In the context of iteration, whether or not to continue or break from iteration is usually
determined by ConditionExpression within the construct itself (for example, counter <
array.length), or by the length of the data structure in the case of for..in and for..of.
However, it may still be necessary, at times, to break out of the iteration early.

For example, if you are looking for a specific item within a data structure (a needle-in-a-
haystack situation), then it would make sense to stop looking once the item is found. We
achieve that by breaking:

for (let i = 0; i < array.length; i++) {
 if (myCriteriaIsMet(array[i]) {
 happyPath();
 break;
 }
}

Breaking from an iteration will immediately halt and exit the iteration, meaning any
remaining code within the containing IterationBody will not be run. The code
immediately following IterationBody will then run.

Control Flow Chapter 10

[281]

The break statement is also used to break out from switch statements, typically when you
have executed the relevant case statement. As we will discuss later in this chapter,
the switch statement will transfer control to the case statement that is considered strictly
equal (===) to the value passed to switch(...), and will then run all code following
that case statement until an explicit break; (or return;, yield;, or throw;) occurs:

switch (2) {
 case 1: console.log(1);
 case 2: console.log(2);
 case 3: console.log(3);
 case 4: console.log(4); break;
 case 5: console.log(5);
}

// Logs: 2, 3, 4

Here, we see that a value of 2 shifts control to the matching case 2, and then all of the
following code within the switch's body will run naturally until a break; statement is
encountered. Hence, we only see logs for 2, 3, and 4. A log for 1 is avoided as case 1 does
not match the value, 2, and a log for 5 is avoided as break; occurs before it.

When case within switch does not break, it is called fallthrough. This
common technique used in switch statements is useful when you want to
carry out a single action or cascade of actions based on more than one
matching condition (we will cover this concept more in the The switch
statement se).

To the right side of the break keyword there may be a label that refers to
the switch, for, or while statement. If you don't supply a label, then JavaScript will
assume you are referring to the current containing iteration or switch construct. This is
only useful when you have two or more breakable constructs within each other, for
example, an iteration within an iteration. Observe here how we've labeled our outer for
loop with the outerLoop label, enabling us to break out of it from within the inner for
loop:

outerLoop: for (let obj in objects) {
 for (let key in obj) {
 if (/* some condition */) {
 break outerLoop;
 }
 }
}

Control Flow Chapter 10

[282]

You can, in fact, break out of any labeled statement (even if it is outside of an iteration
or switch construct) but you must explicitly provide the label:

specificWork: {
 doSomeSpecificWork();
 if (weAreFinished) {
 break specificWork;
 // immediately exits the `specificWork: {...}` block
 }
 doOtherWork();
}

This is very rarely applicable but is nonetheless worth knowing about in case you ever run
into such code.

One last thing to note on breaking out of iterations or switch statements is that, although we
typically do so by using an explicit break; statement, it is something that can also
effectively occur via other mechanisms of moving control such
as yielding, returning, or throwing. It's quite common, for example, to see an iteration that
uses return; to break out not only of itself but also of the containing function.

Continuing
Continuing is a shift of control from the current statement to the potential start of the next
iteration. It is achieved via a continue statement.

The continue statement is valid in all iteration constructs,
including for, while, do...while, for...in, and for...of.

Here is an example of continuing conditionally, so that the body of the iteration does not
execute for a specific item but the iteration still continues to progress:

const numbers = [1, 2, 3];

for (const n of numbers) {
 if (n === 2) continue;
 console.log(n);
}

// Logs: 1, 3

Control Flow Chapter 10

[283]

Continuing skips all of the code following continue in the current iteration and then moves
onto whatever would naturally occur next.

Similar to the break statement, to the right side of the continue keyword can optionally
be a label that indicates which iteration construct should be continued. If you don't supply
it, then JavaScript will assume you are referring to the current iteration construct. If you
have two or more iteration constructs nested within each other, then it may be necessary to
use an explicit label:

objectsIteration: for (let obj in objects) {
 for (let key in obj) {
 if (/* some condition */) {
 continue objectsIteration;
 }
 }
}

The continue statement will only work in our native looping constructs.
If we wish to continue in an abstracted looping construct such
as Array#forEach, then we'll typically want to use a return statement
instead (to return from the callback and hence continue the iteration).

Since continuing is a movement of control, we want to remain cautious about how clearly
we are communicating our intent. If we have several layers of loops or several continue or
break statements, it can burden the reader with an unnecessary level of complexity.

Throwing
Throwing is a shift of control from the current statement to the nearest
containing try...catch statement on the call stack. If no such try...catch statement
exists, then the execution of the program will terminate entirely. Throwing is
conventionally used to raise exceptions when specific requirements or expectations are not
met:

function nameToUpperCase(name) {
 if (typeof name !== 'string') {
 throw new TypeError('Name should be a string');
 }
 return name.toUpperCase();
}

Control Flow Chapter 10

[284]

To catch this error, we would need to have a try...catch block somewhere on the call-
stack, wrapping the call to the nameToUpperCase function or the call to the function that
calls it (and so on):

let theUpperCaseName;
try {
 theUpperCaseName = nameToUpperCase(null);
} catch(e) {
 e.message; // => "Name should be a string"
}

It is a best practice to throw objects that are instances of the natively provided
generic Error constructor. There are several native sub-classed constructors of Error:

SyntaxError: This indicates that a parsing error has occurred
TypeError: This indicates an unsuccessful operation when none of the other
Error objects are appropriate
ReferenceError: This indicates that an invalid reference value has been
detected
RangeError: This indicates a value that is not in the set or range of allowable
values
URIError: This indicates that a URI handling function was used in a way that is
incompatible with its definition

JavaScript will naturally raise such exceptions to you if you misuse native APIs or produce
invalid syntax, but you can also use these constructors yourself to provide more
semantically meaningful errors to your fellow programmers. If none of the preceding are
suitable, then you can directly use Error or extend from it to produce your own
specialized instance, as follows:

class NetworkError extends Error {}

async function makeDataRequest() {
 try {
 const response = await fetch('/data');
 } catch(e) {
 throw NetworkError('Cannot fetch data');
 }
 // ... (process response) ...
}

Control Flow Chapter 10

[285]

All Error instances will contain a name and message property. Depending on the
JavaScript implementation, there may also be additional properties related to the stack trace
of the error. In both the V8 JavaScript engine (used in Chromium and Node.js) and in
SpiderMonkey (Mozilla), there is a stack property that gives us serialized call stack
information:

try {
 throw new Error;
} catch(e) {
 e.stack; // => "Error\n at filename.js:2:9"
}

There may be unique situations where you wish to throw a value that is not
an Error instance, and technically, this is perfectly legal, but it is rarely useful to do so. It's
best to only throw in the case of an actual error, and in that case, it is best to use an
appropriate Error object to represent the error.

Statements of control flow
Now that we've cemented our understanding of how control is moved at a high level, we
can delve further into the specific statements and mechanisms that JavaScript gives us to
control flow. We'll combine an exploration of the syntax of each statement with some best
practices and pitfalls to avoid.

The if statement
The if statement is composed of the if keyword followed by a parenthesized expression
and then an additional statement:

if (ConditionExpression) Statement

ConditionExpression can be of limitless complexity as long as it is truly an expression:

if (true) {}
if (1 || 2 || 3) {}
if ([1, 2, 3].filter(n => n > 2).length > 0) {}

Control Flow Chapter 10

[286]

The statement following the parenthesized expression can be a single-line statement or
a block and designates the code that should be run if the ConditionExpression evaluates
to a truthy value:

// These are equivalent
if (true) { doBaz(); }
if (true) doBaz();

The value you pass as ConditionExpression is compared to a Boolean to determine its
truthiness. We've already been aptly introduced to the concepts of truthiness and falsiness
in Chapter 6, Primitive and Built-In Types, but just in case you're rusty: there are only seven
falsy values in JavaScript, and as such, only seven possible values that you can pass to
an if statement that won't satisfy it:

if (false) {}
if (null) {}
if (undefined) {}
if (0n) {}
if (0) {}
if ('') {}
if (NaN) {}

When an if statement is not satisfied, it will run an optional else statement, which you
may specify immediately following your if statement. Just as with if, you may use
a block here as well:

if (isLegalDrinkingAge) drink(); else leave();

// Equivalent, with Blocks:
if (isLegalDrinkingAge) {
 drink();
} else {
 leave();
}

You can effectively chain together if/else statements as follows:

if (number > 5) {
 // For numbers larger than five
} else if (number < 3) {
 // For numbers less than three
} else {
 // For everything else
}

Control Flow Chapter 10

[287]

Syntactically, it's important to understand that this isn't a construct of its own (there is no
such thing as an if/else/if/else construct); it is merely a regular if statement, followed
by an else statement that itself contains its own if/else duo. Therefore, it is more
accurate, perhaps, to see it as follows:

if (number > 5) {
 // For numbers larger than five
} else {
 if (number < 3) {
 // For numbers less than three
 } else {
 // For everything else
 }
}

An if statement is best suited for when there are one or two possible outcomes of a
condition. If there are more possible outcomes, then you may be better off using a switch
statement. Long if/else chains can get unwieldy. See the Handling cyclomatic
complexity section later in this chapter to explore other novel ways of handling complex
conditional logic.

The for statement
The for statement is used to iterate through a set, typically, an array or any iterable
structure. It comes in four broad varieties:

Conventional for: This includes the following:
Syntax: for (initializer; condition; incrementer)
{...}

Usage: Typically used to iterate in a custom fashion through an
indexed structure

For...in: This includes the following:
Syntax: for (let item in object) {...}
Usage: Used to iterate through the keys of any object (typically
used on plain objects)

For...of: This includes the following:
Syntax: for (let item of iterable) {...}
Usage: Used to iterate over an iterable (typically array-like)
structure

Control Flow Chapter 10

[288]

The type of for construct you'll employ will depend on what exactly you wish to iterate
over. For straightforward indexed and array-like structures, for example,
the for...of construct will be most useful. We'll go over each of these constructs to
explore use cases and potential challenges.

Conventional for
The conventional for statement is used to iterate over all manner of data structures or
conceptual looping scenarios. It includes three expressions, parenthesized and separated by
semicolons, and a statement at the end, which is considered the body of the iteration:

for (
 InitializerExpression;
 ConditionExpression;
 UpdateExpression
) IterationBody

The purpose of each part is as follows:

The InitializerExpression initializes the iteration; this will be evaluated first
and only once. This can be any statement (it usually includes
a let or var assignment, but doesn't need to).
The ConditionExpression checks whether the iteration may continue; this will
be evaluated and coerced to a Boolean (as if via Boolean(...)) before each
iteration to determine whether the next iteration will occur. This can be any
expression, though it is usually used to check whether the current index is less
than some upper bound (usually the length of the data structure that you are
iterating through).
The UpdateExpression finalizes each iteration, ready for the next iteration. This
will be evaluated at the end of each iteration. This can be any statement though is
most idiomatically used to increment or decrement the current index.
The IterationBody contains the actual iteration logic—the code that will be
evaluated on every iteration. This is typically a block but can be a single-line
statement.

Using the conventional for statement to loop over an array would look like this:

for (let i = 0; i < array.length; i++) {
 array[i]; // => (Each `array` item)
}

Control Flow Chapter 10

[289]

It is preferable to use for...of if you're just iterating over a regular array or iterable
structure. However, if you need to iterate over a structure indexed unconventionally, then
it may be appropriate to use the conventional for loop.

An example of an unconventionally indexed structure is the pixel data of
a <canvas> element, which forms an array containing the RGBA (Red, Green, Blue, and
Alpha) values of every pixel consecutively, like so:

[r, g, b, a, r, g, b, a, ...]

Since each individual pixel occupies four elements of the array, we would need to iterate
over it four indexes at a time. The conventional for loop is perfectly suited to this:

const pixelData = canvas.getContext('2d').getImageData(0, 0, 100,
100).data;

for (let i = 0; i < pixelData.length; i += 4) {
 let red = pixelData[i];
 let blue = pixelData[i + 1];
 let green = pixelData[i + 2];
 let alpha = pixelData[i + 3];
 // (do something with RGBA)
}

The conventional for statement is a well understood and idiomatic piece of syntax. It is
best to ensure that you use each of its parts for its purpose. It is entirely possible (though
unadvisable) to exploit its syntax by including the actual logic of your iteration in the
parenthesized portion of the construct, but this and other misuses can be quite hard to
parse for humans:

var copy = [];
for (
 let i = 0;
 i < array.length;
 copy[i] = array[i++]
);

UpdateExpression here includes the copy[i] = array[i++] expression, which will
copy across the element of the array at the current index and will then increment the index.
The postfix ++ operator ensures that the previous value of its operand will be returned,
guaranteeing that the index accessed on copy[i] is always equal to array[i++]. This is a
clever but rather obscure syntax. It would have been far clearer to use the idiomatic for
structure, which places the iteration logic in its own statement after for(...):

for (
 let i = 0;

Control Flow Chapter 10

[290]

 i < array.length;
 i++
) {
 copy[i] = array[i];
}

This is a more familiar and comprehensible piece of code for most programmers. It is more
verbose, and perhaps not as fun to write, but in the end, as explored in the initial chapters
of this book, we are most interested in writing code that communicates its intent clearly.

Naturally, this fictional scenario, copying the contents of one array to
another array, would be better solved by using the Array#slice method
(array.slice()) but we used it here as an illustration.

for...in
The for...in construct is used to iterate over an object's set of enumerable property
names. It has the following syntax:

for (LeftSideAssignment in Object) IterationBody

The various parts have the following constraints:

LeftSideAssignment can be anything that would be valid on the left side of an
assignment expression and is evaluated within the scope of IterationBody on
every new iteration
Object can be any expression that evaluates to (or can be coerced to) an
object—in other words, anything except null or undefined
IterationBody is any single-line or block statement

The for...in construct is usually used to iterate through a plain object's properties:

const city = { name: 'London', population: 8136000 };
for (const key in city) {
 console.log(key);
}
// Logs: "name", "population"

Control Flow Chapter 10

[291]

You can see that we're using const key here to initialize our key variable on each
iteration. This is the preferred declaration to use unless you have a specific need for the
mutable behavior of let or the different scoping behavior of var. Naturally, all of these
declarations are perfectly valid to use, in addition to using no declaration whatsoever:

for (let key in obj) {}
for (var key in obj) {}
for (const key in obj) {}
for (key in obj) {}

A new block scope is created for each iteration. When you use either
a let or const declaration, it will be scoped to that iteration, while a variable declared
via var will, as we know, be scoped to the nearest execution context's scope (function scope).
Using no declaration whatsoever is fine, but you should ensure that you have already
initialized that identifier beforehand:

let key;
for (key in obj) {}

Since anything that would be valid on the left side of an assignment expression is valid on
the left side of in, we can also place a property reference here, as in the following example:

let foo = {};
for (foo.key in obj) {}

This would result in foo.key being assigned each key of obj as the iteration progresses.
This would be quite an odd thing to do, but will nonetheless work correctly.

Now that we have the syntax out of the way, we can discuss the behavior and use cases
of for..in. It is, as mentioned, useful in iterating through the properties of an object. By
default, this will include all properties inherited from the object's [[Prototype]] chain as
well, but only if they are enumerable:

const objectA = { isFromObjectA: true };
const objectB = { isFromObjectB: true };

Object.setPrototypeOf(objectB, objectA);

for (const prop in objectB) {
 console.log(prop);
}

// Logs: "isFromObjectB", "isFromObjectA"

Control Flow Chapter 10

[292]

As you can see, properties on the object itself are iterated over before those from inherited
objects. The order of iteration, however, should not be depended upon as this may differ
between implementations. If you're looking to iterate through a set of keys in a specific
order, it may be better instead to gather the keys via Object.keys(obj) and then iterate
over that as an array.

Since for...in will naturally iterate over inherited properties, it's conventional to place an
additional check within the iteration body to avoid these properties:

for (const key in obj) {
 if (obj.hasOwnProperty(key)) {
 // `key` is a non-inherited (direct) property of `obj`
 }
}

Where you have an iterable object (such as an array), it is advisable to
use for...of instead, which is more performant and idiomatic for such situations.

for...of
The for...of construct is used to iterate over an iterable object. Natively provided iterable
objects include String, Array, TypedArray, Map, and Set. Syntactically, for...of shares
the characteristics of for...in:

for (LeftSideAssignment in IterableObject) IterationBody

The purpose of each part is as follows:

LeftSideAssignment can be anything that would be valid on the left side of an
assignment expression and is evaluated within the scope of IterationBody on
every new iteration
IterableObject can be any expression that evaluates to an iterable object—in
other words, anything that implements [Symbol.iterator] as a method
IterationBody is any single-line or block statement

An idiomatic for...of usage may look like this:

const array = [1, 2, 3];

for (const i of array) {
 console.log(i);
}

// Logs: 1, 2, 3

Control Flow Chapter 10

[293]

Since its introduction into the language, for...of has become the most
idiomatic way to loop over arrays, replacing the previously idiomatic for
(var i = 0; i < array.length; i++) {...} pattern.

The scoping behavior of let, var, and const is identical to that described in the last
section on for...in. It is advisable to use const as it will initialize a fresh and immutable
variable for each iteration. Using let is not awful but, unless you have a specific reason to
need to mutate the variable yourself within IterationBody, you'll be better off
using const.

The while statement
The while statement is used to run a piece of code until some condition stops being met. It
has the following syntax:

while (ConditionExpression) IterationBody

The purpose of each part is as follows:

ConditionExpression is evaluated to determine
whether IterationBody should run. If it evaluates to true, then
the IterationBody portion will run. ConditionExpression will then be re-
evaluated and so on. The cycle only stops
when ConditionExpression evaluates to false.
IterationBody can be either a single-line or block statement and will be run as
many times as ConditionExpression evaluates to true.

It is rare to use while for straightforward iteration because there are more suitable
constructs for this (for example, for...of), but if we wanted to, it might look something
like the following:

const array = ['a', 'b', 'c'];

let i = -1;
while (++i < array.length) {
 console.log(array[i]);
}

// Logs: 'a', 'b', 'c'

Control Flow Chapter 10

[294]

Since we are initializing i to -1 and are using the prefix increment operator (++i),
ConditionExpression will evaluate to 0 < array.length, 1 < array.length, 2 <
array.length, and 3 < array.length. Naturally, the last check will fail as 3 is not less
than array.length, meaning that the while statement will stop running
its IterationBody. This means Body will only 3 times in total.

It's common to use while when the limit of iteration is, as yet, unknown or computed in a
complex fashion. In such instances, it is common to see true directly passed as
ConditionExpression to while(...) and then a manual break; statement within the
iteration to force it to end:

while (true) {
 if (/* some custom condition */) {
 break;
 }
}

The while statement is also used in the context of generator functions if those generators
are intended to produce infinite outputs. For example, you may wish to create a generator
that always produces the next letter in an alphabet, and then loops round to the start of the
alphabet when it gets to z:

function *loopingAlphabet() {
 let i = 0;
 while (true) {
 yield String.fromCharCode(
 97 + (i >= 26 ? i = 0 : i++)
);
 }
}

const alphabet = loopingAlphabet();

alphabet.next(); // => { value: "a" }
alphabet.next(); // => { value: "b" }
alphabet.next(); // => { value: "c" }
// ...
alphabet.next(); // => { value: "z" }
alphabet.next(); // => { value: "a" }
alphabet.next(); // => { value: "b" }
// ...

Control Flow Chapter 10

[295]

Such infinite applications of generators are rare but they do exist and are a perfect place to
use while(...). Most other applications of while have been replaced with more succinct
and contained methods of iteration such as for...in and for...of. Nonetheless, it is
useful to know how to cleanly wield it.

The do...while statement
The do...while statement is similar to while it although guarantees an iteration before the
check is carried out. Its syntax is formed of the do keyword followed by its body and then a
typical parenthesized while expression:

do IterationBody while (ConditionExpression)

The purpose of each part is as follows:

IterationBody can be either a single-line or block statement and will be run
once initially and then as many times as ConditionExpression evaluates
to true.
ConditionExpression is evaluated to determine
whether IterationBody should run more than once. If it evaluates
to true, then the Body portion will run. ConditionExpression will then be re-
evaluated and so on. The cycle only stops
when ConditionExpression evaluates to false.

Although the behavior of the do...while statement is different from
regular while statement, its semantics and broad applications remain the same. It is most
useful in contexts where you need to always complete at least one step of an iteration
before either checking whether to continue or changing the subject of the iteration. An
example of this would be upward DOM traversal. If you have a DOM element and wish to
run certain code on it and each of its DOM ancestors, then you may wish to use a
do...while statement as follows:

do {
 // Do something with `element`
} while (element = element.parentNode);

A loop like this will execute its body once for the element value, whatever element is, and
then will evaluate the assignment expression, element = element.parentNode. This
assignment expression will evaluate to its newly assigned value, meaning that, in the case
of element.parentNode being falsy (for example, null) the do...while will halt its
iteration.

Control Flow Chapter 10

[296]

Assigning values in the ConditionExpression portion of
a while or do...while statement is relatively common although it can be obscure to
fellow programmers, so it's best to only do so if it's plainly obvious what the intent of the
code is. If the preceding code was wrapped in a function
called traverseDOMAncestors, then that would provide a helpful clue.

The switch statement
The switch statement is used to move control to a specific inner case clause that specifies
a value that matches the value passed to switch(...). It has the following syntax:

switch (SwitchExpression) SwitchBody

SwitchExpression will be evaluated once and its value compared via strict-equality to
case statements within SwitchBody. Within SwitchBody there may be one or
more case clauses and/or a default clause. The case clauses designate
CaseExpression, whose value will be compared to that of SwitchExpression, and their
syntax is as follows:

case CaseExpression:
 [other JavaScript statements or additional clauses]

The switch statement is usually used to specify a selection of two or more mutually
exclusive outcomes based on a specific value. With fewer conditions, it'd be conventional to
use an if...else construct, but to accommodate more potential conditions, it's simpler to
use switch:

function generateWelcomeMessage(language) {

 let welcomeMessage;

 switch (language) {
 case 'DE':
 welcomeMessage = 'Willkommen!';
 break;
 case 'FR':
 welcomeMessage = 'Bienvenue!';
 break;
 default:
 welcomeMessage = 'Welcome!';
 }

 return welcomeMessage;
}

Control Flow Chapter 10

[297]

generateWelcomeMessage('DE'); // => "Willkommen!"
generateWelcomeMessage('FR'); // => "Bienvenue!"
generateWelcomeMessage('EN'); // => "Welcome!"
generateWelcomeMessage(null); // => "Welcome!"

Once the switch mechanism finds the appropriate case, it will execute all code following
that case statement until the very end of the switch statement or until it encounters
a break statement. A break statement is used to break out of SwitchBody when the desired
work is accomplished.

Breaking and fallthrough
Given that switch statements are usually used to execute specific and mutually exclusive
pieces of code depending on the value, it is conventional to use break between
every case statement to ensure that only the appropriate code runs for any given value.
Sometimes, however, it is desirable to avoid breaking between cases and let
the SwitchBody code continue to run through multiple case statements and beyond.
Doing this is known as fallthrough:

switch (language) {

 case 'German':
 case 'Deutsche':
 case 'DE':
 welcomeMessage = 'Willkommen!';
 break;

 case 'French':
 case: 'Francais':
 case 'FR':
 welcomeMessage = 'Bienvenue!';
 break;

 default:
 welcomeMessage = 'Welcome!';
}

Here, you can see that we are employing fallthrough so that a language of
either 'German', 'Deutsche', or 'DE' will result in the same code
running welcomeMessage = 'Willkommen!'. And following that, we immediately break
to prevent any more of SwitchBody from running.

Control Flow Chapter 10

[298]

It's unfortunately quite easy to accidentally forget the
odd break; statement, resulting in accidental fallthrough and a very
confused programmer. To avoid this, I'd recommend using a linter that
has a rule that warns or gives an error in such cases unless given a specific
directive. (We will cover linters in more detail in Chapter 15, Tools for
Cleaner Code.)

Returning from a switch directly
When you have a switch statement residing in a function, it is sometimes best to
simply return the intended values instead of having to rely on break statements. For
example, in generateWelcomeMessage, we can simply return the welcome string. There's
no need to go through the rigamarole of initializing a variable, assigning it, and breaking
between cases:

function generateWelcomeMessage(language) {
 switch (language) {
 case 'DE':
 return 'Willkommen!';
 case 'FR':
 return 'Bienvenue!';
 default:
 return 'Welcome!';
 }
}

Returning directly, in this way, is arguably clearer than breaking within each case,
especially if each case's logic is fairly simple.

Case blocks
Usually, the code following a case or default clause will not only occupy a single line. As
such, it has become conventional to wrap these statements with a block, so that there is a
sense of containment:

switch (speed) {
 case 'slow': {
 console.log('Initiating slow speed');
 car.changeSpeedTo(speed);
 car.enableUrbanCollisionControl();
 }
 case 'fast': {
 console.log('Initiating fast speed');

Control Flow Chapter 10

[299]

 car.changeSpeedTo(speed);
 car.enableSpeedLimitWarnings();
 car.enableCruiseControlOption();
 }
 case 'regular':
 default: {
 console.log('Initiating regular speed');
 car.changeSpeedTo(speed);
 }
}

This isn't strictly necessary and doesn't change any functionality, but it does offer more
clarity to the reader of our code. It also paves the way for any block-level variables, should
we wish to introduce these later. As we know, within a block (delimited with { and }), we
can use const and let to declare variables that will be scoped only to that block:

switch (month) {
 case 'December':
 case 'January':
 case 'February': {
 const message = 'In the UK, Spring is coming soon!';
 // ...
 }
 //...
}

Here, we're able to declare specific variables that are scoped to the February case only.
This is useful if we have a large amount of logic that we'd like to isolate. At this point,
however, we should consider abstracting that logic in some other way. Lengthy switch
statements can be incredibly hard to understand.

Multivariant conditions
Often, there's a need to express more complex conditions in each case, instead of just
matching a singular value. If we pass true as SwitchExpression, then we are free to
express custom conditional logic within each CaseExpression, as long as each
CaseExpression evaluates to true when successful:

switch (true) {
 case user.role === 'admin' || user.role === 'root': {
 // ...
 break;
 }
 case user.role === 'member' && user.isActive: {
 // ...

Control Flow Chapter 10

[300]

 break;
 }
 case user.role === 'member' && user.isRecentlyInactive: {
 // ...
 break;
 }
}

This pattern allows us to express more multivariate and hybrid conditions. You may
usually feel inclined toward multiple if/else/if/else statements, but if your logic can be
expressed in a switch statement, then it may be best to opt for that. As always, you should
consider the nature of your problem domain and its logic, and seek to make an informed
decision about how you wish to implement your control flow. In some cases,
a switch statement will only end up being more confusing.

In the next section, we will cover some other approaches you can use to handle complex
and lengthy logic that doesn't suit native constructs such as switch.

Handling cyclomatic complexity
Cyclomatic complexity is a measure of how many linearly independent paths there are
through a program's code.

Consider a simple program that contains several conditional checks and function
invocations:

if (a) {
 alpha();
 if (b) bravo();
 if (c) charlie();
}
if (d) delta();

Even in this misleadingly simple piece of code, nine distinct paths can be taken. So,
depending on the values of a, b, c, and d, there are nine possible sequences of alpha,
bravo, charlie, and delta that will run:

alpha()

alpha() and bravo()
alpha(), bravo(), and charlie()
alpha(), bravo(), charlie(), and delta()
alpha(), bravo(), and delta()

Control Flow Chapter 10

[301]

alpha() and charlie()
alpha(), charlie(), and delta()
alpha() and delta()
delta()

A high level of cyclomatic complexity is undesirable. It can lead to the following:

Cognitive burden: Cyclomatically complex code can be difficult for
programmers to understand. Code with many branches is difficult to internalize
and hold in our minds and therefore harder to maintain or change.
Unpredictability: Cyclomatically complex code can be unpredictable, especially
if rare situations occur where there is, for example, an unforeseen state transition
or underlying change of data.
Fragility: Cyclomatically complex code can be fragile in the face of change.
Changing one line can have a disproportionate effect on the functionality of
many other lines.
Bugginess: Cyclomatically complex code can cause obscure bugs. If there are a
dozen or more code paths within a singular function, then it's possible for a
maintainer to not see all of them, leading to regressions.

There are tools that can quantify a code base's cyclomatic complexity. We
will cover these in Chapter 15, Tools for Cleaner Code. Knowing areas of
high cyclomatic complexity can help us to focus on those areas for
maintenance and testing.

It's frustratingly easy to end up in a situation where there are so many different conditions
and branches within a singular module that nobody can understand what's happening. In
addition to using tools to help us to identify areas of high complexity, we can use our own
judgment and intuitions. The following are some examples of complexity that we can easily
identify and avoid:

A function that has more than one if/else/if combination
An if statement that has many sub-conditions (many if statements
within if statements)
A switch statement that has many sub-conditions following each case clause
Many case clauses within a switch block (for example, over 20 would be
alarming!)

https://cdp.packtpub.com/clean_code_in_javascript/wp-admin/post.php?post=415&action=edit#post_508

Control Flow Chapter 10

[302]

These are not precise cautions but they should give you an idea of what you should watch
out for. When we find such complexity, the first thing we should do is to sit back and re-
consider our problem domain. Can we describe our logic differently? Can we form new or
different abstractions?

Let's explore an example of a piece of code with high cyclomatic complexity and consider
how we might simplify it with these questions in mind.

Simplifying conditional spaghetti
To illustrate too much cyclomatic complexity and how we should approach simplifying it,
we're going to be refactoring a piece of code that is responsible for deriving a set of ID
numbers and types from a set of licenses:

function getIDsFromLicenses(licenses) {
 const ids = [];
 for (let i = 0; i < licenses.length; i++) {
 let license = licenses[i];
 if (license.id != null) {
 if (license.id.indexOf('c') === 0) {
 let nID = Number(license.id.slice(1));
 if (nID >= 1000000) {
 ids.push({ type: 'car', digits: nID });
 } else {
 ids.push({ type: 'car_old', digits: nID });
 }
 } else if (license.id.indexOf('h') === 0) {
 ids.push({
 type: 'hgv',
 digits: Number(license.id.slice(1))
 });
 } else if (license.id.indexOf('m') === 0) {
 ids.push({
 type: 'motorcycle',
 digits: Number(license.id.slice(1))
 });
 }
 }
 }
 return ids;
}

Control Flow Chapter 10

[303]

This function accepts an array of licenses and then extracts the ID numbers of those licenses
(avoiding cases of null or undefined IDs). We determine the type of license based on
characters found within its ID. There are four types of licenses that need to be identified
and extracted:

car: These are of the c{digits} form, where digits form a number greater than
or equal to 1,000,000
car_old: These are of the c{digits} form, where digits form a number less
than 1,000,000
hgv: These are of the h{digits}
motorcycle: These are of the m{digits}

The following is an example of the input and the derived output of
the getIDsFromLicenses function:

getIDsFromLicenses([
 { name: 'Jon Smith', id: 'c32948' },
 { name: 'Marsha Brown' },
 { name: 'Leah Oak', id: 'h109' },
 { name: 'Jim Royle', id: 'c29283928' }
]);
// Outputs:
[
 {type: "car_old", digits: 32948}
 {type: "hgv", digits: 109}
 {type: "car", digits: 29283928}
]

As you may have observed, the code we've used to extract the IDs is quite cyclomatically
complex. You may consider it perfectly reasonable code, and it arguably is, but it could be
simpler still. Our function achieves its results imperatively, using up a lot of syntax to
explain how it wants to accomplish its task instead of what it wants to accomplish.

To simplify our code, it's first useful to take a fresh look at the problem domain. The task
we want to accomplish is to take an input array and, from it, derive a set of license ID types
and values. The output array will be an almost 1:1 mapping from the input array, except for
cases where licenses have a falsy id property (null, in this case). The following is an
illustration of our I/O flow:

[INPUT LICENSES] ==> (DERIVATION LOGIC) ==> [OUTPUT ID TYPES AND DIGITS]

Control Flow Chapter 10

[304]

Looked at abstractly in this way, this seems like the perfect opportunity to use Array#map.
The map method allows us to run a function on every element within an array to derive a
new array containing mapped values.

The first thing we'll want to map is the license to its id:

ids = licenses.map(license => license.id)

We'll want to handle cases where there is no id. To do this, we can apply a filter on the
derived IDs:

ids = ids.filter(id => id != null)

And, in fact, because we know that all valid IDs are truthy, we can simply do a Boolean
check by directly passing Boolean as our filter function:

ids = ids.filter(Boolean)

From this, we'll receive an array of our licenses but only those with a truthy id property.
Following this, we can consider the next transformation we wish to apply to the data. We'd
like to split the id value into its constituent parts: we need the initial character of the ID
(id.charAt(0)), and then we want to extract the remaining characters (the digits) and cast
them to the Number type (Number(id.slice(1))). We can then pass these parts to
another function, which will be responsible for extracting the correct ID fields
(type and digits) from this information:

ids = ids.map(id => getIDFields(
 id.charAt(0),
 Number(id.slice(1))
));

The getIDFields function will need to determine the type from the individual character
and digits for the ID, returning an object of the { type, digits } form:

function getIDFields(idType, digits) {
 switch (idType) {
 case 'c': return {
 type: digits >= 1000000 ? 'car' : 'car_old',
 digits
 };
 case 'h': return { type: 'hgv', digits };
 case 'm': return { type: 'motorcycle', digits };
 }
}

Control Flow Chapter 10

[305]

Since we've abstracted this part our logic away to an individual function, we can
independently observe and test its behavior:

getIDFields('c', 1000); // => { type: "car_old", digits: 1000 }
getIDFields('c', 2000000); // => { type: "car", digits: 1000 }
getIDFields('h', 1000); // => { type: "hgv", digits: 1000 }
getIDFields('i', 1000); // => { type: "motorcycle", digits: 1000 }

Tying everything together, we end up with a new implementation
of getIDsFromLicenses that looks like this:

function getIDsFromLicenses(licenses) {
 return licenses
 .map(license => license.id)
 .filter(Boolean)
 .map(id => getIDFields(
 id.charAt(0),
 Number(id.slice(1))
))
}

What we have achieved here is a significant reduction in the amount of cyclomatic
complexity that our fellow programmers will need to contend with. We are
utilizing Array#map and Array#filter to abstract away both decision-making and
iteration logic. This means we end up with an implementation that is far more declarative.

You may notice, as well, that we have extracted repeated logic and generalized it. For
example, in our initial implementation, we were implementing many calls to discover the
first character of the ID (for example, license.id.indexOf('m') === 0). Our new
implementation generalizes this by mapping to a data structure that already includes the
first character as a distinct value that we can then pass through to getIDFields to get the
relevant type and digits for that ID.

To summarize, our general refactoring approach has involved the following considerations:

We've considered the problem domain with a fresh perspective
We've considered whether there is a common functional or declarative idiom for
our I/O
We've considered whether individual logic can be abstracted away or separated

Control Flow Chapter 10

[306]

Our code is now easier to comprehend, and hence easier to maintain and debug. It'll likely
also be more reliable and stable since its individual units can be more simply tested and can
hence avoid regressions in the future. There is, naturally, the potential for a slight
performance decrease due to the increased usage of higher abstracted declarative idioms
and functions over imperative code, but this is an incredibly marginal difference and, in the
vast majority of situations, is worth implementing for the significant benefits that the
refactoring produces in terms of maintainability and reliability.

Asynchronous control flow
Most of the constructs we've looked at so far are used for synchronous code, where
statements are evaluated sequentially, with each line completing before the next one begins:

const someValue = getSomeValue();
doSomethingWithTheValue(someValue);

Code like this is straightforward. We intuitively understand that these two lines of code
will run one after the other. There is also an assumption that neither of these lines will take
very long to execute, probably taking no more than a few micro- or milliseconds.

But what happens if we wish to bind to a user Event or fetch some remote data? These are
things that take time and will only complete when some future Event occurs. In a less kind
universe, there would be no way to deal with such scenarios other than simply waiting for
them to complete and then continuing the execution of our program:

fetchSomeData();
processFetchedData();

In this unkind universe, fetchSomeData() would be a blocking function call, so named
because it would block the execution of all other code until it finally completes. This means
that we wouldn't be able to carry out any other vital tasks, and our application would
essentially be at a standstill state until the task is completed, negatively affecting the user
experience.

Thankfully, JavaScript gives us a nicer universe than this—one in which we can initialize a
task, such as fetching data, and then continue on with the rest of our program while that
task is running. Such tasks are named asynchronous because they occur and complete non-
synchronously, at a later time than now. When they do finally complete, JavaScript can
helpfully notify us of this fact, calling whatever code depends upon the completion of that
task.

Control Flow Chapter 10

[307]

The Event Loop
To accomplish this, JavaScript maintains a single-threaded Event Loop. When the Event
Loop kicks off, it'll run our program. Following the execution of a piece of code (such as that
which initiates our program), the Event Loop will await messages (or Events) indicating that
something has occurred (for example, a network request has completed or a browser UI
event has occurred). When it receives a message, it will then execute any code that is
depending upon or listening for that Event. The Event Loop will, again, run that code to
completion before continuing to await other messages. This process repeats infinitely until
the JavaScript program is halted (for example, by closing a tab in a browser).

The fact that the Event Loop will always run a given piece of code to its completion means
that any long-running or blocking code will prevent any other code from executing until it
has completed. Some older browser API methods such as alert() and prompt() are
examples of blocking functions that you may encounter. Calling these will effectively block
any further execution of your JavaScript program:

alert('Hello!');
console.log('The alert has been dismissed by the user');

Here, console.log() will not be evaluated until the alert dialog is dismissed by the user.
This could be milliseconds, minutes, or even hours. During this period, our JavaScript
program is halted, unable to continue. Its Event Loop may be receiving Events but it will not
run the code associated with those Events until alert() finally completes.

Native asynchronous APIs
Nowadays, it's normal to expect APIs within a browser and server to provide non-blocking
asynchronous ways to call native mechanisms. Common examples of such APIs include the
following:

The DOM Event API, enabling code such
as window.addEventListener('click', callback)
The Node.js file API, enabling code such as fs.readFile(path, callback)
The Browser Fetch API, enabling code such as fetch().then(callback)

Control Flow Chapter 10

[308]

All such interfaces share something in common: they all provide a way to somehow listen
for their completion. Usually, this is achieved via a provided callback (a function). This
callback will be called at some later point when the task has completed. Similarly, some
native APIs return promises, which enable a richer mechanism of asynchronous control
flow, but fundamentally still rely on passing callbacks via the Promise API. Additionally,
ECMAScript 2017 introduced the concept of asynchronous functions (async function()
{}) and the await keyword, which finally provided language support for promises,
meaning that the completion of asynchronous work no longer requires callbacks.

Let's explore each of these asynchronous of control flow mechanisms individually.

Callbacks
A callback is a conventional approach to providing a way to hook into asynchronous tasks.
A callback is simply a function that is passed to another function and is expected to be
called at some later point, possibly immediately, possibility soon, and possibly never.
Consider the following requestData function:

function requestData(path, callback) {
 // (Implementation of requestData)
}

As you can see, it accepts a callback as its second argument. When
calling requestData, the callback will typically be anonymously passed inline, like so:

requestData('/data/123', (response) => { /* ... */ });

It is, of course, totally fine to have previously declared the callback, and doing so can aid
comprehensibility as now the reader of your code will have an inkling as to when a callback
might be invoked. Observe here how we're calling our onResponse callback to make clear
that it is expected to be called upon the response becoming available (when it completes):

function onResponse(response) {
 // Do something with the response...
}

requestData('/data/123', onResponse);

Control Flow Chapter 10

[309]

Similarly, in complex APIs with multiple asynchronous state changes, it's common to see
named callbacks registered in bulk, via an object literal:

createDropdownComponent({
 onOpen() {},
 onSelect() {},
 onClose() {},
 onHover() {} // etc.
});

A callback will typically be passed arguments that indicate some important state that has
been determined from the asynchronous work. For example, the
Node.js readFile function invokes its callback with two arguments, a (possibly null) error
and the (possibly null) data from the file itself:

fs.readFile('/path/to/file', (error, data) => {
 if (error) {
 // Handle the error!
 } else {
 // Handle the data! (No error has occurred!)
 }
});

The function you pass a callback to is entirely in control of when your callback is invoked,
how it is invoked, and what data is passed along with that invocation. This is why
sometimes callbacks are spoken about as an inversion of control. Normally, you are in control
of what functions you call, but when using callbacks, the control is inverted so that you are
relying on another function or abstraction to (at some point) call your callback in the
expected manner.

Callback hell is the name given to the undesirable proliferation of multiple nested callbacks
within a piece of code, usually done to carry out a series of asynchronous tasks that each
rely on another previous asynchronous task. Here is an example of such a situation:

requestData('/data/current-user', (userData) => {
 if (userData.preferences.twitterEnabled) {
 requestData(userData.twitterFeedURL, (twitterFeedData) => {
 renderTwitterFeed(twitterFeedData, {
 onRendered() {
 logEvent('twitterFeedRender', { userId: userData.id });
 }
 });
 });
 }
});

Control Flow Chapter 10

[310]

Here, you can see we have three different callbacks, all appearing in one hierarchy of
scopes. We await the response of /data/current-user, then we optionally make a
request to twitterFeedURL, and then, upon the rendering of the twitter feed
(renderTwitterFeed()), we finally log a "twitterFeedRender" Event. That final log
depends on two previous asynchronous tasks completing and so is (seemingly
unavoidably) nested quite deeply.

We can observe that this deeply nested piece of code is at the peak of a kind of horizontal
pyramid of indentation. This is a common trait of callback hell, and as such, you can use the
existence of these horizontal pyramids as something to watch out for. Not all deep
indentations will be due to callbacks, of course, but it's usually high on the list of suspects:

To avoid the callback hell indicated by the horizontal pyramid, we should consider re-thinking
and potentially re-abstracting our code. In the preceding case, logging a Twitter feed render
Event, we could, for example, have a generalized function for getting and rendering Twitter
feed data. This would simplify the top-level of our program:

requestData('/data/current-user', (userData) => {
 if (userData.preferences.twitterEnabled) {
 renderTwitterForUser(userData);
 }
});

Control Flow Chapter 10

[311]

Observe how we have shortened our horizontal pyramid here. We are now free to
implement renderTwitterForUser as we wish and import it as a dependency. Even
though its implementation may involve its own callbacks, it is still a reduction in overall
complexity for the programmer as it abstracts away half of the pyramid to a neatly separated
abstraction. Most callback hell scenarios can be solved with a similar approach to re-
designing and abstraction. This was a simple scenario, though. With more intertwined
asynchronous tasks, it may be useful to use other mechanisms of asynchronous control
flow.

Event subscribing/emitting
JavaScript is a language that feels right at home when subscribing to and emitting Events.
Events are incredibly common in most JavaScript programs, whether dealing with user-
derived Events within the browser or server-side Events in Node.js.

There are various names used for operations relating to Events in JavaScript, so it's useful
to know all of these names upfront so we're not confused when encountering them. An
event is an occurrence in time that will result in the invocation of any callbacks that have
been subscribed for that Event. Subscribing to an Event has many names, which all
effectively mean the same thing: subscribing, registering, listening, binding, and so on. When
the Event occurs, the subscribed callback is invoked. This, as well, has many
names: invoking, calling, emitting, firing, or triggering. The actual function that is called can
also have various names: function, callback, listener, or handler.

At its core, any abstraction that supports Events will usually do so by storing callbacks to
be called later, keyed with specific Event names. We can imagine that a DOM element
might store its Event listeners in a structure like the following:

{
 "click": [Function, Function, Function],
 "mouseover": [Function, Function],
 "mouseout": [Function]
}

Any Event-supporting abstraction will simply store a series of callbacks to be called later.
As such, when subscribing to an Event, you will need to provide both the callback you wish
it to call and the Event name that it will be tied to. In the DOM, we would do this like so:

document,body.addEventListener('mousemove', e => {
 e; // => the Event object
});

Control Flow Chapter 10

[312]

Here, we see that an Event object is passed to the callback. This is idiomatically named e or
evt for succinctness. Most abstractions that provide an Events API will pass specific Event-
related information to the callback. This may be in the form of a singular Event object or
several arguments.

It's important to note that there truly is no single standard for Events although there are
conventions that have emerged. Typically there will always be a method used to register or
subscribe to an Event and then another to remove that subscription. The following is an
example of using the Node.js Event-Emitter API, which is supported by the native HTTP
module:

const server = http.createServer(...);

function onConnect(req, cltSocket, head) {
 // Connect to an origin server...
}

// Subscribe
server.on('connect', onConnect);

// Unsubscribe
server.off('connect', onConnect);

Here, you can see that the on() method is used to subscribe to Events, and
the off() method is used to unsubscribe. Most Events APIs have similar event registration
and de-registration methods although they may implement them in different ways. If
you're crafting your own Events implementation, then it's advisable to ensure that you're
providing a familiar set of methods and abstractions. To do this, take inspiration from
either the native DOM Events interface or the Node.js Event Emitter. This will ensure that
your Events implementation does not surprise or horrify other programmers too much.

Even though an Events API is essentially just a series of callbacks stored and invoked at
specific times, there are still challenges in crafting it well. Amongst them are the following:

Ensuring the order of invocation when a singular Event fires
Handling cases where Events are emitted while other Events are mid-emission
Handling cases where Events can be entirely canceled or removed per callback
Handling cases where Events can be bubbled, propagated, or delegated (this is
usually a DOM challenge)

Control Flow Chapter 10

[313]

Propagation, bubbling, and delegation are terms related to firing Events
within a hierarchical structure. In the DOM, since <div> may exist within
<body>, the Events API has prescribed that, if the user clicks on <div>,
the emitted Event will propagate or bubble upward, first triggering any
click listeners on <div> and then <body>. Delegation is intentional
listening at a higher level of hierarchy, for example, listening at
the <body> level and then reacting in a certain way, depending on what
the Event object tells you about the Event's target node.

Events provide more possibilities than a simple callback. Since they allow several different
Events to be listened for, and the same Event to be listened for several times, any
consuming code has far more flexibility in how it constructs its asynchronous control flow.
An object that has an Events interface can be passed around throughout a code base and
may be subscribed to many times, potentially. The nature of distinct Events, as well, means
that different asynchronous concepts or occurrences are usefully kept separated so that a
fellow programmer can easily tell which action will be taken in specific circumstances:

const dropdown = new DropDown();
dropdown.on('select', () => { /*...*/ });
dropdown.on('deselect', () => { /*...*/ });
dropdown.on('hover', () => { /*...*/ });

This type of transparent separation helps to encode expectations within the mind of the
programmer. It's simple to discern which function will be called in each case. Compare this
to a generalized something happened event with an internal switch statement:

// Less transparent & more burdensome:
dropdown.on('action', event => {
 switch (event.action) {
 case 'select': /*...*/; break;
 case 'deselect': /*...*/; break;
 // ...
 }
});

Well-implemented Events provide a good semantic separation between conceptually
different Events and, therefore, provide the programmer with a predictable series of
asynchronous actions that they can reason about easily.

Control Flow Chapter 10

[314]

Promises
A Promise is an abstraction that surrounds the concept of an eventual value. It's easiest to
think of a Promise as a simple object that will, at some point, contain a value. A Promise
provides an interface via which you can pass callbacks to wait for either the eventually-
fulfilled value or an error.

At any given time a Promise will have a certain state:

Pending: The Promise is awaiting its resolution (the asynchronous task has not
yet completed).
Settled: The Promise is no longer pending and has either been fulfilled or
rejected:

Fulfilled: The Promise has been successful and now has a value
Rejected: The Promise has failed with an error

Promises can be constructed via the Promise constructor, by passing a singular function
argument (called an executor) that calls either a resolve or reject function to indicate
either a settled value or an error, respectively:

const answerToEverything = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(42);
 }, 1000);
});

The instantiated Promise has the following methods available so that we can access its
changed state (when it moves from pending to either fulfilled or rejected):

then(onFulfilled[, onRejected]): This will append a fulfillment callback
to the Promise and optionally a rejection callback. It will return a new Promise
object, which will resolve to the return value of the called fulfillment or rejection
handler, or will resolve as per the original Promise if there is no handler.
catch(onRejected): This will append a rejection callback to the Promise and
will return a new Promise that will resolve to either the return value of the
callback or (if the original Promise succeeds) its fulfillment value.
finally(onFinally): This will append a handler to the Promise, which will be
called when the Promise is resolved, regardless of whether the resolution is a
fulfillment or a rejection.

Control Flow Chapter 10

[315]

We can access the eventually resolved value of answerToEverything by passing a
callback to its then method:

answerToEverything.then(answer => {
 answer; // => 42
});

We can illustrate the exact nature of a Promise by exploring the native Fetch API, supported
by most modern browsers:

const promiseOfData = fetch('/some/data?foo=bar');

The fetch function returns a Promise that we assign to our variable, promiseOfData. We
can then hook into the request's eventual success (or failure) like so:

const promiseOfData = fetch('/some/data');

promiseOfData.then(
 response => {
 response; // The "fulfilled" Response
 },
 error => {
 error; // The "rejected" Error
 }
);

It may appear as though promises are just a slightly more verbose abstraction than
callbacks. Indeed, in the simplest case, you might just pass a fulfillment callback and
a rejection callback. This, arguably, does not provide us with anything more useful than the
original callback approach. But promises can be so much more than this.

Since a Promise is just a regular object, it can be passed around your program just like any
other value, meaning that the eventual resolution of a task no longer needs to be tied to
code at the call site of the original task. Additionally, the fact that
each then, catch, or finally call returns a Promise of its own, we can chain together any
number of either synchronous or asynchronous tasks that rely on some original fulfillment.

In the case of fetch(), for example, the fulfilled Response object provides
a json() method, which itself completes asynchronously and returns a Promise. Hence, to
get the actual JSON data from a given resource, you would have to do the following:

fetch('/data/users')
 .then(response => response.json())
 .then(jsonDataOfUsers => {
 jsonDataOfUsers; // the JSON data that we got from response.json()
 });

Control Flow Chapter 10

[316]

Chaining together then calls is a popular pattern used to derive a new value from some
prior value. Given the response, we wish to compute the JSON, and given the JSON, we
may wish to compute something else:

fetch('/data/users')
 .then(response => response.json())
 .then(users => users.map(user => user.forename))
 .then(userForenames => userForenames.sort());

Here, we are using multiple then calls to compute the sorted forenames of our users. There
are, in fact, four distinct promises being created here, as foll:

const promiseA = fetch('/data/users');
const promiseB = promiseA.then(response => response.json());
const promiseC = promiseB.then(users => users.map(user => user.forename))
const promiseD = promiseC.then(userForenames => userForenames.sort());

promiseA === promiseB; // => false
promiseB === promiseC; // => false
promiseC === promiseD; // => false

Each Promise will only ever resolve to a single value. Once it's been either fulfilled or rejected,
no other value can take its place. But as we see here, we can freely derive a new Promise
from an original Promise by simply registering a callback via then, catch, or finally. The
nature of only resolving once and of returning new derived promises means that we can
compose promises together in a number of useful ways. In our example, we could derive
two promises from our users data Promise: one that collects the forenames of users and
another that collects their surnames:

const users = fetch('/data/users').then(r => r.json());
const forenames = users.then(users => users.map(user => user.forename));
const surnames = users.then(users => users.map(user => user.surname));

We can then freely pass around these forenames and surnames promises, and any
consuming code can do what it wants with them. For example, we may have a DOM
element that we'd like to populate with the forenames when they are eventually available:

function createForenamesComponent(forenamesPromise) {

 const div = document.createElement('div');

 function render(forenames) {
 div.textContent = forenames ? forenames.join(', ') : 'Loading...';
 }

 render(null); // Initial render

Control Flow Chapter 10

[317]

 forenamesPromise.then(forenames => {
 // When we receive the forenames we want to render them:
 render(forenames);
 });

 return div;
}

This createForenamesComponent function accepts the forenames Promise as an
argument and then returns a <div> element. As you can see, we have
called render() initially with null, which populates the DIV element with the
"loading..." text. Once the Promise is fulfilled, we then re-render with the newly
populated forenames.

The ability to pass around promises in this manner makes them far more flexible than
callbacks, and similar in spirit to an object that implements an Events API. However, with
all of these mechanisms, it is necessary to create and pass around functions so that you can
listen for future Events and then act on them. If you have a significant amount of
asynchronous logic to express, this can be a real struggle. The control flow of a program
littered with callbacks, Events, and promises can be unclear, even to those well accustomed
to a particular code base. Even a small number of independently asynchronous Events can
create a large variety of states throughout your application. A programmer can become very
confused, as a result; the confusion relates to what is happening when.

The state of your program is determined at runtime. When a value or piece
of data changes, no matter how small, it will be considered a change of
state. State is typically expressed in terms of outputs from the program,
such as a GUI or a CLI can be also be held internally and manifest in a
later observed output.

To avoid confusion, it's best to implement any timing-related code as transparently as
possible, so that there is no room for misunderstanding. The following is an example of
code that may lead to misunderstanding:

userInfoLoader.init();

appStartup().then(() => {
 const userID = userInfoLoader.data.id;
 const userName = userInfoLoader.data.name;
 renderApplication(userID, userName);
});

Control Flow Chapter 10

[318]

This code seems to assume that the Promise returned by appStartup() will always fulfill
after userInfoLoader has completed its work. Perhaps the author of this code happens to
know that the appStartup() logic will always complete after userInfoLoader. Perhaps
that is a certainty. But for us, reading this code for the first time, we have no confidence
that userInfoLoader.data will be populated by the time appStartup() is fulfilled. It
would be better to make the timing more transparent by, for example, returning a Promise
from userInfoLoader.init() and then carrying out appStartup() on the explicit
fulfillment of that Promise:

userInfoLoader.init()
 .then(() => appStartup())
 .then(() => {
 const userID = userInfoLoader.data.id;
 const userName = userInfoLoader.data.name;
 renderApplication(userID, userName);
 });

Here, we are arranging our code so that it is obvious what actions are dependent on what
other actions and in what order the actions will occur. Using promises by themselves, just
like any other asynchronous control flow abstraction, does not guarantee that your code
will be easily comprehensible. It's important to always consider the perspective of your
fellow programmers and the temporal assumptions that they'll make. Next, we will explore
a newer addition to JavaScript that gives us native linguistic support for asynchronous
code: you'll see how these additions enable us to write asynchronous code that is clearer in
terms of what is happening when.

async and await
The ECMAScript 2017 specification introduced new concepts to the JavaScript language in
the form of the async and await keywords. The async keyword is used to designate a
function as asynchronous:

async function getNumber() {
 return 42;
}

Doing this, effectively, wraps whatever the function returns in Promise (if it is not already
Promise). So, if we attempt to call this function we will receive Promise:

getNumber() instanceof Promise; // => true

Control Flow Chapter 10

[319]

As we've learned, we can subscribe to the fulfillment of Promise by using its then method:

getNumber().then(number => {
 number; // => 42
});

In concert with async functions that return Promises, we also have an await keyword. This
enables us to wait for the fulfillment (or rejection) of the Promise simply by passing it to
the right side of await. This may, for example, be a Promise returned from an async
function call:

await someAsyncFunction();

Or it may be a Promise designated inline, like so:

const n = await new Promise(fulfill => fulfill(123));
n; // => 123

As you can see, the await keyword will wait for its Promise to resolve and thereby prevents
any following lines from executing until that occurs.

The following is another example—a setupFeed async function that awaits both fetch()
and response.json():

async function setupFeed() {
 const response = await fetch('/data');
 const json = await response.json();
 console.log(json);
}

It's important to note that the await keyword does not block like alert() or prompt().
Instead, it simply pauses the execution of the asynchronous function, freeing up the Event
Loop to continue with other work, and then, when its Promise resolves, it will continue
execution where it left off. Remember, await is only syntactic sugar over functionality that
we can already achieve. If we wanted to implement our setupFeed function
without async/await, we could easily do that by reverting to our old pattern of passing
callbacks to Promise#then:

function setupFeed() {
 fetch('/data').then(response => {
 return response.json()
 }).then(json => {
 console.log(json);
 });
}

Control Flow Chapter 10

[320]

Observe how the code is slightly clunkier and more congested when we don't use await.
Using await in concert with asynchronous functions gives us the same satisfyingly linear
and procedural appearance as regular synchronous code. This can vastly simplify an
otherwise complicated asynchronous control flow, making it clearer to our fellow
programmer what is happening when.

The await keyword is also available for use within the for...of iteration construct. Doing
so will await each value iterated over. If, during iteration, any encountered value is a
Promise, the iteration will not continue until that Promise has been resolved:

const allData = [
 fetch('/data/1').then(r => r.json()),
 fetch('/data/2').then(r => r.json()),
 fetch('/data/3').then(r => r.json())
];

for await (const data of allData) {
 console.log(data);
}

// Logs data from /data/1, /data/2 and /data/3

Without Promises or await and async, expressing this kind of asynchronous process would
require not only also more code but also more time to understand. The beauty of these
constructs and abstractions is that they allow us to ignore the implementation details of
asynchronous operations, enabling us to focus purely on expressing our problem domain.
As we move forward in this book, we will further explore this spirit of abstraction as we
tackle some larger and more unwieldy problem domains.

Summary
In this chapter, we have finalized our exploration of the JavaScript language, discussing the
difference between imperative and declarative syntax, exploring how to cleanly control
flow, and learning how to handle cases of cyclomatic complexity in both synchronous and
asynchronous contexts. This has involved an in-depth study of all iteration and conditional
constructs within the language, guidance on their usage, and cautions against anti-
patterns.

In the next chapter, we will take all of the knowledge we've accrued about the JavaScript
language and combine it with some explorations into real-world design patterns and
paradigms that'll help us to build clean abstractions and architectures.

3
Section 3: Crafting Abstractions

In this section, we'll take what we've learned about clean code and JavaScript's language
constructs and apply this in order to build clean and coherent JavaScript abstractions. By
doing this, we'll learn how to design intuitive abstractions using well-known patterns, how
to think about common JavaScript problem domains, how to deal with error states, and
how to work effectively with the sometimes awkward DOM API.

This section contains the following chapters:

Chapter 11, Design Patterns
Chapter 12, Real-World Challenges

11
Design Patterns

Most problems we encounter are not new. Many programmers that have come before us
have tackled similar problems and, via their struggles, various patterns of programming
have emerged. We call these design patterns.

Design patterns are the useful structures, styles, and stencils that our code sits within. A
design pattern may prescribe anything from the overall scaffolding of a code base to the
individual syntactic pieces used to build expressions, functions, and modules. By building
software, we are constantly, and often unknowingly, in the process of designing. It is
through this process of designing that we are defining the experience that users and
maintainers will go through when exposed to our code.

To attune us to this perspective of the designer instead of programmer, for a moment, let's
consider the design of a simple software abstraction.

In this chapter, we will cover the following topics:

The perspective of a designer
Architectural design patterns
JavaScript modules
Modular design patterns
Planning and harmony

The perspective of a designer
To bestow us with the perspective of a designer, let's explore a simple problem. We must
construct an abstraction that allows users to give us two strings, a subject string and a
query string. We must then calculate a count of the query strings found within the subject
string.

Design Patterns Chapter 11

[323]

So, consider the following query string:

"the"

And have a look at the following subject string:

"the fox jumped over the lazy brown dog"

We should receive a result of 2.

For our purposes as a designer, we care about the experience of those who must use our
code. For now, we won't worry about our implementation; we will instead only consider
the interface, as it is primarily the interface to our code that will drive our fellow
programmers' experiences.

The very first thing we may do as a designer is to define a function with a carefully chosen
name and a specific set of named arguments:

function countNeedlesInHaystack(needle, haystack) { }

This function accepts needle and haystack and will return Number, indicating the count
of needle within haystack. The consumer of our code would make use of it like so:

countNeedlesInHaystack('abc', 'abc abc abc'); // => 3

We are using the popular idiom of needle-in-a-haystack to describe the
problem of looking for a substring within another string. Considering
popular idioms is a crucial part of designing code, but we must be wary of
idioms being misunderstood.

The design of a piece of code should be defined by the problem domain we wish to solve
and the user experience we wish to reveal. Another programmer, given the same problem
domain, may have chosen a different solution. For example, they may have employed
partial application to allow the following calling syntax:

needleCounter('app')('apple apple'); // => 2

Or perhaps they may have designed a more verbose syntax that involves invoking a
Haystack constructor and calling its count() method like so:

new Haystack('apple apple'),count('app'); // => 2

This classical approach arguably has a nice semantic relationship between the object
(Haystack) and the count method. It meshes well with the OOP concepts we've explored
in previous chapters. That said, some programmers may find it to be overly verbose.

Design Patterns Chapter 11

[324]

There's also the possibility of a more descriptive API where the arguments are defined
within a configuration object (that is, a plain object literal passed as the sole argument):

countOccurancesOfNeedleInHaystack({
 haystack: 'abc abc abc',
 needle: 'abc'
}); // => 3

There's also the possibility that this counting functionality may form the part of a larger set
of string-related utilities and, hence, can be incorporated into a larger custom-named
module:

str('omg omg omg').count('omg'); // => 3

We may even consider it okay to modify the native String.prototype, even though it is
inadvisable, so that we have a count method available on all strings:

'omg omg omg'.count('omg'); // => 3

In terms of our naming conventions as well, we may wish to avoid the needle-in-a-haystack
idiom and, instead, use more descriptive names where perhaps there is less risk of
misunderstanding, like the following:

searchableString and subString
query and content
search and corpus

The choices available to us, even within this very narrow problem domain, are
overwhelming. You'll likely have many of your own strong opinions about which approach
and naming conventions would have been superior here.

The fact that we can solve a seemingly simple problem with so many different approaches
shows us how there is a need for a decision process. And this process is software design.
Effective software design employs design patterns to encapsulate problem domains and
provide familiarity and ease of comprehension to fellow programmers.

The intent with our exploration of the needle-in-a-haystack problem was
not to find a solution, but rather to highlight the difficulty of software
design, and to expose our minds to a more user-oriented perspective. It
also reminds us that there is very rarely one ideal design.

Design Patterns Chapter 11

[325]

A well-chosen design pattern, given any problem domain, can be said to have two basic
characteristics:

It solves the problem well: A well-chosen design pattern will be well-suited to
the problem domain so that we can fluidly express the nature of the problem and
its solution easily.
It is familiar and usable: A well-chosen design pattern will be familiar to our
fellow programmers. It'll be immediately obvious how can they can use it or
make changes to the code.

Design patterns are useful in a variety of contexts and scales. We use them when we write
individual operations and functions, but we also use them when structuring our entire code
base. Design patterns, as such, are hierarchical. They exist on the macro and micro scale of a
code base. A singular code base can easily contain many design pattern within.

In Chapter 2, Tenets of Clean Code, we spoke about familiarity as a crucial characteristic. A
car mechanic opening the hood of a car will hope to see many familiar patterns: from the
individual pieces of wiring and welding of Components to the larger construction of the
cylinders, valves, and pistons. There is a certain layout they would expect to find and if it is
not there, then they would be left scratching their heads, wondering how to approach
whatever problem they're trying to solve.

Familiarity increases the maintainability and usability of our solutions. Consider the
following directory structure and the displayed logger.js source code:

What design patterns can we observe here? Let's take a look at some examples:

The use of a top-level app/ directory to contain all the source code
The existence of Models, Views, and Controllers (MVC)

Design Patterns Chapter 11

[326]

The separation of utilities into its own directory (utils/)
The camel case naming of files (for example,binarySearch.js)
The use of a Conventional Module pattern in logger.js (that is, exporting a
plain object of methods)
The use of ... && msgs.length to confirm a nonzero (that is, truthy) length
Declaring constants at the top of a file (that is, const ALL_LOGS_LEVEL)
(Possibly others...)

Design patterns are not just large, lofty architectural structures. They can exist in every part
of our code base: the directory structure, the naming of files, and the individual expressions
of our code. At every level, our usage of common patterns can increase our ability to
express the problem domain, and increase the familiarity of our code to newcomers.
Patterns exist within patterns.

Using design patterns well can have beneficial effects on all of the tenets of clean code we
covered previously—reliability, efficiency, maintainability, and usability:

Reliability: A good design pattern will suit the problem domain and allow you
to easily express your desired logic and data structures without too much
complexity. The familiarity of your adopted design patterns will also enable
other programmers to easily understand and improve upon the reliability of
your code over time.
Efficiency: A good design pattern will enable you to fuss less about how to
structure your code base or your individual modules. It'll enable you to spend
more time worrying about the problem domain. Well-selected design patterns
will also aid in making the interfaces between different pieces of code
streamlined and understandable.
Maintainability: A good design pattern allows for easy adaptation. If there is a
change of specification or a bug that needs to be fixed, the programmer can easily
find the desired area of change/insertion and make the change without hassle.
Usability: A good design pattern is easy to understand due to its familiarity. A
fellow programmer can easily comprehend the flow of the code and quickly
make correct assertions about how it works and how they can make use of it. A
good design pattern will also create a pleasant user experience, whether
expressed via a programmatic API or a GUI.

You can see that a lot of what makes design patterns useful is only actualized if we pick the
right one. We'll be exploring a selection of popular design patterns and, for each, we'll
discuss the types of situations they're suited to. This exploration should hopefully give you
a good idea of what it means to select a good design pattern.

Design Patterns Chapter 11

[327]

Be warned: just as good design proliferates via convention, so does bad
design. We discussed the phenomenon of cargo culting in Chapter 3, The
Enemies of Clean Code, and so we are not strangers to how such types of
bad designs may spread, but it's important to remain mindful of these
traps when employing design patterns.

Architectural design patterns
Architectural design patterns are the ways in which we tie our code together. If we have a
dozen different modules, it is how those modules talk to each other that defines our
architecture.

The architectural design patterns utilized in JavaScript code bases have changed massively
over recent years. With the steady proliferation of popular frameworks such as React and
Angular, we've seen code bases take on new conventions. The landscape is still very much
shifting, so we shouldn't expect any specific standard to emerge any time soon.
Nonetheless, most frameworks tend to follow the same broad architectural patterns.

An example of a popular architectural pattern is the separation of data
logic and rendering logic. This is famously adopted by many different UI
frameworks, albeit with different styles. This is likely due to the heritage
of software UI and the early established pattern of MVC that eventually
became the de facto approach.

In this section, we'll be covering two famous architectural design patterns, MVC and its
offshoot, Model-View-ViewModel (MVVM). Together, these should give us an awareness
of the types of concerns that are typically separated and will hopefully inspire us to seek a
similar level of clarity in the architectures we create.

MVC
MVC is characterized by a separation between these three concepts. An MVC architecture
may involve many individual Models, Views, and Controllers that all work in concert to
solve a given problem. Each of these parts can be described as follows:

The Model: This describes the data and how business logic mutates that data.
Changes in the data will manifest in changes to the View.
The View: This describes how the Model is rendered (its format, layout, and
appearance) and will invoke the Controller whenever there is an action that
needs to occur, possibly in response to a user event.

Design Patterns Chapter 11

[328]

The Controller: This accepts instructions from the View and informs the Model
what actions or changes to carry out, which will go on to affect whatever is
rendered to the user via the View.

We can observe the flow of control in the following diagram:

The MVC pattern provides us with a way to separate our various concerns. It prescribes
where we should put logic about business decisions (that is, in Models) and where we
should put logic about displaying things to the user (that is, Views). Additionally, it gives
us the Controller, which enables these two concerns to talk to each other. The separation
that MVC fosters is hugely beneficial as it means our fellow programmers can easily
discern where to make required changes or fixes.

MVC was originally posed in 1978 by Trygve Reenskaug while working at
Xerox PARC. Its original purpose was to support the user's illusion of
seeing and manipulating the domain information directly. At the time,
this was quite revolutionary, but we now, as end users, take such UIs (and
their transparent relation to their data) for granted.

A working example of MVC
To illustrate how an implementation of MVC might look in JavaScript, let's build a very
simple program. It will be a basic mutable number application that renders a simple UI
where the user can see the current number and choose to update it via either incrementing
or decrementing its value.

Design Patterns Chapter 11

[329]

First, we can implement the logic and containment of our data using a Model:

class MutableNumberModel {
 constructor(value) {
 this.value = value;
 }
 increment() {
 this.value++;
 this.onChangeCallback();
 }
 decrement() {
 this.value--;
 this.onChangeCallback();
 }
 registerChangeCallback(onChangeCallback) {
 this.onChangeCallback = onChangeCallback;
 }
}

In addition to storing the value itself, this class also accepts and relies upon a callback
function called onChangeCallback. This callback function will be provided by the
Controller and will be called whenever the value changes. This is necessary so that we can
kick off a re-render of the View if the Model changes.

Next, we need to build the Controller, which will act as a very simple bridge (or glue)
between view and model. It registers the necessary callbacks to know when either the user
requests a change via view or the underlying data of the model changes:

class MutableNumberController {
 constructor(model, view) {
 this.model = model;
 this.view = view;
 this.model.registerChangeCallback(
 () => this.view.renderUpdate()
);
 this.view.registerIncrementCallback(
 () => this.model.increment()
);
 this.view.registerDecrementCallback(
 () => this.model.decrement()
);
 }
}

Design Patterns Chapter 11

[330]

Our view is responsible for retrieving data from model and rendering it to the user. To do
this, it creates a DOM hierarchy in which the data will sit. It also listens for and escalates
user events to controller when either the increment or decrement button is clicked:

class MutableNumberView {
 constructor(model, controller) {
 this.model = model;
 this.controller = controller;
 }
 registerIncrementCallback(onIncrementCallback) {
 this.onIncrementCallback = onIncrementCallback;
 }
 registerDecrementCallback(onDecrementCallback) {
 this.onDecrementCallback = onDecrementCallback;
 }
 renderUpdate() {
 this.numberSpan.textContent = this.model.value;
 }
 renderInitial() {
 this.container = document.createElement('div');
 this.numberSpan = document.createElement('span');
 this.incrementButton = document.createElement('button');
 this.decrementButton = document.createElement('button');
 this.incrementButton.textContent = '+';
 this.decrementButton.textContent = '-';
 this.incrementButton.onclick =
 () => this.onIncrementCallback();
 this.decrementButton.onclick =
 () => this.onDecrementCallback();
 this.container.appendChild(this.numberSpan);
 this.container.appendChild(this.incrementButton);
 this.container.appendChild(this.decrementButton);
 this.renderUpdate();
 return this.container;
 }
}

This is quite a lengthy View as we're having to create its DOM
representation manually. Many modern frameworks (React, Angular,
Svelte, and so on) allow you to declaratively express your hierarchy using
either plain HTML or a hybrid syntax such as JSX (a syntax extension to
JavaScript itself that permits XML-like tags within JavaScript code).

Design Patterns Chapter 11

[331]

This View has two rendering methods: renderInitial will carry out the initial render,
which sets up the DOM elements, and then the renderUpdate method is responsible for
updating the number whenever it changes.

Tying this all together, our simple program would be initialized like so:

const model = new MutableNumberModel(5);
const view = new MutableNumberView(model);
const controller = new MutableNumberController(model, view);

document.body.appendChild(view.renderInitial());

view is given access to model so that it can retrieve the data to render. controller is
given to both model and view so that it can glue them together by setting up the
appropriate callbacks.

In the case of a user clicking the + (increment) button, the following process would kick off:

The DOM click event from incrementButton is received by the View1.
The View fires its onIncrementCallback(), listened to by the Controller2.
The Controller instructs the Model to increment()3.
The Model calls its mutation callback, that is, onChangeCallback, listened to by4.
the Controller
The Controller instructs the View to re-render5.

You may be wondering why we bother with the separation between the Controller and the
Model. Why can't the View just communicate with the Model directly and vice versa? Well,
it can! But if we did that, we'd be polluting both our View and our Model with more logic
and hence more complexity. We could equally just place everything in the View and have
no Model, but you can imagine how unwieldy that would get. Fundamentally, the degree
and quantity of separation will vary with every project you pursue. At its core, MVC
teaches us about the general idea of how to separate the problem domain from its
presentation. How we wield this separation is up to us.

Since 1978, when MVC was first coined, many adaptations of it have surfaced, but its
central theme of separation between Model and View has persisted through the decades.
Consider the architectural design of a React application. It includes Components, which
contain the logic for rendering state, and typically will include several domain-specific
reducers, which take actions (for example, user has clicked something!) and derive state from
those actions.

Design Patterns Chapter 11

[332]

This architecture looks surprisingly similar to traditional MVC:

MVC, as a general guiding pattern, has impacted the design of countless frameworks and
code bases throughout the last few decades, and it will continue to do so. Not every
adaptation, reproduction, or MVC will abide by the original description posed in 1978 but,
usually, these adaptations will stay true to the centrally important theme of separating a
Model from its View and of having a View be a reflection (or even, a derivation) of a Model.

MVVM
MVVM is similar in spirit to its ancestor, MVC. It prescribes a strict separation between the
underlying business logic and data that drives a program and the rendering of that data:

The Model: This describes the data and how business logic mutates that data.
Changes in the data will manifest in changes to the View.
The View: This describes how the Model is rendered (its structure, layout, and
appearance) and will invoke the Data Binding mechanism of the ViewModel
whenever there is an action that needs to occur, possibly in response to a user
event.
The ViewModel: This is the glue between the Model and the View and enables
them to talk to each other via a Data Binding mechanism. This mechanism tends
to vary a lot between implementations.

Design Patterns Chapter 11

[333]

The relationship between these parts is illustrated in the following diagram:

The MVVM architecture is more popular in frontend JavaScript as it suits the need of
having a constantly updated View, while traditional MVC is more popular on the backend
as it caters well to the simple render-once nature of most HTTP responses.

Within MVVM, the data binding between the ViewModel and the View usually uses DOM
events to track user intent and then mutates data on the Model, which then emits mutation
events of its own that can be listened for by the ViewModel, resulting in the View being
constantly kept up to date with changing data.

Many frameworks will have their own adaptation of data-binding. Angular, for example,
allows you to specify in your HTML templates a custom attribute called ng-model, which
will tie a user input element such as <input> to a given data model, allowing data to flow
in both directions. If the Model is updated, <input> will be updated to reflect that and vice
versa.

MV* and the nature of software
Throughout your time as a JavaScript programmer, you will encounter variations of both
MVC and MVVM. As patterns, they are infinitely applicable as they are concerned with the
very basic tenets of a software system: the input of data into a system, the processing of that
data, and the subsequent output of that processed data. There are a few other ways we
could choose to architect these tenets into a code base, but it's likely that, in the end, almost
every time, we'll end up with a system that delineates these concerns in a spirit similar to
MVC (or MVVM).

Now that we have a firm idea of how we might architect a code base and the types of
delineations that characterize a well-designed architecture, we can explore the individual
pieces of that code base: the modules themselves.

Design Patterns Chapter 11

[334]

JavaScript modules
In JavaScript, the word module has changed over the years. A module used to be any piece
of code that was distinct and self-contained. A few years ago, you might have expressed
several modules within the same file like so:

// main.js

// The Dropdown Module
var dropdown = /* ... definition ... */;

// The Data Fetcher Module
var dataFetcher = /* ... definition ...*/;

Nowadays, however, the word module tends to refer to Modules (capital M) as prescribed
by the ECMAScript specification. These Modules are distinct files imported and exported
across a code base via import and export statements. Using such Modules, we might have
a DropdownComponent.js file that looks like this:

// DropdownComponent.js
class DropdownComponent {}
export default DropdownComponent;

As you can see, it uses the export statement to export its class. If we wish to use this class
as a dependency, we would import it like so:

// app.js
import DropdownComponent from './DropdownComponent.js';

ECMAScript Modules are slowly gaining more support across various
environments. To make use of them within the browser, you can provide
an entry script tag with a type of module, that is, <script
type="module" />. Within Node.js, at the time of writing, ES Modules
are still an experimental feature, so you can either rely on the old style of
importing (const thing = require('./thing')) or you can enable
experimental modules by using the --experimental-modules flag and
using the .mjs extension on all of your JavaScript files.

Design Patterns Chapter 11

[335]

Both the import and export statements permit a variety of syntaxes. These allow you to
define the names of what you're exporting or importing. In a scenario where a Module is
only exporting one item, it is conventional to use export default [item] as we have
done in DropdownComponent.js. This ensures that any dependents of the Module can
import it and name it as they wish, as shown in this example:

import MyLocallyDifferentNameForDropdown from './DropdownComponent.js';

In contrast to this, you can specifically name your exports by declaring them within curly
braces and using the as keyword:

export { DropdownComponent as TheDropdown };

This will mean that any importers will need to specifically specify the name of
TheDropdown, like so:

import { TheDropdown } from './DropdownComponent.js';

Alternatively, you can export named items by having specific declarations inline with your
export statements, such as var, const, let, function declarations, or class definitions:

// things.js
export let x = 1;
export const y = 2;
export var z = 3;
export function myFunction() {}
export class MyClass {}

On the importing side, such named exports can be imported by, again, using curly braces:

import { x, y, z, myFunction, MyClass } from './things.js';

When importing, you can also optionally designate the local name of that import with the
as keyword to have its local name be different to its exported named (this is especially
useful in cases of naming conflicts):

import { MyClass as TheClass } from './things.js';
TheClass; // => The class
MyClass; // ! ReferenceError

Design Patterns Chapter 11

[336]

It's conventional to aggregate exports in areas of your code that provide several related
abstractions. For example, if you have composed a small Component library, where each
Component exports itself as default, then you could have index.js that exposes all of
the Components together:

// components/index.js
export {default as DropdownComponent} from './DropdownComponent.js';
export {default as AccordianComponent} from './AccordianComponent.js';
export {default as NavigationComponent} from './NavigationComponent.js';

In Node.js, an index.js/index.mjs file is imported by default if you try
to import an entire directory. That is, if you import './components/', it
would first look for the index file and, if available, would import it. In the
browser, no such convention currently exists. All imports must be fully
qualified filenames.

We can, very conveniently, now import our entire set of Components by using the asterisk
with our import statement:

// app.js
import * from 'components/index.js';

// Make use of the imported components:
new DropdownComponent();
new AccordianComponent();
new NavigationComponent();

There are some additional nuances and complexities around modules in JavaScript,
especially when considering the legacies of Node.js, that we, unfortunately, don't have time
to go into, but what we've covered so far should give you a good enough coverage of the
topic to be productive and nicely paves the way for us to explore the topic of modular
design patterns.

Modular design patterns
Modular design patterns are the structures and syntactic conventions we use to craft
individual modules. We would usually employ these patterns within distinct JavaScript
Modules. Each distinct file should offer up and export a specific abstraction.

If you find yourself using these patterns several times within the same file,
then it may be worth splitting them out. The directory and file structure of
a given code base should ideally reflect its landscape of abstractions. You
shouldn't have several abstractions crammed into a single file.

Design Patterns Chapter 11

[337]

Constructor patterns
The Constructor pattern uses a singular constructor and then manually fills its prototype
with methods and properties. This was the traditional approach for creating classical OOP-
like classes in JavaScript before the class definition syntax existed.

Typically, it begins with the definition of a constructor as a function declaration:

function Book(title) {
 // Initialization Logic
 this.title = title;
}

This would then be followed by assigning individual methods to the prototype:

Book.prototype.getNumberOfPages = function() { /* ... */ };
Book.prototype.renderFrontCover: function() { /* ... */ };
Book.prototype.renderBackCover: function () { /* ... */ };

Or it would be followed by replacing the entire prototype with an object literal:

Book.prototype = {
 getNumberOfPages: function() { /* ... */ },
 renderFrontCover: function() { /* ... */ },
 renderBackCover: function () { /* ... */ }
};

The latter approach tends to be preferred as it's more encapsulated and succinct.
Nowadays, of course, if you wished to use the Constructor pattern, you would likely opt
for method definitions as they take up less space than individual key-value pairs:

Book.prototype = {
 getNumberOfPages() { /* ... */ },
 renderFrontCover() { /* ... */ },
 renderBackCover () { /* ... */ }
};

The instantiation of a constructor would be via the new keyword:

const myBook = new Book();

This creates a new object that has an internal [[Prototype]] of the constructor's
prototype (that is, our object, which contains getNumberOfPages, renderFrontCover,
and renderBackCover).

Design Patterns Chapter 11

[338]

If you're struggling to recall the prototypal mechanisms that underlie
constructors and instantiation, then please revisit Chapter 6, Primitives
and Built-in Types, and, specifically, the section called The prototype.

When to use the Constructor pattern
The Constructor pattern is useful in scenarios where you wish to have an abstraction that
encapsulates the concept of a noun, that is, a thing that would make sense to have an
instance of. Examples may include NavigationComponent or StorageDevice. The
Constructor pattern allows you to create abstractions akin to traditional OOP classes. So, if
you're coming from a classical OOP language, then you can feel free to use the Constructor
pattern where you may have previously used classes.

If you're not sure whether the Constructor pattern is applicable, consider whether the
following questions are true:

Is the concept expressible as a noun?
Does the concept require construction?
Will the concept vary between instances?

If the concept you're abstracting does not fulfill any of the preceding criteria, then you may
want to consider another modular design pattern. An example of this may be a utility
module that has various helper methods. Such a module may not require construction since
it is essentially a collection of methods, and these methods and their behaviors would not
vary between instances.

The Constructor pattern has largely fallen out of favor since the
introduction of class definitions into JavaScript, which allow you to
declare classes in a fashion much more akin to classical OOP languages
(that is, class X extends Y {...}). Skip ahead to The Class pattern
section to see this in action!

Inheritance with the Constructor pattern
To achieve inheritance with the Constructor pattern, you need to manually make your
prototype objects inherit from your parent constructor's prototype.

Design Patterns Chapter 11

[339]

At the risk of over simplifying, we'll illustrate this with the classic example of an Animal
super-class and a Monkey subclass. Here is our definition of Animal:

function Animal() {}
Animal.prototype = {
 isAnimal: true,
 grow() {}
};

Technically, to achieve inheritance, we want to create an object that has [[Prototype]] of
Animal.prototype prototype and then use that newly-created object as our sub-class
prototype subclass. The end goal is a prototypal tree that looks like this:

Object.prototype
 └── Animal.prototype
 └── Monkey.prototype

The easiest way to create an object with a given [[Prototype]] is with
Object.create(ThePrototype). Here, we can use it to extend Animal.prototype and
assign the result to Monkey.prototype:

function Monkey() {}
Monkey.prototype = Object.create(Animal.prototype);

We can then freely assign methods and properties to this new object:

Monkey.prototype.isMonkey = true;
Monkey.prototype.screech = function() {};

If we now try to instantiate Monkey, then we should be able to access not only its own
methods and properties but also those we inherited from Animal.prototype:

new Monkey().isAnimal; // => true
new Monkey().isMonkey; // => true
typeof new Monkey().grow; // => "function"
typeof new Monkey().screech; // => "function"

Remember, this only works because Monkey.prototype (that is,
[[Prototype]] of every Monkey instance) does itself have
[[Prototype]] of Animal.prototype. And, as we know, if a property
cannot be found on a given object, then it'll be looked for on its
[[Prototype]] (if available).

Design Patterns Chapter 11

[340]

It can be quite cumbersome to individually set a prototype's properties and methods one at
a time, as shown in this example:

Monkey.prototype.method1 = ...;
Monkey.prototype.method2 = ...;
Monkey.prototype.method3 = ...;
Monkey.prototype.method4 = ...;

Due to this, another pattern has emerged to make things easier: using Object.assign().
This allows us to set properties and methods in bulk as object literals, and it means we can
make use of the method definition syntax as well:

function Monkey() {}
Monkey.prototype = Object.assign(Object.create(Animal.prototype), {
 isMonkey: true,
 screech() {},
 groom() {}
});

Object.assign here will assign any properties from its second (and third, fourth, and so
on) arguments to the object passed as the first argument. This provides us with a more
succinct syntax for adding properties to our child prototype object.

The Constructor pattern and its inheritance conventions have largely lost favor due to the
newer class definition syntax, which allows a more succinct and simpler way to harness
prototypal inheritance in JavaScript. As such, the very next thing we will explore is the
Class pattern, which uses this newer syntax.

Reminder: For a more thorough refresher on [[Prototype]] (which is
vital to understanding constructors and classes in JavaScript), you should
re visit the section on The prototype in Chapter 6, Primitives and Built-in
Types. A lot of the design patterns in this chapter make use of the
prototype mechanism, so it's useful to have it fresh in your mind.

The Class pattern
The Class pattern, which relies on the newer class definition syntax, has largely replaced
the Constructor pattern. It involves the creation of classes, analogous to classical OOP
languages, although behind the scenes it uses the same prototypal mechanism that the
Constructor pattern uses. So, it can be said that it's just a bit of extra syntactic sugar to make
the language a bit more expressive.

Design Patterns Chapter 11

[341]

Here is an example of a basic class that abstracts the concept of a name:

class Name {
 constructor(forename, surname) {
 this.forename = forename;
 this.surname = surname;
 }
 sayHello() {
 return `My name is ${this.forename} ${this.surname}`;
 }
}

The creation of a class via this syntax is effectively the creation of a constructor with an
attached prototype, hence the following code is exactly equivalent:

function Name(forename, surname) {
 this.forename = forename;
 this.surname = surname;
}

Name.prototype.sayHello = function() {
 return `My name is ${this.forename} ${this.surname}`;
};

Using the Class pattern is certainly aesthetically preferable to the clunky and older
Constructor pattern, but do not be misled! Behind the scenes, exactly the same mechanisms
are at play.

When to use the Class pattern
The Class pattern, much like the Constructor pattern, is useful when you have a self-
contained concept that fulfills the following criteria:

The concept is expressible as a noun
The concept requires construction
The concept will vary between instances of itself

Here are some examples of concepts that abide by these criteria and are hence reasonable to
express via the Class pattern:

A database record (represents a piece of data and allows inquiry and
manipulation)
A todo item component (represents a todo item and allows it to be rendered)
A binary tree (represents a binary-tree data structure)

Design Patterns Chapter 11

[342]

Typically such cases will stick out quite obviously to you. If you're having trouble, consider
the use cases of your abstraction and try to write some consumer code, that is, pseudo code
that utilizes your abstraction. If it seems sensible and doesn't feel too awkward to use, then
you've probably landed on a good pattern.

Static methods
Static methods and properties can be declared by using the static keyword:

class Accounts {
 static allAccounts = [];
 static tallyAllAccounts() {
 // ...
 }
}

Accounts.tallyAllAccounts();
Accounts.allAccounts; // => []

These properties and methods could also easily be added after the initial class definition:

Accounts.countAccounts = () => {
 return Accounts.allAccounts.length;
};

Static methods are useful when you have a method or property whose functionality and
existence are semantically related to the entire class as opposed to a singular instance.

Public and private fields
To declare a public field (that is, a property) on your instance, you can simply declare this
within the class definition syntax in line:

class Rectangle {
 width = 100;
 height = 100;
}

Design Patterns Chapter 11

[343]

These fields are initialized for each instance and are, therefore, mutable on the instance
itself. They're most useful when you need to define some sensible default for a given
property. This can then be easily overridden within the constructor:

class Rectangle {
 width = 100;
 height = 100;

 constructor(width, height) {
 if (width && !isNaN(width)) {
 this.width = width;
 }
 if (height && !isNaN(height)) {
 this.height = height;
 }
 }
}

You can also define private fields by prefixing their identifier with a # symbol:

class Rectangle {
 #width = 100;
 #height = 100;

 constructor(width, height) {
 if (width && !isNaN(width)) {
 this.#width = width;
 }
 if (height && !isNaN(height)) {
 this.#height = height;
 }
 }
}

Traditionally, JavaScript had no concept of private fields, so programmers
opted instead to prefix properties intended as private with one or more
underscores (for example, __somePropertyName). This was understood
as a social contract where other programmers would not mess with these
properties (knowing that doing so might break things in unexpected
ways).

Design Patterns Chapter 11

[344]

Private fields are only accessible by the class itself. Sub-classes do not have access:

class Super { #private = 123; }
class Sub { getPrivate() { return this.#private; } }

// !SyntaxError: Undefined private field #private:
// must be declared in an enclosing class

Private fields should be used with extreme caution as they can severely limit the
extensibility of your code, hence increasing its rigidity and lack of flexibility. If you use a
private field, you should ensure that you have considered the consequences. It may be the
case that what you need is, in fact, just a pseudo-private field, prefixed with an underscore
(for example, _private) or another obscure piece of punctuation (for example,
$_private). Doing this will, by convention, ensure that fellow programmers making use
of your interface will (hopefully) understand that they should not make use of the field
publicly. If they do so, then the implication is that they may break things. If they wish to
extend your class with their own implementation, then they can make use of your private
field freely.

Extending classes
Inheritance within the Class pattern can very simply be achieved by using the class ...
extends syntax like so:

class Animal {}
class Tiger extends Animal {}

This will ensure that any instance of Tiger will have [[Prototype]], which itself has
[[Prototype]] of Animal.prototype:

Object.getPrototypeOf(new Tiger()) === Tiger.prototype;
Object.getPrototypeOf(Tiger.prototype) === Animal.prototype;

Here, we have confirmed that each new instance of Tiger has [[Prototype]] of
Tiger.prototype and that Tiger.prototype inherits from Animal.prototype.

Mixing-in classes
Conventionally, an extension is used not only to create semantic sub-classes but also to
provide mixins of methods. JavaScript provides no native mixing-in mechanism so to
achieve it you, either need to augment the prototype after the definition or effectively
inherit from your mixins (as if they are superclasses).

Design Patterns Chapter 11

[345]

Augmenting a prototype with your mixins is the simplest approach. We can achieve this
by specifying mixins as objects and then adding them to prototype of a class via a
convenient method such as Object.assign:

const fooMixin = { foo() {} };
const bazMixin = { baz() {} };

class MyClass {}
Object.assign(MyClass.prototype, fooMixin, bazMixin);

This approach, however, does not allow MyClass to override its own mixin methods:

// Specify MyClass with its own foo() method:
class MyClass { foo() {} }

// Apply Mixins:
Object.assign(MyClass.prototype, fooMixin, bazMixin);

// Observe that the mixins have overwritten MyClass's foo():
new MyClass().foo === fooMixin.foo; // true (not ideal)

This is expected behavior but creates a headache for us in some cases. Therefore, to achieve
a more generalized mixin approach, we can explore a different mechanism. Instead of
directly mixing-in methods to an existing prototype object, we can use inheritance. This
can most easily be achieved by so-called Subclass Factories. These are essentially just
functions that themselves return a class that extends a specified super-class:

const fooSubclassFactory = SuperClass => {
 return class extends SuperClass {
 fooMethod1() {}
 fooMethod2() {}
 };
};

Here's an example of how it might work in reality:

const greetingsMixin = Super => class extends Super {
 hello() { return 'hello'; }
 hi() { return 'hi'; }
 heya() { return 'heya'; }
};

class Human {}
class Programmer extends greetingsMixin(Human) {}

new Programmer().hi(); // => "hi"

Design Patterns Chapter 11

[346]

We can additionally implement a helper to combine any number of these Subclass Factories.
It can do so by constructing a chain (or tree) of [[Prototype]] links that is as long as the
list of mixins we provide:

function mixin(...mixins) {
 return mixins.reduce((base, mixin) => {
 return mixin(base);
 }, Object);
}

Note how we have the default base class of our mixin reduction as
Object. This is to ensure that Object is always at the top of our
inheritance tree (and that we're not creating pointless intermediary
classes).

And here's how we would make use of our mixin helper: first, we'd define our sub-class
factories (that is, the actual mixins):

const alpha = Super => class extends Super { alphaMethod() {} };
const bravo = Super => class extends Super { braveMethod() {} };

Then, we can construct a class definition using both of these mixins via the mixin helper:

class MyClass extends mixin(alpha, bravo) {
 myMethod() {}
};

This means that the result's MyClass instances will have access to its own prototype
(containing myMethod), alpha's prototype (containing alphaMethod), and bravo's
prototype (containing bravoMethod):

typeof new MyClass().myMethod; // => "function"
typeof new MyClass().alphaMethod; // => "function"
typeof new MyClass().braveMethod; // => "function"

Mixins can be awkward to get right, so it helps to utilize a library or proven piece of code to
take care of this for you. The mixin mechanism you should use will probably depend on the
exact characteristics you're seeking. In this section, we've seen two examples: one where we
compose methods into a singular [[Prototype]] via Object.assign(), and another
where we create a tree of inheritance (that is, a chain of [[Prototypes]]) to represent our
mixin hierarchy. Hopefully, you are now in a better position to select which one of these (or
indeed, all of the others available online) are best suited to your needs.

Design Patterns Chapter 11

[347]

Accessing a super-class
All functions within a class defined using the method definition syntax have the super
binding available, which provides access to the super-class and its properties. The super()
function is available to invoke directly (which will call the constructor of the super-class)
and can provide access to specific methods (super.methodName()).

If you are extending another class and you are defining your own constructor, you must
call super() and you must do so before any other code within your constructor that
modifies the instance (that is, this) in any way:

class Tiger extends Animal {
 constructor() {
 super(); // I.e. Call Animal's constructor
 }
}

If your constructor attempts to call super() after modifying the instance, or if it attempts
to avoid calling super(), then you will receive ReferenceError:

class Tiger extends Animal {
 constructor() {
 this.someProperty = 123;
 super();
 }
}

new Tiger();
// ! ReferenceError: You must call the super constructor in a derived class
// before accessing 'this' or returning from the derived constructor

The super binding and its oddities are described in greater detail in Chapter 6, Primitives
and Built-in Types (see the section on Function bindings).

The Prototype pattern
The Prototype pattern involves using plain objects to act as templates for other objects. The
Prototype pattern extends this template object directly without fussing with instantiation
via new or Constructor.prototype objects. You can think of it as similar to conventional
constructor or Class patterns minus the constructor.

Design Patterns Chapter 11

[348]

Typically, you'll first create an object to act as your template. This will have all of the
methods and properties associated with your abstraction. In the case of an
inputComponent abstraction, it may look like this:

const inputComponent = {
 name: 'Input Component',
 render() {
 return document.createElement('input');
 }
};

Note how inputComponent starts with a lowercase character. By
convention, only constructor functions should be named with an initial
capital letter.

Using our inputComponent template, we can then create (or instantiate) specific instances
using Object.create:

const inputA = Object.create(inputComponent);
const inputB = Object.create(inputComponent);

As we've learned, Object.create(thePrototype) simply creates a new object and sets
its internal [[Prototype]] property to thePrototype, meaning that any properties
accessed on the new object will be looked for on thePrototype if they are not available on
the object itself. As such, we can treat the resulting object just like any other classical
instance, accessing properties as we would on instances resulting from the more
conventional Constructor or Class patterns:

inputA.render();

For convenience, we could also introduce a method on inputComponent itself designed to
do the object creation work:

inputComponent.extend = function() {
 return Object.create(this);
};

This means that we can create individual instances with slightly less code:

const inputA = inputComponent.extend();
const inputB = inputComponent.extend();

Design Patterns Chapter 11

[349]

And if we wish to create other types of inputs, then we can easily extend inputComponent,
as we already have; add some methods to our the resulting object; and then offer that new
object up for others to extend:

const numericalInputComponent = Object.assign(inputComponent.extend(), {
 render() {
 const input = InputComponent.render.call(this);
 input.type = 'number';
 return input;
 }
});

To override a particular method and access its parent, as you can see, we need to reference
and call it directly (InputComponent.render.call()). You may expect that we should
be able to use super.render() but, unfortunately, super only refers to [[Prototype]]
of the object (the home) on which the containing method is defined. And because
Object.assign() effectively steals these methods off their home objects, super would
refer to the wrong thing.

The Prototype pattern is rather confusingly named. As we've seen, both
the conventional Constructor pattern and the newer Class pattern involve
the prototype, so you may want to instead refer to this pattern as the
Object Extension Pattern or even the No-Constructor Approach to Prototypal
Inheritance. Whatever you decide, it's quite a rare pattern. The classical
OOP patterns are usually favored.

When to use the Prototype pattern
The Prototype pattern is most useful in scenarios where you have an abstraction that will
have varying characteristics between instances (or extensions) but does not require
construction. At its core, the Prototype pattern really only refers to the extension
mechanism (that is, via Object.create), so it can equally be used in any scenario where
you have objects that may semantically relate to other objects via inheritance.

Design Patterns Chapter 11

[350]

Imagine a scenario in which we need to represent sandwich data. Every sandwich has a
name, a bread type, and three slots for ingredients. For example, here is the representation
of a BLT:

const theBLT = {
 name: 'The BLT',
 breadType: 'Granary',
 slotA: 'Bacon',
 slotB: 'Lettuce',
 slotC: 'Tomato'
};

We may wish to create an adaptation of the BLT, reusing most of its characteristics except
the Tomato ingredient, which will be replaced with Avocado. We could simply clone the
object wholesale, by using Object.assign to copy all the properties from theBLT to a
fresh object and then specifically copying over (that is, overwriting) slotC:

const theBLA = Object.assign({}, theBLT, {
 slotC: 'Avocado'
});

But what if the BLT's breadType was changed? Let's take a look:

theBLT.breadType = 'Sourdough';
theBLA.breadType; // => 'Granary'

Now, theBLA is out of sync with theBLT. We have realized that what we actually want
here is an inheritance Model so that breadType of theBLA will always match breadType
of its parent sandwich. To achieve this, we can simply change our creation of theBLA so
that it inherits from theBLT (using the Prototype pattern):

const theBLA = Object.assign(Object.create(theBLT), {
 slotC: 'Avocado'
});

If we later change a characteristic of theBLT, it will helpfully be reflected in theBLA via
inheritance:

theBLT.breadType = 'Sourdough';
theBLA.breadType; // => 'Sourdough'

This constructor-less Model of inheritance, as you can see, can be useful in some scenarios.
We could equally represent this data using straightforward classes but with such basic data
that may be overkill. The Prototype pattern is useful in that it provides a simple and explicit
mechanism of inheritance that can result in less clunky code (although, equally, if
misapplied, can lead to more complexity).

Design Patterns Chapter 11

[351]

The Revealing Module pattern
The Revealing Module pattern is a pattern used to encapsulate some private logic and then
expose a public API. There are a few adaptations of this pattern, but usually it is expressed
via an Immediately Invoked Function Expression (IIFE) that returns an object literal
containing the public methods and properties:

const myModule = (() => {
 const privateFoo = 1;
 const privateBaz = 2;

 // (Private Initialization Logic goes here)

 return {
 publicFoo() {},
 publicBaz() {}
 };
})();

Any functions returned by the IIFE will form a closure around their respective scopes,
meaning that they will continue to have access to the private scope.

An example of a real-world Revealing Module would be this simple DOM Component that
contains logic for rendering a notification to users:

const notification = (() => {

 const d = document;
 const container = d.body.appendChild(d.createElement('div'));
 const message = container.appendChild(d.createElement('p'));
 const dismissBtn = container.appendChild(d.createElement('button'));
 container.className = 'notification';

 dismissBtn.textContent = 'Dismiss!';
 dismissBtn.onclick = () => {
 container.style.display = 'none';
 };

 return {
 display(msg) {
 message.textContent = msg;
 container.style.display = 'block';
 }
 };
})();

Design Patterns Chapter 11

[352]

The notification variable in the outer scope will refer to the object returned by the IIFE,
meaning we have access to its public API:

notification.display('Hello user! Something happened!');

The Revealing Module pattern is especially useful in scenarios where you need to have a
delineation between private and public, where you have specific initialization logic, and
where, for whatever reason, your abstraction does not suit more object-oriented patterns
(Class or Constructor patterns).

Before the existence of class definitions and #private fields, the Revealing Module pattern
was the only easy way to emulate real privacy. As such, it has somewhat fallen out of favor.
Some programmers still make use of it but, usually, only due to aesthetic preferences.

The Conventional Module pattern
The Conventional Module pattern is usually expressed as a plain object literal with a set of
methods:

const timeDiffUtility = {
 minutesBetween(dateA, dateB) {},
 hoursBetween(dateA, dataB) {},
 daysBetween(dateA, dateB) {}
};

It's quite typical for such a module to also reveal specific initialization methods such as
initialize, init, or setup. Alternatively, we may want to provide methods that change
the state or configuration of the entire module (such as setConfig):

const timeDiffUtility = {
 setConfig(config) {
 this.config = config;
 },
 minutesBetween(dateA, dateB) {},
 hoursBetween(dateA, dataB) {},
 daysBetween(dateA, dateB) {}
};

Design Patterns Chapter 11

[353]

The Conventional Module pattern is incredibly flexible since it is just a plain object.
JavaScript's treatment of functions as first-class citizens (that is, they're just like any other
value) means that you can easily compose the objects of methods from functions defined
elsewhere, as well:

const log = () => console.log(this);

const library = {
 books: [],
 addBook() {},
 log // add log method
};

Conventionally, you may have considered using an inheritance or mixin pattern to include
this log method in our library module, but here we're simply composing it ourselves by
referencing and inserting it directly into our object. This pattern gives us a lot of flexibility
in terms of how we reuse code in JavaScript.

When to use the Conventional Module pattern
The Conventional Module pattern is useful in any scenario where you simply wish to wrap
up a set of related methods or properties into something with a common name. They are
often used for collections of common methods that somehow relate to each other, such as
logging utilities:

const logger = {
 log(message) { /* ... */ },
 warn(message) { /* ... */ },
 error(message) { /* ... */ }
};

The Conventional Module pattern is just an object, so it's arguably unnecessary to even
mention it at all. But, technically, it is an alternative to other techniques of abstraction
definition, so it's useful to designate it as a pattern of its own.

Design Patterns Chapter 11

[354]

The Singleton Class pattern
The Class pattern is quite quickly become the de facto pattern for creating abstractions of all
types, including singletons and utility objects as well, so it may not always be the case that
your class will need to be utilized as a conventionally OOP class with inheritance and
instantiation. For example, we may wish to set up a utility object with a class definition so
that we can define any initialization logic within the constructor and provide a semblance
of encapsulation within its methods:

const utils = new class {
 constructor() {
 this.#privateThing = 123;
 // Other initialization logic here...
 }
 utilityA() {}
 utilityB() {}
 utilityC() {}
};

utils.utilityA();

Here, we're creating and immediately instantiating a class. This is similar in spirit to the
Revealing Module pattern where we utilize an IIFE to encapsulate initialization logic and
the public API. Here, instead of achieving that encapsulation via a scope (and the resulting
closure around private variables), we are using the straightforward constructor to define
our initialization. We then are using the regular instance properties and methods to define
both our private variables and our public interface.

When to use the Singleton Class pattern
Singletons are useful when only one instance of a class is required. The singular instance
produced is similar in nature to the Conventional or Revealing Module pattern. It enables
you to wrap up an abstraction with the option of private variables and implicit construction
logic. Common use cases of singletons include Utilities, Logging, Caching, Global Event Buses,
and so on.

Design Patterns Chapter 11

[355]

Planning and harmony
Deciding on which architectural and modular design patterns to use can be a tricky process,
as usually at the time of deciding, it may not be immediately obvious what all of the
requirements of the project are. Also, we as programmers are not omniscient. We are
flawed, egoistic, and usually passionate individuals. This combination, if not kept in check,
can yield chaotic code bases with designs that block the very productivity, reliability, and
maintainability that we are trying to foster. To be wary of these pitfalls, remember the
following:

Expect change and adaptation: Every software project will involve change at
some point. If we are forward-thinking in our architectural and modular designs,
then we will be able to limit this future pain, but never begin a project thinking
that you will create the One True Solution. Instead, iterate, question your
judgment, and then iterate again.
Consult with other programmers: Talk to the stakeholders who will have to
make use of your code. That may be fellow programmers on your team or other
programmers who'll be making use of the interfaces that you're providing. Field
opinions and data and then make an informed decision.
Avoid cargo culting and ego: Be aware of cargo culting and your ego and how, if
we're not careful, we can blindly inherit ways of doing things without crucially
considering their suitability, or we can be trapped by our egos: thinking that one
specific design or methodology is perfect just because it's the one we personally
know and love.
Bias toward harmony and consistency: When designing an architecture, above
all, seek harmony. There is always the possibility of many individually tailored
parts of a code base, but too many internal differences can confuse maintainers
and lead to a code base of splintered quality and reliability.

Design Patterns Chapter 11

[356]

Summary
In this chapter, we have explored the purpose and application of design patterns in
JavaScript. This has spanned a foundational introspection on what it even means for
something to be a design pattern and an exploration of some common modular and
architectural design patterns. We have explored the various ways we can declare
abstractions using JavaScript's native mechanisms such as classes and prototypes, and some
more novel mechanisms such as the Revealing Module pattern. Our deep coverage of these
patterns will ensure that, in the future, we have ample options available to us when crafting
our abstractions.

In the next chapter, we will be exploring real-world challenges encountered by JavaScript
programmers, such as state management and network communication, and applying our
knowledge of new perspectives to them.

12
Real-World Challenges

Many challenges a JavaScript programmer faces may not be with the language itself but
with the ecosystems that their code must exist within and interface with. JavaScript is
usually used in the context of the web, on either a browser or server, and so the problem
domains encountered are usually characterized by topics such as HTTP and the DOM. We
often have to wrestle with frameworks, APIs, and mechanisms that can sometimes seem
awkward, unintuitive, and complicated. In this chapter, we're going to familiarize
ourselves with some of the most common challenges and the approaches and abstractions
we can use to surmount them.

We will begin by exploring the DOM and the challenges inherent in building ambitious
Single-Page Applications (SPAs) in JavaScript. We'll then explore the topics of
dependency management and security as these are both increasingly vital competencies in
today's landscape. This chapter is not intended as an exhaustive coverage of topics, but
rather a quick whirlwind of deep-dives that you may find relevant to the weighty task of
crafting clean JavaScript on today's web platform.

In this chapter, we will cover the following topics:

The DOM and single-page applications
Dependency management
Security (XSS, CSRF, and so on)

The DOM and single-page applications
The Document Object Model (DOM) API is provided within browsers to allow developers
to read from and dynamically mutate web documents. Upon its initial introduction in 1997,
it was very limited in scope but has expanded greatly in the last two decades, allowing us
to now have programmatic access to a wide variety of browser functionality.

Real-World Challenges Chapter 12

[358]

The DOM itself presents us with a hierarchy of elements that are derived from the parsed
HTML of a given page. This hierarchy is made accessible to JavaScript via an API. This API
allows us to select elements, traverse trees of elements, and inspect element properties and
characteristics. Here is an example of a DOM tree with the corresponding JavaScript used
to access it:

The way we access specific DOM nodes has changed over the years but its fundamental
tree-like structure has remained the same. Via access to this structure, we can read from the
elements, mutate them, or indeed add to the tree of elements ourselves.

Alongside the DOM API is a collection of other natively provided browser APIs that make
it possible to do things such as reading cookies, mutating local storage, setting up
background tasks (workers), and operating on the CSS Object Model (CSSOM).

As recently as the year 2012, it was quite typical for web developers to only use JavaScript
to enhance experiences already manifested in the markup of a page. For example, they
might've simply added a rollover state to a button or validation to a form field. Such
additions were considered a type of progressive enhancement, where the user could
experience the website without JavaScript if they wanted but having JavaScript enabled
would enhance their experience in some small way.

Real-World Challenges Chapter 12

[359]

Progressive enhancement is a principle that espouses the importance of
functionality that is resilient to environmental constraints. It tells us that
we should try to provide all users with as much functionality as their
environment allows. It is often conceptually paired with graceful
degradation, which is the ability for a piece of software to maintain
limited functionality even when its dependencies are unmet or only
partially met (for example, a client-side validated <form> that is
submittable even on browsers without JavaScript support is said to
gracefully degrade).

Nowadays, however, it is far more common to have the frontend portion of a web
application built almost entirely with JavaScript and expressed within a single page. These
are often termed SPAs. Instead of having the user naturally navigate around a website,
loading up new pages within the browser upon each action, the SPA will instead rewrite
the current page's content and the current browser address. SPAs are therefore dependent
upon the user's browser supporting JavaScript and potentially other APIs too. SPAs
typically do not gracefully degrade, although it is best practice (and good sense!) to provide
a series of fallbacks so that the entire audience can receive functionality.

The proliferation of the SPA can be attributed to both developer experience and user
experience boosts:

Architecture (DX): There is a nicer separation of concerns between the frontend
client and the backend API layer. This can lead to a cleaner architecture that
helpfully delineates business logic from UI. Having one code base that governs
both the rendering and dynamic enhancement can vastly simplify things as well.
State persistence (UX): Users can navigate and execute actions within a web
application without having to lose in-page state, such as populated input fields
or scroll-position. Additionally, the UX can include multiple different panes,
modals, or sections that populate independently and can be persisted regardless
of other actions taken.
Performance (UX): The bulk of HTTP resources can be loaded just once within
the user's browser, increasing the performance of any further actions or
navigations within the application. That is, after the initial load of the
application, any further requests can be optimized to be simple JSON REST
responses with no unnecessary boilerplate markup so the browser spends less
time re-parsing or re-rendering boilerplate HTML, CSS, and JavaScript.

Real-World Challenges Chapter 12

[360]

The growing demands on web applications and the proliferation of the SPA have meant
that programmers have come to rely much more on browser APIs, especially the DOM, to
create rich and dynamic experiences. The painful truth, however, is that the DOM was
never intended to cater to the creation of rich desktop-like experiences. Because of this,
there have been many growing pains in bringing the DOM up to scratch with current
demands. Additionally, there has been a slow and iterative process of creating frameworks
that enable the development of rich experiences atop a platform that was not originally
designed for them.

One of the most obvious ways in which the DOM (and browser APIs generally) does not
meet the current demands of SPAs is experienced when trying to bind the DOM to data. We
will now explore this topic in more depth.

DOM binding and reconciliation
One specific challenge that multiple frameworks have attempted to solve over the years is
the binding of the DOM to data. We briefly discussed data-binding in the last chapter's
section on MVVM. Any GUI needs to have a way of having its displayed pixels reflect its
underlying data.

Via the DOM, we can dynamically create specific elements and place them as we wish. The
user can then impose their intent on the application by interfacing with these elements,
usually via input fields and buttons. These user actions, which we bind to via DOM events,
may then affect a change in underlying data. This change needs to be reflected in the DOM.
This back-and-forth is usually termed two-way-binding. Historically, to achieve this, we would
manually create a DOM tree, set up event listeners on elements, and then manually mutate
those DOM elements when any underlying data (or state) changed.

A reminder: State is the current situation of a program: everything the user
sees and everything that underlies what they see. The state of a given
application may be represented in more than one place, and these
representations may become out-of-sync. We can imagine a scenario in
which the same data is displayed in two places but is not consistent.

Real-World Challenges Chapter 12

[361]

The challenge in manually fiddling with the DOM ourselves is that it doesn't scale very
well without some kind of abstraction. It is easy enough to take a piece of data and derive a
DOM tree from that data, but having the DOM tree tied to changes within the data and
having the data tied to user-derived changes in the DOM (for example, clicking on buttons)
are quite burdensome things to implement.

DOM reconciliation
To illustrate this challenge, consider a simple shopping list in the form of an array
composed of individual items as strings:

const shoppingList = ['Bananas', 'Apples', 'Chocolate'];

Deriving a DOM tree from this data is quite simple:

const ul = document.createElement('ul');
shoppingList.forEach(item => {
 const li = ul.appendChild(document.createElement('li'));
 li.textContent = item;
});
document.body.appendChild(ul);

This code would produce the following DOM tree (and append it to <body>):

 Bananas
 Apples
 Chocolate

But what happens if our data changes? And what would happen if there were <input> via
which users could add new items? To accommodate these things, we would have to
implement an abstraction to hold our data and raise events (or invoke callbacks) whenever
the data changes. Additionally, we'd need some way of tying each individual data item to a
DOM node. If the first item, "Bananas" were to be changed to "Melons", then we should
only make the minimum mutations necessary to the DOM to reflect that change. In this
case, we would want to replace the first element's inner text node's data property (in
other words, the actual text contained within the text node):

shoppingList[0] = 'Melons';
ul.children[0].firstChild.data = shoppingList[0];

Real-World Challenges Chapter 12

[362]

This type of change, in abstract terms, is known as DOM reconciliation and involves
reflecting any changes made to data within the DOM. There are broadly three types of
reconciliation:

Update: If an existing data item is updated, then the corresponding DOM node
should be updated to reflect the change
Deletion: If an existing data item is removed, then the corresponding DOM node
should also be removed
Creation: If a new data item is added, then a new DOM node should be created,
appended to the correct place in the live DOM tree, and then linked as the
corresponding DOM node for that data item

DOM reconciliation is a relatively simple process. We could easily
create ShoppingListComponent ourselves with the ability to update/add/remove items,
but it would be very highly coupled to the structure of the data and the DOM. The logic
pertaining just to a singular update may involve, as we've seen, the specific mutation of a
text node's content. If we want to change our DOM tree slightly or the structure of our data,
then we have to significantly refactor our ShoppingListComponent.

React's approach
Many modern libraries and frameworks have sought to make this a less burdensome
process by abstracting the DOM reconciliation process away behind a declarative interface.
A good example of this is React, which allows you to declare your DOM tree declaratively
using its JSX syntax within your JavaScript. JSX looks like regular HTML with the addition
of interpolation delimiters ({...}) where regular JavaScript can be written to express data.

Here, we are creating a component that produces a simple <h1> greeting populated with an
uppercase name:

function LoudGreeting({ name }) {
 return <h1>HELLO { name.toUpperCase() } </h1>;
}

The LoudGreeting component could be rendered to <body> like so:

ReactDOM.render(
 <LoudGreeting name="Samantha" />,
 document.body
);

Real-World Challenges Chapter 12

[363]

And that would result in the following:

<body>
 <h1>HELLO SAMANTHA</h1>
</body>

We might implement a ShoppingList component in the following way:

function ShoppingList({items}) {
 return (

 {
 items.map((item, index) => {
 return <li key={index}>{item}
 })
 }

);
}

And then we could render it in the following way, passing our specific shopping list items
in our invocation of the component:

ReactDOM.render(
 <ShoppingList items={["Bananas", "Apples", "Chocolate"]} />,
 document.body
);

This is a simple example but gives us an idea of how React works. The true magic of React
is in its ability to selectively re-render the DOM in reaction to changes in data. We can
explore this in our example by changing data in reaction to a user action.

React and most other frameworks give us a straightforward mechanism of event-listening
so that we can listen for user events in the same manner as we would conventionally. Via
React's JSX, we can do the following:

<button
 onClick={() => {
 console.log('I am clicked!')
 }}
>Click me!</button>

Real-World Challenges Chapter 12

[364]

In our case of the shopping list problem domain, we want to create <input />, which can
receive new items from users. To accomplish this, we can create a separate component
called ShoppingListAdder:

function ShoppingListAdder({ onAdd }) {
 const inputRef = React.useRef();
 return (
 <form onSubmit={e => {
 e.preventDefault();
 onAdd(inputRef.current.value);
 inputRef.current.value = '';
 }}>
 <input ref={inputRef} />
 <button>Add</button>
 </form>
);
}

Here, we are using a React Hook (called useRef) to give us a persistent reference that we
can re-use between component renders to reference our <input />.

React Hooks (typically named use[Something]) are a relatively recent
addition to React. They've simplified the process of keeping persistent
state across component renders. A re-render occurs whenever our
ShoppingListAdder function is invoked. But useRef() will return the
same reference on every single call within ShoppingListAdder. A
singular React Hook can be thought of as the Model in MVC.

To our ShoppingListAdder component, we are passing an onAdd callback, which we can
see is called whenever the user has added a new item (in other words, when the <form>
submits). To make use of a new component, we want to place it within ShoppingList and
then respond when onAdd is invoked by adding a new item to our list of food:

function ShoppingList({items: initialItems}) {

 const [items, setItems] = React.useState(initialItems);

 return (
 <div>
 <ShoppingListAdder
 onAdd={newItem => setItems(items.concat(newItem))}
 />

 {items.map((item, index) => {
 return <li key={index}>{item}
 })}

Real-World Challenges Chapter 12

[365]

 </div>
);
}

As you can see, we are using another type of React Hook called useState to persist the
storage of our items. initialItems can be passed into our component (as an argument)
but we then derive a set of persistent items from these that we can mutate freely across re-
renders of our component. And that's what our onAdd callback is doing: it is adding a new
item (entered by the user) to the current list of items:

Calling setItems will, behind the scenes, invoke a re-render of our component,
causing Coffee to be appended to the live DOM. Creations, updates, and
deletions are all handled similarly. The beauty of abstractions like React is that you don't
need to think of these mutations as distinct pieces of DOM logic. All we need to do is derive
a component/DOM tree from our set of data and React will figure out the precise changes
needed to reconcile the DOM.

To ensure we understand what's going on, when a piece of data (state) is changed via a
Hook (for example, setItems(...)), React does the following:

React re-invokes the component (re-renders)1.
React compares the tree returned from the re-render with the previous tree2.
React makes the essential granular mutations to the live DOM for all of the3.
changes to be reflected

Other modern frameworks borrow from this approach as well. One nice side-effect of DOM
reconciliation mechanisms built into these abstractions is that, via their declarative syntax,
we can derive a deterministic tree of components from any given data. This is in stark
contrast to the imperative approach, within which we must manually select and mutate
specific DOM nodes ourselves. The declarative approach gives us a functional purity that
enables us to produce outputs that are deterministic and idempotent.

Real-World Challenges Chapter 12

[366]

As you may recall from Chapter 4, SOLID and Other Principles, functional
purity and idempotence give us standalone testable units of predictable
input and output. They allow us to say X input will always result in Y
output. This transparency aids tremendously in both the reliability and the
comprehensibility of our code.

Building large web applications, even with the reconciliation puzzle out of the way, is still a
challenge. Every component or view within a given page needs to be populated with its
correct data and needs to propagate changes. We'll be exploring this challenge next.

Messaging and data propagation
When building a web application, you'll quickly run into the challenge of getting different
parts or components within your page to talk to each other. At any single time, your
application should be representing the exact same set of data. If something changes, either
via user action or some other mechanism, that change needs to be reflected in all of the
appropriate places.

This problem occurs at different scales. You may have a chat application where an entered
message needs to be propagated to all participants as fast as possible. Or you may have a
piece of data that needs to be represented several times within the same application view
and hence all of these representations need to be kept in sync. For example, if a user
changes their forename in a profile settings pane, then this should reasonably update other
places in the visible application where their forename appears:

Real-World Challenges Chapter 12

[367]

In a conventional non-SPA, the Save personal info button would simply submit a <form>
and the page would then fully reload and a brand new chunk of markup with the updated
state would be sent down from the server. Within an SPA, it is slightly more complicated.
We would need to both submit the data to the server and then somehow update only the
relevant portions of the page with the new data.

To solve this problem, we have to think carefully about the flow of data or state within our
application. The challenge is reflecting the source of truth for the relevant data as soon as
possible in all of the places it needs to be represented. To achieve this, we need a way for
different parts of our code base to talk to each other. There are a couple of paradigms we
can use here:

Event-oriented: This means having specific global events that can be emitted and
listened to (for example, userProfileNameChange). Any component or view
within a page can then bind to this event and react accordingly by updating its
content. The state, therefore, exists at the same time in many different areas
(amongst various components or views).
State-oriented: This means having a global state object that contains the single
source of truth for the user's forename. This state object, or parts of it, can be
recursively passed down through a component tree, meaning that, upon any
change, the entire component tree is fed with the new state. The state is therefore
centralized yet propagated whenever a change occurs.

If we consider a user changing their forename via <input />, we can envisage the
following distinct paths of data flow to all components that depend upon the forename
data:

Real-World Challenges Chapter 12

[368]

Fundamentally, these approaches achieve the same thing: they render data to the DOM.
The crucial thing that differs is how the change, in this case, a mutation of the forename, is
communicated throughout the application and where the data resides at any one time:

The event-oriented paradigm has data living in several places at once. So, if, for
whatever reason, one of those places fails to bind to the mutation of that event,
then you can end up with out-of-sync data representations.
The state-oriented paradigm only has one canonical representation of the data
and effectively pipes it to the relevant views or components, so that they are
always hydrated with the latest version.

The state-oriented paradigm is the increasingly more prevalent approach as it enables us to
think in a clearer way about our data and its representations. We can say that we have a
single representation of the data and that we derive components (or UI) from that data. It's
a functionally pure approach since a component is really just a deterministic mapping of
data to a given UI. Since any given component only cares about its input data, it doesn't
need to make too many assumptions about the context it lives within. For example, we may
have a UserInfo component, with an expected input of four values:

{
 forename: 'Leah',
 surname: 'Brown',
 hobby: 'Kites',
 location: 'Edinburgh'
}

Since this component does not rely on any global events or other contextual assumptions, it
can be easily isolated. This aids not only in comprehension and maintainability but also
enables us to write simpler tests. The UserInfo component can be extracted and tested by
itself, with no inter-dependencies with the application in which it will eventually reside.

React is a popular framework for expressing this state-oriented paradigm, but many other
frameworks are following suit. In React, combined with JSX, we may express our UserInfo
component like so:

function UserInfo({ forename, surname, hobby, location }) {
 return (
 <div>
 <h1>User Info</h1>
 <dl>
 <dt>Forename:</dt> <dd>{forename}</dd>
 <dt>Surname:</dt> <dd>{surname}</dd>
 <dt>Hobby:</dt> <dd>{hobby}</dd>
 <dt>Location:</dt> <dd>{location}</dd>
 </dl>

Real-World Challenges Chapter 12

[369]

 </div>
);
}

Here, we can see that this component's output is merely a mapping of its input. Such a
simple case of I/O can easily be tested and reasoned about. The beauty of this harks back to
the Law of Demeter (LoD), which we covered in Chapter 4, SOLID and Other
Principles, which tells us that the UserInfo component has no business knowing where its
data comes from or where it is used; it only needs to fulfill its singular responsibility: from
its four inputs, it simply needs to provide us with a DOM hierarchy—clean and beautiful.

There is, naturally, a lot more complexity in real-life web applications that we have not
been able to draw out with our forename example. However, if we remember the basics of
separating concerns, and building views or components that are well isolated and
functionally pure, then there are few challenges we won't be able to solve cleanly.

Frontend routing
When building web applications, we will likely need to mutate the address the user sees
within the browser to reflect the current resource being accessed. This is a core tenet of how
browsers and HTTP work. An HTTP address should represent a resource. And so, when
the user wishes to change the resource they are viewing, the address should
correspondingly change.

Historically, the only way of mutating the current URL within the browser would be for the
user to navigate to a different page via an <a href> or similar. When SPAs started to
become popular, however, JavaScript programmers needed to get creative. In the early
days, a popular hack would be to mutate the hash component of a URL
(example.org/path/#hash), which would give the user the experience of traversing a
traditional website where each navigation or action would result in a new address and a
new entry in the browser's history, hence enabling the use of the back-and-forward buttons
in the browser.

The approach of mutating the #hash of a URL was famously used in
Google's Gmail application when it launched in 2004 so that the address
bar in the browser would accurately express what email or view you were
currently looking at. Many other SPAs followed suit.

https://cdp.packtpub.com/clean_code_in_javascript/wp-admin/post.php?post=356&action=edit#post_139

Real-World Challenges Chapter 12

[370]

A few years later, thankfully, the History API found its way into browsers and is now the
standard for mutating the address in response to navigations or actions within an SPA.
Specifically, this API allows us to manipulate the browser session history by pushing new
states or replacing current ones. For example, when a user expresses a wish to change to the
About Us view within a fictional SPA, we can express this as a new state pushed to their
history, like so:

window.history.pushState({ view: 'About' }, 'About Us', '/about');

This would immediately change the address in the browser to '/about'. Typically, the
calling code would also instigate the rendering of the associated view. Routing is the name
given to these combined processes of rendering the new DOM and mutating the browser's
history. Specifically, a router takes responsibility for the following:

Rendering the view, component, or page that corresponds to the current address
Exposing an interface to other code so that navigation can be instigated
Listening for changes to the address made by the user (the popstate event)

To illustrate these responsibilities, we can create a simple router for an application that very
simply displays Hello {color}! atop a background of that very color for any color
represented in the path of the URL. Hence, /red will render a red background with the
text, Hello red!. And /magenta will render a magenta background with the text, Hello
magenta!:

And here is our implementation of colorRouter:

const colorRouter = new class {
 constructor() {
 this.bindToUserNavigation();

 if (!window.history.state) {
 const color = window.location.pathname.replace(/^\//, '');
 window.history.replaceState({ color }, color, '/' + color);

Real-World Challenges Chapter 12

[371]

 }

 this.render(window.history.state.color);
 }
 bindToUserNavigation() {
 window.addEventListener('popstate', event => {
 this.render(event.state.color);
 });
 }
 go(color) {
 window.history.pushState({ color }, color, '/' + color);
 this.render(color);
 }
 render(color) {
 document.title = color + '!';
 document.body.innerHTML = '';
 document.body.appendChild(
 document.createElement('h1')
).textContent = 'Hello ${color}!';
 document.body.style.backgroundColor = color;
 }
};

Notice how we're using the Class Singleton pattern here (as introduced in
the last chapter). Our colorRouter abstraction is well-suited to this
pattern as we need specific construction logic and we want to present a
singular interface. We could have also used the Revealing Module
pattern.

With this router, we can then call colorRouter.go() with our color and it'll change the
address and be rendered as expected:

colorRouter.go('red');
// Navigates to `/red` and renders "Hello red!"

There is, even in this simple scenario, some complexity in our router. When the user
originally lands on the page via conventional browsing, for example, perhaps by
typing example.org/red into the address bar, the state of the history object will be empty,
as we have not yet informed that browser session that /red is tied to the piece of state, {
color: "red" }.

Real-World Challenges Chapter 12

[372]

To populate this initial state, we need to grab the current location.pathname (/red) and
then extract the color from it by removing the initial forward-slash. You can see this logic in
the colorRouter constructor function:

if (!window.history.state) {
 const color = window.location.pathname.replace(/^\//, '');
 window.history.replaceState({ color }, color, '/' + color);
}

For more complex paths, this logic can start to get quite complex. In a typical router, many
different patterns of paths will need to be accommodated for. As such, usually, a URL
parsing library will be used to properly extract each part of the URL and allow the router to
route that address correctly.

It's important to use a properly constructed URL parsing library for use in
production routers. Such libraries tend to accommodate all of the edge-
cases implicit in URLs, and should ideally be compliant with the URI
specification (RFC 3986). An example of this would be URI.js (available
on npm as uri-js).

Various routing libraries and routing abstractions within larger frameworks have emerged
over the years. They are all slightly different in the interface they present to the
programmer. React Router, for example, allows you to declare your independent routes as
a series of React components via JSX syntax:

function MyApplication() {
 return (
 <Router>
 <Route exact path="/" component={Home} />
 <Route path="/about/:employee" component={AboutEmployee} />
 </Router>
);
}

Vue.js, a different framework, provides a unique routing abstraction of its own:

const router = new VueRouter({
 routes: [
 { path: '/', component: Home }
 { path: '/about/:employee', component: AboutEmployee }
]
})

Real-World Challenges Chapter 12

[373]

You may notice that, in both examples, there is a URL path specified as
/about/:employee. The colon followed by a given token or word is a common way to
designate that a specific portion of the path is dynamic. It's typical to need to dynamically
respond to a URL that contains a piece of identifying information concerning a specific
resource. It's reasonable that all of the following pages should produce different content:

/about/john

/about/mary

/about/nika

It would be incredibly burdensome to specify these all as individual routes (and near
impossible with large datasets), so routers will always have some way of expressing these
dynamic portions. The hierarchical nature of URLs is usually also mirrored in the
declarative APIs provided by routers and will typically allow us to specify a hierarchy of
components or views to render in response to such hierarchical URLs. Here's an example of
a routes designation that could be passed to the Router service of Angular (another
popular framework!):

const routes = [
 { path: "", redirectTo: "home", pathMatch: "full" },
 { path: "home", component: HomeComponent },
 {
 path: "about/:employee",
 component: AboutEmployeeComponent,
 children: [
 { path: "hobbies", component: EmployeeHobbyListComponent },
 { path: "hobbies/:hobby", component: EmployeeHobbyComponent }
]
 }
];

Here, we can see that AboutEmployeeComponent is attached to the path of
about/:employee and has sub-components that are each attached to the sub-paths of
hobbies and hobbies/:hobby. An address such as /about/john/hobbies/kayaking
would intuitively render AboutEmployeeComponent and within that would render
EmployeeHobbyComponent.

You can probably observe here how intertwined a router is with rendering. It is indeed
possible to have standalone routing libraries, but it's far more typical for frameworks to
provide a routing abstraction themselves. This allows us to specify our routes alongside a
view or component or widget, or whatever abstraction our framework provides for
rendering things to the DOM. Fundamentally, although different on the surface, all of these
frontend routing abstractions will achieve the same result.

Real-World Challenges Chapter 12

[374]

Another real-world challenge that many JavaScript programmers will expose themselves
to, whether they're predominately working on the client side or server side, is that of
dependency management. We'll begin exploring this next.

Dependency management
Loading JavaScript within the context of a single web page used to be simple. We could
simply place a couple of <script> tags somewhere within the document's source and call
it a day.

Over the years, however, the complexity of our JavaScript has grown tremendously,
alongside the demands of our users. Alongside this, our code bases have grown as well. It
was, for a period, natural to just keep adding more and more <script> tags. At a certain
point, though, this approach falters. Apart from the burden of multiple HTTP requests
being made on every page load, this approach also made it hard for programmers to juggle
their dependencies. JavaScript was typical, in those days, to spend time carefully
ordering <script> placements so that, for any particular script, its dependencies were in
place before it itself loaded.

It was not uncommon to see HTML markup like this:

<!-- Library Dependencies -->
<script src="/js/libs/jquery.js"></script>
<script src="/js/libs/modernizr.js"></script>

<!-- Util Dependencies -->
<script src="/js/utils/data.js"></script>
<script src="/js/utils/timer.js"></script>
<script src="/js/utils/logger.js"></script>

<!-- App Widget Dependencies -->
<script src="/js/app/widgets/Nav.js"></script>
<script src="/js/app/widgets/Tile.js"></script>
<script src="/js/app/widgets/PicTile.js"></script>
<script src="/js/app/widgets/PicTileImage.js"></script>
<script src="/js/app/widgets/SocialButtons.js"></script>

<!-- App Initialization -->
<script src="/js/app/init.js"></script>

Real-World Challenges Chapter 12

[375]

This approach was expensive from a performance perspective as the browser had to fetch
every resource before continuing to parse and render the remaining document. Large
collections of inline scripts in the <head> of an HTML document were hence considered an
anti-pattern as they would block the user from being able to use the website for a
significant amount of time. Even moving scripts to the bottom of <body> wasn't ideal as
browsers would still have to load and execute them serially.

Predictably, our increasingly complex applications started to outgrow this approach.
Developers needed more performance and a finer level of control over script loading.
Thankfully, over the years, various improvements have been made in how we manage
dependencies, how we bundle them, and how we then serve our code bases to the browser.

In this section, we'll explore the improvements that have occurred over the years and will
seek to understand what the current best practices are, as well.

Module definition – then and now
Before 2010 (approximately), there were very few agreed upon methods of loading large and
complex JavaScript code bases within the browser. Soon, however, developers created the
Asynchronous Module Definition (AMD) format. This was the first popular attempt at a
standard that prescribed the definition of modules within JavaScript. It included both the
ability to declare dependencies on each module and an asynchronous loading mechanism.
This was a vast improvement upon the slow and blocking nature of multiple inline
<script> tags.

RequireJS was a popular library that supported this format. To use it, you only needed to
place a single entry point <script> in your document:

<script data-main="scripts/main" src="scripts/require.js"></script>

The data-main attribute here would specify the entry point of our code base, which itself
would then load the initial set of dependencies and initialize the application, like so:

requirejs([
 "navigationComponent",
 "chatComponent"
], function(navigationComponent, chatComponent) {
 // Initialize:
 navigationComponent.render();
 chatComponent.render();
});

Real-World Challenges Chapter 12

[376]

Each dependency would then define itself and its own dependencies, like so:

// The Navigation Component AMD Module
define(
 // Name of the module
 'navigationComponent',

 // Dependencies of the module
 ['utilA', 'utilB'],

 // Definition of the module returned from function
 function (utilA, utilB) {
 return /* Definition of navigationComponent */;
 }
);

This is similar in spirit to modules as now specified in the ECMAScript specification, except
AMD is not related to any particular language syntax. It was entirely a community-driven
effort to bring something like modules to JavaScript.

The fact that AMD prescribed that each module was defined within a callback, to which
dependencies could be passed, meant that loading utilities such as RequireJS could load all
dependencies asynchronously and then invoke the callback when it was done. This was a
significant boost to frontend JavaScript at the time because it meant we could quite easily
load massive dependency graphs in a way that eased the process of writing the code (less
dependency juggling) and enabled the code to be loaded into the browser in a non-blocking
and more performant fashion.

At a similar time to AMD, a new standards-driven effort started to emerge called
CommonJS. This sought to make the require(...) syntax a standard in various non-
browser environments, with the hopeful, eventual intention of such syntax being supported
on the frontend as well. Here's an example of a CommonJS module (this may appear
familiar if you're accustomed to programming in Node.js):

const navigationComponent = require('components/navigation');
const chatComponent = require('components/chat');

module.exports = function() { /* exported functionality */ };

Real-World Challenges Chapter 12

[377]

This became the standard in various non-browser environments such as Node.js,
SproutCore, and CouchDB. It was also possible to compile your CommonJS modules into
browser-consumable scripts similar to AMD using the CommonJS Compiler. Sometime
after this, around 2017, ES Modules emerged. This gave us language support
for import and export statements, effectively solving the historical challenge of how to
define modules in JavaScript:

// ES Modules

import navigationComponent from 'components/navigation';
import chatComponent from 'components/chat';

export default function() { /* do stuff */ };

In Node.js, such modules must have filename suffixes of .mjs instead of .js so the engine
knows to expect import and export and not the conventional CommonJS module
definition syntax. In the browser, such modules can be loaded by using <script
type="module">. However, even with ES Modules supported in browsers, it's still
arguably preferable to build and bundle your JavaScript into conventional non-modular
script tags. This is due to factors of performance and compatibility across browsers. Not to
worry though: we can still use ES Modules when writing our code! Tools such as Babel can
be used to compile and bundle the latest JavaScript syntax into JavaScript that is compatible
across many environments. It's typical to set up a tool such as Babel as part of your build
and development process.

npm and package.json
In the past, there was no package manager available for the JavaScript community. Instead,
individuals and organizations would typically release code themselves, enabling
developers to manually download the latest releases. With the introduction of Node.js
and npm, this all changed. Finally, there was a central repository of packages available to
pull into our projects with ease. This wasn't only useful for server-side Node.js projects but
also entirely frontend projects as well. The emergence of npm is likely one of the most
significant events that precipitated the maturation of the JavaScript ecosystem.

Nowadays, every project that heavily involves JavaScript will set out its manifest in a top-
level package.json file, usually specifying, at the very least, a name, a description, a
version, and a list of versioned dependencies:

{
 "name": "the-fruit-lister",
 "description": "An application that lists types of fruits",

Real-World Challenges Chapter 12

[378]

 "version": "1.0",
 "dependencies": {
 "express": "4.17.1"
 },
 "main": "app/init.js"
}

There are a variety of available fields you can use in package.json so it's worth exploring
the npm documentation to understand all of them. Here's a rundown of the most common
ones:

name: The name of the package is perhaps the most important thing. If you plan
to publish the package to npm, then this name will need to be unique.
description: This is a brief description of your module, to help developers
understand its purpose. More detailed information is typically placed in a
README or README.md file.
version: This is a Semantic Versioning (SemVer) compatible version (of the
form, [Major].[Minor].[Patch], for example, 5.11.23).
dependencies: This is an object that maps every dependency package name to a
version range. The version range is a string that has one or more space-separated
descriptors. Dependencies can also be specified as a tarball/Git URL.
devDependencies: This is identical in function to dependencies except for the
fact that it is intended only for dependencies that are required during
development, such as code quality analyzers and testing libraries.
main: This can refer to the module ID that is the primary entry point to your
program. For example, if your package were named super-utils, and someone
installed it and then did require("super-utils"), then your main module's
export object would be returned.

npm assumes that your package and any packages you rely on follow the
rules of SemVer, which uses a pattern
of [Major].[Minor].[Patch] (for example, 1.0.2). SemVer prescribes
that any breaking changes must result in the major portion incrementing,
whereas backward-compatible feature additions should result in only
the \minor portion incrementing, and backward-compatible bug fixes
should result in the patch portion incrementing. Full details can be found
at https:/ / semver. org/ .

https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/

Real-World Challenges Chapter 12

[379]

Running npm install in the directory where package.json resides will cause npm to
download the versions of dependencies that you have specified. When declaring
dependencies, by default, npm will do so with a caret (^) attached, meaning that npm will
pick the latest available version that complies with the major version specified. So, if you
specify ^1.2.3, then anything up to 1.99.99 (and so on) may validly be installed.

There are several fuzzy version ranges that you can use:

version: Must match version exactly
>version: Must be greater than version
>=version: Must be greater than or equal to version
<version: Must be less than version
<=version: Must be less than or equal to version
~version: Approximately equivalent to version (increment patch portion only)
^version: Compatible with version (increment minor/patch portions only)
1.2.x: 1.2.0, 1.2.1, and so on, but not 1.3.0 (x means anything here)

Arguably, the greatest issue with npm is that the unchecked introduction of new packages
and their granularity in terms of functionality has led to projects with incredibly large and
unwieldy dependency graphs. It's not unheard of for there to be individual packages that
only export a singular narrow utility function. For example, in addition to a generic string
utility package, you may also find a specific string function as a package of its own, such as
uppercase. These packages are not inherently problematic—many of them serve useful
purposes—but having an unwieldy dependency graph can lead to problems of its own.
Any popular package that either is compromised or has not followed SemVer religiously
can result in a propagation of issues across the JavaScript ecosystem, eventually affecting
your project.

To help to prevent bugs and security issues, it is highly recommended to
specify your dependencies with fixed versions and update dependencies
manually only when you have checked their respective changelogs.
Nowadays, some tools can help you to keep dependencies up to date
without sacrificing security (for example, dependabot, owned by GitHub).

Real-World Challenges Chapter 12

[380]

It's recommended to use a dependency management system that ensures the integrity of
downloaded packages with cryptographic hashes (a checksum that would highlight
malicious changes), to ensure that the package you end up executing is definitely the one
you intended to install and has not been compromised or damaged during
transmission. Yarn is an example of such a system (see https:/ / yarnpkg. com). It is
effectively a more secure and efficient abstraction atop npm. In addition to being more
secure, Yarn has the added benefit of avoiding inconsistent package resolution, which is
when two installs of a given code base's dependencies will result in a potentially different
set of downloaded dependencies (due to the potentially fuzzy nature of npm's version
declarations). Such inconsistencies can result in the same code base behaving differently
across two instances (a massive headache and harbinger of bugs!). Yarn stores the current
locked dependency graph and corresponding versions and checksums in a yarn.lock file,
which would look like this:

THIS IS AN AUTOGENERATED FILE. DO NOT EDIT THIS FILE DIRECTLY.
yarn lockfile v1

array-flatten@1.1.1:
 version "1.1.1"
 resolved
"https://registry.yarnpkg.com/array-flatten/-/array-flatten-1.1.1.tgz#9a5f6
99051b1e7073328f2a008968b64ea2955d2"
 integrity sha1-ml9pkFGx5wczKPKgCJaLZOopVdI=

...

Here, we see just one dependency but there'd usually be hundreds if not thousands as it
would have to include not only your direct dependencies but also dependencies of those
dependencies.

Dependency management is a topic that has had much written about it, so if you look
online, there is no shortage of opinions and solutions. Fundamentally, as our concern is
clean code, we should go back to our principles. Foremost, what we should seek in both our
dependency systems and the dependencies themselves is reliability, efficiency,
maintainability, and usability. In the context of dependencies, when it comes to
maintainability, we are interested in both our ability to maintain code that consumes and
depends upon the dependency and the ability for the dependency's maintainers to keep the
dependency up to date and bug-free.

https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com

Real-World Challenges Chapter 12

[381]

Bundling and serving
In the land of JavaScript, around the same time as AMD and CommonJS started to emerge,
the rise of command-line bundlers and build tools was also on the rise. This gave us the
ability to bundle large dependency graphs into singular files that could be loaded with a
single <script>. The proliferation of build tools such as GruntJS and gulp.js meant that,
slowly, the JavaScript we wrote as programmers could be oriented to cleanliness and
comprehension and not the loading idiosyncrasies of browsers. We could also begin to take
advantage of spin-off languages and subsets such as CoffeeScript, TypeScript, and JSX.
Such JavaScript adaptations could easily be compiled and then bundled into fully operable
JavaScript sent down to the browser.

The world that we have now is one in which build and bundling tools are incredibly
common. There are several specific build tools, such as Grunt, gulp.js, webpack, and
Browserify. Additionally, developers can easily use the npm scripts directive to create
shortcuts to common command-line instructions.

Generally, building involves any preparations that need to occur on development code
bases to make them production-ready. This can include anything from linting your CSS to
bundling your JavaScript. Bundling, specifically, is concerned with the compilation and
collation of large dependency graphs (of JavaScript files) into single JavaScript files. This is
necessary so that we can serve our JavaScript code bases to the browser in the most
performant and compatible way. Bundling utilities will usually output a file with a hash of
the file's content as part of the filename, for example, main-f522dccf1ff37b.js. This
filename can then be dynamically or statically inserted into a <script> tag within your
HTML to be served to the browser:

<script src="/main-f522dccf1ff37b.js"></script>

Having a hash of the file's contents in the filename ensures that browsers always load the
updated file and do not rely on a previously cached version of it. These files are usually
minified as well. Minification involves parsing your JavaScript and producing a functionally
identical but much smaller representation of it where all possible measures have been taken
to take up less space, such as shortening variable names and removing whitespace and
newlines. This is used in combination with HTTP compression techniques (such as .gzip)
to ensure that the transmission over HTTP from a server to a client is as small and quick as
possible. Usually, you will have distinct development and production builds since some build
steps, such as minification, would make development (and debugging!) harder.

Real-World Challenges Chapter 12

[382]

Serving bundled JavaScript to the browser is usually done with a singular <script> tag
referencing the bundled JavaScript filename, placed at somewhere within the HTML that
you serve to the browser. There are several important performance considerations when
selecting an approach. The most important metric is how quickly, from the time of the
initial request, a user can start using the application. When loading up
superWebApp.example.com, we can imagine the following possible latencies experienced
by the user:

Fetching resources: Each resource fetch may involve a DNS lookup, an SSL
handshake, and the completion of an HTTP request and response cycle.
Responses are usually streamed, meaning that the browser may begin parsing a
response before it is completed. Browsers typically make a moderate amount of
requests concurrently.
Parsing HTML: This involves the browser parsing every tag name and iteratively
building up a DOM representation of the HTML. Some encountered tags will
cause a new fetchable resource to be enqueued, such as , <script
src>, or <link type="stylesheet" href>.
Parsing CSS: This involves the browser parsing every ruleset within any fetched
CSS. Referenced resources such as background images will only be fetched later
if the corresponding element is found to exist on the page.
Parsing / compiling JavaScript: Following the fetching of each JavaScript
resource, its contents will be parsed and compiled, ready to execute.
Rendering HTML with CSS applied: This will ideally occur only once, when all
CSS has been loaded. If there are asynchronously loaded CSS or other aesthetic
resources (such as typefaces or images), then there may be several repaints/re-
renders before the page can be considered fully rendered.
Executing JavaScript: Depending on the location of the corresponding
<script>, a piece of JavaScript will execute and may then mutate the DOM or
perform its own fetches. This can potentially block any other
fetching/parsing/rendering from occurring.

It's usually preferable to have the execution of your JavaScript occur last, when the browser
has done everything else. However, this is not always ideal. Some JavaScript may be
necessary to load vital resources, and so it should be executed as early as possible so those
HTTP fetches can occur concurrently with the rest of the browser's preparatory work.

Placement of your primary bundled <script> (your main code base) is vital in
determining when your JavaScript will be fetched, when it will execute, and what the state
of the DOM will be when it executes.

Real-World Challenges Chapter 12

[383]

Here's a rundown of the most popular <script> placements and their respective
advantages:

<script src> within <head>: This script will be fetched as soon as <script>
is encountered during parsing. Fetching and execution will occur in serial order
and will block other parsing from occurring. This is considered a bad practice as
it needlessly blocks the continued parsing of the rest of the document (and hence
increases the latency of the page load, from the user's perspective).
<script src> at the end of <body>: This script will be fetched as soon
as <script> is encountered during parsing. Fetching and execution will occur in
serial and will block other parsing from occurring. Usually, parsing can be
considered mostly complete as <script> is the very last thing in <body>.
<script src defer> within <head>: This script will be enqueued for fetching
as soon as <script> is encountered during parsing, and this fetch will occur
concurrently with the parsing of the HTML at a time that is convenient for the
browser. The script will only execute once the entire document is parsed.
<script src async> within <head>: This script will be enqueued for fetching
as soon as <script> is encountered during parsing, and this fetch will occur
concurrently with the parsing of the HTML at a time that is convenient for the
browser. The execution of the script will occur immediately following its fetch
and will block continued parsing.

Having <script defer> in <head> is usually preferable as it can be fetched as soon as
possible, it won't block parsing, and it'll only be executed once parsing has completed. This
tends to give the user the fastest experience if you're serving up one singular bundled script
and gives your JavaScript a completely parsed DOM that it can manipulate and render
within immediately.

Serving JavaScript to the browser is a simple thing, in truth. It is only complicated by the
need for us to have our web applications perform quickly for the benefit of users.
Increasingly complex JavaScript code bases produce increasingly large bundles, and so
loading these bundles takes time. Hence, the loading performance of your JavaScript is
something you'll likely need to take seriously and spend time investigating. Performance is
something easily forgotten but incredibly important.

Another similarly easily forgotten topic in the JavaScript ecosystem is security, and that's
what we'll now be exploring.

Real-World Challenges Chapter 12

[384]

Security
Security is a vital part of a reliable code base. From the user, there is an implicit assumption
that any given piece of software will act according to its functional expectations and will
not lead to the compromise of their data or devices. Clean code considers security as it does
other functional expectations—as a vital requirement that should be carefully fulfilled and
thoroughly tested.

Since JavaScript is predominantly used in a networked situation—either on the server side
or client side, it is forever fraught with the possibility of security vulnerabilities. And the
fact that browsers are, effectively, sandboxed vehicles of remote code execution means that
our end users are susceptible to just as much risk as we are. To protect ourselves and our
users, we need to have a diverse understanding of the types of vulnerabilities that exist and
how to counteract them. There are reams and reams of intimidating information about
security vulnerabilities in the wild. We cannot hope to cover all of them in this book, but
hopefully, if we explore a couple of the common vulnerabilities, then we'll be more
generally cautious and aware and can begin to understand the types of measures we
should put in place.

Cross-Site Scripting
Cross-Site Scripting (XSS) is a vulnerability that enables attackers to inject their own
executable code (usually JavaScript) into the frontend of a web application so that browsers
will execute as if it were trusted. There are many ways XSS can manifest but these can all be
boiled down to two core types:

Stored XSS: This involves an attacker somehow saving executable code within
seemingly innocuous data to a web application that is persisted and then
rendered back to other users of the web application. A primitive example of this
is a social media website that allows me to specify my name as HTML (for
example, James!) but without preventing the inclusion of potentially
dangerous executable HTML, allowing me to specify a name such
as <script>alert('XSS!')....
Reflected XSS: This involves an attacker sending a victim to a URL whilst
sending their executable payload along with the request, either in the URL, an
HTTP header, or the request body. This executable payload is then executed
when the user lands on the page. An example of this would be a search page that
reflects a query back to the user (a common feature of any search page) but does
so in a way that fails to escape HTML, meaning that the attacker need only send
their victim to /search?q=<script>alert('XSS!')....

Real-World Challenges Chapter 12

[385]

The way that either stored or reflected payloads are rendered within a page is crucial here.
Traditionally, XSS vectors were limited to the server-side rendering of unescaped user-
entered HTML. So, if Bob sets his social media account name to <script>alert("Bob's
XSS")..., then when Bob's page is requested from the server, the markup returned will
include that <script> ready to be parsed and executed by the browser. Nowadays,
however, SPAs and websites that involve client-side rendering are far more common,
meaning that instead of the server being at fault for allowing unescaped HTML into the
document's markup, it is the client (the JavaScript code base) that is at fault for rendering
dangerous content directly into the DOM. XSS attacks that rely on client-side rendering are
hence often called DOM-based XSS.

XSS payloads can come in a variety of forms. It's very rarely as simple as a
<script> tag. Attackers use a variety of complex encodings, archaic
HTML, and even CSS to embed their nefarious JavaScript. Cleansing XSS
from strings is therefore not trivial and it is instead recommended to place
no trust whatsoever in user-entered content.

We can imagine a scenario in which our JavaScript code base has a UserProfile
component that renders the name and profile information of any user. Upon initialization,
this component requests its data from a REST endpoint that looks like
/profile/{id}.json, returning the following JSON:

{
 "name": "<script>alert(\"XSS...\");</script>",
 "hobby": "...",
 "profielImage": "..."
}

This component then renders the received name to the DOM via innerHTML, without
escaping or cleansing its contents:

class UserProfile extends Component {
 // ...
 render() {
 this.containerElement.innerHTML = `<h1>${this.data.name}</h1>`;
 this.containerElement.innerHTML += `<p>Other profile content...</p>`;
 }
}

All users who render the UserProfile component are liable to execute arbitrary
(potentially damaging) HTML. This would be an issue whether the arbitrary HTML comes
from a reflected or a stored source.

Real-World Challenges Chapter 12

[386]

The prevalence of common JavaScript frameworks that abstract DOM rendering means that
an attacker need only find a vulnerability within a library or framework to attack
thousands of different websites. Most frameworks, thankfully, by default, have
interpolation mechanisms that force inserted data to be rendered as text, not HTML. React,
for example, will always produce text nodes for any data inserted via JSX's interpolation
delimiters (curly braces). We can see this in effect here:

function Stuff({ msg }) {
 return <div>{msg}</div>
}

const msg = '<script>alert("Oh no!");</script>';
ReactDOM.render(<Stuff msg={msg} />, document.body);

This results in the data containing <script> to be literally rendered as text, so that the
resulting innerHTML of the <body> element is this:

<div>
 <script>alert("Oh no!");</script>
</div>

Because the potentially dangerous HTML was rendered as text, no execution can occur and
the XSS attack is prevented. This isn't the only way that an XSS attack can occur though. It's
common for client-side frameworks to have templating solutions that rely on inline
<script> tags, like so:

<script type="text/x-template">
 <!-- VueJS Example -->
 <div class="tile" @click="check">
 <div :class="{ tile: true, active: active }"></div>
 <div class="title">{{ title }}</div>
 </div>
</script>

This is a convenient way of declaring templates to be used in the later rendering of specific
components, but such templates are often used in combination with server-side rendering
and interpolation, and such a combination is liable to XSS if an attacker can force a
dangerous string to be interpolated by the server into the template, like so:

<!-- ERB (Rails) Template -->
<script type="text/x-template">
 <!-- VueJS Template -->
 <h1>Welcome <%= user.data.name %></h1>
</script>

Real-World Challenges Chapter 12

[387]

If user.data.name contains nefarious HTML, then there is nothing that our JavaScript can
do on the client side to prevent the attack. By the time we render our code, it may even be
too late.

In modern web applications, we have to be wary of XSS, either stored or reflected, rendered
on both the server and the client. It's a mind-bending combination of possible vectors, so it's
crucial to ensure that you're employing a combination of countermeasures:

Never trust user-entered data. Ideally, do not allow users to enter any HTML. If
they can, then use an HTML parsing library and whitelist specific tags and
attributes that you trust.
Never place untrusted data in an HTML comment, a <script> element, a
<style> element, or where an HTML tag or attribute name should appear (for
example, <HERE ...> or <div HERE=...>). If you must, place it within an
HTML element and ensure it is fully escaped (for example, & → & and " →
").
If inserting untrusted data into regular (non-JavaScript) HTML attributes, escape
all ASCII values less than 256 with the &#xHH; format. If inserting into a regular
HTML element's contents, then escaping the following characters is sufficient:
&, <, >, ", ', and /.
Avoid inserting untrusted data into areas where JavaScript is executed, such as
<script>x = 'HERE'</script> or , but if
you absolutely must, ensure that the data is escaped so that it cannot break out of
its quotes or its containing HTML.
Instead of embedding JavaScript-readable data in a <script>, use JSON to
transmit data to the client, either via a request or by embedding it in a no-op
element such as <div> (ensuring it's fully HTML-escaped!) and then extracting
and deserializing it yourself.
Use an appropriately restrictive Content Security Policy (CSP) (we will explain
this in the next section).

These countermeasures are not exhaustive, so it's advisable to also have a thorough
readthrough of the Open Web Application Security Project's (OWASP) Cross-Site
Scripting Prevention Cheatsheet: https:/ /cheatsheetseries. owasp. org/ cheatsheets/
Cross_Site_Scripting_ Prevention_ Cheat_ Sheet. html.

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Real-World Challenges Chapter 12

[388]

Content Security Policy
As an added security measure, it's important to also configure an appropriate CSP.

CSP is a relatively new HTTP header that is available on all modern browsers. It is not
universally supported or respected, so it should not be depended upon as our sole defense
against XSS. Nonetheless, if correctly configured, it can prevent the majority of XSS
vulnerabilities. Browsers that don't support CSP will fall back to their default behavior of
the same-origin policy, which itself provides a level of crucial security.

The same-origin policy is a vital security mechanism employed by all
browsers that restricts the ability of documents or scripts when accessing
some resources from other origins (origins match when they share the
same protocol, port, and host). This policy means that, for example,
JavaScript within leah.example.org cannot fetch
alice.example.org/data.json. With the advent of CSP, it is,
however, possible for alice.example.org to express a level of trust and
provide such access by disabling the same-origin policy just for
leah.example.org.

The Content-Security-Policy header allows you to specify where different types of
resources are allowed to be loaded from. It is essentially an origin whitelist that the browser
will validate all outgoing requests against.

It can be specified as a regular HTTP header:

Content-Security-Policy: default-src 'self'

Or it can be specified as a meta tag:

<meta http-equiv="Content-Security-Policy" content="default-src 'self'">

The format of the value is one or more policy directives, separated by semicolons, where
each policy directive starts with the fetch directive. These designate the type of resource
(for example, img-src, media-src, and font-src), or the default (default-src) that all
directives will fall back on if they're not separately specified. The fetch directive is followed
by one or more space-separated sources, where each source specifies where resources can
be loaded from for that resource type. Possible sources include URLs, protocols, 'self' (to
refer to the document's own origin), and more.

Real-World Challenges Chapter 12

[389]

Here are some examples of CSP values with explanations for each one:

default-src 'self': This is the maximally restrictive directive that declares
that only resources from the same origin as the document itself can be loaded
within the document (whether from , <script>, XHR, or anything else).
No other origins are allowed.
default-src 'self'; img-src cdn.example.com: This directive declares
that only resources from the same origin as the document itself can be loaded,
except in the case of images (for example, and CSS-declared images),
which can be loaded from the origin, cdn.example.com.
default-src 'self' *.trusted.example.com: This declares that only
resources from the same origin or resources from *.trusted.example.com are
valid.
default-src https://bank.example.com: This declares that only resources
from the SSL-secured origin, https://bank.example.com, can be loaded.
default-src *; script-src https:: This declares that resources can be
loaded from any valid URL except in the case of <script src>, which must
load its resources from an HTTPS URL.

What an appropriately restrictive CSP is will depend entirely upon your specific web
application, what kind of user-generated content you may be dealing with, and the
sensitivity of the data you deal with. Having an appropriate CSP not only protects you
from creating potential vectors of XSS (by loading from potentially compromised origins)
but can help to counteract executing XSS vulnerabilities as well. CSP defends against XSS in
the following specific ways:

CSP disables eval() and other similar techniques from working. These are
common vectors for XSS, especially in legacy browsers where such methods have
been used to parse JSON. You can explicitly enable eval via the 'unsafe-eval'
source if you so desire.
CSP disables inline <script> and <style> tags, the JavaScript protocol, and
inline event handles (for example,). These are all
common XSS vectors. You can explicitly enable these by specifying unsafe-
inline as a source for the relevant fetch directives, but it's recommended to
instead load your scripts and styles from external sources so the origins can be
validated against your CSP whitelist by the browser.
As a last-ditch effort, CSP, if well configured, can prevent currently executing
XSS from loading its own malicious resources or calling home with compromised
data, limiting its ability to do damage.

Real-World Challenges Chapter 12

[390]

Subresource Integrity
Subresource Integrity (SRI) is a security feature within browsers that allows us to verify
that the resources they fetch are delivered without any unexpected manipulation or
compromise. Such manipulation could potentially occur where the asset is served from (for
example, your CDN is hacked) or during network transmission (for example, a middleman
attack).

To verify your script, you must provide an integrity attribute that contains the name of a
hashing algorithm (such as sha256, sha384, or sha512) and then the hash itself. Here's an
example:

<script src="//cdn.example.com/foo.js"
integrity="sha384-367drQif3oVsd8RI/DR8RsFbY1fJei9PN6tBnqnVMpUFw626Dlb86YfAP
Ck2O8ce"></script>

To generate that hash, you can use OpenSSL's CLI as follows:

cat FILENAME.js | openssl dgst -sha384 -binary | openssl base64 -A

In addition to using the integrity attribute on <script>, you can use it on <link> for the
verification of CSS style sheets. To enforce SRI, you can use the helpful CSP header:

Content-Security-Policy: require-sri-for script; require-sri-for style;

Doing this will ensure that any scripts or style sheets that exist without an integrity hash
will fail to load. Once fetched, if the provided integrity hash does not match the hash of the
received file, then it will be ignored (as if it wasn't fetched). Using SRI together with CSP
gives you a considerable defense against XSS.

Cross-Site Request Forgery
Cross-Site Request Forgery (CSRF) is when commands, usually in the form of HTTP GET
or POST requests, are transmitted from a user without their intent, by malicious code. A
primitive example would be if a banking website at bank.example.com had an API
endpoint that allowed logged-in users to transfer a given amount to a specified account
number. The endpoint might be as follows:

POST bank.example.com/transfer?amount=5000&account=12345678

Real-World Challenges Chapter 12

[391]

Even if users were authenticated via a session cookie on the bank.example.com domain, a
malicious website could easily embed and submit <form> directing the transfer to their
own account, like so:

<form
 method="post"
 action="//bank.example.com/transfer?amount=5000&account=12345678">
</form>
<script>
 document.forms[0].submit();
</script>

Regardless of what HTTP method is used by the endpoint or what kind of request body or
parameters it accepts, it is liable to a CSRF attack unless it ensures that the request comes
from its own website. This problem is partially solved by the same-origin policy inherent to
browsers, which prevents some types of requests from taking place (such as a JSON POST
request via XHR or PUT/DELETE requests), but there is nothing inherent in the browser to
prevent a user innocently clicking a link to a website or submitting a form that forges a
malicious POST request. These actions are, after all, the entire purpose of the browser.

Since there is no inherent mechanism of the web that prevents CSRF, developers have come
up with their own defenses. One common mechanism to prevent CSRF is with a CSRF
token (which should really be called an Anti-CSRF Token). This is a generated key
(random, long, and impossible to guess) that is sent down to the client with each regular
request while also being stored on the server as part of the user's session data. The server
will then require the browser to send that key along with any subsequent HTTP requests to
verify the source of each request. So, instead of just two parameters, our /transfer
endpoint will now have a third, the token:

POST bank.example.com/transfer?
 amount=5000&
 account=12345678&
 token=d55lv90s88x9mk...

Real-World Challenges Chapter 12

[392]

The server can then verify that the provided token exists on that user's session data. There
are many libraries and frameworks that simplify this. There are also a variety of
adaptations and configurations of this basic token mechanism. Some of them will only
generate a token for a given amount of time, or a given request cycle, whereas others will
provide a singular token for that user's entire session. There are also a variety of ways for
the token to be sent downstream to the client. The most common is within the response
payload as part of the document markup, usually in the form of a <meta> element in
<head>:

<head>
 <!-- ... -->
 <meta name="anti-csrf-token" content="JWhpLxPSQSoTLDXm..." />
</head>

This can then be grabbed by JavaScript and sent with any subsequent GET or POST
requests made dynamically by the JavaScript. Or in the case of a conventional website
without client-side rendering, the CSRF token can be sent downstream directly embedded
in the <form> markup as a hidden <input>, which naturally forms part of the form's
eventual submission to the server:

<form>
 <input
 type="hidden"
 name="anti-csrf-token"
 value="JWhpLxPSQSoTLDXm..." />

 <!-- Regular input fields here -->

 <input type="submit" value="Submit" />
</form>

If your web application is susceptible to XSS, then it is also inherently
susceptible to CSRF, as the attacker will usually have access to the CSRF
token and hence be able to masquerade any requests they make as
legitimate, and the server won't be able to tell the difference. So, strong
anti-CSRF measures are not sufficient on their own: you must have
countermeasures for other potential vulnerabilities as well.

Whatever anti-CSRF measure you use, the crucial need is for every request that mutates a
user's data or carries out a command to be verified as coming from a legitimate page within
the web application itself and not some maliciously crafted external source. To get a more
thorough understanding of CSRF and the available countermeasures, I recommend reading
and fully digesting OWASP's CSRF Prevention Cheatsheet: https:/ / cheatsheetseries.
owasp.org/cheatsheets/ Cross- Site_ Request_ Forgery_ Prevention_ Cheat_ Sheet. html.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Real-World Challenges Chapter 12

[393]

Other security vulnerabilities
XSS and CSRF only touch the surface of the types of attacks that we should be prepared for.
Defending against all possible vulnerabilities is incredibly challenging and usually
unrealistic, but we'd be foolish to not write code that is resilient against the most prevalent
ones. A good general understanding of the types of vulnerabilities that exist can help us to
be generally cautious in the code we write.

XSS, as explored, is a very diverse vulnerability with many possible vectors of attack. But
we can defend against it in a general way by consistently and correctly discerning
between trusted and untrusted data. We can limit the possibility of untrusted data
wreaking havoc by placing it in only very specific places, correctly escaping it, and
ensuring that we have an appropriately restrictive CSP. Likewise, with CSRF, there are
countless ways for an attacker to perform it, but having a solid Anti-CSRF Token
mechanism will save you from most of them. All we can hope for in the realm of security,
given our limited resources, is that we can have coverage against the majority of popular
attacks.

Here's a rundown of some other popular vulnerabilities that are worth being aware of:

SQL or NoSQL injections: Any user-submitted data that is expressed via a SQL
or NoSQL query can, if not correctly escaped, provide an attacker with access to
your data and the ability to read from, mutate, or destroy it. It's similar to XSS in
that both are forms of injection attacks, and so our defense against it, again, comes
down to identifying untrusted data and then correctly escaping it.
Authentication/password attacks: An attacker can gain unauthorized access to a
user's account by guessing their password, brute-forcing combinations, or using
a rainbow table (a database of common password hashes). Generally, it is
advisable to not create your own authentication mechanisms, but instead to rely
on trusted libraries and frameworks. You should always ensure that you're using
a secure hashing algorithm (such as bcrypt). A good resource is OWASP's
Password Storage Cheat Sheet (https:/ / cheatsheetseries. owasp. org/
cheatsheets/ Password_ Storage_ Cheat_ Sheet. html).
Dependency hijacking: An attacker can gain access over your server-side or
frontend code base by hijacking one of your dependencies. They may gain access
to an npm package that exists in your dependency graph (search online for the
left-pad incident) or compromise a CMS or CDN that you use to store JavaScript
assets. To counteract these types of vulnerabilities, ensure that you use a secure
package management system such as Yarn, try to use fixed version patterns in
your package.json, always check changelogs, and on the frontend, have an
appropriately restrictive CSP to prevent any malicious code from calling home.

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Real-World Challenges Chapter 12

[394]

There is always the possibility of an attack, and so we need to build that risk into our
system designs. We cannot expect to be immune to these vulnerabilities, but when they do
occur, we can ensure that we can fix them quickly, communicate transparently with
affected users, and ensure that we carefully consider how we can prevent such
vulnerabilities from occurring again.

Whether we're creating a framework for developers or a UI for non-technical users, the
consumers of our code will always expect it to behave securely. This expectation is
increasingly being encoded into law (for example, in EU law, the General Data Protection
Regulation (GDPR)), so it's crucial to take it seriously and spend a good amount of time on
learning and prevention. The practice of security is yet another example of how clean
code is not only about our syntax and design patterns but about the very significant ways
that our code affects our users and their everyday lives.

Summary
In this chapter, we have explored a variety of real-world challenges—topics that any
JavaScript programmer may find themselves exposed to both within the browser and on
the server. Writing clean code in JavaScript is not only about the language itself but about
the web ecosystem that it exists within and the demands that this brings. Through our
explorations of the DOM, routing, dependency management, and security, we have
hopefully gained an insight into the technicalities of the problem domains that JavaScript
often deals with, and an appreciation for the many frameworks, libraries, and standards-
driven APIs that exist to help us to deal with these problems.

In the next chapter, we'll delve into the art of writing clean tests, a vitally important task,
not only because it gives us confidence in our own code, but because it ensures the kind of
reliability that users rightfully expect from our software.

4
Section 4: Testing and Tooling

In this section, we'll learn about the various ways we can foster and defend a cleaner
JavaScript code base with testing and tooling. Specifically, we'll learn how to write good
tests that will protect us against regressions and unclean code. By doing this, we'll learn
about various tools and automation processes that we can use to deliver higher-quality
code in a team environment.

This section contains the following chapters:

Chapter 13, The Landscape of Testing
Chapter 14, Writing Clean Tests
Chapter 15, Tools for Cleaner Code

13
The Landscape of Testing

At the beginning of this book, we set out the primary tenets of clean code. Among these
was reliability. There truly is no greater way to confirm reliability than to expose your code
base to continued and multivariate usage. This means having real users sit in front of your
software and use it, for real. Only via this type of exposure can we understand whether our
code truly fulfills its purpose. However, it is usually unreasonable, and possibly even
dangerous, to conduct such real-life tests constantly. If code is changed, it is possible for a
piece of functionality that a user relies on to falter or regress. To prevent such cases, and to
generally confirm that our expectations are met, we write tests. Without a good suite of
tests, we are passively and arrogantly closing our eyes and hoping that nothing goes
wrong.

In this chapter, we'll be covering the following topics:

What is a test?
Types of testing
Test-Driven Development (TDD)

What is a test?
A software test is an automated procedure that makes assertions about a piece of code and
then reports the success of those assertions back to you. A test may make assertions about
anything from an individual function to the behavior of an entire feature.

Tests, much like the rest of our code, deal in layers of abstraction and granularity. If we
were to test a car abstractly, we may simply seek to assert the following attributes:

It has four wheels
It has a steering wheel
It drives
It has a working horn

The Landscape of Testing Chapter 13

[397]

Obviously, this is not a very useful set of assertions for car engineers, as these attributes are
either incredibly obvious or insufficiently described. The assertion It drives is important,
but without extra detail, all it expresses is a generic business-oriented objective. It's similar
to a project manager asking for a software engineer to ensure that a user-login portal, for
example, can allow users to log in successfully. It is the engineer's job to not only
implement the user-login portal but to derive working tests that successfully investigate the
truth of the assertion users can log in successfully. And it is not always easy to derive good
tests from generic statements.

To correctly engineer a test, we must take the generic and abstract requirements and distill
them to their granular and unabstracted details. In the case of us asserting that our car has a
working horn, for example, we can distill it like so:

When the driver raises at least one hand and directs the hand to depress by 2 cm the center
of the steering wheel for a period of 1 second, a loud sound of fixed frequency at 400 Hz
will be emitted by the car at approximately 107 decibels for 1 second.

When we start to add crucial detail to our assertions, they become useful to us. We can use
them as both guides of implementation and confirmations of functionality. Even with this
added detail though, our statement is only an assertion or a requirement. Such requirements
are a useful step in the design of software. In fact, we should be very reluctant to even
begin implementing software until we have such levels of specificity.

If a client were to ask you to implement a payment form, for example, it would be wise to
gather the exact requirements: what types of payments shall it accept? What other customer
information requires collection? What regulations or constraints are we beholden to in our
storage of this data? These expanded requirements then become the yardstick via which
we, and the client, will measure completeness. It follows naturally that we can then
implement these requirements as individual tests to confirm their existence in the software.

A good testing methodology will involve tests for all distinct parts of a code base and will
provide the following benefits:

Prove fulfillment: Tests allow us to prove to ourselves and our stakeholders that
expectations and requirements are fulfilled.
Have confidence: Tests allow us and our colleagues to have confidence in our
code base—both that it works correctly and that it can accommodate changes
without faults arising unbeknownst to us.
Share knowledge: Tests allow us to share vital knowledge about how parts of
our code operate together. In a sense, they are a form of documentation.

The Landscape of Testing Chapter 13

[398]

There are many second-order effects of a good testing methodology as well. The increased
confidence in the code base by your colleagues will mean you can be more productive and
make more significant changes more quickly, cutting costs and pain in the long run. The
sharing of knowledge can enable both your colleagues and your users to perform their
actions quicker, with more understanding and less overhead in time and expense. The
ability to prove fulfillment enables teams and individuals to better communicate the value
of their work to stakeholders, managers, and users.

Now that we've discussed the obvious benefits of tests, we can discuss how we should go
about authoring them. At the core of every test is a set of assertions, so we'll now explore
what we mean by assertion and how we can use assertions to encode our expectations.

The simple assertion
There are many tools, terms, and paradigms of testing. The existence of so much
complexity can seem intimidating but it's important to remember that, at the core, testing is
really just about making assertions about how something works.

Assertions can be made programmatically by expressing either SUCCESS or
FAILURE depending on a specific outcome, as in the following example:

if (sum(100, 200) !== 300) {
 console.log('SUCCESS! :) sum() is not behaving correctly');
} else {
 console.log('FAILURE! :(sum() is behaving correctly');
}

Here, we will receive a our FAILURE! log if our sum function is not giving the expected
output. We can abstract this pattern of success and failure by implementing an assert
function, like so:

function assert(assertion, description) {
 if (assertion) {
 console.log('SUCCESS! ', description);
 } else {
 console.log('FAILURE! ', description);
 }
}

This can then be used to make a series of assertions with added descriptions:

assert(sum(1, 2) === 3, 'sum of 1 and 2 should be 3');
assert(sum(5, 60) === 65, 'sum of 60 and 5 should be 65');
assert(isNaN(sum(0, null)), 'sum of null and any number should be NaN');

The Landscape of Testing Chapter 13

[399]

This is the fundamental core of any testing framework or library. They all have a
mechanism for making assertions and reporting both the success and failure of those
assertions. It is also normal for testing libraries to provide a mechanism to wrap up or
contain related assertions and, together, call them a test or test case. We can do something
similar by providing a test function that allows you to pass a description and a function (to
contain assertions):

function test(description, assertionsFn) {
 console.log(`Test: ${description}`);
 assertionsFn();
}

We can then use it like so:

test('sum() small numbers', () => {
 assert(sum(1, 2) === 3, 'sum of 1 and 2 should be 3');
 assert(sum(0, 0) === 0, 'sum of 0 and 0 should be 0');
 assert(sum(1, 8) === 9, 'sum of 1 and 8 should be 9');
});

test('sum() large numbers', () => {
 assert(
 sum(1e6, 1e10) === 10001000000,
 'sum of 1e6 and 1e10 should be 10001e6'
);
});

The produced testing log from running this would be as follows:

> Test: sum() small numbers
> SUCCESS! sum of 1 and 2 should be 3
> SUCCESS! sum of 0 and 0 should be 0
> SUCCESS! sum of 1 and 8 should be 9
> Test: sum() large numbers
> SUCCESS! sum of 1e6 and 1e10 should be 10001e6

From a technical perspective, the pure action of authoring assertions and simple tests is not
too challenging. Writing a test for a singular function is rarely hard. However, to write
entire test suites and to thoroughly test all parts of a code base, we must utilize several
more complicated testing mechanisms and methodologies to help us out.

The Landscape of Testing Chapter 13

[400]

Many moving parts
To recall the car analogy, let's imagine that we have a car sitting in front of us, and we wish
to test its horn. The horn is not a standalone piece of machinery. It is embedded within the
car and dependent on a power source separate to itself. In fact, what we may discover is
that we must first start the car up via the ignition before the horn will work. And the
success of an ignition is itself dependent upon several other components, including a
working ignition switch, fuel in the tank, a working fuel filter, and a non-drained battery.
The functionality of the horn is therefore dependent upon a series of many moving parts.
So, our test of the horn becomes not only a test of the horn itself but effectively a test of
almost the entire car! This is not ideal.

To get around this issue, we could hook the horn up to a separate power supply just for
testing purposes. By doing this, we are isolating the horn, enabling the test to only reflect
the functionality of the horn itself. In the testing world, this stand-in power supply we're
using might be called a stub or a mock.

In the software world, both stubs and mocks are a type of stand-in
abstraction for the real abstraction that provides appropriate outputs
without carrying out the real work of the replaced abstraction. An
example would be a makeCreditCardPayment stub, which returns
SUCCESS without creating a real-world payment. This would be used in
the context of testing e-commerce functionality, possibly.

Our approach of isolating the power supply of the horn is unfortunately flawed. Even if our
test is successful—and the horn works—we haven't guaranteed that the horn will still work
when hooked up to the real power supply within the car. The isolated test of the horn is
still, arguably, useful because it tells us about any failures within the horn's specific
circuitry and mechanism, but it is not sufficient on its own. We need to test how the horn
will work when it is embedded in the real-life situation of having to depend on other
components. In software, we call such real-life tests integration tests or end-to-end tests,
while the isolated tests are typically called unit tests. An effective testing methodology will
always include both types:

The Landscape of Testing Chapter 13

[401]

There is a risk when isolating individuals parts for testing, of creating an unrealistic
scenario in which you end up not actually testing the true functionality of a code base, but
instead testing the efficacy of your mocks. Here, in our car analogy, isolating the horn by
supplying it with a mock power supply enables us to purely test the horn's circuitry and
sound-making mechanism and gives us a clear path to debugging issues if the test fails. But
we need to complement this test with several integration tests so that we can be confident
that the entire system works correctly. Even if we have a thousand unit tests for all parts of
a system, there is no guarantee of a working system without testing the integration of all of
these parts.

Types of testing
To ensure a thoroughly tested code base, we must engage in different types of testing. As
touched on already, the unit test enables us to test isolated parts, while the various
combinations of parts can be tested via either integration, functional, or E2E tests. It's
useful first to understand what we mean when we talk about a part or a unit.

When we talk about a unit of code, there is admittedly a fuzziness to the concept. Typically,
it will be a piece of code that has a singular responsibility within a system. When a user
wishes to perform an action via our software, they will, in fact, be activating a series of
parts of our code, all working together to give the user the output they desire. Consider an
app in which users can create and share images. A typical user experience (a flow or
journey) may involve a few distinct steps that all involve different parts of the code base.
Every action the User performs, often without them knowing, will encapsulate a series of
code actions:

(User) Create a new image by uploading a photo stored on the desktop:1.
(Code) Upload the photo via <form>1.
(Code) Save photo to a CDN2.
(Code) Show the bitmap within <canvas> so that filters can be applied3.

(User) Apply a filter to the image:2.
(Code) Apply the filter via <canvas> pixel manipulation1.
(Code) Update image stored on the CDN2.
(Code) Re-download saved image3.

(User) Share the image with friends:3.
(Code) Find the user's friends in the database1.
(Code) Add the image to each friend's feed2.
(Code) Send the push notification to all friends3.

The Landscape of Testing Chapter 13

[402]

Together, all of these steps, combined with all other steps a user could potentially take, can
be considered a system. And a fully-tested system might involve unit tests for each
individual step, integration tests for each pair of steps, and functional or End-to-End (E2E)
tests for every combination of steps that together form a user flow or user journey. We can
visualize the types of tests that may need to exist as part of a system as follows:

Here, we can see one Start point and two End points, indicating two distinct user journeys.
Each dot can be thought of as a single area of responsibility or unit that is activated as part
of these journeys. As you can see, a unit test is only concerned with a single area of
responsibility. The integration test is concerned with two (or more) neighboring areas that
integrate. And an E2E or functional test is concerned with all of the areas involved in a
singular user journey. In the former example of our image-sharing app, we can imagine
that we may have specific unit tests for actions such as uploading a photo to the CDN or
sending push notifications, an integration test that tests the integration of the friends
database, and an E2E test that tests the entire flow from creating to sharing a new image.
Each of these testing methodologies would be vital in ensuring a truly well-tested system,
and each has its own unique benefits as well as pitfalls and challenges to overcome.

Unit testing
As we described with our car analogy, a unit test is a test that deals with an isolated unit of
code. This will usually be either a singular function or module that will make one or more
simple assertions about the operation of the code.

Here are some examples of singular unit test scenarios:

You have a Button component that should contain the value Submit My
Data and should have a class of btn_success. You can assert these
characteristics via a simple unit test that checks the attributes of the produced
DOM element.

The Landscape of Testing Chapter 13

[403]

You have a task-scheduling utility that will perform a given action at the
requested time. You can assert that it does so by giving it a task to perform at a
specific time and then checking for the successful execution of that task.
You have a REST API endpoint of /todo/list/item/{ID} that retrieves a
specific item from a database. You can assert that the route works correctly by
mocking the database abstraction (providing fake data) and then asserting that
requesting the URL returns your data correctly.

There are several benefits of testing individually-isolated units of code:

Completeness: A given unit will typically have a small number of clearly defined
requirements. As such, it's easy to ensure that you're testing the full gamut of a
unit's functionality. All input variations can be tested quite easily. The very limits
of each unit can also be tested, including the often complex minutiae of how
something operates.
Reportability: When a given unit test fails, you can quite easily discern the exact
nature and circumstance of the failure, meaning quicker debugging and fixing of
the underlying problem. This is in contrast to integration tests, which, as we will
discover, may have far more generic reporting that doesn't indicate the exact
point of failure in the code.
Comprehension: Unit tests are a useful and self-contained form of
documentation for given modules or functions. The narrowness and specificity of
unit tests help us to fully understand how something works, easing
maintainability. This is especially useful when there isn't up-to-date
documentation elsewhere.

Completeness here is similar to the popular concept of test coverage. The
crucial difference is that while coverage is about maximizing the amount
of code within a code base that is tested, completeness is about
maximizing the coverage of each individual unit, so that the entire input
space of the unit is expressed. Test coverage, as a metric, only tells us
whether things are tested, not whether they're well-tested.

There are, however, challenges that come unit-testing as well:

Mocking correctly: Creating properly isolated unit tests sometimes means we
have to constructs mocks or stubs of other units, as discussed in our former car
analogy. It's sometimes challenging to create realistic mocks and to ensure that
you're not introducing new areas of complexity and potential failures.

The Landscape of Testing Chapter 13

[404]

Testing realistic inputs: Writing unit tests that provide a wide variety of realistic
inputs is key although it can be challenging. It's quite easy to fall into a trap of
writing tests that appear to give confidence but in fact don't test the kinds of
situations that would arise when the code is in production.
Testing true units and not combinations: If not carefully constructed, unit tests
can begin to bloat and become integration tests. Sometimes, a test can seem very
simple on the surface but in fact depends on a series of integrations beneath the
surface. To re-use our car analogy, an example of this would be if we were to
attempt to make a simple unit test asserting the sound of the car horn without
first isolating its circuitry. We'd unknowingly be creating an E2E test.

The unit test, as the most granular type of test, is vital to any code base. It is perhaps easiest
to think of it as a type of double-entry bookkeeping system. When you make a change, you
must reflect that change via an assertion. This implementation-then-testing cycle is best
done in proximity—one after the other—perhaps via TDD, which will be discussed later.
The unit test is your way of confirming to yourself that you truly wrote the code you
intended to write. It provides a level of certainty and reliability that your team and
stakeholders will be hugely grateful for.

Integration testing
Integration testing, as the name suggests, deals with integrations of distinct units of code.
An integration test will provide a more useful signal about how your software will operate
in production than simple unit tests. In our car analogy, an integration test might assert the
functionality of the horn, based on how it operates with the car's own power supply,
instead of providing a mock power supply. It may however still be a partially isolated test,
ensuring it does not involve all components within the car.

Here are a couple of examples of possible integration tests:

You have a Button component that should add an item to a list when clicked. A
possible integration test would be to render the component in the real DOM and
check that a simulated click event correctly adds the item to the list. This tests
the integration between the Button component, the DOM, and the logic that
determines when items are added to the list.
You have a REST API route of /users/get/{ID}, which should return user
profile data from the database. A possible integration test would be to create a
genuine database entry with ID of 456 and then request that data back via
/users/get/456. This tests the integration between the HTTP routing
abstraction and the database layer.

The Landscape of Testing Chapter 13

[405]

There are quite a few advantages of integrating modules and testing their behavior
together:

Get better coverage: Integration tests have one or more integrated modules as
their test subject, and so by having such tests, we can increase our 'test coverage'
throughout our code base, meaning we are increasing the amount of our code
that is exposed to tests and therefore increasing the likelihood that we'll be able
to catch faults.
Clearly see faults: Emulating, at least in part, the integration of modules that we
would see in production enables us to see real integration faults and failures as
they may naturally occur. A clear view of these faults enables us to iterate with
fixes quickly and retain a reliable system.
Expose bad expectations: Integration tests allow us to challenge the assumptions
we may have made when building individual units of code.

So,while unit tests give us a narrow and detailed view of the input and output of specific
modules and functions, integration tests allow us to see how all of these modules work
together and, by doing so, provide us with a view into potential problems of integration.
This is incredibly useful, but there are traps and challenges to writing integration tests:

Isolating integrations (avoiding big bang tests): When implementing integration
tests, it is sometimes easier to avoid isolating individual integrations and instead
just test a large part of the system with all of its integrations intact. This is more
akin to an E2E test and is certainly useful, but it's important to also have isolated
integrations so you can get granular insight into potential failures.
Realistic integrations (for example, database server and client): When picking
and isolating integrations to test, it is sometimes difficult to create realistic
circumstances. An example would be testing how your REST API integrates with
your database server but instead of having a separate database server for testing
purposes, you just have a local one. This is still an insightful test but because it
does not emulate the remoteness of the database server (that would exist in
production) you may get a false sense of confidence. There may be failures
lurking, undetected.

The integration test provides vital insight at the crucial points of interfacing and I/O that
govern how all of the individual parts of a code base work together as a system. Integration
tests often provide the most signal about potential faults in a system, as they are both
usually quick to run and highly transparent upon failures (unlike potentially clunky E2E
tests). Naturally, integration tests can only tell you things about the points of integrations
they encapsulate. For more complete confidence in the functionality of a system, it's always
a good idea to employ E2E testing.

The Landscape of Testing Chapter 13

[406]

E2E and functional testing
E2E testing is a more extreme form of integration test where, instead of testing individual
integrations between modules, we'll test the entire system, usually by executing a series of
actions that would happen in reality to produce a given result. These tests are sometimes
also called functional tests because they are interested in testing areas of functionality from
the user's perspective. Well-constructed E2E tests give us confidence that our entire system
is working correctly, but are most valuable when combined with more granular unit and
integration tests so that faults can be more quickly and precisely identified.

Here's a quick lowdown of the benefits of writing E2E tests:

Correctness and health: E2E tests give you a clear insight into the general health
of a system. Since many individual parts will effectively be tested via the typical
E2E test, its success can give you a good indication that things are okay in
production. Granular unit or integration tests, while very useful in their own
way, don't give you this kind of systemic insight.
Realistic effects: Via E2E tests we can tryout more realistic circumstances,
emulating the way our code will run in the wild. By emulating the flow of a
typical user, an E2E test can highlight potential issues that more granular unit or
integration tests might not reveal. An example of this would be when there are
race conditions or other timing issues that can only be revealed when a code base
is made to run as one consolidated system.
More holistic view: E2E tests give developers a holistic view of a system,
enabling them to reason more accurately about how distinct modules work
together to produce a working user flow. This can be incredibly valuable when
trying to build a full understanding of how a system operates. Much like both
unit and integration tests, E2E tests can serve as a form of documentation.

There are challenges involved in crafting E2E tests, however:

Performance and time costs: E2E tests, because they involve the activation of
many individual pieces of code immersed in realistic environments, can be quite
expensive in terms of time and hardware resources. The time that E2E tests take
to run can impede development, and so it's not rare for teams to avoid E2E tests
for fear of a slowed development cycle.

The Landscape of Testing Chapter 13

[407]

Realistic steps: Accurately emulating real-life circumstances in an E2E test can be
a challenge. Using fake or made-up situations and data can still provide a
realistic enough test but can also provide you a false sense of confidence. Since
E2E tests are scripted, it's quite common to not only rely on fake data but to have
actions conducted in an unrealistically fast or direct manner, missing out on
possible insights you could gain by creating more human circumstances (repeat
after me: always think of the user).
Complex tooling: The point of an E2E test is to realistically emulate a user flow
as it would exist in the wild. To accomplish this, we need good tooling that
enables us to set up realistic environments (for example, headless and scriptable
browser instances). Such tooling can be buggy or complicated to use and can
introduce yet another variable to the testing process that can result in unrealistic
failures (tools can give you false signals about whether things are really
working).

E2E testing, although challenging to get right, can provide a level of insight and confidence
that is hard to get from only unit and integration tests. In terms of automated testing
procedures, E2E testing is the closest we can reasonably get to getting our software in front
of real users. It is the least granular and most systemic way of discerning whether our
software works in the way our users expect it to, which, after all, is what we're most
interested in.

Test-Driven Development
TDD is a paradigm in which we write tests before implementation. In doing so, our tests
end up informing and affecting the design of our implementation and its interface. By
doing this, we begin to see tests as not only a form of documentation but a form of
specification. Via our tests, we can designate how we wish something to work, writing
assertions as if the functionality existed, and then we can iteratively build out the
implementation such that all of our tests eventually pass.

To illustrate TDD, let's imagine that we wish to implement a word-counting function.
Before implementing it, we can begin to write some assertions about how we wish for it to
work:

assert(
 wordCount('Lemonade and chocolate') === 3,
 '"Lemonade and chocolate" contains 3 words'
);

assert(

The Landscape of Testing Chapter 13

[408]

 wordCount('Never-ending long-term') === 2,
 'Hyphenated words count as singular words'
);

assert(
 wordCount('This,is...a(story)') === 4,
 'Punctuation is treated as word boundaries'
);

This is a rather simple function and so we've been able to express most of its functionality
in just three assertions. There are naturally other edge cases but we've pieced together
enough expectations that we can begin to implement the function. Here is our first attempt:

function wordCount(string) {
 return string.match(/[\w]+/g).length;
}

Immediately running this implementation via our small test suite, we receive the following
results:

SUCCESS! "Lemonade and chocolate" contains 3 words
FAILURE! Hyphenated words count as singular words
SUCCESS! Punctuation is treated as word boundaries

The Hyphenated words test is failing. TDD, by its nature, expects iterative failure and
refactor to bring an implementation inline with a test suite. Given this particular failure, we
can simply add a hyphen to our regular expression's character class (between the [...]
delimiters):

function wordCount(string) {
 return string.match(/[\w-]+/g).length;
}

This produces the following test logs:

SUCCESS! "Lemonade and chocolate" contains 3 words
SUCCESS! Hyphenated words count as singular words
SUCCESS! Punctuation is treated as word boundaries

Success! Via incremental iteration, although simplified for the sake of illustration, we have
implemented something via TDD.

The Landscape of Testing Chapter 13

[409]

As you may have observed, TDD is not a particular type or style of test, but rather it is a
paradigm for when, how, and why we go about testing. The traditional view of testing as an
afterthought is limited and often can force us into a position where we simply don't have
time to write a good test suite. TDD, however, forces us to lead with a solid test suite,
giving us a few notable benefits:

It guides implementation
It prioritizes the user
It forces complete test coverage
It forces single responsibility
It enables quick problem domain discovery
It gives you immediate feedback

TDD is an especially useful paradigm when getting started with testing as it will force you
to take a step back before implementing something and really consider what you're trying
to do. This planning stage is really helpful in ensuring that our code fully aligns with user
expectations.

Summary
In this chapter, we introduced the concept of testing and how it relates to software. While
brief and introductory, these foundational concepts are crucial if we're going to approach
testing with an aim toward reliability and maintainability. Testing, like many other
concerns in the software world, can be liable to cargo culting, so it's crucial to retain a
perspective on the fundamentals and the theory behind the tests we write. Testing, at its
core, is about proving expectations and protecting against faults. We've covered the
differences between unit, integration, and E2E tests, discussing both the advantages and
challenges inherent in each.

In the next chapter, we'll look into how we can take this knowledge and apply it to crafting
clean tests alongside real-life examples. Specifically, we will cover what measures and
guiding principles we can use to ensure that our tests and the assertions within them are
reliable, intuitive, and maximally useful.

14
Writing Clean Tests

In the last chapter, we covered the theory and principles underlying software testing. We
delved into the benefits and challenges inherent in unit, integration, and E2E testing. In this
chapter, we will take this knowledge and apply it to some real-world examples.

It's not sufficient to simply understand what testing is and see its merits from a business
perspective. The tests we write form a significant part of our code bases, and should hence
be crafted in the same careful manner as all other code we write. We want to craft tests that
not only give us confidence that our code works as intended, but are themselves reliable,
efficient, maintainable, and usable. We must also be wary of writing overly complex tests.
Doing so can trap us in a situation where our tests increase the burden of understanding
and lead to more overall complexity and flakiness in the code base, reducing overall
productivity and satisfaction.

If wielded with care and caution, tests can give code bases a clarity and cleanliness that
enables users and colleagues to carry out their work with greater speed and quality. In the
following sections, we'll explore the best practices to stand by and potential pitfalls to avoid
when writing tests.

In this chapter, we will cover the following topics:

Testing the right thing
Writing intuitive assertions
Creating clear hierarchies
Providing final clarity
Creating clean directory structures

Writing Clean Tests Chapter 14

[411]

Testing the right thing
One of the most important considerations when writing any test, whether a granular unit
test or a far-reaching E2E test, is the question of what to test. It's entirely possible to test the
wrong thing; doing so can give us false confidence in our code. We may write a huge test
suite and walk away grinning, thinking that our code now fulfills all expectations and is
utterly fault-tolerant. But our test suite may not test the things we think it does. Perhaps it
only tests a few narrow use cases, leaving us exposed to many possibilities of breakage. Or
perhaps it conducts tests in a way that is never emulated in reality, leading to a situation
where our tests don't protect us from failures in production. To protect us against these
possibilities, we must understand what we truly wish to test.

Consider a function that we've written to extract phone numbers of a specified format from
arbitrary strings. The phone numbers can be in a variety of forms, but will always have
between 9 and 12 digits:

0800-144-144

07792316877

01263 109388

111-222-333

0822 888 111

Here is our current implementation:

function extractPhoneNumbers(string) {
 return string.match(/(?:[0-9][-]?)+/g);
}

We decide to write a test to assert the correctness of our code:

expect(
 extractPhoneNumbers('my number is 0899192032')
).toEqual([
 '0899192032'
]);

Writing Clean Tests Chapter 14

[412]

The assertions we use are vital. It's important that we are testing the right thing. With our
example, this should include exemplar strings that contain a complete variety of input:
strings that contain phone numbers, strings that contain no numbers, and strings that
contain a mixture of phone numbers and non phone numbers. It's far too easy only to test
the positive cases, but it is in fact equally important to check for the negative cases. In our
scenario, the negative cases include situations where there are no phone numbers to be
extracted and hence may consist of strings such as the following:

"this string is just text..."

"this string has some numbers (012), but no phone numbers!"

"1 2 3 4 5 6 7 8 9"
"01-239-34-32-1"
"0800 144 323 492 348"
"123"

Very quickly, when composing such exemplar cases, we see this true scope of complexity
that our implementation will have to cater to. Incidentally, this highlights the tremendous
advantage of employing Test-Driven Development (TDD) to define expectations firmly.
Now that we have a few cases of strings containing numbers that we do not wish to be
extracted, we can express these as assertions, like this:

expect(
 extractPhoneNumbers('123')
).toEqual([/* empty */]);

This currently fails. The extractPhoneNumbers('123') call incorrectly returns ["123"].
This is because our regular expression does not yet make any prescriptions about length.
We can easily make this fix:

function extractPhoneNumbers(string) {
 return string.match(/([0-9][-]?){9,12}/g);
}

The added {9,12} part will ensure that the preceding group (([0-9][-]?)) will only
match between 9 and 12 times, meaning that our test of extractPhoneNumbers('123')
will now correctly return [] (an empty array). If we repeat this testing-and-iteration
process with each of our exemplar strings, we will eventually arrive at a correct
implementation.

Writing Clean Tests Chapter 14

[413]

The key takeaway from this scenario is that we should seek to test the complete gamut of
inputs that we may expect. Depending on what we're testing, we can usually say there's
always a limited set of possible scenarios that any piece of code we write will cater to. We
want to ensure that we have a set of tests that analyze this range of scenarios. This range of
scenarios is often called the input space or input domain of a given function or module.
We can consider something well-tested if we expose it to a representative variety of inputs
from its input space, which, in this case, includes both strings with valid phone numbers and
those without valid phone numbers:

It's not necessary to test every possibility. What's more important is to test a representative
sample of them. To do this, it's essential first to identify our input space and then partition it
into singular representative inputs that we can then individually test. For example, we need
to test that the phone number "012 345 678" is correctly identified and extracted, but it
would be pointless for us to exhaustively test the variations of that same format ("111 222
333", "098 876 543", and so on). Doing so would be unlikely to reveal any additional
errors or bugs in our code. But we should definitely test other formats with different
punctuation or whitespace (such as "111-222-333" or "111222333"). It's additionally
important to establish inputs that may be outside of your expected input space, such as
invalid types and unsupported values.

A full understanding of your software's requirements will enable you to produce a correct
implementation that is well tested. So, before we even begin writing code, we should
always ensure that we know exactly what it is we're tasked with creating. If we find
ourselves unsure what the full input space might be, that's a strong indicator that we should
take a step back, talk to stakeholders and users, and establish an exhaustive set of
requirements. Once again, this is a strong benefit of test-led implementation (TDD), where
these deficits in requirements are spotted early and can hence be resolved before costs are
sunk into a pointless implementation.

Writing Clean Tests Chapter 14

[414]

When we have our requirements in mind and have a good understanding of the entire
input space, it is then time to write our tests. The most atomic part of a test is its assertions,
so we want to ensure we can effectively craft intuitive assertions that communicate our
expectations well. This is what we'll be covering next.

Writing intuitive assertions
The core of any test is its assertions. An assertion prescribes exactly what we expect to
occur, and so it is vital not only that we craft it accurately but that we craft it in a way that
our expectation is made utterly clear.

A single test will usually involve several assertions. And a test will typically follow the
form of: given an input of X, do I receive an output of Y? Sometimes, establishing Y is complex
and may not be constrained to a singular assertion. We may want to introspect Y to confirm
that it is truly the desired output.

Consider a function named getActiveUsers(users), which will return only the active
users from a set of all users. We may wish to make several assertions about its output:

const activeUsers = getActiveUsers([
 { name: 'Bob', active: false },
 { name: 'Sue', active: true },
 { name: 'Yin', active: true }
]);

assert(activeUsers.length === 2);
assert(activeUsers[0].name === 'Sue');
assert(activeUsers[1].name === 'Yin');

Here, we have clearly expressed our expectations for the output
of getActiveUsers(...) as a series of assertions. Given a more fully-featured assertion
library or more complex code, we could easily constrain this to a singular assertion, but it's
arguably clearer to separate them.

Many testing libraries and utilities provide abstractions to aid us in making assertions. The
popular testing libraries, Jasmine and Jest, for example, both provide a function called
expect, which supplies an interface with many matchers, each individually allowing us to
declare what characteristics a value should have, as in the following examples:

expect(x).toBe(y) asserts that x is the same as y
expect(x).toEqual(y) asserts that x is equal to y (similar to abstract equality)

Writing Clean Tests Chapter 14

[415]

expect(x).toBeTruthy() asserts that x is truthy (or Boolean(x) === true)
expect(x).toThrow() asserts that x, when invoked as a function, will throw
an error

The exact implementation of these matchers may vary from library to library, and the
abstraction and naming provided may also vary. Chai.js, for example, provides both the
expect abstraction and a simplified assert abstraction, allowing you to assert things in
the following fashion:

assert('foo' !== 'bar', 'foo is not bar');
assert(Array.isArray([]), 'empty arrays are arrays');

The most important thing when crafting an assertion is to be utterly clear. Just as with other
code, it is unfortunately quite easy to write an assertion that is incomprehensible or hard to
parse. Consider the following assertion:

chai.expect(someValue).to.not.be.an('array').that.is.not.empty;

This statement, due to the abstractions provided by Chai.js, has the appearance of a human-
readable and easily understandable assertion. But it is actually quite difficult to understand
exactly what's going on. Let's consider which of the following this statement might be
checking:

The item is not an array?
The item is not an empty array?
The item has a length greater than zero and is not an array?

It is, in fact, checking that the item is both not an array and that it is non-empty—meaning
that, if the item is an object, it'll check that it has at least one property of its own, and if it's a
string, it'll check that its length is greater than zero. These true underlying mechanics of the
assertion are obscured and so, when exposed to such things, programmers may be left in a
state of either blissful ignorance (thinking the assertion works as they wish it to) or painful
confusion (wondering how on earth it works).

It may be the case that what we wished to assert all along was simply whether someValue
was both not an array but was array-like, and as such, had a length greater than zero. As
such, we can lend clarity using Chai.js's lengthOf method in a new assertion:

chai.expect(someValue).to.not.be.an('array');
chai.expect(someValue).to.have.a.lengthOf.above(0);

Writing Clean Tests Chapter 14

[416]

To avoid any doubt and confusion, we could, alternatively, assert more directly without
relying on Chai.js's sentence-like abstractions:

assert(!Array.isArray(someValue), "someValue is not an array");
assert(someValue.length > 0, "someValue has a length greater than zero");

This is arguably far clearer as it explains to the programmer the exact check that is taking
place, eliminating the doubt that could arise with a more abstract assertion style.

The crux of a good assertion is its clarity. Many libraries provide fancy and abstract
mechanics of assertion (via the expect() interface, for example). These can create more
clarity, but if over used, they can end up being less clear. Sometimes, we just need to Keep
it Simple, Stupid (KISS). Testing code is the worst possible place in which to get fancy
with egotistic or mis-abstracted code. Simple and straightforward code wins every time.

Now that we've explored the challenge of crafting intuitive assertions, we can slightly zoom
out and have a look at how we should craft and structure the tests that contain them. The
next section reveals hierarchies as a helpful mechanism to communicate meaning through
our test suites.

Creating clear hierarchies
To test any code base, we would likely need to write a large number of assertions.
Theoretically, we could have a long list of assertions and nothing else. However, doing this
may make it quite difficult to read, write, and analyze the reports of tests. To prevent such
confusion, it is common for testing libraries to provide some scaffolding abstractions
around assertions. For example, BDD-flavoured libraries such as Jasmine and Jest supply
two pieces of scaffolding: the it block and the describe block. These are just functions to
which we pass a description and callback, but together, they enable a hierarchical tree of
tests that makes it far easier to comprehend what's going on. Testing a sum function using
this pattern might be done like so:

// A singular test or "spec":
describe('sum()', () => {
 it('adds two numbers together', () => {
 expect(sum(8, 9)).toEqual(17);
 });
});

Writing Clean Tests Chapter 14

[417]

Behaviour-Driven Development (BDD) is a style and methodology of
testing that, similar to TDD, enforces a regime where we write tests first
and implementation second. More than this, however, it focuses on the
importance of behaviors over implementation, since behaviors are easier to
communicate and are more important from the perspective of the user (or
stakeholder). BDD-style tests will hence usually use language such
as Describe X » It does Y when Z occurs...

Non-BDD libraries tend to surround groups of assertions with simpler infinitely-nestable
test blocks, like so:

test('sum()', () => {
 test('addition works correctly', () => {
 assert(sum(8, 9) == 17, '8 + 9 is equal to 17');
 });
});

As you can see, the naming of the BDD-flavored it and describe terms can help us to
craft descriptions for our test suites that read like full English sentences (for
example Describe an apple » It is round and sweet). This isn't enforced but gives us a useful
nudge toward better descriptions. We can also infinitely nest describe blocks so that our
descriptions can reflect the hierarchical nature of the thing we're testing. So, for example, if
we were testing a math utility called myMathLib, we may imagine the following test suite
with its various sub-suites and specifications:

Describe myMathLib:
Describe add():

It can add two integers
It can add two fractions
It returns NaN for non-numeric inputs

Describe subtract()l:
It can subtract two integers
It can subtract two fractions
It returns NaN for non-numeric inputs

Describe PI:
It is equal to PI at fifteen decimal places

Writing Clean Tests Chapter 14

[418]

This hierarchy naturally reflects the conceptual hierarchy of the abstraction we're testing.
The reporting provided by the testing library will usefully reflect this hierarchy. Here's an
example output from the Mocha testing library in which every test of myMathLib passes
successfully:

myMathLib
 add()
 ✓ can add two integers
 ✓ can add two fractions
 ✓ returns NaN for non-numeric inputs
 subtract()
 ✓ can subtract two integers
 ✓ can subtract two fractions
 ✓ returns NaN for non-numeric inputs
 PI
 ✓ is equal to PI at fifteen decimal places

Individual assertions come together to form tests. Individual tests come together to form
test suites. Every test suite provides us with clarity and confidence regarding specific units,
integrations, or flows (within E2E tests). The composition of these test suites is vital to
ensuring that our tests are simple and comprehensible. We must take the time to think
about how we will express the conceptual hierarchy of whatever we're testing. The test
suites we create also need to be intuitively placed within the directory structure of our code
base. This is what we'll explore next.

Providing final clarity
It can be said that the goal of testing is simply to describe what you have done. By
describing, you are forced to assert your assumed truths about how something operates.
When these assertions are executed, we can then discern whether our descriptions, our
assumed truths, correctly reflect reality.

In the act of description, we must choose our words carefully so that they express our
meaning clearly and comprehensibly. Tests are one of our last defenses against obscurity and
complexity. Some code is unavoidably complicated, and we should ideally craft it in a way
that reduces its obscure nature, but if we can't fully do this, then it is the role of tests to clear
up any remaining confusion and provide the final point of clarity.

Writing Clean Tests Chapter 14

[419]

The key to clarity while testing is to focus purely on the perspective of the person who must
read through the tests (or their logged outputs). Here are some specific points of clarity to
remain aware of:

Use names of tests to accurately describe what the test does, being overly
descriptive if necessary. For example, instead of test that the Navigation
component renders, consider saying test that the Navigation component renders all
navigations items correctly. Our names can also communicate the conceptual
hierarchies of our problem domains as well. Recall what we said about it in the
Consistency and hierarchy section in Chapter 5, Naming Things is Hard.
Use variables as vessels of meaning. When writing tests, it is a good idea to be
overly explicit with variable names or even to use variables where they may not
be necessary, to fully communicate your intent. For example, consider how
expect(value).toEqual(eulersNumber) is more understandable
than expect(value).toEqual(2.7182818).
Use comments to explain odd behaviors. If the code you're testing does
something in an unexpected or unintuitive manner, then your tests may
themselves appear unintuitive. As a last resort, it is important to provide
additional context and explanation with comments. Be wary, however, of stale
comments that don't get updated alongside the code.

Consider the following test for AnalogClockComponent:

describe('AnalogClockComponent', () => {
 it('works', () => {
 const r = render(AnalogClockComponent, { time: "02:50:30" });
 expect(rendered.querySelector('.mm-h').style.transform)
 .toBe('rotate(210deg)');
 expect(rendered.querySelector('.hh-h').style.transform)
 .toBe('rotate(-30deg)');
 expect(rendered.querySelector('.ss-h').style.transform)
 .toBe('rotate(90deg)');
 expect(/\btheme-default\b/).test(rendered.className)).toBe(true);
 });
});

Writing Clean Tests Chapter 14

[420]

As you can see, this test makes several assertions about the transform CSS property of
specific elements. It's possible to make an informed guess as to what these are, but the
clarity could definitely be improved. To make this cleaner, we can use better names to
reflect what we're testing, separate the tests to represent the different concepts being tested,
use variable names to provide clarity about what values we're making assertions about, and
use comments to explain any possibly unintuitive things:

describe('AnalogClockComponent', () => {

 const analogClockDOM = render(AnalogClockComponent, {
 time: "02:50:30"
 });

 const [
 hourHandTransform,
 minuteHandTransform,
 secondHandTransform
] = [
 analogClockDOM.querySelector('.hh-h').style.transform,
 analogClockDOM.querySelector('.mm-h').style.transform,
 analogClockDOM.querySelector('.ss-h').style.transform
];

 describe('Hands', () => {

 // Note: the nature of rotate/deg in CSS means that a
 // time of 03:00:00 would render its hour-hand at 0deg.

 describe('Hour', () => {
 it('Renders at -30 deg reflecting 2/12 hours', () => {
 expect(hourHandTransform).toBe('rotate(-30deg)');
 });
 });
 describe('Minute', () => {
 it('Renders at 210 deg reflecting 50/60 minutes', () => {
 expect(minuteHandTransform).toBe('rotate(210deg)');
 });
 });
 describe('Second', () => {
 it('Renders at 90deg reflecting 30/60 seconds', () => {
 expect(secondHandTransform).toBe('rotate(90deg)');
 });
 });
 });

 describe('Theme', () => {
 it('Has the default theme set', () => {

Writing Clean Tests Chapter 14

[421]

 expect(
 /\btheme-default\b/).test(analogClockDOM.className)
).toBe(true);
 });
 });

});

You'll likely observe that the cleaner way is far longer, but when it comes to testing, it is
truly best to bias yourselves toward such lengthy descriptiveness. Being over-descriptive is
better than being under-descriptive because, in the latter case, your colleagues are left with
a deficit of information, scratching their heads and making a possibly incorrect guess about
functionality. When we provide a generous amount of clarity and explanation, we are
helping a wider diversity of colleagues and users. If we are obscure and terse, however, we
are specifically limiting the set of people who can understand our code, and hence limiting
its maintainability and usability.

Now that we have explored the craft of exposing final clarity via a well-structured test suite,
we can zoom out once more and discuss how we might communicate the purpose and types
of tests we're writing via our directory structures and file naming conventions.

Creating clean directory structures
Our test suites should usually be constrained to individual files, to delineate areas of
concern for our programmer-colleagues. Organizing these test files to form a coherent part
of a larger code base can be a challenge, though.

Imagine a small JavaScript code base with the following directory structure:

app/
 components/
 ClockComponent.js
 GalleryComponent.js
 utilities/
 timer.js
 urlParser.js

It's quite typical to place tests relating to particular code in sub-directories close to where
that code resides. In our example code base, we may create the following tests sub-
directories to contain unit tests for our components and utilities:

app/
 components/
 ClockComponent.js

Writing Clean Tests Chapter 14

[422]

 GalleryComponent.js
 tests/
 ClockComponent.test.js
 GalleryComponent.test.js
 utilities/
 timer.js
 urlParser.js
 tests/
 timer.test.js
 urlParser.test.js

Here are some additional notes regarding conventions, which, as we should know by now,
are vital in increasing the familiarity and intuitiveness of a code base and hence its overall
cleanliness:

Tests are sometimes called specs (specifications). A spec is typically no different to
a test, although, as a name, it is slightly more favored in the BDD paradigm. Use
whichever you're comfortable with.
It's common to see test files suffixed with .test.js or .spec.js. This is so your
test-runner can easily identify which files to execute, and it is a helpful reminder
to our colleagues as well.
It's not rare to see test directories with naming patterns involving underscores or
other atypical characters, for example, __tests__. These naming patterns are
usually used to ensure that such tests are not compiled or bundled as part of
your main source code and are easily discernible by our colleagues.
E2E or integration tests are more commonly placed at a higher level, which
alludes to their dependency on multiple parts. It's quite common to see a high-
level e2e directory (or some adaptation). Sometimes, integration tests are named
individually and stored at a high level; other times, they are interspersed with
unit tests throughout a code base.

Once again, hierarchy is key here. We must ensure that the hierarchy of our directories
helpfully mirrors the conceptual hierarchy of our code and its problem domain. As an
equal and important part of a code base, a test should be placed carefully and appropriately
within a code base, not as an afterthought.

Writing Clean Tests Chapter 14

[423]

Summary
In this chapter, we have applied our theoretical knowledge of testing to the practical craft of
constructing real, working, and clean test suites. We looked at some of the pitfalls that exist
in doing so, and we highlighted the important qualities to strive for, such as clarity,
intuitive naming, and following conventions.

In the next chapter, we will be looking into a variety of tools we can use to help us to write
cleaner code, from linters to compilers, and beyond!

15
Tools for Cleaner Code

The tools we use have a massive impact on the habits we fall into when writing code. When
coding, just as in life, we want to gather good habits and avoid bad habits. An example of a
good habit would be writing syntactically valid JavaScript. To help us enforce this good
habit, we can use a linter to inform us when our code is invalid. We should consider each
tool in this way. What good habit does it inspire? What bad habit does it discourage?

If we recall our original tenets of clean code (R.E.M.U) we can observe how various tools
help us abide by them. Here's just a small collection of tools that would be of service to the
four tenets:

Reliability: Testing tools, user feedback, error loggers, analytics, linters, static
typing tools, and languages
Efficiency: Performance measurement, analytics, user feedback, UX reviews,
ecological costing (for example, carbon footprint)
Maintainability: Formatters, linters, documentation generators, automated
builds, and continuous integration
Usability: Analytics, user feedback, documentation generators, accessibility
checkers, UX reviews, and hallway testing

Tools for Cleaner Code Chapter 15

[425]

Tools that inspire good habits work by augmenting our feedback loops. A feedback loop is
whatever eventually makes you realize that you need to make a change. Perhaps you
introduced a bug that caused an error to be logged. Perhaps your implementation is
unclear and a colleague complained. If tools can catch these situations early, then it can
speed up our feedback loop, enabling us to work faster and to a higher level of quality. In
the following diagram, we illustrate Our Feedback Loop and how it is fed by information
from tools at each stage of development:

Throughout our stages of development, there are many avenues of feedback. There are
linters to tell us when our syntax is problematic, static type checkers to confirm we are
using types correctly, and tests to confirm our expectations. Even after deployment, this
feedback continues. We have error logs that indicate failure, analytics that tell us about user
behavior, and feedback from end users and other individuals informing us about breakages
or areas for improvement.

Different projects will operate in different ways. You may be a solo
programmer or 1 of 100 programmers dedicated to a specific project.
Regardless, there will likely be various stages of development, and the
possibility of feedback exists at every stage. Tooling and communication
is vital to an effective feedback loop.

Tools for Cleaner Code Chapter 15

[426]

In this chapter, we'll be covering a small selection of the tools that can help us in building
good habits and a positive feedback loop. Specifically, we're going to cover the following:

Linters and formatters
Static typing
E2E testing tools
Automated builds and CI

Linters and formatters
A linter is a tool used to analyze code and discover bugs, syntax errors, stylistic
inconsistencies, and suspicious constructs. Popular linters for JavaScript include ESLint,
JSLint, and JSHint.

Most linters allow us to specify what types of bugs or inconsistencies we would like to look
for. ESLint, for example, will allow us to specify a global configuration for a given code
base in a root-level .eslintrc (or .eslintrc.json) file. In it, we can specify the version
of the language we are using, which features we are using, and which linting rules we
would like to be enforced. Here's an example .eslintrc.json file:

{
 "parserOptions": {
 "ecmaVersion": 6,
 "sourceType": "module",
 "ecmaFeatures": {
 "jsx": true
 }
 },
 "extends": "eslint:recommended",
 "rules": {
 "semi": "error",
 "quotes": "single"
 }
}

Here's an explanation of our configuration:

ecmaVersion: Here, we are specifying that our code base is written in the
ECMAScript 6 (2016) version of JavaScript. This means that the linter will not
complain if it sees you are using ES6 features. It will, however, complain if you
use ES7/8 features, as you would expect.

Tools for Cleaner Code Chapter 15

[427]

sourceType: This specifies that we are using ES modules (imports and exports).
ecmaFeatures: This informs ESLint that we wish to use JSX, a syntax extension
that allows us to specify XML-like hierarchies (this is used considerably in
component frameworks like React).
extends: Here, we specify a default ruleset of "eslint:recommended", which
means that we're happy for ESLint to enforce a recommended set of rules.
Without this, ESLint would only enforce the rules we specify.
rules: Lastly, we are configuring the specific rules we wish to set on top of the
recommended configuration:

semi: This rule relates to semicolons; in our override, we are
specifying that we wish for an error to be produced in the case of a
missing semicolon in case of a mere warning.
quotes: This rule relates to quotes and specifies that we wish for
single quotes to be enforced, meaning that the linter will warn us if
it sees double quotes in our code.

We can try our configuration out by writing a piece of code that intentionally breaks the
rules:

const message = "hello"
const another = `what`

if (true) {}

If we install and run ESLint on this code (within bash: > eslint example.js), then we'll
receive the following:

/Users/me/code/example.js
 1:7 error 'message' is assigned a value but never used
 1:17 error Strings must use singlequote
 1:24 error Missing semicolon
 2:7 error 'another' is assigned a value but never used
 2:17 error Strings must use singlequote
 2:23 error Missing semicolon
 4:5 error Unexpected constant condition
 4:11 error Empty block statement

 8 problems (8 errors, 0 warnings)
 4 errors and 0 warnings potentially fixable with the `--fix` option.

Tools for Cleaner Code Chapter 15

[428]

This details all of the errors in the syntax according to our configured rules. As you can see,
it details the rule that was broken and the line the problem was found on. ESLint and other
linting tools can be incredibly helpful in finding hard-to-spot syntax errors, some of which
may, if left untouched, lead to difficult to debug functional bugs in the future. Linting also
gives the code more consistency, enabling programmers to feel a sense of familiarity and
endure less cognitive burden, as would be the case in a code base with many different
syntax conventions.

ESLint also includes a facility for fixing a subset of these syntax errors via its --fix option,
although you may have noticed that only a subset of errors can be fixed this way. Others
will need to be done manually. Thankfully, though, there are a number of more advanced
tools available to help us out. Formatters, such as Prettier and Standard JS, will take our
syntactic preferences and make active changes to our code to ensure that it remains
consistent. This means that programmers don't have to burden themselves with specific
syntactic rules, or endlessly change code in response to linters. They can write code in the
manner they desire, and when they're done, the formatter will change the code to conform
to the agreed upon syntax conventions or warn the programmer if there is a severe or
invalid syntax error.

To illustrate, let's run Prettier with its default configuration on a simple piece of code:

function reverse(str) {
 return (String(str).split('').reverse().join(''));
}

When running the preceding code through Prettier, we receive the following:

function reverse(str) {
 return String(str)
 .split("")
 .reverse()
 .join("");
}

As we can see, Prettier has removed and changed some of our syntactic habits to its
configured conventions. Namely, it has exchanged single quotes for double quotes, it has
removed redundant parentheses, and it's made significant changes to the whitespace. The
magic of formatters is that they take the pain away from the programmer. They do the
work of correcting minor syntactic habits, leaving the programmer free to pursue more
important work. The general trend in the industry is away from simple linters and toward
more fully featured tools that combine both linting and formatting.

Tools for Cleaner Code Chapter 15

[429]

The decision over what syntactic conventions to abide by is configurable and entirely up to
you. There are many strongly held opinions about this, but the most important tenet to
uphold is consistency. I personally prefer single quotes to double quotes, for example, but if
I'm working in a code base where double quotes are the established convention, then I'll
have no qualms about changing my habits. Most of the time, syntactic preferences are just
subjective and inherited norms, so what's important is not which norm we use, but whether
or not we all abide by it.

Many of the norms we have grown used to within the JavaScript language have been
guided by its dynamically typed nature. For example, we have become used to having to
check manually for specific types in order to provide meaningful warnings or errors within
our interfaces. For many, these norms have been challenging to adapt to, and they have
grown desperate for a higher level of confidence in the types they use. Thus, people have
brought various static typing tools and language extensions to JavaScript. We'll be
exploring these next, and while we do, take note of how such static typing tools might
change or improve your personal development feedback loop.

Static typing
As we've explored at length, JavaScript is a dynamically typed language. If wielded
carefully, this can be a great benefit, allowing you to work quickly and permit a level of
flexibility in your code that enables colleagues to work with it less painfully. However,
there are situations in which dynamic types can create the possibility of bugs and needless
cognitive burdens for programmers. Statically typed compiled languages, such as Java or
Scala, force the programmer to specify the types they are expecting at the point of
declaration (or infer the type by how it is used, prior to execution).

Static typing has the following potential benefits:

The programmer can have confidence in the types they'll be dealing with, and
thus, can make a number of safe assumptions about the capabilities and
characteristics of their values, easing development.
The code can be statically type-checked prior to execution, meaning that
potential bugs can be caught easily and are not liable to specific (and accidental)
arrangements of types.
The maintainers and users of the code (or its APIs) have a clearer set of
expectations to operate under and are not left guessing what may or may not
work. The specification of types can itself serve as a sort of documentation.

Tools for Cleaner Code Chapter 15

[430]

Even though JavaScript is dynamically typed, there have been efforts to give JavaScript
programmers the benefits of a static typing system. Two pertinent examples of this are
Flow and TypeScript:

Flow (https:/ /flow. org/) is a static type checker and language extension to
JavaScript. It allows you to annotate types using its own specific syntax, although
it isn't considered a distinct language of its own.
TypeScript (http:/ /www. typescriptlang. org/) is a superset language of
JavaScript, developed by Microsoft (meaning that valid JavaScript is always valid
TypeScript). It is a language unto itself, with its own syntax for type annotations.

Both Flow and TypeScript allow you to declare the types that you are declaring, either
alongside variable declarations or parameter declarations within functions. Here's an
example of declaring a function that accepts productName (string) and rating (number):

function addRating(productName: string, rating: number) {
 console.log(
 `Adding rating for product ${productName} of ${rating}`
);
}

Both Flow and TypeScript generally allow the annotation of types following a declaration
identifier in the IDENTIFIER: TYPE form, where TYPE can be any of number, string,
boolean, and many more. They do differ in many ways though, so it's important to
investigate both. Naturally, both Flow and TypeScript, and most other static type checking
technologies for JavaScript, will require a build or compilation step in order to work, as they
include syntax extensions.

Be aware that static typing is not an elixir. The cleanliness of our code is not only
constrained to its ability to avoid type-related bugs and difficulties. We have to zoom out, in
our perspective, and remember to consider the user and what they're trying to achieve via
our software. It's quite common to see passionate programmers get lost in the minutiae of
their syntax but forgo the bigger picture. So, to change tack slightly, we'll now explore E2E
testing tools, as E2E testing can be as significant in its effect on the quality of a code base as
the typing system or syntax we use, if not more!

E2E testing tools
In the last few chapters, we explored the benefits and types of testing, including an
overview of E2E testing. The testing libraries we typically use to build test suites and make
assertions rarely include E2E testing facilities, so it's necessary for us to find our own
tooling for this.

https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
https://flow.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
http://www.typescriptlang.org/

Tools for Cleaner Code Chapter 15

[431]

The aim of an E2E test is to emulate user behavior upon our application and to make
assertions about the application's state at various stages of user interaction. Typically, an
E2E test will test a specific user flow, such as user can register new account or user can log in
and buy product. Whether we're using JavaScript on the server side or the client side, if we're
building a web application, it will be hugely beneficial to carry out such testing. To do so,
we need to use a tool that can artificially create the user environment. In the case of a web
application, the user environment is a browser. And thankfully, there are a large number of
tools that can either emulate or run real (or headless) browsers that we can access and
control via JavaScript.

A headless browser is a web browser without a graphic user interface.
Imagine the Chrome or Firefox browser, but without any visible UI,
entirely controllable via a CLI or a JavaScript library. Headless browsers
allow us to load up our web application and make assertions about it
without having to pointlessly expend hardware capabilities on rendering
a GUI (meaning we can run such tests on our own computers or in the
cloud as part of our continuous integration/deployment process).

An example of such a tool is Puppeteer, a Node.js library that provides an API to control
Chrome (or Chromium). It can run either headless or non-headless. Here's an example in
which we open a page and log its <title>:

import puppeteer from 'puppeteer';

(async () => {
 const browser = await puppeteer.launch();
 const page = await browser.newPage();
 await page.goto('https://example.com');

 const titleElement = await page.$('title');
 const title = await page.evaluate(el => el.textContent, titleElement);

 console.log('Title of example.com is ', title);

 await browser.close();
})();

Puppeteer provides a high-level API that allows the creation and navigation of browser
pages. Within this context, using a page instance, we can then evaluate specific client-
side JavaScript via the evaluate() method. Any code passed to this method will be run
within the context of the document, and will, therefore, have access to the DOM and other
browser APIs.

Tools for Cleaner Code Chapter 15

[432]

This is how we're able to retrieve the textContent property of the <title> element.
You'll have noticed that much of Puppeteer's API is asynchronous, meaning that we have to
either use Promise#then or await to wait for each instruction to complete. This may be
bothersome, but considering the fact that the code is running and controlling an entire web
browser, it makes sense that some tasks are asynchronous.

E2E testing is rarely embraced because it is perceived as being difficult. While that
perception was accurate at one point, it is no longer so. With APIs like that of Puppeteer,
we can easily launch our web application, trigger specific actions, and make assertions
about the results. Here's an example of using Jest (a testing library) with Puppeteer to make
an assertion about the text within the <title> element at https://google.com:

import puppeteer from 'puppeteer';

describe('Google.com', () => {

 let page;

 beforeAll(async () => {
 const browser = await puppeteer.launch();
 page = await browser.newPage();
 await page.goto('https://google.com');
 });

 afterAll(async () => await browser.close());

 it('has a <title> of "Google"', async () => {
 const titleElement = await page.$('title');
 const title = await page.evaluate(el => el.textContent, titleElement);
 expect(title).toBe('Google');
 });
});

Fetching a page, parsing its HTML, and producing a DOM that we can make assertions
about is a very complex process. Browsers are incredibly effective at doing this, so it makes
sense to utilize them in our testing process. After all, it is whatever the browser sees that
will dictate what the end user sees. E2E tests give us realistic insights into potential
breakages, and it's no longer hard to write or run them. They are immensely powerful for
the clean coder especially, as they let us see the reliability of our code from a more user-
oriented perspective.

As with many of the tools we've explored, E2E testing may be best integrated into our
development experience via automation. We'll now explore this in brief.

Tools for Cleaner Code Chapter 15

[433]

Automated builds and CI
As we have highlighted, there are a large number of tools available to help us write clean
code. These tools can be activated manually, usually via a command-line interface (CLI) or
sometimes within our IDEs. Usually, however, it is prudent to have them run as part of our
various stages of development. If using source control, then this process will include a
commitment or staging process and then a pushing or checking-in process. These events, when
combined with the simple act of making changes to files, represent the three vital
development stages that our tooling can use to generate their outputs:

Upon changes to files: It is typical for JavaScript (or CSS) transpilation or
compilation to occur at this stage. For example, if you're writing JS that includes
the JSX language extension (React), then you're likely relying on Babel to
constantly compile your JS hybrid to valid ECMAScript (see Babel's --watch
command flag). It's also common to have linting or other code formatting occur
when files are mutated.
Upon committing: It is typical for linting, testing, or other code validation to
occur at the pre- or post-commit stage. This is useful in that any invalid or
broken code can be flagged before it is pushed. It's not rare for asset generation
or compilation to also occur at this stage (for example, generating valid CSS from
SASS, an alternative style sheet language).
Upon pushing: It is typical for all processes (linting, testing, compilation,
generation of assets, and so on) to occur within a remote machine when new
code has been pushed to either a feature branch or the master branch. This is
called continuous integration and allows programmers to see how their code
would run when combined with their colleagues' code before deploying to
production. Examples of tools and services that are used for CI include TravisCI,
Jenkins, and CircleCI.

It can greatly ease development to have your tooling activate automatically, however, this
isn't a requirement. You can lint your code, run tests, transpile your CSS, or generate
compressed assets all via the CLI, without having to fuss with automation. You may find
this to be slower though, and it's more likely that your tooling will be used inconsistently
amongst your team if it is not standardized into a set of automations. It may be the case, for
example, that your colleague always runs tests before transpiling SCSS to CSS, while you
tend to do it the other way round. This can result in inconsistent bugs and it works on my
machine syndrome.

Tools for Cleaner Code Chapter 15

[434]

Summary
In this chapter, we have discovered the usefulness of tooling, highlighting its power to
improve our feedback loops, and how it empowers us to write cleaner code. We have
explored a number of specific libraries and utilities as well, giving us a flavor of what types
of tools exist and the various ways in which our abilities and habits as programmers can be
augmented. We've tried out linters, formatters, static type checkers, and E2E testing tools,
and we've seen the merits of tooling at every stage of development.

The next chapter begins our journey into the art and science of collaboration; a vital
ingredient for anyone who wants to write clean code. We'll begin with an exploration of
how we can write clear and understandable documentation.

5
Section 5: Collaboration and

Making Changes
In this section, we'll cover the vital skills that are involved in collaborating and
communicating with other people and how to navigate the need to refactor your code. In
doing so, we'll discuss documentation, strategies of collaboration, and how to identify and
advocate for change in your team, organization, or community.

This section contains the following chapters:

Chapter 16, Documenting Your Code
Chapter 17, Other Peoples' Code
Chapter 18, Communication and Advocacy
Chapter 19, Case Study

16
Documenting Your Code

Documentation has a bad reputation. It is hard to find the motivation to write it, it's a
nuisance to maintain, and our exposure to it over the years has convinced us that it is one of
the driest and dullest methods of knowledge transfer. It doesn't have to be this way,
though!

If we choose to focus entirely on the users, then our documentation can be simple and
pleasant. To do this, we must first consider who the users of our documentation are. What
do they want? Every user, whether a GUI end user or a fellow programmer, begins the
journey of using our software with a task in mind. It's our duty, both within the software
and through its documentation, to enable them to perform their task with as little pain and
confusion as possible. With this in mind, in this chapter we'll explore what it might mean
for us to construct such pain-free documentation. We'll specifically be covering the
following:

Aspects of clean documentation
Documentation is everywhere
Writing for non-technical audiences

Documenting Your Code Chapter 16

[437]

Aspects of clean documentation
The purpose of documentation is to communicate what a piece of software does and how
to use it. We can split the characteristics of clean documentation into four aspects: a clean
piece of documentation communicates the concept of the software, provides a specification
of its behaviors, and contains instructions for how to perform specific actions. And it does
all of this with a focus on usability. By the end of this section, we will hopefully
understand the vital importance of the user in the craft of building clean documentation.

Documentation is something most people don't think about a lot. It's
usually an afterthought. My task in this chapter is to convince you that it
can be, and should be, so much more than this. As we step into these
aspects, forget what you know about documentation – start with a fresh
canvas and see if you come away with revelations of your own.

Concept
A clean piece of documentation will communicate the underlying concept of the software.
It'll do this by explaining what the software's purpose is in a way that allows potential
users to see how they might make use of it. This can be considered the educational part of
documentation: setting out the terminology and paradigms that will allow the reader to
easily comprehend the other parts of the documentation and the software it describes.

To properly express the concepts of a piece of software, it's necessary to step inside the
shoes of your users, seeing things from their perspective and communicating with them on
their terms:

Determine your audience: Who are they and what's their general technical
proficiency?
Determine their understanding of the problem domain: How much do they
already know about this specific software project, API, or code base?
Determine the right the level of abstraction and best analogies: How can you
communicate in a way that makes sense to them and integrates well with their
current knowledge?

Writing good documentation is a process of considering the user and then crafting the
appropriate abstractions for them. You'll hopefully notice how incredibly similar this is to
the process of crafting clean code. There are, in fact, very few differences. When building
documentation, we are crafting a tool that the user can use to accomplish a specific set of
tasks. It is our responsibility to craft it in such a way that users can easily accomplish their
end goals without being overwhelmed by the sheer volume and complexity of the software:

Documenting Your Code Chapter 16

[438]

Consider a project that has taken several weeks to complete. It is a JavaScript (JS) library
called SuperCoolTypeAnimator that other programmers can use to create typeface
transitions. It allows them to display to the user a block of text that is animated from one
typeface to another (for example, from Helvetica to Times New Roman). It's a rather
complex code base that calculates these transitions manually. The depth of its complexity
has meant that you, the programmer, have discovered far more about ligatures, serifs, and
path interpolation than you ever thought possible. After months of being immersed in this
increasingly deep problem domain, it is understandably challenging for you to share the
perspective of a user who has not had your level of exposure. Thus the first draft of your
documentation might start in the following way:

SuperCoolTypeAnimator is an SVG glyph animation utility that allows the creation and frame-by-
frame manipulation of transitions between source glyphs and their respective target glyphs,
calculating appropriate transitional anchors on the fly.

Let's compare that to the following alternative intro:

SuperCoolTypeAnimator is a JS library that allows you to animate small pieces of text from one
typeface to another typeface with ease.

As introductions, the latter is far more widely understandable and will allow even non-
expert users to immediately understand what the library does. The former introduction,
while informative, may result in current and potential users feeling confused or alienated.
The entire purpose of the software we build is to abstract away complexity, wrapping it up
in a neat and simplified way. Belaboring our users with complexity should be done
with regret and consideration: it is usually the last resort.

The concept that we are attempting to communicate in our documentation
concerns, above all, how our software can help the user. For them to
understand how it can help them, we need to describe it in a way that
meshes with their current understanding.

Documenting Your Code Chapter 16

[439]

Another factor highlighted by the two introductions is their usage of special terminology
(such as glyph and anchor). The usage of such domain-specific terminology is a balancing
act. If your users have a good understanding of the typeface/font problem domain, terms
such as glyph and typeface may be appropriate. There is, arguably, a high likelihood that
users interested in your library are also aware of such concepts. But the use of more
nuanced terms such as transitional anchors may be a step too far. This is likely a term that
you have used within your abstraction to describe a highly complex area of
implementation. It is a useful term to you, and perhaps to anyone wishing to make changes
to the library, but it is perhaps less useful to users of the library. Therefore, it would be wise
to avoid it in our documentation's introduction.

Specification
As well as providing a concept for the software, good documentation will also provide a
specification, detailing the specific characteristics and behaviors of the interfaces provided by
your software. This part of the documentation details the contract that the user or
programmer can expect to have when using the software.

The specification should ideally be the simplest part of the documentation to write, for the
following reasons:

It's literally in the code: The specification of behavior is contained within the
code and its tests, usually making it quite simple to manually write up this
information as documentation. However, if it is difficult to write, then that
indicates an underlying complexity in your code and its interfaces that perhaps
should be fixed as a priority.
It's possible to automatically generate: There exist many documentation
generators that either rely on static-typing annotations or comment annotations
(for example, JSDoc). These allow you to generate documentation for entire
interfaces via a CLI or build tool.
It follows a fixed format: A specification will follow a straightforward format
that is simple to author. It usually contains headings for individual endpoints or
method signatures, and a sentence explaining each argument.

The overriding purpose of providing a specification is to answer specific questions that a
user might have about the operation of your code:

Documenting Your Code Chapter 16

[440]

The following is an example of a specification for a function called removeWords.

removeWords(subjectString, wordsToRemove);

This function will remove the specified words from the specified subject string, returning a
new string to you. A word here is defined as a string of characters bound by word
boundaries (\b). For example, specifying an "I like apple juice" subjectString
and ["app", "juice"] for wordsToRemove would remove only "juice", as "app"
exists in the subject but is not bound by a word boundary. The following are the arguments:

subjectString (String): This is the string that the specified words will be
removed from. If you do not pass a String type, then the value you pass will be
cast to a String.
wordsToRemove (Array): This is an array containing words that you wish to
remove. A null or empty array will cause no words to be removed.

As you can hopefully tell, this specification is a purely technical explanation of a function's
behavior. It tells the user exactly what arguments they must provide and what output
they'll receive. When writing the specification portion of your documentation, the most
important qualities to abide by are clarity and correctness. Be wary of the following traps:

Not enough information to allow usage: It's important to provide enough
information about your implementation so that another programmer, with no
knowledge of your software, can begin to make use of it. It's insufficient to only
specify types of arguments, for example. Provide extra information if the
knowledge domain is especially obscure.

Documenting Your Code Chapter 16

[441]

Incorrect or out-of-date information: Documentation can easily fall out of date
or be incorrect. This is why it's quite common to generate documentation
automatically from annotated code. That way, the chances of information being
incorrect or out of date are lessened considerably.
Lack of examples: It's common to only list modules, methods, and argument
signatures, without providing any examples. If doing this, the chance of
confusion and pain is far higher, so it's always worth providing sensible
examples or linking readers to more tutorial-like documentation.

The specification is arguably the most important part of your documentation, as it explains,
in clear terms, the behavior of every part of your software's relevant APIs. Ensure that you
take the same care and diligence when documenting your code as you would when writing
it.

Instruction
In addition to concept and specification, a clean piece of documentation will instruct a user in
how to accomplish common tasks. These are commonly termed walkthroughs, tutorials, how-
tos, or recipes.

Primarily, a user, regardless of whether they are a programmer or end user, is concerned
with how to get from where they are to where they want to be. They are interested in
knowing what steps to take. Without instructions for common use cases, they'll be left
desperately piecing together what they know about your software from intuitions or other
pieces of documentation. Consider a book about cookery that only details the ingredients
and their behaviors when cooked, but doesn't contain any specific recipes that combine
ingredients in a specific order. That'd be a challenging cooking book to make use of. While
it may provide a highly detailed set of culinary information, it doesn't help users answer
their actual questions:

Documenting Your Code Chapter 16

[442]

When composing instructions, whether they're in the form or video tutorials or written
walk-throughs, it is important to consider what use cases are most prevalent or challenging
for your users. As with many things in life, you can only reasonably cater for the bulk of
prospects, not all of them. It is unreasonable to create tutorials for every single possible use
case. And likewise, it is unreasonable, from a user's perspective, for you to only provide a
singular tutorial for the most common use case. It is wise to strike a compromise and have a
small collection of tutorials that each express:

Upfront expectations and prerequisites: A set of instructions should specify
what expectations the author has about the reader's hardware, software
environment, and capabilities. It should also say if there is anything the reader
should prepare before beginning the following steps.
Specific steps that a reader can emulate: Instructions should have a number of
specific steps that users can follow to reach their desired goal. The user should
not have to use too much (or any) initiative when following these steps; the steps
should clearly and exhaustively outline exactly what the user needs to do, with
code examples if possible. It should also be obvious to the user that they have
successfully completed each step (for example, you should now receive X output).
An achievable and observable goal: Instructions should work toward a goal that
can be observed by the user. It would be upsetting for the last step of a tutorial to
say this won't currently work, due to X or Y, but you would usually expect to see
Z. Ensure that your software is operating in such a way that the tutorial can be
completed to its very end and the user can come away having gotten closer to
whatever their overarching goal is.

Don't just tell a user what to do. Tell them what they're accomplishing at
each stage, and why it matters. That is, don't just tell me to put salt in the
dish, tell me why it needs salt!

The instructional part of documentation is probably the most challenging. It requires us to
take on the role of teacher and see things from another person's position of relative
ignorance. Maintaining focus on the person we're teaching, the user, is absolutely vital. This
feeds quite nicely into our final aspect of clean documentation: usability.

Documenting Your Code Chapter 16

[443]

Usability
Usability is the final component in clean documentation. Just like our software, our
documentation must be concerned with users and their specific needs. The previous three
aspects (concept, specification, instruction) have focused on content, while usability is purely
about the way in which we express that content. It's vitally important not to overwhelm or
confuse user when they learn about your software:

There are many ways we can confuse and overwhelm. Among them are these the
following:

Too much content: This can overwhelm a user who may only want to perform
some specific and narrow task. They may not see the point in crawling through
reams of documentation just to implement their simple task.
Too little content: If a user wishes to do something that is not documented
sufficiently, then they are left with few options. They either have to hope that
there is community-driven documentation somewhere or that the interfaces are
understandable enough to decipher without help.
Internal inconsistency: This is common when there are different areas of
documentation that have been updated at different times. A user is left
wondering which document or example is correct and up to date.
Lacking structure: Without structure, a user cannot easily navigate through or
gain a conceptual understanding of, the entire software. They are left crawling
through the details without able to get a clear big picture. Hierarchy is important
in software, so it's important to reflect this in our documentation.
Difficult to navigate content: Without good UX/UI considerations,
documentation can be very hard to navigate through. If it is not centralized,
searchable, and accessible, then navigation suffers and users are left in a state of
confusion and pain.

Documenting Your Code Chapter 16

[444]

Lacking presentation: Alongside navigation, another crucial UX component
within documentation is its aesthetic and typographic layout. A well laid-out
document is a breeze to read through and learn from. It is entirely reasonable to
design documentation. It should not be a dry dumping ground of endless prose, but
a beautiful educational experience!

In Chapter 2, The Tenets of Clean Code, we went into great detail on what usability means.
We discussed how it was not only about intuitive design and accessibility, but also about
the consideration of user stories—specific tasks that users wish to carry out and how to
accommodate these. Documentation is no different to any other interface that we provide; it
must solve the user's problems. Consider how you may design documentation to cater for
these example user stories:

As a user, I wish to understand what this framework does and how I might apply
it to my project
As a user, I wish to find out how I can install this framework into my Node.js
project
As a user, I wish to understand the best practices when using this framework
As a user, I wish to understand how to build a simple example app using this
framework

Every user is different. Some users will prefer to read through a long and
technical document, others will prefer short self-contained tutorials.
Consider the different learning styles that people have (visual, aural,
social, solitary, and so on). Some learn by studying things at length; others
learn by doing.

We may consider building different styles of documentation for the different types of
information a user seeks. More specification-oriented information (for example, how does
this specific framework function work?) may be best suited to a traditional long-form
document format, while more instruction-oriented information (for example, how can I build
an app with this framework?) may be best suited to rich media (for example, a video tutorial).

Due to the many types of information a user may seek, and all the different individual
users we are catering for, it is absolutely worth dedicating significant time to planning,
designing, and executing clean documentation. It should never be an afterthought.

Documenting Your Code Chapter 16

[445]

Now that we're explored our four aspects of clean documentation, let's explore the
incredible gamut of available mediums we can employ to express our documentation. We
do not have to employ only a single dull, scrollable document: there are dozens of other
ways we can inform and educate our users and colleagues.

Documentation is everywhere
If we generously define documentation as a way of learning about a piece of software, we can
observe that there are dozens of different mediums of documentation that exist. Many of
them are implicit or accidental; others are more intentionally crafted, either by the creator(s)
of the software or the expert community that has gathered around it:

Written documentation (API specifications, conceptual explanations)
Explanatory images and diagrams (for example flowcharts)
Written tutorials (walk-throughs, recipes, how to do X)
Rich media introductions and tutorials (videos, podcasts, screencasts)
Public Q&As or issues (for example GitHub issues that explain how to fix something)
Community-driven Q&As (for example StackOverflow)
Independent communication between programmers (online or offline)
Meet-ups, conferences, and seminars (owner or community-driven)
Official support (paid support lines, emails, in-person sessions)
Educational classes (in-person or online, for example Coursera)
Tests (that explain concepts, flows, and expectations)
Good abstractions (that help to explain concepts)
Readable and familiar code (that can be easily understood)
Structure and delineations (directory structure, project names, and so on)
Intuitively designed interfaces (educating usage via good design)
Error flows and messages (for example X not working? Try Z instead.)

Documenting Your Code Chapter 16

[446]

It's worth considering how all these mediums care catered for. When the official
documentation does not help to solve a user's problem, what other pathways will they
explore before abandoning your software altogether? How can we channel a user's
difficulty or questions towards a solution as quickly and fluidly as possible? If a user is
unlikely to read an entire specification document, then what other mediums can we create
for them?

Writing for non-technical audiences
As we have seen, when writing documentation, there is a need to adapt the language used
to the audience. To do this, we must have a good picture in our mind of who the audience
is, what their current level of knowledge is, and what they're trying to accomplish. A
notorious challenge for programmers is communicating with less technical or non-technical
people. This is a very common and crucial part of their role as a creator of software.
Whether communicating with end users at specific points in a UX, or collaborating with
non-technical stakeholders, there is a need to tailor our communication to the audience. To
do this, we should do the following:

Pick the right level of abstraction: It's crucial to find a level of abstraction that is
fully understood by the audience. Use their roles and proficiencies to inform the
analogies you use to explain things. For example, if you were talking to a patient
about a piece of medical software, you might prefer to say please add your medical
information instead of please populate the medical profile fields.
Avoid overly-technical terminology: Avoid words that mean nothing to the
audience. Use regular language to explain detailed concepts. For example, you
might talk about visual enhancements instead of CSS modifications.
Get constant feedback: Ensure you are being understood by checking with your
audience. Don't assume that people understand you just because they don't
explicitly say otherwise. Consider user-oriented prompts in your documentation
or software (for example, was this message helpful? [YES] [NO])

Communicating with non-technical individuals may appear to be a distinct challenge, but it
is no different from communicating with anyone else. As we should be doing all the time,
we just need to meet the person where they're at and communicate according to their current
understanding of the problem domain.

Documenting Your Code Chapter 16

[447]

Summary
In this chapter, we have explored the difficult art of authoring clean documentation,
breaking it down into the four vital aspects of clean documentation: concept, specification,
instruction, and usability. We've discussed the challenge of correctly identifying our
audience and how to craft our communications to suit them. This knowledge will not only
be useful in crafting formal documentation, but also in our everyday communications with
stakeholders and within our software when it needs to communicate with users.

In the next chapter, we move swiftly on to the unique challenge of dealing with other
peoples' code. What happens when we, on the receiving end of potentially poor
documentation or unintuitive code, need to be productive? We'll find out.

17
Other Peoples' Code

Humans, being complex and fickle, create complex and fickle things. However, dealing
with other people and their code is an unavoidable part of being a programmer. Whether
we deal with libraries and frameworks constructed by someone else or inherit entire legacy
code bases, the challenges are similar. The first step should always be to seek an
understanding of the code and its paradigms. When we have a full understanding of the
code, we can begin to interface with it in a clean way, enabling us to create new
functionality or make improvements on top of existing work. In this chapter, we'll be
exploring this topic in more detail and, through the lens of clean code, considering how we
can individually take actions to make other people's code less of a pain to deal with.

In this chapter, we will cover the following topics:

Inheriting code
Dealing with third-party code

Inheriting code
When we join a new team or take on a new project, we are usually inheriting a large
amount of code. Our ability to be productive in these inherited code bases is dependent on
our understanding of them. So, before we even seek to make the first change, we need to
build in our minds a conceptual model of how things work. It's not necessary for it to be
exhaustive and complete, but it must enable us, at a very minimum, to make a change and
understand exactly what effect that change may have on all the moving parts of the code
base.

Other Peoples' Code Chapter 17

[449]

Exploring and understanding
Understanding a code base fully is not strictly necessary to make use of it nor to make
changes to it, but if we don't have a sufficient understanding of the complexity of all its
interrelated parts, then we can fall into a trap. The trap occurs when we, believing we have
a good understanding, start making changes. Without understanding the full effects of our
actions, we can end up wasting time, implementing things poorly, and producing
accidental bugs. Therefore, it is vital that we become properly informed. To do this, we
must first gauge how complete or incomplete our view is of the complexity of the system or
code base.

Often the things we cannot see are completely unknown to us, and we are therefore
unaware that we lack any understanding at all. This is encapsulated by the common
expression we don't know what we don't know. It's therefore helpful, when exploring a new
code base, to proactively and enthusiastically push to discover and highlight our areas of
ignorance. We can do this by following a three-step process:

Gather available information: Talk to informed colleagues, read documentation,
use the software, internalize the conceptual structures and hierarchies, and read
the source code.
Make informed assumptions: Fill the gaps of what you aren't sure about with
informed assumptions. If you're told that the app has a registration page, you can
intuitively assume that this means user registration involves typical personal
data fields such as name, email, password, and so on.
Prove or disprove assumptions: Seek to prove or disprove your assumptions by
inquiring the system directly (for example, writing and executing tests), or asking
someone who is informed (for example, a colleague who has experience of the
code base).

Other Peoples' Code Chapter 17

[450]

There are a few specific approaches that are worth employing when it comes to creating
and expanding an understanding of a new code base. These include making a flowchart,
internalizing the timeline of changes, stepping through the code with a debugger, and
confirming your assumptions via tests. We'll explore each of these individually.

Making a flowchart
One useful method we can employ almost immediately when encountering a new code
base is to populate a mind map or flowchart that highlights not only the things we know
but the things we aren't yet sure about. Here's a simplified example of such a diagram for a
piece of medical software I once worked on:

As you can see, I have tried to outline my current understanding of the user flow and have
also added questions or areas of confusion I am personally experiencing in the cloud
annotations. Over time, as my understanding grows, I can add to this flowchart.

People learn in a huge variety of ways. This visual aid may be more useful
for some people but less for others. There are also countless ways of
composing such flowcharts. For the goal of personal understanding, it is
best to use whatever works for you.

Other Peoples' Code Chapter 17

[451]

Finding structure and observing history
Imagine you're faced with a large JavaScript application code base that includes several
specialized types of views or components. We've been tasked with adding a new drop-down
to one of the payment forms within the application. We do a quick search through the code
base and identify a number of different dropdown-related components:

GenericDropdownComponent

DropdownDataWidget

EnhancedDropdownDataWidget

TextDropdown

ImageDropdown

They're confusingly named and so we'd like to get a better understanding of them before
making changes or utilizing them. To do this, we can just open the source code of each
component to establish how it may relate to the others (or how it does not relate).

We end up discovering that TextDropdown and ImageDropdown, for example, both appear
to inherit from GenericDropdownComponent:

// TextDropdown.js
class TextDropdown extends GenericDropdownComponent {
 //...
}

// ImageDropdown.js
class ImageDropdown extends GenericDropdownComponent {

}

We also observe that both DropdownDataWidget and EnhancedDropdownDataWidget
are sub-classes of TextDropdown. The naming of the enhanced drop-down widget might
confuse us, and it may be something that we seek to change in the near future, but, for now,
we'll need to hold our breath and just work on doing the work we've been tasked with.

Other Peoples' Code Chapter 17

[452]

Avoid getting side tracked when you're completing a task within a legacy
or unfamiliar code base. Many things may appear odd or wrong, but your
task must remain the most important thing. Early on, it is unlikely that
you have the level of exposure to the code base that would be necessary to
make informed changes.

By stepping through each dropdown-related source file, we can build up a solid
understanding of them without having to make any changes. If the code base employs
source control, then we can also blame each file to discover who originally authored it and
when. This can inform us how things have changed over time. In our case, we discover the
following timeline of changes:

This is incredibly helpful to us. We can see how, originally, there was only one class
(named DropdownComponent), which later got changed to GenericDropdownComponent
with two sub-classes, TextDropdownComponent and ImageDropdownComponent. Each of
these got renamed to TextDropdown and ImageDropdown. Over time, these various
changes illuminate the why of how things are at the present time.

When looking at a code base, we often make an implicit assumption that it was created all
at once and with complete foresight; however, as our timeline illustrates, the truth is far
more complex. Code bases change over time in reaction to new needs. The set of people
who work on a code base also changes, and each individual will inevitably have their own
way of solving problems. Our acceptance of the slowly evolving nature of every code base
will help us to come to terms with its imperfections.

Other Peoples' Code Chapter 17

[453]

Stepping through the code
When building an understanding of a singular piece of code within a large application, we
can use tooling to debug and study how it functions. In JavaScript, we can simply place a
debugger; statement, and then execute the part of the application that we know activates
that particular code. We can then step through the code, line by line, to answer the
following questions:

Where is this code called? A clear expectation of how an abstraction is activated
can help us to build up a model of the flow or order of the application in our head,
enabling us to make more accurate judgements about how to fix or change
certain things.
What is passed to this code? An example of what input an abstraction receives
can help us to build up a clear concept about what it does, and how it expects to
be interfaced with. This can directly guide our usage of the abstraction.
What is outputted by this code? Seeing the output of an abstraction, partnered
with its input, can give us a really solid idea of what it does, computationally,
and can help us to discern how we may wish to go about using it.
What levels of misdirection or complexity exist here? Observing complex and
tall stack traces (meaning that, functions that are called by functions that are called by
functions, ad infinitum...) can indicate that we may have difficulty in navigating
and understanding the flow of control and information within a certain area.
This would tell us that we may need to augment our understanding with
additional documentation or communication with informed colleagues.

Here is an example of doing so in a browser environment (using Chrome Inspector):

Other Peoples' Code Chapter 17

[454]

You can use Chrome's debugger even if you're implementing server-side
JavaScript in Node.js. To do this, use the --inspect flag when executing
your JavaScript, for example, node --inspect index.js.

Using a debugger like this can present us with a call stack or stack trace, informing us of
what path was taken through the code base to get to our debugger; statement. If we are
trying to understand how an unfamiliar class or module fits into the larger picture of a code
base, this can be very helpful.

Asserting your assumptions
One of the best ways to expand our knowledge of unfamiliar code is to write tests to
confirm that the code behaves in the way we believe it does. Imagine we are given this
piece of obscure code to maintain:

class IssuerOOIDExtractor {
 static makeExtractor(issuerInfoInterface) {
 return raw => {
 const infos = [];
 const cleansed = raw
 .replace(/[_\-%*]/g, '')
 .replace(/\bo(\d+?)\b/g, ($0, id) => {
 if (issuerInfoInterface) {
 infos.push(issuerInfoInterface.get(id));
 }
 return `[[${id}]]`;
 })
 .replace(/^[\s\S]*?(\[\[.+\]\])[\s\S]*$/, '$1');
 return { raw, cleansed, data: infos };
 };
 }
}

This code is only used in a couple of places, but the various inputs are dynamically
generated in a difficult-to-debug area of the application. Additionally, there is no
documentation and absolutely no tests. It is quite unclear exactly what this code does, but,
as we study the code line by line, we can begin to make some basic assumptions and
encode these assumptions as assertions. For example, we can plainly see that
the makeExtractor static function itself returns a function. We can specify this truth as a
test:

describe('IssuerOOIDExtractor.makeExtractor', () => {
 it('Creates a function (the extractor)', () => {

Other Peoples' Code Chapter 17

[455]

 expect(typeof IssuerOOIDExtractor.makeExtractor()).toBe('function');
 });
});

We can also see some type of regular expression replacement occurring; it seemingly looks
for patterns where the letter o is followed by a string of digits (\bo(\d+?)\b). We can
begin to explore this extraction functionality by writing a simple assertion in which we give
the extractor a string matching that pattern:

const extractor = IssuerOOIDExtractor.makeExtractor();

it('Extracts a single OOID of the form oNNNN', () => {
 expect(extractor('o1234')).toEqual({
 raw: 'o1234',
 cleansed: '[[1234]]',
 data: []
 });
});

We can add additional assertions as we slowly discover what the code does. We may never
arrive at 100% understanding, but this is OK. Here, we're asserting the fact that the
extractor is able to correctly extract multiple OOIDs present within a single string:

it('Extracts multiple OOIDs of the form oNNNN', () => {
 expect(extractor('o0012 o0034 o0056 o0078')).toEqual({
 raw: 'o0012 o0034 o0056 o0078',
 cleansed: '[[0012]] [[0034]] [[0056]] [[0078]]',
 data: []
 });
});

When running these tests, we observe the following successful results:

 PASS ./IssuerOOIDExtractor.test.js
 IssuerOOIDExtractor.makeExtracator
 ✓ Creates a function (the extractor) (3ms)
 The extractor
 ✓ Extracts a single OOID of the form oNNNN (1ms)
 ✓ Extracts multiple OOIDs of the form oNNNN (1ms)

Note how we're still not entirely sure what the original code does. We have only scraped
the surface, but in doing so, we are building a valuable foundation of understanding that
will make it far easier for us to interface with or change this code in the future. With each
new successful assertion, we get closer to a complete and accurate understanding of what
the code does. And if we commit these assertions as a new test, then we are also improving
the test coverage of the code base and providing assistance for future colleagues who may
have been similarly confused by the code.

Other Peoples' Code Chapter 17

[456]

Now that we have a solid grasp of how to explore and understand an inherited piece of
code, we can now look into how we might make changes to that code.

Making changes
Once we have a good level of understanding about an area of a code base, we can begin to
make changes. Even at this stage, however, we should be cautious. We are still relatively
new to the code base and the system it relates to and so we're probably still unaware of
many of its parts. Any change could potentially create unforeseen effects. To move forward
we must, therefore, go slowly and considerately, ensuring our code is well designed and
well-tested. There are two specific methodologies we should be aware of here:

The delicate surgical process of making isolated changes in an unfamiliar setting
The confirmation of changes via tests

Let's explore these, one by one.

Minimally invasive surgery
When changes are needed in an area of the code base that is old or unfamiliar, it can be
useful to imagine that you are performing a kind of minimally invasive surgery. The aim in
doing this is to maximize the positive effect of a change while minimizing the footprint of
the change itself, ensuring not to damage or have too much impact on other parts of the
code base. The hope with doing this is that we will be able to produce the necessary
changes (upsides) without exposing ourselves too much to the possibility of breakages or
bugs (downsides). This is also useful when we aren't sure whether the change is entirely
necessary, so we want to only expend minimal effort on it initially.

Let's imagine that we have inherited a GalleryImage component that is responsible for
rendering singular images. There are many places in our web application where it is used.
The task is to add the ability for videos to be rendered when the URL of the asset indicates
that it is a video. The two types of CDN URLs are as follows:

https://cdn.example.org/VIDEO/{ID}

https://cdn.example.org/IMAGE/{ID}

Other Peoples' Code Chapter 17

[457]

As you can see, there is a clear difference between image and video URLs. This gives us an
easy way of differentiating how we render these pieces of media on the page. Ideally, it is
reasonable to say that we should implement a new component named GalleryVideo to
handle this new type of media. A new component like this would be able to cater uniquely
to the problem domain of a video, which is notably different from that of an image. At the
very least, a video must be rendered via a <VIDEO> element, while an image must be
rendered via .

We discover that many of the situations where GalleryImage is used are not well tested
and some rely on obscure internal implementation details that would be difficult to discern
in bulk (for example, it would be hard to do a find and replace if we wanted to change all
GalleryImage usages).

Our available options are as follows:

Create a container GalleryAsset component that itself makes a decision about1.
whether to render a GalleryImage or GalleryVideo based on the CDN URL.
This would involve having to replace every current usage of GalleryImage:

Time estimate: 1-2 weeks
Footprint across the code base: Significant
Possibility of unforeseen breakages: Significant
Architectural cleanliness: High

Add a condition within GalleryImage that optionally renders a <video>2.
instead of an tag based on the CDN URL:

Time estimate: 1-2 days
Footprint across the code base: Minimal
Possibility of unforeseen breakages: Minimal
Architectural cleanliness: Medium

In ideal circumstances, if we consider the long-term architecture of the code base, it is clear
that the first option of creating a new GalleryAsset component is the best one. It gives us
a clearly defined abstraction that intuitively caters to the two cases of images and videos
and also provides us with the possibility of adding different asset types in the future (for
example, audio). It will, however, take longer to implement, and carries quite a significant
amount of risk.

Other Peoples' Code Chapter 17

[458]

The second option is far simpler to implement. In fact, it may only involve the following
four-line change set:

@@ -17,6 +17,10 @@ class GalleryImage {
 render() {

+ if (/\/VIDEO\//.test(this.props.url)) {
+ return <video src={this.props.url} />;
+ }
+
 return

 }

This is not necessarily a good long-term choice, but it gives us something we can
immediately ship to users, fulfilling their needs and the needs of our stakeholders. Once
shipped, we can then plan future time to complete the larger necessary change.

To reiterate, the value of a minimally invasive change like this is that it reduces the
immediate downsides (risks) to the code base in terms of implementation time and potential
breakages. Obviously it is vital to ensure that we are balancing short-term gains with long-
term. Often, stakeholders will pressure programmers to implement a change quickly, but if
there is no technical dept or reconciliation process, then all of these minimally
invasive changes can gather into quite a terrifying beast.

To ensure that the code we change is not too delicate or liable to future regressions, it is
wise to write tests alongside them, encoding our expectations.

Encoding changes as tests
We've already explored how we can write tests to discover and specify current
functionality, and, in previous chapters, we discussed the obvious benefits of following a
Test-Driven-Development (TDD) approach. It follows that we should, when operating in
an unfamiliar code base, always confirm our changes via cleanly written tests.

Writing tests alongside your changes is definitely a need when there are
no existing tests. Writing the first test in an area of code can be
burdensome in terms of setting up libraries and necessary mocks, but it is
absolutely worth it.

Other Peoples' Code Chapter 17

[459]

In our previous example of introducing the capability of rendering videos to
GalleryImage, it would be wise to add a simple test to confirm that <VIDEO> is correctly
rendered when the URL contains the "/VIDEO/" substring. This prevents the possibility of
future regressions and gives us a strong level of confidence that it works as expected:

import { mount } from 'enzyme';
import GalleryImage from './GalleryImage';

describe('GalleryImage', () => {
 it('Renders a <VIDEO> when URL contains "/VIDEO/"', () => {
 const rendered = mount(
 <GalleryImage url="https://cdn.example.org/VIDEO/1234" />
);
 expect(rendered.find('video')).to.have.lengthOf(1);
 });
 it('Renders a when URL contains "/IMAGE/"', () => {
 const rendered = mount(
 <GalleryImage url="https://cdn.example.org/IMAGE/1234" />
);
 expect(rendered.find('img')).to.have.lengthOf(1);
 });
});

This is a rather simple test; however, it completely encodes the expectations we have after
making our changes. When making small and self-contained changes or larger systemic
changes, it's so incredibly valuable to verify and communicate our intent via tests like these.
As well as preventing regressions, they aid our colleagues in terms of immediate code
review, and the entire team in terms of documentation and general reliability. As such, it's
quite normal and preferable to have a team mandate or policy that says you cannot commit a
change if it does not come with a test. Enforcing this will, over time, create a code base that
produces more reliable functionality for users and is more pleasant to work with for fellow
programmers.

We've now completed the section on Inheriting code, and so you should have a good
foundational knowledge of how to deal with such a situation. Another challenge in dealing
with other people's code is the selection and integration of third-party code, meaning libraries
and frameworks. We'll explore this now.

Other Peoples' Code Chapter 17

[460]

Dealing with third-party code
The landscape of JavaScript is filled with a myriad of frameworks and libraries that can
ease the burden of implementing all types of functionality. In Chapter 12, Real-World
Challenges, we had a look at the difficulties involved in including external dependencies in
our JavaScript projects. The modern JavaScript ecosystem provides a rich variety of
solutions here, and so dealing with third-party code is far less burdensome than it was
before. Nonetheless, the nature of having to interface with this code hasn't really changed.
We must still hope that our selected third-party library or framework provides an interface
that is intuitive and well-documented, and functionality that fulfills our requirements.

When dealing with third-party code, there are two crucial processes that will define the
ongoing risks or benefits we receive. The first is the selection process, where we make a
choice as to which library to use, and the second is our integration and adaptation of the
library into our code base. We'll now go over both of these in detail.

Selection and understanding
Picking a library or framework can be a risky decision. Pick the wrong one and it can end
up driving much of the architecture of your system. Frameworks are especially notorious
for this because, by their nature, they dictate the structure and conceptual underpinning of
your architecture. Picking the wrong one and then seeking to change it can be a
considerable effort; one that involves changes to almost every single piece of code within an
application. As such, it is vital to practice the skill of careful consideration and selection of
third-party code:

There are a number of useful considerations we can make in order to help us in the process

Other Peoples' Code Chapter 17

[461]

of selection:

Functionality: The library or framework must fulfill a set of fixed functional
expectations. It's important to specify these in a sufficiently detailed way so that
different options can be quantifiably compared.
Compatibility: The library or framework must be mostly compatible with the
way the code base currently works, and must be able to integrate in a way that it
is technically simple and easy to understand for colleagues.
Usability: The library or framework must be easily usable and understandable. It
should have good documentation and a level of intuitiveness that allows
immediate productivity without pain or confusion. The consideration of what
occurs when you have a problem or question related to usage is also under the
umbrella of usability.
Maintenance and security: The library or framework should be maintained and
have a clear and trusted process for reporting and resolving bugs, especially
those that may have security ramifications. The changelogs should be
exhaustive.

The four criteria here can be informed, as well, by heuristics such as who is
the project backed by?, how many people are making use of the project?, or am I
familiar with the team who built it?. Be warned though, these are only
heuristics and so are not perfect ways of measuring the suitability of third-
party code.

Even using these four criteria, however, we may fall into traps. If you'll recall, in Chapter
3, The Enemies of Clean Code, we discussed the most notable Self (or ego) and The cargo cult.
These are also relevant when selecting third-party code. Remember to specifically watch
out for the following:

Powerful opinions: It's crucial to separate ourselves from the decision process as
much as possible, and to be very wary of our ignorances and biases.
Programmers are well known for their opinionated nature. It's important in these
moments to step back from ourselves and reason with pure logic about what we
believe would be best. It's key to give everyone a voice as well, and to weigh
people's opinions and anecdotes according to their own merits, not according to
their seniority (or other personal characteristics).

Other Peoples' Code Chapter 17

[462]

The popularity cult: Don't get too swayed by popularity. It's easy to get drawn
into a popular abstraction due to the size and zealotry of its community, but once
again, it is vital to take a step back and consider the merits of the framework in
isolation. Naturally, popularity may indicate an ease of integration and more
abundant learning resources, so in that way, it is reasonable to talk about, but
just be wary of using popularity as a sole indicator of superiority.
Analysis paralysis: There are a lot of choices out there, so it is possible to end up
in a situation where you are seemingly unable to make a choice out of fear of
making the wrong one. Most of the time, these decisions are reversible, so it's not
the end of the world to make a less than optimal choice. It's easy to end up in a
situation where a lot of time is being used up deciding which framework or
library to pick when it would be far more efficient to just pick anything and then
iterate or pivot according to changing needs at a later point.

The key thing when making decisions about third-party libraries is to fully appreciate their
eventual effects on the code base. The amount of time we sink into making a decision
should be proportional to their potential effects. Deciding on a client-side framework for
component rendering may be a rather impactful choice as it may prescribe a significant
portion of the code base, whereas, for example, a small URL-parsing utility does not have a
great impact and can be easily swapped out in the future.

Next, we can discuss how we might integrate and encapsulate a piece of third-party code,
following a well-informed selection process.

Encapsulating and adapting third-party code
The downside of picking a third-party abstraction, especially a framework, is that you can
end up changing your code base to suit the arbitrary conventions and design decisions of
the abstraction's authors. Often, we are made to speak the same language of these third-party
interfaces, instead of having them speak our language. Indeed, in many cases, it may be the
abstraction's conventions and design that is appealing to us, and so we are more than
happy for it to drive the design and nature of our code base. But, in other situations, we
may want to be more protected from our chosen abstractions. We may want the option to
easily swap them out for other abstractions in the future, or we may already have a set of
conventions that we prefer to use.

Other Peoples' Code Chapter 17

[463]

In such cases, it may be useful to encapsulate these third-party abstractions and deal with
them purely through an abstraction layer of our own. Such a layer would typically be called
an Adapter:

Very simply, an Adapter will provide an interface that we design, and will then delegate to
the third-party abstraction to accomplish its tasks. Imagine if we wished to use a URL-
parsing utility called YOORL. We've decided it works perfectly for our needs, and has
complete compliance with RFC 3986 (the URI standard). The only issue is that its API is
rather burdensome and verbose:

import YOORL from 'yoorl';
YOORL.parse(
 new YOORL.URL.String('http://foo.com/abc/?x=123'),
 { parseSearch: true }
).parts();

This would return the following Object:

{
 protocol: 'http',
 hostname: 'foo.com',
 pathname: '/abc',
 search: { x: 123 }
}

We would prefer it if the API was far simpler. The length and complexity of the current
API, we feel, would expose our code base to needless complexity and risk (the risk of
calling it the wrong way, for example). Using an Adapter would allow us to wrap up this
non-ideal interface into an interface of our own design:

// URLUtils.js
import YOORL from 'yoorl';

Other Peoples' Code Chapter 17

[464]

export default {
 parse(url) {
 return YOORL.parse(
 new YOORL.URL.String(url)
).parts();
 }
};

This means that any modules within our code base can now interface with this simplified
Adapter, insulating them from the unideal API of YOORL:

import URLUtils from './URLUtils';

URLUtils.parse('http://foo.com/abc/?x=123'); // Easy!

Adapters can be thought of as translation mediums, allowing our code base to speak the
language of its choice, not having to be slowed down by the arbitrary and inconsistent
design decisions of third-party libraries. This not only aids the usability and intuitiveness of
the code base but also enables us to very easily make changes to the underlying third-party
library without having to change many lines of code at all.

Summary
In this chapter, we have explored the tricky topic of other people's code. We've considered
how we can deal with legacy code that we inherit; how we can build our understanding of
it, how we can debug and make changes without difficult, and how we can confirm our
changes with a good testing approach. We've also covered the difficulty of dealing with
third-party code, including how to select it and how to interface with it in a risk-averse way
via the Adapter pattern. There are plenty of other things that we could have spoken about in
this chapter, but hopefully the topics and principles we have been able to explore have
given you a sufficient understanding of how to navigate other people's code with an eye
toward a clean code base.

In the next chapter, we will cover the topic of communication. It may not appear relevant
but communication, both within our workplaces and toward our users, is an absolutely
vital skill for the programmer, and without it there is little possibility of clean code. We'll
specifically be exploring how to plan and set requirements, how to collaborate and
communicate with colleagues, and how to drive change within our projects and
workplaces.

18
Communication and Advocacy

We do not write code in isolation. We are embedded in a highly chaotic social world in
which we must communicate with other people constantly. Our software itself will, via its
interfaces, be part of this communication. Furthermore, if we operate within a team, a
workplace, or a community, we are liable to the challenges of effective communication.

The most significant way in which communication has an effect on our code bases is in the
setting of requirements and the raising of issues and feedback. Software development is
essentially one very elongated feedback process, where every change is precipitated by a
communication:

In this chapter, we'll learn how to effectively collaborate and communicate with others,
how to plan and set requirements, some common collaboration pitfalls, and their solutions.
We'll also learn how to identify and raise larger issues that are preventing us from writing
clean JavaScript. Throughout this chapter, we will hopefully begin to appreciate our
individually vital roles in the feedback cycle of software development.

Communication and Advocacy Chapter 18

[466]

In this chapter, we'll see the following topics:

Planning and setting requirements
Communication strategies
Identifying issues and driving change

Planning and setting requirements
One of the most common communication struggles resides in the process of deciding what
to actually build. Programmers will typically spend a lot of time meeting with managers,
designers, and other stakeholders to transform a genuine user need into a workable
solution. Ideally, this process would be simple: User has [problem]; We create [solution]. End of
story! Unfortunately, however, it can be far more complicated.

There are numerous technical constraints and biases of communication that can make even
seemingly simple projects turn into punishingly long struggles. This is as relevant to the
JavaScript programmer as any other programmer, for we now operate at a level of systemic
complexity that was previously only the domain of enterprise programmers wielding Java,
C#, or C++. The landscape has changed, and so the humble JavaScript programmer must
now be prepared to pick up new skills and ask new questions about the systems they
build.

Understanding user needs
Establishing user needs is vital but it is often taken for granted. It's typical for programmers
and other project members to assume they understand a certain user need without really
digging into the details, so it's useful to have a process to fall back on. For each ostensible
need or problem, we should ensure that we understand the following aspects:

Who are our users?: What characteristics do they have? What devices do they
use?
What are they trying to do?: What actions are they trying to carry out? What's
their ultimate goal?
How do they currently do it?: What set of steps are they currently taking to
reach their goal? Are there any notable issues with their current method?
What problems do they experience doing it this way?: Does it take a long time?
Is it cognitively expensive? Is it difficult to use?

Communication and Advocacy Chapter 18

[467]

At the beginning of the book, we asked ourselves to consider why we wrote code, and we
explored what it means to truly understand the nature of our problem domain. Ideally, we
should be able to step inside the shoes of our users, experience the problem domain
ourselves, and then craft working solutions from firsthand experience.

Unfortunately, we are not always able to talk directly to our users or walk in their shoes.
Instead, we may rely on intermediates such as project managers and designers. And so, we
are dependent upon their communication efficacy to relay the user needs to us in a way
that allows us to build a correct solution.

Here we see how the needs of our users, combined with the technical and business
constraints, flow into an idea that is built into a solution and iterated upon. The translation
of User Needs to Idea is vital, as is the process of feedback that allows us to iterate and
improve upon our solution:

Since user needs are crucial to the process of development, we have to think carefully about
how we balance these with other constraints. It is usually impossible to build the
ideal solution, catering well to every single user. Almost every piece of software, whether
presented as a GUI or API, is a compromise in which the average user is well catered to,
inevitably meaning that the edge case users are left being only partially served by
the solution. It's important to consider how we can adequately accommodate as many
users' needs as possible, delicately balancing constraints such as time, money, and technical
capability.

Following our understanding of user needs, we can begin to design and implement
prototypes and models of how a system may work. We'll briefly discuss the process of
doing this next.

Communication and Advocacy Chapter 18

[468]

Quick prototypes and PoCs
Software, and especially the web platform, provides us with the benefit of a quick build
cycle. We can go from concept to UI in a very short amount of time. This means that ideas
can be brought to life during the process of brainstorming, almost in real time. We can then
place these prototypes in front of real users, get real feedback, and then iterate quickly
towards an optimal solution. Truly, the forte of the web platform—the triad of HTML, CSS,
and JavaScript—is that it allows a quick and hacky solution that can be iterated on easily,
and can work on multiple platforms and devices:

It's easy to get weighed down by the variety and complexity of JavaScript frameworks and
libraries; the sheer burden of them can force us to move at a much slower pace. That's why,
when prototyping, it's often better to stick to a simpler stack that you already understand
well. If you're accustomed to a framework, or if you are prepared to sink some time into
learning, then it is worth utilizing one of many available skeletal boilerplate starter
repositories as your starting point. Here are some examples:

React boilerplate (github.com/react-boilerplate/react-boilerplate)
Angular bootstrap boilerplate (github.com/mdbootstrap/Angular-Bootstrap-
Boilerplate)
Ember boilerplate (github.com/mirego/ember-boilerplate)
Svelte template (github.com/sveltejs/template)

These each offer a relatively simple project template that you can use to very quickly set up
a new prototype. Even though the tooling used within each one involves multiple build
tools and framework options, the setup cost is minimal and so the time it takes to start
tackling the real problem domain of your project is kept very short. There are, naturally,
similar boilerplates and example applications you can find for server-side Node.js projects,
isomorphic web applications, and even robotic or hardware projects.

http://github.com/react-boilerplate/react-boilerplate
http://github.com/mdbootstrap/Angular-Bootstrap-Boilerplate
http://github.com/mdbootstrap/Angular-Bootstrap-Boilerplate
http://github.com/mirego/ember-boilerplate
http://github.com/sveltejs/template

Communication and Advocacy Chapter 18

[469]

Now that we've explored the technical process of planning and setting requirements, we
can move on to discover some vital communication strategies that'll help us collaborate
with others on our code bases.

Communication strategies
We intuitively know that communication is vital to an effective project and a clean code
base, yet it is annoyingly common to find ourselves in situations such as the following:

We don't feel listened to
We don't feel we've got our point across
We feel confused as to a topic or plan
We feel out of the loop or ignored

These difficulties come about because of cultures and practices of poor communication.
This is not only an issue for morale and general fulfillment in our work but can also become
a huge issue for the cleanliness of our code bases and the reliability of the technology we
build. To foster a clean code base, we must focus on the underlying communication
practices that we employ. A good set of communication strategies and practices are
incredibly useful in ensuring a clean code base, specifically helping us with the following:

Ensuring good feedback with colleagues
Receiving correct bug reports
Actioning improvements and fixes
Receiving user requirements and wishes
Announcing changes or issues
Agreeing on conventions and standards
Making decisions about libraries and frameworks

But how do we actually accomplish good communication? We are inherently biased toward
our own socialized communication practices, so it can be difficult to change or even see that
we have issues with our communication. For this reason, it is useful to identify a set of
communication strategies and pitfalls that can re-bias us towards better and higher signal
communication.

Communication and Advocacy Chapter 18

[470]

High signal communication is any piece of communication that
compresses a lot of highly valuable or insightful information in a
minimally noisy fashion. Expressing a bug report in a brief and highly
objective paragraph may be an example of high signal, while expressing it
as a three-part essay with rhetoric and opinion thrown in is an example of
low signal.

Listen and respond
Whether in online or offline conversations, it is quite easy to fall into a trap where we end
up talking over each other instead of to each other. A good and useful conversation is one
where the participants are truly listening to each other, instead of merely awaiting their
turn to talk.

Consider the following conversation between Person #1 and Person #2:

Person #1: We should use the React framework for this, it has a proven track record.
Person #2: I agree about its track record. Shall we explore any other options, weighing
up their pros and cons?
Person #1: React is really fast, well-documented, and the API is really usable. I love it.

Here Person #1 is not paying attention to what Person #2 is saying. Instead, they are just
continuing with their existing train of thought, reiterating their preference for the React
framework. It would be more conducive to good teamwork and a healthier project
if Person #1 made an effort to listen to Person #2's points and then respond specifically to
them. Compare the preceding conversation with the following one:

Person #1: We should use the React framework for this, it has a proven track record.
Person #2: I agree about its track record. Shall we explore any other options, weighing
up their pros and cons?
Person #1: That'd be a good idea, what other frameworks do you think we should
consider?

Here, Person #1 is being receptive, and not purely talking over Person #2. This shows a
much-needed sensitivity and conversational attention. This may seem obvious, or even
inane, but you may be surprised how often we end up speaking over each other and the
costs it inflicts us with. Consider taking an observational role in your next meeting, observe
instances where people fail to properly pay attention, listen, or respond. You may be
surprised by its prevalence.

Communication and Advocacy Chapter 18

[471]

Explain from the user's perspective
In almost every piece of online or offline communication you have in regards to a code
base, the user should be the most important thing. The purpose of our work is to fulfill the
expectations of the user and deliver to them a user experience that is intuitive and
functional. This is relevant, regardless of whether our end-product is a piece of consumer
software or a developer API. The user remains our priority. It is, however, incredibly
common to find ourselves in situations where there is a decision to be made and we don't
know how to make it; we end up relying on gut instinct or our own biased beliefs. Consider
the following:

Of course users should have to fulfill our password strength requirements
Of course our API should be strictly type-checked
Of course we should use a dropdown component for country selection

These may seem like fairly unobjectionable statements, but we should always seek to
qualify them from the perspective of the user. If we cannot do this, then there's a strong
possibility that the decision holds no water and should be challenged.

For each of the preceding statements, we can defend our reasoning as follows:

Of course users should have to fulfill our password strength requirements:
Users with stronger passwords will end up being more secure against brute-force
password attacks. While we as a service need to ensure secure storage of
passwords, it is the user's responsibility, and very much in their interest, to
ensure a strong password.
Of course our API should be strictly type-checked: A strictly type-checked API
will ensure that users get more informative warnings about incorrect usage and
can thus reach their desired goal sooner.
Of course we should use a dropdown component for country selection: A
dropdown is an established convention that users have come to expect. We could
always augment this with an autocompletion feature as well.

Notice how we are expanding upon our of course statements with reasoning that relates
specifically to the user. It's easy for us to walk around making assertions about how things
should be without actually backing up our claims with strong reasoning. Doing this can
lead to pointless and badly argued opposition. It is better to always reason about our
decisions from the user's perspective so that, if there is an argument, we are arguing based
on what's best for the user and not merely what opinions are most popular, or held most
strongly. Always explaining from the perspective of the user also helps to instill a culture
where we and our colleagues are constantly thinking about the user, regardless of whether
we're programming a deeply specialized API or developing a generic GUI.

Communication and Advocacy Chapter 18

[472]

Have small and focused communications
Similar in spirit to the single responsibility principle that we use when coding, our
communications should ideally only be about one thing at a time. This greatly improves
understanding among participants and will ensure that any decisions that are made relate
specifically to the matter at hand. Additionally, keeping meetings or communications short
ensures that people will be able to pay attention for the entire duration. Long meetings, just
like long emails, eventually cause boredom and irritation. And with each topic or tangent
added, the chances of each item being individually resolved dwindles massively. It's
important to remember this when raising issues and bugs as well. Keep it simple.

Ask stupid questions and have wild ideas
There's a tendency, especially in professional environments, to feign a great level of
confidence and understanding. This can be to the detriment of knowledge transfer. If
everyone is pretending to be masterful, then nobody will take the humble position that's
required to learn. It's so valuable to be honest (and even stupid) in our lines of questioning.
If we're new additions to a team or are confused about an area of a code base, it's important
to ask the questions we truly have so that we can build the understanding necessary to be
productive and reliable in our tasks. Without this understanding, we'll flail about, probably
causing bugs and other problems. If everyone in a team takes a position of feigned
confidence, the team will very quickly become ineffective, with nobody able to resolve their
questions or confusions:

This type of questioning we want to aim towards can be called open questioning; a process
in which we maximally divulge our ignorances so that we may gain as much
understanding as possible in a given area. And similarly to such open questioning, we can
say there is also open ideating, wherein we maximally explore and divulge any ideas that
we have with the hope of some subset being useful.

Communication and Advocacy Chapter 18

[473]

Sometimes it's the ideas left unsaid that are the most effective. Generally, if you feel an idea
or question is too stupid or wild to say, it's usually a good idea to say it. The worst-case
scenario (the downside) is that it is an inapplicable or obvious question or idea. But the
best-case scenario (the upside) is that you've either gained understanding, asked a question
that many people had on their minds (and thus aided their understanding), or have come
up with an idea that drastically transforms the efficacy of the team or the quality of the
code base. The upsides of being open are assuredly worth the downsides.

Pair programming and 1:1s
Much of a programmer's time is taken up by the isolated pursuit of writing code. This is, to
many programmers, their ideal situation; they are able to block out the rest of the world
and find fluid productivity, writing logic with speed and fluency. One risk of this isolation,
however, is that vital knowledge of a code base or system can accrue in the minds of the
few. Without being distributed, there is a risk that the code base will become increasingly
specialized and complex, limiting the ability of newcomers and colleagues to navigate it
with ease. For this reason, it is essential to consider how to transfer knowledge effectively
between programmers.

As discussed previously in the book, we already have a number of formal ways to transfer
knowledge regarding a piece of code:

Via documentation, in all its forms
Via the code itself, including comments
Via tests, including unit and E2E variants

Even though these mediums, if built correctly, can be effective in relaying knowledge, there
appears to always be a need for something else. The basic human convention of ad hoc
communication is a method that has stood the test of time and still remains one of the most
effective methods.

One of the best ways to learn about a new code base is through pair programming, an
activity in which you sit alongside a more experienced programmer and collaborate
together on bug fixes or feature implementations. This is especially useful for the
unfamiliar programmer, as they are able to benefit from the existing knowledge and
experience of their programming partner. Pair programming is also useful when there is an
especially complex issue to solve. Having two or more brains tackling the problem can
drastically increase problem-solving ability and limit the possibility of bugs.

Communication and Advocacy Chapter 18

[474]

Even outside of pair programming, generally having a Q&A or teacher-student dynamic
can be very useful. Setting aside time to talk to individuals who have the knowledge you
desire and asking them pointed but exploratory questions will usually yield a lot of
understanding. Do not underestimate the power of a focused conversation with someone
that has the knowledge you desire.

Identifying issues and driving change
A large part of being a programmer is identifying issues and fixing them. As part of our
work, we employ many different moving parts, many of which will be maintained by other
teams or individuals, and as such, we'll need to be effective in identifying and raising issues
with code and systems that we don't have a full understanding of. Much like anything we
do as programmers, the way in which we articulate these issues must take into
consideration the target audience (user) of the issue or bug report that we're expressing.
When we begin to see these pieces of communication as user experiences in their own right,
we'll start to be genuinely effective communicators.

Raising bugs
Raising bugs is a skill. It can be done poorly or effectively. To illustrate this, let's consider
two issues on GitHub. Each of them raise the same issue but do so in drastically different
ways. This is the first variant:

Communication and Advocacy Chapter 18

[475]

This is the second variant:

As a maintainer of this code base, which bug report would you prefer to receive? Obviously
the second. Yet we see, time and time again, thousands of bug reports and raised issues on
open source projects that not only fail to accurately relay the issue at hand but are
impatiently worded and disrespectful of the time and efforts of the project owner.

Generally, when raising a bug it is best to include, at minimum, the following information:

Problem summary: You should briefly summarize the problem being
experienced in regular prose so that the issue can be quickly understood and
triaged (possibly by someone who is not adept at diagnosing or fixing the exact
issue).
Steps taken: You should show the exact code that could be used to reproduce the
actual behavior that you receive. The reader of your bug should be able to take
your shared code or input parameters and reproduce the behavior themselves.
Expected behavior: You should demonstrate what you would expect the
behavior or output to be, given the input.
Actual behavior: You should demonstrate the incorrect output or behavior that
you observed.

Communication and Advocacy Chapter 18

[476]

Here's an example of such a bug report for a fictional sum() function:

Problem summary: sum() does not behave intuitively when given null inputs
Steps taken: Called sum(null, null)
Expected behavior: sum(null, null) should return NaN
Actual behavior: sum(null, null) returns 0

It may also be useful to include information about the environment in which the code is
running, including hardware and software (for example, MacBook 2013 Retina, Chrome
version 43.01). The entire purpose of raising a bug is to communicate an unexpected or
incorrect behavior with a level of accuracy and detail that'll allow a swift resolution. If we
limit the amount of information we provide, or are outright rude, we drastically decrease
the probability of our issue being resolved.

Apart from the specific steps we should take when raising issues, there is also a wider
question around how we should drive and inspire systemic change in a piece of software or
a culture. We'll be exploring this next.

Driving systemic change
A bug is usually considered a self-contained technical issue with a piece of hardware or
software. There are, however, larger or more systemic issues that we face every day, and
these can be expressed in terms of a culture or in terms of the everyday conventions and
patterns that we employ throughout a system. Here are some fictional examples of issues
from within a typical IT consultancy:

We tend to use typefaces throughout our designs that are inaccessible
We have a hundred different standards for how to write good JavaScript
We seem to always forget to update third-party dependencies
We don't feed back into the open source community

These issues are slightly too broad or subjective to be expressed as definitive bugs, so we'll
need to explore other means to surface them and get them resolved. It may be useful to
think of such systemic issues as opportunities for growth instead of bugs, as this can vastly
affect how on-board people are with your proposed changes.

Communication and Advocacy Chapter 18

[477]

Broadly, the steps involved in creating systemic change are as follows:

QUALIFY: Articulate the problem with specific examples: Find examples that1.
demonstrate the problem you're trying to describe. Ensure that these examples
plainly show the issue and aren't too complex. Describe the problem in a way
that makes sense even to people that aren't fully immersed in the problem domain.
FEEDBACK: Gather feedback from other people: Gather thoughts and2.
suggestions from other people. Ask them open questions such as What do you
think about [...]?. Accept the possibility that there is no problem, or the problem
you're encountering is best viewed in some other way.
IDEATE: Collaborate on possible solutions: Source ideas on possible solutions3.
from multiple people. Don't try to reinvent the wheel. Sometimes the simplest
solutions are the best. It's also highly likely that systemic issues cannot be solved
in a purely technical way. You may need to consider social and communicative
solutions.
RAISE: Raise the problem alongside possible solutions: Depending on what4.
the problem is, raise it to the appropriate people. This may be via a team
meeting, a 1:1 chat, or online communication. Ensure that you are raising the
issue in a non-confrontational way and with a focus on improvement and
growth.
IMPLEMENT: Collaboratively pick a solution and begin work: Presuming that5.
you are still considering this problem is worth pursuing, you can begin to
implement the most preferred solution, possibly in an isolated and Proof of
Concept kind of way. For example, if the problem being tackled was We have a
hundred different standards for how to write good JavaScript, then you could begin to
collaboratively implement a singular set of standards using a linter or formatter,
reaching out for feedback along the way, and then slowly updating older code to
align with these standards.
MEASURE: Check in frequently on the success of the solution: Get feedback6.
from people and seek quantifiable data to discern whether the selected solution is
working as expected. If it isn't, then consider going back to the drawing board
and exploring other solutions.

One of the traps in creating systemic change is to wait too long or to be too cautious in
approaching the problem. Gaining feedback from others is really valuable, but it is not
necessary to depend entirely upon their validation. It's sometimes hard for people to step
outside their perspective and see certain issues, especially if they're very accustomed to
how things are currently done. Instead of waiting for them to see things your way, it may
be best to go ahead with an isolated version of your proposed solution and later prove its
efficacy to them.

Communication and Advocacy Chapter 18

[478]

When people reactively defend how things are currently done, they are
typically expressing the status quo bias, which is an emotional bias that
prefers the current state of affairs. In the face of such a reaction, it is very
normal for people to be unwelcoming of a change. So be cautious of
placing too much value in others' negative feedback about your proposed
change.

Many of the things we wish to change within the technologies and systems we work with
every day are not easily solved. They may be complex, unwieldy, and often multi-
disciplinary problems. Examples of these types of problems are easily found on discussion
forums and community feedback surrounding standards iteration, such as with the
ECMAScript language specification. Rarely is an addition or change to the language
accomplished simply. Patience, consideration, and communication are all needed to solve
these problems and move ourselves and our technologies forward.

Summary
In this chapter, we have tried to explore the challenge of effective communication in a
technical context, and have broadly discussed the communicative process involved in
taking a problem from the ideation stage to the prototype stage. We have also covered the
task of communicating and advocating for technological change, whether in the form of
bug reports or raising broader issues concerning systemic problems. Programmers are not
just the authors of code; they operate as part of the systems they are building, as crucial
agents in the iterative feedback cycles that result in clean software. Understanding the
considerable roles we play in these systems and feedback cycles is hugely empowering and
begins to get to the crux of what it means to be a clean JavaScript programmer.

In the next and final chapter, we will be bringing together everything we have learned in
the book so far, exploring a new problem domain via a case study. That'll conclude our
exploration into clean code in JavaScript.

19
Case Study

In this book, we have discussed a litany of principles, walked through almost every aspect
of the JavaScript language, and have discussed, at length, what constitutes clean code. This
has all been working toward a final destination where we are fully equipped to write
beautiful and clean JavaScript code that tackles real and challenging problem domains. The
pursuit of clean code, however, is never complete; new challenges will always arise that
make us think in new and paradigm-shifting ways about the code we write.

In this chapter, we'll be walking through the process of creating a new piece of functionality
in JavaScript. This will involve both client-side and server-side parts, and will force us to
apply many of the principles and knowledge we've gathered throughout the book. The
specific problem we'll be tackling has been adapted from a real-life project that I was
responsible for, and while we won't be going into every nook and cranny of its
implementation, we will be covering the most important parts. The completed project is
available for you to view on GitHub at the following link: https:/ / github. com/
PacktPublishing/Clean- Code- in- JavaScript.

In this chapter, we're going to cover the following topics:

The problem: We'll define and explore the problem
The design: We'll design a UX and architecture that solves the problem
The implementation: We'll implement our design

https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript

Case Study Chapter 19

[480]

The problem
The problem we'll be solving relates to a core part of our web application's user experience.
The web application we'll be working on is a frontend to a large plant database with tens of
thousands of different species of plants. Among other functionality, it allows users to find
specific plants and add them to collections so that they can keep track of their exotic
greenhouses and botanical research inventories. The illustration is shown as follows:

Currently, when users wish to find a plant, they must use a search facility that involves
entering a plant name (the full Latin name) into a text field, clicking Search, and receiving a
set of results, as shown in the following screenshot:

For the purposes of our case study, the plant names only exist as their full
Latin names, which includes a family (for example, Acanthaceae), a genus
(for example, Acanthus), and a species (for example, Carduaceus). This
highlights the challenges involved in catering to complex problem
domains.

Case Study Chapter 19

[481]

This works well enough, but following some user focus groups and online feedback, it has
been decided that we need to offer a better UX for users that enables them to more quickly
find the plants they're interested in. Specific points that were raised are as follows:

I find it burdensome and slow to find species sometimes. I wish it were more
immediate and flexible, so that I didn't have to keep going back and making a
change to my query, especially if I've spelled it incorrectly.
Often, when I know the name of a plant species or genus, I'll still get it slightly
wrong and get no results. I'll then have to go back and adjust my spelling or
search elsewhere online.
I wish I could see the species and genuses come up as I type. That way I can more
quickly find the appropriate plant and not waste any time.

There are a number of usability concerns expressed here. We can distill them into the
following three topics:

Performance: The current search facility is slow and clunky to use
Error correction: The process of having to correct typing errors is annoying and
burdensome
Feedback: It would be useful to get feedback about existing genuses/species while
typing

The task is now becoming clearer. We need to improve the UX so that users are able to
query the database of plants in a way that is faster, provides more immediate feedback, and
lets them prevent or correct typing errors along the way.

The design
After some brainstorming, we decided that we can solve our problem in quite a
conventional way; we can simply transform the input field into one that provides an auto-
suggestion dropdown. Here's a mockup:

Case Study Chapter 19

[482]

This auto-suggestion dropdown would have the following characteristics:

When a term is typed, it will display a prioritized list of plant names that contain
that term as a prefix, for example, searching for car will yield the result
carnea but not encarea
When a term is selected either by click, the arrow (up/down), or Enter key, it will
run a specified function (which may later be used to add selected items to the
user's collection)
When no matching plant names can be found, the user will be told with a notice
such as No plants with that name exist

These are the core behaviors of our component, and in order to implement them, we'll need
to consider both client-side and server-side parts. Our client will have to render <input> to
the user, and as they type, it will have to dynamically adjust the list of suggestions. The
server will have to provide to the client a list of suggestions for each potential query, while
taking into consideration the fact that results will need to be delivered quickly. Any
significant latency will drastically reduce the benefit of the user experience that we're trying
to create.

The implementation
It just so happens that this new Plant Selection component will be the first piece of
significant client-side code within our web application, and as such, it's important to note
that our design decisions will impact not only this specific component but also any other
components we consider building in the future.

To aid us in our implementation, and considering the possibility of other potential
additions in the near future, we've decided to adopt a JavaScript library to assist in the
manipulation of the DOM, and a supporting toolset that enables us to work swiftly and to a
high-level of quality. In this instance, we've decided to use React on the client side, with
webpack and Babel to aid in compilation and bundling, and Express on the server side for
HTTP routing.

Case Study Chapter 19

[483]

The Plant Selection application
As discussed, we've decided to build our Plant Selection functionality as its own self-
contained application with both a client (the React component) and a server (the plant-data
API). Having this level of isolation allows us to focus purely on the problem of selecting
plants, but there's no reason that this couldn't be integrated into a larger code base at a later
time.

Our directory structure is roughly as follows:

EveryPlantSelectionApp/
├── server/
│ ├── package.json
| ├── babel.config.js
│ ├── index.js
| └── plantData/
│ ├── plantData.js
│ ├── plantData.test.js
| └── data.json
└── client/
 ├── package.json
 ├── webpack.config.js
 ├── babel.config.js
 ├── app/
 | ├── index.jsx
 | └── components/
 | └── PlantSelectionInput/
 └── dist/
 ├── main.js (bundling target)
 └── index.html

In addition to reducing complexity for us (the programmers) the separation of server and
client means that the server-side application (that is, the Plant Selection API) can be run on
its own distinct server if necessary, while the client can be served up statically from a CDN,
requiring only the server-side's address in order to access its REST API.

Creating the REST API
The server of EveryPlantSelectionApp is responsible for retrieving the plant names (the
plant families, genuses, and species) and making them available to our client-side code via a
simple REST API. To do this, we can use the express Node.js library, which enables us to
route HTTP requests to specific functions, easily delivering JSON to our client.

Case Study Chapter 19

[484]

Here's the skeletal beginnings of our server implementation:

import express from 'express';

const app = express();
const port = process.env.PORT || 3000;

app.get('/plants/:query', (req, res) => {
 req.params.query; // => The query
 res.json({
 fakeData: 'We can later place some real data here...'
 });
});

app.listen(
 port,
 () => console.log(`App listening on port ${port}!`)
);

As you can see, we're implementing just one route (/plants/:query). This will be
requested by the client whenever a user enters a partial plant name into the <input/>, so
that a user typing Carduaceus may produce the following set of requests to the server:

GET /plants/c
GET /plants/ca
GET /plants/car
GET /plants/card
GET /plants/cardu
GET /plants/cardua
...

You can imagine how this may result in a larger number of expensive and possibly
redundant requests, especially if a user is typing quickly. It's possible that a user will type
cardua before any of the previous requests can complete. For that reason, when we come
around to implementing the client side, it'll be appropriate for us to use some kind of
request throttling (or request debouncing) to ensure that we're only making a reasonable
number of requests.

Case Study Chapter 19

[485]

Request throttling is the act of reducing the overall amount of requests by
only allowing a new request to be performed at a specified time interval,
meaning that 100 requests spanned over five seconds, throttled to an
interval of one second, would produce only five requests. Request
debouncing is similar, though instead of performing a single request on
every interval, it'll wait a predesignated amount of time for incoming
requests to stop being made before enacting an actual request. So, 100
requests over five seconds, debounced by five seconds, would only
produce a single final request at the five second mark.

In order to implement the /plants/ endpoint, we need to consider the most optimal way
to search through the names of over 300,000 different plant species for matches. To
accomplish this, we'll be using a special in-memory data structure called a trie. This is also
known as a prefix tree and is very common to use in situations where autosuggestion or
autocompletion needs to occur.

A trie is a tree-like structure that stores chunks of letters that appear next to each other as a
series of nodes attached by branches. It's much easier to visualize than to describe, so let's
imagine that we need a trie based on the following data:

['APPLE', 'ACORN', 'APP', 'APPLICATION']

Using that data, the produced trie might look something like this:

As you can see, our dataset of four words has been represented as a tree-like structure
where the first common letter, "A", serves as the root. The "CORN" suffix branches off from
this. Additionally, the "PP" branch (forming "APP"), branches off, and the last "P" of that
then branches off to "L", which itself then branches off to "E" (forming "APPLE") and
"ICATION" (forming "APPLICATION").

Case Study Chapter 19

[486]

This may seem convoluted, but given this trie structure, we can, given an initial prefix
typed by a user like "APPL", easily find all matching words ("APPLE" and
"APPLICATION") by simply stepping through the nodes of the tree. This is far more
performant than any linear search algorithm. For our purposes, given a prefix of a plant
name, we want to be able to performantly display every plant name that the prefix may
lead to.

Our specific dataset will include over 300,000 different plant species, but for the purposes of
this case study, we'll only be using species from the Acanthaceae family, which amounts
to around 8,000 species. These are available to use in the form of JSON as follows:

[
 { id: 105,
 family: 'Acanthaceae',
 genus: 'Andrographis',
 species: 'alata' },
 { id: 106,
 family: 'Acanthaceae',
 genus: 'Justicia',
 species: 'alata' },
 { id: 107,
 family: 'Acanthaceae',
 genus: 'Pararuellia',
 species: 'alata' },
 { id: 108,
 family: 'Acanthaceae',
 genus: 'Thunbergia',
 species: 'alata' },
 // ...
]

We'll be feeding this data into a third-party trie implementation called trie-search on NPM.
This package has been selected because it fulfills our requirements and seems like a well-
tested and well-maintained library.

In order for the trie to operate as we desire, we'll need to concatenate the family, genus, and
species of each plant into a singular string. This enables the trie to include both the fully
qualified plant name (for example, "Acanthaceae Pararuellia alata") and the split
names (["Acanthaceae", "Pararuellia", "alata"]). The split name is automatically
generated by the trie implementation we're using (meaning it splits strings on whitespace,
via the regex /\s/g):

const trie = new TrieSearch(['name'], {
 ignoreCase: true // Make it case-insensitive
});

Case Study Chapter 19

[487]

trie.addAll(
 data.map(({ family, genus, species, id }) => {
 return { name: family + ' ' + genus + ' ' + species, id };
 })
);

The preceding code enters our dataset into the trie. Following this, it can be queried by
simply passing a prefix string to its get(...) method:

trie.get('laxi');

Such a query (for the prefix, laxi) would return the following from our dataset:

[
 { id: 203,
 name: 'Acanthaceae Acanthopale laxiflora' },
 { id: 809,
 name: 'Acanthaceae Andrographis laxiflora' },
 { id: 390,
 name: 'Acanthaceae Isoglossa laxiflora' },
 //... (many more)
]

So, with regard to our REST endpoint, /photos/:query, all it needs to do is return a JSON
payload that contains whatever we get from trie.get(query):

app.get('/plants/:query', (req, res) => {
 const queryString = req.params.query;
 if (queryString.length < 3) {
 return res.json([]);
 }
 res.json(
 trie.get(queryString)
);
});

To separate our concerns a little better and to ensure we're not mixing too many different
layers of abstraction (in possible violation of The Law of Demeter), we can abstract away
our trie data structure and plant data to a module of its own. We can call this plantData to
communicate the fact that it encapsulates and provides access to the plant data. The nature
of how it works, which happens to be via an in-memory trie data structure, does not need
to be known to its consumers:

// server/plantData.js

import TrieSearch from 'trie-search';
import plantData from './data.json';

Case Study Chapter 19

[488]

const MIN_QUERY_LENGTH = 3;

const trie = new TrieSearch(['fullyQualifiedName'], {
 ignoreCase: true
});

trie.addAll(
 plantData.map(plant => {
 return {
 ...plant,
 fullyQualifiedName:
 `${plant.family} ${plant.genus} ${plant.species}`
 };
 })
);

export default {
 query(partialString) {
 if (partialString.length < MIN_QUERY_LENGTH) {
 return [];
 }
 return trie.get(partialString);
 }
};

As you can see, this module returns an interface that provides one method, query(), which
our main HTTP routing code can utilize to deliver the JSON result for /plants/:query:

//...
import plantData from './plantData';
//...
app.get('/plants/:query', (req, res) => {
 const query = req.params.query;
 res.json(plantData.query(partial));
});

Because we have isolated and contained the plant-querying functionality, it is now far
easier to make assertions about it. Writing some tests that target the plantData abstraction
will give us a high level of confidence that our HTTP layer is using a reliable abstraction,
minimizing the potential bugs that can crop up within our HTTP layer itself.

Case Study Chapter 19

[489]

At this point, since this is the first set of tests we'll be writing for our
project, we'll be installing Jest (npm install jest --save-dev). There
are a large number of testing frameworks available, with varying styles,
but for our purposes, Jest is suitable.

We can write tests for our plantData module in a file intuitively located alongside it and
named plantData.test.js:

import plantData from './plantData';

describe('plantData', () => {

 describe('Family+Genus name search (Acanthaceae Thunbergia)', () => {
 it('Returns plants with family and genus of "Acanthaceae Thunbergia"',
() =>{
 const results = plantData.query('Acanthaceae Thunbergia');
 expect(results.length).toBeGreaterThan(0);
 expect(
 results.filter(plant =>
 plant.family === 'Acanthaceae' &&
 plant.genus === 'Thunbergia'
)
).toHaveLength(results.length);
 });
 });

});

There are a large number of tests within plantData.test.js that aren't
included here for the sake of brevity; however, you can view them in the
GitHub repository: https:/ /github. com/ PacktPublishing/ Clean- Code-
in-JavaScript.

As you can see, this test is asserting whether an Acanthaceae Thunbergia query
intuitively returns plants that have a fully qualified name containing these terms. In our
dataset, this will only include plants that have an Acanthaceae family and
a Thunbergia genus, so we can simply confirm that the results match that expectation. We
can also check that partial searches, such as Acantu Thun, also intuitively return any
plants that have either family, genus, or species names beginning with Acantu or Thun:

describe('Partial family & genus name search (Acantu Thun)', () => {
 it('Returns plants that have a fully-qualified name containing both
"Acantu" and "Thunbe"', () => {
 const results = plantData.query('Acant Thun');
 expect(results.length).toBeGreaterThan(0);
 expect(

https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript

Case Study Chapter 19

[490]

 results.filter(plant =>
 /\bAcant/i.test(plant.fullyQualifiedName) &&
 /\bThun/i.test(plant.fullyQualifiedName)
)
).toHaveLength(results.length);
 });
});

We confirm our expectations here by asserting that every returned result's
fullyQualifiedName matches the regular /\bAcant/i and /\bThun/i expressions. The
/i expression indicates case sensitivity. The \b expression here represents a word
boundary so that we can ensure that the Acant and Thun substrings appear at the
beginning of individual words and are not embedded within words. For example, imagine
a plant called Luathunder. We don't want our autosuggestion mechanism to match such
instances. We only want it to match prefixes, as that is how users will be entering plant
families, genuses, or species into <input /> (from the start of each word).

Now that we have a well-tested and isolated server-side architecture, we can begin to move
onto the client side, where we will be rendering the plant names provided by
/plants/:query in response to the user typing.

Creating the client-side build process
Our first step, on the client, is to introduce React and a supporting toolset that can aid us in
development. In the old days of web development, it was, and arguably still is, entirely
possible to build things without complicated tools and build steps. In times past, we were
able to simply create an HTML page, include any third-party dependencies inline, and then
begin writing our JavaScript without having to worry about anything else:

<body>
 ... Content
 <script src="//example.org/libraryFoo.js"></script>
 <script src="//example.org/libraryBaz.js"></script>
 <script>
 // Our JavaScript code...
 </script>
</body>

Case Study Chapter 19

[491]

Technically we can still do this. Even when using modern frontend frameworks such as
React, we could opt to just include it as a <script> dependency and then write vanilla
JavaScript inline. However, by doing this, we would not be receiving the following
advantages:

Newer JavaScript syntax (ES 2019 and beyond): The ability to use modern
JavaScript syntax and have it compiled to JavaScript that is safe to use in all
environments/browsers.
Custom syntax and language extensions: The ability to use language extensions
(such as JSX or FlowJS) or other languages that compile to JavaScript (such as
TypeScript or CoffeeScript).
Dependency tree management: The ability to specify your dependencies easily
(for example, using an import statement) and have these automatically
reconciled and combined into a bundle, without having to manually fiddle with
the <script> tags and versioning nightmares.
Performance improvements: Intelligent compilation and bundling can provide
meaningful HTTP and runtime performance gains by reducing the
overall footprint of your JavaScript and CSS.
Linters and analysers: The ability to use linters and other forms of analysis on
your JavaScript (and your CSS and HTML), giving us a detailed insight into code
quality and prospective bugs.

Fundamentally, the very nature of web applications is more complicated now, especially on
the frontend. For our purposes of creating an autosuggestion component, we need to
ensure that we've got a good foundation of tools and build steps so that ongoing
development can be seamless and simple. This can create a headache when setting things
up but is worth it in the long run.

In order to compile our JavaScript (including React's JSX), we'll be using Babel, which can
take our JavaScript and convert it into widely supported regular JavaScript syntax. To add
Babel as a dependency within EveryPlantSelectionApp/client, we can use npm to
install it and its various preset configurations:

Install babel's core dependencies:
npm install --save-dev @babel/core @babel/cli

Install some smart presets for Babel, allowing us to not have
to worry about which specific JS syntax we're using:
npm install --save-dev @babel/preset-env

Install a smart preset for React (i.e. JSX) usage:
npm install --save-dev @babel/preset-react

Case Study Chapter 19

[492]

Babel will manage the compilation of our JavaScript to a syntax that is widely supported.
But in order to make these files ready for delivery to a browser, we need to bundle them
into a singular file that can be delivered by itself within our HTML like so:

<script src="./ourBundledJavaScript.js"></script>

To accomplish this, we will need to use a bundler, such as webpack. Webpack can carry out
the following tasks for us:

It can compile the JavaScript via Babel
It can then reconcile each module, including any of its dependencies
It can produce a singular bundled JavaScript file that includes all dependencies

In order to use webpack, we need to install several related dependencies:

Install Webpack and its CLI:
npm install --save-dev webpack webpack-cli

Install Webpack's development server, which enables us to more easily
develop without having to keep re-running the build process:
npm install --save-dev webpack-dev-server

Install a couple of helpful packages that make it easier for
Webpack to make use of Babel:
npm install --save-dev babel-loader babel-preset-react

Webpack also requires its own configuration file, named webpack.config.js. Within this
file, we must tell it how to bundle our code and whereabouts in our project we want the
bundled code to output to:

const path = require('path');

module.exports = {
 entry: './app/index.jsx',
 module: {
 rules: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 use: {
 loader: 'babel-loader',
 options: {
 presets: ['@babel/react']
 }
 }
 }
]

Case Study Chapter 19

[493]

 },
 devServer: {
 contentBase: path.join(__dirname, 'dist'),
 compress: true,
 port: 9000
 },
 output: {
 filename: 'main.js',
 path: path.resolve(__dirname, 'dist'),
 }
};

This configuration is essentially telling webpack the following:

Please begin at EveryPlantSelectionApp/client/app/index.jsx
Please use Babel to compile this module and all its dependencies that end in
.jsx or .js
Please output the compiled and bundled file to
EveryPlantSelectionApp/client/dist/

Lastly, we need to install React so that we're ready to create our plant selection component:

npm install --save react react-dom

It may seem like this is a lot of work just to render a basic UI component, but what we've
actually done is created a foundation upon which we can accommodate many new features,
and we've created a build pipeline that will make it easier to ship our development code
base to production.

Creating the component
Our component's job is to display an enhanced <input> element that will, when focused,
react to what the user types by rendering a dropdown-style list of available options that the
user can then select from.

As a primitive outline, we can imagine the component as containing <div>, <input> into
which the user can type, and to display the suggestions:

const PlantSelectionInput = () => {
 return (
 <div className="PlantSelectionInput">
 <input
 autoComplete="off"
 aria-autocomplete="inline"

Case Study Chapter 19

[494]

 role="combobox" />

 A plant name...
 A plant name...
 A plant name...

 </div>
);
};

The role and aria-autocomplete attributes on <input> are used to
instruct the browser (and any screen readers) that the user will be
provided with a set of predefined choices when typing. This is of vital
importance to accessibility. The autoComplete attribute is used to simply
enable or disable the browser's default autocompletion behavior. In our
case, we want it disabled as we are providing our own custom
autocompletion/suggestion functionality.

We only want to display when <input> is focused. In order to accomplish this, we'll
need to bind to both the focus ad blur events of <input> and then create a distinct piece of
state that can track whether we should consider the component open or not. We can call
this piece of state isOpen, and we can conditionally render or not render based on its
Boolean value:

const PlantSelectionInput = () => {
 const [isOpen, setIsOpen] = useState(false);
 return (
 <div className="PlantSelectionInput">
 <input
 onFocus={() => setIsOpen(true)}
 onBlur={() => setIsOpen(false)}
 autoComplete="off"
 aria-autocomplete="inline"
 role="combobox" />
 {
 isOpen &&

 A plant name...
 A plant name...
 A plant name...

 }
 </div>
);
};

Case Study Chapter 19

[495]

React has its own conventions around state management, which may look
rather bizarre if you've not been exposed before. The const [foo,
setFoo] = useState(null) code creates a piece of state (called foo),
which we can change in response to certain events. Whenever this state
changes, React would then know to trigger a re-render of the related
component. Flick back to Chapter 12, Real-World Challenges, and look at
the DOM binding and reconciliation section for a refresher on this topic.

The next step is for us to bind to the change event of <input> so that we can take
whatever the user has typed and trigger a request to our /plants/:query endpoint in
order to discern what suggestions to show the user. First, however, we want to create a
mechanism via which the request can occur. In the React world, it suggests modeling this
functionality as a Hook of its own. Remembering that Hooks are, by convention, prefixed
with a use verb, we could call this something like usePlantLike. As its sole argument, it
can accept a query field (the string typed by the user), it can return an object with a
loading field (to indicate the current loading state) and a plants field (to contain the
suggestions):

// Example of calling usePlantsLike:
const {loading, plants} = usePlantsLike('Acantha');

Our implementation of usePlantsLike is thankfully quite simple:

// usePlantLike.js

import {useState, useEffect} from 'react';

export default (query) => {
 const [loading, setLoading] = useState(false);
 const [plants, setPlants] = useState([]);

 useEffect(() => {
 setLoading(true);
 fetch(`/plants/${query}`)
 .then(response => response.json())
 .then(data => {
 setLoading(false);
 setPlants(data);
 });
 }, [query]);

 return { loading, plants };
};

Case Study Chapter 19

[496]

Here, we are using another React state management pattern, useEffect(), to run a specific
function whenever the query argument changes. So, if usePlantLike receives a new
query argument, for example, Acantha, then the loading state will be set to true and a
new fetch() will be instigated, the result of which will populate the plants state. This
can be difficult to wrap one's head around, but for the purposes of the case study, all we
really need to appreciate is the fact that this usePlantsLike abstraction is encapsulating
the complexity of issuing the /plants/:query requests to the server.

It is wise to separate rendering logic from data logic. Doing so ensures a
good hierarchy of abstraction and separation of concerns, and enshrines
each module as an area of single responsibility. Conventional MVC and
MVVM frameworks helpfully force this separation, while more modern
rendering libraries such as React give you a little more choice. So here,
we've chosen to isolate the data and server-communication logic within a
React Hook, which is then utilized by our component.

We can now use our new React Hook whenever the user types something into <input>. To
do this, we can bind to its change event and every time it's triggered, grab its value, and
then pass it as the query argument to usePlantsLike in order to derive a new set of
suggestions for the user. These can then be rendered within our container:

const PlantSelectionInput = ({ isInitiallyOpen, value }) => {

 const inputRef = useRef();
 const [isOpen, setIsOpen] = useState(isInitiallyOpen || false);
 const [query, setQuery] = useState(value);
 const {loading, plants} = usePlantsLike(query);

 return (
 <div className="PlantSelectionInput">
 <input
 ref={inputRef}
 onFocus={() => setIsOpen(true)}
 onBlur={() => setIsOpen(false)}
 onChange={() => setQuery(inputRef.current.value)}
 autoComplete="off"
 aria-autocomplete="inline"
 role="combobox"
 value={value} />
 {
 isOpen &&
 {
 plants.map(plant =>
 <li key={plant.id}>{plant.fullyQualifiedName}
)

Case Study Chapter 19

[497]

 }
 }
 </div>
);
};

Here, we've added a new piece of state, query, which we set via setQuery within the
onChange handler of <input>. This query mutation will then cause usePlantsLike to
issue a new request from the server and populate with multiple elements, each
representing an individual plant name suggestion.

And with that, we have completed the basic implementation of our component. In order to
make use of it, we can render it in our client/index.jsx entry point:

import ReactDOM from 'react-dom';
import React from 'react';
import PlantSelectionInput from './components/PlantSelectionInput';

ReactDOM.render(
 <PlantSelectionInput />,
 document.getElementById('root')
);

This code attempts to render <PlantSelectionInput/> to an element with a "root" ID.
As outlined previously, webpack, our bundling tool, will automatically bundle our
compiled JavaScript into a singular main.js file and place it in dist/ (that is, distribution)
directory. This will sit alongside our index.html file, which will serve as a user-facing
portal to our application. For our purposes, this only needs to be a simple page that
demonstrates PlantSelectionInput:

<!DOCTYPE html>
<html>
<head>
 <title>EveryPlant Selection App</title>
 <style>
 /* our styles... */
 </style>
</head>
<body>
 <div id="root"></div>
 <script src="./main.js"></script>
</body>
</html>

Case Study Chapter 19

[498]

We can place any relevant CSS within the <style> tag here in index.html:

<style>
.PlantSelectionInput {
 width: 100%;
 display: flex;
 position: relative;
}
.PlantSelectionInput input {
 background: #fff;
 font-size: 1em;
 flex: 1 1;
 padding: .5em;
 outline: none;
}
/* ... more styles here ... */
</style>

In larger projects, it's wise to come up with a scaled CSS solution that
works well with many different components. Examples that work well
with React include CSS modules or styled components, both of which allow
you to define CSS scoped just to individual components, avoiding the
headache of juggling global CSS.

The styling of our component is not particularly challenging as it is just a list of textual
items. The main challenge is in ensuring that, when the component is in its fully opened
state, the list of suggestions appears atop any other content on the page. This can be
achieved by relatively positioning the <input> container and then absolutely
positioning , visualized here:

Case Study Chapter 19

[499]

This concludes the implementation of our component, but we should also implement a
basic level of testing (at least). To accomplish this, we'll be using Jest, a testing library, and
its snapshot matching functionality. This will enable us to confirm that our React
component produces the expected hierarchy of DOM elements and will protect us from
future regressions:

// PlantSelectionInput.test.jsx

import React from 'react';
import renderer from 'react-test-renderer';
import PlantSelectionInput from './';

describe('PlantSelectionInput', () => {

 it('Should render deterministically to its snapshot', () => {
 expect(
 renderer
 .create(<PlantSelectionInput />)
 .toJSON()
).toMatchSnapshot();
 });

 describe('With configured isInitiallyOpen & value properties', () => {
 it('Should render deterministically to its snapshot', () => {
 expect(
 renderer
 .create(
 <PlantSelectionInput
 isInitiallyOpen={true}
 value="Example..."
 />
)
 .toJSON()
).toMatchSnapshot();
 });
 });

});

Jest helpfully saves the produced snapshots to a __snapshots__ directory and then
compares any future executions of the tests against these saved snapshots. In addition to
these tests, we'll also be able to implement regular functional, or even E2E tests that can
encode expectations such as When the user types, the list of suggestions updates correspondingly.

Case Study Chapter 19

[500]

This concludes our construction of the component and our case study. If you have a look at
our GitHub repository, you can see the completed project, play with the component, run
the tests yourself, and you can fork the repository to make your own changes too.

Here's the link to the GitHub repository: https:/ /github. com/ PacktPublishing/ Clean-
Code-in-JavaScript.

Summary
In this, the final chapter, we have explored a real-world problem through the lens of the
principles and learnings that we have gathered throughout the book. We posed a problem
that users were encountering and then designed and implemented a user experience that
solved their problem in a clean way. This included both server-side and client-side pieces,
enabling us to see, from start to finish, what a self-contained JavaScript project may look
like. Although we haven't been able to cover every single detail, I hope that this chapter has
been helpful in cementing the core ideas behind clean code and that you now feel better
prepared to write clean JavaScript code to tackle all types of problem domains. One core
tenet I hope you can take away with you is simply this: focus on the user.

https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript
https://github.com/PacktPublishing/Clean-Code-in-JavaScript

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Building Forms with Vue.js
Marina Mosti

ISBN: 978-1-83921-333-5

Learn all about the basics of creating reusable form components with the Vue
framework
Understand v-model and how it plays a role in form creation
Create forms that are completely powered and generated by a schema, either
locally or from an API endpoint
Understand how Vuelidate allows for easy declarative validation of all your
form’s inputs with Vue’s reactivity system
Connect your application with a Vuex-powered global state management
Use the v-mask library to enhance your inputs and improve user experience (UX)

https://www.packtpub.com/in/business-other/building-forms-with-vue-js

Other Books You May Enjoy

[502]

Web Development with Angular and Bootstrap - Third Edition
Sridhar Rao Chivukula, Aki Iskandar

ISBN: 978-1-78883-810-8

Develop Angular single-page applications using an ecosystem of helper tools
Get familiar with Bootstrap's new grid and helper classes
Embrace TypeScript and ECMAScript to write more maintainable code
Implement custom directives for Bootstrap 4 with the ng2-bootstrap library
Understand the component-oriented structure of Angular and its router
Use the built-in HTTP library to work with API endpoints
Manage your app's data and state with observables and streams
Combine Angular and Bootstrap 4 with Firebase to develop a solid example

https://www.packtpub.com/in/web-development/web-development-angular-and-bootstrap-third-edition

Other Books You May Enjoy

[503]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract equality operator 223, 225
abstract inequality operator 223, 225
abstracting functions 103, 104
abstraction principle
 about 75
 balanced abstraction 80
 over-abstraction 76, 77, 78
 under-abstraction 78, 79
abstractions 19
accessibility 39, 40
adaptability 33
addition operator 210, 211
analogy 400, 401
angular bootstrap boilerplate
 URL 468
Anti-CSRF-Token 391
architectural design patterns
 about 327
 Model-View-ViewModel (MVVM) 332, 333
 MVC 327, 328
arithmetic and numeric operators
 about 209
 addition operator 210
 division operator 212, 213
 exponentiation operator 215, 216
 multiplication operator 213, 214
 remainder operator 214, 215
 subtraction operator 212
 unary minus operator 217
 unary plus operator 216, 217
array-like objects 161, 162
arrays
 about 160, 161
 detecting 188, 189, 190
arrow function 150, 151, 152

assertion 398, 399
assignment operators
 about 232, 233, 234
 decrement operator 235
 destructuring 237, 238, 239
 increment operator 235
 postfix increment/decrement 236
 prefix increment/decrement 235
asynchronous (Async) functions 156, 157
asynchronous control flow
 about 306
 Event Loop 307
 native asynchronous APIs 307, 308
Asynchronous Module Definition (AMD) 375
automated builds 433
Automatic Semicolon Insertion (ASI) 249, 255

B
balanced abstraction 80
Basic Multilingual Plane (BMP) 118
Behaviour-Driven Development (BDD) 417
BigInt primitive 121, 122
bitwise operators 250, 251
block variety 253
blocks 257, 258
Boolean primitive 120, 121
Boolean
 values, converting into 194, 195
Booleans
 detecting 181, 182
breaking 280, 281, 282
bugs
 raising 474, 475, 476

C
cargo cult
 about 53, 54

[505]

 code 54, 55, 56
 libraries 57
 tools 57
casting 191, 192, 193
Chromium DevTools 102
clarity
 providing 418, 419, 420, 421
Class pattern
 about 340, 341
 classes, extending 344
 mixing-in classes 344, 345, 346
 private fields 344
 public fields 342
 static methods 342
 super-class, accessing 347
 using 341
clean code
 layers 21
clean directory structures
 creating 421, 422
clean documentation
 aspects 437
 concept 437, 438, 439
 instruction 441, 442
 specification 439, 440, 441
 usability 443, 444, 445
clear hierarchies
 creating 416, 417, 418
client-side build process
 advantages 491
 creating 490, 491, 492, 493
closures 265, 266
code inheritance, modifying
 encoding, as tests 458, 459
 minimally invasive surgery 456, 457, 458
code inheritance
 about 449, 453, 454
 assumptions, asserting 454, 455
 exploring 449
 find structure 451, 452
 flowchart, creating 450
 inheriting 448
 modifying 456
 observe history 451, 452
code, writing for humans

 about 16
 abstractions 19
 clean code, layers 21
 communicating intent 16, 17
 readability 17, 18, 19
 tower of abstraction 20
code
 as intent 10, 11
 issues 13, 14
 need for 10
 user 11, 12, 13
coercion 191, 192, 193
comma operator 247, 248
command line interface (CLI) 433
CommonJS 376
communication, strategies
 about 469
 explaining, from user's perspective 471
 focused communications 472
 listen 470
 open ideating 472, 473
 open questioning 472, 473
 pair programming 473, 474
 respond 470
 small communications 472
communication
 requisites, planning 466
 requisites, setting 466
comparative operators
 about 223
 abstract equality operator 223, 225
 abstract inequality operator 223, 225
 greater than operator 227
 in operator 230, 231
 instanceof operator 230
 less than operator 227
 lexicographic comparison 227, 228
 numeric comparison 229
 strict equality operator 225, 226
 strict inequality operator 225, 226
component
 creating 493, 494, 495, 496, 497, 498, 499,

500

compound statements 257
computed property access 240

[506]

concept 90
conditional spaghetti
 simplifying 302, 303, 304, 305
consistency 97, 99, 100
const declaration 263
constructor pattern
 about 337
 inheritance, achieving 338, 339, 340
 scenarios 338
 using 338
Content Security Policy (CSP) 388, 389
continuing 282, 283
continuous integration 433
contract 92, 93
control flow 268, 269, 270
conventional for statement 288, 289, 290
Conventional Module pattern
 about 352, 353
 using 353
conversion 191, 192, 193
creation, read, update, and delete (CRUD) 35
Cross-Site Request Forgery (CSRF) 390, 391,

392

Cross-Site Scripting (XSS)
 about 384, 385, 386, 387
 reflected 384
 storing 384
CSS Object Model (CSSOM) 358
cyclomatic complexity
 bugginess 301
 cognitive burden 301
 conditional spaghetti, simplifying 303, 304, 305,

306

 fragility 301
 handling 300, 301, 302
 unpredictability 301

D
declaration
 about 258, 259
 closures 265, 266
 const declaration 263
 function declaration 264, 265
 let declaration 262
 variable declaration 260, 261, 262

declarative programming
 versus imperative programming 270, 271, 272,

273, 275
decrement operator 235
delete operator 241, 242
dependency inversion principle 72, 73, 75
dependency management
 about 374, 375
 bundling 381, 382, 383
 module definition 375, 376, 377
 npm 377, 379, 380
 package.json 377, 379, 380
 serving 381, 382, 383
design 481, 482
design patterns
 benefits 326
designer
 perspective 322, 323, 324, 325, 326
detection
 about 175, 176, 177, 178
 type-detecting techniques 181
 typeof operator 179, 180
direct member access 239
division operator 212, 213
do...while statement 295, 296
Document Object Model (DOM)
 about 60, 357, 358, 360
 binding 360, 361
 data propagation 366, 367, 368, 369
 frontend routing 369, 370, 372, 373, 374
 messaging 366, 367, 368, 369
 react's approach 362, 363, 364, 365, 366
 reconciliation 360, 361, 362
documentation 445, 446
DOM, reconciliation
 creation 362
 deletion 362
 types 362
 update 362
DOM-based XSS 385
Don't repeat yourself (DRY) 76
Duck-Typing 178

[507]

E
efficiency
 about 29
 effects 31
 space 31
 time 29, 30
ember boilerplate
 URL 468
End-to-End (E2E) testing
 about 406, 407
 advantages 406
 disadvantages 406
 tools 430, 431, 432
ES Modules 377
Event Emitter 312
Event Loop 307
event-oriented paradigm 368
execution context 260
exponentiation operator 215, 216
expression 140, 253, 254

F
fallthrough 281, 297
falsy primitives 110, 111
familiarity 34, 35
fault tolerance 26
Flow
 URL 430
for statement
 about 287
 conventional for statement 288, 289, 290
 for...in construct 290, 291, 292
 for...of construct 292, 293
for...in construct 290, 291, 292
for...of construct 292, 293
formatters 426, 428, 429
fragility 33, 34
function declaration 148, 264, 265
function expressions 149
functional programming principles 81, 82
functional purity 83, 84, 365
functional testing 406, 407
functions, bindings
 arguments 145, 146

 execution context 142, 143
 new.target 144, 145
 super keyword 143, 144
functions
 about 138, 139
 bindings 141
 names 146, 147, 148
 syntactic contexts 140, 141

G
General Data Protection Regulation (GDPR) 394
generator function 158, 159
grapheme clusters 118
greater than operator 227
grouping 248, 249

H
headless browser 431
hierarchy 97, 99, 100
Hungarian notation
 about 93, 101, 102
 advantages 101
 disadvantages 102

I
idempotence 83, 365
if statement 285, 286, 287
Immediately Invoked Function Expression (IIFE)

152, 153, 154, 351
immutability 85
imperative 271
imperative form 103
imperative programming
 versus declarative programming 270, 271, 272,

273, 275
implementation 482
imposter syndrome 52
in operator 230, 231
increment operator 235
input domain 413
input space 413
instability 26
instanceof operator 230
instances
 detecting 190

[508]

integration testing
 about 404, 405
 advantages 405
 disadvantages 405
integration tests 400
interface segregation principle 69, 70, 71
intuitive assertions
 writing 414, 415, 416
invocation 275, 276
issues
 identifying 474
iterable protocol 163, 164, 165
iterables 160, 161

J
JavaScript (JS)
 about 41, 42, 438
 modules 334, 335, 336

K
Keep it Simple, Stupid (KISS) 76, 416

L
Law of Demeter (LoD) 59, 60, 61, 62, 369
less than operator 227
let declaration 262
lexical environments
 block environment 259
 function environment 259
 global environment 259
 module environment 259
lexicographic comparison 227, 228
linters 426, 428, 429
Liskov substitution principle 67, 68, 69
logical AND operator 220, 221
logical NOT operator 218, 219
logical operators
 about 218
 AND operator 220, 221
 NOT operator 218, 219
 OR operator 222, 223
logical OR operator 222, 223

M
maintainability
 about 32
 adaptability 33
 familiarity 34, 35
management
 about 42, 43
 bad metrics 46, 47
 lack, of ownership 47, 48
 pressure to ship 43, 44, 45
Map 132, 133
mathematic operators
 precedences 206
method definitions 154, 155, 156
Mocha testing library 418
mock 400
Model-View-ViewModel (MVVM) 327, 332, 333
Models, Views, and Controllers (MVC)
 about 325, 327, 328
 working example 328, 329, 330, 331, 332
modification
 driving 474
modular design patterns
 about 336
 Class pattern 340, 341
 constructor pattern 337
 Conventional Module pattern 352, 353
 Prototype pattern 347, 348, 349
 Revealing Module pattern 351, 352
 Singleton Class pattern 354
movement of control
 about 275
 breaking 280, 281, 282
 continuing 282, 283
 invocation 275, 276
 returning 277
 throwing 283, 284, 285
 yielding 278, 279
 yielding, complexity 280
 yielding, to yield 279
multiplication operator 213, 214

[509]

N
names approach 105
naming anti-patterns
 about 93
 needlessly exotic names 95
 needlessly long names 96, 97
 needlessly short names 94, 95
naming functions 103, 104
naming
 about 88
 characteristics 88
 concept 90
 contract 92, 93
 purpose 88, 89
native asynchronous APIs
 about 307, 308
 async 318, 319, 320
 await 318, 319, 320
 callback 308, 309, 310, 311
 event emitting 311, 312, 313
 event subscribing 311, 312, 313
 Promise 314, 315, 316, 317, 318
needlessly exotic names 95
needlessly long names 96, 97
needlessly short names 94, 95
new operator 242, 243, 244
non-technical audiences
 writing 446
null primitive 123, 124, 125
null
 detecting 187, 188
number primitive 112, 113, 114, 115
number
 detecting 182
 values, converting into 197, 198, 199
numbers
 detecting 183, 184
numeric comparison 229

O
object-oriented programming (OOP) 62
objects
 about 127, 128
 Map 132, 133

 property descriptors 129, 130, 131, 132
 property names 128, 129
 prototype 133, 134, 135, 136, 137
 using 138
 WeakMap 132, 133
open ideating 472
open questioning 472
Open Web Application Security Project's (OWASP)

387

open–closed principle (OCP) 65, 67
operands 204
operator arity 204, 205
operator function 205, 206
operator precedence 209
operators
 about 204
 associativity 206, 207, 208, 209
 characteristics 204
 precedence 206, 207, 208
over-abstraction 76, 77, 78

P
package 90
pair programming 473
Password Storage Cheat Sheet
 reference link 393
plain objects
 detecting 190, 191
Plant Selection application 483
PoCs
 implementing 468, 469
postfix increment/decrement 236
predictability 83
prefix tree 485
primitive, types
 about 108
 BigInt primitive 121, 122
 Boolean primitive 120, 121
 falsy primitives 110, 111
 null primitive 123, 124, 125
 number primitive 112, 113, 114, 115
 string type 115, 116, 117, 118, 119, 120
 symbol primitive 122, 123
 undefined primitive 125, 126, 127
primitive

[510]

 immutability of 108, 109
 values, converting into 199, 200, 201
 wrappers 109, 110
Principle of Least Astonishment (POLA) 132
problem 480, 481
problem domain 15, 16
promise 91
property access operators
 about 239
 computed property access 240
 direct member access 239
property descriptors 129, 130, 131, 132
property names 128, 129
prototype 134, 135, 136, 137
Prototype pattern
 about 347, 348, 349
 using 349, 350
prototype
 about 133
 implementing 468, 469
Puppeteer 431
purpose 88

R
react boilerplate
 URL 468
React Hooks 364
readability 17, 18, 19
RegExp
 about 166, 167, 168
 flags 168
 lastIndex 171
 methods 171
 methods, accepting 169, 170
 stickiness 172
regular variety 253
reliability
 about 22, 23
 correctness 23, 24
 resilience 26, 28, 29
 stability 25, 26
remainder operator 214, 215
removeWords function 440
request debouncing 485
request throttling 485

resilience 26, 27, 28, 29
REST API
 creating 483, 484, 485, 486, 487, 488, 489,

490

returning 277
Revealing Module pattern 351, 352, 371
rigidity 33, 34

S
scalars 117
scope 258, 259
security
 about 384
 vulnerabilities 393, 394
self
 about 49
 imposter syndrome 52, 53
 stubborn opinions 51, 52
 syntax, used for showing off 49, 50, 51
Semantic Versioning (SemVer) 378
set 163
short-circuit evaluation 218, 220
single responsibility principle(SRP) 62, 63, 64, 65
Single-Page Applications (SPAs)
 about 357, 358, 360
 architecture (DX) 359
 data propagation 366, 367, 368, 369
 frontend routing 369, 370, 372, 373, 374
 messaging 366, 367, 368, 369
 performance (UX) 359
 proliferation 359
 utate persistence (UX) 359
Singleton Class pattern
 about 354
 using 354
SOLID principles
 about 62
 dependency inversion principle 72, 73, 75
 interface segregation principle 69, 70, 71
 Liskov substitution principle 67, 68, 69
 open–closed principle (OCP) 65, 67
 single responsibility principle(SRP) 63, 64, 65
space 31
spread syntax 245, 246, 247
stability 25

[511]

stakeholder 43
stand-in 400
state 82
state-oriented paradigm 368
statements of control flow
 about 285
 do...while statement 295, 296
 for statement 287
 if statement 285, 286, 287
 switch statement 296, 297
 while statement 293, 294, 295
statements
 about 140, 253, 255
 forming, with semicolons 255, 256, 257
static typing 429, 430
stickiness 172
strict equality operator 225, 226
strict inequality operator 225, 226
string type 115, 116, 117, 118, 119, 120
strings
 detecting 184, 185
 values, converting into 196, 197
stub 400
Subresource Integrity (SRI) 390
subtraction operator 212
super-class
 accessing 347
SuperCoolTypeAnimator 438
surrogate pair 117
svelte template
 URL 468
switch statement
 about 296, 297
 breaking 297
 case blocks 298, 299
 fallthrough 297
 multivariant conditions 299, 300
 returning from 298
symbol primitive 122, 123
syntactic containers
 about 252
 blocks 252, 253, 257, 258
 expressions 252, 253, 254
 statements 252, 253, 255
syntactic contexts 140, 141

systemic change
 driving 476, 477, 478
systems
 resilience 27

T
techniques and considerations
 about 100
 abstracting functions 103, 104
 Hungarian notation 101, 102
 names approach 105
 naming functions 103, 104
template literals 116
Test-Driven Development (TDD) 407, 408, 409,

412, 458
testability 83
testing, types
 about 401, 402
 End-to-End (E2E) testing 406, 407
 functional testing 406, 407
 integration testing 404, 405
 unit testing 402, 404
testing
 about 396, 398, 411, 412, 413, 414
 advantages 397
 analogy 400, 401
 assertion 398, 399
third-party code
 about 460, 461, 462
 adapting 462, 463, 464
 considerations 461
 dealing with 460
 encapsulating 462, 463, 464
 selection 460
throwing 283, 284, 285
time 29, 30
trie 485
trie-search 486
type-detecting techniques
 about 181
 arrays, detecting 188, 189, 190
 Booleans, detecting 181, 182
 instances, detecting 190
 null, detecting 187, 188
 numbers, detecting 182, 183, 184

 plain objects, detecting 190, 191
 strings, detecting 184, 185
 undefined, detecting 185, 186, 187, 188
typeof operator 179, 180
TypeScript
 URL 430

U
unary minus operator 217
unary plus operator 216, 217
undefined primitive 125, 126, 127
undefined
 detecting 185, 186, 187, 188
under-abstraction 78, 79
unit testing
 about 402
 advantages 403
 disadvantages 403
unit tests 400
usability
 about 36, 37

 accessibility 39, 40
 intuitive design 38
 use stories 38
user needs 466, 467

V
void operator 242

W
WeakMap 132, 133
WeakSet 163
Web Content Accessibility Guidelines (WCAG 2.0)

39

while statement 293, 294, 295

Y
yielding
 about 278, 279
 complexity 280
 to yield 279
You aren't gonna need it (YAGNI) 76

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: What is Clean Code Anyway?
	Chapter 1: Setting the Scene
	Why we write code
	Code as intent
	Who is the user?
	What is the problem?
	Truly understanding the problem domain

	Writing code for humans
	Communicating intent
	Readability
	Meaningful abstractions
	The tower of abstraction
	The layers of clean code

	Summary

	Chapter 2: The Tenets of Clean Code
	Reliability
	Correctness
	Stability
	Resilience

	Efficiency
	Time
	Space
	Efficiency's effects

	Maintainability
	Adaptability
	Familiarity

	Usability
	User stories
	Intuitive design
	Accessibility

	Summary

	Chapter 3: The Enemies of Clean Code
	Enemy #1 – JavaScript
	Enemy #2 – management
	Pressure to ship
	Bad metrics
	Lack of ownership

	Enemy #3 – Self
	Showing off with syntax
	Stubborn opinions
	Imposter syndrome

	Enemy #4 – The cargo cult
	Cargo culting code
	Cargo culting tools and libraries

	Summary

	Chapter 4: SOLID and Other Principles
	The Law of Demeter
	SOLID
	Single responsibility principle
	Open–closed principle
	Liskov substitution principle
	Interface segregation principle
	Dependency inversion principle

	The abstraction principle
	Over-abstraction
	Under-abstraction
	Balanced abstraction

	Functional programming principles
	Functional purity
	Immutability

	Summary

	Chapter 5: Naming Things Is Hard
	What's in a name?
	Purpose
	Concept
	Contract

	Naming anti-patterns
	Needlessly short names
	Needlessly exotic names
	Needlessly long names

	Consistency and hierarchy
	Techniques and considerations
	Hungarian notation
	Naming and abstracting functions
	Three bad names

	Summary

	Section 2: JavaScript and Its Bits
	Chapter 6: Primitive and Built-In Types
	Primitive types
	Immutability of primitives
	Primitive wrappers
	The falsy primitives
	Number
	String
	Boolean
	BigInt
	Symbol
	null
	undefined

	Objects
	Property names
	Property descriptors
	Map and WeakMap
	The prototype
	When and how to use objects

	Functions
	Syntactic context
	Function bindings and this
	Execution context
	super
	new.target
	arguments

	Function names
	Function declarations
	Function expressions
	Arrow functions
	Immediately Invoked Function Expressions
	Method definitions
	Async functions
	Generator functions

	Arrays and iterables
	Array-like objects
	Set and WeakSet
	Iterable protocol

	RegExp
	Regular expression 101
	RegExp flags
	Methods accepting RegExp
	RegExp methods and lastIndex
	Stickiness

	Summary

	Chapter 7: Dynamic Typing
	Detection
	The typeof operator
	Type-detecting techniques
	Detecting Booleans
	Detecting numbers
	Detecting strings
	Detecting undefined
	Detecting null
	Detecting null or undefined
	Detecting arrays
	Detecting instances
	Detecting plain objects

	Conversion, coercion, and casting
	Converting into a Boolean
	Converting into a String
	Converting into a Number
	Converting into a primitive

	Summary

	Chapter 8: Operators
	What is an operator?
	Operator arity
	Operator function
	Operator precedence and associativity

	Arithmetic and numeric operators
	The addition operator
	Both operands are numbers
	Both operands are strings
	One operand is a string
	One operand is a non-primitive
	Conclusion – know your operands!

	The subtraction operator
	The division operator
	The multiplication operator
	The remainder operator
	The exponentiation operator
	The unary plus operator
	The unary minus operator

	Logical operators
	The logical NOT operator
	The logical AND operator
	The logical OR operator

	Comparative operators
	Abstract equality and inequality
	Strict equality and inequality
	Greater than and less than
	Lexicographic comparison
	Numeric comparison

	The instanceof operator
	The in operator

	Assignment operators
	Increment and decrement (prefix and postfix) operators
	Prefix increment/decrement
	Postfix increment/decrement

	Destructuring assignment

	Property access operators
	Direct property access
	Computed property access

	Other operators and syntax
	The delete operator
	The void operator
	The new operator
	The spread syntax
	The comma operator
	Grouping

	Bitwise operators
	Summary

	Chapter 9: Parts of Syntax and Scope
	Expressions, statements, and blocks
	Expressions
	Statements
	Forming statements with semicolons

	Blocks

	Scopes and declarations
	Variable declarations
	Let declarations
	Const declarations
	Function declarations
	Closures

	Summary

	Chapter 10: Control Flow
	What is control flow?
	Imperative versus declarative programming
	The movement of control
	Invocation
	Returning
	Yielding
	Yielding to a yield
	Complexity of yielding

	Breaking
	Continuing
	Throwing

	Statements of control flow
	The if statement
	The for statement
	Conventional for
	for...in
	for...of

	The while statement
	The do...while statement
	The switch statement
	Breaking and fallthrough
	Returning from a switch directly
	Case blocks
	Multivariant conditions

	Handling cyclomatic complexity
	Simplifying conditional spaghetti

	Asynchronous control flow
	The Event Loop
	Native asynchronous APIs
	Callbacks
	Event subscribing/emitting
	Promises
	async and await

	Summary

	Section 3: Crafting Abstractions
	Chapter 11: Design Patterns
	The perspective of a designer
	Architectural design patterns
	MVC
	A working example of MVC

	MVVM
	MV* and the nature of software

	JavaScript modules
	Modular design patterns
	Constructor patterns
	When to use the Constructor pattern
	Inheritance with the Constructor pattern

	The Class pattern
	When to use the Class pattern
	Static methods
	Public and private fields
	Extending classes
	Mixing-in classes
	Accessing a super-class

	The Prototype pattern
	When to use the Prototype pattern

	The Revealing Module pattern
	The Conventional Module pattern
	When to use the Conventional Module pattern

	The Singleton Class pattern
	When to use the Singleton Class pattern

	Planning and harmony
	Summary

	Chapter 12: Real-World Challenges
	The DOM and single-page applications
	DOM binding and reconciliation
	DOM reconciliation
	React's approach

	Messaging and data propagation
	Frontend routing

	Dependency management
	Module definition – then and now
	npm and package.json
	Bundling and serving

	Security
	Cross-Site Scripting
	Content Security Policy
	Subresource Integrity

	Cross-Site Request Forgery
	Other security vulnerabilities

	Summary

	Section 4: Testing and Tooling
	Chapter 13: The Landscape of Testing
	What is a test?
	The simple assertion
	Many moving parts

	Types of testing
	Unit testing
	Integration testing
	E2E and functional testing

	Test-Driven Development
	Summary

	Chapter 14: Writing Clean Tests
	Testing the right thing
	Writing intuitive assertions
	Creating clear hierarchies
	Providing final clarity
	Creating clean directory structures
	Summary

	Chapter 15: Tools for Cleaner Code
	Linters and formatters
	Static typing
	E2E testing tools
	Automated builds and CI
	Summary

	Section 5: Collaboration and Making Changes
	Chapter 16: Documenting Your Code
	Aspects of clean documentation
	Concept
	Specification
	Instruction
	Usability

	Documentation is everywhere
	Writing for non-technical audiences
	Summary

	Chapter 17: Other Peoples' Code
	Inheriting code
	Exploring and understanding
	Making a flowchart
	Finding structure and observing history
	Stepping through the code
	Asserting your assumptions

	Making changes
	Minimally invasive surgery
	Encoding changes as tests

	Dealing with third-party code
	Selection and understanding
	Encapsulating and adapting third-party code

	Summary

	Chapter 18: Communication and Advocacy
	Planning and setting requirements
	Understanding user needs
	Quick prototypes and PoCs

	Communication strategies
	Listen and respond
	Explain from the user's perspective
	Have small and focused communications
	Ask stupid questions and have wild ideas
	Pair programming and 1:1s

	Identifying issues and driving change
	Raising bugs
	Driving systemic change

	Summary

	Chapter 19: Case Study
	The problem
	The design
	The implementation
	The Plant Selection application
	Creating the REST API
	Creating the client-side build process
	Creating the component

	Summary

	Other Books You May Enjoy
	Index

